WorldWideScience

Sample records for 4e mediates resistance

  1. The same allele of translation initiation factor 4E mediates resistance against two Potyvirus spp. in Pisum sativum.

    Science.gov (United States)

    Bruun-Rasmussen, M; Møller, I S; Tulinius, G; Hansen, J K R; Lund, O S; Johansen, I E

    2007-09-01

    Pathogenicity of two sequenced isolates of Bean yellow mosaic virus (BYMV) was established on genotypes of Pisum sativum L. reported to carry resistance genes to BYMV and other potyviruses. Resistance to the white lupin strain of BYMV (BYMV-W) is inherited as a recessive gene named wlv that maps to linkage group VI together with other Potyvirus resistances. One of these, sbm1, confers resistance to strains of Pea seedborne mosaic virus and previously has been identified as a mutant allele of the eukaryotic translation initiation factor 4E gene (eIF4E). Sequence comparison of eIF4E from BYMV-W-susceptible and -resistant P. sativum genotypes revealed a polymorphism correlating with the resistance profile. Expression of eIF4E from susceptible plants in resistant plants facilitated BYMV-W infection in inoculated leaves. When cDNA of BYMV-W was agroinoculated, resistance mediated by the wlv gene frequently was overcome, and virus from these plants had a codon change causing an Arg to His change at position 116 of the predicted viral genome-linked protein (VPg). Accordingly, plants carrying the wlv resistance gene were infected upon inoculation with BYMV-W derived from cDNA with a His codon at position 116 of the VPg coding region. These results suggested that VPg determined pathogenicity on plants carrying the wlv resistance gene and that wlv corresponded to the sbm1 allele of eIF4E. PMID:17849710

  2. The same allele of translation initiation factor 4E mediates resistance against two potyvirus species in Pisum sativum

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, Marianne; Møller, I S; Tulinius, G;

    2007-01-01

    was overcome, and virus from these plants had a codon change causing an Arg to His change at position 116 of the predicted viral genome-linked protein (VPg). Accordingly, plants carrying the wlv resistance gene were infected upon inoculation with BYMV-W derived from cDNA with a His codon at position 116......Pathogenicity of two sequenced isolates of Bean yellow mosaic virus (BYMV) was established on genotypes of Pisum sativum L. reported to carry resistance genes to BYMV and other potyviruses. Resistance to the white lupin strain of BYMV (BYMV-W) is inherited as a recessive gene named wlv that maps...... to linkage group VI together with other Potyvirus resistances. One of these, sbm1, confers resistance to strains of Pea seedborne mosaic virus and previously has been identified as a mutant allele of the eukaryotic translation initiation factor 4E gene (eIF4E). Sequence comparison of eIF4E from BYMV...

  3. Barley Yellow Mosaic Virus VPg Is the Determinant Protein for Breaking eIF4E-Mediated Recessive Resistance in Barley Plants

    Science.gov (United States)

    Li, Huangai; Kondo, Hideki; Kühne, Thomas; Shirako, Yukio

    2016-01-01

    In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus) factor(s) responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6) in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10) and rym5-non-breaking (JK05) isolates indicated that genome-linked viral protein (VPg) is the determinant protein for breaking the rym5 resistance. Likewise, VPg is also responsible for overcoming the resistances of rym4 and rym6 alleles. Mutational analysis identified that amino acids Ser-118, Thr-120, and His-142 in JT10 VPg are the most critical residues for overcoming rym5 resistance in protoplasts. Moreover, the rym5-non-breaking JK05 could accumulate in the rym5 protoplasts when eIF4E derived from a susceptible barley cultivar was expressed from the viral genome. Thus, the compatibility between VPg and host eIF4E determines the ability of BaYMV to infect barley plants. PMID:27746794

  4. Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against Clover yellow vein virus in pea.

    Science.gov (United States)

    Nakahara, Kenji S; Shimada, Ryoko; Choi, Sun-Hee; Yamamoto, Haruko; Shao, Jun; Uyeda, Ichiro

    2010-11-01

    Two recessive genes (cyv1 and cyv2) are known to confer resistance against Clover yellow vein virus (ClYVV) in pea. cyv2 has recently been revealed to encode eukaryotic translation initiation factor 4E (eIF4E) and is the same allele as sbm1 and wlm against other potyviruses. Although mechanical inoculation with crude sap is rarely able to cause infection of a cyv2 pea, biolistic inoculation of the infectious ClYVV cDNA clone does. At the infection foci, the breaking virus frequently emerges, resulting in systemic infection. Here, a derived cleaved-amplified polymorphic sequence analysis showed that the breakings were associated with a single nonsynonymous mutation on the ClYVV genome, corresponding to an amino-acid substitution at position 24 (isoleucine to valine) on the P1 cistron. ClYVV with the point mutation was able to break the resistance. This is a first report demonstrating that P1 is involved in eIF4E-mediated recessive resistance. PMID:20653413

  5. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum.

    Science.gov (United States)

    Wang, Xinhua; Kohalmi, Susanne E; Svircev, Antonet; Wang, Aiming; Sanfaçon, Hélène; Tian, Lining

    2013-01-01

    Plum pox virus (PPV) causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso)4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso)4E genes were cloned from plum (Prunus domestica L.). The sequence identity between plum eIF4E and eIF(iso)4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso)4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso)4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso)4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso)4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso)4E is involved in PPV infection in plum, and that silencing of eIF(iso)4E expression can lead to PPV resistance in Prunus species.

  6. Silencing of the host factor eIF(iso4E gene confers plum pox virus resistance in plum.

    Directory of Open Access Journals (Sweden)

    Xinhua Wang

    Full Text Available Plum pox virus (PPV causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E or its isoform eIF(iso4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso4E genes were cloned from plum (Prunus domestica L.. The sequence identity between plum eIF4E and eIF(iso4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso4E is involved in PPV infection in plum, and that silencing of eIF(iso4E expression can lead to PPV resistance in Prunus species.

  7. Resistance to discodermolide, a microtubule-stabilizing agent and senescence inducer, is 4E-BP1–dependent

    OpenAIRE

    Chao, Suzan K.; Lin, Juan; Brouwer-Visser, Jurriaan; Smith, Amos B.; Horwitz, Susan Band; McDaid, Hayley M.

    2010-01-01

    Discodermolide is a microtubule-stabilizing agent that induces accelerated cell senescence. A discodermolide-resistant cell line, AD32, was generated from the human lung cancer cell line A549. We hypothesize that the major resistance mechanism in these cells is escape from accelerated senescence. AD32 cells have decreased levels of 4E-BP1 mRNA and protein, relative to the parental discodermolide-sensitive A549 cells. Lentiviral-mediated re-expression of wild-type 4E-BP1 in AD32 cells increase...

  8. Translation control during prolonged mTORC1 inhibition mediated by 4E-BP3

    Science.gov (United States)

    Tsukumo, Yoshinori; Alain, Tommy; Fonseca, Bruno D.; Nadon, Robert; Sonenberg, Nahum

    2016-01-01

    Targeting mTORC1 is a highly promising strategy in cancer therapy. Suppression of mTORC1 activity leads to rapid dephosphorylation of eIF4E-binding proteins (4E-BP1–3) and subsequent inhibition of mRNA translation. However, how the different 4E-BPs affect translation during prolonged use of mTOR inhibitors is not known. Here we show that the expression of 4E-BP3, but not that of 4E-BP1 or 4E-BP2, is transcriptionally induced during prolonged mTORC1 inhibition in vitro and in vivo. Mechanistically, our data reveal that 4E-BP3 expression is controlled by the transcription factor TFE3 through a cis-regulatory element in the EIF4EBP3 gene promoter. CRISPR/Cas9-mediated EIF4EBP3 gene disruption in human cancer cells mitigated the inhibition of translation and proliferation caused by prolonged treatment with mTOR inhibitors. Our findings show that 4E-BP3 is an important effector of mTORC1 and a robust predictive biomarker of therapeutic response to prolonged treatment with mTOR-targeting drugs in cancer. PMID:27319316

  9. Resistance to discodermolide, a microtubule-stabilizing agent and senescence inducer, is 4E-BP1-dependent.

    Science.gov (United States)

    Chao, Suzan K; Lin, Juan; Brouwer-Visser, Jurriaan; Smith, Amos B; Horwitz, Susan Band; McDaid, Hayley M

    2011-01-01

    Discodermolide is a microtubule-stabilizing agent that induces accelerated cell senescence. A discodermolide-resistant cell line, AD32, was generated from the human lung cancer cell line A549. We hypothesize that the major resistance mechanism in these cells is escape from accelerated senescence. AD32 cells have decreased levels of 4E-BP1 mRNA and protein, relative to the parental discodermolide-sensitive A549 cells. Lentiviral-mediated re-expression of wild-type 4E-BP1 in AD32 cells increased the proliferation rate and reverted resistance to discodermolide via restoration of discodermolide-induced accelerated senescence. Consistent with this, cell growth and response to discodermolide was confirmed in vivo using tumor xenograft models. Furthermore, reintroduction of a nonphosphorylatable mutant (Thr-37/46 Ala) of 4E-BP1 was able to partially restore sensitivity and enhance proliferation in AD32 cells, suggesting that these effects are independent of phosphorylation by mTORC1. Microarray profiling of AD32-resistant cells versus sensitive A549 cells, and subsequent unbiased gene ontology analysis, identified molecular pathways and functional groupings of differentially expressed mRNAs implicated in overcoming discodermolide-induced senescence. The most statistically significant classes of differentially expressed genes included p53 signaling, G2/M checkpoint regulation, and genes involved in the role of BRCA1 in the DNA damage response. Consistent with this, p53 protein expression was up-regulated and had increased nuclear localization in AD32 cells relative to parental A549 cells. Furthermore, the stability of p53 was enhanced in AD32 cells. Our studies propose a role for 4E-BP1 as a regulator of discodermolide-induced accelerated senescence.

  10. Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance.

    Science.gov (United States)

    Rodríguez-Hernández, Ana M; Gosalvez, Blanca; Sempere, Raquel N; Burgos, Lorenzo; Aranda, Miguel A; Truniger, Verónica

    2012-09-01

    Efficient and sustainable control of plant viruses may be achieved using genetically resistant crop varieties, although resistance genes are not always available for each pathogen; in this regard, the identification of new genes that are able to confer broad-spectrum and durable resistance is highly desirable. Recently, the cloning and characterization of recessive resistance genes from different plant species has pointed towards eukaryotic translation initiation factors (eIF) of the 4E family as factors required for the multiplication of many different viruses. Thus, we hypothesized that eIF4E may control the susceptibility of melon (Cucumis melo L.) to a broad range of viruses. To test this hypothesis, Cm-eIF4E knockdown melon plants were generated by the transformation of explants with a construct that was designed to induce the silencing of this gene, and the plants from T2 generations were genetically and phenotypically characterized. In transformed plants, Cm-eIF4E was specifically silenced, as identified by the decreased accumulation of Cm-eIF4E mRNA and the appearance of small interfering RNAs derived from the transgene, whereas the Cm-eIF(iso)4E mRNA levels remained unaffected. We challenged these transgenic melon plants with eight agronomically important melon-infecting viruses, and identified that they were resistant to Cucumber vein yellowing virus (CVYV), Melon necrotic spot virus (MNSV), Moroccan watermelon mosaic virus (MWMV) and Zucchini yellow mosaic virus (ZYMV), indicating that Cm-eIF4E controls melon susceptibility to these four viruses. Therefore, Cm-eIF4E is an efficient target for the identification of new resistance alleles able to confer broad-spectrum virus resistance in melon.

  11. Insulin Signaling Augments eIF4E-Dependent Nonsense-Mediated mRNA Decay in Mammalian Cells.

    Science.gov (United States)

    Park, Jungyun; Ahn, Seyoung; Jayabalan, Aravinth K; Ohn, Takbum; Koh, Hyun Chul; Hwang, Jungwook

    2016-07-01

    Nonsense-mediated mRNA decay (NMD) modulates the level of mRNA harboring a premature termination codon (PTC) in a translation-dependent manner. Inhibition of translation is known to impair NMD; however, few studies have investigated the correlation between enhanced translation and increased NMD. Here, we demonstrate that insulin signaling events increase translation, leading to an increase in NMD of eIF4E-bound transcripts. We provide evidence that (i) insulin-mediated enhancement of translation augments NMD and rapamycin abrogates this enhancement; (ii) an increase in AKT phosphorylation due to inhibition of PTEN facilitates NMD; (iii) insulin stimulation increases the binding of up-frameshift factor 1 (UPF1), most likely to eIF4E-bound PTC-containing transcripts; and (iv) insulin stimulation induces the colocalization of UPF1 and eIF4E in processing bodies. These results illustrate how extracellular signaling promotes the removal of eIF4E-bound NMD targets.

  12. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches.

    Directory of Open Access Journals (Sweden)

    Alba Martínez

    Full Text Available Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D form of eIF4E, but not phospho-dead (S209A eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin, starvation (glucose+glutamine withdrawal, and oxidative stress (arsenite. De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1. We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy.

  13. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice.

    Science.gov (United States)

    Tsai, Shih-Yin; Rodriguez, Ariana A; Dastidar, Somasish G; Del Greco, Elizabeth; Carr, Kaili Lia; Sitzmann, Joanna M; Academia, Emmeline C; Viray, Christian Michael; Martinez, Lizbeth Leon; Kaplowitz, Brian Stephen; Ashe, Travis D; La Spada, Albert R; Kennedy, Brian K

    2016-08-16

    Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism. PMID:27498874

  14. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice

    Directory of Open Access Journals (Sweden)

    Shih-Yin Tsai

    2016-08-01

    Full Text Available Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism.

  15. PRMT5 is essential for the eIF4E-mediated 5′-cap dependent translation

    International Nuclear Information System (INIS)

    Highlights: • PRMT5 participates in syntheses of HIF-1α, c-Myc and cyclin D1 proteins. • PRMT5 promotes the 5′-cap dependent translation. • PRMT5 is required for eIF4E binding to mRNA 5′-cap. • PRMT5 is essential for eIF4E-dependent cell proliferation. - Abstract: It is becoming clear that PRMT5 plays essential roles in cell cycle progression, survival, and responses to external stresses. However, the precise mechanisms underlying such roles of PRMT5 have not been clearly understood. Previously, we have demonstrated that PRMT5 participates in cellular adaptation to hypoxia by ensuring 5′-cap dependent translation of HIF-1α. Given that c-Myc and cyclin D1 expressions are also tightly regulated in 5′-cap dependent manner, we here tested the possibility that PRMT5 promotes cell proliferation by increasing de novo syntheses of the oncoproteins. c-Myc and cyclin D1 were found to be noticeably downregulated by PRMT5 knock-down. A RNA immunoprecipitation analysis, which can identify RNA–protein interactions, showed that PRMT5 is required for the interaction among eIF4E and 5′-UTRs of HIF-1α, c-Myc and cyclin D1 mRNAs. In addition, PRMT5 knock-down inhibited cell proliferation by inducing cell cycle arrest at the G1 phase. More importantly, ectopic expression of eIF4E significantly rescued the cell cycle progression and cell proliferation even in PRMT5-deficeint condition. Based on these results, we propose that PRMT5 determines cell fate by regulating 5′-cap dependent translation of proteins essential for proliferation and survival

  16. PRMT5 is essential for the eIF4E-mediated 5′-cap dependent translation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji-Hong [Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Chungbuk (Korea, Republic of); Lee, Yoon-Mi [Department of Food Bioscience, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Chungbuk (Korea, Republic of); Lee, Gibok [Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Chungbuk (Korea, Republic of); Choi, Yong-Joon [Departments of Pharmacology and Biomedical Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Lim, Beong-Ou; Kim, Young Jun [Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Chungbuk (Korea, Republic of); Choi, Dong-Kug [Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Chungbuk (Korea, Republic of); Park, Jong-Wan, E-mail: parkjw@snu.ac.kr [Departments of Pharmacology and Biomedical Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of)

    2014-10-03

    Highlights: • PRMT5 participates in syntheses of HIF-1α, c-Myc and cyclin D1 proteins. • PRMT5 promotes the 5′-cap dependent translation. • PRMT5 is required for eIF4E binding to mRNA 5′-cap. • PRMT5 is essential for eIF4E-dependent cell proliferation. - Abstract: It is becoming clear that PRMT5 plays essential roles in cell cycle progression, survival, and responses to external stresses. However, the precise mechanisms underlying such roles of PRMT5 have not been clearly understood. Previously, we have demonstrated that PRMT5 participates in cellular adaptation to hypoxia by ensuring 5′-cap dependent translation of HIF-1α. Given that c-Myc and cyclin D1 expressions are also tightly regulated in 5′-cap dependent manner, we here tested the possibility that PRMT5 promotes cell proliferation by increasing de novo syntheses of the oncoproteins. c-Myc and cyclin D1 were found to be noticeably downregulated by PRMT5 knock-down. A RNA immunoprecipitation analysis, which can identify RNA–protein interactions, showed that PRMT5 is required for the interaction among eIF4E and 5′-UTRs of HIF-1α, c-Myc and cyclin D1 mRNAs. In addition, PRMT5 knock-down inhibited cell proliferation by inducing cell cycle arrest at the G1 phase. More importantly, ectopic expression of eIF4E significantly rescued the cell cycle progression and cell proliferation even in PRMT5-deficeint condition. Based on these results, we propose that PRMT5 determines cell fate by regulating 5′-cap dependent translation of proteins essential for proliferation and survival.

  17. Regulation of Eukaryotic Initiation Factor 4E and Its Isoform: Implications for Antiviral Strategy in Plants

    Institute of Scientific and Technical Information of China (English)

    Yu-Yang Zhang; Han-Xia Li; Bo Ou-yang; Zhi-Biao Ye

    2006-01-01

    In recent years, biotechnology has permitted regulation of the expression of endogenous plant genes to improve agronomicaiiy important traits. Genetic modification of crops has benefited from emerging knowledge of new genes, especially genes that exhibit novel functions, one of which is eukaryotic initiation factor 4E (elF4E). elF4E is one of the most important translation initiation factors involved in eukaryotic initiation. Recent research has demonstrated that virus resistance mediated by elF4E and its isoform elF (iso)4E occurs in several plant-virus interactions, thus indicating a potential new role for elF4E/elL(iso)4E in resistance strategies against plant viruses. In this review, we briefly describe elF4E activity in plant translation, its potential role, and functions of the elF4E subfamily in plant-virus interactions. Other initiation factors such as elF4G could also play a role in plant resistance against viruses. Finally, the potential for developing elF4E-medlated resistance to plant viruses in the future is discussed. Future research should focus on elucidation of the resistance mechanism and spectrum mediated by elF4E. Knowledge of a particular plant-virus interaction will help to deepen our understanding of elF4E and other eukaryotic initiation factors, and their involvement in virus disease control.

  18. Cytokine-mediated reversal of multidrug resistance

    OpenAIRE

    Stein, Ulrike; Walther, Wolfgang

    1998-01-01

    The occurrence of the multidrug resistance phenotype still represents a limiting factor for successful cancer chemotherapy. Numerous efforts have been made to develop strategies for reversal and/or modulation of this major therapy obstacle through targeting at different levels of intervention. The phenomenon of MDR is often associated with overexpression of resistance-associated genes. Since the classical type of MDR in human cancers is mainly mediated by the P-glycoprotein encoded by the mul...

  19. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and veter

  20. Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele

    DEFF Research Database (Denmark)

    Naderpour, Masoud; Lund, Ole Søgaard; Larsen, Richard;

    2010-01-01

    Eukaryotic translation initiation factors (eIFs) play a central role in potyviral infection. Accordingly, mutations in the gene encoding eIF4E have been identified as a source of recessive resistance in several plant species. In common bean, Phaseolus vulgaris, four recessive genes, bc-1, bc-2, b...

  1. A Concise Li/liq. NH3 Mediated Synthesis of (4E,10Z)-Tetradeca-4,10-dienyl Acetate: The Major Sex Pheromone of Apple Leafminer Moth, Phyllonorycter ringoniella

    International Nuclear Information System (INIS)

    We have accomplished a protection free, concise, Li/liq. NH3 mediated and gram scale synthesis of (4E,10Z)-tetradeca-4,10-dienyl acetate (1), the major sex pheromone of apple leafminer moth, Phyllonorycter ringoniella starting from commercially available 1-pentyne, 1,4- dibromobutane and 4-petyne-1-ol in 24% overall yield. The Li/liq. NH3 based mono-alkynylation of dibromobutane has been introduced for the first time. The stereoselective formation of 10(Z) and 4(E) olefins are accomplished by partial hydrogenation (Lindlar's catalyst) and birch reduction respectively. The economy, efficiency, simplicity and high stereo chemical purity of this synthesis allow the potential use of pheromone 1 in integrated field studies to understand the behavioral responses of male apple leaf miner moth

  2. Adipokines mediate inflammation and insulin resistance

    Directory of Open Access Journals (Sweden)

    Jeffrey E. Pessin

    2013-06-01

    Full Text Available For many years, adipose tissue was considered as an inert energy storage organ that accumulates and stores triacylglycerols during energy excess and releases fatty acids in times of systemic energy need. However, over the last two decades adipose tissue depots have been established as highly active endocrine and metabolically important organs that modulate energy expenditure and glucose homeostasis. In rodents, brown adipose tissue plays an essential role in non-shivering thermogenesis and in energy dissipation that can serve to protect against diet-induced obesity. White adipose tissue collectively referred too as either subcutaneous or visceral adipose tissue is responsible for the secretion of an array of signaling molecules, termed adipokines. These adipokines function as classic circulating hormones to communicate with other organs including brain, liver, muscle, the immune system and adipose tissue itself. The dysregulation of adipokines has been implicated in obesity, type 2 diabetes and cardiovascular disease. Recently, inflammatory responses in adipose tissue have been shown as a major mechanism to induce peripheral tissue insulin resistance. Although leptin and adiponectin regulate feeding behavior and energy expenditure, these adipokines are also involved in the regulation of inflammatory responses. Adipose tissue secrete various pro- and anti-inflammatory adipokines to modulate inflammation and insulin resistance. In obese humans and rodent models, the expression of pro-inflammatory adipokines is enhanced to induce insulin resistance. Collectively, these findings have suggested that obesity-induced insulin resistance may result, at least in part, from an imbalance in the expression of pro- and anti-inflammatory adipokines. Thus we will review the recent progress regarding the physiological and molecular functions of adipokines in the obesity-induced inflammation and insulin resistance with perspectives on future directions.

  3. Efflux Pump-Mediated Resistance in Chemotherapy

    OpenAIRE

    Ughachukwu, PO; Unekwe, PC

    2012-01-01

    Efflux pump mechanisms perform important physiological functions such as prevention of toxin absorption from the gastrointestinal tract, elimination of bile from the hepatocytes, effective functioning of the blood–brain barrier and placental barrier, and renal excretion of drugs. They exist in all living cells, but those in the bacterial and mammalian cells are more important to the clinician and pharmacologist, as they constitute an important cause of antimicrobial drug resistance, which con...

  4. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors

    OpenAIRE

    Ducker, Gregory S.; Atreya, Chloe E.; Simko, Jeffry P.; Hom, Yun K.; Matli, Mary R; Benes, Cyril H.; Hann, Byron; Nakakura, Eric K.; Bergsland, Emily K.; Donner, David B.; Settleman, Jeffrey; Shokat, Kevan M.; Warren, Robert S

    2013-01-01

    The mammalian target of rapamycin (mTOR) regulates cell growth by integrating nutrient and growth factor signaling and is strongly implicated in cancer. But mTOR is not an oncogene, and which tumors will be resistant or sensitive to new ATP-competitive mTOR inhibitors now in clinical trials remains unknown. We screened a panel of over 600 human cancer cell lines to identify markers of resistance and sensitivity to the mTOR inhibitor PP242. RAS and PIK3CA mutations were the most significant ge...

  5. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors

    OpenAIRE

    Ducker, Gregory S.; Atreya, Chloe E.; Simko, Jeffry P.; Hom, Yun K.; Matli, Mary R; Benes, Cyril H.; Hann, Byron; Nakakura, Eric K.; Bergsland, Emily K.; Donner, David B.; Settleman, Jeffrey; Shokat, Kevan M.; Warren, Robert S

    2014-01-01

    The mammalian target of rapamycin (mTOR) regulates cell growth by integrating nutrient and growth factor signaling and is strongly implicated in cancer. But mTOR is not an oncogene, and which tumors will be resistant or sensitive to new ATP-competitive mTOR inhibitors now in clinical trials remains unknown. We screened a panel of over 600 human cancer cell lines to identify markers of resistance and sensitivity to the mTOR inhibitor PP242. RAS and PIK3CA mutations were the most significant ge...

  6. Resistance to Antimicrobials Mediated by Efflux Pumps in Staphylococcus aureus

    OpenAIRE

    Isabel Couto; Leonard Amaral; José Melo-Cristino; Miguel Viveiros; Cláudia Palma; Elisabete Junqueira; Costa, Sofia S.

    2013-01-01

    Resistance mediated by efflux has been recognized in Staphylococcus aureus in the last few decades, although its clinical relevance has only been recognized recently. The existence of only a few studies on the individual and overall contribution of efflux to resistance phenotypes associated with the need of well-established methods to assess efflux activity in clinical isolates contributes greatly to the lack of solid knowledge of this mechanism in S. aureus. This study aims to provide inform...

  7. STAT3: A Novel Molecular Mediator of Resistance to Chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Spitzner, Melanie, E-mail: melanie.spitzner@med.uni-goettingen.de [Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany); Ebner, Reinhard [Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Wolff, Hendrik A. [Department of Radiotherapy and Radiooncology, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany); Ghadimi, B. Michael [Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany); Wienands, Jürgen [Department of Cellular and Molecular Immunology, University Medicine Göttingen, Humboldtallee 34, Göttingen 37073 (Germany); Grade, Marian, E-mail: melanie.spitzner@med.uni-goettingen.de [Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany)

    2014-09-29

    Chemoradiotherapy (CRT) represents a standard treatment for many human cancers, frequently combined with radical surgical resection. However, a considerable percentage of primary cancers are at least partially resistant to CRT, which represents a substantial clinical problem, because it exposes cancer patients to the potential side effects of both irradiation and chemotherapy. It is therefore exceedingly important to determine the molecular characteristics underlying CRT-resistance and to identify novel molecular targets that can be manipulated to re-sensitize resistant tumors to CRT. In this review, we highlight much of the recent evidence suggesting that the signal transducer and activator of transcription 3 (STAT3) plays a prominent role in mediating CRT-resistance, and we outline why inhibition of STAT3 holds great promise for future multimodal treatment concepts in oncology.

  8. Prevalence of plasmid-mediated quinolone resistance determinants among oxyiminocephalosporin-resistant Enterobacteriaceae in Argentina

    Directory of Open Access Journals (Sweden)

    Giovanna Rincon Cruz

    2013-11-01

    Full Text Available High quinolone resistance rates were observed among oxyiminocephalosporin-resistant enterobacteria. In the present study, we searched for the prevalence of plasmid-mediated quinolone resistance (PMQR genes within the 55 oxyiminocephalosporin-resistant enterobacteria collected in a previous survey. The main PMQR determinants were aac(6'-Ib-cr and qnrB, which had prevalence rates of 42.4% and 33.3%, respectively. The aac(6'-Ib-cr gene was more frequently found in CTX-M-15-producing isolates, while qnrB was homogeneously distributed among all CTX-M producers.

  9. Resistance to Antimicrobials Mediated by Efflux Pumps in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Isabel Couto

    2013-03-01

    Full Text Available Resistance mediated by efflux has been recognized in Staphylococcus aureus in the last few decades, although its clinical relevance has only been recognized recently. The existence of only a few studies on the individual and overall contribution of efflux to resistance phenotypes associated with the need of well-established methods to assess efflux activity in clinical isolates contributes greatly to the lack of solid knowledge of this mechanism in S. aureus. This study aims to provide information on approaches useful to the assessment and characterization of efflux activity, as well as contributing to our understanding of the role of efflux to phenotypes of antibiotic resistance and biocide tolerance in S. aureus clinical isolates. The results described show that efflux is an important contributor to fluoroquinolone resistance in S. aureus and suggest it as a major mechanism in the early stages of resistance development. We also show that efflux plays an important role on the reduced susceptibility to biocides in S. aureus, strengthening the importance of this long neglected resistance mechanism to the persistence and proliferation of antibiotic/biocide-resistant S. aureus in the hospital environment.

  10. Growth mediated feedback and the abrupt onset of antibiotic resistance

    Science.gov (United States)

    Barrett Deris, J.

    2010-03-01

    Recent results in our lab indicate that global gene expression will change in a growth-dependent manner for bacteria in sublethal antibiotic levels. We analyzed a system containing a constitutively expressed drug resistance gene and found that growth-mediated feedback provided a mechanism for bistable growth rates. That is, two identical cell-lines in the same antibiotic-infused media may respond with distinct growth rates. Our experimental work with cells carrying this resistance gene has shown that a rapid drop in growth occurs over a relatively small range of antibiotic. This result is consistent with a growth plateau arising in our analysis of the feedback mechanism. Furthermore, experiments have shown that a culture's degree of drug resistance depends on the initial growth conditions prior to exposure to high levels of antibiotics. This result is consistent with the predicted existence of a hysteretic regime near the growth plateau. The work reveals concrete mechanisms by which bacteria cope with high levels of antibiotics and illustrates the importance of considering growth-mediated feedback on gene circuits.

  11. Does Inflammation Mediate the Association Between Obesity and Insulin Resistance?

    Science.gov (United States)

    Adabimohazab, Razieh; Garfinkel, Amanda; Milam, Emily C; Frosch, Olivia; Mangone, Alexander; Convit, Antonio

    2016-06-01

    In adult obesity, low-grade systemic inflammation is considered an important step in the pathogenesis of insulin resistance (IR). The association between obesity and inflammation is less well established in adolescents. Here, we ascertain the importance of inflammation in IR among obese adolescents by utilizing either random forest (RF) classification or mediation analysis approaches. The inflammation balance score, composed of eight pro- and anti-inflammatory makers, as well as most of the individual inflammatory markers differed significantly between lean and overweight/obese. In contrast, adiponectin was the only individual marker selected as a predictor of IR by RF, and the balance score only revealed a medium-to-low importance score. Neither adiponectin nor the inflammation balance score was found to mediate the relationship between obesity and IR. These findings do not support the premise that low-grade systemic inflammation is a key for the expression of IR in the human. Prospective longitudinal studies should confirm these findings.

  12. HOPM1 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    Science.gov (United States)

    He, Sheng Yang; Nomura, Kinya

    2011-11-15

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein HopM1.sub.1-300 mediated protection is enhanced, such as increased protection to Pseudomonas syringae pv. tomato DC3000 HopM1 and/or there is an increase in activity of an ATMIN associated plant protection protein, such as ATMIN7. Reagents of the present invention further provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  13. MGMT Expression Predicts PARP-Mediated Resistance to Temozolomide.

    Science.gov (United States)

    Erice, Oihane; Smith, Michael P; White, Rachel; Goicoechea, Ibai; Barriuso, Jorge; Jones, Chris; Margison, Geoffrey P; Acosta, Juan C; Wellbrock, Claudia; Arozarena, Imanol

    2015-05-01

    Melanoma and other solid cancers are frequently resistant to chemotherapies based on DNA alkylating agents such as dacarbazine and temozolomide. As a consequence, clinical responses are generally poor. Such resistance is partly due to the ability of cancer cells to use a variety of DNA repair enzymes to maintain cell viability. Particularly, the expression of MGMT has been linked to temozolomide resistance, but cotargeting MGMT has proven difficult due to dose-limiting toxicities. Here, we show that the MGMT-mediated resistance of cancer cells is profoundly dependent on the DNA repair enzyme PARP. Both in vitro and in vivo, we observe that MGMT-positive cancer cells strongly respond to the combination of temozolomide and PARP inhibitors (PARPi), whereas MGMT-deficient cells do not. In melanoma cells, temozolomide induced an antiproliferative senescent response, which was greatly enhanced by PARPi in MGMT-positive cells. In summary, we provide compelling evidence to suggest that the stratification of patients with cancer upon the MGMT status would enhance the success of combination treatments using temozolomide and PARPi. PMID:25777962

  14. Modulation of breast cancer resistance protein mediated atypical multidrug resistance using RNA interference delivered by adenovirus

    Institute of Scientific and Technical Information of China (English)

    LI Wen-tong; ZHOU Geng-yin; WANG Chun-ling; GUO Cheng-hao; SONG Xian-rang; CHI Wei-ling

    2005-01-01

    @@ Clinical multidrug resistance (MDR) of malignancies to many antineoplastic agents is the major obstacle in the successful treatment of cancer. The emergence of breast cancer resistance protein (BCRP), a member of the adenosine triphosphate (ATP) binding cassette (ABC) transporter family, has necessitated the development of antagonists. To overcome the BCRP-mediated atypical MDR, RNA interference (RNAi) delivered by adenovirus targeting BCRP mRNA was used to inhibit the atypical MDR expression by infecting MCF-7/MX100 cell lines with constructed RNAi adenovirus.

  15. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility

    Science.gov (United States)

    Nieto, Cristina; Piron, Florence; Dalmais, Marion; Marco, Cristina F; Moriones, Enrique; Gómez-Guillamón, Ma Luisa; Truniger, Verónica; Gómez, Pedro; Garcia-Mas, Jordi; Aranda, Miguel A; Bendahmane, Abdelhafid

    2007-01-01

    Background Translation initiation factors of the 4E and 4G protein families mediate resistance to several RNA plant viruses in the natural diversity of crops. Particularly, a single point mutation in melon eukaryotic translation initiation factor 4E (eIF4E) controls resistance to Melon necrotic spot virus (MNSV) in melon. Identification of allelic variants within natural populations by EcoTILLING has become a rapid genotype discovery method. Results A collection of Cucumis spp. was characterised for susceptibility to MNSV and Cucumber vein yellowing virus (CVYV) and used for the implementation of EcoTILLING to identify new allelic variants of eIF4E. A high conservation of eIF4E exonic regions was found, with six polymorphic sites identified out of EcoTILLING 113 accessions. Sequencing of regions surrounding polymorphisms revealed that all of them corresponded to silent nucleotide changes and just one to a non-silent change correlating with MNSV resistance. Except for the MNSV case, no correlation was found between variation of eIF4E and virus resistance, suggesting the implication of different and/or additional genes in previously identified resistance phenotypes. We have also characterized a new allele of eIF4E from Cucumis zeyheri, a wild relative of melon. Functional analyses suggested that this new eIF4E allele might be responsible for resistance to MNSV. Conclusion This study shows the applicability of EcoTILLING in Cucumis spp., but given the conservation of eIF4E, new candidate genes should probably be considered to identify new sources of resistance to plant viruses. Part of the methodology described here could alternatively be used in TILLING experiments that serve to generate new eIF4E alleles. PMID:17584936

  16. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility

    Directory of Open Access Journals (Sweden)

    Garcia-Mas Jordi

    2007-06-01

    Full Text Available Abstract Background Translation initiation factors of the 4E and 4G protein families mediate resistance to several RNA plant viruses in the natural diversity of crops. Particularly, a single point mutation in melon eukaryotic translation initiation factor 4E (eIF4E controls resistance to Melon necrotic spot virus (MNSV in melon. Identification of allelic variants within natural populations by EcoTILLING has become a rapid genotype discovery method. Results A collection of Cucumis spp. was characterised for susceptibility to MNSV and Cucumber vein yellowing virus (CVYV and used for the implementation of EcoTILLING to identify new allelic variants of eIF4E. A high conservation of eIF4E exonic regions was found, with six polymorphic sites identified out of EcoTILLING 113 accessions. Sequencing of regions surrounding polymorphisms revealed that all of them corresponded to silent nucleotide changes and just one to a non-silent change correlating with MNSV resistance. Except for the MNSV case, no correlation was found between variation of eIF4E and virus resistance, suggesting the implication of different and/or additional genes in previously identified resistance phenotypes. We have also characterized a new allele of eIF4E from Cucumis zeyheri, a wild relative of melon. Functional analyses suggested that this new eIF4E allele might be responsible for resistance to MNSV. Conclusion This study shows the applicability of EcoTILLING in Cucumis spp., but given the conservation of eIF4E, new candidate genes should probably be considered to identify new sources of resistance to plant viruses. Part of the methodology described here could alternatively be used in TILLING experiments that serve to generate new eIF4E alleles.

  17. Drosophila Longevity Assurance Conferred by Reduced Insulin Receptor Substrate Chico Partially Requires d4eBP.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    Full Text Available Mutations of the insulin/IGF signaling (IIS pathway extend Drosophila lifespan. Based on genetic epistasis analyses, this longevity assurance is attributed to downstream effects of the FOXO transcription factor. However, as reported FOXO accounts for only a portion of the observed longevity benefit, suggesting there are additional outputs of IIS to mediate aging. One candidate is target of rapamycin complex 1 (TORC1. Reduced TORC1 activity is reported to slow aging, whereas reduced IIS is reported to repress TORC1 activity. The eukaryotic translation initiation factor 4E binding protein (4E-BP is repressed by TORC1, and activated 4E-BP is reported to increase Drosophila lifespan. Here we use genetic epistasis analyses to test whether longevity assurance mutants of chico, the Drosophila insulin receptor substrate homolog, require Drosophila d4eBP to slow aging. In chico heterozygotes, which are robustly long-lived, d4eBP is required but not sufficient to slow aging. Remarkably, d4eBP is not required or sufficient for chico homozygotes to extend longevity. Likewise, chico heterozygote females partially require d4eBP to preserve age-dependent locomotion, and both chico genotypes require d4eBP to improve stress-resistance. Reproduction and most measures of growth affected by either chico genotype are always independent of d4eBP. In females, chico heterozygotes paradoxically produce more rather than less phosphorylated 4E-BP (p4E-BP. Altered IRS function within the IIS pathway of Drosophila appears to have partial, conditional capacity to regulate aging through an unconventional interaction with 4E-BP.

  18. RIN4-like proteins mediate resistance protein-derived soybean defense against Pseudomonas syringae

    OpenAIRE

    Selote, Devarshi; Kachroo, Aardra

    2010-01-01

    Resistance (R) protein mediated recognition of pathogen avirulence effectors triggers signaling that induces a very robust form of species-specific immunity in plants. The soybean Rpg1-b protein mediates this form of resistance against the bacterial blight pathogen, Pseudomonas syringae expressing AvrBPgyrace4. Likewise, the Arabidopsis RPM1 protein also mediates species-specific resistance against AvrB expressing bacteria. RPM1 and Rpg1-b are non-orthologous and differ in their requirements ...

  19. Wallichinine reverses ABCB1-mediated cancer multidrug resistance.

    Science.gov (United States)

    Lv, Min; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Huang, Jia-Rong; Wang, Kun; Wei, Meng-Ning; Cheng, Ke-Jun; Shi, Zhi

    2016-01-01

    Overexpression of ABCB1 in cancer cells is one of the main reasons of cancer multidrug resistance (MDR). Wallichinine is a compound isolated from piper wallichii and works as an antagonist of platelet activiating factor receptor to inhibit the gathering of blood platelet. In this study, we investigate the effect of wallichinine on cancer MDR mediated by ABCB1 transporter. Wallichinine significantly potentiates the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in ABCB1 overexpressing cancer cells. Furthermore, wallichinine do not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, wallichinine blocks the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. The predicted binding mode shows the hydrophobic interactions of wallichinine within the large drug binding cavity of ABCB1. At all, our study of the interaction of wallichinine with ABCB1 presented herein provides valuable clues for the development of novel MDR reversal reagents from natural products. PMID:27508017

  20. Selective modulation of P-glycoprotein-mediated drug resistance

    OpenAIRE

    Bebawy, M; Morris, M B; Roufogalis, B. D.

    2001-01-01

    Multidrug resistance associated with the overexpression of the multidrug transporter P-glycoprotein is a serious impediment to successful cancer treatment. We found that verapamil reversed resistance of CEM/VLB 100 cells to vinblastine and fluorescein-colchicine, but not to colchicine. Chlorpromazine reversed resistance to vinblastine but not to fluorescein-colchicine, and it increased resistance to colchicine. Initial influx rates of fluorescein-colchicine were similar in resistant and paren...

  1. [Classification and prevalence of plasmid-mediated quinolone resistance qnr genes in China--A review].

    Science.gov (United States)

    Yan, Lei; Xu, Hai

    2016-02-01

    Quinolone antibacterial drugs, developing from the treatment of urinary tract infection in early time and now from the treatment of intestinal infection and respiratory infection, have been widely used in clinical, animal husbandry and aquaculture. Bacteria gradually become resistant to them and resistance mechanism is more and more complicated. Quinolone resistance mechanism is mainly divided into chromosome mediated resistance and plasmid mediated resistance, the latter plays an important role in spreading of antibiotic resistance. In 1998, plasmid mediated quinolone resistance mechanism was reported for the first time, namely the qnr gene mediated fluoroquinolone resistance mechanism. qnr genes can spread rapidly in different bacteria, which causes the infection difficult to control, makes the nosocomial infection popular in a wide range. In addition, qnr genes are usually associated with β-lactamase resistance gene. They exist in complex integron and integrate with the other varieties of resistance genes, which narrows the space of clinical medicine choose or drug combinations use to treat related bacterial infection and brings us a serious challenge. In this review, we provide a detailed overview for the historical discovery, classification, the resistance mechanisms of qnr genes, and the prevalence of those genes in China. PMID:27373065

  2. Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial resistance to sulfonamides.

    OpenAIRE

    Swedberg, G; Sköld, O

    1980-01-01

    Plasmid-borne resistance to sulfonamides was studied in both newly isolated and earlier characterized R plasmids. Two different classes of drug-resistant dihydropteroate synthases were found to be responsible for most cases of plasmid-mediated sulfonamide resistance. The plasmid-coded enzymes could be completely separated from their chromosomal counterpart and also showed differences in heat stability and molecular size. The resistant and chromosomal enzymes could bind the normal substrate, p...

  3. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    Science.gov (United States)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  4. Streptococcal tetracycline resistance mediated at the level of protein synthesis.

    OpenAIRE

    Burdett, V

    1986-01-01

    The mechanism of tetracycline resistance was examined in strains containing each of the three previously identified resistance determinants in Streptococcus spp. Uptake of tetracycline was measured in tetracycline-sensitive cells as well as in cells containing each of the three resistance determinants. In cells containing tetL, uptake was not observed. However, in sensitive cells and cells containing either tetM or tetN, tetracycline was accumulated approximately 25-fold against a concentrati...

  5. Cryptic tetracycline resistance determinant (class F) from Bacteroides fragilis mediates resistance in Escherichia coli by actively reducing tetracycline accumulation.

    OpenAIRE

    Park, B. H.; Hendricks, M; Malamy, M H; Tally, F P; Levy, S. B.

    1987-01-01

    Escherichia coli bearing a cryptic tetracycline resistance determinant from Bacteroides fragilis expressed low-level constitutive resistance to tetracycline under aerobic, but not anaerobic, growth conditions and accumulated less tetracycline aerobically than did isogenic susceptible cells. This decreased uptake was energy dependent and reversible by increased concentrations of tetracycline, suggesting a saturable carrier-mediated active efflux mechanism. Decreased uptake was not seen when th...

  6. EDS1 mediates pathogen resistance and virulence function of a bacterial effector in soybean

    Science.gov (United States)

    Enhanced disease susceptibility 1 (EDS1) and phytoalexin deficient 4 (PAD4) are well known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1- (GmEDS1a/b) and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean. Consist...

  7. Alcohol-Mediated Resistance-Switching Behavior in Metal-Organic Framework-Based Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; Wang, Hong; Shi, Wenxiong; Zhang, Weina; Yu, Jiancan; Chandran, Bevita K; Cui, Chenlong; Zhu, Bowen; Liu, Zhiyuan; Li, Bin; Xu, Cai; Xu, Zhiling; Li, Shuzhou; Huang, Wei; Huo, Fengwei; Chen, Xiaodong

    2016-07-25

    Metal-organic frameworks (MOFs) have drawn increasing attentions as promising candidates for functional devices. Herein, we present MOF films in constructing memory devices with alcohol mediated resistance switching property, where the resistance state is controlled by applying alcohol vapors to achieve multilevel information storage. The ordered packing mode and the hydrogen bonding system of the guest molecules adsorbed in MOF crystals are shown to be the reason for the alcohol mediated electrical switching. This chemically mediated memory device can be a candidate in achieving environment-responsive devices and exhibits potential applications in wearable information storage systems. PMID:27311703

  8. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  9. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Britta Stordal

    Full Text Available The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A, MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.

  10. Towards rapid genotyping of resistant malaria parasites: could loop-mediated isothermal amplification be the solution?

    OpenAIRE

    Abdul-Ghani, Rashad

    2014-01-01

    Loop-mediated isothermal amplification (LAMP) is an innovative molecular technique that has been validated for point-of-care testing to diagnose malaria. Molecular detection and tracking of anti-malarial drug resistance is mainly based on highly sophisticated, costly and time-consuming techniques. With the validation of resistance-associated gene mutations in malaria parasites, there is a need to develop rapid, easy-to-use molecular tests for anti-malarial drug resistance genotyping. LAMP cou...

  11. Molecular studies on the mechanism of tetracycline resistance mediated by Tet(O).

    OpenAIRE

    Manavathu, E K; Fernandez, C L; Cooperman, B S; Taylor, D E

    1990-01-01

    The mechanism of resistance to tetracycline in Escherichia coli mediated by the Campylobacter jejuni-derived resistance determinant Tet(O) was investigated. The cloned Tet(O) protein had no detectable effect on the intracellular accumulation of tetracycline. The presence of Tet(O) markedly diminished the inhibitory effect of tetracycline on protein synthesis both in vivo and in vitro. Ribosomes prepared from tetracycline-resistant and susceptible E. coli cells bound almost identical amounts o...

  12. Masitinib Antagonizes ATP-Binding Cassette Subfamily C Member 10-Mediated Paclitaxel Resistance: A Preclinical Study

    OpenAIRE

    Kathawala, Rishil J; Sodani, Kamlesh; Chen, Kang; PATEL, ATISH; Abuznait, Alaa H.; Anreddy, Nagaraju; Sun, Yue-Li; Kaddoumi, Amal; Ashby, Charles R.; Chen, Zhe-Sheng

    2014-01-01

    Paclitaxel displays clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. In this study, we show that masitinib, a small molecule stem-cell growth factor receptor (c-Kit) tyrosine kinase inhibitor, at non-toxic concentrations, signif...

  13. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis: involvement of jasmonate and ethylene

    OpenAIRE

    Pieterse, C.M.J.; Wees, A.C.M. van; Ton, J.; Léon-Kloosterziel, K.M.; Pelt, J.A. van; Keurentjes, J. J. B.; Knoester, M.; van Loon, L.C.

    2000-01-01

    The capacity of a plant to express a broad-spectrum systemic acquired resistance (SAR) after primary infection is well known and extensively studied. A relatively unknown form of induced disease resistance is triggered by nonpathogenic, root-colonizing rhizobacteria and is commonly referred to as rhizobacteria-mediated induced systemic resistance (ISR). Rhizosphere bacteria are present in large numbers on the root. Certain strains stimulate plant growth and are therefore called plant growth-p...

  14. RAD18 mediates resistance to ionizing radiation in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi, E-mail: drzwang@gmail.com; Yue, Wu, E-mail: drwuyue@gmail.com

    2014-02-28

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM.

  15. Plasmid Mediated Antibiotic Resistance in Isolated Bacteria From Burned Patients

    OpenAIRE

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2014-01-01

    Background: Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. Objectives: This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. Materials and Methods: The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samp...

  16. Nanomaterial resistant microorganism mediated reduction of graphene oxide.

    Science.gov (United States)

    Chouhan, Raghuraj S; Pandey, Ashish; Qureshi, Anjum; Ozguz, Volkan; Niazi, Javed H

    2016-10-01

    In this study, soil bacteria were isolated from nanomaterials (NMs) contaminated pond soil and enriched in the presence of graphene oxide (GO) in mineral medium to obtain NMs resistant bacteria. The isolated resistant bacteria were biochemically and genetically identified as Fontibacillus aquaticus. The resistant bacteria were allowed to interact with engineered GO in order to study the biotransformation in GO structure. Raman spectra of GO extracted from culture medium revealed decreased intensity ratio of ID/IG with subsequent reduction of CO which was consistent with Fourier transform infrared (FTIR) results. The structural changes and exfoliatied GO nanosheets were also evident from transmission electron microscopy (TEM) images. Ultraviolet-visible spectroscopy, high resolution X-ray diffraction (XRD) and current-voltage measurements confirmed the reduction of GO after the interaction with resistant bacteria. X-ray photoelectron spectroscopy (XPS) analysis of biotransformed GO revealed reduction of oxygen-containing species on the surface of nanosheets. Our results demonstrated that the presented method is an environment friendly, cost effective, simple and based on green approaches for the reduction of GO using NMs resistant bacteria.

  17. Nanomaterial resistant microorganism mediated reduction of graphene oxide.

    Science.gov (United States)

    Chouhan, Raghuraj S; Pandey, Ashish; Qureshi, Anjum; Ozguz, Volkan; Niazi, Javed H

    2016-10-01

    In this study, soil bacteria were isolated from nanomaterials (NMs) contaminated pond soil and enriched in the presence of graphene oxide (GO) in mineral medium to obtain NMs resistant bacteria. The isolated resistant bacteria were biochemically and genetically identified as Fontibacillus aquaticus. The resistant bacteria were allowed to interact with engineered GO in order to study the biotransformation in GO structure. Raman spectra of GO extracted from culture medium revealed decreased intensity ratio of ID/IG with subsequent reduction of CO which was consistent with Fourier transform infrared (FTIR) results. The structural changes and exfoliatied GO nanosheets were also evident from transmission electron microscopy (TEM) images. Ultraviolet-visible spectroscopy, high resolution X-ray diffraction (XRD) and current-voltage measurements confirmed the reduction of GO after the interaction with resistant bacteria. X-ray photoelectron spectroscopy (XPS) analysis of biotransformed GO revealed reduction of oxygen-containing species on the surface of nanosheets. Our results demonstrated that the presented method is an environment friendly, cost effective, simple and based on green approaches for the reduction of GO using NMs resistant bacteria. PMID:27248463

  18. Ribozyme-mediated reversal of the multidrug-resistant phenotype.

    OpenAIRE

    Scanlon, K J; Ishida, H.; Kashani-Sabet, M

    1994-01-01

    This study examined the effects of suppressing c-fos oncogene expression on multidrug resistance (MDR). A2780S human ovarian carcinoma cells with resistance to actinomycin D were isolated and the resultant A2780AD cells exhibited the MDR phenotype. A hammerhead ribozyme designed to cleave fos RNA cloned into the pMAMneo plasmid was transfected into A2780AD cells. Induction of the ribozyme resulted in decreased expression of c-fos, as well as that of the MDR gene (mdr-1), c-jun, and mutant p53...

  19. IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes.

    Science.gov (United States)

    Harmer, Christopher J; Hall, Ruth M

    2016-01-01

    The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel

  20. Prospects for a nonliving vaccine against Schistosomiasis based on cell-mediated immune resistance mechanisms

    Directory of Open Access Journals (Sweden)

    Stephanie L. James

    1987-01-01

    Full Text Available We have designed a vaccine model based on induction of cell-mediated immunity and shown that it protects mice against Schistosoma mansoni infection. Mice are immunized by intradermal injection with schistosome antigens plus BCG. Resistance is dependent on the route of antigen presentation and the adjuvant chosen. The pattern of resistance correlates with sensitization of T lymphocytes for production of gamma interferon, a macrophage activating lymphokine that stimulates the cellular effector mechanism of protection. Purified schistosome paramyosin, a muscle cell component present in soluble parasite antigenic preparations, is immunogenic for T lymphocytes and induces resistance when given intradermally with BCG. It is likely that this protein, and possibly other soluble molecules that are released by the parasites of a challenge infection, induce a cellular inflammatory response resulting in larval trapping and/or killing by activated macrophages. These results verify the feasibility of a vaccine against schistosomiasis based on induction of cell-mediated immune resistance mechanisms.

  1. Coat protein-mediated resistance against an Indian isolate of the Cucumber mosaic virus subgroup IB in Nicotiana benthamiana

    Indian Academy of Sciences (India)

    A Srivastava; S K Raj

    2008-06-01

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were tested for resistance against CMV by challenge inoculations. The transgenic lines exhibiting complete resistance remained symptomless throughout life and showed reduced or no virus accumulation in their systemic leaves after virus challenge. These lines also showed virus resistance against two closely related strains of CMV. This is the first report of CP-mediated transgenic resistance against a CMV subgroup IB member isolated from India.

  2. Maternal mediation, stress inoculation, and the development of neuroendocrine stress resistance in primates

    OpenAIRE

    Parker, Karen J.; Buckmaster, Christine L.; Sundlass, Karan; Schatzberg, Alan F.; Lyons, David M.

    2006-01-01

    The stress inoculation hypothesis presupposes that brief intermittent stress exposure early in life induces the development of subsequent stress resistance in human and nonhuman primates. Rodent studies, however, suggest a role for maternal care rather than stress exposure per se (i.e., the maternal mediation hypothesis). To investigate these two hypotheses, we examined maternal care and the development of stress resistance after exposure to brief intermittent infant stress (IS), mother–infan...

  3. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli.

    OpenAIRE

    Thanassi, D. G.; Suh, G S; Nikaido, H

    1995-01-01

    Accumulation of tetracycline in Escherichia coli was studied to determine its permeation pathway and to provide a basis for understanding efflux-mediated resistance. Passage of tetracycline across the outer membrane appeared to occur preferentially via the porin OmpF, with tetracycline in its magnesium-bound form. Rapid efflux of magnesium-chelated tetracycline from the periplasm was observed. In E. coli cells that do not contain exogenous tetracycline resistance genes, the steady-state level...

  4. In Vitro Biochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus

    OpenAIRE

    Warrilow, Andrew G. S.; Parker, Josie E.; Price, Claire L.; Nes, W. David; Kelly, Steven L.; Kelly, Diane E.

    2015-01-01

    The incidence of triazole-resistant Aspergillus infections is increasing worldwide, often mediated through mutations in the CYP51A amino acid sequence. New classes of azole-based drugs are required to combat the increasing resistance to existing triazole therapeutics. In this study, a CYP51 reconstitution assay is described consisting of eburicol, purified recombinant Aspergillus fumigatus CPR1 (AfCPR1), and Escherichia coli membrane suspensions containing recombinant A. fumigatus CYP51 prote...

  5. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance.

    Science.gov (United States)

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-11-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  6. DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance12

    Science.gov (United States)

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-01-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  7. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system.

    OpenAIRE

    Neyfakh, A A; Bidnenko, V E; L. B. CHEN

    1991-01-01

    Bacillus subtilis cells selected for their resistance to rhodamine 6G demonstrated a multidrug-resistance (MDR) phenotype resembling that of mammalian MDR cells. Like MDR in mammalian cells, MDR in bacteria was mediated by the efflux of the drugs from the cells. The bacterial multidrug efflux system transported similar drugs and was sensitive to similar inhibitors as the mammalian multidrug transporter, P-glycoprotein. The gene coding for the bacterial multidrug transporter, like the P-glycop...

  8. Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 co-segregates with homozygotic presence of a mutated eIF4E allele

    DEFF Research Database (Denmark)

    Naderpour, M; Lund, O Søgaard; Larsen, R;

    2008-01-01

    In common bean, Phaseolus vulgaris, four recessive genes, bc-1, bc-2, bc-3 and bc-u control resistance to potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV). To identify candidates for the bc-genes, we cloned and sequenced homologues of genes encoding cap...

  9. Plasmid-mediated formaldehyde resistance in Escherichia coli: characterization of resistance gene.

    OpenAIRE

    Kümmerle, N; Feucht, H H; Kaulfers, P M

    1996-01-01

    The formaldehyde resistance mechanisms in the formaldehyde-resistant strain Escherichia coli VU3695 were investigated. A large (4.6-kb) plasmid DNA fragment encompassing the formaldehyde resistance gene was sequenced. A single 1,107-bp open reading frame encoding a glutathione- and NAD-dependent formaldehyde dehydrogenase was identified and sequenced, and the enzyme was expressed in an in vitro assay and purified. Amino acid sequence homology studies showed 62.4 to 63.2% identity with class I...

  10. Loss of CMD2-mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis.

    Science.gov (United States)

    Beyene, Getu; Chauhan, Raj Deepika; Wagaba, Henry; Moll, Theodore; Alicai, Titus; Miano, Douglas; Carrington, James C; Taylor, Nigel J

    2016-09-01

    Cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the two most important viral diseases affecting cassava production in Africa. Three sources of resistance are employed to combat CMD: polygenic recessive resistance, termed CMD1, the dominant monogenic type, named CMD2, and the recently characterized CMD3. The farmer-preferred cultivar TME 204 carries inherent resistance to CMD mediated by CMD2, but is highly susceptible to CBSD. Selected plants of TME 204 produced for RNA interference (RNAi)-mediated resistance to CBSD were regenerated via somatic embryogenesis and tested in confined field trials in East Africa. Although micropropagated, wild-type TME 204 plants exhibited the expected levels of resistance, all plants regenerated via somatic embryogenesis were found to be highly susceptible to CMD. Glasshouse studies using infectious clones of East African cassava mosaic virus conclusively demonstrated that the process of somatic embryogenesis used to regenerate cassava caused the resulting plants to become susceptible to CMD. This phenomenon could be replicated in the two additional CMD2-type varieties TME 3 and TME 7, but the CMD1-type cultivar TMS 30572 and the CMD3-type cultivar TMS 98/0505 maintained resistance to CMD after passage through somatic embryogenesis. Data are presented to define the specific tissue culture step at which the loss of CMD resistance occurs and to show that the loss of CMD2-mediated resistance is maintained across vegetative generations. These findings reveal new aspects of the widely used technique of somatic embryogenesis, and the stability of field-level resistance in CMD2-type cultivars presently grown by farmers in East Africa, where CMD pressure is high. PMID:26662210

  11. DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance

    Directory of Open Access Journals (Sweden)

    Euan A. Stronach

    2011-11-01

    Full Text Available Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinumresistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK, and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Re-sensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage–mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.

  12. Plasmid-mediated quinolone resistance among non-typhi Salmonella enterica isolates, USA

    Science.gov (United States)

    We determined the prevalence of plasmid-mediated quinolone resistance mechanisms among non-Typhi Salmonella (NTS) spp. isolates from humans, food animals, and retail meat in the United States in 2007. Fifty-one (2.4%) of human isolates (n=2165), 5 (1.6%) of isolates from animal isolates (n=1915) an...

  13. Computer-mediated communication as a channel for social resistance : The strategic side of SIDE

    NARCIS (Netherlands)

    Spears, R; Lea, M; Corneliussen, RA; Postmes, T; Ter Haar, W

    2002-01-01

    In two studies, the authors tested predictions derived from the social identity model of deindividuation effects (SIDE) concerning the potential of computer-mediated communication (CMC) to serve as a means to resist powerful out-groups. Earlier research using the SIDE model indicates that the anonym

  14. Selection for pro-inflammatory mediators yields chickens with increased resistance against Salmonella enterica serovar Enteritidis

    Science.gov (United States)

    Salmonella are a leading cause of foodborne illness and can be transmitted through consumption of contaminated poultry; therefore, increasing a flocks’ natural resistance to Salmonella could improve food safety. Previously, we characterized the heterophil-mediated innate immune response of two pare...

  15. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Anne M Millen

    Full Text Available Lactococcus lactis is a biotechnological workhorse for food fermentations and potentially therapeutic products and is therefore widely consumed by humans. It is predominantly used as a starter microbe for fermented dairy products, and specialized strains have adapted from a plant environment through reductive evolution and horizontal gene transfer as evidenced by the association of adventitious traits with mobile elements. Specifically, L. lactis has armed itself with a myriad of plasmid-encoded bacteriophage defensive systems to protect against viral predation. This known arsenal had not included CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins, which forms a remarkable microbial immunity system against invading DNA. Although CRISPR/Cas systems are common in the genomes of closely related lactic acid bacteria (LAB, none was identified within the eight published lactococcal genomes. Furthermore, a PCR-based search of the common LAB CRISPR/Cas systems (Types I and II in 383 industrial L. lactis strains proved unsuccessful. Here we describe a novel, Type III, self-transmissible, plasmid-encoded, phage-interfering CRISPR/Cas discovered in L. lactis. The native CRISPR spacers confer resistance based on sequence identity to corresponding lactococcal phage. The interference is directed at phages problematic to the dairy industry, indicative of a responsive system. Moreover, targeting could be modified by engineering the spacer content. The 62.8-kb plasmid was shown to be conjugally transferrable to various strains. Its mobility should facilitate dissemination within microbial communities and provide a readily applicable system to naturally introduce CRISPR/Cas to industrially relevant strains for enhanced phage resistance and prevention against acquisition of undesirable genes.

  16. Esterase mediated resistance in deltamethrin resistant reference tick colony of Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Gupta, Snehil; Ajith Kumar, K G; Sharma, Anil Kumar; Nagar, Gaurav; Kumar, Sachin; Saravanan, B C; Ravikumar, Gandham; Ghosh, Srikant

    2016-06-01

    Monitoring of acaricide resistance is considered as one of the important facets of integrated tick management. In an attempt of development of resistance monitoring indicators, in the present study two reference tick lines of Rhipicephalus (Boophilus) microplus maintained in the Entomology laboratory, Indian Veterinary Research Institute (IVRI), Izatnagar, India, were studied to determine the possible contributing factors involved in development of resistance to deltamethrin. Electrophoretic profiling of esterase enzymes detected high activities of EST-1 in reference resistant tick colony designated as IVRI-IV whereas it was not detectable in reference susceptible IVRI-I line of R. (B.) microplus. Esterases were further characterized as carboxylesterase or acetylcholinesterase based on inhibitor study using PMSF, eserine sulphate, malathion, TPP and copper sulphate. It was concluded that an acetylcholinesterase, EST-1, possibly plays an important role for development of deltamethrin resistance in IVRI-IV colony of R. (B.) microplus. PMID:26979585

  17. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma.

    Science.gov (United States)

    Furukawa, Yusuke; Kikuchi, Jiro

    2016-09-01

    Multiple myeloma cells acquire the resistance to anti-cancer drugs through physical and functional interactions with the bone marrow microenvironment via two overlapping mechanisms. First, bone marrow stromal cells (BMSCs) produce soluble factors, such as interleukin-6 and insulin-like growth factor-1, to activate signal transduction pathways leading to drug resistance (soluble factor-mediated drug resistance). Second, BMSCs up-regulate the expression of cell cycle inhibitors, anti-apoptotic members of the Bcl-2 family and ABC drug transporters in myeloma cells upon direct adhesion [cell adhesion-mediated drug resistance (CAM-DR)]. Elucidation of the mechanisms underlying drug resistance may greatly contribute to the advancement of cancer therapies. Recent investigations, including ours, have revealed the involvement of epigenetic alterations in drug resistance especially CAM-DR. For example, we found that class I histone deacetylases (HDACs) determine the sensitivity of proteasome inhibitors and the histone methyltransferase EZH2 regulates the transcription of anti-apoptotic genes during the acquisition of CAM-DR by myeloma cells. In addition, another histone methyltransferase MMSET was shown to confer drug resistance to myeloma cells by facilitating DNA repair. These findings provide a rationale for the inclusion of epigenetic drugs, such as HDAC inhibitors and histone methylation modifiers, in combination chemotherapy for MM patients to increase the therapeutic index. PMID:27411688

  18. Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri.

    Science.gov (United States)

    Van Leeuwen, T; Van Nieuwenhuyse, P; Vanholme, B; Dermauw, W; Nauen, R; Tirry, L

    2011-02-01

    Bifenazate is a recently developed acaricide that is mainly used to control spider mites on a variety of crops. Although first thought to be a neurotoxin, genetic evidence obtained from bifenazate resistant Tetranychus urticae strains suggested an alternative mode of action as a Qo pocket inhibitor of the mitochondrial complex III. In this study, we reveal how bifenazate resistance in strains of Panonychus citri is maternally inherited and can confer cross-resistance to the known Qo inhibitor acequinocyl. The mitochondrial genome of P. citri was sequenced and Qo pocket mutations were shown to be linked with the resistant trait. Parallel evolution of cytochrome b mediated bifenazate resistance corroborates the alternative mode of action and yet again illustrates that care should be taken when employing Qo inhibitors as crop protection compounds. PMID:20735493

  19. Reversal of P—glycoprotein—mediated multidrug resistance by pyronaridine

    Institute of Scientific and Technical Information of China (English)

    QiJ; WangSB

    2002-01-01

    An association between P-glycoprotein(Pgp) level and poor clinical outcome has been found.Efforts have been made to search for the modulators of tumor multidrug resistance (MDR) from the components of Chinese herbs and the molecules developed in China.Pyronaridine (PND)was found to be able to reverse MDR to doxorubicine(DOX) in K562/A02 and MCF7/ADR,expressing Pgp with more efficacy than verapamil.PDN increased the accumulation of DOX and reduced efflux of Rh123 in the two cell lines.The reversibility prersisted for at least 24h after removel of the drug from the culture medium.When administered orally or parenterally,PND significantly enhanced the in vivo antitumor activity of DOX in K562/A02 xenografts,but did not significantly increase the toxicity or alter the plasma pharmacokinetics of DOX.In view of PND has been safely used in clinic for the treatment of malaria for more than 20 years at high dose,the modulator might be the promision in the reversal of MDR in the clinic.

  20. Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance.

    Science.gov (United States)

    Jia, Yulin; Martin, Rodger

    2008-04-01

    Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a nucleotide binding site-type resistance gene, Pi-ta, to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here, we report the identification of a new locus, Ptr(t), that is required for Pi-ta-mediated signal recognition. A Pi-ta-expressing susceptible mutant was identified using a genetic screen. Putative mutations at Ptr(t) do not alter recognition specificity to another resistance gene, Pi-k(s), in the Pi-ta homozygote, indicating that Ptr(t) is more likely specific to Pi-ta-mediated signal recognition. Genetic crosses of Pi-ta Ptr(t) and Pi-ta ptr(t) homozygotes suggest that Ptr(t) segregates as a single dominant nuclear gene. A ratio of 1:1 (resistant/susceptible) of a population of BC1 of Pi-ta Ptr(t) with pi-ta ptr(t) homozygotes indicates that Pi-ta and Ptr(t) are linked and cosegregate. Genotyping of mutants of pi-ta ptr(t) and Pi-ta Ptr(t) homozygotes using ten simple sequence repeat markers at the Pi-ta region determined that Pi-ta and Ptr(t) are located within a 9-megabase region and are of indica origin. Identification of Ptr(t) is a significant advancement in studying Pi-ta-mediated signal recognition and transduction. PMID:18321185

  1. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.

    Science.gov (United States)

    Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra

    2016-09-01

    Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. PMID:27262378

  2. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells.

    Science.gov (United States)

    Hyland, Kendra A; Olson, Erik R; McIvor, R Scott

    2015-10-01

    The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34(+) HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon-chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications. PMID:26176276

  3. Epidemiology of plasmid-mediated quinolone resistance determinants in bacterial isolates from animals and foods with co-resistance to several antibiotics

    OpenAIRE

    Ferreira, Eugénia; Francisco, Ana Patrícia; Jones-Dias, Daniela; Manageiro, Vera; Caniça, Manuela

    2011-01-01

    Background: The use of (fluoro)quinolones both in humans and animals has contributed to the selection of resistant bacteria, limiting the agents available for treatment. This study aims to search for plasmid-mediated quinolone resistance (PMQR) determinants to give information about these expanding resistance mechanisms, their capacity of dissemination among different bacteria by mobile elements, and the role that they play in facilitating co-resistance to several antimicrobials. Methods: ...

  4. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability.

    Science.gov (United States)

    Chung, Jacky; Bauer, Daniel E; Ghamari, Alireza; Nizzi, Christopher P; Deck, Kathryn M; Kingsley, Paul D; Yien, Yvette Y; Huston, Nicholas C; Chen, Caiyong; Schultz, Iman J; Dalton, Arthur J; Wittig, Johannes G; Palis, James; Orkin, Stuart H; Lodish, Harvey F; Eisenstein, Richard S; Cantor, Alan B; Paw, Barry H

    2015-04-14

    In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. We found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mammalian target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine.

  5. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability

    Science.gov (United States)

    Chung, Jacky; Bauer, Daniel E.; Ghamari, Alireza; Nizzi, Christopher P.; Deck, Kathryn M.; Kingsley, Paul D.; Yien, Yvette Y.; Huston, Nicholas C.; Chen, Caiyong; Schultz, Iman J.; Dalton, Arthur J.; Wittig, Johannes G.; Palis, James; Orkin, Stuart H.; Lodish, Harvey F.; Eisenstein, Richard S.; Cantor, Alan B.; Paw, Barry H.

    2015-01-01

    In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. Here, we found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mechanistic target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine. PMID:25872869

  6. CRITICAL ROLE OF STAT3 IN IL-6-MEDIATED DRUG RESISTANCE IN HUMAN NEUROBLASTOMA

    OpenAIRE

    Ara, Tasnim; Nakata, Rie; Sheard, Michael A.; Shimada, Hiroyuki; Buettner, Ralf; Groshen, Susan G.; Ji, Lingyun; Yu, Hua; Jove, Richard; Seeger, Robert C.; DeClerck, Yves A

    2013-01-01

    Drug resistance is a major cause of treatment failure in cancer. Here we have evaluated the role of STAT3 in environment-mediated drug resistance (EMDR) in human neuroblastoma. We determined that STAT3 was not constitutively active in most neuroblastoma cell lines but was rapidly activated upon treatment with interleukin-6 (IL-6) alone and in combination with the soluble IL-6 receptor (sIL-6R). Treatment of neuroblastoma cells with IL-6 protected them from drug-induced apoptosis in a STAT3-de...

  7. Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock.

    Science.gov (United States)

    Lemgo, Godwin Nana Yaw; Sabbadini, Silvia; Pandolfini, Tiziana; Mezzetti, Bruno

    2013-12-01

    A major application of RNA interference (RNAi) is envisaged for the production of virus-resistant transgenic plants. For fruit trees, this remains the most, if not the only, viable option for the control of plant viral disease outbreaks in cultivated orchards, due to the difficulties associated with the use of traditional and conventional disease-control measures. The use of RNAi might provide an additional benefit for woody crops if silenced rootstock can efficiently transmit the silencing signal to non-transformed scions, as has already been demonstrated in herbaceous plants. This would provide a great opportunity to produce non-transgenic fruit from transgenic rootstock. In this review, we scrutinise some of the concerns that might arise with the use of RNAi for engineering virus-resistant plants, and we speculate that this virus resistance has fewer biosafety concerns. This is mainly because RNAi-eliciting constructs only express small RNA molecules rather than proteins, and because this technology can be applied using plant rootstock that can confer virus resistance to the scion, leaving the scion untransformed. We discuss the main biosafety concerns related to the release of new types of virus-resistant plants and the risk assessment approaches in the application of existing regulatory systems (in particular, those of the European Union, the USA, and Canada) for the evaluation and approval of RNAi-mediated virus-resistant plants, either as transgenic varieties or as plant virus resistance induced by transgenic rootstock.

  8. Prevalence of plasmid-mediated multidrug resistance determinants in fluoroquinolone-resistant bacteria isolated from sewage and surface water.

    Science.gov (United States)

    Osińska, Adriana; Harnisz, Monika; Korzeniewska, Ewa

    2016-06-01

    Fluoroquinolones (FQs) are fully synthetic broad-spectrum antibacterial agents that are becoming increasingly popular in the treatment of clinical and veterinary infections. Being excreted during treatment, mostly as active compounds, their biological action is not limited to the therapeutic site, but it is moved further as resistance selection pressure into the environment. Water environment is an ideal medium for the aggregation and dissemination of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs), which can pose a serious threat to human health. Because of this, the aim of this study was to determine the number of fluoroquinolone-resistant bacteria (FQRB) and their share in total heterotrophic plate counts (HPC) in treated wastewater (TWW), and upstream and downstream river water (URW, DRW) samples where TWW is discharged. The spread of plasmid-mediated quinolone resistance (PMQR) determinants and the presence/absence of resistance genes to other most popular antibiotic groups (against tetracyclines and beta-lactams) in selected 116 multiresistant isolates were investigated. The share of FQRB in total HPC in all samples was rather small and ranged from 0.7 % in URW samples to 7.5 % in TWW. Bacteria from Escherichia (25.0 %), Acinetobacter (25.0 %), and Aeromonas (6.9 %) genera were predominant in the FQRB group. Fluoroquinolone resistance was mostly caused by the presence of the gene aac(6')-1b-cr (91.4 %). More rarely reported was the occurrence of qnrS, qnrD, as well as oqxA, but qnrA, qnrB, qepA, and oqxB were extremely rarely or never noted in FQRB. The most prevalent bacterial genes connected with beta-lactams' resistance in FQRB were bla TEM, bla OXA, and bla CTX-M. The bla SHV was less common in the community of FQRB. The occurrence of bla genes was reported in almost 29.3 % of FQRB. The most abundant tet genes in FQRB were tet(A), tet(L), tet(K), and tet(S). The prevalence of tet genes was observed in 41.4

  9. Engineering of CRISPR/Cas9‐mediated potyvirus resistance in transgene‐free Arabidopsis plants

    Science.gov (United States)

    Pyott, Douglas E.; Sheehan, Emma

    2016-01-01

    Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes. PMID:27103354

  10. Enhanced Disease Susceptibility1 Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean.

    Science.gov (United States)

    Wang, Jialin; Shine, M B; Gao, Qing-Ming; Navarre, Duroy; Jiang, Wei; Liu, Chunyan; Chen, Qingshan; Hu, Guohua; Kachroo, Aardra

    2014-05-28

    Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector.

  11. Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila

    OpenAIRE

    Hernandez, G; Altmann, M; J. Sierra; Urlaub, H.; Diez del Corral, R; Schwartz, P.; Rivera-Pomar, R

    2005-01-01

    The Drosophila genome-sequencing project has revealed a total of seven genes encoding eight eukaryotic initiation factor 4E (eIF4E) isoforms. Four of them (eIF4E-1,2, eIF4E-3, eIF4E-4 and eIF4E-5) share exon/intron structure in their carboxy-terminal part and form a cluster in the genome. All eIF4E isoforms bind to the cap (m⁷GpppN) structure. All of them, except eIF4E-6 and eIF4E-8 were able to interact with Drosophila eIF4G or eIF4E-binding protein (4E-BP). eIF4E-1, eIF4E-2, eIF4E-3, eIF4E-...

  12. 4E-BP restrains eIF4E phosphorylation

    OpenAIRE

    Müller, David; Lasfargues, Charline; El Khawand, Sally; Alard, Amandine; Schneider, Robert J.; Bousquet, Corinne; Pyronnet, Stéphane; Martineau, Yvan

    2013-01-01

    In eukaryotes, mRNA translation is dependent on the cap-binding protein eIF4E. Through its simultaneous interaction with the mRNA cap structure and with the ribosome-associated eIF4G adaptor protein, eIF4E physically posits the ribosome at the 5′ extremity of capped mRNA. eIF4E activity is regulated by phosphorylation on a unique site by the eIF4G-associated kinase MNK. eIF4E assembly with the eIF4G-MNK sub-complex can be however antagonized by the hypophosphorylated forms of eIF4E-binding pr...

  13. Plasmid-Mediated OqxAB Is an Important Mechanism for Nitrofurantoin Resistance in Escherichia coli.

    Science.gov (United States)

    Ho, Pak-Leung; Ng, Ka-Ying; Lo, Wai-U; Law, Pierra Y; Lai, Eileen Ling-Yi; Wang, Ya; Chow, Kin-Hung

    2015-11-09

    Increasing consumption of nitrofurantoin (NIT) for treatment of acute uncomplicated urinary tract infections (UTI) highlights the need to monitor emerging NIT resistance mechanisms. This study investigated the molecular epidemiology of the multidrug-resistant efflux gene oqxAB and its contribution to nitrofurantoin resistance by using Escherichia coli isolates originating from patients with UTI (n = 205; collected in 2004 to 2013) and food-producing animals (n = 136; collected in 2012 to 2013) in Hong Kong. The oqxAB gene was highly prevalent among NIT-intermediate (11.5% to 45.5%) and -resistant (39.2% to 65.5%) isolates but rare (0% to 1.7%) among NIT-susceptible (NIT-S) isolates. In our isolates, the oqxAB gene was associated with IS26 and was carried by plasmids of diverse replicon types. Multilocus sequence typing revealed that the clones of oqxAB-positive E. coli were diverse. The combination of oqxAB and nfsA mutations was found to be sufficient for high-level NIT resistance. Curing of oqxAB-carrying plasmids from 20 NIT-intermediate/resistant UTI isolates markedly reduced the geometric mean MIC of NIT from 168.9 μg/ml to 34.3 μg/ml. In the plasmid-cured variants, 20% (1/5) of isolates with nfsA mutations were NIT-S, while 80% (12/15) of isolates without nfsA mutations were NIT-S (P = 0.015). The presence of plasmid-based oqxAB increased the mutation prevention concentration of NIT from 128 μg/ml to 256 μg/ml and facilitated the development of clinically important levels of nitrofurantoin resistance. In conclusion, plasmid-mediated oqxAB is an important nitrofurantoin resistance mechanism. There is a great need to monitor the dissemination of this transferable multidrug-resistant efflux pump.

  14. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma.

    Science.gov (United States)

    Kikuchi, Jiro; Koyama, Daisuke; Wada, Taeko; Izumi, Tohru; Hofgaard, Peter O; Bogen, Bjarne; Furukawa, Yusuke

    2015-12-01

    Alterations in chromatin modifications, such as histone methylation, have been suggested as mediating chemotherapy resistance in several cancer types; therefore, elucidation of the epigenetic mechanisms that underlie drug resistance may greatly contribute to the advancement of cancer therapies. In the present study, we identified histone H3-lysine 27 (H3K27) as a critical residue for epigenetic modification in multiple myeloma. We determined that abrogation of drug-induced H3K27 hypermethylation is associated with cell adhesion-mediated drug resistance (CAM-DR), which is the most important form of drug resistance, using a coculture system to evaluate stroma cell adhesion-dependent alterations in multiple myeloma cells. Cell adhesion counteracted anticancer drug-induced hypermethylation of H3K27 via inactivating phosphorylation of the transcription regulator EZH2 at serine 21, leading to the sustained expression of antiapoptotic genes, including IGF1, B cell CLL/lymphoma 2 (BCL2), and hypoxia inducible factor 1, α subunit (HIF1A). Pharmacological and genetic inhibition of the IGF-1R/PI3K/AKT pathway reversed CAM-DR by promoting EZH2 dephosphorylation and H3K27 hypermethylation both in vitro and in refractory murine myeloma models. Together, our findings identify and characterize an epigenetic mechanism that underlies CAM-DR and suggest that kinase inhibitors to counteract EZH2 phosphorylation should be included in combination chemotherapy to increase therapeutic index. PMID:26517694

  15. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Srivathsa C Venugopal

    2009-07-01

    Full Text Available Resistance (R protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1, non-race-specific disease resistance 1 (NDR1, phytoalexin deficient 4 (PAD4, senescence associated gene 101 (SAG101, and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.

  16. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

    Science.gov (United States)

    Venugopal, Srivathsa C; Jeong, Rae-Dong; Mandal, Mihir K; Zhu, Shifeng; Chandra-Shekara, A C; Xia, Ye; Hersh, Matthew; Stromberg, Arnold J; Navarre, DuRoy; Kachroo, Aardra; Kachroo, Pradeep

    2009-07-01

    Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.

  17. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation.

    Science.gov (United States)

    Collado, Denise; Yoshihara, Takashi; Hamaguchi, Masaaki

    2007-08-31

    Tumor suppressor gene DBC2 stops growth of tumor cells through regulation of CCND1. Interference of CCND1 down-regulation prevented growth arrest caused by DBC2 [T. Yoshihara, D. Collado, M. Hamaguchi, Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function, Biochemical and biophysical research communications 358 (2007) 1076-1079]. It was also noted that DBC2 resistant cells eventually arose after repeated induction of DBC2 with muristerone A treatment [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. In order to elucidate the mechanism of resistance acquisition, we analyzed DBC2 sensitive and resistant cells derived from the same progenitor cells (T-47D). We discovered that DBC2 protein was abundantly expressed in the sensitive cells when DBC2 was induced. In contrast, it was undetectable by western blot analysis in the resistant cells. We confirmed that the inducible gene expression system was responsive in both cells by detecting induced GFP. Additionally, inhibition of 26S proteasome by MG132 revealed production of DBC2 protein in the resistant cells. These findings indicate that the resistant T-47D cells survive DBC2 induction by rapid destruction of DBC2 through 26S proteasome-mediated protein degradation.

  18. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus.

    Science.gov (United States)

    Peart, Jack R; Cook, Graeme; Feys, Bart J; Parker, Jane E; Baulcombe, David C

    2002-03-01

    In Arabidopsis, EDS1 is essential for disease resistance conferred by a structural subset of resistance (R) proteins containing a nucleotide-binding site, leucine-rich-repeats and amino-terminal similarity to animal Toll and Interleukin-1 (so-called TIR-NBS-LRR proteins). EDS1 is not required by NBS-LRR proteins that possess an amino-terminal coiled-coil motif (CC-NBS-LRR proteins). Using virus-induced gene silencing (VIGS) of a Nicotiana benthaminana EDS1 orthologue, we investigated the role of EDS1 in resistance specified by structurally distinct R genes in transgenic N. benthamiana. Resistance against tobacco mosaic virus mediated by tobacco N, a TIR-NBS-LRR protein, was EDS1-dependent. Two other R proteins, Pto (a protein kinase), and Rx (a CC-NBS-LRR protein) recognizing, respectively, a bacterial and viral pathogen did not require EDS1. These data, together with the finding that expression of N. benthamiana and Arabidopsis EDS1 mRNAs are similarly regulated, lead us to conclude that recruitment of EDS1 by TIR-NBS-LRR proteins is evolutionarily conserved between dicotyledenous plant species in resistance against bacterial, oomycete and viral pathogens. We further demonstrate that VIGS is a useful approach to dissect resistance signaling pathways in a genetically intractable plant species.

  19. Interferon-γ : The Major Mediator of Resistance against Toxoplasma gondii

    Science.gov (United States)

    Suzuki, Yasuhiro; Orellana, Manuel A.; Schreiber, Robert D.; Remington, Jack S.

    1988-04-01

    Mice were injected with a monoclonal antibody to interferon-γ to examine the importance of endogenous production of this lymphokine in resistance against infection with the sporozoan parasite Toxoplasma gondii. Mice with intraperitoneal infections of T. gondii that received no antibody survived and developed chronic T. gondii infection, whereas the infected mice that received the monoclonal antibody died of toxoplasmosis. The activation of macrophages, which kill T. gondii in vivo, was inhibited by administration of the monoclonal antibody, but the production of antibodies to T. gondii was not suppressed. The fact that an antibody to interferon-γ can eliminate resistance to acute Toxoplasma infection in mice suggests that this lymphokine is an important mediator of host resistance to this parasite.

  20. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment.

    Science.gov (United States)

    Markworth, James F; Vella, Luke; Lingard, Benjamin S; Tull, Dedreia L; Rupasinghe, Thusitha W; Sinclair, Andrew J; Maddipati, Krishna Rao; Cameron-Smith, David

    2013-12-01

    Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0-3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a biological

  1. Repair of 3-methyladenine and abasic sites by base excision repair mediates glioblastoma resistance to temozolomide

    Directory of Open Access Journals (Sweden)

    John R Silber

    2012-11-01

    Full Text Available Alkylating agents have long played a central role in the adjuvant therapy of glioblastoma multiforme (GBM. More recently, inclusion of temozolomide (TMZ, an orally administered methylating agent with low systemic toxicity, during radiotherapy and afterward has markedly improved survival. Extensive in vitro and in vivo evidence has shown that TMZ-induced O6-methylguanine (O6-meG mediates GBM cell killing. Moreover, low or absent expression of O6-methylguanine-DNA methyltransferase (MGMT, the sole human repair protein that removes O6-meG from DNA, is frequently associated with longer survival in GBMs treated with TMZ, promoting interest in developing inhibitors of MGMT to counter resistance. However, the clinical efficacy of TMZ is unlikely to be due solely to O6-meG, as the agent produces approximately a dozen additional DNA adducts, including cytotoxic N3-methyladenine (3-meA and abasic sites. Repair of 3-meA and abasic sites, both of which are produced in greater abundance than O6-meG, is mediated by the base excision repair (BER pathway, and occurs independently of removal of O6-meG. These observations indicate that BER activities are also potential targets for strategies to potentiate TMZ cytotoxicity. Here we review the evidence that 3-meA and abasic sites mediate killing of GBM cells. We also present in vitro and in vivo evidence that alkyladenine-DNA–glycosylase, the sole repair activity that excises 3-meA from DNA, and Ape1, the major human abasic site endonuclease, mediate TMZ resistance in GBMs and represent potential anti-resistance targets.

  2. Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin

    NARCIS (Netherlands)

    Zanden, J.J. van; Mul, A. de; Wortelboer, H.M.; Usta, M.; Bladeren, P.J. van; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2005-01-01

    In the present study, the effects of myricetin on either MRP1 or MRP2 mediated vincristine resistance in transfected MDCKII cells were examined. The results obtained show that myricetin can inhibit both MRP1 and MRP2 mediated vincristine efflux in a concentration dependent manner. The IC50 values fo

  3. Heparanase mediates a novel mechanism in lapatinib-resistant brain metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Lixin Zhang

    2015-01-01

    Full Text Available Heparanase (HPSE is the dominant mammalian endoglycosidase and important tumorigenic, angiogenic, and pro-metastatic molecule. Highest levels of HPSE activity have been consistently detected in cells possessing highest propensities to colonize the brain, emphasizing the therapeutic potential for targeting HPSE in brain metastatic breast cancer (BMBC. Lapatinib (Tykerb is a small-molecule and dual inhibitor of human epidermal growth factor receptor1 and 2 (EGFR and HER2, respectively which are both high-risk predictors of BMBC. It was approved by the US Food and Drug Administration for treatment of patients with advanced or metastatic breast cancer. However, its role is limited in BMBC whose response rates to lapatinib are significantly lower than those for extracranial metastasis. Because HPSE can affect EGFR phosphorylation, we examined Roneparstat, a non-anticoagulant heparin with potent anti-HPSE activity, to inhibit EGFR signaling pathways and BMBC onset using lapatinib-resistant clones generated from HER2-transfected, EGFR-expressing MDA-MB-231BR cells. Cell growth, EGFR pathways, and HPSE targets were assessed among selected clones in the absence or presence of Roneparstat and/or lapatinib. Roneparstat overcame lapatinib resistance by inhibiting pathways associated with EGFR tyrosine residues that are not targeted by lapatinib. Roneparstat inhibited the growth and BMBC abilities of lapatinib-resistant clones. A molecular mechanism was identified by which HPSE mediates an alternative survival pathway in lapatinib-resistant clones and is modulated by Roneparstat. These results demonstrate that the inhibition of HPSE-mediated signaling plays important roles in lapatinib resistance, and provide mechanistic insights to validate the use of Roneparstat for novel BMBC therapeutic strategies.

  4. Chromosomally and Extrachromosomally Mediated High-Level Gentamicin Resistance in Streptococcus agalactiae.

    Science.gov (United States)

    Sendi, Parham; Furitsch, Martina; Mauerer, Stefanie; Florindo, Carlos; Kahl, Barbara C; Shabayek, Sarah; Berner, Reinhard; Spellerberg, Barbara

    2016-03-01

    Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of sepsis in neonates. The rate of invasive GBS disease in nonpregnant adults also continues to climb. Aminoglycosides alone have little or no effect on GBS, but synergistic killing with penicillin has been shown in vitro. High-level gentamicin resistance (HLGR) in GBS isolates, however, leads to the loss of a synergistic effect. We therefore performed a multicenter study to determine the frequency of HLGR GBS isolates and to elucidate the molecular mechanisms leading to gentamicin resistance. From eight centers in four countries, 1,128 invasive and colonizing GBS isolates were pooled and investigated for the presence of HLGR. We identified two strains that displayed HLGR (BSU1203 and BSU452), both of which carried the aacA-aphD gene, typically conferring HLGR. However, only one strain (BSU1203) also carried the previously described chromosomal gentamicin resistance transposon designated Tn3706. For the other strain (BSU452), plasmid purification and subsequent DNA sequencing resulted in the detection of plasmid pIP501 carrying a remnant of a Tn3 family transposon. Its ability to confer HLGR was proven by transfer into an Enterococcus faecalis isolate. Conversely, loss of HLGR was documented after curing both GBS BSU452 and the transformed E. faecalis strain from the plasmid. This is the first report showing plasmid-mediated HLGR in GBS. Thus, in our clinical GBS isolates, HLGR is mediated both chromosomally and extrachromosomally. PMID:26729498

  5. Esters of the Marine-Derived Triterpene Sipholenol A Reverse P-GP-Mediated Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2015-04-01

    Full Text Available Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1. Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers.

  6. Trefoil factor 3 is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma.

    Science.gov (United States)

    Kannan, Nagarajan; Kang, Jian; Kong, Xiangjun; Tang, Jianzhong; Perry, Jo K; Mohankumar, Kumarasamypet M; Miller, Lance D; Liu, Edison T; Mertani, Hichem C; Zhu, Tao; Grandison, Prudence M; Liu, Dong-Xu; Lobie, Peter E

    2010-12-01

    We report herein that trefoil factor 3 (TFF3) is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma. Forced expression of TFF3 in mammary carcinoma cells increased cell proliferation and survival, enhanced anchorage-independent growth, and promoted migration and invasion. Moreover, forced expression of TFF3 increased tumor size in xenograft models. Conversely, depletion of endogenous TFF3 with small interfering RNA (siRNA) decreased the oncogenicity and invasiveness of mammary carcinoma cells. Neutralization of secreted TFF3 by antibody promoted apoptosis, decreased cell growth in vitro, and arrested mammary carcinoma xenograft growth. TFF3 expression was significantly correlated to decreased survival of estrogen receptor (ER)-positive breast cancer patients treated with tamoxifen. Forced expression of TFF3 in mammary carcinoma cells increased ER transcriptional activity, promoted estrogen-independent growth, and produced resistance to tamoxifen and fulvestrant in vitro and to tamoxifen in xenograft models. siRNA-mediated depletion or antibody inhibition of TFF3 significantly enhanced the efficacy of antiestrogens. Increased TFF3 expression was observed in tamoxifen-resistant (TAMR) cells and antibody inhibition of TFF3 in TAMR cells improved tamoxifen sensitivity. Functional antagonism of TFF3 therefore warrants consideration as a novel therapeutic strategy for mammary carcinoma.

  7. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    Science.gov (United States)

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine.

  8. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    Science.gov (United States)

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine. PMID:26683492

  9. The Arabidopsis ISR1 locus is required for rhizobacteria-mediated induced systemic resistance against different pathogens

    NARCIS (Netherlands)

    Ton, J.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2002-01-01

    In Arabidopsis thaliana, non-pathogenic, root-colonizing Pseudomonas fluorescens WCS417r bacteria trigger an induced systemic resistance (ISR) that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). In contrast to SAR, WCS417r-mediated ISR is controlled by a salicylic

  10. [Molecular physiology of receptor mediated endocytosis and its role in overcoming multidrug resistance].

    Science.gov (United States)

    Severin, E S; Posypanova, G A

    2011-06-01

    Receptor-mediated endocytosis plays important role in the selective uptake of proteins at the plasma membrane of eukaryotic cells. Endocytosis regulates many processes of cell signalling by controlling the number of functional receptors on the cell surface. The article reviews the mechanism of clathrin-dependent endocytosis and the possibility of using this phenomenon for the targeted delivery of drugs. Use of certain proteins as targeting component of drug delivery systems can significantly improve the selectivity of this drug, as well as to overcome the multidrug resistance of cells resulting from the activity of the ABC-transporters. PMID:21874867

  11. AtMIN7 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    Science.gov (United States)

    He, Sheng Yang; Nomura, Kinya

    2011-07-26

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein AtMIN7 mediated protection is enhanced and/or there is a decrease in activity of an AtMIN7 associated virulence protein such as a Pseudomonas syringae pv. tomato DC3000 HopM1. Reagents of the present invention provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  12. Molecular analysis of diverse elements mediating VanA glycopeptide resistance in enterococci

    DEFF Research Database (Denmark)

    Palepou, M.F.I.; Adebiyi, A.M.A.; Tremlett, C.H.;

    1998-01-01

    Differences were examined among 24 distinct elements mediating VanA-type glycopeptide resistance in enterococci isolated from hospital patients and non-human sources in the UK. The methods used included long-PCR restriction fragment length polymorphism (L-PCR RFLP) analysis and DNA hybridization......-like insertion sequences. Among VanA elements with alterations downstream of vanX, seven lacked vanY, one lacked both vanY and vanZ, and ten had copies of insertion sequence IS1216V between vanX and vanY. All VanA elements of group D (from geographically and temporally diverse enterococci) were...

  13. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men

    Science.gov (United States)

    Morton, Robert W.; Oikawa, Sara Y.; Wavell, Christopher G.; Mazara, Nicole; McGlory, Chris; Quadrilatero, Joe; Baechler, Brittany L.; Baker, Steven K.

    2016-01-01

    We reported, using a unilateral resistance training (RT) model, that training with high or low loads (mass per repetition) resulted in similar muscle hypertrophy and strength improvements in RT-naïve subjects. Here we aimed to determine whether the same was true in men with previous RT experience using a whole-body RT program and whether postexercise systemic hormone concentrations were related to changes in hypertrophy and strength. Forty-nine resistance-trained men (23 ± 1 yr, mean ± SE) performed 12 wk of whole-body RT. Subjects were randomly allocated into a higher-repetition (HR) group who lifted loads of ∼30-50% of their maximal strength (1RM) for 20–25 repetitions/set (n = 24) or a lower-repetition (LR) group (∼75–90% 1RM, 8–12 repetitions/set, n = 25), with all sets being performed to volitional failure. Skeletal muscle biopsies, strength testing, dual-energy X-ray absorptiometry scans, and acute changes in systemic hormone concentrations were examined pretraining and posttraining. In response to RT, 1RM strength increased for all exercises in both groups (P muscle fiber cross-sectional area increased following training (P hypertrophy were found. In congruence with our previous work, acute postexercise systemic hormonal rises are not related to or in any way indicative of RT-mediated gains in muscle mass or strength. Our data show that in resistance-trained individuals, load, when exercises are performed to volitional failure, does not dictate hypertrophy or, for the most part, strength gains. PMID:27174923

  14. Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata

    Directory of Open Access Journals (Sweden)

    Baldwin Ian T

    2008-10-01

    Full Text Available Abstract Background The adage from Shakespeare, "troubles, not as single spies, but in battalions come," holds true for Nicotiana attenuata, which is commonly attacked by both pathogens (Pseudomonas spp. and herbivores (Manduca sexta in its native habitats. Defense responses targeted against the pathogens can directly or indirectly influence the responses against the herbivores. Nadefensin is an effective induced defense gene against the bacterial pathogen Pseudomonas syringae pv tomato (PST DC3000, which is also elicited by attack from M. sexta larvae, but whether this defense protein influences M. sexta's growth and whether M. sexta-induced Nadefensin directly or indirectly influences PST DC3000 resistance are unknown. Results M. sexta larvae consumed less on WT and on Nadefensin-silenced N. attenuata plants that had previously been infected with PST DC3000 than on uninfected plants. WT plants infected with PST DC3000 showed enhanced resistance to PST DC3000 and decreased leaf consumption by M. sexta larvae, but larval mass gain was unaffected. PST DC3000-infected Nadefensin-silenced plants were less resistant to subsequent PST DC3000 challenge, and on these plants, M. sexta larvae consumed less and gained less mass. WT and Nadefensin-silenced plants previously damaged by M. sexta larvae were better able to resist subsequent PST DC3000 challenges than were undamaged plants. Conclusion These results demonstrate that Na-defensin directly mediates defense against PST DC3000 and indirectly against M. sexta in N. attenuata. In plants that were previously infected with PST DC3000, the altered leaf chemistry in PST DC3000-resistant WT plants and PST DC3000-susceptible Nadefensin-silenced plants differentially reduced M. sexta's leaf consumption and mass gain. In plants that were previously damaged by M. sexta, the combined effect of the altered host plant chemistry and a broad spectrum of anti-herbivore induced metabolomic responses was more

  15. Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum.

    Science.gov (United States)

    Gabryszewski, Stanislaw J; Modchang, Charin; Musset, Lise; Chookajorn, Thanat; Fidock, David A

    2016-06-01

    The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field.

  16. RETROVIRAL MEDIATED EFFICIENT TRANSFER ANDEXPRESSION OF MULTIPLE DRUG RESISTANCE GENE TO HUMAN LEUKEMIC CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from the producer PA317/HaMDR, and the resistant cells were selected with cytotoxic drug. The transfer and expression of MDR1 gene was analyzed by using polymerase chain reaction (PCR), flow cytometry (FCM) and semisolid colonies cultivation. Results: The resistant cells, K562/MDR and NB4/MDR, in which integration of the exogenous MDR1 gene was confirmed by PCR analysis, displayed a typical MDR phenotype. The expression of MDR1 transgene was detected on truncated as well as full-length transcripts. Moreover, the resistant cells were P-glycoprotein postiive at 78.0% to 98.7% analyzed with FCM. The transduction efficieny in K562 cells was studied on suspension cultures and single-cell colonies. The transduction was more efficient in coculture system (67.9%~ 72.5%) than in supernatant system (33.1%~ 46.8%), while growth factors may improve the efficiency. Conclusion: Retrovirus could allow a functional transfer and expression of MDR1 gene in human leukemia cells, and MDR1 might act as a dominant selectable gene for coexpression with the genes of interest in gene therapy.

  17. The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps.

    Directory of Open Access Journals (Sweden)

    Mark J Lee

    2015-10-01

    Full Text Available Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG, an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs.

  18. Plasmid-mediated quinolone resistance; interactions between human, animal and environmental ecologies

    Directory of Open Access Journals (Sweden)

    Laurent ePOIREL

    2012-02-01

    Full Text Available Resistance to quinolones and fluoroquinolones is being increasingly reported among human but also veterinary isolates during the last two to three decades, very likely as a consequence of the large clinical usage of those antibiotics. Even if the principle mechanisms of resistance to quinolones are chromosome-encoded, due to modifications of molecular targets (DNA gyrase and topoisomerase IV, decreased outer-membrane permeability (porin defect and overexpression of naturally-occurring efflux, the emergence of plasmid-mediated quinolone resistance (PMQR has been reported since 1998. Although these PMQR determinants confer low-level resistance to quinolones and/or fluoroquinolones, they are a favorable background for selection of additional chromosome-encoded quinolone resistance mechanisms. Different transferable mechanisms have been identified, corresponding to the production of Qnr proteins, of the aminoglycoside acetyltransferase AAC(6’-Ib-cr, or of the QepA-type or OqxAB-type efflux pumps. Qnr proteins protect target enzymes (DNA gyrase and type IV topoisomerase from quinolone inhibition (mostly nalidixic acid. The AAC(6’-Ib-cr determinant acetylates several fluoroquinolones, such as norfloxacin and ciprofloxacin. Finally, the QepA and OqxAB efflux pumps extrude fluoroquinolones from the bacterial cell. A series of studies have identified the environment to be a reservoir of PMQR genes, with farm animals and aquatic habitats being significantly involved. In addition, the origin of the qnr genes has been identified, corresponding to the waterborne species Shewanella sp. Altogether, the recent observations suggest that the aquatic environment might constitute the original source of PMQR genes, that would secondly spread among animal or human isolates.

  19. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016.

    Science.gov (United States)

    Xavier, Basil Britto; Lammens, Christine; Ruhal, Rohit; Kumar-Singh, Samir; Butaye, Patrick; Goossens, Herman; Malhotra-Kumar, Surbhi

    2016-07-01

    We identified a novel plasmid-mediated colistin-resistance gene in porcine and bovine colistin-resistant Escherichia coli that did not contain mcr-1. The gene, termed mcr-2, a 1,617 bp phosphoethanolamine transferase harboured on an IncX4 plasmid, has 76.7% nucleotide identity to mcr-1. Prevalence of mcr-2 in porcine colistin-resistant E. coli (11/53) in Belgium was higher than that of mcr-1 (7/53). These data call for an immediate introduction of mcr-2 screening in ongoing molecular epidemiological surveillance of colistin-resistant Gram-negative pathogens. PMID:27416987

  20. Reversion of P-Glycoprotein-Mediated Multidrug Resistance in Human Leukemic Cell Line by Diallyl Trisulfide

    Directory of Open Access Journals (Sweden)

    Qing Xia

    2012-01-01

    Full Text Available Multidrug resistance (MDR is the major obstacle in chemotherapy, which involves multiple signaling pathways. Diallyl trisulfide (DATS is the main sulfuric compound in garlic. In the present study, we aimed to explore whether DATS could overcome P-glycoprotein-(P-gp-mediated MDR in K562/A02 cells, and to investigate whether NF-κB suppression is involved in DATS-induced reversal of MDR. MTT assay revealed that cotreatment with DATS increased the response of K562/A02 cells to adriamycin (the resistance reversal fold was 3.79 without toxic side effects. DATS could enhance the intracellular concentration of adriamycin by inhibiting the function and expression of P-gp, as shown by flow cytometry, RT-PCR, and western blot. In addition, DATS resulted in more K562/A02 cell apoptosis, accompanied by increased expression of caspase-3. The expression of NF-κB/p65 (downregulation was significantly linked to the drug-resistance mechanism of DATS, whereas the expression of IκBα was not affected by DATS. Our findings demonstrated that DATS can serve as a novel, nontoxic modulator of MDR, and can reverse the MDR of K562/A02 cells in vitro by increasing intracellular adriamycin concentration and inducing apoptosis. More importantly, we proved for the first time that the suppression of NF-κB possibly involves the molecular mechanism in the course of reversion by DATS.

  1. Reversion of p-glycoprotein-mediated multidrug resistance in human leukemic cell line by diallyl trisulfide.

    Science.gov (United States)

    Xia, Qing; Wang, Zhi-Yong; Li, Hui-Qing; Diao, Yu-Tao; Li, Xiao-Li; Cui, Jia; Chen, Xue-Liang; Li, Hao

    2012-01-01

    Multidrug resistance (MDR) is the major obstacle in chemotherapy, which involves multiple signaling pathways. Diallyl trisulfide (DATS) is the main sulfuric compound in garlic. In the present study, we aimed to explore whether DATS could overcome P-glycoprotein-(P-gp-)mediated MDR in K562/A02 cells, and to investigate whether NF-κB suppression is involved in DATS-induced reversal of MDR. MTT assay revealed that cotreatment with DATS increased the response of K562/A02 cells to adriamycin (the resistance reversal fold was 3.79) without toxic side effects. DATS could enhance the intracellular concentration of adriamycin by inhibiting the function and expression of P-gp, as shown by flow cytometry, RT-PCR, and western blot. In addition, DATS resulted in more K562/A02 cell apoptosis, accompanied by increased expression of caspase-3. The expression of NF-κB/p65 (downregulation) was significantly linked to the drug-resistance mechanism of DATS, whereas the expression of IκBα was not affected by DATS. Our findings demonstrated that DATS can serve as a novel, nontoxic modulator of MDR, and can reverse the MDR of K562/A02 cells in vitro by increasing intracellular adriamycin concentration and inducing apoptosis. More importantly, we proved for the first time that the suppression of NF-κB possibly involves the molecular mechanism in the course of reversion by DATS. PMID:22919419

  2. IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy.

    Directory of Open Access Journals (Sweden)

    Munir A Al-Zeer

    Full Text Available Chlamydial infection of the host cell induces Gamma interferon (IFNgamma, a central immunoprotector for humans and mice. The primary defense against Chlamydia infection in the mouse involves the IFNgamma-inducible family of IRG proteins; however, the precise mechanisms mediating the pathogen's elimination are unknown. In this study, we identify Irga6 as an important resistance factor against C. trachomatis, but not C. muridarum, infection in IFNgamma-stimulated mouse embryonic fibroblasts (MEFs. We show that Irga6, Irgd, Irgm2 and Irgm3 accumulate at bacterial inclusions in MEFs upon stimulation with IFNgamma, whereas Irgb6 colocalized in the presence or absence of the cytokine. This accumulation triggers a rerouting of bacterial inclusions to autophagosomes that subsequently fuse to lysosomes for elimination. Autophagy-deficient Atg5-/- MEFs and lysosomal acidification impaired cells surrender to infection. Irgm2, Irgm3 and Irgd still localize to inclusions in IFNgamma-induced Atg5-/- cells, but Irga6 localization is disrupted indicating its pivotal role in pathogen resistance. Irga6-deficient (Irga6-/- MEFs, in which chlamydial growth is enhanced, do not respond to IFNgamma even though Irgb6, Irgd, Irgm2 and Irgm3 still localize to inclusions. Taken together, we identify Irga6 as a necessary factor in conferring host resistance by remodelling a classically nonfusogenic intracellular pathogen to stimulate fusion with autophagosomes, thereby rerouting the intruder to the lysosomal compartment for destruction.

  3. Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis.

    Science.gov (United States)

    Weiss, Leslie A; Harrison, Phillip G; Nickels, Bryce E; Glickman, Michael S; Campbell, Elizabeth A; Darst, Seth A; Stallings, Christina L

    2012-10-01

    Mycobacterium tuberculosis infection continues to cause substantial human suffering. New chemotherapeutic strategies, which require insight into the pathways essential for M. tuberculosis pathogenesis, are imperative. We previously reported that depletion of the CarD protein in mycobacteria compromises viability, resistance to oxidative stress and fluoroquinolones, and pathogenesis. CarD associates with the RNA polymerase (RNAP), but it has been unknown which of the diverse functions of CarD are mediated through the RNAP; this question must be answered to understand the CarD mechanism of action. Herein, we describe the interaction between the M. tuberculosis CarD and the RNAP β subunit and identify point mutations that weaken this interaction. The characterization of mycobacterial strains with attenuated CarD/RNAP β interactions demonstrates that the CarD/RNAP β association is required for viability and resistance to oxidative stress but not for fluoroquinolone resistance. Weakening the CarD/RNAP β interaction also increases the sensitivity of mycobacteria to rifampin and streptomycin. Surprisingly, depletion of the CarD protein did not affect sensitivity to rifampin. These findings define the CarD/RNAP interaction as a new target for chemotherapeutic intervention that could also improve the efficacy of rifampin treatment of tuberculosis. In addition, our data demonstrate that weakening the CarD/RNAP β interaction does not completely phenocopy the depletion of CarD and support the existence of functions for CarD independent of direct RNAP binding.

  4. An induced mutation in tomato eIF4E leads to immunity to two potyviruses.

    Directory of Open Access Journals (Sweden)

    Florence Piron

    Full Text Available BACKGROUND: The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS: To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE: Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study.

  5. Agrobacterium-mediated transformation of chickpea with -amylase inhibitor gene for insect resistance

    Indian Academy of Sciences (India)

    S Ignacimuthu; S Prakash

    2006-09-01

    Chickpea is the world’s third most important pulse crop and India produces 75% of the world’s supply. Chickpea seeds are attacked by Callosobruchus maculatus and C. chinensis which cause extensive damage. The -amylase inhibitor gene isolated from Phaseolus vulgaris seeds was introduced into chickpea cultivar K850 through Agrobacterium-mediated transformation. A total of 288 kanamycin resistant plants were regenerated. Only 0.3% of these were true transformants. Polymerase chain reaction (PCR) analysis and Southern hybridization confirmed the presence of 4.9 kb -amylase inhibitor gene in the transformed plants. Western blot confirmed the presence of -amylase inhibitor protein. The results of bioassay study revealed a significant reduction in the survival rate of bruchid weevil C. maculatus reared on transgenic chickpea seeds. All the transgenic plants exhibited a segregation ratio of 3:1.

  6. Inflammatory Mediators and Insulin Resistance in Obesity: Role of Nuclear Receptor Signaling in Macrophages

    Directory of Open Access Journals (Sweden)

    Lucía Fuentes

    2010-01-01

    Full Text Available Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR. The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs, which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.

  7. Modulation of P-Glycoprotein Mediated Multidrug Resistance (Mdr in Cancer Using Chemosensitizers.

    Directory of Open Access Journals (Sweden)

    Velingkar V.S

    2010-03-01

    Full Text Available Multidrug resistance (MDR is one of the main obstacles in the chemotherapy of cancer. MDR is associated with the over expression of P-glycoprotein (P-gp, resulting in increased efflux of chemotherapy from cancer cells. Inhibiting P-gp as a method to reverse MDR in cancer patients has been studied extensively, but the results have generally been disappointing. First-generation agents were limited by unacceptable toxicity, whereas second-generation agents had bettertolerability but were confounded by unpredictable pharmacokinetic interactions and interactions with other transporter proteins. Third-generation inhibitors have high potency and specificity for P-gp. Furthermore, pharmacokinetic studies to date have shown no appreciable impact on drug metabolism and no clinically significant drug interactions with common chemotherapy agents. Third-generation P-gp inhibitors have shown promise in clinical trials. The continued development of these agents may establish the true therapeutic potential of P-gp-mediated MDR reversal.

  8. Response to mTOR inhibition: activity of eIF4E predicts sensitivity in cell lines and acquired changes in eIF4E regulation in breast cancer

    Directory of Open Access Journals (Sweden)

    Bartlett John MS

    2011-02-01

    Full Text Available Abstract Background Inhibitors of the kinase mTOR, such as rapamycin and everolimus, have been used as cancer therapeutics with limited success since some tumours are resistant. Efforts to establish predictive markers to allow selection of patients with tumours likely to respond have centred on determining phosphorylation states of mTOR or its targets 4E-BP1 and S6K in cancer cells. In an alternative approach we estimated eIF4E activity, a key effector of mTOR function, and tested the hypothesis that eIF4E activity predicts sensitivity to mTOR inhibition in cell lines and in breast tumours. Results We found a greater than three fold difference in sensitivity of representative colon, lung and breast cell lines to rapamycin. Using an assay to quantify influences of eIF4E on the translational efficiency specified by structured 5'UTRs, we showed that this estimate of eIF4E activity was a significant predictor of rapamycin sensitivity, with higher eIF4E activities indicative of enhanced sensitivity. Surprisingly, non-transformed cell lines were not less sensitive to rapamycin and did not have lower eIF4E activities than cancer lines, suggesting the mTOR/4E-BP1/eIF4E axis is deregulated in these non-transformed cells. In the context of clinical breast cancers, we estimated eIF4E activity by analysing expression of eIF4E and its functional regulators within tumour cells and combining these scores to reflect inhibitory and activating influences on eIF4E. Estimates of eIF4E activity in cancer biopsies taken at diagnosis did not predict sensitivity to 11-14 days of pre-operative everolimus treatment, as assessed by change in tumour cell proliferation from diagnosis to surgical excision. However, higher pre-treatment eIF4E activity was significantly associated with dramatic post-treatment changes in expression of eIF4E and 4E-binding proteins, suggesting that eIF4E is further deregulated in these tumours in response to mTOR inhibition. Conclusions

  9. Pollen-mediated gene flow in Chinese commercial fields of glufosinate-resistant canola (Brassica napus)

    Institute of Scientific and Technical Information of China (English)

    CAI Li; ZHOU BiWen; GUO XueLan; DONG CaiHua; HU XiaoJia; HOU MingSheng; LIU ShengYi

    2008-01-01

    One of the most pressing issues surrounding transgenic oilseed rape cultivation is the potential impact of GM genes entering neighboring non-GM oilseed rape plants, related weeds or closely related wild relatives. Following the principle of a case-by-case for transgenic crop safety assessment, we designed experiments to study pollen-mediated gene flow from herbicide-resistant transgenic oilseed rape to Chinese commercial varieties. The pollen dispersal was detected as the progeny of recipient plants that were identified as glufosinate resistant. The results indicated that pollen dispersal occurred up to 2000 m and its rate sharply decreased as the distance from the pollen source increased. However, the rate of long-distance pollen dispersal from 33 to 2000 m was less than 0.015% and did not present a gradual decrease, indicating the randomization of dispersal and pollination. Most pollen dispersed within a 4.5 m area around the transgenic pollen source plot, with a maximum of 1.19% at the sampling site of 1.4 m. Wind direction significantly affected the direction and the distance of pollen dispersal, resulting in the more and farther dispersal in southwest direction. However, the number of potentially pollinating bees was not correlated with direction and distance from the pollen source plot, suggesting that bee density and distribution would not contribute to the differences in pollen dispersal among different directions. This paper is the first report on research in a large-scale experiment of pollen-mediated gene flow under the China's environmental conditions and provided scientific evidence for the effective commercialization of transgenic oilseed rape and its safe management. Our results also provided important data on pollen spatial distribution pattern.

  10. Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions

    OpenAIRE

    Decker, Keith F.; Zheng, Dali; He, Yuhong; Bowman, Tamara; Edwards, John R.; Jia, Li

    2012-01-01

    The androgen receptor (AR) is a ligand-inducible transcription factor that mediates androgen action in target tissues. Upon ligand binding, the AR binds to thousands of genomic loci and activates a cell-type specific gene program. Prostate cancer growth and progression depend on androgen-induced AR signaling. Treatment of advanced prostate cancer through medical or surgical castration leads to initial response and durable remission, but resistance inevitably develops. In castration-resistant ...

  11. Prevalence of aac(6'-Ib-cr plasmid-mediated and chromosome-encoded fluoroquinolone resistance in Enterobacteriaceae in Italy

    Directory of Open Access Journals (Sweden)

    Frasson Ilaria

    2011-08-01

    Full Text Available Abstract The spread of aac(6'-Ib-cr plasmid-mediated quinolone resistance determinants was evaluated in 197 enterobacterial isolates recovered in an Italian teaching hospital. The aac(6'-Ib-cr gene was found exclusively in Escherichia coli strains. The gene was located on a plasmid which presented additional ESBL genes. Most of the clinical strains were clonally related and displayed three point mutations at the topoisomerase level which conferred high resistance to fluoroquinolones.

  12. Overexpression of the 14α-Demethylase Target Gene (CYP51) Mediates Fungicide Resistance in Blumeriella jaapii

    OpenAIRE

    Ma, Zhonghua; Proffer, Tyre J.; Jacobs, Janette L.; Sundin, George W.

    2006-01-01

    Sterol demethylation inhibitor (DMI) fungicides are widely used to control fungi pathogenic to humans and plants. Resistance to DMIs is mediated either through alterations in the structure of the target enzyme CYP51 (encoding 14α-demethylase), through increased expression of the CYP51 gene, or through increased expression of efflux pumps. We found that CYP51 expression in DMI-resistant (DMIR) isolates of the cherry leaf spot pathogen Blumeriella jaapii was increased 5- to 12-fold compared to ...

  13. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hanwen [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208 (United States); Pirisi, Lucia [Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Creek, Kim E., E-mail: creekk@sccp.sc.edu [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208 (United States)

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.

  14. Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis.

    Science.gov (United States)

    Larson-Casey, Jennifer L; Deshane, Jessy S; Ryan, Alan J; Thannickal, Victor J; Carter, A Brent

    2016-03-15

    Idiopathic pulmonary fibrosis (IPF) is a devastating lung disorder with increasing incidence. Mitochondrial oxidative stress in alveolar macrophages is directly linked to pulmonary fibrosis. Mitophagy, the selective engulfment of dysfunctional mitochondria by autophagasomes, is important for cellular homeostasis and can be induced by mitochondrial oxidative stress. Here, we show Akt1 induced macrophage mitochondrial reactive oxygen species (ROS) and mitophagy. Mice harboring a conditional deletion of Akt1 in macrophages (Akt1(-/-)Lyz2-cre) and Park2(-/-) mice had impaired mitophagy and reduced active transforming growth factor-β1 (TGF-β1). Although Akt1 increased TGF-β1 expression, mitophagy inhibition in Akt1-overexpressing macrophages abrogated TGF-β1 expression and fibroblast differentiation. Importantly, conditional Akt1(-/-)Lyz2-cre mice and Park2(-/-) mice had increased macrophage apoptosis and were protected from pulmonary fibrosis. Moreover, IPF alveolar macrophages had evidence of increased mitophagy and displayed apoptosis resistance. These observations suggest that Akt1-mediated mitophagy contributes to alveolar macrophage apoptosis resistance and is required for pulmonary fibrosis development. PMID:26921108

  15. NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia.

    Science.gov (United States)

    Nichol, Jessica N; Galbraith, Matthew D; Kleinman, Claudia L; Espinosa, Joaquín M; Miller, Wilson H

    2016-03-29

    Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA)-sensitive acute promyelocytic leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction among PML/RARA, nucleophosmin (NPM), and topoisomerase II beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML); therefore, our model may be applicable to other more common leukemias driven by NPM.

  16. VirE1-Mediated Resistance to Crown Gall in Transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Humann, Jodi; Andrews, Sarah; Ream, Walt

    2006-01-01

    ABSTRACT Crown gall disease, caused by Agrobacterium tumefaciens, remains a serious agricultural problem despite current biocontrol methods. Agrobacterium tumefaciens transfers single-stranded DNA (T-strands) into plant cells along with several virulence proteins, including a single-stranded DNA-binding protein (VirE2). In plant cells, T-strands are protected from nucleases and targeted to the nucleus by VirE2, which is essential for efficient transmission (transfer and integration) of T-strands. VirE1 is the secretory chaperone for VirE2; it prevents VirE2 from forming aggregates and from binding the T-strands in bacterial cells. Therefore, we hypothesized that sufficient quantities of VirE1 expressed in plant cells might block T-DNA transmission by preventing VirE2 from binding T-strands. Here we show that root explants from Arabidopsis thaliana plants that expressed virE1 formed 3.5-fold fewer tumors than roots from plants without virE1. Also, this resistance was specific for VirE2-mediated Agrobacterium transformation. Plants that have been genetically altered to resist crown gall may prove more effective than biological control. PMID:18944210

  17. RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava.

    Science.gov (United States)

    Yadav, Jitender S; Ogwok, Emmanuel; Wagaba, Henry; Patil, Basavaprabhu L; Bagewadi, Basavaraj; Alicai, Titus; Gaitan-Solis, Eliana; Taylor, Nigel J; Fauquet, Claude M

    2011-09-01

    Cassava brown streak disease (CBSD), caused by Cassava brown streak Uganda virus (CBSUV) and Cassava brown streak virus (CBSV), is of new epidemic importance to cassava (Manihot esculenta Crantz) production in East Africa, and an emerging threat to the crop in Central and West Africa. This study demonstrates that at least one of these two ipomoviruses, CBSUV, can be efficiently controlled using RNA interference (RNAi) technology in cassava. An RNAi construct targeting the near full-length coat protein (FL-CP) of CBSUV was expressed constitutively as a hairpin construct in cassava. Transgenic cassava lines expressing small interfering RNAs (siRNAs) against this sequence showed 100% resistance to CBSUV across replicated graft inoculation experiments. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed the presence of CBSUV in leaves and some tuberous roots from challenged controls, but not in the same tissues from transgenic plants. This is the first demonstration of RNAi-mediated resistance to the ipomovirus CBSUV in cassava.

  18. Extrinsic factors can mediate resistance to BRAF inhibition in central nervous system melanoma metastases.

    Science.gov (United States)

    Seifert, Heike; Hirata, Eishu; Gore, Martin; Khabra, Komel; Messiou, Christina; Larkin, James; Sahai, Erik

    2016-01-01

    Here, we retrospectively review imaging of 68 consecutive unselected patients with BRAF V600-mutant metastatic melanoma for organ-specific response and progression on vemurafenib. Complete or partial responses were less often seen in the central nervous system (CNS) (36%) and bone (16%) compared to lung (89%), subcutaneous (83%), spleen (71%), liver (85%) and lymph nodes/soft tissue (83%), P < 0.001. CNS was also the most common site of progression. Based on this, we tested in vitro the efficacy of the BRAF inhibitors PLX4720 and dabrafenib in the presence of cerebrospinal fluid (CSF). Exogenous CSF dramatically reduced cell death in response to both BRAF inhibitors. Effective cell killing was restored by co-administration of a PI-3 kinase inhibitor. We conclude that the efficacy of vemurafenib is variable in different organs with CNS being particularly prone to resistance. Extrinsic factors, such as ERK- and PI3K-activating factors in CSF, may mediate BRAF inhibitor resistance in the CNS.

  19. Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis.

    Science.gov (United States)

    Larson-Casey, Jennifer L; Deshane, Jessy S; Ryan, Alan J; Thannickal, Victor J; Carter, A Brent

    2016-03-15

    Idiopathic pulmonary fibrosis (IPF) is a devastating lung disorder with increasing incidence. Mitochondrial oxidative stress in alveolar macrophages is directly linked to pulmonary fibrosis. Mitophagy, the selective engulfment of dysfunctional mitochondria by autophagasomes, is important for cellular homeostasis and can be induced by mitochondrial oxidative stress. Here, we show Akt1 induced macrophage mitochondrial reactive oxygen species (ROS) and mitophagy. Mice harboring a conditional deletion of Akt1 in macrophages (Akt1(-/-)Lyz2-cre) and Park2(-/-) mice had impaired mitophagy and reduced active transforming growth factor-β1 (TGF-β1). Although Akt1 increased TGF-β1 expression, mitophagy inhibition in Akt1-overexpressing macrophages abrogated TGF-β1 expression and fibroblast differentiation. Importantly, conditional Akt1(-/-)Lyz2-cre mice and Park2(-/-) mice had increased macrophage apoptosis and were protected from pulmonary fibrosis. Moreover, IPF alveolar macrophages had evidence of increased mitophagy and displayed apoptosis resistance. These observations suggest that Akt1-mediated mitophagy contributes to alveolar macrophage apoptosis resistance and is required for pulmonary fibrosis development.

  20. Repressed PKCδ activation in glycodelin-expressing cells mediates resistance to phorbol ester and TGFβ.

    Science.gov (United States)

    Hautala, Laura C; Koistinen, Riitta; Koistinen, Hannu

    2016-10-01

    Glycodelin is a glycoprotein mainly expressed in well-differentiated epithelial cells in reproductive tissues. In normal secretory endometrium, the expression of glycodelin is abundant and regulated by progesterone. In hormone-related cancers glycodelin expression is associated with well-differentiated tumors. We have previously found that glycodelin drives epithelial differentiation of HEC-1B endometrial adenocarcinoma cells, resulting in reduced tumor growth in a preclinical mouse model. Here we show that glycodelin-transfected HEC-1B cells have repressed protein kinase C delta (PKCδ) activation, likely due to downregulation of PDK1, and are resistant to phenotypic change and enhanced migration induced by phorbol 12-myristate 13-acetate (PMA). In control cells, which do not express glycodelin, the effects of PMA were abolished by using PKCδ and PDK1 inhibitors, and knockdown of PKCδ, MEK1 and 2, or ERK1 and 2 by siRNAs. Similarly, transforming growth factor β (TGFβ)-induced phenotypic change was only seen in control cells, not in glycodelin-producing cells, and it was mediated by PKCδ. Taken together, these results strongly suggest that PKCδ, via MAPK pathway, is involved in the glycodelin-driven cell differentiation rendering the cells resistant to stimulation by PMA and TGFβ. PMID:27373413

  1. Detection of plasmid-mediated IMP-1 metallo-β-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate

    Institute of Scientific and Technical Information of China (English)

    Li-rong CHEN; Hong-wei ZHOU; Jia-chang CAI; Rong ZHANG; Gong-xiang CHEN

    2009-01-01

    Objective: To investigate the mechanism of carbapenem resistance and the occurrence of plasmid-mediated quinolone resistance determinants qnr and aac(6')-Ib-cr in a clinical isolate of Enterobacter cloacae. Methods: An ertapenem-resistant E. cloacae ZY106, which was isolated from liquor puris of a female gastric cancer patient in a Chinese hospital, was investigated. Antibiotic susceptibilities were determined by agar dilution method. Conjugation experiments, isoelectric focusing, polymerase chain reaction (PCR), and DNA sequence analyses of plasmid-mediated carbapenemases and quinolone resistance determinants were preformed to confirm the genotype. Outer membrane proteins (OMPs) were examined by urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Urea-SDS-PAGE). Results: Minimum inhibitory concentrations (MCs) of imipenem, mer-openem, and ertapenem for ZY106 were 2,4, and 16 ug/ml, respectively. Conjugation studies with Escherichia coli resulted in the transfer of significantly reduced carbapenem susceptibility. ZY106 produced IMP-1 metallo-p-lactamase and CTX-M-3 extended-spectrum P-lactamase, and E. coli transconjugant produced IMP-1. Plasmid-mediated quinolone resistance determinant qnrSI was detected in ZY106. Transfer of the qnrSI-encoding-plasmid into E. coli by conjugation resulted in intermediate resistance to ciprofloxacin in E. coli transconjugant. Urea-SDS-PAGE analysis of OMPs showed that ZY106 lacked an OMP of approximately 38 KDa. Conclusion: It is the first IMP-1-producing Enterobacteriaceae in China and the first report of a clinical isolate that harbors both blaIMP and qnrS genes as well. The blaIMP-1, blaCTX-M-3, and qnrSl are encoded at three different plasmids. IMP-1 combined with the loss of an OMP possibly resulted in ertapenem resistance and reduced imipenem and mero-penem susceptibility in E. cloacae.

  2. In Vitro Biochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus.

    Science.gov (United States)

    Warrilow, Andrew G S; Parker, Josie E; Price, Claire L; Nes, W David; Kelly, Steven L; Kelly, Diane E

    2015-12-01

    The incidence of triazole-resistant Aspergillus infections is increasing worldwide, often mediated through mutations in the CYP51A amino acid sequence. New classes of azole-based drugs are required to combat the increasing resistance to existing triazole therapeutics. In this study, a CYP51 reconstitution assay is described consisting of eburicol, purified recombinant Aspergillus fumigatus CPR1 (AfCPR1), and Escherichia coli membrane suspensions containing recombinant A. fumigatus CYP51 proteins, allowing in vitro screening of azole antifungals. Azole-CYP51 studies determining the 50% inhibitory concentration (IC50) showed that A. fumigatus CYP51B (Af51B IC50, 0.50 μM) was 34-fold more susceptible to inhibition by fluconazole than A. fumigatus CYP51A (Af51A IC50, 17 μM) and that Af51A and Af51B were equally susceptible to inhibition by voriconazole, itraconazole, and posaconazole (IC50s of 0.16 to 0.38 μM). Af51A-G54W and Af51A-M220K enzymes were 11- and 15-fold less susceptible to inhibition by itraconazole and 30- and 8-fold less susceptible to inhibition by posaconazole than wild-type Af51A, confirming the azole-resistant phenotype of these two Af51A mutations. Susceptibility to voriconazole of Af51A-G54W and Af51A-M220K was only marginally lower than that of wild-type Af51A. Susceptibility of Af51A-L98H to inhibition by voriconazole, itraconazole, and posaconazole was only marginally lower (less than 2-fold) than that of wild-type Af51A. However, Af51A-L98H retained 5 to 8% residual activity in the presence of 32 μM triazole, which could confer azole resistance in A. fumigatus strains that harbor the Af51A-L98H mutation. The AfCPR1/Af51 assay system demonstrated the biochemical basis for the increased azole resistance of A. fumigatus strains harboring G54W, L98H, and M220K Af51A point mutations. PMID:26459890

  3. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.

    Directory of Open Access Journals (Sweden)

    Iñigo Loureiro

    Full Text Available The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum. A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction. Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation.

  4. Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives

    Science.gov (United States)

    Via, Laura E.; Savic, Rada; Weiner, Danielle M.; Zimmerman, Matthew D.; Prideaux, Brendan; Irwin, Scott M.; Lyon, Eddie; O’Brien, Paul; Gopal, Pooja; Eum, Seokyong; Lee, Myungsun; Lanoix, Jean-Philippe; Dutta, Noton K.; Shim, TaeSun; Cho, Jeong Su; Kim, Wooshik; Karakousis, Petros C.; Lenaerts, Anne; Nuermberger, Eric; Barry, Clifton E.; Dartois, Véronique

    2015-01-01

    Pyrazinamide has played a critical role in shortening therapy against drug-sensitive, drug-resistant, active, and latent tuberculosis (TB). Despite widespread recognition of its therapeutic importance, the sterilizing properties of this 60-year-old drug remain an enigma given its rather poor activity in vitro. Here we revisit longstanding paradigms and offer pharmacokinetic explanations for the apparent disconnect between in vitro activity and clinical impact. We show substantial host-mediated conversion of prodrug pyrazinamide (PZA) to the active form, pyrazinoic acid (POA), in TB patients and in animal models. We demonstrate favorable penetration of this pool of circulating POA from plasma into lung tissue and granulomas, where the pathogen resides. In standardized growth inhibition experiments, we show that POA exhibits superior in vitro potency compared to PZA, indicating that the vascular supply of host-derived POA may contribute to the in vivo efficacy of PZA, thereby reducing the apparent discrepancy between in vitro and in vivo activity. However, the results also raise the possibility that subinhibitory concentrations of POA generated by the host could fuel the emergence of resistance to both PZA and POA. In contrast to widespread expectations, we demonstrate good oral bioavailability and exposure in preclinical species in pharmacokinetic studies of oral POA. Baseline exposure of oral POA can be further increased by the xanthine oxidase inhibitor and approved gout drug allopurinol. These promising results pave the way for clinical investigations of oral POA as a therapeutic alternative or an add-on to overcome PZA resistance and salvage this essential TB drug. PMID:26086040

  5. Pyramids of QTLs enhance host–plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean

    OpenAIRE

    Ortega, María A.; All, John N.; Boerma, H. Roger; Parrott, Wayne A.

    2016-01-01

    Key message QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host–plant resistance genes. Abstract Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 22935...

  6. 3-Halo Chloroquine Derivatives Overcome Plasmodium falciparum Chloroquine Resistance Transporter-Mediated Drug Resistance in P. falciparum.

    Science.gov (United States)

    Edaye, Sonia; Tazoo, Dagobert; Bohle, D Scott; Georges, Elias

    2015-12-01

    Polymorphism in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) was shown to cause chloroquine resistance. In this report, we examined the antimalarial potential of novel 3-halo chloroquine derivatives (3-chloro, 3-bromo, and 3-iodo) against chloroquine-susceptible and -resistant P. falciparum. All three derivatives inhibited the proliferation of P. falciparum; with 3-iodo chloroquine being most effective. Moreover, 3-iodo chloroquine was highly effective at potentiating and reversing chloroquine toxicity of drug-susceptible and -resistant P. falciparum.

  7. P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ryohei Katayama

    2016-01-01

    Full Text Available The anaplastic lymphoma kinase (ALK fusion oncogene is observed in 3%–5% of non-small cell lung cancer (NSCLC. Crizotinib and ceritinib, a next-generation ALK tyrosine kinase inhibitor (TKI active against crizotinib-refractory patients, are clinically available for the treatment of ALK-rearranged NSCLC patients, and multiple next-generation ALK-TKIs are currently under clinical evaluation. These ALK-TKIs exhibit robust clinical activity in ALK-rearranged NSCLC patients; however, the emergence of ALK-TKI resistance restricts the therapeutic effect. To date, various secondary mutations or bypass pathway activation-mediated resistance have been identified, but large parts of the resistance mechanism are yet to be identified. Here, we report the discovery of p-glycoprotein (P-gp/ABCB1 overexpression as a ceritinib resistance mechanism in ALK-rearranged NSCLC patients. P-gp exported ceritinib and its overexpression conferred ceritinib and crizotinib resistance, but not to PF-06463922 or alectinib, which are next-generation ALK inhibitors. Knockdown of ABCB1 or P-gp inhibitors sensitizes the patient-derived cancer cells to ceritinib, in vitro and in vivo. P-gp overexpression was identified in three out of 11 cases with in ALK-rearranged crizotinib or ceritinib resistant NSCLC patients. Our study suggests that alectinib, PF-06463922, or P-gp inhibitor with ceritinib could overcome the ceritinib or crizotinib resistance mediated by P-gp overexpression.

  8. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib

    Directory of Open Access Journals (Sweden)

    Tobias Sinnberg

    2016-06-01

    In this study we show that β-catenin is stabilized and translocated to the nucleus in approximately half of the melanomas that were analyzed and which developed secondary resistance towards BRAFi. We further demonstrate that β-catenin is involved in the mediation of resistance towards vemurafenib in vitro and in vivo. Unexpectedly, β-catenin acts mainly independent of the TCF/LEF dependent canonical Wnt-signaling pathway in resistance development, which partly explains previous contradictory results about the role of β-catenin in melanoma progression and therapy resistance. We further demonstrate that β-catenin interacts with Stat3 after chronic vemurafenib treatment and both together cooperate in the acquisition and maintenance of resistance towards BRAFi.

  9. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity.

    Science.gov (United States)

    Evans, M K; Sauer, S J; Nath, S; Robinson, T J; Morse, M A; Devi, G R

    2016-01-01

    Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy. PMID:26821068

  10. Seleção de linhagens de feijoeiro com tipo de grão carioca e com os alelos co-4 e co-5 de resistência à antracnose Selection of common bean strains with carioca grain type, and with the alleles co-4 and co-5 for anthracnose resistance

    Directory of Open Access Journals (Sweden)

    Eduardo Henrique Keller Marcondes

    2010-08-01

    Full Text Available Objetivou-se, neste trabalho, identificar linhagens de feijão que reúnam, além da resistência à antracnose, alta produtividade de grãos do tipo carioca e resistência à mancha angular. Foram utilizadas 194 linhagens F5:6 extraídas de sete famílias segregantes, selecionadas do cruzamento entre os genitores H147 e B1. A linhagem H147 possui grãos tipo carioca, portadora do alelo Co-5, que confere resistência a várias raças de Colletotrichum lindemuthianum. A linhagem B1 também possui grãos tipo carioca e é portadora do alelo Co-4, que confere resistência a outro grupo de raças do mesmo patógeno. As linhagens foram avaliadas na safra das águas 2005/2006, em Lavras, com a cultivar Talismã e H147 como testemunhas, com base na produtividade e tipo de grãos. Foram selecionadas 99 linhagens, as quais foram avaliadas na safra da seca/2006, juntamente com a testemunha Talismã, com base na produtividade, tipo de grão e resistência à mancha angular. Dessas 99 linhagens, foram selecionadas 24, as quais foram avaliadas na safra de inverno/2006 em Lavras e Lambari, com base no tipo de grão e produtividade. Essas 24 linhagens foram inoculadas com a raça 321 de C. lindemuthianum, que quebra a resistência conferida pelo alelo Co-4, mas não o Co-5. Para verificar a presença do alelo Co4 foi utilizado um marcador SCAR que amplifica um fragmento de 950 pb por meio do primer SAS 13. Foi possível identificar 14 linhagens que possuem a pirâmide de alelos Co-4/Co-5 e entre elas, quatro destacaram-se em todos os caracteres avaliados.The objective of the research was to identify bean strains that possess at the same time resistance to anthracnose, high grain yield of Carioca grain type and resistance to angular leaf spot. 194 strains F5:6 were taken from seven segregating families derived from the cross H147 x B1. The H147 line has Carioca grain type and Co-5 resistance allele to several races of C. lindemuthianum. The B1 line also has the

  11. Combination erlotinib-cisplatin and Atg3-mediated autophagy in erlotinib resistant lung cancer.

    Directory of Open Access Journals (Sweden)

    Jasmine G Lee

    Full Text Available Tyrosine kinase inhibitors such as erlotinib are commonly used as a therapeutic agent against cancer due to its relatively low side-effect profile and, at times, greater efficacy. However, erlotinib resistance (ER in non-small cell lung cancer is being recognized as a major problem. Therefore, understanding the mechanism behind ER and developing effective regimens are needed. Autophagy's role in cancer has been controversial and remains unclear. In this study, we examined the effectiveness of low dose erlotinib-cisplatin combination in erlotinib resistant lung adenocarcinoma (ERPC9 cells and the role of autophagy in ER. ERPC9 cells were established from erlotinib sensitive PC9 cells. Appropriate treatments were done over two days and cell survival was quantified with Alamar Blue assay. LC3II and regulatory proteins of autophagy were measured by western blot. Small interfering RNA (siRNA was utilized to inhibit translation of the protein of interest. In ERPC9 cells, combination treatment induced synergistic cell death and a significant decrease in autophagy. At baseline, ERPC9 cells had a significantly higher LC3II and lower p-mTOR levels compared to PC9 cells. The addition of rapamycin increased resistance and 3-methyladenine sensitized ERPC9 cells, indicating autophagy may be acting as a protective mechanism. Further examination revealed that ERPC9 cells harbored high baseline Atg3 levels. The high basal Atg3 was targeted and significantly lowered with combination treatment. siRNA transfection of Atg3 resulted in the reversal of ER; 42.0% more cells died in erlotinib-alone treatment with transfection compared to non-transfected ERPC9 cells. We reveal a novel role for Atg3 in the promotion of ER as the inhibition of Atg3 translation was able to result in the re-sensitization of ERPC9 cells to erlotinib-alone treatment. Also, we demonstrate that combination erlotinib-cisplatin is an effective treatment against erlotinib resistant cancer by

  12. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib.

    Science.gov (United States)

    Sinnberg, Tobias; Makino, Elena; Krueger, Marcel A; Velic, Ana; Macek, Boris; Rothbauer, Ulrich; Groll, Nicola; Pötz, Oliver; Czemmel, Stefan; Niessner, Heike; Meier, Friedegund; Ikenberg, Kristian; Garbe, Claus; Schittek, Birgit

    2016-06-01

    Acquired resistance to second generation BRAF inhibitors (BRAFis), like vemurafenib is limiting the benefits of long term targeted therapy for patients with malignant melanomas that harbor BRAF V600 mutations. Since many resistance mechanisms have been described, most of them causing a hyperactivation of the MAPK- or PI3K/AKT signaling pathways, one potential strategy to overcome BRAFi resistance in melanoma cells would be to target important common signaling nodes. Known factors that cause secondary resistance include the overexpression of receptor tyrosine kinases (RTKs), alternative splicing of BRAF or the occurrence of novel mutations in MEK1 or NRAS. In this study we show that β-catenin is stabilized and translocated to the nucleus in approximately half of the melanomas that were analyzed and which developed secondary resistance towards BRAFi. We further demonstrate that β-catenin is involved in the mediation of resistance towards vemurafenib in vitro and in vivo. Unexpectedly, β-catenin acts mainly independent of the TCF/LEF dependent canonical Wnt-signaling pathway in resistance development, which partly explains previous contradictory results about the role of β-catenin in melanoma progression and therapy resistance. We further demonstrate that β-catenin interacts with Stat3 after chronic vemurafenib treatment and both together cooperate in the acquisition and maintenance of resistance towards BRAFi. PMID:27428425

  13. Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains.

    Directory of Open Access Journals (Sweden)

    Elisa Ramos-Sevillano

    Full Text Available BACKGROUND: Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. METHODOLOGY/PRINCIPAL FINDINGS: Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. CONCLUSIONS/SIGNIFICANCE: Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.

  14. The B-cell receptor orchestrates environment-mediated lymphoma survival and drug resistance in B-cell malignancies.

    Science.gov (United States)

    Shain, K H; Tao, J

    2014-08-01

    Specific niches within the lymphoma tumor microenvironment (TME) provide sanctuary for subpopulations of tumor cells through stromal cell-tumor cell interactions. These interactions notably dictate growth, response to therapy and resistance of residual malignant B cells to therapeutic agents. This minimal residual disease (MRD) remains a major challenge in the treatment of B-cell malignancies and contributes to subsequent disease relapse. B-cell receptor (BCR) signaling has emerged as essential mediator of B-cell homing, survival and environment-mediated drug resistance (EMDR). Central to EMDR are chemokine- and integrin-mediated interactions between lymphoma and the TME. Further, stromal cell-B cell adhesion confers a sustained BCR signaling leading to chemokine and integrin activation. Recently, the inhibitors of BCR signaling have garnered a substantial clinical interest because of their effectiveness in B-cell disorders. The efficacy of these agents is, at least in part, attributed to attenuation of BCR-dependent lymphoma-TME interactions. In this review, we discuss the pivotal role of BCR signaling in the integration of intrinsic and extrinsic determinants of TME-mediated lymphoma survival and drug resistance. PMID:24037527

  15. Teachers in an online earth systems science course: Mediating tensions of resistance and reproduction

    Science.gov (United States)

    Downey-Skochdopole, Laura

    This study explored the perceptions and experiences of teacher participants in an online Earth Science Systems course that took place in the fall of 2004. The teacher participants in this study engaged in a course that was designed to foster increased conceptual understandings of the interrelationships existing in earth systems, while modeling and promoting constructivist pedagogies. Utilizing a case study approach, with theoretical underpinnings of constructivism, critical theory and sociocultural theory, the researcher explored elements of reproduction and resistance to traditional power structures within school settings as related to the teachers' beliefs as well as the mediations the teacher participants underwent while engaging within this constructivist-based online Earth Science Systems course. Tensions resulting from deeply entrenched beliefs about teaching and learning were deconstructed within the study and explorations of roles of power as they impact the social setting of the course are utilized to make meaning of the teacher participants' experiences. This study suggests that constructivist pedagogies can be applied with success in an online learning setting. This study further suggests that there is a need for both technological enhancements within online course designs as well as application of emancipatory teaching strategies to fully realize the potential of constructivist-based online learning environments for teachers.

  16. Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Bygarski

    2014-12-01

    Full Text Available Our objective was to determine if the resistance mechanism to moxidectin (MOX is similar of that to ivermectin (IVM and involves P-glycoproteins (PGPs. Several Caenorhabditis elegans strains were used: an IVM and MOX sensitive strain, 13 PGP deletion strains and the IVM-R strain which shows synthetic resistance to IVM (by creation of three point mutations in genes coding for α-subunits of glutamate gated chloride channels [GluCls] and cross-resistance to MOX. These strains were used to compare expression of PGP genes, measure motility and pharyngeal pumping phenotypes and evaluate the ability of compounds that inhibit PGP function to potentiate sensitivity or reverse resistance to MOX. The results suggest that C. elegans may use regulation of PGPs as a response mechanism to MOX. This was indicated by the over-expression of several PGPs in both drug sensitive and IVM-R strains and the significant changes in phenotype in the IVM-R strain in the presence of PGP inhibitors. However, as the inhibitors did not completely disrupt expression of the phenotypic traits in the IVM-R strain, this suggests that there likely are multiple avenues for MOX action that may include receptors other than GluCls. If MOX resistance was mediated solely by GluCls then exposure of the IVM-R strain to PGP inhibitors should not have affected sensitivity to MOX. Targeted gene deletions showed that protection of C. elegans against MOX involves complex mechanisms and depends on the PGP gene family, particularly PGP-6. While the results presented are similar to others using IVM, there were some important differences observed with respect to PGPs which may play a role in the disparities seen in the characteristics of resistance to IVM and MOX. The similarities are of concern as parasites resistant to IVM show some degree but not complete cross-resistance to MOX; this could impact nematodes that are resistant to IVM.

  17. Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight

    Directory of Open Access Journals (Sweden)

    Wielgus Susan M

    2008-01-01

    Full Text Available Abstract Background Late blight is the most serious potato disease world-wide. The most effective and environmentally sound way for controlling late blight is to incorporate natural resistance into potato cultivars. Several late blight resistance genes have been cloned recently. However, there is almost no information available about the resistance pathways mediated by any of those genes. Results We previously cloned a late blight resistance gene, RB, from a diploid wild potato species Solanum bulbocastanum. Transgenic potato lines containing a single RB gene showed a rate-limiting resistance against all known races of Phytophthora infestans, the late blight pathogen. To better understand the RB-mediated resistance we silenced the potato Rar1 and Sgt1 genes that have been implicated in mediating disease resistance responses against various plant pathogens and pests. The Rar1 and Sgt1 genes of a RB-containing potato clone were silenced using a RNA interference (RNAi-based approach. All of the silenced potato plants displayed phenotypically normal growth. The late blight resistance of the Rar1 and Sgt1 silenced lines were evaluated by a traditional greenhouse inoculation method and quantified using a GFP-tagged P. infestans strain. The resistance of the Rar1-silenced plants was not affected. However, silencing of the Sgt1 gene abolished the RB-mediated resistance. Conclusion Our study shows that silencing of the Sgt1 gene in potato does not result in lethality. However, the Sgt1 gene is essential for the RB-mediated late blight resistance. In contrast, the Rar1 gene is not required for RB-mediated resistance. These results provide additional evidence for the universal role of the Sgt1 gene in various R gene-mediated plant defense responses.

  18. Sensitivity of global translation to mTOR inhibition in REN cells depends on the equilibrium between eIF4E and 4E-BP1.

    Directory of Open Access Journals (Sweden)

    Stefano Grosso

    Full Text Available Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1 mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2 the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next.

  19. Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes

    Directory of Open Access Journals (Sweden)

    Marta S. Alves

    2014-08-01

    Full Text Available The aim of this study was to examine antibiotic resistance (AR dissemination in coastal water, considering the contribution of different sources of faecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of faecal contamination: human-derived sewage and seagull faeces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin and amoxicillin were the most frequent. Higher rates of AR were found among seawater and faeces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull faeces (29% and 32% were lower than in isolates from seawater (39%. Seawater AR profiles were similar to those from seagull faeces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes blaTEM, sul1, sul2, tet(A and tet(B, were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (blaCTX-M-1 and blaSHV-12 and seagull faeces (blaCMY-2. Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull faeces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived faecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.

  20. A set of vectors for introduction of antibiotic resistance genes by in vitro Cre-mediated recombination

    Directory of Open Access Journals (Sweden)

    Vassetzky Yegor S

    2008-12-01

    Full Text Available Abstract Background Introduction of new antibiotic resistance genes in the plasmids of interest is a frequent task in molecular cloning practice. Classical approaches involving digestion with restriction endonucleases and ligation are time-consuming. Findings We have created a set of insertion vectors (pINS carrying genes that provide resistance to various antibiotics (puromycin, blasticidin and G418 and containing a loxP site. Each vector (pINS-Puro, pINS-Blast or pINS-Neo contains either a chloramphenicol or a kanamycin resistance gene and is unable to replicate in most E. coli strains as it contains a conditional R6Kγ replication origin. Introduction of the antibiotic resistance genes into the vector of interest is achieved by Cre-mediated recombination between the replication-incompetent pINS and a replication-competent target vector. The recombination mix is then transformed into E. coli and selected by the resistance marker (kanamycin or chloramphenicol present in pINS, which allows to recover the recombinant plasmids with 100% efficiency. Conclusion Here we propose a simple strategy that allows to introduce various antibiotic-resistance genes into any plasmid containing a replication origin, an ampicillin resistance gene and a loxP site.

  1. Relationship of Adiposity and Insulin Resistance Mediated by Inflammation in a Group of Overweight and Obese Chilean Adolescents

    OpenAIRE

    Leiva Laura; Blanco Estela; Díaz Erik; Gahagan Sheila; Reyes Marcela; Lera Lydia; Burrows Raquel

    2011-01-01

    Abstract The mild chronic inflammatory state associated with obesity may be an important link between adiposity and insulin resistance (IR). In a sample of 137 overweight and obese Chilean adolescents, we assessed associations between high-sensitivity C-reactive protein (hs-CRP), IR and adiposity; explored sex differences; and evaluated whether hs-CRP mediated the relationship between adiposity and IR. Positive relationships between hs-CRP, IR and 2 measures of adiposity were found. Hs-CRP wa...

  2. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer

    OpenAIRE

    Ali Zhang; Jonathan C. Zhao; Jung Kim; Ka-wing Fong; Yeqing Angela Yang; Debabrata Chakravarti; Yin-Yuan Mo; Jindan Yu

    2015-01-01

    SUMMARY Understanding the mechanisms of androgen receptor (AR) activation in the milieu of low androgen is critical to effective treatment of castration-resistant prostate cancer (CRPC). Here, we report HOTAIR as an androgen-repressed lncRNA, and, as such, it is markedly upregulated following androgen deprivation therapies and in CRPC. We further demonstrate a distinct mode of lncRNA-mediated gene regulation, wherein HOTAIR binds to the AR protein to block its interaction with the E3 ubiquiti...

  3. SGT1 interacts with the Prf resistance protein and is required for Prf accumulation and Prf-mediated defense signaling.

    Science.gov (United States)

    Kud, Joanna; Zhao, Zhulu; Du, Xinran; Liu, Yule; Zhao, Yun; Xiao, Fangming

    2013-02-15

    The highly conserved eukaryotic co-chaperone SGT1 (suppressor of the G2 allele of skp1) is an important signaling component of plant defense responses and positively regulates disease resistance conferred by many resistance (R) proteins. In this study, we investigated the contribution of SGT1 in the Prf-mediated defense responses in both Nicotiana benthamiana and tomato (Solanum lycopersicum). SGT1 was demonstrated to interact with Prf in plant cells by co-immunoprecipitation. The requirement of SGT1 in the accumulation of Prf or autoactive Prf(D1416V) was determined by the degradation of these proteins in N. benthamiana, in which SGT1 was repressed by virus-induced gene silencing (VIGS). Pseudomonas pathogen assay on the SGT1-silenced tomato plants implicates SGT1 is required for the Prf-mediated full resistance to Pseudomonas syringae pv. tomato (Pst). These results suggest that, in both N. benthamiana and tomato, SGT1 contributes to the Prf-mediated defense responses by stabilizing Prf protein via its co-chaperone activity.

  4. Cytomegalovirus-Infected Cells Resist T Cell Mediated Killing in an HLA-Recognition Independent Manner.

    Science.gov (United States)

    Proff, Julia; Walterskirchen, Christian; Brey, Charlotte; Geyeregger, Rene; Full, Florian; Ensser, Armin; Lehner, Manfred; Holter, Wolfgang

    2016-01-01

    In order to explore the potential of HLA-independent T cell therapy for human cytomegalovirus (HCMV) infections, we developed a chimeric antigen receptor (CAR) directed against the HCMV encoded glycoprotein B (gB), which is expressed at high levels on the surface of infected cells. T cells engineered with this anti-gB CAR recognized HCMV-infected cells and released cytokines and cytotoxic granules. Unexpectedly, and in contrast to analogous approaches for HIV, Hepatitis B or Hepatitis C virus, we found that HCMV-infected cells were resistant to killing by the CAR-modified T cells. In order to elucidate whether this phenomenon was restricted to the use of CARs, we extended our experiments to T cell receptor (TCR)-mediated recognition of infected cells. To this end we infected fibroblasts with HCMV-strains deficient in viral inhibitors of antigenic peptide presentation and targeted these HLA-class I expressing peptide-loaded infected cells with peptide-specific cytotoxic T cells (CTLs). Despite strong degranulation and cytokine production by the T cells, we again found significant inhibition of lysis of HCMV-infected cells. Impairment of cell lysis became detectable 1 day after HCMV infection and gradually increased during the following 3 days. We thus postulate that viral anti-apoptotic factors, known to inhibit suicide of infected host cells, have evolved additional functions to directly abrogate T cell cytotoxicity. In line with this hypothesis, CAR-T cell cytotoxicity was strongly inhibited in non-infected fibroblasts by expression of the HCMV-protein UL37x1, and even more so by additional expression of UL36. Our data extend the current knowledge on Betaherpesviral evasion from T cell immunity and show for the first time that, beyond impaired antigen presentation, infected cells are efficiently protected by direct blockade of cytotoxic effector functions through viral proteins.

  5. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    Directory of Open Access Journals (Sweden)

    Mark Eppinger

    Full Text Available Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  6. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study

    OpenAIRE

    Kathawala, Rishil J; Wei, Liuya; Anreddy, Nagaraju; Chen, Kang; PATEL, ATISH; Alqahtani, Saeed; Zhang, Yun-Kai; Wang, Yi-Jun; Sodani, Kamlesh; Kaddoumi, Amal; Ashby, Charles R.; Chen, Zhe-Sheng

    2014-01-01

    Paclitaxel exhibits clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. Here, we determine the effect of NVP-BHG712, a specific EphB4 receptor inhibitor, on 1) paclitaxel resistance in HEK293 cells transfected with ABCC10, 2) the g...

  7. Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

    Directory of Open Access Journals (Sweden)

    Young Hee Lee

    2014-09-01

    Full Text Available Two cultivars Buram-3-ho (susceptible and CR-Hagwang (moderate resistant of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum, black spot (Alternaria brassicicola and black rot (Xanthomonas campestris pv. campestris, Xcc diseases in our previous study. Defense-related hormones salicylic acid (SA, jasmonic acid (JA and ethylene led to different transcriptional regulation of pathogenesis-related (PR gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  8. Obtained transgenic wheat expressing pac1 mediated by Agrobacterium is resistant against Barley yellow dwarf virus-GPV

    Institute of Scientific and Technical Information of China (English)

    YAN Fei; ZHENG Yinying; ZHANG Wenwei; XIAO Hong; LI Shifang; CHENG Zhuomin

    2006-01-01

    In fission yeast (Schizosaccharomyces pombe), pac1 gene was cloned with 99.3% nucleotide sequence similarity with published pac1 in GenBank. In pET-5α expression system, the expression product of cloned pac1 in E. coli showed activity to degrade the double-strand RNA. Harboring the binary vector pBI121, which contains pac1 gene, Agrobacterium tumefaciens strain LBA4404 was used to transform the wheat immature embryos precultured 7―10 d. After preregeneration, regeneration and selection culture stage, totally 41 G418 resistant plants were obtained, in which 25 lines were proved to integrate with transgene and express transgene normally by PCR, Dot blot, RT-PCR and ELISA detection. Antivirus test carried out on 25 positive lines with high dose of Barley yellow dwarf virus-GPV revealed that 12 lines had resistance to BVDV-GPV in low level, another 12 lines had resistance to BVDV- GPV in middle level, and 1 line showed resistance to BVDV-GPV in high level. However, both low and middle level of resistance plants showed no symptoms when infected by viruses at low dose, which suggested the dose-dependent effect of the resistance mediated by pac1 to BYDV-GPV.

  9. Development and application of loop-mediated isothermal amplification for detecting the highly benzimidazole-resistant isolates in Sclerotinia sclerotiorum.

    Science.gov (United States)

    Duan, Ya Bing; Yang, Ying; Wang, Jian Xin; Liu, Cong Chao; He, Ling Ling; Zhou, Ming Guo

    2015-01-01

    Resistance of benzimidazole fungicides is related to the point mutation of the β-tubulin gene in Sclerotinia sclerotiorum. The point mutation at codon 198 (GAG → GCG, E198A) occurs in more than 90% of field resistant populations in China. Traditional detection methods of benzimidazole-resistant mutants of S. sclerotiorum are time-consuming, tedious and inefficient. To establish a suitable and rapid detection of benzimidazole-resistant mutants of S. sclerotiorum, an efficient and simple method with high specificity was developed based on loop-mediated isothermal amplification (LAMP). Eight sets of LAMP primers were designed and four sets were optimized to specially distinguish benzimidazole-resistant mutants of S. sclerotiorum. With the optimal LAMP primers, the concentration of LAMP components was optimized and the reaction conditions were set as 60-64 °C for 60 min. This method had a good specificity, sensitivity, stability and repeatability. In the 1491 sclerotia, 614 (41.18%) were positive by LAMP, and 629 (42.19%) positive by MIC. Therefore, the LAMP assay is more feasible to detect benzimidazole-resistant mutants of S. sclerotiorum than traditional detection methods. PMID:26606972

  10. Effects of Halides on Plasmid-Mediated Silver Resistance in Escherichia coli

    OpenAIRE

    Gupta, Amit; Maynes, Maria; Silver, Simon

    1998-01-01

    Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag+ resistance were measured with AgNO3 and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag+.

  11. SC-2001 Overcomes STAT3-mediated Sorafenib Resistance through RFX-1/SHP-1 Activation in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Jung-Chen Su

    2014-07-01

    Full Text Available Hepatocellular carcinoma is the fifth most common solid cancer worldwide. Sorafenib, a small multikinase inhibitor, is the only approved therapy for advanced HCC. The clinical benefit of sorafenib is offset by the acquisition of sorafenib resistance. Understanding of the molecular mechanism of STAT3 overexpression in sorafenib resistance is critical if the clinical benefits of this drug are to be improved. In this study, we explored our hypothesis that loss of RFX-1/SHP-1 and further increase of p-STAT3 as a result of sorafenib treatment induces sorafenib resistance as a cytoprotective response effect, thereby, limiting sorafenib sensitivity and efficiency. We found that knockdown of RFX-1 protected HCC cells against sorafenib-induced cell apoptosis and SHP-1 activity was required for the process. SC-2001, a molecule with similar structure to obatoclax, synergistically suppressed tumor growth when used in combination with sorafenib in vitro and overcame sorafenib resistance through up-regulating RFX-1 and SHP-1 resulting in tumor suppression and mediation of dephosphorylation of STAT3. In addition, sustained sorafenib treatment in HCC led to increased p-STAT3 which was a key mediator of sorafenib sensitivity. The combination of SC-2001 and sorafenib strongly inhibited tumor growth in both wild-type and sorafenib-resistant HCC cell bearing xenograft models. These results demonstrate that inactivation of RFX/SHP-1 induced by sustained sorafenib treatment confers sorafenib resistance to HCC through p-STAT3 up-regulation. These effects can be overcome by SC-2001 through RFX-1/SHP-1 dependent p-STAT3 suppression. In conclusion, the use of SC-2001 in combination with sorafenib may constitute a new strategy for HCC therapy.

  12. Endotoxin mediated-iNOS induction causes insulin resistance via ONOO⁻ induced tyrosine nitration of IRS-1 in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Geneviève Pilon

    Full Text Available BACKGROUND: It is believed that the endotoxin lipopolysaccharide (LPS is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia. Here we examined the role of inducible nitric oxide synthase (iNOS in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia. METHODOLOGY/PRINCIPAL FINDINGS: Pharmacological (aminoguanidine and genetic strategies (iNOS⁻/⁻ mice were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO⁻ or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO⁻ fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO⁻ treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.

  13. Prevalence of Plasmid-Mediated Quinolone Resistance Genes among Ciprofloxacin-Nonsusceptible Escherichia coli and Klebsiella pneumoniae Isolated from Blood Cultures in Korea

    Directory of Open Access Journals (Sweden)

    Hee Young Yang

    2014-01-01

    Full Text Available OBJECTIVES:To analyze the prevalence of plasmid-mediated quinolone resistance (PMQR determinants in ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from patients at a tertiary care hospital in Korea.

  14. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum.

    Science.gov (United States)

    Wang, Chenggang; Yao, Jin; Du, Xuezhu; Zhang, Yanping; Sun, Yijun; Rollins, Jeffrey A; Mou, Zhonglin

    2015-09-01

    Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis.

  15. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature.

    Science.gov (United States)

    Kis, András; Tholt, Gergely; Ivanics, Milán; Várallyay, Éva; Jenes, Barnabás; Havelda, Zoltán

    2016-04-01

    Infection of Wheat dwarf virus (WDV) strains on barley results in dwarf disease, imposing severe economic losses on crop production. As the natural resistance resources against this virus are limited, it is imperative to elaborate a biotechnological approach that will provide effective and safe immunity to a wide range of WDV strains. Because vector insect-mediated WDV infection occurs during cool periods in nature, it is important to identify a technology which is effective at lower temperature. In this study, we designed artificial microRNAs (amiRNAs) using a barley miRNA precursor backbone, which target different conservative sequence elements of the WDV strains. Potential amiRNA sequences were selected to minimize the off-target effects and were tested in a transient sensor system in order to select the most effective constructs at low temperature. On the basis of the data obtained, a polycistronic amiRNA precursor construct (VirusBuster171) was built expressing three amiRNAs simultaneously. The construct was transformed into barley under the control of a constitutive promoter. The transgenic lines were kept at 12-15 °C to mimic autumn and spring conditions in which major WDV infection and accumulation take place. We were able to establish a stable barley transgenic line displaying resistance to insect-mediated WDV infection. Our study demonstrates that amiRNA technology can be an efficient tool for the introduction of highly efficient resistance in barley against a DNA virus belonging to the Geminiviridae family, and this resistance is effective at low temperature where the natural insect vector mediates the infection process. PMID:26136043

  16. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila.

    Science.gov (United States)

    Afschar, Sonita; Toivonen, Janne M; Hoffmann, Julia Marianne; Tain, Luke Stephen; Wieser, Daniela; Finlayson, Andrew John; Driege, Yasmine; Alic, Nazif; Emran, Sahar; Stinn, Julia; Froehlich, Jenny; Piper, Matthew D; Partridge, Linda

    2016-02-01

    Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice. PMID:26787908

  17. Nisin resistance of Listeria monocytogenes is increased by exposure to salt stress and is mediated via LiaR.

    Science.gov (United States)

    Bergholz, Teresa M; Tang, Silin; Wiedmann, Martin; Boor, Kathryn J

    2013-09-01

    Growth of Listeria monocytogenes on refrigerated, ready-to-eat food is a significant food safety concern. Natural antimicrobials, such as nisin, can be used to control this pathogen on food, but little is known about how other food-related stresses may impact how the pathogen responds to these compounds. Prior work demonstrated that exposure of L. monocytogenes to salt stress at 7°C led to increased expression of genes involved in nisin resistance, including the response regulator liaR. We hypothesized that exposure to salt stress would increase subsequent resistance to nisin and that LiaR would contribute to increased nisin resistance. Isogenic deletion mutations in liaR were constructed in 7 strains of L. monocytogenes, and strains were exposed to 6% NaCl in brain heart infusion broth and then tested for resistance to nisin (2 mg/ml Nisaplin) at 7°C. For the wild-type strains, exposure to salt significantly increased subsequent nisin resistance (P salt-induced nisin resistance of wild-type strains, ΔliaR strains were significantly more sensitive to nisin (P monocytogenes against subsequent inactivation by nisin. Transcript levels of LiaR-regulated genes were induced by salt stress, and lmo1746 and telA were found to contribute to LiaR-mediated salt-induced nisin resistance. These data suggest that environmental stresses similar to those on foods can influence the resistance of L. monocytogenes to antimicrobials such as nisin, and potential cross-protective effects should be considered when selecting and applying control measures for this pathogen on ready-to-eat foods. PMID:23851083

  18. Nisin resistance of Listeria monocytogenes is increased by exposure to salt stress and is mediated via LiaR.

    Science.gov (United States)

    Bergholz, Teresa M; Tang, Silin; Wiedmann, Martin; Boor, Kathryn J

    2013-09-01

    Growth of Listeria monocytogenes on refrigerated, ready-to-eat food is a significant food safety concern. Natural antimicrobials, such as nisin, can be used to control this pathogen on food, but little is known about how other food-related stresses may impact how the pathogen responds to these compounds. Prior work demonstrated that exposure of L. monocytogenes to salt stress at 7°C led to increased expression of genes involved in nisin resistance, including the response regulator liaR. We hypothesized that exposure to salt stress would increase subsequent resistance to nisin and that LiaR would contribute to increased nisin resistance. Isogenic deletion mutations in liaR were constructed in 7 strains of L. monocytogenes, and strains were exposed to 6% NaCl in brain heart infusion broth and then tested for resistance to nisin (2 mg/ml Nisaplin) at 7°C. For the wild-type strains, exposure to salt significantly increased subsequent nisin resistance (P nisin resistance of wild-type strains, ΔliaR strains were significantly more sensitive to nisin (P nisin. Transcript levels of LiaR-regulated genes were induced by salt stress, and lmo1746 and telA were found to contribute to LiaR-mediated salt-induced nisin resistance. These data suggest that environmental stresses similar to those on foods can influence the resistance of L. monocytogenes to antimicrobials such as nisin, and potential cross-protective effects should be considered when selecting and applying control measures for this pathogen on ready-to-eat foods.

  19. Plasmid-mediated quinolone resistance determinants in quinolone-resistant Escherichia coli isolated from patients with bacteremia in a university hospital in Taiwan, 2001-2015.

    Science.gov (United States)

    Kao, Cheng-Yen; Wu, Hsiu-Mei; Lin, Wei-Hung; Tseng, Chin-Chung; Yan, Jing-Jou; Wang, Ming-Cheng; Teng, Ching-Hao; Wu, Jiunn-Jong

    2016-01-01

    The aim of this study was to characterize fluoroquinolone (FQ)-resistant Escherichia coli isolates from bacteremia in Taiwan in 2001-2015. During the study period, 248 (21.2%) of 1171 isolates were identified as levofloxacin-resistant. The results of phylogenetic group analysis showed that 38.7% of the FQ-resistant isolates belonged to phylogenetic group B2, 23.4% to group B1, 22.6% to groupA, 14.9% to group D, and 0.4% belonged to group F. FQ-resistant isolates were highly susceptible to cefepime (91.5%), imipenem (96.0%), meropenem (98.8%), amikacin (98.0%), and fosfomycin (99.6%), as determined by the agar dilution method. β-lactamases, including blaTEM (66.1%), blaCMY-2 (16.5%), blaCTX-M (5.2%), blaDHA-1 (1.6%), and blaSHV-12 (1.6%), were found in FQ-resistant isolates. The results of PCR and direct sequencing showed that 37 isolates (14.9%) harbored plasmid-mediated quinolone resistance (PMQR) genes. qnrB2, qnrB4, qnrS1, coexistence of qnrB4 and qnrS1, oqxAB, and aac(6')-Ib-cr were found in 1, 4, 4, 1, 15, and 14 isolates, respectively. PMQR genes were successfully transfered for 11 (29.7%) of the 37 PMQR-harboring isolates by conjugation to E. coli C600. These findings indicate that qnr genes remained rare in E. coli but demonstrate the potential spread of oqxAB and aac(6')-Ib-c in Taiwan. PMID:27573927

  20. Molecular mechanism of the qnrA gene-mediated quionlone resistance in Gram-negative bacteria

    Institute of Scientific and Technical Information of China (English)

    SONG SHENG XIAO; JIAN LU; WEI YUAN WU; CHUANG HONG WU; LI XIA WEN

    2007-01-01

    To explore the prevalence of the plasmid-mediated quinolone resistance gene qnrA in Gramnegative bacteria and to investigate its molecular genetic background and resistance profile in isolates harboring this gene, a total of 629 nalidixic acid-resistant isolates of non-repetitive Gram-negative bacteria were collected from clinical specimens between April 2004 and April 2006 and these isolates were screened for qnrA gene by PCR using specific primers combined with DNA sequencing. The extended spectnan β-lactamase (ESBL) or AmpC-producing isolates were distinguished by the phenotypic confirmatory test combined with DNA sequencing, and the antibiotics susceptibility test for qnrA-positive isolates was carried out by Kirby-Bauer and E-test method. To detect the location of the qnrA gene, plasmid conjugation and Southern hybridization were performed and the integron structure containing the qnrA gene was cloned by PCR strategy and sequenced by primer walking. It was demonstrated that the incidence of the qnrA-positive strains in nalidixic acid-resistant bacteria was 1.9% (12/629), in which the detection rates for Klebiesiella pneumoniae. Enterobacter cloacae, Enterobacter aerogenes,Citrobacter freundii and Salmonella choeraesuis were 2.2% (3/138), 17. 1% (6/35), 9. 1%(1/11), 12.5% (1/8), and 14.3% (1/7), respectively. The qnrA gene was found to be embedded in the complex su/1-type integron located on plasmids with varied size (80-180 kb). Among them, 4qnrA-positive isolates carried integron In37 and 8 isolates carried a novel integron, temporarily designated as InX. All the qnrA-positive isolates were ESBL-producing and transferable for the multi-drug resistance. It is concluded that the plasmid-mediated drug-resistance mechanism exists in the quinolone resistant strains of isolates from hospitals in Guangdong area, but the incidence was rather low. Nevertheless, it is still possible that the horizontal transfer of the resistant qnrA gene might lead to the spreading of

  1. Fouling mediates grazing: intertwining of resistances to multiple enemies in the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Jormalainen, Veijo; Wikström, Sofia A; Honkanen, Tuija

    2008-03-01

    Macroalgae have to cope with multiple natural enemies, such as herbivores and epibionts. As these are harmful for the host, the host is expected to show resistance to them. Evolution of resistance is complicated by the interactions among the enemies and the genetic correlations among resistances to different enemies. Here, we explored genetic variation in resistance to epibiosis and herbivory in the brown alga Fucus vesiculosus, both under conditions where the enemies coexisted and where they were isolated. F. vesiculosus showed substantial genetic variation in the resistance to both epibiosis and grazing. Grazing pressure on the alga was generally lower in the presence than in the absence of epibiota. Furthermore, epibiosis modified the susceptibility of different algal genotypes to grazing. Resistances to epibiosis and grazing were independent when measured separately for both enemies but positively correlated when both these enemies coexisted. Thus, when the enemies coexisted, the fate of genotypes with respect to these enemies was intertwined. Genotypic correlation between phlorotannins, brown-algal phenolic secondary metabolites, and the amount of epibiota was negative, indicating that these compounds contribute to resistance to epibiosis. In addition, phlorotannins correlated also with the resistance to grazing, but this correlation disappeared when grazing occurred in the absence of epibiota. This indicates that the patterns of selection for the type of the resistance as well as for the resistance traits vary with the occurrence patterns of the enemies.

  2. Plasmid Mediated Antibiotic and Heavy Metal Resistance in Bacillus Strains Isolated From Soils in Rize, Turkey

    Directory of Open Access Journals (Sweden)

    Elif SEVİM

    2015-09-01

    Full Text Available Fifteen Bacillus strains which were isolated from soil samples were examined for resistance to 17 different antibiotics (ampicillin, methicillin, erythromycin, norfloxacin, cephalotine, gentamycin, ciprofloxacin, streptomycin, tobramycin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, vancomycin, oxacilin, neomycin, kanamycin and, novabiocin and to 10 different heavy metals (copper, lead, cobalt, chrome, iron, mercury, zinc, nickel, manganese and, cadmium and for the presence of plasmid DNA. A total of eleven strains (67% were resistant to at least one antibiotic. The most common resistance was observed against methicillin and oxacillin. The most resistance strains were found as Bacillus sp. B3 and Bacillus sp. B11. High heavy metal resistance against copper, chromium, zinc, iron and nickel was detected, but mercury and cobalt resistance was not detected, except for 3 strains (B3, B11, and B12 which showed mercury resistance. It has been determined that seven Bacillus strains have plasmids. The isolated plasmids were transformed into the Bacillus subtilis W168 and it was shown that heavy metal and antibiotic resistance determinants were carried on these plasmids. These results showed that there was a correlation between plasmid content and resistance for both antibiotic and heavy metal resistance

  3. HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer.

    Science.gov (United States)

    Stronach, Euan A; Alfraidi, Albandri; Rama, Nona; Datler, Christoph; Studd, James B; Agarwal, Roshan; Guney, Tankut G; Gourley, Charlie; Hennessy, Bryan T; Mills, Gordon B; Mai, Antonello; Brown, Robert; Dina, Roberto; Gabra, Hani

    2011-07-01

    Ovarian cancer frequently acquires resistance to platinum chemotherapy, representing a major challenge for improving patient survival. Recent work suggests that resistant clones exist within a larger drug-sensitive cell population prior to chemotherapy, implying that resistance is selected for rather than generated by treatment. We sought to compare clinically derived, intrapatient paired models of initial platinum response and subsequent resistant relapse to define molecular determinants of evolved resistance. Transcriptional analysis of a matched cell line series from three patients with high-grade serous ovarian cancer before and after development of clinical platinum resistance (PEO1/PEO4/PEO6, PEA1/PEA2, PEO14/PEO23) identified 91 up- and 126 downregulated genes common to acquired resistance. Significantly enhanced apoptotic response to platinum treatment in resistant cells was observed following knockdown of histone deacetylase (HDAC) 4, FOLR2, PIK3R1, or STAT1 (P < 0.05). Interestingly, HDAC4 and STAT1 were found to physically interact. Acetyl-STAT1 was detected in platinum-sensitive cells but not in HDAC4 overexpressing platinum-resistant cells from the same patient. In resistant cells, STAT1 phosphorylation/nuclear translocation was seen following platinum exposure, whereas silencing of HDAC4 increased acetyl-STAT1 levels, prevented platinum-induced STAT1 activation, and restored cisplatin sensitivity. Conversely, matched sensitive cells were refractory to STAT1 phosphorylation on platinum treatment. Analysis of 16 paired tumor biopsies taken before and after development of clinical platinum resistance showed significantly increased HDAC4 expression in resistant tumors [n = 7 of 16 (44%); P = 0.04]. Therefore, clinical selection of HDAC4-overexpressing tumor cells upon exposure to chemotherapy promotes STAT1 deacetylation and cancer cell survival. Together, our findings identify HDAC4 as a novel, therapeutically tractable target to counter platinum

  4. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus.

    Science.gov (United States)

    Liu, Yule; Schiff, Michael; Marathe, Rajendra; Dinesh-Kumar, S P

    2002-05-01

    The tobacco N gene confers resistance to tobacco mosaic virus (TMV) and encodes a Toll-interleukin-1 receptor/nucleotide binding site/leucine-rich repeat (TIR-NBS-LRR) class protein. We have developed and used a tobacco rattle virus (TRV) based virus induced gene silencing (VIGS) system to investigate the role of tobacco candidate genes in the N-mediated signalling pathway. To accomplish this we generated transgenic Nicotiana benthamiana containing the tobacco N gene. The transgenic lines exhibit hypersensitive response (HR) to TMV and restrict virus spread to the inoculated site. This demonstrates that the tobacco N gene can confer resistance to TMV in heterologous N. benthamiana. We have used this line to study the role of tobacco Rar1-, EDS1-, and NPR1/NIM1- like genes in N-mediated resistance to TMV using a TRV based VIGS approach. Our VIGS analysis suggests that these genes are required for N function. EDS1-like gene requirement for the N function suggests that EDS1 could be a common component of bacterial, fungal and viral resistance signalling mediated by the TIR-NBS-LRR class of resistance proteins. Requirement of Rar1- like gene for N-mediated resistance to TMV and some powdery mildew resistance genes in barley provide the first example of converging points in the disease resistance signalling pathways mediated by TIR-NBS-LRR and CC-NBS-LRR proteins. The TRV based VIGS approach as described here to study N-mediated resistance signalling will be useful for the analysis of not only disease resistance signalling pathways but also of other signalling pathways in genetically intractable plant systems.

  5. FG020326 Sensitized Multidrug Resistant Cancer Cells to Docetaxel-Mediated Apoptosis via Enhancement of Caspases Activation

    Directory of Open Access Journals (Sweden)

    Li-Wu Fu

    2012-05-01

    Full Text Available Apoptotic resistance is the main obstacle for treating cancer patients with chemotherapeutic drugs. Multidrug resistance (MDR is often characterized by the expression of P-glycoprotein (P-gp, a 170-KD ATP-dependent drug efflux protein. Functional P-gp can confer resistance to activate caspase-8 and -3 dependent apoptosis induced by a range of different stimuli, including tumor necrosis and chemotherapeutic drugs such as docetaxel and vincristine. We demonstrated here that comparison of sensitive KB cells, P-gp positive (P-gp+ve KBv200 cells were extremely resistant to apoptosis induced by docetaxel. FG020326, a pharmacological inhibitor of P-gp function, could enhance concentration-dependently the effect of docetaxel on cell apoptosis and sensitize caspase-8, -9 and -3 activation in P-gp overexpressing KBv200 cells, but not in KB cells. Therefore, the enhancement of caspase-8, -9 and -3 activation induced by docetaxel may be one of the key mechanisms of the reversal of P-gp mediated docetaxel resistance by FG020326.

  6. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway.

    Directory of Open Access Journals (Sweden)

    Wei Yang

    Full Text Available Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA-dependent pathway from an early stage upstream of NDR1 and EDS1.

  7. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway.

    Science.gov (United States)

    Yang, Wei; Xu, Xiaonan; Li, Yang; Wang, Yingzi; Li, Ming; Wang, Yong; Ding, Xinhua; Chu, Zhaohui

    2016-01-01

    Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA)-dependent pathway from an early stage upstream of NDR1 and EDS1.

  8. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway.

    Science.gov (United States)

    Yang, Wei; Xu, Xiaonan; Li, Yang; Wang, Yingzi; Li, Ming; Wang, Yong; Ding, Xinhua; Chu, Zhaohui

    2016-01-01

    Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA)-dependent pathway from an early stage upstream of NDR1 and EDS1. PMID:26751786

  9. RNA interference-mediated hTERT inhibition enhances TRAIL-induced apoptosis in resistant hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Ru-Gang; Zhao, Jing-Jing; Yang, Liu-Qin; Yang, Shi-Ming; Wang, Rong-Quan; Chen, Wen-Sheng; Peng, Gui-Yong; Fang, Dian-Chun

    2010-04-01

    TRAIL has been reported to induce apoptosis in a variety of tumor cell types including hepato-cellular carcinoma (HCC) cell lines. However, considerable numbers of HCC cells, especially some highly malignant tumors, show resistance to TRAIL-induced apoptosis. The molecular mechanisms that regulate sensitivity versus resistance of tumor cells to TRAIL-induced apoptosis remain poorly defined. It has been shown that human telomerase catalytic subunit (hTERT) is overexpressed in human HCCs. In this study, we investigated the effects and the mechanisms of hTERT RNAi on the TRAIL-induced apoptosis of HCC cells that exhibit resistance to TRAIL. Our results indicate that hTERT RNAi sensitizes TRAIL-resistant HCC cells to TRAIL-induced apoptosis. hTERT RNAi-mediated sensitization to TRAIL-induced apoptosis is accompanied up-regulation of procaspases-8 and -9, inhibition of telomerase activity and loss of telomere length. Our results suggest that hTERT RNAi overcame the resistance of the HCC cells against TRAIL, at least in part, via the mitochondrial type II apoptosis pathway and telomerase-dependent pathway. PMID:20204286

  10. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration.

    Directory of Open Access Journals (Sweden)

    M Indriati Hood

    Full Text Available Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition metals at the pathogen-host interface, interrogating the role for these metals in A. baumannii physiology and pathogenesis could elucidate novel therapeutic strategies. Toward this end, the role for calprotectin- (CP-mediated chelation of manganese (Mn and zinc (Zn in defense against A. baumannii was investigated. These experiments revealed that CP inhibits A. baumannii growth in vitro through chelation of Mn and Zn. Consistent with these in vitro data, Imaging Mass Spectrometry revealed that CP accompanies neutrophil recruitment to the lung and accumulates at foci of infection in a murine model of A. baumannii pneumonia. CP contributes to host survival and control of bacterial replication in the lung and limits dissemination to secondary sites. Using CP as a probe identified an A. baumannii Zn acquisition system that contributes to Zn uptake, enabling this organism to resist CP-mediated metal chelation, which enhances pathogenesis. Moreover, evidence is provided that Zn uptake across the outer membrane is an energy-dependent process in A. baumannii. Finally, it is shown that Zn limitation reverses carbapenem resistance in multidrug resistant A. baumannii underscoring the clinical relevance of these findings. Taken together, these data establish Zn acquisition systems as viable therapeutic targets to combat multidrug resistant A. baumannii infections.

  11. Balance between MKK6 and MKK3 mediates p38 MAPK associated resistance to cisplatin in NSCLC.

    Directory of Open Access Journals (Sweden)

    Eva M Galan-Moya

    Full Text Available The p38 MAPK signaling pathway has been proposed as a critical mediator of the therapeutic effect of several antitumor agents, including cisplatin. Here, we found that sensitivity to cisplatin, in a system of 7 non-small cell lung carcinoma derived cell lines, correlated with high levels of MKK6 and marked activation of p38 MAPK. However, knockdown of MKK6 modified neither the response to cisplatin nor the activation of p38 MAPK. Deeper studies showed that resistant cell lines also displayed higher basal levels of MKK3. Interestingly, MKK3 knockdown significantly decreased p38 phosphorylation upon cisplatin exposure and consequently reduced the response to the drug. Indeed, cisplatin poorly activated MKK3 in resistant cells, while in sensitive cell lines MKK3 showed the opposite pattern in response to the drug. Our data also demonstrate that the low levels of MKK6 expressed in resistant cell lines are the consequence of high basal activity of p38 MAPK mediated by the elevated levels of MKK3. This finding supports the existence of a regulatory mechanism between both MAPK kinases through their MAPK. Furthermore, our results were also mirrored in head and neck carcinoma derived cell lines, suggesting our observations boast a potential universal characteristic in cancer resistance of cisplatin. Altogether, our work provides evidence that MKK3 is the major determinant of p38 MAPK activation in response to cisplatin and, hence, the resistance associated with this MAPK. Therefore, these data suggest that the balance between both MKK3 and MKK6 could be a novel mechanism which explains the cellular response to cisplatin.

  12. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid.

    Science.gov (United States)

    Louis, Joe; Basu, Saumik; Varsani, Suresh; Castano-Duque, Lina; Jiang, Victoria; Williams, W Paul; Felton, Gary W; Luthe, Dawn S

    2015-09-01

    Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores. PMID:26253737

  13. Identification of a Novel Membrane Transporter Mediating Resistance to Organic Arsenic in Campylobacter jejuni

    OpenAIRE

    Shen, Zhangqi; Luangtongkum, Taradon; Qiang, Zhiyi; Jeon, Byeonghwa; Wang, Liping; Zhang, Qijing

    2014-01-01

    Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we re...

  14. The cryptic tetracycline resistance determinant on Tn4400 mediates tetracycline degradation as well as tetracycline efflux.

    OpenAIRE

    Park, B. H.; Levy, S. B.

    1988-01-01

    Escherichia coli containing the cryptic tetracycline resistance determinant (class F) from the Bacteroides fragilis transposon Tn4400 on plasmid pGAT400 expressed a detoxification of tetracycline as well as an active efflux of tetracycline. This finding concurs with the report of detoxification for a related tetracycline resistance determinant from B. fragilis on Tn4351 (B. S. Speer and A. Salyers, J. Bacteriol. 170:1423-1429, 1987), which specifies a 10-fold-higher resistance than Tn4400. In...

  15. 16S rRNA Mutation-Mediated Tetracycline Resistance in Helicobacter pylori

    OpenAIRE

    Gerrits, Monique; de Zoete, M.R.; Arents, Niek; Kuipers, Ernst; Kusters, Johannes

    2002-01-01

    textabstractMost Helicobacter pylori strains are susceptible to tetracycline, an antibiotic commonly used for the eradication of H. pylori. However, an increase in incidence of tetracycline resistance in H. pylori has recently been reported. Here the mechanism of tetracycline resistance of the first Dutch tetracycline-resistant (Tet(r)) H. pylori isolate (strain 181) is investigated. Twelve genes were selected from the genome sequences of H. pylori strains 26695 and J99 as potential candidate...

  16. Energy-dependent efflux mediated by class L (tetL) tetracycline resistance determinant from streptococci.

    OpenAIRE

    McMurry, L M; Park, B. H.; Burdett, V; Levy, S. B.

    1987-01-01

    The class L (TetL) tetracycline resistance determinant from streptococci specified resistance and an energy-dependent decreased accumulation of tetracycline in both Streptococcus faecalis and Escherichia coli. Using E. coli, we showed that the reduced uptake resulted from active efflux. The streptococcal class M determinant, known to render the protein synthesis machinery of S. faecalis resistant to tetracycline inhibition, did not alter tetracycline transport in either host.

  17. Resistance of renal cell carcinoma to sorafenib is mediated by potentially reversible gene expression.

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    Full Text Available PURPOSE: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. EXPERIMENTAL DESIGN: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naïve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. RESULTS: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. CONCLUSIONS: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment.

  18. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1.

    OpenAIRE

    van Veen, Hendrik W.; Venema, Koen; Bolhuis, Henk; Oussenko, Irina; Kok, Jan; Poolman, Bert; Driessen, Arnold J. M.; Konings, Wil N.

    1996-01-01

    Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa polypeptide that has a putative topology of six alpha-helical transmembrane segments in the N-terminal hydrophobic domain, followed by a hydrophi...

  19. Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ananthan S

    2005-01-01

    Full Text Available PURPOSE: Porins are outer membrane protein (OMP that form water filled channels that permit the diffusion of small hydrophilic solutes like -lactam antibiotics across the outer membrane. Two major porins that facilitate diffusion of antimicrobials have been described in Klebsiella spp. and Escherichia coli. The present study was carried out to examine the role of porins among Extended Spectrum -Lactamase (ESBL and AmpC -Lactamase positive strains of Klebsiella spp. and E.coli. METHODS: Preparation of OMP from phenotypically characterized clinical isolates K.pneumoniae and E.coli and the separation of the proteins by sodium dodecyl sulfate - polyacrylamide gel electrophoresis were performed as per a previously described procedure. RESULTS: OMP analysis revealed that cefoxitin and ceftazidime resistance was mediated by loss of a porin Omp K35 in the isolates of K.pneumoniae and E.coli. CONCLUSIONS: Loss of porin mediated resistance mechanism against cefoxitin was observed among the multidrug resistant K.pneumoniae and E.coli.

  20. Neutralization resistance of virological synapse-mediated HIV-1 Infection is regulated by the gp41 cytoplasmic tail.

    Science.gov (United States)

    Durham, Natasha D; Yewdall, Alice W; Chen, Ping; Lee, Rebecca; Zony, Chati; Robinson, James E; Chen, Benjamin K

    2012-07-01

    Human immunodeficiency virus type 1 (HIV-1) infection can spread efficiently from infected to uninfected T cells through adhesive contacts called virological synapses (VSs). In this process, cell-surface envelope glycoprotein (Env) initiates adhesion and viral transfer into an uninfected recipient cell. Previous studies have found some HIV-1-neutralizing patient sera to be less effective at blocking VS-mediated infection than infection with cell-free virus. Here we employ sensitive flow cytometry-based infection assays to measure the inhibitory potency of HIV-1-neutralizing monoclonal antibodies (MAb) and HIV-1-neutralizing patient sera against cell-free and VS-mediated infection. To various degrees, anti-Env MAbs exhibited significantly higher 50% inhibitory concentration (IC(50)s) against VS-mediated infection than cell-free infection. Notably, the MAb 17b, which binds a CD4-induced (CD4i) epitope on gp120, displayed a 72-fold reduced efficacy against VS-mediated inocula compared to cell-free inocula. A mutant with truncation mutation in the gp41 cytoplasmic tail (CT) which is unable to modulate Env fusogenicity in response to virus particle maturation but which can still engage in cell-to-cell infection was tested for the ability to resist neutralizing antibodies. The ΔCT mutation increased cell surface staining by neutralizing antibodies, significantly enhanced neutralization of VS-mediated infection, and had reduced or no effect on cell-free infection, depending upon the antibody. Our results suggest that the gp41 CT regulates the exposure of key neutralizing epitopes during cell-to-cell infection and plays an important role in immune evasion. Vaccine strategies should consider immunogens that reflect Env conformations exposed on the infected cell surface to enhance protection against VS-mediated HIV-1 spread. PMID:22553332

  1. Genetic transfer of non-P-glycoprotein-mediated multidrug resistance (MDR) in somatic cell fusion : Dissection of a compound MDR phenotype

    NARCIS (Netherlands)

    EIJDEMS, EWHM; BORST, P; JONGSMA, APM; de Jong, Steven; DEVRIES, EGE; VANGROENIGEN, M; VERSANTVOORT, CHM; NIEUWINT, AWM; BAAS, F

    1992-01-01

    A non-P-glycoprotein-mediated mechanism of multidrug resistance (non-Pgp MDR) bas been identified in doxorubicin-selected sublines of the human non-small cell lung carcinoma cell lines SW-1573. These sublines are cross-resistant to daunorubicin, VP16-213, Vinca alkaloids, colchicine, gramicidin D, a

  2. Comparative transcript profiling of Lr1- and Lr34-mediated leaf rust resistance in wheat

    Science.gov (United States)

    Leaf rust caused by the fungus Puccinia triticina is a widespread disease of wheat. Host resistance strategies to control leaf rust have relied upon race-specific and non-race specific leaf rust resistance (Lr) genes. Although race-specific Lr genes are efficient in halting pathogen growth, high lev...

  3. Tetracycline resistance element of pBR322 mediates potassium transport.

    OpenAIRE

    Dosch, D C; Salvacion, F F; Epstein, W

    1984-01-01

    The tetracycline resistance element of plasmid pBR322 partially complements the potassium transport defect of Escherichia coli K-12 mutants having markedly impaired K+ transport. The plasmid increases K+ transport. The Tn10 element does not result in increased transport, demonstrating that the effect is not general for elements that increase resistance to tetracycline.

  4. Symbiont-mediated adaptation by planthoppers and leafhoppers to resistant rice varieties

    NARCIS (Netherlands)

    Ferrater, J.B.; Jong, de P.W.; Dicke, M.; Chen, Y.H.; Horgan, F.G.

    2013-01-01

    For over 50 years, host plant resistance has been the principal focus of public research to reduce planthopper and leafhopper damage to rice in Asia. Several resistance genes have been identified from native varieties and wild rice species, and some of these have been incorporated into high-yielding

  5. Counteracting oxidative phosphorylation-mediated resistance of melanomas to MAPK pathway inhibition.

    Science.gov (United States)

    McQuade, Jennifer L; Vashisht Gopal, Yn

    2015-01-01

    Mitochondrial oxidative phosphorylation (OxPhos) induces resistance to MAPK pathway inhibitors in melanoma. However, therapeutic targeting of mitochondria is challenging. In a recent study, we showed that inhibition of mTOR kinase activity resensitized resistant melanomas by indirectly inhibiting OxPhos via a novel mechanism. Here, we discuss the implications of these findings. PMID:27308473

  6. Comparative analysis of conjugative plasmids mediating gentamicin resistance in Staphylococcus aureus.

    OpenAIRE

    Goering, R. V.; Ruff, E A

    1983-01-01

    Five gentamicin-resistant clinical isolates of Staphylococcus aureus were found to contain self-transmissible plasmids of 32 to 37 megadaltons in size. Restriction endonuclease digests of the plasmids were markedly similar to those of reference plasmids of unrelated geographical origin, thus suggesting the significant contribution of common conjugal plasmids to the emergence of gentamicin resistance in S. aureus populations.

  7. Tumor-associated fibroblasts as "Trojan Horse" mediators of resistance to anti-VEGF therapy.

    Science.gov (United States)

    Francia, Giulio; Emmenegger, Urban; Kerbel, Robert S

    2009-01-01

    While targeting VEGF has shown success against a number of human cancers, drug resistance has resulted in compromised clinical benefits. In this issue of Cancer Cell, Crawford et al. (2009) report that tumors resistant to anti-VEGF therapy stimulate tumor-associated fibroblasts to express proangiogenic PDGF-C, implicating it as a potential therapeutic target.

  8. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    Science.gov (United States)

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy. PMID:26514092

  9. Transgenic assessment of CFP-mediated cercosporin export and resistance in a cercosporin-sensitive fungus.

    Science.gov (United States)

    Upchurch, Robert G; Rose, Mark S; Eweida, Mohamed; Callahan, Terrence M

    2002-04-01

    Cercosporin is a toxic polyketide produced by many phytopathogenic members of the fungal genus Cercospora. Cercospora species, themselves, exhibit the highest level of self-resistance to this almost universally toxic photosensitizer. Although the mechanism of cercosporin self-resistance is multi-faceted, partial resistance does appear to be provided by the encoded product of CFP ( cercosporin facilitator protein), a gene recently isolated from the pathogen of soybean, C. kikuchii. CFP has significant similarity to the major facilitator superfamily of integral membrane transport proteins. We expressed CFP in the cercosporin non-producing, cercosporin-sensitive fungus, Cochliobolus heterostrophus, in order to assess the transport activity of CFP and the contribution of CFP to cercosporin resistance in a fungal species free of endogenous toxin production. Expression of the CFP transgene in this fungus results in increased resistance to cercosporin due, apparently, to its export out of the fungus.

  10. Proteolysis of the barley receptor-like protein kinase RPG1 by a proteasome pathway is correlated with Rpg1-mediated stem rust resistance

    OpenAIRE

    Nirmala, Jayaveeramuthu; Dahl, Stephanie; Steffenson, Brian J.; Kannangara, C. Gamini; von Wettstein, Diter; Chen, Xianming; Kleinhofs, Andris

    2007-01-01

    In plants, disease resistance mediated by the gene-for-gene mechanism involves the recognition of specific effector molecules produced by the pathogen either directly or indirectly by the resistance-gene products. This recognition triggers a series of signals, thereby serving as a molecular switch in regulating defense mechanisms by the plants. To understand the mechanism of action of the barley stem rust resistance gene Rpg1, we investigated the fate of the RPG1 protein in response to infect...

  11. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    Science.gov (United States)

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  12. Introduction of a rice blight resistance gene, Xa21, into five Chinese rice varieties through an Agrobacterium-mediated system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A cloned gene, Xa21 was transferred into five widely-used Chinese rice varieties through an Agrobacterium-mediated system, and over 110 independent transgenic lines were obtained. PCR and Southern analysis of transgenic plants revealed the integration of the whole Xa21 gene into the host genomes. The integrated Xa21 gene was stably inherited, and segregated in a 3∶1 ratio in the selfed T1 generation when one copy of the gene was integrated in the transformants. Inoculation tests displayed that transgenic T0 plants and Xa21 PCR-positive T1 plants were highly resistant to bacterial blight disease. The selected Xa21 homozygous resistant transgenic lines with desirable qualities may be propagated as new varieties or utilized in hybrid rice breeding.

  13. Introduction of a rice blight resistance gene, Xa21, into five Chinese rice varieties through an Agrobacterium -mediated system

    Institute of Scientific and Technical Information of China (English)

    翟文学; 李晓兵; 田文忠; 周永力; 潘学彪; 曹守云; 赵显峰; 赵彬; 章琦; 朱立煌

    2000-01-01

    A cloned gene, Xa21 was transferred into five widely-used Chinese rice varieties through an Agrobacterium-mediated system, and over 110 independent transgenic lines were obtained. PCR and Southern analysis of transgenic plants revealed the integration of the whole Xa21 gene into the host genomes. The integrated Xa21 gene was stably inherited, and segregated in a 3 : 1 ratio in the selfed T1 generation when one copy of the gene was integrated in the transfor-mants. Inoculation tests displayed that transgenic T0 plants and Xa21 PCR-positive T1 plants were highly resistant to bacterial blight disease. The selected Xa21 homozygous resistant transgenic lines with desirable qualities may be propagated as new varieties or utilized in hybrid rice breeding.

  14. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest.

    Science.gov (United States)

    Rodríguez-Álvarez, C I; López-Climent, M F; Gómez-Cadenas, A; Kaloshian, I; Nombela, G

    2015-10-01

    Plant defense to pests or pathogens involves global changes in gene expression mediated by multiple signaling pathways. A role for the salicylic acid (SA) signaling pathway in Mi-1-mediated resistance of tomato (Solanum lycopersicum) to aphids was previously identified and its implication in the resistance to root-knot nematodes is controversial, but the importance of SA in basal and Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci had not been determined. SA levels were measured before and after B. tabaci infestation in susceptible and resistant Mi-1-containing tomatoes, and in plants with the NahG bacterial transgene. Tomato plants of the same genotypes were also screened with B. tabaci (MEAM1 and MED species, before known as B and Q biotypes, respectively). The SA content in all tomato genotypes transiently increased after infestation with B. tabaci albeit at variable levels. Whitefly fecundity or infestation rates on susceptible Moneymaker were not significantly affected by the expression of NahG gene, but the Mi-1-mediated resistance to B. tabaci was lost in VFN NahG plants. Results indicated that whiteflies induce both SA and jasmonic acid accumulation in tomato. However, SA has no role in basal defense of tomato against B. tabaci. In contrast, SA is an important component of the Mi-1-mediated resistance to B. tabaci in tomato. PMID:26032615

  15. Triazole resistance mediated by mutations of a conserved active site tyrosine in fungal lanosterol 14α-demethylase.

    Science.gov (United States)

    Sagatova, Alia A; Keniya, Mikhail V; Wilson, Rajni K; Sabherwal, Manya; Tyndall, Joel D A; Monk, Brian C

    2016-01-01

    Emergence of fungal strains showing resistance to triazole drugs can make treatment of fungal disease problematic. Triazole resistance can arise due to single mutations in the drug target lanosterol 14α-demethylase (Erg11p/CYP51). We have determined how commonly occurring single site mutations in pathogenic fungi affect triazole binding using Saccharomyces cerevisiae Erg11p (ScErg11p) as a target surrogate. The mutations Y140F/H were introduced into full-length hexahistidine-tagged ScErg11p. Phenotypes and high-resolution X-ray crystal structures were determined for the mutant enzymes complexed with short-tailed (fluconazole and voriconazole) or long-tailed (itraconazole and posaconazole) triazoles and wild type enzyme complexed with voriconazole. The mutations disrupted a water-mediated hydrogen bond network involved in binding of short-tailed triazoles, which contain a tertiary hydroxyl not present in long-tailed triazoles. This appears to be the mechanism by which resistance to these short chain azoles occurs. Understanding how these mutations affect drug affinity will aid the design of azoles that overcome resistance. PMID:27188873

  16. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins.

    OpenAIRE

    Cha, J S; Cooksey, D A

    1991-01-01

    Copper-resistant strains of Pseudomonas syringae pathovar tomato accumulate copper and develop blue colonies on copper-containing media. Three of the protein products of the copper-resistance operon (cop) were characterized to provide an understanding of the copper-resistance mechanism and its relationship to copper accumulation. The Cop proteins, CopA (72 kDa), CopB (39 kDa), and CopC (12 kDa), were produced only under copper induction. CopA and CopC were periplasmic proteins and CopB was an...

  17. Eukaryotic Initiation Factor 4E (eIF4E and angiogenesis: prognostic markers for breast cancer

    Directory of Open Access Journals (Sweden)

    Zhou Muxiang

    2006-09-01

    Full Text Available Abstract Background The overexpression of eukaryotic translation initiation factor 4E (eIF4E, a key regulator of protein synthesis, is involved in the malignant progression of human breast cancer. This study investigates the relationship between eIF4E and angiogenesis, as well as their prognostic impact in patients with human breast cancer. Methods Immunohistochemical staining was used to determine protein expression of eIF4E, vascular endothelial growth factor (VEGF, interleukin-8 (IL-8, and CD105 in a set of 122 formalin-fixed, paraffin-embedded primary breast cancer tissues. Expression of eIF4E in positive cells was characterized by cytoplasmic staining. Evaluation of VEGF and IL-8 in the same tissue established the angiogenic profiles, while CD105 was used as an indicator of microvessel density (MVD. Results A significant relationship was found between the level of eIF4E expression and histological grade (P = 0.016. VEGF, IL-8, and MVD were closely related to tumor grade (P = 0.003, P = 0.022, and P P = 0.007, P = 0.048, and P P = 0.007, IL-8 (P = 0.007, and MVD (P = 0.006. Patients overexpressing eIF4E had significantly worse overall (P = 0.01 and disease-free survival (P = 0.006. When eIF4E, histological grade, tumor stage, ER, PR, Her-2 status and the levels of VEGF, IL-8, MVD were included in a multivariate Cox regression analysis, eIF4E emerged as an independent prognostic factor for breast cancer (P = 0.001, along with stage (P = 0.005, node status (P = 0.046, and MVD (P = 0.004. Conclusion These results suggest that higher eIF4E expression correlates with both angiogenesis and vascular invasion of cancer cells, and could therefore serve as a useful histological predictor for less favorable outcome in breast cancer patients, as well as represent a potential therapeutic target.

  18. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir, E-mail: wsol@faf.cuni.cz

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  19. RNAi-mediated resistance to SMV and BYMV in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Lo Thi Mai Thu

    2016-09-01

    Full Text Available Soybean mosaic virus (SMV and bean yellow mosaic virus (BYMV are two typical types of viruses that cause mosaic in soybean plants. Multiple viral infections at the same site can lead to 66% to 80% yield reduction. We have aimed to improve SMV and BYMV resistance in Vietnamese soybeans using gene transfer techniques under the mechanism of RNAi. In this study, we present newly generated transgenic tobacco plants carrying RNAi [CPi (SMV-BYMV] resistance to the two types of viruses; 73.08% of transgenic tobacco lines proved to be fully resistant to SMV and BYMV. In addition, the number of virus copies in transgenic tobacco plants was reduced on average by more than 51% compared to the control plants (wild type. This promising result shows the potential of transerring the CPi (SMV-BYMV structure in soybean to increase resistance of soybean to SMV and BYMV and advance the aims of antiviral soybean breeding in Vietnam.

  20. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    OpenAIRE

    Xing-Xing Liu; Chang-Bin Sun; Ting-Tong Yang; Da Li; Chun-Yan Li; Yan-Jie Tian; Ming Guo; Yu Cao; Shi-Sheng Zhou

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Ra...

  1. Mutations in the 16S rRNA Genes of Helicobacter pylori Mediate Resistance to Tetracycline

    OpenAIRE

    Trieber, Catharine A.; Taylor, Diane E.

    2002-01-01

    Low-cost and rescue treatments for Helicobacter pylori infections involve combinations of several drugs including tetracycline. Resistance to tetracycline has recently emerged in H. pylori. The 16S rRNA gene sequences of two tetracycline-resistant clinical isolates (MIC = 64 μg/ml) were determined and compared to the consensus H. pylori 16S rRNA sequence. One isolate had four nucleotide substitutions, and the other had four substitutions and two deletions. Natural transformation with the 16S ...

  2. Multi-Drug Resistance Mediated by Class 1 Integrons in Aeromonas Isolated from Farmed Freshwater Animals.

    Science.gov (United States)

    Deng, Yuting; Wu, Yali; Jiang, Lan; Tan, Aiping; Zhang, Ruiquan; Luo, Li

    2016-01-01

    Aeromonas is regarded as an important pathogen of freshwater animals but little is known about the genetics of its antimicrobial resistance in Chinese aquaculture. The aim of this study was to investigate the presence of integrons and characterize multidrug resistant Aeromonas spp. isolated from diseased farmed freshwater animals. These animal samples included fish, ornamental fish, shrimp, turtles, and amphibians which were collected from 64 farms in Guangdong province of South China. One hundred and twelve Aeromonas spp. isolates were examined for antimicrobial resistance phenotypes and the presence of class 1 integron sequences. Twenty-two (19.6%) of these isolates carried a class 1 integron comprising six different gene insertion cassettes including drfA12-orfF-aadA2, drfA12-orfF, aac(6')-II-bla OXA-21 -cat3, catB3, arr-3, and dfrA17. Among these, drfA12-orfF-aadA2 was the dominant gene cassette array (63.6%, 14/22) and this is the first report of aac(6')-II-bla OXA-21 -cat3 in an Aeromonas hydrophila isolate from a Chinese giant salamander (Andrias davidianus). All the integron-positive strains were resistant to more than five agents and 22 contained other resistance genes including bla CTX-M-3, bla TEM-1, aac(6')-Ib-cr, and tetA. All integron-positive isolates also contained mutations in the quinolone resistance determining regions (QRDR). Our investigation demonstrates that freshwater animals can serve as a reservoir for pathogenic Aeromonas strains containing multiple drug-resistance integrons. This data suggests that surveillance for antimicrobial resistance of animal origin and a prudent and responsible use of antimicrobials in aquaculture is necessary in these farms. PMID:27379065

  3. Induced Resistance to Ofatumumab Mediated Cell Clearance Mechanisms, Including Complement Dependent Cytotoxicity, in Chronic Lymphocytic Leukemia

    OpenAIRE

    Baig, Nisar A.; Taylor, Ronald P.; Lindorfer, Margaret A.; Church, Amy K.; LaPlant, Betsy R.; Pettinger, Adam M.; Shanafelt, Tait D.; Nowakowski, Grzegorz S.; Zent, Clive S.

    2014-01-01

    Ofatumumab (OFA), a human CD20 targeting mAb, kills B-lymphocytes utilizing the innate immune system including complement dependent cytotoxicity (CDC). The efficacy of OFA in patients with chronic lymphocytic leukemia (CLL) is limited by drug resistance, which is not well characterized. To better understand mechanisms of resistance, we prospectively studied CLL cells isolated from blood samples collected before and after in vivo exposure to the initial dose of OFA therapy in 25 patients under...

  4. Multidrug-Resistant Transporter Mdr1p-Mediated Uptake of a Novel Antifungal Compound

    OpenAIRE

    Sun, Nuo; Li, Dongmei; Fonzi, William; Xin LI; Zhang, Lixin; Calderone, Richard

    2013-01-01

    The activity of many anti-infectious drugs has been compromised by the evolution of multidrug-resistant (MDR) pathogens. For life-threatening fungal infections, such as those caused by Candida albicans, overexpression of MDR1, which encodes an MDR efflux pump of the major facilitator superfamily (MFS), often confers resistance to chemically unrelated substances, including the most commonly used azole antifungals. As the development of new and efficacious antifungals has lagged far behind the ...

  5. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    Directory of Open Access Journals (Sweden)

    Sylvie eBaucheron

    2014-01-01

    Full Text Available Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e. in gyrA, gyrB, or parC correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.

  6. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    Science.gov (United States)

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. PMID:27449595

  7. Cotton GhBAK1 Mediates Verticillium Wilt Resistance and Cell Death

    Institute of Scientific and Technical Information of China (English)

    Xiquan Gao; Fangjun Li; Maoying Li; Ali S.Kianinejad; Jane K.Dever; Terry A.Wheeler; Zhaohu LP

    2013-01-01

    Virus-induced gene silencing (VIGS) offers a powerful approach for functional analysis of individual genes by knocking down their expression.We have adopted this approach to dissect gene functions in cotton resistant to Verticillium wilt,one of the most devastating diseases worldwide.We showed hera that highly efficient VIGS was obtained in a cotton breeding line (CA4002) with partial resistance to Verticillium wilt,and GhMKK2 and Gh Ve 1 are required for its resistance to Verticillium wilt.Arabidopsis AtBAK1/SERK3,a central regulator in plant disease resistance,belongs to a subfamily of somatic embryogenesis receptor kinases (SERKs) with five members,AtSERK1 to AtSERK5.Two BAK1 orthologs and one SERK1 ortholog were identified in the cotton genome.Importantly,GhBAK1 is required for CA4002 resistance to Verticillium wilt.Surprisingly,silencing of GhBAK1 is sufficient to trigger cell death accompanied with production of reactive oxygen species in cotton.This result is distinct from Arabidopsis in which AtBAK1 and AtSERK4 play redundant functions in cell death control.Apparently,cotton has only evolved SERK1 and BAK1 whereas AtSERK4/5 are newly evolved genes in Arabidopsis.Our studies indicate the functional importance of BAK1 in Verticillium wilt resistance and suggest the dynamic evolution of SERK family members in different plant species.

  8. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve.

    Science.gov (United States)

    Hu, Gongshe; deHart, Amy K A; Li, Yansu; Ustach, Carolyn; Handley, Vanessa; Navarre, Roy; Hwang, Chin-Feng; Aegerter, Brenna J; Williamson, Valerie M; Baker, Barbara

    2005-05-01

    In tobacco and other Solanaceae species, the tobacco N gene confers resistance to tobacco mosaic virus (TMV), and leads to induction of standard defense and resistance responses. Here, we report the use of N-transgenic tomato to identify a fast-neutron mutant, sun1-1 (suppressor of N), that is defective in N-mediated resistance. Induction of salicylic acid (SA) and expression of pathogenesis-related (PR) genes, each signatures of systemic acquired resistance, are both dramatically suppressed in sun1-1 plants after TMV treatment compared to wild-type plants. Application of exogenous SA restores PR gene expression, indicating that SUN1 acts upstream of SA. Upon challenge with additional pathogens, we found that the sun1-1 mutation impairs resistance mediated by certain resistance (R) genes, (Bs4, I, and Ve), but not others (Mi-1). In addition, sun1-1 plants exhibit enhanced susceptibility to TMV, as well as to virulent pathogens. sun1-1 has been identified as an EDS1 homolog present on chromosome 6 of tomato. The discovery of enhanced susceptibility in the sun1-1 (Le_eds1-1) mutant plant, which contrasts to reports in Nicotiana benthamiana using virus-induced gene silencing, provides evidence that the intersection of R gene-mediated pathways with general resistance pathways is conserved in a Solanaceous species. In tomato, EDS1 is important for mediating resistance to a broad range of pathogens (viral, bacterial, and fungal pathogens), yet shows specificity in the class of R genes that it affects (TIR-NBS-LRR as opposed to CC-NBS-LRR). In addition, a requirement for EDS1 for Ve-mediated resistance in tomato exposes that the receptor-like R gene class may also require EDS1.

  9. Optimization by Molecular Fine Tuning of Dihydro-β-agarofuran Sesquiterpenoids as Reversers of P-Glycoprotein-Mediated Multidrug Resistance.

    Science.gov (United States)

    Callies, Oliver; Sánchez-Cañete, María P; Gamarro, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Bazzocchi, Isabel L

    2016-03-10

    P-glycoprotein (P-gp) plays a crucial role in the development of multidrug resistance (MDR), a major obstacle for successful chemotherapy in cancer. Herein, we report on the development of a natural-product-based library of 81 dihydro-β-agarofuran sesquiterpenes (2-82) by optimization of the lead compound 1. The compound library was evaluated for its ability to inhibit P-gp-mediated daunomycin efflux in MDR cells. Selected analogues were further analyzed for their P-gp inhibition constant, intrinsic toxicity, and potency to reverse daunomycin and vinblastine resistances. Analogues 6, 24, 28, 59, and 66 were identified as having higher potency than compound 1 and verapamil, a first-generation P-gp modulator. SAR analysis revealed the size of the aliphatic chains and presence of nitrogen atoms are important structural characteristics to modulate reversal activity. The present study highlights the potential of these analogues as modulators of P-gp mediated MDR in cancer cells. PMID:26836364

  10. PROTOPLAST FORMATION AND DNA-MEDIATED TRANSFORMATION OF FUSARIUM-CULMORUM TO HYGROMYCIN-B RESISTANCE

    NARCIS (Netherlands)

    CURRAGH, HJ; MOOIBROEK, H; WESSELS, JGH; MARCHANT, R; MULLAN, E

    1993-01-01

    This work involved firstly optimizing the protoplast yields for F. culmorum 159026, then setting up a system for DNA-mediated transformation. Higher protoplast yields and more rapid regeneration were obtained when the organic stabilizers sucrose and sorbitol were used rather than NH4Cl. Successful t

  11. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens

    DEFF Research Database (Denmark)

    Mur, Luis A J; Sivakumaran, Anushen; Mandon, Julien;

    2012-01-01

    Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both...

  12. Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro.

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    Full Text Available Multidrug resistance (MDR is a major impediment to successful cancer chemotherapy. Co-delivery of novel MDR-reversing agents and anticancer drugs to cancer cells holds great promise for cancer treatment. MicroRNA-21 (miR-21 overexpression is associated with the development and progression of MDR in breast cancer, and it is emerging as a novel and promising MDR-reversing target. In this study, a multifunctional nanocomplex, composed of polyethylenimine (PEI/poly(sodium 4-styrenesulfonates (PSS/graphene oxide (GO and termed PPG, was prepared using the layer-by-layer assembly method to evaluate the reversal effects of PPG as a carrier for adriamycin (ADR along with miR-21 targeted siRNA (anti-miR-21 in cancer drug resistance. ADR was firstly loaded onto the PPG surface (PPGADR by physical mixing and anti-miR-21 was sequentially loaded onto PPGADR through electric absorption to form (anti-miR-21PPGADR. Cell experiments showed that PPG significantly enhanced the accumulation of ADR in MCF-7/ADR cells (an ADR resistant breast cancer cell line and exhibited much higher cytotoxicity than free ADR, suggesting that PPG could effectively reverse ADR resistance of MCF-7/ADR. Furthermore, the enhanced therapeutic efficacy of PPG could be correlated with effective silencing of miR-21 and with increased accumulation of ADR in drug-resistant tumor cells. The endocytosis study confirmed that PPG could effectively carry drug molecules into cells via the caveolae and clathrin-mediated endocytosis pathways. These results suggest that this PPG could be a potential and efficient non-viral vector for reversing MDR, and the strategy of combining anticancer drugs with miRNA therapy to overcome MDR could be an attractive approach in cancer treatment.

  13. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile

    Science.gov (United States)

    Buffie, Charlie G.; Bucci, Vanni; Stein, Richard R.; McKenney, Peter T.; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R. M.; Jenq, Robert R.; Taur, Ying; Sander, Chris; Cross, Justin R.; Toussaint, Nora C.; Xavier, Joao B.; Pamer, Eric G.

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.

  14. STAT1 pathway mediates amplification of metastatic potential and resistance to therapy.

    Directory of Open Access Journals (Sweden)

    Nikolai N Khodarev

    Full Text Available BACKGROUND: Traditionally IFN/STAT1 signaling is connected with an anti-viral response and pro-apoptotic tumor-suppressor functions. Emerging functions of a constitutively activated IFN/STAT1 pathway suggest an association with an aggressive tumor phenotype. We hypothesized that tumor clones that constitutively overexpress this pathway are preferentially selected by the host microenvironment due to a resistance to STAT1-dependent cytotoxicity and demonstrate increased metastatic ability combined with increased resistance to genotoxic stress. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that clones of B16F1 tumors grown in the lungs of syngeneic C57BL/6 mice demonstrate variable transcriptional levels of IFN/STAT1 pathway expression. Tumor cells that constitutively overexpress the IFN/STAT1 pathway (STAT1(H genotype are selected by the lung microenvironment. STAT1(H tumor cells also demonstrate resistance to IFN-gamma (IFNgamma, ionizing radiation (IR, and doxorubicin relative to parental B16F1 and low expressors of the IFN/STAT1 pathway (STAT1(L genotype. Stable knockdown of STAT1 reversed the aggressive phenotype and decreased both lung colonization and resistance to genotoxic stress. CONCLUSIONS: Our results identify a pathway activated by tumor-stromal interactions thereby selecting for pro-metastatic and therapy-resistant tumor clones. New therapies targeted against the IFN/STAT1 signaling pathway may provide an effective strategy to treat or sensitize aggressive tumor clones to conventional cancer therapies and potentially prevent distant organ colonization.

  15. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization

    Science.gov (United States)

    Sears, D. D.; Hsiao, G.; Hsiao, A.; Yu, J. G.; Courtney, C. H.; Ofrecio, J. M.; Chapman, J.; Subramaniam, S.

    2009-01-01

    Cellular and tissue defects associated with insulin resistance are coincident with transcriptional abnormalities and are improved after insulin sensitization with thiazolidinedione (TZD) PPARγ ligands. We characterized 72 human subjects by relating their clinical phenotypes with functional pathway alterations. We transcriptionally profiled 364 biopsies harvested before and after hyperinsulinemic-euglycemic clamp studies, at baseline and after 3-month TZD treatment. We have identified molecular and functional characteristics of insulin resistant subjects and distinctions between TZD treatment responder and nonresponder subjects. Insulin resistant subjects exhibited alterations in skeletal muscle (e.g., glycolytic flux and intramuscular adipocytes) and adipose tissue (e.g., mitochondrial metabolism and inflammation) that improved relative to TZD-induced insulin sensitization. Pre-TZD treatment expression of MLXIP in muscle and HLA-DRB1 in adipose tissue from insulin resistant subjects was linearly predictive of post-TZD insulin sensitization. We have uniquely characterized coordinated cellular and tissue functional pathways that are characteristic of insulin resistance, TZD-induced insulin sensitization, and potential TZD responsiveness. PMID:19841271

  16. Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease.

    Science.gov (United States)

    Elayabalan, Sivalingam; Kalaiponmani, Kalaimughilan; Subramaniam, Sreeramanan; Selvarajan, Ramasamy; Panchanathan, Radha; Muthuvelayoutham, Ramlatha; Kumar, Krish K; Balasubramanian, Ponnuswami

    2013-04-01

    One of the most severe viral diseases of hill banana is caused by banana bunchy top virus (BBTV), a nanovirus transmitted by the aphid Pentalonia nigronervosa. In this study, we reported the Agrobacterium-mediated transformation on a highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. The target of the RNA interference (RNAi) is the rep gene, encoded by the BBTV-DNA1. In order to develop RNAi construct targeting the BBTV rep gene, the full-length rep gene of 870 bp was polymerase chain reaction amplified from BBTV infected hill banana sample DNA, cloned and confirmed by DNA sequencing. The partial rep gene fragment was cloned in sense and anti sense orientation in the RNAi intermediate vector, pSTARLING-A. After cloning in pSTARLING-A, the cloned RNAi gene cassette was released by NotI enzyme digestion and cloned into the NotI site of binary vector, pART27. Two different explants, embryogenic cells and embryogenic cell suspension derived microcalli were used for co-cultivation. Selection was done in presence of 100 mg/L kanamycin. In total, 143 putative transgenic hill banana lines were generated and established in green house condition. The presence of the transgenes was confirmed in the selected putative transgenic hill banana lines by PCR and reverse transcription PCR analyses. Transgenic hill banana plants expressing RNAi-BBTV rep were obtained and shown to resist infection by BBTV. The transformed plants are symptomless, and the replication of challenge BBTV almost completely suppressed. Hence, the RNAi mediating resistances were shown to be effective management of BBTV in hill banana.

  17. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model.

    Science.gov (United States)

    Perna, Daniele; Karreth, Florian A; Rust, Alistair G; Perez-Mancera, Pedro A; Rashid, Mamunur; Iorio, Francesco; Alifrangis, Constantine; Arends, Mark J; Bosenberg, Marcus W; Bollag, Gideon; Tuveson, David A; Adams, David J

    2015-02-10

    BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼ 80% of BRAF(V600)-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf(V618E) (analogous to the human BRAF(V600E) mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf(V618E) transposon mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thymoma viral oncogene homolog 1), a phenotype reverted by combinatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes.

  18. Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells.

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    Full Text Available BACKGROUND: A major obstacle for successful cancer treatment often is the development of drug resistance in cancer cells during chemotherapy. Therefore, there is an urgent need for novel drugs with improved efficacy against tumor cells and with less toxicity on normal cells. Artesunate (ART, a powerful anti-malarial herbal compound, has been shown to inhibit growth of various tumor cell lines in vitro and of xenografted Kaposi's sarcoma in mice in vivo. However, the molecular mechanisms by which ART exerts its cytotoxicity have not been elucidated. The ART-class of anti-malarial compounds is attractive due to their activity against multidrug-resistant Plasmodium falciparum and Plasmodium vivax strains. Another salient feature of these compounds is the lack of severe side effects in malaria patients. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we used T-cell leukemias as a model system to study the molecular mechanisms of ART-induced apoptosis. The most typical anticancer drugs are DNA intercalators such as Doxorubicin. To investigate drug sensitivity and resistance, we chose a Doxorubicin-resistant leukemia cell line and investigated the killing effect of ART on these cells. We show that ART induces apoptosis in leukemic T cells mainly through the mitochondrial pathway via generation of reactive oxygen species (ROS, a mechanism different from Doxorubicin. This is confirmed by the fact that the antioxidant N-Acetyle-Cysteine (NAC could completely block ROS generation and, consequently, inhibited ART-induced apoptosis. Therefore, ART can overcome the Doxorubicin-resistance and induce the Doxorubicin-resistant leukemia cells to undergo apoptosis. We also show that ART can synergize with Doxorubicin to enhance apoptotic cell death in leukemic T cells. This synergistic effect can be largely explained by the fact that ART and Doxorubicin use different killing mechanisms. CONCLUSIONS: Our studies raise the possibility to develop ART in

  19. Angiogenin mediates androgen-stimulated growth of prostate cancer cells and correlates with castration resistance

    OpenAIRE

    Li, Shuping; Hu, Miaofen G.; Sun, Yeqing; YOSHIOKA, NORIE; IBARAGI, SOICHIRO; Sheng, Jinghao; Sun, Guangjie; Kishimoto, Koji; Hu, Guo-fu

    2013-01-01

    Androgen receptor (AR) is a critical effector of prostate cancer (PCa) development and progression. Androgen-dependent PCa rely on the function of AR for growth and progression. Many castration-resistant PCa continue to depend on AR signaling for survival and growth. Ribosomal RNA (rRNA) is essential for both androgen-dependent and castration-resistant growth of PCa cells. During androgen-dependent growth of prostate cells, androgen-AR signaling leads to the accumulation of rRNA. However, the...

  20. Overcoming doxorubicin resistance of cancer cells by Cas9-mediated gene disruption

    OpenAIRE

    Jong Seong Ha; Juyoung Byun; Dae-Ro Ahn

    2016-01-01

    In this study, Cas9 system was employed to down-regulate mdr1 gene for overcoming multidrug resistance of cancer cells. Disruption of the MDR1 gene was achieved by delivery of the Cas9-sgRNA plasmid or the Cas9-sgRNA ribonucleoprotein complex using a conventional gene transfection agent and protein transduction domain (PTD). Doxorubicin showed considerable cytotoxicity to the drug-resistant breast cancer cells pre-treated with the RNA-guided endonuclease (RGEN) systems, whereas virtually non-...

  1. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains.

    Science.gov (United States)

    Zhang, Yan-Jun; Zhao, Jin-Jin; Xie, Ming; Peng, De-Liang

    2014-10-01

    Lecanicillium lecanii has been used in the biological control of several insects in agricultural practice. Since the gene manipulation tools for this entomopathogenic fungus have not been sufficiently developed, Agrobacterium tumefaciens-mediated transformation (ATMT) in L. lecanii was investigated in this study, using the wild-type isolate FZ9906 as a progenitor strain and the hygromycin B resistance (hph) gene as a selection marker. Furthermore, a field carbendazim-resistant (mrt) gene from Botrytis cinerea was expressed in L. lecanii FZ9906 via the ATMT system. The results revealed that the frequency of transformation surpassed 25transformants/10(6) conidia, most of the putative transformants contained a single copy of T-DNA, and the T-DNA inserts were stably inherited after five generations. All putative transformants had indistinguishable biological characteristics relative to the wild-type strain, excepting two transformants with altered growth habits or virulence. Moreover, the resistance of the putative transformants to carbendazim (MBC) was improved, and the highest one was 380-fold higher than the wild-type strain. In conclusion, ATMT is an effective and suitable system for L. lecanii transformation, and will be a useful tool for the basic and application research of gene functions and gene modifications of this strain. PMID:25107375

  2. Acquisition of Insect-Resistant Transgenic Maize Harboring a Truncated cry1Ah Gene via Agrobacterium-Mediated Transformation

    Institute of Scientific and Technical Information of China (English)

    LI Xiu-ying; LANG Zhi-hong; ZHANG Jie; HE Kang-lai; ZHU Li; HUANG Da-fang

    2014-01-01

    A novel insecticidal gene cry1Ah was cloned from Bacillus thuringiensis isolate BT8 previously for plant genetic engineering improvement. Truncated active Cry1Ah toxin has a toxicity level similar to that of the full-length Cry1Ah toxin. In this study, plant expression vector pMhGM harboring truncated cry1Ah gene was transformed into maize (Zea mays L.) immature embryos by Agrobacterium tumefaciens-mediated transformation at which maize alcohol dehydrogenase matrix attachment regions (madMARs) were incorporated on both sides of the gene expression cassette to improve gene expression. A total of 23 PCR positive events were obtained with a transformation efifciency of 5%around. Bioassay results showed that events 1-4 and 1-5 exhibited enhanced resistance to the Asian corn borer (Ostrinia furnacalis). These two events were further conifrmed by molecular analysis. Southern blot suggested that a single copy of the cry1Ah gene was successfully integrated into the maize genome. Western blot and ELISA showed that the foreign gene cry1Ah was expressed stably at high level in maize and could be inherited stably over generations. The results of a bioassay of T1-T4 transgenic maize plants indicated that the transgenic plants were highly toxic to the Asian corn borer and their resistance could be inherited stably from generation to generation. Thus, events 1-4 and 1-5 are good candidates for the breeding of insect-resistant maize.

  3. STAT3-dependent TXNDC17 expression mediates Taxol resistance through inducing autophagy in human colorectal cancer cells.

    Science.gov (United States)

    Zhang, Zhongde; Wang, Aihua; Li, Hui; Zhi, Hui; Lu, Feng

    2016-06-10

    Taxol (paclitaxel) is one of the taxane class of anticancer drugs as a first-line chemotherapeutic agent against many cancers including colorectal cancer, breast cancer, non-small cell lung cancer, ovarian cancer and so on. It is verified to induce cytotoxicity in a concentration and time-dependent manner. Numerous novel formulations of Taxol have been remanufactured for better therapeutic effect. Though Taxol works as a common anticancer drug for a long time in clinical practice, drug resistance is a major limitation of its long-term administration. In-depth research on drug resistance is still in progress and researchers have made some achievements, however, the mechanism or key molecule related to Taxol resistance in colorectal cancer still remains to be explored. In the present study, we observed that the high expression of TXNDC17 (thioredoxin domain containing 17) was associated with Taxol resistance in colorectal cancer cells. And TXNDC17 mediated Taxol resistance was related with increased basal autophagy level. Taxol exposure induced high levels of phospho-STAT3 (Tyr 705) and TXNDC17; and increase of basal autophagy in colorectal cancer cells. TXNDC17 overexpression cells obtained Taxol resistance and a high level of autophagy, and it is not surprising that stable downregulation of TXNDC17 accordingly reversed these phenomena. Interestingly, STAT3 could similarly work as TXNDC17 in spite of slighter effect compared to TXNDC17. And it has been proved that phospho-STAT3 (Tyr 705) possesses transcriptional regulation activity through forming dimmers. Many research revealed that transcription factor STAT3 affected more than 1000 gene products, and TXNDC17 is predicted to be a target gene of STAT3 at UCSC database. For the first time, we found STAT3 could bind promoter region of TXNDC17 (-623 bp to -58 bp relative to the transcription start site (TSS)) for regulating its expression. These results suggest the possibility that TXNDC17 could play an important role

  4. Are lipid rafts involved in ABC transporter-mediated drug resistance of tumor cells?

    NARCIS (Netherlands)

    Kok, Jan Willem; Klappe, Karin; Hummel, Ina; Kroesen, Bart-Jan; Sietsma, Hannie; Meszaros, Peter

    2008-01-01

    Since their discovery, lipid rafts have been implicated in several cellular functions, including protein transport in polarized cells and signal transduction. Also in multidrug resistance lipid rafts may be important with regard to the localization of ATP-binding cassette (ABC) transporters in these

  5. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    NARCIS (Netherlands)

    Konings, WN; Poelarends, GJ

    2002-01-01

    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural a

  6. Inhibition of β-lactamase-mediated oxacillin resistance in Staphylococcus aureus by a deoxyribozyme

    Institute of Scientific and Technical Information of China (English)

    Zheng HOU; Jing-ru MENG; Jin-rong ZHAO; Ben-quan HU; Jie LIU; Xiao-jun YAN; Min JIA; Xiao-xing LUO

    2007-01-01

    Aim:To investigate the oxacillin susceptibility restoration of methicillin-resistant Staphylococcus aureus (MRSA) by targeting the signaling pathway of blaR1blaZ with a DNAzyme. Methods:A DNAzyme (named PS-DP,z602) targeting blaR1 mRNA was designed and synthesized. After DRz602 was introduced into a MRSA strain WHO-2,the colony-forming units of WHO-2 on the Mueller-Hinton agar containing 6 mg/L oxacillin and the minimum inhibitory concentrations of oxacillin were determined. The inhibitory effects of DRz602 on the expressions of antibiotic-resistant gene blaR1 and its downstream gene blaZ were detected by real time RT-PCR. Results:PS-DRz602 significantly decreased the transcription of blaR1 mRNA and led to the significant reduction of blaZ in a concentrationdependent manner. Consequently,the resistance of S aureus WHO-2 to the β-lactam antibiotic oxacillin was significantly inhibited. Conclusion:Our results indicated that blocking the blaRl-blaZ signaling pathway via DNAzyme might provide a viable strategy for inhibiting the resistance of MRSA to β-lactam antibiotics and that BIaR1 might be a potential target for pharmacological agents combating MRSA.

  7. Interfamily Transfer of Tomato Ve1 Mediates Verticillium Resistance in Arabidopsis

    NARCIS (Netherlands)

    Fradin, E.F.; Abd-El-Haliem, A.; Masini, L.; Berg, van den G.C.M.; Joosten, M.H.A.J.; Thomma, B.P.H.J.

    2011-01-01

    Vascular wilts caused by soil-borne fungal species of the Verticillium genus are devastating plant diseases. The most common species, Verticillium dahliae and Verticillium albo-atrum, have broad host ranges and are notoriously difficult to control. Therefore, genetic resistance is the preferred meth

  8. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization

    OpenAIRE

    Sears, D. D.; Hsiao, G.; Hsiao, A.; Yu, J. G.; Courtney, C. H.; J.M. Ofrecio; Chapman, J; Subramaniam, S

    2009-01-01

    Cellular and tissue defects associated with insulin resistance are coincident with transcriptional abnormalities and are improved after insulin sensitization with thiazolidinedione (TZD) PPARγ ligands. We characterized 72 human subjects by relating their clinical phenotypes with functional pathway alterations. We transcriptionally profiled 364 biopsies harvested before and after hyperinsulinemic-euglycemic clamp studies, at baseline and after 3-month TZD treatment. We have identified molecula...

  9. Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri

    NARCIS (Netherlands)

    T. Van Leeuwen; P. Van Nieuwenhuyse; B. Vanholme; W. Dermauw; R. Nauen; L. Tirry

    2011-01-01

    Bifenazate is a recently developed acaricide that is mainly used to control spider mites on a variety of crops. Although first thought to be a neurotoxin, genetic evidence obtained from bifenazate resistant Tetranychus urticae strains suggested an alternative mode of action as a Qo pocket inhibitor

  10. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes.

    Science.gov (United States)

    Dong, Kelei; Ni, Hua; Wu, Meiling; Tang, Ziqing; Halim, Michael; Shi, Dongyun

    2016-08-01

    Oxidative stress is known to contribute to insulin resistance in diabetes, however the mechanism is not clear. Here we show that reactive oxygen species (ROS) could reprogram the glucose metabolism through upregulating the pentose pathway so as to induce insulin resistance in type 2 diabetes (T2DM). By using streptozotocin-high fat diet (STZ-HFD) induced T2DM in rats, we show that diabetic rats exhibited high level of oxidative stress accompanied with insulin resistance. Hypoxia inducible factor (HIF-1α) protein expression as well as its downstream target glucokinase (GK), were upregulated; The glycogen synthesis increased accordingly; However the glycolysis was inhibited as indicated by decreased phosphofructokinase-1 (PFK-1), pyruvate kinase (PK), phospho-PFK-2/PFK-2 (p-PFK-2/PFK-2) ratio, lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK); Pyruvate dehydrogenase (PDH) which promotes pyruvate to generate acetyl-CoA declined as well. While phospho-acetyl-CoA carboxylase/acetyl-CoA carboxylase (p-ACC/ACC) ratio increased, meaning that lipid beta-oxidation increased. The pentose pathway was activated as indicated by increased G6PD activity and NADPH level. Our results suggest that diabetic rats countervail ROS stress through increasing pentose pathway, and reprogram the energy metabolic pathway from glycolysis into lipid oxidation in order to compensate the ATP requirement of the body, which causes insulin resistance. PMID:27207834

  11. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    Energy Technology Data Exchange (ETDEWEB)

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  12. Mutational analysis of the Ve1 immune receptor that mediates Verticillium resistance in tomato

    NARCIS (Netherlands)

    Zhang, Z.; Song, Y.; Liu, Chun-Ming; Thomma, B.P.H.J.

    2014-01-01

    Pathogenic Verticillium species are economically important plant pathogens that cause vascular wilt diseases in hundreds of plant species. The Ve1 gene of tomato confers resistance against race 1 strains of Verticillium dahliae and V. albo-atrum. Ve1 encodes an extracellular leucine-rich repeat (eLR

  13. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis

    OpenAIRE

    Winter, Peter S.; Sarosiek, Kristopher A.; Lin, Kevin H.; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony; Wood, Kris C.

    2014-01-01

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2V617F mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplasti...

  14. DEK Is a Poly(ADP-Ribose) Acceptor in Apoptosis and Mediates Resistance to Genotoxic Stress

    OpenAIRE

    Kappes, Ferdinand; Fahrer, Jörg; Khodadoust, Michael A.; Tabbert, Anja; Strasser, Christine; Mor-Vaknin, Nirit; Moreno-Villanueva, María; Bürkle, Alexander; Markovitz, David M; May, Elisa

    2008-01-01

    DEK is a nuclear phosphoprotein implicated in oncogenesis and autoimmunity and a major component of metazoan chromatin. The intracellular cues that control the binding of DEK to DNA and its pleiotropic functions in DNA- and RNA-dependent processes have remained mainly elusive so far. Our recent finding that the phosphorylation status of DEK is altered during death receptor-mediated apoptosis suggested a potential involvement of DEK in stress signaling. In this study, we show that in cells com...

  15. Cryptococcus neoformans is resistant to surfactant protein A mediated host defense mechanisms.

    Directory of Open Access Journals (Sweden)

    Steven S Giles

    Full Text Available Initiation of a protective immune response to infection by the pathogenic fungus Cryptococcus neoformans is mediated in part by host factors that promote interactions between immune cells and C. neoformans yeast. Surfactant protein A (SP-A contributes positively to pulmonary host defenses against a variety of bacteria, viruses, and fungi in part by promoting the recognition and phagocytosis of these pathogens by alveolar macrophages. In the present study we investigated the role of SP-A as a mediator of host defense against the pulmonary pathogen, C. neoformans. Previous studies have shown that SP-A binds to acapsular and minimally encapsulated strains of C. neoformans. Using in vitro binding assays we confirmed that SP-A does not directly bind to a fully encapsulated strain of C. neoformans (H99. However, we observed that when C. neoformans was incubated in bronchoalveolar fluid, SP-A binding was detected, suggesting that another alveolar host factor may enable SP-A binding. Indeed, we discovered that SP-A binds encapsulated C. neoformans via a previously unknown IgG dependent mechanism. The consequence of this interaction was the inhibition of IgG-mediated phagocytosis of C. neoformans by alveolar macrophages. Therefore, to assess the contribution of SP-A to the pulmonary host defenses we compared in vivo infections using SP-A null mice (SP-A-/- and wild-type mice in an intranasal infection model. We found that the immune response assessed by cellular counts, TNFalpha cytokine production, and fungal burden in lungs and bronchoalveolar lavage fluids during early stages of infection were equivalent. Furthermore, the survival outcome of C. neoformans infection was equivalent in SP-A-/- and wild-type mice. Our results suggest that unlike a variety of bacteria, viruses, and other fungi, progression of disease with an inhalational challenge of C. neoformans does not appear to be negatively or positively affected by SP-A mediated mechanisms of

  16. Hantavirus-infection confers resistance to cytotoxic lymphocyte-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Shawon Gupta

    2013-03-01

    Full Text Available Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS and hantavirus cardio-pulmonary syndrome (HCPS; also called hantavirus pulmonary syndrome (HPS, both human diseases with high case-fatality rates. Endothelial cells are the main targets for hantaviruses. An intriguing observation in patients with HFRS and HCPS is that on one hand the virus infection leads to strong activation of CD8 T cells and NK cells, on the other hand no obvious destruction of infected endothelial cells is observed. Here, we provide an explanation for this dichotomy by showing that hantavirus-infected endothelial cells are protected from cytotoxic lymphocyte-mediated induction of apoptosis. When dissecting potential mechanisms behind this phenomenon, we discovered that the hantavirus nucleocapsid protein inhibits the enzymatic activity of both granzyme B and caspase 3. This provides a tentative explanation for the hantavirus-mediated block of cytotoxic granule-mediated apoptosis-induction, and hence the protection of infected cells from cytotoxic lymphocytes. These findings may explain why infected endothelial cells in hantavirus-infected patients are not destroyed by the strong cytotoxic lymphocyte response.

  17. Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin.

    Directory of Open Access Journals (Sweden)

    Nirav R Shah

    Full Text Available Ribavirin (RBV is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus and Sendai virus (SeV, a paramyxovirus. Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.

  18. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Vicky Goler-Baron

    Full Text Available Multidrug resistance (MDR is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and

  19. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  20. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    International Nuclear Information System (INIS)

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells

  1. Extended-Spectrum-Beta-Lactamases, AmpC Beta-Lactamases and Plasmid Mediated Quinolone Resistance in Klebsiella spp. from Companion Animals in Italy

    DEFF Research Database (Denmark)

    Donati, Valentina; Feltrin, Fabiola; Hendriksen, Rene S.;

    2014-01-01

    We report the genetic characterization of 15 Klebsiella pneumoniae (KP) and 4 isolates of K. oxytoca (KO) from clinical cases in dogs and cats and showing extended-spectrum cephalosporin (ESC) resistance. Extended spectrum beta-lactamase (ESBL) and AmpC genes, plasmid-mediated quinolone resistance...... also for the aac(6')-Ib-cr gene. All Klebsiella isolates showed multiresistance towards aminoglycosides, sulfonamides, tetracyclines, trimethoprim and amphenicols, mediated by strA/B, aadA2, aadB, ant (2")-Ia, aac(6')-Ib, sul, tet, dfr and cat genes in various combinations. The emergence in pets...

  2. Selection for pro-inflammatory mediators produces chickens more resistant to Clostridium perfringens-induced necrotic enteritis.

    Science.gov (United States)

    Swaggerty, C L; McReynolds, J L; Byrd, J A; Pevzner, I Y; Duke, S E; Genovese, K J; He, H; Kogut, M H

    2016-02-01

    We developed a novel selection method based on an inherently high and low phenotype of pro-inflammatory mediators and produced "high" and "low" line chickens. We have shown high line birds are more resistant to Salmonella enterica serovar Enteritidis and Eimeria tenella compared to the low line. Clostridium perfringens is the fourth leading cause of bacterial-induced foodborne illness, and is also an economically important poultry pathogen and known etiologic agent of necrotic enteritis (NE). The objective of this study was to determine if high line birds were also more resistant to NE than low line birds using an established model. Birds were reared in floor pens and challenges were conducted twice (high line = 25/trial, 50 birds total; low line = 26/trial, 52 birds total). Day-old chicks were provided a 55% wheat-corn-based un-medicated starter diet. A bursal disease vaccine was administered at 10× the recommended dose via the ocular route at 14-d-of-age. Birds were challenged daily for 3 d beginning at 16-d-of-age by oral gavage (3 mL) with 10(7) colony forming units (cfu) of C. perfringens/mL then necropsied at 21-d-of-age. All birds had sections of the intestine examined and scored for lesions while the first 10 necropsied also had gut content collected for C. perfringens enumeration. Chickens from the high line were more resistant to C. perfringens-induced NE pathology compared to the low line, as indicated by reduced lesion scores. Ninety percent of the high line birds had lesions of zero or one compared to 67% of the low line birds. Wilcoxon rank sum test showed significantly higher lesion scores in the low line birds compared to the high line (P < 0.0001). There were no differences in the C. perfringens recovered (P = 0.83). These data provide additional validation and support selection based on elevated levels of pro-inflammatory mediators produces chickens with increased resistance against foodborne and poultry pathogens.

  3. Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability

    International Nuclear Information System (INIS)

    Plasmid pIL7 (33 kilobases) from Streptococcus lactis enhances UV resistance and prophage stability. A 5.4-kilobase pIL7 fragment carrying genes coding for both characters was cloned into S. lactis, using plasmid pHV1301 as the cloning vector. The recombinant plasmid was subsequently transferred to three other S. lactis strains by transformation or protoplast fusion. Cloned genes were expressed in all tested strains

  4. Environment-mediated drug resistance in Bcr/Abl-positive acute lymphoblastic leukemia

    OpenAIRE

    Feldhahn, Niklas; Arutyunyan, Anna; Stoddart, Sonia; ZHANG Bin; Schmidhuber, Sabine; Yi, Sun-ju; Kim, Yong-Mi; Groffen, John; Heisterkamp, Nora

    2012-01-01

    Although cure rates for acute lymphoblastic leukemia (ALL) have increased, development of resistance to drugs and patient relapse are common. The environment in which the leukemia cells are present during the drug treatment is known to provide significant survival benefit. Here, we have modeled this process by culturing murine Bcr/Abl-positive acute lymphoblastic leukemia cells in the presence of stroma while treating them with a moderate dose of two unrelated drugs, the farnesyltransferase i...

  5. Sarcopenic Obesity and Cognitive Functioning: The Mediating Roles of Insulin Resistance and Inflammation?

    OpenAIRE

    Levine, M. E.; Crimmins, E. M.

    2012-01-01

    This study examined the influence of insulin resistance and inflammation on the association between body composition and cognitive performance in older adults, aged 60–69 and aged 70 and older. Subjects included 1127 adults from NHANES 1999–2002. Body composition was categorized based on measurements of muscle mass and waist circumference as sarcopenic nonobese, nonsarcopenic obese, sarcopenic obese, and normal. Using OLS regression models, our findings suggest body composition is not associa...

  6. Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

    OpenAIRE

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-01-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultiva...

  7. Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability.

    OpenAIRE

    Chopin, M C; Chopin, A; Rouault, A.; Simon, D.

    1986-01-01

    Plasmid pIL7 (33 kilobases) from Streptococcus lactis enhances UV resistance and prophage stability. A 5.4-kilobase pIL7 fragment carrying genes coding for both characters was cloned into S. lactis, using plasmid pHV1301 as the cloning vector. The recombinant plasmid was subsequently transferred to three other S. lactis strains by transformation or protoplast fusion. Cloned genes were expressed in all tested strains.

  8. Plasmid Mediated Resistance to Cephalosporin and Adhesion Properties in E.Coli

    Directory of Open Access Journals (Sweden)

    Salwa Oufrid

    2014-02-01

    Full Text Available Introduction: The objective of this study is to evaluate the relationship between biofilm formation, surface characteristics and the presence of plasmid conferring resistance to cephalosporin Methodology: The plasmid of resistance of Salmonella 3349 was purified and transferred by electroporation to the E. coli DH10B originally incompetent to form biofilm. The physico-chemical surface properties of the three bacteria (E. coli DH10B, Salmonella 3349 and its isogenic transformant 3519EC1 were estimated and compared by the Microbial Adhesion to Solvents test (MAST and angle contact measurement. Cellular densities of bacteria adhered to stainless supports were examined with a scanning electron microscope. Results: The physicochemical properties of bacterial cell surface demonstrated that E.coli DH10B strain was hydrophilic, electron donating and weakly electron accepting than Salmonella 3349 and its transformant 3519EC1 strains. Moreover, there was a weak correlation between the acid-base properties determined by the Microbial Adhesion to Solvents test and angle contact measurement. Analysis of microscopical images of bacterial adhesion indicated that E.coli 3519EC1 and Salmonella 3349 adhered to the stainless surface, whereas the E.coli DH10B does not adhere. Conclusions: The results of this study suggest that the presences of the plasmid of resistance modify the microbial surface properties and biofilm formation.

  9. Decreased skin-mediated detoxification contributes to oxidative stress and insulin resistance.

    Science.gov (United States)

    Liu, Xing-Xing; Sun, Chang-Bin; Yang, Ting-Tong; Li, Da; Li, Chun-Yan; Tian, Yan-Jie; Guo, Ming; Cao, Yu; Zhou, Shi-Sheng

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg) with (sham-nicotinamide and burn-nicotinamide groups) or without (sham-operated and burn groups) coadministration of nicotinamide (100 mg/kg). The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide and N(1)-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H(2)O(2) and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance.

  10. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Xing-Xing Liu

    2012-01-01

    Full Text Available The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg with (sham-nicotinamide and burn-nicotinamide groups or without (sham-operated and burn groups coadministration of nicotinamide (100 mg/kg. The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide and N1-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H2O2 and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance.

  11. Frequency and intensity of exposure mediate resistance to experimental infection with the hookworm, Ancylostoma ceylanicum

    Science.gov (United States)

    Davey, Dylan; Manickam, Nisha; Simms, Benjamin T.; Harrison, Lisa M.; Vermeire, Jon J.; Cappello, Michael

    2013-01-01

    Hookworms are bloodfeeding intestinal nematodes that are a major cause of anemia in resource-limited countries. Despite repeated exposure beginning in early childhood, humans retain lifelong susceptibility to infection without evidence of sterilizing immunity. In contrast, experimental infection of laboratory animals is typically characterized by varying degrees of resistance following primary infection, although the mechanisms underlying this phenomenon remain unknown. In this study, hamsters subjected to a single drug-terminated infection with 100 third stage hookworm larvae were confirmed to be resistant to pathological effects following a subsequent challenge. In a second experiment, hamsters infected twice-weekly with 10 third stage larvae (low inoculum) exhibited clinical and parasitological evidence of continued susceptibility, while those given 100 L3 (high inoculum) developed apparent resistance within 3 days following the initial exposure. The kinetics of parasite-specific IgA, IgM, and IgG antibody production varied by group, which suggests that the humoral immune response to hookworm infection is stimulated by the nature (frequency and intensity) of larval exposure. These results suggest that intermittent low-inoculum larval exposure, which is characterized by prolonged susceptibility to infection, may serve as a more representative model of human hookworm disease for studies of pathogenesis, as well as drug and vaccine development. PMID:23232252

  12. Association of Obesity-Mediated Insulin Resistance and Hypothalamic Volumes: Possible Sex Differences

    Directory of Open Access Journals (Sweden)

    Jenny Ha

    2013-01-01

    Full Text Available The hypothalamus is important in hunger and metabolism. Although a lot is known about the basic role of the human hypothalamus, less is known about how the in vivo volume is affected in obesity, particularly among adolescents. Based on pediatric body mass index percentiles, 95 participants were assigned to lean or obese groups. All subjects had medical evaluations, including fasting blood tests, to assess insulin sensitivity and circulating CRP and neurotrophins (NGF and BDNF and an MRI of the brain. Hypothalamic volumes were measured by a segmentation method combining manual and automated steps. Overall, obese participants had descriptively smaller hypothalamic volumes, although this difference did not reach statistical significance; however, among obese participants, females had significantly smaller hypothalamic volumes than their male counterparts. There was a significant interaction between insulin resistance and sex on hypothalamus volume; obese females with significant insulin resistance have smaller hypothalamic volumes than obese males. Obese adolescents had higher circulating CRP and neurotrophin levels. Furthermore, among obese females, BDNF concentrations were inversely associated with hypothalamus volumes (r=−0.48. Given this negative association between BDNF and hypothalamus volumes among obese insulin-resistant females, elevated neurotrophin levels may suggest an attempt at protective compensation.

  13. Reprogramming mediated radio-resistance of 3D-grown cancer cells

    International Nuclear Information System (INIS)

    In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine. (author)

  14. DNA methylation-mediated silencing of PU.1 in leukemia cells resistant to cell differentiation.

    Science.gov (United States)

    Fernández-Nestosa, María José; Monturus, Estefanía; Sánchez, Zunilda; Torres, Francisco S; Fernández, Agustín F; Fraga, Mario F; Hernández, Pablo; Schvartzman, Jorge B; Krimer, Dora B

    2013-01-01

    In mice, the proviral integration of the Friend Spleen Focus Forming Virus (SFFV) within the PU.1 locus of erythroid precursors results in the development of erythroleukemia. SFFV integrates several kilobases upstream of the PU.1 transcription initiation start site leading to the constitutive activation of the gene which in turn results in a block of erythroid differentiation. In this study we have mapped and sequenced the exact location of the retroviral integration site. We have shown that SFFV integrates downstream of a previously described upstream regulatory element (URE), precisely 2,976 bp downstream of the URE-distal element. We have also found that SFFV persists integrated within the same location in resistant cell lines that have lost their differentiation capacity and in which case PU.1 remains silent. We have examined the methylation status of PU.1 and found that in resistant cells the nearby CpG islands remained methylated in contrast to a non-methylated status of the parental cell lines. Treatment with 5-aza-2'-deoxycytidine caused resistant cells to differentiate yet only when combined with HMBA. Altogether these results strongly suggest that methylation plays a crucial role with regard to PU.1 silencing. However, although demethylation is required, it is not sufficient to overcome the differentiation impasse. We have also showed that activation blockage of the Epo/Epo-R pathway remains despite of the absence of PU.1.

  15. Resistance exercise load does not determine training-mediated hypertrophic gains in young men

    OpenAIRE

    Mitchell, Cameron J.; Churchward-Venne, Tyler A.; Daniel W D West; Burd, Nicholas A; Breen, Leigh; Baker, Steven K.; Phillips, Stuart M.

    2012-01-01

    We have reported that the acute postexercise increases in muscle protein synthesis rates, with differing nutritional support, are predictive of longer-term training-induced muscle hypertrophy. Here, we aimed to test whether the same was true with acute exercise-mediated changes in muscle protein synthesis. Eighteen men (21 ± 1 yr, 22.6 ± 2.1 kg/m2; means ± SE) had their legs randomly assigned to two of three training conditions that differed in contraction intensity [% of maximal strength (1 ...

  16. FoxM1 mediated resistance to gefitinib in non-small-cell lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    Nuo XU; Xin ZHANG; Xun WANG; Hai-yan GE; Xiao-ying WANG; David GARFIELD; Ping YANG; Yuan-lin SONG; Chun-xue BAI

    2012-01-01

    Gefitinib is effective in only approximately 20% of patients with non-small-cell lung cancer (NSCLC),and the underlying mechanism remains unclear.FoxM1 is upregulated in NSCLC and associated with a poor prognosis in NSCLC patients.In this study,we examined the possible role of FoxM1 in gefitinib resistance and the related mechanisms.Methods:Gefitinib resistant human lung adenocarcinoma cell line SPC-A-1 and gefitinib-sensitive human lung mucoepidermoid carcinoma cell line NCI-H292 were used.mRNA and protein expression of FoxM1 and other factors were tested with quantitative RT PCR and Western blot analysis.RNA interference was performed to suppress FoxM1 expression in SPC-A-1 cells,and lentiviral infection was used to overexpress FoxM1 in H292 cells.MTT assay and flow cytometry were used to examine the proliferation and apoptosis of the cells.Results:Treatment of SPC-A-1 cells with gefitinib (1 and 10 μmol/L) upregulated the expression of FoxM1 in time- and concentrationdependent manners,while gefrtinib (1 μmol/L) downregulated in H292 cells.In SPC-A-1 cells treated with gefitinib (1 μmol/L),the expression of several downstream targets of FoxM1,including survivin,cyclin B1,SKP2,PLK1,Aurora B kinase and CDC25B,were significantly upregulated.Overexpression of FoxM1 increased the resistance in H292 cells,while attenuated FoxM1 expression restored the sensitivity to gefitinib in SPC-A-1 cells by inhibiting proliferation and inducing apoptosis.Conclusion:The results suggest that FoxM1 plays an important role in the resistance of NSCLC cells to gefitinib in vitro.FoxM1 could be used as a therapeutic target to overcome the resistance to gefitinib.

  17. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships

    Directory of Open Access Journals (Sweden)

    Di Pietro A.

    1999-01-01

    Full Text Available Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp, a plasma membrane ATP-binding cassette (ABC transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR. In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

  18. Development of Novel PCR Assays To Detect Azole Resistance-Mediating Mutations of the Aspergillus fumigatus cyp51A Gene in Primary Clinical Samples from Neutropenic Patients

    OpenAIRE

    Spiess, Birgit; Seifarth, Wolfgang; Merker, Natalia; Howard, Susan J.; Reinwald, Mark; Dietz, Anne; Hofmann, Wolf-Karsten; Buchheidt, Dieter

    2012-01-01

    The increasing incidence of azole resistance in Aspergillus fumigatus causing invasive aspergillosis (IA) in immunocompromised/hematological patients emphasizes the need to improve the detection of resistance-mediating cyp51A gene mutations from primary clinical samples, particularly as the diagnosis of invasive aspergillosis is rarely based on a positive culture yield in this group of patients. We generated primers from the unique sequence of the Aspergillus fumigatus cyp51A gene to establis...

  19. UNC93B1 mediates host resistance to infection with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Mariane B Melo

    Full Text Available UNC93B1 associates with Toll-Like Receptor (TLR 3, TLR7 and TLR9, mediating their translocation from the endoplasmic reticulum to the endolysosome, hence allowing proper activation by nucleic acid ligands. We found that the triple deficient '3d' mice, which lack functional UNC93B1, are hyper-susceptible to infection with Toxoplasma gondii. We established that while mounting a normal systemic pro-inflammatory response, i.e. producing abundant MCP-1, IL-6, TNFα and IFNγ, the 3d mice were unable to control parasite replication. Nevertheless, infection of reciprocal bone marrow chimeras between wild-type and 3d mice with T. gondii demonstrated a primary role of hemopoietic cell lineages in the enhanced susceptibility of UNC93B1 mutant mice. The protective role mediated by UNC93B1 to T. gondii infection was associated with impaired IL-12 responses and delayed IFNγ by spleen cells. Notably, in macrophages infected with T. gondii, UNC93B1 accumulates on the parasitophorous vacuole. Furthermore, upon in vitro infection the rate of tachyzoite replication was enhanced in non-activated macrophages carrying mutant UNC93B1 as compared to wild type gene. Strikingly, the role of UNC93B1 on intracellular parasite growth appears to be independent of TLR function. Altogether, our results reveal a critical role for UNC93B1 on induction of IL-12/IFNγ production as well as autonomous control of Toxoplasma replication by macrophages.

  20. Wolbachia-mediated resistance to dengue virus infection and death at the cellular level.

    Directory of Open Access Journals (Sweden)

    Francesca D Frentiu

    Full Text Available BACKGROUND: Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using paired Wolbachia-infected and uninfected Aedes-derived cell lines and dengue virus, we confirm the phenomenon of viral inhibition at the cellular level. Although Wolbachia imposes a fitness cost to cells via reduced proliferation, it also provides a significant degree of protection from virus-induced mortality. The extent of viral inhibition is related to the density of Wolbachia per cell, with highly infected cell lines showing almost complete protection from dengue infection and dramatically reduced virus titers compared to lines not infected with the bacteria. CONCLUSIONS/SIGNIFICANCE: We have shown that cells infected with Wolbachia display inhibition of dengue virus replication, that the extent of inhibition is related to bacterial density and that Wolbachia infection, although costly, will provide a fitness benefit in some circumstances. Our results parallel findings in mosquitoes and flies, indicating that cell line models will provide useful and experimentally tractable models to study the mechanisms underlying Wolbachia-mediated protection from viruses.

  1. Molecular Detection of Methicillin-Resistant Staphylococcus aureus by Non-Protein Coding RNA-Mediated Monoplex Polymerase Chain Reaction

    Science.gov (United States)

    Soo Yean, Cheryl Yeap; Selva Raju, Kishanraj; Xavier, Rathinam; Subramaniam, Sreeramanan; Gopinath, Subash C. B.; Chinni, Suresh V.

    2016-01-01

    Non-protein coding RNA (npcRNA) is a functional RNA molecule that is not translated into a protein. Bacterial npcRNAs are structurally diversified molecules, typically 50–200 nucleotides in length. They play a crucial physiological role in cellular networking, including stress responses, replication and bacterial virulence. In this study, by using an identified npcRNA gene (Sau-02) in Methicillin-resistant Staphylococcus aureus (MRSA), we identified the Gram-positive bacteria S. aureus. A Sau-02-mediated monoplex Polymerase Chain Reaction (PCR) assay was designed that displayed high sensitivity and specificity. Fourteen different bacteria and 18 S. aureus strains were tested, and the results showed that the Sau-02 gene is specific to S. aureus. The detection limit was tested against genomic DNA from MRSA and was found to be ~10 genome copies. Further, the detection was extended to whole-cell MRSA detection, and we reached the detection limit with two bacteria. The monoplex PCR assay demonstrated in this study is a novel detection method that can replicate other npcRNA-mediated detection assays. PMID:27367909

  2. Design, synthesis and evaluation of novel triazole core based P-glycoprotein-mediated multidrug resistance reversal agents.

    Science.gov (United States)

    Jiao, Lei; Qiu, Qianqian; Liu, Baomin; Zhao, Tianxiao; Huang, Wenlong; Qian, Hai

    2014-12-15

    A novel series of triazol-N-ethyl-tetrahydroisoquinoline based compounds were designed and synthesized via click chemistry. Most of the synthesized compounds showed P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal activities. Among them, compound 7 with little cytotoxicity towards GES-1 cells (IC50 >80μM) and K562/A02 cells (IC50 >80μM) exhibited more potency than verapamil (VRP) on increasing anticancer drug accumulation in K562/A02 cells. Moreover, compound 7 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 7 in reversing MDR revealed that it could remarkably increase the intracellular accumulation of both rhodamine-123 (Rh123) and adriamycin (ADM) in K562/A02 cells as well as inhibit their efflux from the cells. These results suggested that compound 7 showed more potency than the classical P-gp inhibitor VRP under the same conditions, which may be a promising P-gp-mediated MDR modulator for further development. PMID:25464884

  3. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    Science.gov (United States)

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. PMID:27073052

  4. How mothers mediate the social integration of their children conceived of forced marriage within the Lord's Resistance Army.

    Science.gov (United States)

    Shanahan, Fiona; Veale, Angela

    2016-01-01

    This article aims to understand how formerly abducted young mothers mediate the social integration of their children conceived of forced marriage and sexual violence within the Lord's Resistance Army (LRA) in northern Uganda. Interviews and photographic methods were used in six Internally Displaced Persons Camps in northern Uganda. This article draws on data derived from ten mothers of thirteen children who were conceived in the LRA, five boys and eight girls. The analytic approach used was Interpretive Phenomenological Analysis (Smith & Osborn, 2008). The analysis identified turning points of sites of action where young formerly abducted mothers used diverse strategies to support the reintegration of their children born or conceived within the LRA. Six key turning points are identified, these are (a) participating in rituals and ceremonies, (b) naming, (c) adapting to changing family structures, (d) responding to discrimination against boys (e) managing disclosure and (f) sharing positive memories and identities. Formerly abducted young mothers mediate the social integration of their children by engaging in strategies to support and foster their wellbeing and social relationships. However, the contexts in which they are operating are highly constrained and the relational identities of children born in the LRA are fluid and potentially insecure within communities of return. Implications for policy and programming are discussed.

  5. How mothers mediate the social integration of their children conceived of forced marriage within the Lord's Resistance Army.

    Science.gov (United States)

    Shanahan, Fiona; Veale, Angela

    2016-01-01

    This article aims to understand how formerly abducted young mothers mediate the social integration of their children conceived of forced marriage and sexual violence within the Lord's Resistance Army (LRA) in northern Uganda. Interviews and photographic methods were used in six Internally Displaced Persons Camps in northern Uganda. This article draws on data derived from ten mothers of thirteen children who were conceived in the LRA, five boys and eight girls. The analytic approach used was Interpretive Phenomenological Analysis (Smith & Osborn, 2008). The analysis identified turning points of sites of action where young formerly abducted mothers used diverse strategies to support the reintegration of their children born or conceived within the LRA. Six key turning points are identified, these are (a) participating in rituals and ceremonies, (b) naming, (c) adapting to changing family structures, (d) responding to discrimination against boys (e) managing disclosure and (f) sharing positive memories and identities. Formerly abducted young mothers mediate the social integration of their children by engaging in strategies to support and foster their wellbeing and social relationships. However, the contexts in which they are operating are highly constrained and the relational identities of children born in the LRA are fluid and potentially insecure within communities of return. Implications for policy and programming are discussed. PMID:26671833

  6. Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility.

    Science.gov (United States)

    Martinez-Argudo, Isabel; Veenendaal, Andreas K J; Liu, Xia; Roehrich, A Dorothea; Ronessen, Maria C; Franzoni, Giulia; van Rietschoten, Katerine N; Morimoto, Yusuke V; Saijo-Hamano, Yumiko; Avison, Matthew B; Studholme, David J; Namba, Keiichi; Minamino, Tohru; Blocker, Ariel J

    2013-01-01

    Salicylidene acylhydrazides identified as inhibitors of virulence-mediating type III secretion systems (T3SSs) potentially target their inner membrane export apparatus. They also lead to inhibition of flagellar T3SS-mediated swimming motility in Salmonella enterica serovar. Typhimurium. We show that INP0404 and INP0405 act by reducing the number of flagella/cell. These molecules still inhibit motility of a Salmonella ΔfliH-fliI-fliJ/flhB((P28T)) strain, which lacks three soluble components of the flagellar T3S apparatus, suggesting that they are not the target of this drug family. We implemented a genetic screen to search for the inhibitors' molecular target(s) using motility assays in the ΔfliH-fliI/flhB((P28T)) background. Both mutants identified were more motile than the background strain in the absence of the drugs, although HM18 was considerably more so. HM18 was more motile than its parent strain in the presence of both drugs while DI15 was only insensitive to INP0405. HM18 was hypermotile due to hyperflagellation, whereas DI15 was not hyperflagellated. HM18 was also resistant to a growth defect induced by high concentrations of the drugs. Whole-genome resequencing of HM18 indicated two alterations within protein coding regions, including one within atpB, which encodes the inner membrane a-subunit of the F(O)F(1)-ATP synthase. Reverse genetics indicated that the alteration in atpB was responsible for all of HM18's phenotypes. Genome sequencing of DI15 uncovered a single A562P mutation within a gene encoding the flagellar inner membrane protein FlhA, the direct role of which in mediating drug insensitivity could not be confirmed. We discuss the implications of these findings in terms of T3SS export apparatus function and drug target identification.

  7. Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility.

    Directory of Open Access Journals (Sweden)

    Isabel Martinez-Argudo

    Full Text Available Salicylidene acylhydrazides identified as inhibitors of virulence-mediating type III secretion systems (T3SSs potentially target their inner membrane export apparatus. They also lead to inhibition of flagellar T3SS-mediated swimming motility in Salmonella enterica serovar. Typhimurium. We show that INP0404 and INP0405 act by reducing the number of flagella/cell. These molecules still inhibit motility of a Salmonella ΔfliH-fliI-fliJ/flhB((P28T strain, which lacks three soluble components of the flagellar T3S apparatus, suggesting that they are not the target of this drug family. We implemented a genetic screen to search for the inhibitors' molecular target(s using motility assays in the ΔfliH-fliI/flhB((P28T background. Both mutants identified were more motile than the background strain in the absence of the drugs, although HM18 was considerably more so. HM18 was more motile than its parent strain in the presence of both drugs while DI15 was only insensitive to INP0405. HM18 was hypermotile due to hyperflagellation, whereas DI15 was not hyperflagellated. HM18 was also resistant to a growth defect induced by high concentrations of the drugs. Whole-genome resequencing of HM18 indicated two alterations within protein coding regions, including one within atpB, which encodes the inner membrane a-subunit of the F(OF(1-ATP synthase. Reverse genetics indicated that the alteration in atpB was responsible for all of HM18's phenotypes. Genome sequencing of DI15 uncovered a single A562P mutation within a gene encoding the flagellar inner membrane protein FlhA, the direct role of which in mediating drug insensitivity could not be confirmed. We discuss the implications of these findings in terms of T3SS export apparatus function and drug target identification.

  8. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition.

    Science.gov (United States)

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S; Jones, David R; Sadelain, Michel; Adusumilli, Prasad S

    2016-08-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1-mediated (PD-1-mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB-based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies.

  9. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition.

    Science.gov (United States)

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S; Jones, David R; Sadelain, Michel; Adusumilli, Prasad S

    2016-08-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1-mediated (PD-1-mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB-based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  10. β Integrins Mediate FAK Y397 Autophosphorylation of Resistance Arteries during Eutrophic Inward Remodeling in Hypertension

    OpenAIRE

    Heerkens, Egidius H.J; Quinn, Lisa; Withers, Sarah B.; Heagerty, Anthony M

    2014-01-01

    Human essential hypertension is characterized by eutrophic inward remodeling of the resistance arteries with little evidence of hypertrophy. Upregulation of αVβ3 integrin is crucial during this process. In order to investigate the role of focal adhesion kinase (FAK) activation in this process, the level of FAK Y397 autophosphorylation was studied in small blood vessels from young TGR(mRen2)27 animals as blood pressure rose and eutrophic inward remodeling took place. Between weeks 4 and 5, thi...

  11. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China.

    Science.gov (United States)

    Mu, Quanhua; Li, Jin; Sun, Yingxue; Mao, Daqing; Wang, Qing; Luo, Yi

    2015-05-01

    Antibiotic resistance genes (ARGs) in livestock feedlots deserve attention because they are prone to transfer to human pathogens and thus pose threats to human health. In this study, the occurrence of 21 ARGs, including tetracycline (tet)-, sulfonamide (sul)-, plasmid-mediated quinolone (PMQR)- and macrolide-resistance (erm) genes were investigated in feces and adjacent soils from chicken, swine, and cattle feedlots in Northern China. PMQR and sul ARGs were the most prevalent and account for over 90.0 % of the total ARGs in fecal samples. Specifically, PMQR genes were the most prevalent, accounting for 59.6 % of the total ARGs, followed by sul ARGs (34.2 %). The percentage of tet ARGs was 3.4 %, and erm ARGs accounted for only 1.9 %. Prevalence of PMQR and sul ARGs was also found in swine and cattle feces. The overall trend of ARG concentrations in feces of different feeding animals was chicken > swine > beef cattle in the studied area. In soils, sul ARGs had the highest concentration and account for 71.1 to 80.2 % of the total ARGs, which is possibly due to the widely distributed molecular carriers (i.e., class one integrons), facilitating sul ARG propagation. Overall, this study provides integrated profiles of various types of ARGs in livestock feedlots and thus provides a reference for the management of antibiotic use in livestock farming. PMID:25475616

  12. Mitigation of peroxynitrite-mediated nitric oxide (NO) toxicity as a mechanism of induced adaptive NO resistance in the CNS.

    Science.gov (United States)

    Bishop, Amy; Gooch, Renea; Eguchi, Asuka; Jeffrey, Stephanie; Smallwood, Lorraine; Anderson, James; Estevez, Alvaro G

    2009-04-01

    During CNS injury and diseases, nitric oxide (NO) is released at a high flux rate leading to formation of peroxynitrite (ONOO(*)) and other reactive nitrogenous species, which nitrate tyrosines of proteins to form 3-nitrotyrosine (3NY), leading to cell death. Previously, we have found that motor neurons exposed to low levels of NO become resistant to subsequent cytotoxic NO challenge; an effect dubbed induced adaptive resistance (IAR). Here, we report IAR mitigates, not only cell death, but 3NY formation in response to cytotoxic NO. Addition of an NO scavenger before NO challenge duplicates IAR, implicating reactive nitrogenous species in cell death. Addition of uric acid (a peroxynitrite scavenger) before cytotoxic NO challenge, duplicates IAR, implicating peroxynitrite, with subsequent 3NY formation, in cell death, and abrogation of this pathway as a mechanism of IAR. IAR is dependent on the heme-metabolizing enzyme, heme oxygenase-1 (HO1), as indicated by the elimination of IAR by a specific HO1 inhibitor, and by the finding that neurons isolated from HO1 null mice have increased NO sensitivity with concomitant increased 3NY formation. This data indicate that IAR is an HO1-dependent mechanism that prevents peroxynitrite-mediated NO toxicity in motor neurons, thereby elucidating therapeutic targets for the mitigation of CNS disease and injury. PMID:19183270

  13. Coexistence of plasmid-mediated quinolone resistance determinants and AmpC-Beta-Lactamases in Escherichia coli strains in Egypt.

    Science.gov (United States)

    Abd El-Aziz, N K; Gharib, A A

    2015-01-01

    Three kinds of plasmid—mediated quinolone resistance (PMQR) determinants (qnr genes, qepA and aac(6')—Ib—cr) have been discovered and shown to be widely distributed among clinical isolates. To characterize the prevalence of PMQR determinants among AmpC—producing E. coli strains in food—producing animals and animal by—products in Egypt, twenty—nine E. coli strains were tested for their susceptibilities to antimicrobials and screened for PMQR determinants and AmpC Beta lactamases using PCR and plasmid profiling. It was found that qnr genes being detected alone or in combination with qepA or aac(6')—Ib—cr genes in 11 (37.9%) strains comprising 9 for qnrA and only one for both qnrB and qnrS. Moreover, qepA and aac(6')—Ib—cr were detected in 41.38% and 3.45% of E. coli strains, respectively. The ampC β—lactamase genes were detected in 75.86 % of all strains and in 100% and 53.3% of the PMQR determinant—positive and negative strains, respectively. In several cases, plasmid profiling of E. coli strains exhibiting the coexistence of both PMQR determinants and ampC genes on a single plasmid as a first report in Egypt that may contribute to rapid spread and increase in bacterial resistance, which is important to public health concern. PMID:26475385

  14. Identification and characterization of integron mediated antibiotic resistance in pentachlorophenol degrading bacterium isolated from the chemostat

    Institute of Scientific and Technical Information of China (English)

    SHARMA Ashwani; THAKUR Indu Shekhar

    2009-01-01

    A bacterial consortium was developed by continuous enrichment of microbial population isolated from sediment core of pulp and paper mill effluent in mineral salts medium (MSM) supplemented with pentachlorophenol (PCP) as sole source of carbon and energy in the chemostat.The consortia contained three bacterial strains.They were identified as Escherichia coli,Pseudomonas aeruginosa and Acinetobacter sp.by 16S rRNA gene sequence analysis.Acinetobacter sp.readily degraded PCP through the formation of tetrachloro-p-hydroquinone (TecH),2-chloro-1,4-benzenediol and products of ortho ring cleavage detected by Gas Chromatograph/Mass Spectrometer μgC-MS).Out of the three acclimated PCP degrading bacterial strains only one strain,Acinetobacter sp.showed the presence of integron gene cassette as a marker of its stability and antibiotic resistance.The strain possessed a 4.17 kb amplicon with 22 ORF's.The plasmid isolated from the Acinetobacter sp.was subjected to shotgun cloning through restriction digestion by BamHI,HindIII and SalI,ligated to pUC19 vector and transformed into E.coli XLBlue1α,and finally selected on MSM containing PCP as sole source of carbon and energy with ampicillin as antibiotic marker.DNA sequence analysis of recombinant clones indicated homology with integron gene cassette and multiple antibiotic resistance genes.

  15. Sarcopenic Obesity and Cognitive Functioning: The Mediating Roles of Insulin Resistance and Inflammation?

    Directory of Open Access Journals (Sweden)

    M. E. Levine

    2012-01-01

    Full Text Available This study examined the influence of insulin resistance and inflammation on the association between body composition and cognitive performance in older adults, aged 60–69 and aged 70 and older. Subjects included 1127 adults from NHANES 1999–2002. Body composition was categorized based on measurements of muscle mass and waist circumference as sarcopenic nonobese, nonsarcopenic obese, sarcopenic obese, and normal. Using OLS regression models, our findings suggest body composition is not associated with cognitive functioning in adults ages 60–69; however, for adults aged 70 and over, sarcopenia and obesity, either independently or concurrently, were associated with worse cognitive functioning relative to non-sarcopenic non-obese older adults. Furthermore, insulin resistance accounted for a significant proportion of the relationship between cognitive performance and obesity, with or without sarcopenia. Additionally, although high CRP was significantly associated with poorer cognitive functioning in adults ages 60–69, it did not influence the association between body composition and cognitive performance. This study provides evidence that age-related physiological maladaptations, such as metabolic deregulation, which are associated with abdominal fat, may simultaneously contribute to lower cognition and muscle mass, reflecting a degradation of multiple physiological systems.

  16. MULTICELLULAR-MEDIATED RESISTANCE TO CISPLATIN AND TAXOL IN HUMAN OVARIAN CANCER SK-OV-3IP1 MULTICELLULAR AGGREGATES

    Institute of Scientific and Technical Information of China (English)

    陈建利; 丰有吉; 张琴

    2002-01-01

    Objective: To investigate the chemosensitivity of ovarian cancer SK-OV-3ip1 multicellular aggregates (MCA) to cisplatin and taxol and to explore the possible mechanisms. Methods: Liquid overlay system was employed to obtain MCA. We detected the resistance using trypan blue exclusion testing, clonogenic assay, cell cycle profiles and apoptosis with flow cytometry (FCM). Results: After cisplatin exposure, MCA cells showed nearly equal cell viability with monolayer cells (P=0.05). After 40(M cisplatin exposure for 12 h, no clone ((50 cells) was formed, but more viable cells attached to the bottom of 24-well plate in MCA group than monolayer. Furthermore, apoptosis rate and cell cycle profiles with FCM had no significant change between MCA and monolayer cells. After taxol exposure, however, trypan blue exclusion testing demonstrated higher cell viability in MCA cells (P=0.003) and higher clone formation rate in 100-cell group than monolayer cells (0.01resistant to taxol but not to cisplatin. Cell cycle redistribution and multicellular-mediated inhibition of apoptosis can partially account for the resistance.

  17. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle.

    Science.gov (United States)

    Badin, Pierre-Marie; Vila, Isabelle K; Louche, Katie; Mairal, Aline; Marques, Marie-Adeline; Bourlier, Virginie; Tavernier, Geneviève; Langin, Dominique; Moro, Cedric

    2013-04-01

    Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cε membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice. PMID:23471217

  18. Detection of Panton-Valentine Leukocidin DNA from methicillin-resistant Staphylococcus aureus by resistive pulse sensing and loop-mediated isothermal amplification with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Alice Kar Lai, E-mail: s0907465@cuhk.mail.serv.edu.hk [Program of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong (Hong Kong); Lu, Haifei, E-mail: hflu@ee.cuhk.edu.hk [Center for Advanced Research in Photonics, Department of Electronic Engineering, The Chinese University of Hong Kong (Hong Kong); Wu, Shu Yuen, E-mail: sywu@ee.cuhk.edu.hk [Center for Advanced Research in Photonics, Department of Electronic Engineering, The Chinese University of Hong Kong (Hong Kong); Kwok, Ho Chin, E-mail: hckwock@ee.cuhk.edu.hk [Center for Advanced Research in Photonics, Department of Electronic Engineering, The Chinese University of Hong Kong (Hong Kong); Ho, Ho Pui, E-mail: hpho@ee.cuhk.edu.hk [Center for Advanced Research in Photonics, Department of Electronic Engineering, The Chinese University of Hong Kong (Hong Kong); Yu, Samuel, E-mail: samscyu@gmail.com [The MacDiarmid Institute for Advanced Materials and Nanotechnology, Christchurch (New Zealand); Izon Science, PO Box 39-168, Harewood, Christchurch 8545 (New Zealand); Cheung, Anthony Ka Lun, E-mail: kalun2004@hotmail.com [Program of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong (Hong Kong); Kong, Siu Kai, E-mail: skkong@cuhk.edu.hk [Program of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong (Hong Kong)

    2013-06-11

    Graphical abstract: -- Highlights: •A novel diagnostic assay is developed to detect the MRSA's Panton-Valentine Leukocidin toxin. •Detection is based on target DNA amplification at one single temperature at 65 °C by LAMP. •Amplicons are then hybridized with 2 Au-nanoparticles with specific DNA probes for sensing. •The supra-assemblies are subsequently sensed by resistive pulse sensing. •Detection limit: ∼200 copies of DNA; time for detection: completed within 2 h. -- Abstract: This report describes a novel diagnostic assay for rapid detection of the Panton-Valentine Leukocidin (PVL) toxin of methicillin-resistant Staphylococcus aureus (MRSA) utilizing resistive pulse sensing (RPS), loop-mediated isothermal DNA amplification (LAMP) in combination with gold nanoparticles (AuNPs). The PVL DNA from MRSA was specifically amplified by LAMP using four primers at one temperature (65 °C). The DNA products with biotin were then conjugated to a first AuNP1 (55 ± 2 nm) through biotin–avidin binding. A second AuNP2 (30 ± 1.5 nm) coated with a specific DNA probe hybridized with the LAMP DNA products at the loop region to enhance assay sensitivity and specificity, to generate supra-AuNP1-DNA-AuNP2 assemblies. Scanning electron microscopy confirmed the presence of these supra-assemblies. Using RPS, detection and quantitation of the agglomerated AuNPs were performed by a tunable fluidic nanopore sensor. The results demonstrate that the LAMP-based RPS sensor is sensitive and rapid for detecting the PVL DNA. This technique could achieve a limit of detection (LOD) up to about 500 copies of genomic DNA from the bacteria MRSA MW2 and the detection can be completed within two hours with a straightforward signal-to-readout setup. It is anticipated that this LAMP-based AuNP RPS may become an effective tool for MRSA detection and a potential platform in clinical laboratory to report the presence or absence of other types of infectious agents.

  19. Detection of Panton-Valentine Leukocidin DNA from methicillin-resistant Staphylococcus aureus by resistive pulse sensing and loop-mediated isothermal amplification with gold nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •A novel diagnostic assay is developed to detect the MRSA's Panton-Valentine Leukocidin toxin. •Detection is based on target DNA amplification at one single temperature at 65 °C by LAMP. •Amplicons are then hybridized with 2 Au-nanoparticles with specific DNA probes for sensing. •The supra-assemblies are subsequently sensed by resistive pulse sensing. •Detection limit: ∼200 copies of DNA; time for detection: completed within 2 h. -- Abstract: This report describes a novel diagnostic assay for rapid detection of the Panton-Valentine Leukocidin (PVL) toxin of methicillin-resistant Staphylococcus aureus (MRSA) utilizing resistive pulse sensing (RPS), loop-mediated isothermal DNA amplification (LAMP) in combination with gold nanoparticles (AuNPs). The PVL DNA from MRSA was specifically amplified by LAMP using four primers at one temperature (65 °C). The DNA products with biotin were then conjugated to a first AuNP1 (55 ± 2 nm) through biotin–avidin binding. A second AuNP2 (30 ± 1.5 nm) coated with a specific DNA probe hybridized with the LAMP DNA products at the loop region to enhance assay sensitivity and specificity, to generate supra-AuNP1-DNA-AuNP2 assemblies. Scanning electron microscopy confirmed the presence of these supra-assemblies. Using RPS, detection and quantitation of the agglomerated AuNPs were performed by a tunable fluidic nanopore sensor. The results demonstrate that the LAMP-based RPS sensor is sensitive and rapid for detecting the PVL DNA. This technique could achieve a limit of detection (LOD) up to about 500 copies of genomic DNA from the bacteria MRSA MW2 and the detection can be completed within two hours with a straightforward signal-to-readout setup. It is anticipated that this LAMP-based AuNP RPS may become an effective tool for MRSA detection and a potential platform in clinical laboratory to report the presence or absence of other types of infectious agents

  20. CSF1 Receptor Targeting In Prostate Cancer Reverses Macrophage-Mediated Resistance To Androgen Blockade Therapy

    Science.gov (United States)

    Escamilla, Jemima; Schokrpur, Shiruyeh; Liu, Connie; Priceman, Saul J.; Moughon, Diana; Jiang, Ziyue; Pouliot, Frederic; Magyar, Clara; Sung, James L.; Xu, Jingying; Deng, Gang; West, Brian L.; Bollag, Gideon; Fradet, Yves; Lacombe, Louis; Jung, Michael E.; Huang, Jiaoti; Wu, Lily

    2015-01-01

    Growing evidence suggests that tumor-associated macrophages (TAMs) promote cancer progression and therapeutic resistance by enhancing angiogenesis, matrix-remodeling and immunosuppression. In this study prostate cancer (PCa) under androgen blockade therapy (ABT) was investigated, demonstrating that TAMs contribute to PCa disease recurrence through paracrine signaling processes. ABT induced the tumor cells to express macrophage colony-stimulating factor 1 (M-CSF-1 or CSF-1) and other cytokines that recruit and modulate macrophages, causing a significant increase in TAM infiltration. Inhibitors of CSF-1 signaling through its receptor, CSF-1R, were tested in combination with ABT, demonstrating that blockade of TAM influx in this setting disrupts tumor promotion and sustains a more durable therapeutic response compared to ABT alone. PMID:25736687

  1. CCBE1 promotes GIST development through enhancing angiogenesis and mediating resistance to imatinib.

    Science.gov (United States)

    Tian, Guang-Ang; Zhu, Chun-Chao; Zhang, Xiao-Xin; Zhu, Lei; Yang, Xiao-Mei; Jiang, Shu-Heng; Li, Rong-Kun; Tu, Lin; Wang, Yang; Zhuang, Chun; He, Ping; Li, Qing; Cao, Xiao-Yan; Cao, Hui; Zhang, Zhi-Gang

    2016-01-01

    Gastrointestinal stromal tumor (GIST) is the most major mesenchymal neoplasm of the digestive tract. Up to now, imatinib mesylate has been used as a standard first-line treatment for irresectable and metastasized GIST patients or adjuvant treatment for advanced GIST patients who received surgical resection. However, secondary resistance to imatinib usually happens, resulting in a major obstacle in GIST successful therapy. In this study, we first found that collagen and calcium binding EGF domains 1 (CCBE1) expression gradually elevated along with the risk degree of NIH classification, and poor prognosis emerged in the CCBE1-positive patients. In vitro experiments showed that recombinant CCBE1 protein can enhance angiogenesis and neutralize partial effect of imatinib on the GIST-T1 cells. In conclusion, these data indicated that CCBE1 may be served as a new predictor of prognosis in post-operative GIST patients and may play an important role in stimulating GIST progression. PMID:27506146

  2. Polyphenol oxidase and lysozyme mediate induction of systemic resistance in tomato, when a bioelicitor is used

    Directory of Open Access Journals (Sweden)

    Goel Navodit

    2015-12-01

    Full Text Available Tomato (Solanum lycopersicum L. is attacked by Pseudomonas syringae pv. tomato causing heavy damage to the crops. The present study focused on the application of aqueous fruit extracts of neem (Azadirachta indica L. on a single node of aseptically raised tomato plants. Observations were done, and the changes in the activity and isoenzyme profile of polyphenol oxidase (PPO and lysozyme, both at the site of treatment as well as away from it, were noted. The results demonstrate that neem extract could significantly induce the activities of both the enzymes as well as upregulate the de novo expression of additional PPO isoenzymes. Induction of systemic acquired resistance (SAR by natural plant extracts is a potent eco-friendly crop protection method.

  3. Proteolysis of the barley receptor-like protein kinase Rpg1 by a proteasome pathway is required for Rpg1 mediated stem rust resistance

    Science.gov (United States)

    In plants, disease resistance mediated by the gene-for-gene mechanism involves the recognition of specific effector molecules produced by the pathogen either directly or indirectly by the R-gene products. This recognition triggers a series of signals thereby serving as a molecular switch in regulati...

  4. Up-Regulation of P21 Inhibits TRAIL-Mediated Extrinsic Apoptosis, Contributing Resistance to SAHA in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Xing Wu

    2014-08-01

    Full Text Available Background/Aim: P21, a multifunctional cell cycle-regulatory molecule, regulates apoptotic cell death. In this study we examined the effect of altered p21 expression on the sensitivity of acute myeloid leukemia cells in response to HDAC inhibitor SAHA treatment and investigated the underlying mechanism. Methods: Stably transfected HL60 cell lines were established in RPMI-1640 with supplementation of G-418. Cell viability was measured by MTT assay. Western blot was applied to assess the protein expression levels of target genes. Cell apoptosis was monitored by AnnexinV-PE/7AAD assay. Results: We showed HL60 cells that that didn't up-regulate p21 expression were more sensitive to SAHA-mediated apoptosis than NB4 and U937 cells that had increased p21 level. Enforced expression of p21 in HL60 cells reduced sensitivity to SAHA and blocked TRAIL-mediated apoptosis. Conversely, p21 silencing in NB4 cells enhanced SAHA-mediated apoptosis and lethality. Finally, we found that combined treatment with SAHA and rapamycin down-regulated p21 and enhanced apoptosis in AML cells. Conclusion: We conclude that up-regulated p21 expression mediates resistance to SAHA via inhibition of TRAIL apoptotic pathway. P21 may serve as a candidate biomarker to predict responsiveness or resistance to SAHA-based therapy in AML patients. In addition, rapamycin may be an effective agent to override p21-mediated resistance to SAHA in AML patients.

  5. Epigenetics and energetics in ventral hippocampus mediate rapid antidepressant action: Implications for treatment resistance.

    Science.gov (United States)

    Bigio, Benedetta; Mathé, Aleksander A; Sousa, Vasco C; Zelli, Danielle; Svenningsson, Per; McEwen, Bruce S; Nasca, Carla

    2016-07-12

    Although regulation of energy metabolism has been linked with multiple disorders, its role in depression and responsiveness to antidepressants is less known. We found that an epigenetic and energetic agent, acetyl-l-carnitine (LAC, oral administration), rapidly rescued the depressive- and central and systemic metabolic-like phenotype of LAC-deficient Flinders Sensitive Line rats (FSL). After acute stress during LAC treatment, a subset of FSL continued to respond to LAC (rFSL), whereas the other subset did not (nrFSL). RNA sequencing of the ventral dentate gyrus, a mood-regulatory region, identified metabolic factors as key markers predisposing to depression (insulin receptors Insr, glucose transporters Glut-4 and Glut-12, and the regulator of appetite Cartpt) and to LAC responsiveness (leptin receptors Lepr, metabotropic glutamate receptors-2 mGlu2, neuropeptide-Y NPY, and mineralocorticoid receptors MR). Furthermore, we found that stress-induced treatment resistance in nrFSL shows a new gene profile, including the metabolic regulator factors elongation of long chain fatty acids 7 (Elovl7) and cytochrome B5 reductase 2 (Cyb5r2) and the synaptic regulator NPAS4. Finally, while improving central energy regulation and exerting rapid antidepressant-like effects, LAC corrected a systemic hyperinsulinemia and hyperglicemia in rFSL and failed to do that in nrFSL. These findings establish CNS energy regulation as a factor to be considered for the development of better therapeutics. Agents such as LAC that regulate metabolic factors and reduce glutamate overflow could rapidly ameliorate depression and could also be considered for treatment of insulin resistance in depressed subjects. The approach here serves as a model for identifying markers and underlying mechanisms of predisposition to diseases and treatment responsiveness that may be useful in translation to human behavior and psychopathology. PMID:27354525

  6. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance.

    Science.gov (United States)

    Li, X; Clarke, J D; Zhang, Y; Dong, X

    2001-10-01

    The Arabidopsis NPR1 protein is an essential regulatory component of systemic acquired resistance (SAR). Mutations in the NPR1 gene completely block the induction of SAR by signals such as salicylic acid (SA). An Arabidopsis mutant, snc1 (suppressor of npr1-1, constitutive 1), was isolated in a screen for suppressors of npr1-1. In the npr1-1 background, the snc1 mutation resulted in constitutive resistance to Pseudomonas syringae maculicola ES4326 and Peronospora parasitica Noco2. High levels of SA were detected in the mutant and shown to be required for manifestation of the snc1 phenotype. The snc1 mutation was mapped to the RPP5 resistance (R) gene cluster and the eds1 mutation that blocks RPP5-mediated resistance suppressed snc1. These data suggest that a RPP5-related resistance pathway is activated constitutively in snc1. This pathway does not employ NPR1 but requires the signal molecule SA and the function of EDS1. Moreover, in snc1, constitutive resistance is conferred in the absence of cell death, which is often associated with R-gene mediated resistance.

  7. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. Zoom into the tracking detector and the LAr calorimeter where its detailed structure is highlighted. The tracks and clusters of the two electron pairs are colored red and blue, respectively.

  8. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. The tracks and clusters of the two electron pairs are colored red and blue, respectively.

  9. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. Zoom into the tracking detector. The tracks and clusters of the two electron pairs are colored red and blue, respectively.

  10. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. The tracks of the two electron pairs are colored red, the clusters in the LAr calorimeter are colored darkgreen.

  11. Diversity of genetic backgrounds modulating the durability of a major resistance gene. Analysis of a core collection of pepper landraces resistant to Potato virus Y.

    Science.gov (United States)

    Quenouille, Julie; Saint-Felix, Ludovic; Moury, Benoit; Palloix, Alain

    2016-02-01

    The evolution of resistance-breaking capacity in pathogen populations has been shown to depend on the plant genetic background surrounding the resistance genes. We evaluated a core collection of pepper (Capsicum annuum) landraces, representing the worldwide genetic diversity, for its ability to modulate the breakdown frequency by Potato virus Y of major resistance alleles at the pvr2 locus encoding the eukaryotic initiation factor 4E (eIF4E). Depending on the pepper landrace, the breakdown frequency of a given resistance allele varied from 0% to 52.5%, attesting to their diversity and the availability of genetic backgrounds favourable to resistance durability in the plant germplasm. The mutations in the virus genome involved in resistance breakdown also differed between plant genotypes, indicating differential selection effects exerted on the virus population by the different genetic backgrounds. The breakdown frequency was positively correlated with the level of virus accumulation, confirming the impact of quantitative resistance loci on resistance durability. Among these loci, pvr6, encoding an isoform of eIF4E, was associated with a major effect on virus accumulation and on the breakdown frequency of the pvr2-mediated resistance. This exploration of plant genetic diversity delivered new resources for the control of pathogen evolution and the increase in resistance durability. PMID:25967744

  12. Agrobacterium mediated transformation of brassica juncea (l.) czern with chitinase gene conferring resistance against fungal infections

    International Nuclear Information System (INIS)

    Brassica juncea (Czern and Coss., L.) is an important oilseed crop. Since it is attacked by several bacterial and fungal diseases, therefore, we developed an easy and simple protocol for the regeneration and transformation of B. juncea variety RAYA ANMOL to give rise to transgenic plants conferring resistance against various fungal diseases. The transformation was carried out using Agrobacterium with Chitinase gene. This gene was isolated from Streptomyces griseus HUT6037. We used two types of explants for transformation i.e. hypocotyls and cotyledons. Only hypocotyls explants showed good results regarding callus initiation. Different hormonal concentrations were applied i.e. BAP 2, 4 and 6 mgL-1 and NAA 0.1, 0.2 and 0.3 mgL-1. However, high transformation efficiency was observed by supplementing the medium with combination of 2 mgL-1 BAP and 0.2 mgL-1 for initiation of callus. Similarly 10 mgL-1 kanamycin and 200 mgL-1 cefotaxime also proved successful for the selection of transformed callus. In order to confirm the presence of transgenic callus Polymerase chain reaction was performed using specific primers for Chitinase gene. (author)

  13. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean.

    Science.gov (United States)

    Dong, Yang; Yang, Xia; Liu, Jing; Wang, Bo-Han; Liu, Bo-Ling; Wang, Yin-Zheng

    2014-01-01

    Loss of seed dispersal is a key agronomical trait targeted by ancient human selection and has been regarded as a milestone of crop domestication. In this study, in the legume crop soybean Glycine max (L.) Merr. which provides vegetable oils and proteins for humans, we show that the key cellular feature of the shattering-resistant trait lies in the excessively lignified fibre cap cells (FCC) with the abscission layer unchanged in the pod ventral suture. We demonstrate that a NAC (NAM, ATAF1/2 and CUC2) gene shattering1-5 (SHAT1-5) functionally activates secondary wall biosynthesis and promotes the significant thickening of FCC secondary walls by expression at 15-fold the level of the wild allele, which is attributed to functional disruption of the upstream repressor. We show that strong artificial selection of SHAT1-5 has caused a severe selective sweep across ~ 116 kb on chromosome 16. This locus and regulation mechanism could be applicable to legume crop improvement.

  14. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing

    Science.gov (United States)

    Yang, Yang; Qiu, Jian-Ge; Li, Yong; Di, Jin-Ming; Zhang, Wen-Ji; Jiang, Qi-Wei; Zheng, Di-Wei; Chen, Yao; Wei, Meng-Ning; Huang, Jia-Rong; Wang, Kun; Shi, Zhi

    2016-01-01

    The RNA-guided clustered regularly interspaced short palindromic (CRISPR) in combination with a CRISPR-associated nuclease 9 (Cas9) nuclease system is a new rapid and precise technology for genome editing. In the present study, we applied the CRISPR/Cas9 system to target ABCB1 (also named MDR1) gene which encodes a 170 kDa transmembrane glycoprotein (P-glycoprotein/P-gp) transporting multiple types of chemotherapeutic drugs including taxanes, epipodophyllotoxins, vinca alkaloids and anthracyclines out of cells to contribute multidrug resistance (MDR) in cancer cells. Our data showed that knockout of ABCB1 by CRISPR/Cas9 system was succesfully archieved with two target sgRNAs in two MDR cancer cells due to the alteration of genome sequences. Knockout of ABCB1 by CRISPR/Cas9 system significantly enhances the sensitivity of ABCB1 substrate chemotherapeutic agents and the intracellular accumulation of rhodamine 123 and doxorubicin in MDR cancer cells. Although now there are lots of limitations to the application of CRISPR/Cas9 for editing cancer genes in human patients, our study provides valuable clues for the use of the CRISPR/Cas9 technology in the investigation and conquest of cancer MDR. PMID:27725879

  15. Regulatory T Cells Resist Cyclosporine-Induced Cell Death via CD44-Mediated Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Shannon M. Ruppert

    2015-01-01

    Full Text Available Cyclosporine A (CSA is an immunosuppressive agent that specifically targets T cells and also increases the percentage of pro-tolerogenic CD4+Foxp3+ regulatory T cells (Treg through unknown mechanisms. We previously reported that CD44, a receptor for the extracellular matrix glycosaminoglycan hyaluronan (HA, promotes Treg stability in IL-2-low environments. Here, we asked whether CD44 signaling also promotes Treg resistance to CSA. We found that CD44 cross-linking promoted Foxp3 expression and Treg viability in the setting of CSA treatment. This effect was IL-2 independent but could be suppressed using sc-355979, an inhibitor of Stat5-phosphorylation. Moreover, we found that inhibition of HA synthesis impairs Treg homeostasis but that this effect could be overcome with exogenous IL-2 or CD44-cross-linking. Together, these data support a model whereby CD44 cross-linking by HA promotes IL-2-independent Foxp3 expression and Treg survival in the face of CSA.

  16. Investigating the consequences of eIF4E2 (4EHP interaction with 4E-transporter on its cellular distribution in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Dorota Kubacka

    Full Text Available In addition to the canonical eIF4E cap-binding protein, eukaryotes have evolved sequence-related variants with distinct features, some of which have been shown to negatively regulate translation of particular mRNAs, but which remain poorly characterised. Mammalian eIF4E proteins have been divided into three classes, with class I representing the canonical cap-binding protein eIF4E1. eIF4E1 binds eIF4G to initiate translation, and other eIF4E-binding proteins such as 4E-BPs and 4E-T prevent this interaction by binding eIF4E1 with the same consensus sequence YX 4Lϕ. We investigate here the interaction of human eIF4E2 (4EHP, a class II eIF4E protein, which binds the cap weakly, with eIF4E-transporter protein, 4E-T. We first show that ratios of eIF4E1:4E-T range from 50:1 to 15:1 in HeLa and HEK293 cells respectively, while those of eIF4E2:4E-T vary from 6:1 to 3:1. We next provide evidence that eIF4E2 binds 4E-T in the yeast two hybrid assay, as well as in pull-down assays and by recruitment to P-bodies in mammalian cells. We also show that while both eIF4E1 and eIF4E2 bind 4E-T via the canonical YX 4Lϕ sequence, nearby downstream sequences also influence eIF4E:4E-T interactions. Indirect immunofluorescence was used to demonstrate that eIF4E2, normally homogeneously localised in the cytoplasm, does not redistribute to stress granules in arsenite-treated cells, nor to P-bodies in Actinomycin D-treated cells, in contrast to eIF4E1. Moreover, eIF4E2 shuttles through nuclei in a Crm1-dependent manner, but in an 4E-T-independent manner, also unlike eIF4E1. Altogether we conclude that while both cap-binding proteins interact with 4E-T, and can be recruited by 4E-T to P-bodies, eIF4E2 functions are likely to be distinct from those of eIF4E1, both in the cytoplasm and nucleus, further extending our understanding of mammalian class I and II cap-binding proteins.

  17. Plasmid-Mediated Quinolone Resistance in Escherichia coli Isolates from Wild Birds and Chickens in South Korea.

    Science.gov (United States)

    Oh, Jae-Young; Kwon, Yong-Kuk; Tamang, Migma Dorji; Jang, Hyung-Kwan; Jeong, Ok-Mi; Lee, Hee-Soo; Kang, Min-Su

    2016-01-01

    A total of 2,423 nonduplicate isolates of Escherichia coli recovered from wild birds (n=793) and chickens (n=1,630) in South Korea were investigated for plasmid-mediated quinolone resistance (PMQR) genes. Altogether, 56 isolates with PMQR genes were identified, including 25 (3.2%) from wild birds and 31 (1.9%) from chickens, which were further characterized using molecular methods. Among them, qnrS, aac(6')-Ib-cr, qnrB, and qepA genes were detected in 47 (1.9%), 6 (0.24%), 2 (0.08%), and 1 (0.04%) isolates, respectively. The most prevalent gene, qnrS, was identified in 21 (0.9%) and 26 (1.1%) isolates from wild birds and chickens, respectively. The qnrB gene was identified in two chicken isolates, which included qnrB19 and a novel qnrB44 gene. Plasmid isolation and Southern hybridization revealed that qnrS1 was located on a large (>200 kbp) plasmid. The spread of the PMQR genes was attributed to a combination of horizontal dissemination and clonal expansion. The horizontal dissemination of PMQR genes was mostly mediated by IncK plasmids. Molecular typing demonstrated that the majority of the PMQR-positive isolates were genetically diverse. Only one chicken isolate belonged to ST131, which harbored an additional CMY-2 gene. Our findings suggest that the wild birds could serve as reservoirs of PMQR genes and spread them over long distances through migration. To our knowledge, this is the first report of PMQR genes in Korean wild birds. This study also reports qnrS2, qnrB19, qnrB44, and qepA genes for the first time in animal E. coli isolates from South Korea.

  18. Influence of IgG Subclass on Human Antimannan Antibody-Mediated Resistance to Hematogenously Disseminated Candidiasis in Mice.

    Science.gov (United States)

    Nishiya, Casey T; Boxx, Gayle M; Robison, Kerry; Itatani, Carol; Kozel, Thomas R; Zhang, Mason X

    2015-11-16

    Candida albicans is a yeast-like pathogen and can cause life-threatening systemic candidiasis. Its cell surface is enriched with mannan that is resistant to complement activation. Previously, we developed the recombinant human IgG1 antimannan antibody M1g1. M1g1 was found to promote complement activation and phagocytosis and protect mice from systemic candidiasis. Here, we evaluate the influence of IgG subclass on antimannan antibody-mediated protection. Three IgG subclass variants of M1g1 were constructed: M1g2, M1g3, and M1g4. The IgG subclass identity for each variant was confirmed with DNA sequence and subclass-specific antibodies. These variants contain identical M1 Fabs and exhibited similar binding affinities for C. albicans yeast and purified mannan. Yeast cells and hyphae recovered from the kidney of antibody-treated mice with systemic candidiasis showed uniform binding of each variant, indicating constitutive expression of the M1 epitope and antibody opsonization in the kidney. All variants promoted deposition of both murine and human C3 onto the yeast cell surface, with M1g4 showing delayed activation, as determined by flow cytometry and immunofluorescence microscopy. M1g4-mediated complement activation was found to be associated with its M1 Fab that activates the alternative pathway in an Fc-independent manner. Treatment with each subclass variant extended the survival of mice with systemic candidiasis (P candidiasis is influenced by its IgG subclass.

  19. Liposome-mediated Functional Expression of Multiple Drug Resistance Gene in Human Bone Marrow CD34+ Cells

    Institute of Scientific and Technical Information of China (English)

    曹文静; 邹萍

    2004-01-01

    Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorting (MACS) system, and then liposome-mediated MDR1 gene was transferred into bone marrow CD34+ cells. Fluorescence-activated cell sorter was used to evaluate the expression and functional activity of P-glycoprotein (P-gp) encoded by MDR1 gene. It was found that the purity of bone marrow CD34 + cells was approximately (91±4.56) % and recovery rate was (72.3±2.36) % by MACS. The expression of P-gp in the transfected CD34+ cells was obviously higher than that in non-transfected CD34+ cells. The amount of P-gp in non-transfected CD34+ cells was (11.2±2.2) %, but increased to (23.6±2.34) % 48 h after gene transfection (P<0.01). The amount of P-gp was gradually decreased to the basic level one week later. The accumulation and extrusion assays showed that the overexpression of P-gp could efflux Rh-123 out of cells and there was low fluorescence within the transfected cells. The functional activity of P-gp could be inhibited by 10 μg/ml verapamil. It was suggested that the transient and highly effective expression and functional activity of P-gp could be obtained by liposome-mediated MRD1 transferring into human normal bone marrow CD34 + cells.

  20. Histochemical aspects of wheat resistance to leaf blast mediated by silicon

    Directory of Open Access Journals (Sweden)

    Washington Luís da Silva

    2015-08-01

    Full Text Available Blast, caused by Pyricularia oryzae, has become a significant disease threat to wheat (Triticum aestivum L. in Brazil. This study aimed to investigate at the histochemical level if silicon (Si could enhance the production of flavonoids in the leaves of wheat plants in response to P. oryzae infection. Plants from the Aliança cultivar, which are susceptible to blast, were grown in hydroponic cultures containing 0 (-Si or 2 mM of Si (+Si and inoculated by spraying a conidial suspension of P. oryzae (1 × 105 conidia mL−1 on all adaxial leaf surfaces of plants at 60 days after emergence (growth stage 65. The fourth and fifth leaves of each plant were used to evaluate blast severity at 24, 36, 48, 72 and 96 h after inoculation (hai. At 96 hai, leaves were collected from plants to determine the foliar Si concentration. For cytological observations, leaf samples were randomly collected from the fourth and fifth leaves of each plant at 72 hai. The foliar Si concentration was higher in +Si plants (36 g kg−1 in comparison to -Si plants (2.6 g kg−1. This increased Si concentration was correlated with reduced fungal growth inside the epidermal cells and the development of blast symptoms on leaves. Strong fluorescence, which is an indication of the presence of flavonoids, was detected in the leaf cells of +Si plants using Neu’s and Wilson's reagents. A novel item of evidence is that, at the histochemical level, Si is involved in the potentiation of the biosynthetic pathway of flavonoids that increases wheat resistance to blast.

  1. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Saif Hameed

    Full Text Available We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR, however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25 and sphingolipid biosynthesis (AUR1 and SCS7 genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron

  2. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Dominik [Research Group Molecular Neuro-Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Naujokat, Cord, E-mail: cord.naujokat@med.uni-heidelberg.de [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany)

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  3. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    International Nuclear Information System (INIS)

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  4. Vandetanib (Zactima, ZD6474 antagonizes ABCC1- and ABCG2-mediated multidrug resistance by inhibition of their transport function.

    Directory of Open Access Journals (Sweden)

    Li-sheng Zheng

    Full Text Available BACKGROUND: ABCC1 and ABCG2 are ubiquitous ATP-binding cassette transmembrane proteins that play an important role in multidrug resistance (MDR. In this study, we evaluated the possible interaction of vandetanib, an orally administered drug inhibiting multiple receptor tyrosine kinases, with ABCC1 and ABCG2 in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: MDR cancer cells overexpressing ABCC1 or ABCG2 and their sensitive parental cell lines were used. MTT assay showed that vandetanib had moderate and almost equal-potent anti-proliferative activity in both sensitive parental and MDR cancer cells. Concomitant treatment of MDR cells with vandetanib and specific inhibitors of ABCC1 or ABCG2 did not alter their sensitivity to the former drug. On the other hand, clinically attainable but non-toxic doses of vandetanib were found to significantly enhance the sensitivity of MDR cancer cells to ABCC1 or ABCG2 substrate antitumor drugs. Flow cytometric analysis showed that vandetanib treatment significantly increase the intracellular accumulation of doxorubicin and rhodamine 123, substrates of ABCC1 and ABCG2 respectively, in a dose-dependent manner (P<0.05. However, no significant effect was shown in sensitive parental cell lines. Reverse transcription-PCR and Western blot analysis showed that vandetanib did not change the expression of ABCC1 and ABCG2 at both mRNA and protein levels. Furthermore, total and phosphorylated forms of AKT and ERK1/2 remained unchanged after vandetanib treatment in both sensitive and MDR cancer cells. CONCLUSIONS: Vandetanib is unlikely to be a substrate of ABCC1 or ABCG2. It overcomes ABCC1- and ABCG2-mediated drug resistance by inhibiting the transporter activity, independent of the blockade of AKT and ERK1/2 signal transduction pathways.

  5. Growth retardation, reduced invasiveness, and impaired colistin-mediated cell death associated with colistin resistance development in Acinetobacter baumannii.

    Science.gov (United States)

    Pournaras, Spyros; Poulou, Aggeliki; Dafopoulou, Konstantina; Chabane, Yassine Nait; Kristo, Ioulia; Makris, Demosthenes; Hardouin, Julie; Cosette, Pascal; Tsakris, Athanassios; Dé, Emmanuelle

    2014-01-01

    Two colistin-susceptible/colistin-resistant (Col(s)/Col(r)) pairs of Acinetobacter baumannii strains assigned to international clone 2, which is prevalent worldwide, were sequentially recovered from two patients after prolonged colistin administration. Compared with the respective Col(s) isolates (Ab248 and Ab299, both having a colistin MIC of 0.5 μg/ml), both Col(r) isolates (Ab249 and Ab347, with colistin MICs of 128 and 32 μg/ml, respectively) significantly overexpressed pmrCAB genes, had single-amino-acid shifts in the PmrB protein, and exhibited significantly slower growth. The Col(r) isolate Ab347, tested by proteomic analysis in comparison with its Col(s) counterpart Ab299, underexpressed the proteins CsuA/B and C from the csu operon (which is necessary for biofilm formation). This isolate also underexpressed aconitase B and different enzymes involved in the oxidative stress response (KatE catalase, superoxide dismutase, and alkyl hydroperoxide reductase), suggesting a reduced response to reactive oxygen species (ROS) and, consequently, impaired colistin-mediated cell death through hydroxyl radical production. Col(s) isolates that were indistinguishable by macrorestriction analysis from Ab299 caused six sequential bloodstream infections, and isolates indistinguishable from Ab248 caused severe soft tissue infection, while Col(r) isolates indistinguishable from Ab347 and Ab249 were mainly colonizers. In particular, a Col(s) isolate identical to Ab299 was still invading the bloodstream 90 days after the colonization of this patient by Col(r) isolates. These observations indicate considerably lower invasiveness of A. baumannii clinical isolates following the development of colistin resistance. PMID:24247145

  6. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans.

    Directory of Open Access Journals (Sweden)

    David Patsouris

    Full Text Available Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D. However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.

  7. Selection of drug resistance-mediating Plasmodium falciparum genetic polymorphisms by seasonal malaria chemoprevention in Burkina Faso.

    Science.gov (United States)

    Somé, Anyirékun Fabrice; Zongo, Issaka; Compaoré, Yves-Daniel; Sakandé, Souleymane; Nosten, François; Ouédraogo, Jean-Bosco; Rosenthal, Philip J

    2014-07-01

    Seasonal malaria chemoprevention (SMC), with regular use of amodiaquine plus sulfadoxine-pyrimethamine (AQ/SP) during the transmission season, is now a standard malaria control measure in the Sahel subregion of Africa. Another strategy under study is SMC with dihydroartemisinin plus piperaquine (DP). Plasmodium falciparum single nucleotide polymorphisms (SNPs) in P. falciparum crt (pfcrt), pfmdr1, pfdhfr, and pfdhps are associated with decreased response to aminoquinoline and antifolate antimalarials and are selected by use of these drugs. To characterize selection by SMC of key polymorphisms, we assessed 13 SNPs in P. falciparum isolated from children aged 3 to 59 months living in southwestern Burkina Faso and randomized to receive monthly DP or AQ/SP for 3 months in 2009. We compared SNP prevalence before the onset of SMC and 1 month after the third treatment in P. falciparum PCR-positive samples from 120 randomly selected children from each treatment arm and an additional 120 randomly selected children from a control group that did not receive SMC. The prevalence of relevant mutations was increased after SMC with AQ/SP. Significant selection was seen for pfcrt 76T (68.5% to 83.0%, P = 0.04), pfdhfr 59R (54.8% to 83.3%, P = 0.0002), and pfdhfr 108N (55.0% to 87.2%, P = 0.0001), with trends toward selection of pfmdr1 86Y, pfdhfr 51I, and pfdhps 437G. After SMC with DP, only borderline selection of wild-type pfmdr1 D1246 (mutant; 7.7% to 0%, P = 0.05) was seen. In contrast to AQ/SP, SMC with DP did not clearly select for known resistance-mediating polymorphisms. SMC with AQ/SP, but not DP, may hasten the development of resistance to components of this regimen. (This study has been registered at ClinicalTrials.gov under registration no. NCT00941785.).

  8. Production of herbicide-resistant coffee plants (Coffea canephora P. via Agrobacterium tumefaciens-mediated transformation

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Ribas

    2006-01-01

    Full Text Available Transgenic plants of Coffea canephora P. resistant to the herbicide ammonium glufosinate were regenerated from leaf explants after co-culture with Agrobacterium tumefaciens strain EHA105 harboring pCambia3301, a plasmid that contains the bar and the uidA genes both under control of 35S promoter. Direct somatic embryogenesis was induced on basal medium contained ¼ strength macro salts and half strength micro salts of MS medium, organic constituents of B5 medium and 30 g.L-1 sucrose supplemented with 5µM N6 - (2-isopentenyl-adenine (2-iP. Ten µM ammonium glufosinate was used for putative transgenic somatic embryos selection. Presence and integration of the bar gene were confirmed by PCR and Southern blot analysis. Selected transgenic coffee plants sprayed with up to 1600 mg.L-1 of FinaleTM, a herbicide containing glufosinate as the active ingredient, retained their pigmentation and continued to grow normally during ex vitro acclimation.Plantas transgênicas de Coffea canephora P resistentes ao herbicida glufosinato de amônio foram regeneradas a partir de explantes foliares co-cultivados com Agrobacterium tumefaciens EHA105 contendo o plasmídio pCambia3301 que contém os genes bar e uidA ambos sob controle do promotor 35S. Embriogênese somática direta foi induzida no meio contendo ¼ da concentração de macro, metade da concentração de micronutrientes do meio MS, constituintes orgânicos do meio B5 e 30 g.L-1 de sacarose suplementado com 5µM N6 - (2-isopentenil-adenina (2-iP e 10 µM de glufosinato de amônio para seleção de embriões transgênicos putativos. A presença e a integração do gene bar foram confirmados pelas análises de PCR e Southern blot. As plantas transgênicas selecionadas de café, pulverizadas com 1600 mg.L-1 do herbicida FinaleTM que contém glufosinato como ingrediente ativo, mantiveram a coloração e continuaram crescendo normalmente na aclimatação ex vitro.

  9. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. The tracks and clusters of the two electron pairs are colored red and blue, respectively. The three displays on the right-hand side show the r-phi view of the event (top), a zoom into the vertex region, indicating that the 4 electrons originate from the same primary vertex (middle), and a Lego plot indicating the amount of transverse energy Et measured in the calorimeters (bottom).

  10. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display (side view) of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. The tracks of the two electron pairs are colored red and blue, respectively. Electron clusters in the LAr calorimeter are colored darkgreen. The three displays on the right-hand side show the r-phi view of the event (top), a zoom into the vertex region, indicating that the 4 electrons originate from the same primary vertex (middle), and a Lego plot indicating the amount of transverse energy Et measured in the calorimeters (bottom).

  11. 乳腺癌耐受蛋白介导5-氟脲嘧啶的耐受及机制探讨%Breast Cancer Resistance Protein Mediates 5-Fluorouracil Resistance and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    袁建辉; 贺智敏; 吕辉; 余艳辉; 陈主初

    2005-01-01

    AIM To filtrate breast cancer resistance protein(BCRP)-mediated resistance agents and investigate the mechanism,so as to provide valuable datum for optimization clinical chemotherapy scheme to tumor with evaluation marker of BCRP expression. METHODS MTT assay was used to filtrate BCRP-mediated resistance agents with PA317/Tet-on/TRE-BCRP cell of different expression levels of BCRP after treated with different concentration anticancer agents. High performance liquid chromatography(HPLC) was applied to measure relative dose of intracellular retention resistance agents. Nuclear DNA fluorescence dye,Hochest 33258, staining and flow cytometry were adopted to detect apoptotic cells after treated with drugs. RESULTS There were shown increasing durg-resistance to 5-fluorouracil,methotrexate, doxirubicin, pirarubicin,etoposide and mitoxantrone followed with increasing expression of BCRP on PA317/Tet-on/TRE-BCRP cells(P<0.05, n=3),but shown sensitive to paclitaxel, cisplatin, vincristine, mitomycin and vindesine. There also was shown significant negative correlation between the intracellular retention dose of 5-fluorouracil with different expression of BCRP(r=-0.885, P<0.05, n=3).There were shown parallel results of that decreasing cellular apoptotic rate with increasing cellular expression of BCRP after treated with 5-fluorouracil by fluorescence dye staining and flow cytometry(P<0.05, n=3),and also shown significate rise of the apoptotic rate of BCRP expression cells after treated with Ko143 (P<0.05, n=3). Every group of cells could be different extently blocked in phase of G0/G1 treated with 5-fluorouracil. CONCLUSION Resistance of 5-fluorouracil could be especially mediated by conjugated with BCRP and acted as drug exclude-pump substrate. Cellular ability resistant to 5-fluorouracil-induced apoptosis could be reinforced by BCRP expression.

  12. Likely role of APOBEC3G-mediated G-to-A mutations in HIV-1 evolution and drug resistance.

    Directory of Open Access Journals (Sweden)

    Patric Jern

    2009-04-01

    Full Text Available The role of APOBEC3 (A3 protein family members in inhibiting retrovirus infection and mobile element retrotransposition is well established. However, the evolutionary effects these restriction factors may have had on active retroviruses such as HIV-1 are less well understood. An HIV-1 variant that has been highly G-to-A mutated is unlikely to be transmitted due to accumulation of deleterious mutations. However, G-to-A mutated hA3G target sequences within which the mutations are the least deleterious are more likely to survive selection pressure. Thus, among hA3G targets in HIV-1, the ratio of nonsynonymous to synonymous changes will increase with virus generations, leaving a footprint of past activity. To study such footprints in HIV-1 evolution, we developed an in silico model based on calculated hA3G target probabilities derived from G-to-A mutation sequence contexts in the literature. We simulated G-to-A changes iteratively in independent sequential HIV-1 infections until a stop codon was introduced into any gene. In addition to our simulation results, we observed higher ratios of nonsynonymous to synonymous mutation at hA3G targets in extant HIV-1 genomes than in their putative ancestral genomes, compared to random controls, implying that moderate levels of A3G-mediated G-to-A mutation have been a factor in HIV-1 evolution. Results from in vitro passaging experiments of HIV-1 modified to be highly susceptible to hA3G mutagenesis verified our simulation accuracy. We also used our simulation to examine the possible role of A3G-induced mutations in the origin of drug resistance. We found that hA3G activity could have been responsible for only a small increase in mutations at known drug resistance sites and propose that concerns for increased resistance to other antiviral drugs should not prevent Vif from being considered a suitable target for development of new drugs.

  13. Analysis of the Mild strain of tomato yellow leaf curl virus, which overcomes Ty-2 gene-mediated resistance in tomato line H24.

    Science.gov (United States)

    Ohnishi, Jun; Yamaguchi, Hirotaka; Saito, Atsushi

    2016-08-01

    In tomato line H24, an isolate of the Mild (Mld) strain of tomato yellow leaf curl virus (TYLCV-Mld [JR:Kis]) overcomes Ty-2 gene-mediated resistance and causes typical symptoms of tomato yellow leaf curl disease (TYLCD). No systemic infection with visible symptoms or accumulation of viral DNA in the upper leaves was observed in H24 challenged with another isolate, TYLCV-IL (TYLCV-IL [JR:Osaka]), confirming that H24 is resistant to the IL strain. To elucidate the genomic regions that cause the breakdown of the Ty-2 gene-mediated resistance, we constructed a series of chimeras by swapping genes between the two strains. A chimeric virus that had the overlapping C4/Rep region of the Mld strain in the context of the IL strain genome, caused severe TYLCD in H24 plants, suggesting that the overlapping C4/Rep region of the Mld strain is associated with the ability of this strain to overcome Ty-2 gene-mediated resistance. PMID:27231006

  14. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana.

    Science.gov (United States)

    Ghag, Siddhesh B; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2014-06-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive diseases of banana (Musa spp.). Because no credible control measures are available, development of resistant cultivars through genetic engineering is the only option. We investigated whether intron hairpin RNA (ihpRNA)-mediated expression of small interfering RNAs (siRNAs) targeted against vital fungal genes (velvet and Fusarium transcription factor 1) in transgenic banana could achieve effective resistance against Foc. Partial sequences of these two genes were assembled as ihpRNAs in suitable binary vectors (ihpRNA-VEL and ihpRNA-FTF1) and transformed into embryogenic cell suspensions of banana cv. Rasthali by Agrobacterium-mediated genetic transformation. Eleven transformed lines derived from ihpRNA-VEL and twelve lines derived from ihpRNA-FTF1 were found to be free of external and internal symptoms of Foc after 6-week-long greenhouse bioassays. The five selected transgenic lines for each construct continued to resist Foc at 8 months postinoculation. Presence of specific siRNAs derived from the two ihpRNAs in transgenic banana plants was confirmed by Northern blotting and Illumina sequencing of small RNAs derived from the transgenic banana plants. The present study represents an important effort in proving that host-induced post-transcriptional ihpRNA-mediated gene silencing of vital fungal genes can confer efficient resistance against debilitating pathogens in crop plants.

  15. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana.

    Science.gov (United States)

    Ghag, Siddhesh B; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2014-06-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive diseases of banana (Musa spp.). Because no credible control measures are available, development of resistant cultivars through genetic engineering is the only option. We investigated whether intron hairpin RNA (ihpRNA)-mediated expression of small interfering RNAs (siRNAs) targeted against vital fungal genes (velvet and Fusarium transcription factor 1) in transgenic banana could achieve effective resistance against Foc. Partial sequences of these two genes were assembled as ihpRNAs in suitable binary vectors (ihpRNA-VEL and ihpRNA-FTF1) and transformed into embryogenic cell suspensions of banana cv. Rasthali by Agrobacterium-mediated genetic transformation. Eleven transformed lines derived from ihpRNA-VEL and twelve lines derived from ihpRNA-FTF1 were found to be free of external and internal symptoms of Foc after 6-week-long greenhouse bioassays. The five selected transgenic lines for each construct continued to resist Foc at 8 months postinoculation. Presence of specific siRNAs derived from the two ihpRNAs in transgenic banana plants was confirmed by Northern blotting and Illumina sequencing of small RNAs derived from the transgenic banana plants. The present study represents an important effort in proving that host-induced post-transcriptional ihpRNA-mediated gene silencing of vital fungal genes can confer efficient resistance against debilitating pathogens in crop plants. PMID:24476152

  16. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.

    Directory of Open Access Journals (Sweden)

    Stephanie J Yaung

    Full Text Available Bacteria rely on two known DNA-level defenses against their bacteriophage predators: restriction-modification and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-CRISPR-associated (Cas systems. Certain phages have evolved countermeasures that are known to block endonucleases. For example, phage T4 not only adds hydroxymethyl groups to all of its cytosines, but also glucosylates them, a strategy that defeats almost all restriction enzymes. We sought to determine whether these DNA modifications can similarly impede CRISPR-based defenses. In a bioinformatics search, we found naturally occurring CRISPR spacers that potentially target phages known to modify their DNA. Experimentally, we show that the Cas9 nuclease from the Type II CRISPR system of Streptococcus pyogenes can overcome a variety of DNA modifications in Escherichia coli. The levels of Cas9-mediated phage resistance to bacteriophage T4 and the mutant phage T4 gt, which contains hydroxymethylated but not glucosylated cytosines, were comparable to phages with unmodified cytosines, T7 and the T4-like phage RB49. Our results demonstrate that Cas9 is not impeded by N6-methyladenine, 5-methylcytosine, 5-hydroxymethylated cytosine, or glucosylated 5-hydroxymethylated cytosine.

  17. Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato

    NARCIS (Netherlands)

    Ton, J.; Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Selected nonpathogenic rhizobacteria with biological disease control activity are able to elicit an induced systemic resistance (ISR) response that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Ten ecotypes of Arabidopsis thaliana were screened for their potential

  18. Multiplicity of acquired cross-resistance in paclitaxel-resistant cancer cells is associated with feedback control of TUBB3 via FOXO3a-mediated ABCB1 regulation

    Science.gov (United States)

    Aldonza, Mark Borris D.; Hong, Ji-Young; Alinsug, Malona V.; Song, Jayoung; Lee, Sang Kook

    2016-01-01

    Acquired drug resistance is a primary obstacle for effective cancer therapy. The correlation of point mutations in class III β-tubulin (TUBB3) and the prominent overexpression of ATP-binding cassette P-glycoprotein (ABCB1), a multidrug resistance gene, have been protruding mechanisms of resistance to microtubule disruptors such as paclitaxel (PTX) for many cancers. However, the precise underlying mechanism of the rapid onset of cross-resistance to an array of structurally and functionally unrelated drugs in PTX-resistant cancers has been poorly understood. We determined that our established PTX-resistant cancer cells display ABCB1/ABCC1-associated cross-resistance to chemically different drugs such as 5-fluorouracil, docetaxel, and cisplatin. We found that feedback activation of TUBB3 can be triggered through the FOXO3a-dependent regulation of ABCB1, which resulted in the accentuation of induced PTX resistance and encouraged multiplicity in acquired cross-resistance. FOXO3a-directed regulation of P-glycoprotein (P-gp) function suggests that control of ABCB1 involves methylation-dependent activation. Consistently, transcriptional overexpression or downregulation of FOXO3a directs inhibitor-controlled protease-degradation of TUBB3. The functional PI3K/Akt signaling is tightly responsive to FOXO3a activation alongside doxorubicin treatment, which directs FOXO3a arginine hypermethylation. In addition, we found that secretome factors from PTX-resistant cancer cells with acquired cross-resistance support a P-gp-dependent association in multidrug resistance (MDR) development, which assisted the FOXO3a-mediated control of TUBB3 feedback. The direct silencing of TUBB3 reverses induced multiple cross-resistance, reduces drug-resistant tumor mass, and suppresses the impaired microtubule stability status of PTX-resistant cells with transient cross-resistance. These findings highlight the control of the TUBB3 response to ABCB1 genetic suppressors as a mechanism to reverse the

  19. Hippocampal Transcriptome Profile of Persistent Memory Rescue in a Mouse Model of THRA1 Mutation-Mediated Resistance to Thyroid Hormone

    OpenAIRE

    Yiqiao Wang; André Fisahn; Indranil Sinha; Dinh Phong Nguyen; Ulrich Sterzenbach; Francois Lallemend; Saїda Hadjab

    2016-01-01

    Hypothyroidism due to THRA1 (gene coding for thyroid hormone receptor α1) mutation-mediated Resistance to Thyroid Hormone (RTH) has been recently reported in human and is associated with memory deficits similar to those found in a mouse model for Thra1 mutation mediated RTH (Thra1 +/m mice). Here, we show that a short-term treatment of Thra1 +/m mice with GABAA receptor antagonist pentylenetetrazol (PTZ) completely and durably rescues their memory performance. In the CA1 region of the hippoca...

  20. Analysis of IRS-1-mediated phosphatidylinositol 3-kinase activation in the adipose tissue of polycystic ovary syndrome patients complicated with insulin resistance

    International Nuclear Information System (INIS)

    Objective: To investigate the insulin receptor substance-1 (IRS-1)-mediated phosphatidylinositol-3 (PI-3) kinase activity in adipose tissue of polycystic ovary syndrome (PCOS) patients, and to explore molecular mechanisms of insulin resistance of PCOS. Methods: Blood and adipose tissue samples from patients with PCOS with insulin resistance (n=19), PCOS without insulin resistance (n=10) and controls (n=15) were collected. Serum luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T) were measured by chemiluminescence assay. Fasting insulin (FIN) was measured by radioimmunoassay. Fasting plasma glucose (FPG) was measured by oxidase assay. Insulin resistance index (IR) was calculated using homeostasis model assessment (HOMA) to analyze the relationship between these markers and insulin resistance. The tyrosine phosphorylation of IRS-1 was measured by immunoprecipitation and enhanced chemiluminescent immunoblotting technique. PI-3 kinase activity was detected by immunoprecipitation, thin-layer chromatography and gamma scintillation counting. The results were analyzed by statistical methods. Results: 1) The levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS without insulin resistance were significantly higher than those of control group (all P<0.05); the levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS with insulin resistance were significantly higher than those of PCOS without insulin resistance (all P<0.05). 2) The tyrosine phosphorylation analysis of IRS-1 showed that IRS-1 tyrosine phosphorylation was significantly decreased in PCOS with insulin resistance compared to that of PCOS without insulin resistance and control groups (P<0.01). 3) PI-3 kinase activity was significantly decreased (P<0.01) and negatively correlated with HOMA-IR. Conclusion: In consequence of the weaker signal caused by the change of upper stream signal molecule IRS-1 tyrosine phosphorylation, PI-3 kinase activity decreased, it affects the insulin signal

  1. Animal and Human Multidrug-Resistant, Cephalosporin-Resistant Salmonella Isolates Expressing a Plasmid-Mediated CMY-2 AmpC β-Lactamase

    OpenAIRE

    Winokur, P. L.; Brueggemann, A.; DeSalvo, D. L.; Hoffmann, L.; Apley, M. D.; Uhlenhopp, E. K.; Pfaller, M A; Doern, G. V.

    2000-01-01

    Salmonella spp. are important food-borne pathogens that are demonstrating increasing antimicrobial resistance rates in isolates obtained from food animals and humans. In this study, 10 multidrug-resistant, cephalosporin-resistant Salmonella isolates from bovine, porcine, and human sources from a single geographic region were identified. All isolates demonstrated resistance to cephamycins and extended-spectrum cephalosporins as well as tetracycline, chloramphenicol, streptomycin, and sulfisoxa...

  2. Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis.

    Science.gov (United States)

    Ger, Mang-Jye; Louh, Guan-Yu; Lin, Yi-Hsien; Feng, Teng-Yung; Huang, Hsiang-En

    2014-12-01

    Plant ferredoxin-like protein (PFLP) is a photosynthesis-type ferredoxin (Fd) found in sweet pepper. It contains an iron-sulphur cluster that receives and delivers electrons between enzymes involved in many fundamental metabolic processes. It has been demonstrated that transgenic plants overexpressing PFLP show a high resistance to many bacterial pathogens, although the mechanism remains unclear. In this investigation, the PFLP gene was transferred into Arabidopsis and its defective derivatives, such as npr1 (nonexpresser of pathogenesis-related gene 1) and eds1 (enhanced disease susceptibility 1) mutants and NAHG-transgenic plants. These transgenic plants were then infected with the soft-rot bacterial pathogen Pectobacterium carotovorum subsp. carotovorum (Erwinia carotovora ssp. carotovora, ECC) to investigate the mechanism behind PFLP-mediated resistance. The results revealed that, instead of showing soft-rot symptoms, ECC activated hypersensitive response (HR)-associated events, such as the accumulation of hydrogen peroxide (H2 O2 ), electrical conductivity leakage and expression of the HR marker genes (ATHSR2 and ATHSR3) in PFLP-transgenic Arabidopsis. This PFLP-mediated resistance could be abolished by inhibitors, such as diphenylene iodonium (DPI), 1-l-trans-epoxysuccinyl-leucylamido-(4-guanidino)-butane (E64) and benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), but not by myriocin and fumonisin. The PFLP-transgenic plants were resistant to ECC, but not to its harpin mutant strain ECCAC5082. In the npr1 mutant and NAHG-transgenic Arabidopsis, but not in the eds1 mutant, overexpression of the PFLP gene increased resistance to ECC. Based on these results, we suggest that transgenic Arabidopsis contains high levels of ectopic PFLP; this may lead to the recognition of the harpin and to the activation of the HR and other resistance mechanisms, and is dependent on the protease-mediated pathway.

  3. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases.

    Science.gov (United States)

    Kim, Jun-Seob; Cho, Da-Hyeong; Park, Myeongseo; Chung, Woo-Jae; Shin, Dongwoo; Ko, Kwan Soo; Kweon, Dae-Hyuk

    2016-02-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/ Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

  4. Expression and inheritance of hypersensitive resistance to rice hoja blanca virus mediated by the viral nucleocapsid protein gene in transgenic rice.

    Science.gov (United States)

    Lentini, Z; Lozano, I; Tabares, E; Fory, L; Domínguez, J; Cuervo, M; Calvert, L

    2003-04-01

    Rice hoja blanca virus (RHBV) is a major virus disease of economic importance affecting rice in northern South America, Central America and the Caribbean. This is the first report of transgenic resistance to RHBV and the transformation of an indica rice variety from Latin America. Rice transformed with the RHBV nucleocapsid protein ( N) gene had a significant reduction in disease development. Several reactions were observed that ranged from susceptible to completely resistant plants (immunity). The resistant reactions were characterized by the production of local lesions like a hypersensitive reaction or a recovery phenotype with the emergence of symptom-less new leaves. These transgenic RHBV-resistant rice lines expressed the N gene RNA at low levels that were below the detection limit by Northern blots and only resolved by RT-PCR. The nucleocapsid protein could not be detected in any of the transgenic plants either by Western or ELISA tests. These results suggest that the resistance encoded by the N gene in these plants appears to be mediated by RNA. When challenged with RHBV, the resistant transgenic lines showed a significant increased performance for important agronomic traits including the number of tillers, the number of grains per plant and the yield as compared to the susceptible control. Furthermore, upon inoculation some of the most-resistant transgenic lines showed agronomic traits similar to the uninoculated non-transgenic Cica 8 control. Using both agronomic traits and disease severity as criteria, several of the most-resistant lines were followed through the R(4) generation and demonstrated that the N gene and RHBV resistance was inherited in a stable manner. These transgenic rice lines could become a new genetic resource in developing RHBV-resistant cultivars. PMID:12671749

  5. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Haozhen Nie; Yingying Wu; Chunpeng Yao; Dingzhong Tang

    2011-01-01

    EDR2 is a negative regulator of the defense response and cell death in Arabidopsis. Loss-of-function of EDR2 leads to enhanced resistance to powdery mildew. To identify new components in the EDR2 signal transduction pathway, mutations that suppress edr2 resistant phenotypes were screened. Three mutants, edts5-1, edts5-2 and edts5-3 (edr (t)wo (s)uppressor 5), were identified. The EDTS5 gene was identified by map-based cloning and previously was shown to encode an aminotransferase (ALD1). Therefore we renamed these three alleles ald1-10, ald1-11 and ald1-12, respectively. Mutations in ALD1 suppressed all edr2-mediated phenotypes, including powdery mildew resistance, programmed cell death and ethylene-induced senescence. Accumulation of hydrogen peroxide in edr2 was also suppressed by ald1 mutation. The expression of defense-related genes was up-regulated in the edr2 mutant, and the up-regulation of those genes in edr2 was suppressed in the edr2/ald1 double mutant. The ald1 single mutant displayed delayed ethylene-induced senescence. In addition, ald1 mutation suppressed edr1-mediated powdery mildew resistance, but could not suppress the edr1/edr2 double-mutant phenotype. These data demonstrate that ALD1 plays important roles in edr2-mediated defense responses and senescence, and revealed a crosstalk between ethylene and salicylic acid signaling mediated by ALD1 and EDR2.

  6. Amoxicillin treatment of experimental acute otitis media caused by Haemophilus influenzae with non-beta-lactamase-mediated resistance to beta-lactams: aspects of virulence and treatment.

    OpenAIRE

    Melhus, A; Janson, H; Westman, E.; Hermansson, A.; Forsgren, A; Prellner, K

    1997-01-01

    Through alterations primarily in the penicillin-binding proteins, a non-beta-lactamase-mediated resistance to beta-lactams has evolved in Haemophilus influenzae. The virulence of these chromosomally changed strains has been questioned. To ascertain whether these alterations involve a reduction in virulence of H. influenzae and whether they could be advantageous for the bacterium during amoxicillin treatment of acute otitis media, a total of 70 Sprague-Dawley rats were challenged with a suscep...

  7. Are altered pHi and membrane potential in hu MDR 1 transfectants sufficient to cause MDR protein-mediated multidrug resistance?

    OpenAIRE

    1996-01-01

    Multidrug resistance (MDR) mediated by overexpression of the MDR protein (P-glycoprotein) has been associated with intracellular alkalinization, membrane depolarization, and other cellular alterations. However, virtually all MDR cell lines studied in detail have been created via protocols that involve growth on chemotherapeutic drugs, which can alter cells in many ways. Thus it is not clear which phenotypic alterations are explicitly due to MDR protein overexpression alone. To more precisely ...

  8. Hypoxic tumor kinase signaling mediated by STAT5A in development of castration-resistant prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kathrine Røe

    Full Text Available In this study, we hypothesized that androgen-deprivation therapy (ADT in prostate cancer, although initially efficient, induces changes in the tumor kinome, which subsequently promote development of castration-resistant (CR disease. Recognizing the correlation between tumor hypoxia and poor prognosis in prostate cancer, we further hypothesized that such changes might be influenced by hypoxia. Microarrays with 144 kinase peptide substrates were applied to analyze CWR22 prostate carcinoma xenograft samples from ADT-naïve, androgen-deprived (AD, long-term AD (ADL, and CR disease stages. The impact of hypoxia was assessed by matching the xenograft kinase activity profiles with those acquired from hypoxic and normoxic prostate carcinoma cell cultures, whereas the clinical relevance was evaluated by analyzing prostatectomy tumor samples from patients with locally advanced disease, either in ADT-naïve or early CR disease stages. By using this novel peptide substrate microarray method we revealed high kinase activity mediated by signal transducer and activator of transcription 5A (STAT5A in CR prostate cancer. Additionally, we uncovered high STAT5A kinase activity already in regressing ADL xenografts, before renewed CR growth was evidenced. Finally, since increased STAT5A kinase activity also was detected after exposing prostate carcinoma cells to hypoxia, we propose long-term ADT to induce tumor hypoxia and stimulate STAT5A kinase activity, subsequently leading to renewed CR tumor growth. Hence, the study detected STAT5A as a candidate to be further investigated for its potential as marker of advanced prostate cancer and as possible therapeutic target protein.

  9. Adenovirus-mediated ING4 expression reduces multidrug resistance of human gastric carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Mao, Zong-Lei; He, Song-Bing; Sheng, Wei-Hua; Dong, Xiao-Qiang; Yang, Ji-Cheng

    2013-11-01

    Chemotherapy is the primary treatment for both resectable and advanced gastric carcinoma, yet multiple drug resistance (MDR) of gastric carcinoma remains a significant therapeutic obstacle. The development of novel strategies to reduce MDR in gastric carcinoma would yield a better outcome following chemotherapy. ING4, a member of the inhibitor of growth (ING) tumor-suppressor family, possesses antitumor and radiosensitization or chemosensitization effects in a variety of human cancers. The present study investigated the effects and possible mechanisms of action of adenovirus-mediated ING4 (AdVING4) on the reversion of human gastric carcinoma cell MDR in vitro and in vivo in nude mouse xenografts. The data showed that the expression of ING4 mRNA and protein was dramatically downregulated (or lost) in gastric carcinoma SGC7901/CDDP cells after CDDP-induced MDR phenotype and in the parental SGC7901 cells. AdVING4‑induced ING4 expression reversed MDR and induced apoptosis of SGC7901/CDDP cells in vitro and in vivo in the SGC7901/CDDP xenograft tumors. Furthermore, AdVING4 substantially downregulated the expression of MDR-related proteins P-gp and MRP1 and apoptosis‑related proteins Bcl-2 and survivin, but upregulated the expression of apoptosis-related protein Bax in the SGC7901/CDDP xenograft tissues. The reversion effects elicited by AdVING4 on gastric cancer cell MDR were closely associated with the downregulation of ATP-binding cassette transporters and activation of apoptotic pathways. Thus, these findings suggest that AdVING4 may be a feasible modulator for the MDR phenotype of gastric carcinoma cells. PMID:23969950

  10. Saracatinib (AZD0530) is a potent modulator of ABCB1-mediated multidrug resistance in vitro and in vivo.

    Science.gov (United States)

    Liu, Ke-Jun; He, Jie-Hua; Su, Xiao-Dong; Sim, Hong-May; Xie, Jing-Dun; Chen, Xing-Gui; Wang, Fang; Liang, Yong-Ju; Singh, Satyakam; Sodani, Kamlesh; Talele, Tanaji T; Ambudkar, Suresh V; Chen, Zhe-Sheng; Wu, Hai-Ying; Fu, Li-Wu

    2013-01-01

    Saracatinib, a highly selective, dual Src/Abl kinase inhibitor, is currently in a Phase II clinical trial for the treatment of ovarian cancer. In our study, we investigated the effect of saracatinib on the reversal of multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters in vitro and in vivo. Our results showed that saracatinib significantly enhanced the cytotoxicity of ABCB1 substrate drugs in ABCB1 overexpressing HeLa/v200, MCF-7/adr and HEK293/ABCB1 cells, an effect that was stronger than that of gefitinib, whereas it had no effect on the cytotoxicity of the substrates in ABCC1 overexpressing HL-60/adr cells and its parental sensitive cells. Additionally, saracatinib significantly increased the doxorubicin (Dox) and Rho 123 accumulation in HeLa/v200 and MCF-7/adr cells, whereas it had no effect on HeLa and MCF-7 cells. Furthermore, saracatinib stimulated the ATPase activity and inhibited photolabeling of ABCB1 with [(125)I]-iodoarylazidoprazosin in a concentration-dependent manner. In addition, the homology modeling predicted the binding conformation of saracatinib within the large hydrophobic drug-binding cavity of human ABCB1. However, neither the expression level of ABCB1 nor the phosphorylation level of Akt was altered at the reversal concentrations of saracatinib. Importantly, saracatinib significantly enhanced the effect of paclitaxel against ABCB1-overexpressing HeLa/v200 cancer cell xenografts in nude mice. In conclusion, saracatinib reverses ABCB1-mediated MDR in vitro and in vivo by directly inhibiting ABCB1 transport function, without altering ABCB1 expression or AKT phosphorylation. These findings may be helpful to attenuate the effect of MDR by combining saracatinib with other chemotherapeutic drugs in the clinic. PMID:22623106

  11. pRB-E2F1 complexes are resistant to adenovirus E1A-mediated disruption.

    Science.gov (United States)

    Seifried, L A; Talluri, S; Cecchini, M; Julian, L M; Mymryk, J S; Dick, F A

    2008-05-01

    Disruption of pRB-E2F interactions by E1A is a key event in the adenoviral life cycle that drives expression of early viral transcription and induces cell cycle progression. This function of E1A is complicated by E2F1, an E2F family member that controls multiple processes besides proliferation, including apoptosis and DNA repair. Recently, a second interaction site in pRB that only contacts E2F1 has been discovered, allowing pRB to control proliferation separately from other E2F1-dependent activities. Based on this new insight into pRB-E2F1 regulation, we investigated how E1A affects control of E2F1 by pRB. Our data reveal that pRB-E2F1 interactions are resistant to E1A-mediated disruption. Using mutant forms of pRB that selectively force E2F1 to bind through only one of the two binding sites on pRB, we determined that E1A is unable to disrupt E2F1's unique interaction with pRB. Furthermore, analysis of pRB-E2F complexes during adenoviral infection reveals the selective maintenance of pRB-E2F1 interactions despite the presence of E1A. Our experiments also demonstrate that E2F1 functions to maintain cell viability in response to E1A expression. This suggests that adenovirus E1A's seemingly complex mechanism of disrupting pRB-E2F interactions provides selectivity in promoting viral transcription and cell cycle advancement, while maintaining cell viability.

  12. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Natarajan, Mohan [Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States)

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  13. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    International Nuclear Information System (INIS)

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells

  14. Chemotherapy resistance and metastasis-promoting effects of thyroid hormone in hepatocarcinoma cells are mediated by suppression of FoxO1 and Bim pathway.

    Science.gov (United States)

    Chi, Hsiang-Cheng; Chen, Shen-Liang; Cheng, Yi-Hung; Lin, Tzu-Kang; Tsai, Chung-Ying; Tsai, Ming-Ming; Lin, Yang-Hsiang; Huang, Ya-Hui; Lin, Kwang-Huei

    2016-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and systemic chemotherapy is the major treatment strategy for late-stage HCC patients. Poor prognosis following chemotherapy is the general outcome owing to recurrent resistance. Recent studies have suggested that in addition to cytotoxic effects on tumor cells, chemotherapy can induce an alternative cascade that supports tumor growth and metastasis. In the present investigation, we showed that thyroid hormone (TH), a potent hormone-mediating cellular differentiation and metabolism, acts as an antiapoptosis factor upon challenge of thyroid hormone receptor (TR)-expressing HCC cells with cancer therapy drugs, including cisplatin, doxorubicin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TH/TR signaling promoted chemotherapy resistance through negatively regulating the pro-apoptotic protein, Bim, resulting in doxorubicin-induced metastasis of chemotherapy-resistant HCC cells. Ectopic expression of Bim in hepatoma cells challenged with chemotherapeutic drugs abolished TH/TR-triggered apoptosis resistance and metastasis. Furthermore, Bim expression was directly transactivated by Forkhead box protein O1 (FoxO1), which was negatively regulated by TH/TR. TH/TR suppressed FoxO1 activity through both transcriptional downregulation and nuclear exclusion of FoxO1 triggered by Akt-mediated phosphorylation. Ectopic expression of the constitutively active FoxO1 mutant, FoxO1-AAA, but not FoxO1-wt, diminished the suppressive effect of TH/TR on Bim. Our findings collectively suggest that expression of Bim is mediated by FoxO1 and indirectly downregulated by TH/TR, leading to chemotherapy resistance and doxorubicin-promoted metastasis of hepatoma cells. PMID:27490929

  15. Plasmid-Mediated High-Level Resistance to Aminoglycosides in Enterobacteriaceae Due to 16S rRNA Methylation

    OpenAIRE

    Galimand, Marc; Courvalin, Patrice; Lambert, Thierry

    2003-01-01

    A self-transferable plasmid of ca. 80 kb, pIP1204, conferred multiple-antibiotic resistance to Klebsiella pneumoniae BM4536, which was isolated from a urinary tract infection. Resistance to β-lactams was due to the blaTEM1 and blaCTX-M genes, resistance to trimethroprim was due to the dhfrXII gene, resistance to sulfonamides was due to the sul1 gene, resistance to streptomycin-spectinomycin was due to the ant3"9 gene, and resistance to nearly all remaining aminoglycosides was due to the aac3-...

  16. Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19-mediated quinolone resistance marker in two novel serovars

    DEFF Research Database (Denmark)

    Karczmarczyk, M.; Martins, M.; McCusker, M.;

    2010-01-01

    Ninety-three Salmonella isolates recovered from commercial foods and exotic animals in Colombia were studied. The serotypes, resistance profiles and where applicable the quinolone resistance genes were determined. Salmonella Anatum (n=14), Uganda (19), Braenderup (10) and Newport (10) were the most...... hitherto unrecognized in various Salmonella serovars in Colombia. We also report unusual high-level quinolone resistance in the absence of any DNA gyrase mutations in serovars S. Carrau, Muenchen and Uganda....

  17. Possible Involvement of MYB44-Mediated Stomatal Regulation in Systemic Resistance Induced by Penicillium simplicissimum GP17-2 in Arabidopsis

    Science.gov (United States)

    Hieno, Ayaka; Naznin, Hushna Ara; Hyakumachi, Mitsuro; Higuchi-Takeuchi, Mieko; Matsui, Minami; Yamamoto, Yoshiharu Y.

    2016-01-01

    The plant growth-promoting fungus (PGPF), Penicillium simplicissimum GP17-2 (GP17-2), induces systemic resistance against Pseudomonas syringae pv. tomato DC3000 (Pst) in Arabidopsis thaliana. The molecular mechanisms underlying induced systemic resistance (ISR) by GP17-2 were investigated in the present study. Microscopic observations revealed that stomatal reopening by Pst was restricted by elicitation with the culture filtrate (CF) from GP17-2. A gene expression analysis of MYB44, which enhances abscisic acid signaling and consequently closes stomata, revealed that the gene was activated by CF. CF-elicited myb44 mutant plants failed to restrict stomatal reopening and showed lower resistance to Pst than wild-type plants. These results indicate that stomatal resistance by GP17-2 is mediated by the gene activation of MYB44. We herein revealed that the MYB44-mediated prevention of penetration through the stomata is one of the components responsible for GP17-2-elicited ISR. PMID:27301421

  18. Eugenol Provokes ROS-Mediated Membrane Damage-Associated Antibacterial Activity Against Clinically Isolated Multidrug-Resistant Staphylococcus aureus Strains

    OpenAIRE

    Balaram Das; Debasis Mandal; Sandeep Kumar Dash; Sourav Chattopadhyay; Satyajit Tripathy; Durga Pada Dolai; Sankar Kumar Dey; Somenath Roy

    2016-01-01

    Due to the indiscriminate use of antibiotics, resistance to antibiotics has increased remarkably in Staphylococcus aureus. Vancomycin is the final drug to treat the S. aureus infection, but nowadays, resistance to this antibiotic is also increasing. So, the investigation of antibiotic resistance pattern is important. As there is already resistance to vancomycin, there is an urgent need to develop a new kind of antimicrobial to treat S. aureus infection. Eugenol may be the new drug of choice. ...

  19. Multidrug resistance of DNA-mediated transformants is linked to transfer of the human mdr1 gene.

    OpenAIRE

    Shen, D. W.; Fojo, A; Roninson, I B; Chin, J E; Soffir, R; Pastan, I; Gottesman, M M

    1986-01-01

    Mouse NIH 3T3 cells were transformed to multidrug resistance with high-molecular-weight DNA from multidrug-resistant human KB carcinoma cells. The patterns of cross resistance to colchicine, vinblastine, and doxorubicin hydrochloride (Adriamycin; Adria Laboratories Inc.) of the human donor cell line and mouse recipients were similar. The multidrug-resistant human donor cell line contains amplified sequences of the mdr1 gene which are expressed at high levels. Both primary and secondary NIH 3T...

  20. Plasmid mediated antibiotic resistance ofVibrio cholerae O1 biotype El Tor serotype Ogawa associated with an outbreak in Kolkata, India

    Institute of Scientific and Technical Information of China (English)

    Shyamapada Mandal; Manisha DebMandal; Nishith Kumar Pal

    2010-01-01

    Objective:To determine the antibiotic resistance ofVibrio cholerae (V. cholerae)O1 biotype El Tor serotype Ogawa isolates involved in an outbreak of watery diarrhea in Kolkata, and to explore the role of plasmid in mediating antibiotic resistance.Methods: Antibiotic susceptibility and minimum inhibitory concentration(MIC) values of antibiotics for the isolated V. choleraeO1 Ogawa (n=12) were determined by disk diffusion and agar dilution methods, respectively, using ampicillin (Am), chloramphenicol (C), trimethoprim (Tm), tetracycline (T), erythromycine (Er), nalidixic acid (Nx), ciprofloxacin (Cp), amikacin (Ak) and cefotaxime (Cf). Plasmid curing of multidrug resistant(MDR)V. choleraeO1 Ogawa strains was done following ethidium bromide treatment. Following electrophoresis, the plasmidDNAs, extracted from the isolatedMDRV. choleraeO1 Ogawa strains and their cured derivatives, were visualized and documented in‘gel doc’ system.Results: The outbreak causingV. choleraeO1 Ogawa isolates wereMDR as determined by disk diffusion susceptibility test, andMIC determination. The isolates showed three different drug resistance patterns: AmTmTErNx (for6 isolates), TmTErCp (for 5 isolates), and AmTmNx (for one isolate), and showed uniform sensitivity to C, Ak and Cf. The loss of plasmids with the concomitant loss of resistance to Am, Tm, T and Er of the isolates occurred following ethidium bromide treatment.Conclusions: The current findings suggest that theV. choleraeO1Ogawa associated with the cholera outbreak wereMDR, and resistance to Am, Tm, T and Er among the isolates were plasmid mediated.

  1. Prevalence of Plasmid-Mediated Quinolone Resistance Genes among Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae Human Isolates in Iran

    Directory of Open Access Journals (Sweden)

    Ehsaneh Shams

    2015-01-01

    Full Text Available The purpose of this study was to determine the prevalence and molecular characterization of plasmid-mediated quinolone resistance (PMQR genes (qnrA, qnrB, qnrS, aac(6′-Ib-cr, and qepA among ESBL-producing Klebsiella pneumoniae isolates in Kashan, Iran. A total of 185 K. pneumoniae isolates were tested for quinolone resistance and ESBL-producing using the disk diffusion method and double disk synergy (DDST confirmatory test. ESBL-producing strains were further evaluated for the blaCTX-M genes. The PCR method was used to show presence of plasmid-mediated quinolone resistance genes and the purified PCR products were sequenced. Eighty-seven ESBL-producing strains were identified by DDST confirmatory test and majority (70, 80.5% of which carried blaCTX-M genes including CTX-M-1 (60%, CTX-M-2 (42.9%, and CTX-M-9 (34.3%. Seventy-seven ESBL-producing K. pneumoniae isolates harbored PMQR genes, which mostly consisted of aac(6′-Ib-cr (70.1% and qnrB (46.0%, followed by qnrS (5.7%. Among the 77 PMQR-positive isolates, 27 (35.1% and 1 (1.3% carried 2 and 3 different PMQR genes, respectively. However, qnrA and qepA were not found in any isolate. Our results highlight high ESBL occurrence with CTX-M type and high frequency of plasmid-mediated quinolone resistance genes among ESBL-producing K. pneumoniae isolates in Kashan.

  2. Blockade of tumor necrosis factor (TNF) receptor type 1-mediated TNF-alpha signaling protected Wistar rats from diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Liang, Huifang; Yin, Bingjiao; Zhang, Hailong; Zhang, Shu; Zeng, Qingling; Wang, Jing; Jiang, Xiaodan; Yuan, Li; Wang, Cong-Yi; Li, Zhuoya

    2008-06-01

    TNF-alpha plays an important role in the pathogenesis of obesity and insulin resistance in which the effect of TNF-alpha signaling via TNF receptor type 1 (TNFR1) largely remains controversial. To delineate the role of TNFR1-mediated TNF-alpha signaling in the pathogenesis of this disorder, a TNFR1 blocking peptide-Fc fusion protein (TNFR1BP-Fc) was used for the present study. Wistar rats were fed a high-fat/high-sucrose (HFS) diet for 16 wk until obesity and insulin resistance developed. In comparison with increased body weight and fat weight, enlarged adipocytes, and hypertriglyceridemia in the obese state, the subsequent 4-wk treatment with TNFR1BP-Fc resulted in significant weight loss characterized by decreased fat pad weight and adipocyte size and reduced plasma triglycerides. Furthermore, obesity-induced insulin resistance, including hyperinsulinemia, elevated C-peptide, higher degree of hyperglycemia after glucose challenge, and less hypoglycemic response to insulin, was markedly improved, and the compensatory hyperplasia and hypertrophy of pancreatic islets were reduced. Interestingly, treatment with TNFR1BP-Fc markedly suppressed systemic TNF-alpha release and its local expression in pancreatic islets and muscle and adipose tissues. In addition, blockage of TNFR1-mediated TNF-alpha signaling in obese rats significantly enhanced tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in the muscle and fat tissues. Our results strongly suggest a pivotal role for TNFR1-mediated TNF-alpha signaling in the pathogenesis of obesity and insulin resistance. Thus, TNFR1BP-Fc may be a good candidate for the treatment of this disease. PMID:18339717

  3. Prevalence of Plasmid-Mediated Quinolone Resistance Genes among Extended-Spectrum β -Lactamase-Producing Klebsiella pneumoniae Human Isolates in Iran.

    Science.gov (United States)

    Shams, Ehsaneh; Firoozeh, Farzaneh; Moniri, Rezvan; Zibaei, Mohammad

    2015-01-01

    The purpose of this study was to determine the prevalence and molecular characterization of plasmid-mediated quinolone resistance (PMQR) genes (qnrA, qnrB, qnrS, aac(6')-Ib-cr, and qepA) among ESBL-producing Klebsiella pneumoniae isolates in Kashan, Iran. A total of 185 K. pneumoniae isolates were tested for quinolone resistance and ESBL-producing using the disk diffusion method and double disk synergy (DDST) confirmatory test. ESBL-producing strains were further evaluated for the bla CTX-M genes. The PCR method was used to show presence of plasmid-mediated quinolone resistance genes and the purified PCR products were sequenced. Eighty-seven ESBL-producing strains were identified by DDST confirmatory test and majority (70, 80.5%) of which carried bla CTX-M genes including CTX-M-1 (60%), CTX-M-2 (42.9%), and CTX-M-9 (34.3%). Seventy-seven ESBL-producing K. pneumoniae isolates harbored PMQR genes, which mostly consisted of aac(6')-Ib-cr (70.1%) and qnrB (46.0%), followed by qnrS (5.7%). Among the 77 PMQR-positive isolates, 27 (35.1%) and 1 (1.3%) carried 2 and 3 different PMQR genes, respectively. However, qnrA and qepA were not found in any isolate. Our results highlight high ESBL occurrence with CTX-M type and high frequency of plasmid-mediated quinolone resistance genes among ESBL-producing K. pneumoniae isolates in Kashan. PMID:26618005

  4. Resistant mechanisms of anthracyclines--pirarubicin might partly break through the P-glycoprotein-mediated drug-resistance of human breast cancer tissues.

    Science.gov (United States)

    Kubota, T; Furukawa, T; Tanino, H; Suto, A; Otan, Y; Watanabe, M; Ikeda, T; Kitajima, M

    2001-01-01

    Juliano and Ling initially reported the expression of a 170 kDa glycoprotein in the membrane of Chinese hamster ovarian cells in 1976, and named this glycoprotein P-glycoprotein (P-gp) based on its predicted role of causing "permeability" of the cell membrane. After much research on anthracycline-resistance, this P-gp was finally characterized as a multidrug-resistant protein coded by the mdr1 gene. Multidrug resistance associated protein (MRP) was initially cloned from H69AR, a human small cell-lung carcinoma cell line which is resistant to doxorubicin (DXR) but does not express P-gp. MRP also excretes substrates through the cell membrane using energy from ATP catabolism. The substrate of MRP is conjugated with glutathione before active efflux from cell membrane. Recently, membrane transporter proteins were re-categorized as members of "ATP-Binding Cassette transporter"(ABC-transporter) superfamily, as shown at http://www.med.rug.nl/mdl/humanabc.htm and http://www.gene.ucl.ac.uk/nomenclature/genefamily/abc.html. A total of ABC transporters have been defined, and MDR1 and multidrug resistance associated protein 1 (MRP1) were reclassified as ABCB1 and ABCC1, respectively. Their associated superfamilies include 11 and 13 other protein, in addition to ABCB and ABCC, respectively. Lung resistance-related protein (LRP) is not a member of the superfamily of ABC transporter proteins, because it shows nuclear membrane expression and transports substrate between nucleus and cytoplasm. LRP was initially cloned from a non-small cell lung carcinoma cell line, SW1573/2R120 which is resistant to DXR, vincristine, etoposide and gramicidin D and does not express P-gp. The mechanisms of resistance remains unclear, and why some resistant cell lines express P-gp and others express MRP and/or LRP is likewise unclear. PMID:11791127

  5. Multiple Insecticide Resistance in the Malaria Vector Anopheles funestus from Northern Cameroon Is Mediated by Metabolic Resistance Alongside Potential Target Site Insensitivity Mutations

    Science.gov (United States)

    Menze, Benjamin D.; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Irving, Helen; Antonio-Nkondjio, Christophe; Awono-Ambene, Parfait H.; Wondji, Charles S.

    2016-01-01

    Background Despite the recent progress in establishing the patterns of insecticide resistance in the major malaria vector Anopheles funestus, Central African populations of this species remain largely uncharacterised. To bridge this important gap and facilitate the implementation of suitable control strategies against this vector, we characterised the resistance patterns of An. funestus population from northern Cameroon. Methods and Findings Collection of indoor-resting female mosquitoes in Gounougou (northern Cameroon) in 2012 and 2015 revealed a predominance of An. funestus during dry season. WHO bioassays performed using F1 An. funestus revealed that the population was multiple resistant to several insecticide classes including pyrethroids (permethrin, deltamethrin, lambda-cyhalothrin and etofenprox), carbamates (bendiocarb) and organochlorines (DDT and dieldrin). However, a full susceptibility was observed against the organophosphate malathion. Bioassays performed with 2015 collection revealed that resistance against pyrethroids and DDT is increasing. PBO synergist assays revealed a significant recovery of susceptibility for all pyrethroids but less for DDT. Analysis of the polymorphism of a portion of the voltage-gated sodium channel gene (VGSC) revealed the absence of the L1014F/S kdr mutation but identified 3 novel amino acid changes I877L, V881L and A1007S. However, no association was established between VGSC polymorphism and pyrethroid/DDT resistance. The DDT resistant 119F-GSTe2 allele (52%) and the dieldrin resistant 296S-RDL allele (45%) were detected in Gounougou. Temporal analysis between 2006, 2012 and 2015 collections revealed that the 119F-GSTe2 allele was relatively stable whereas a significant decrease is observed for 296S-RDL allele. Conclusion This multiple resistance coupled with the temporal increased in resistance intensity highlights the need to take urgent measures to prolong the efficacy of current insecticide-based interventions against

  6. Tissue-specific regulation of 4E-BP1 and S6K1 phosphorylation by alpha-ketoisocaproate.

    Science.gov (United States)

    Yoshizawa, Fumiaki; Sekizawa, Haruhito; Hirayama, Sachiyo; Yamazaki, Yasuhiro; Nagasawa, Takashi; Sugahara, Kunio

    2004-02-01

    The indispensable branched-chain amino acid leucine acts as a key regulator of mRNA translation by modulating the phosphorylation of proteins that represent important control points in translation initiation, including the translational repressor, eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase (S6K1). In the current study, we compared the effects of L- and D-enantiomers of leucine on the phosphorylation of 4E-BP1 and S6K1. We also assessed whether leucine itself or its metabolite, alpha-ketoisocaproate (alpha-KIC), mediates the effects of leucine. Food-deprived (18 h) rats were orally administered 135 mg/100 g body weight L-leucine, D-leucine or alpha-KIC and were sacrificed after 1 h. L-Leucine administration had an obvious stimulatory effect on the phosphorylation of 4E-BP1 and S6K1 in both skeletal muscle and liver while D-leucine was much less effective, indicating that the effect of leucine is stereospecific. Oral administration of alpha-KIC mimicked the stimulatory effect of L-leucine in skeletal muscle. In contrast to skeletal muscle, provision of alpha-KIC was significantly less effective than L-leucine in the liver. The results showing that the efficacy of L-leucine and alpha-KIC in stimulating phosphorylation of S6K1 and 4E-BP1 is equivalent in skeletal muscle, may be explained by the conversion of alpha-KIC to L-leucine. PMID:15228219

  7. Nilotinib counteracts P-glycoprotein-mediated multidrug resistance and synergizes the antitumoral effect of doxorubicin in soft tissue sarcomas.

    Directory of Open Access Journals (Sweden)

    Victor Hugo Villar

    Full Text Available The therapeutic effect of doxorubicin (DXR in the treatment of soft tissue sarcomas (STS is limited by its toxicity and the development of multidrug resistance (MDR, the latter mainly induced by high expression of efflux pumps (e.g., P-glycoprotein [P-gp]. Therefore, the search for alternative therapies, which sensitize these tumors to chemotherapy while maintaining a low toxicity profile, is a rational approach. We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of the tyrosine kinase inhibitors, nilotinib and imatinib, as single agents or in combination with DXR, in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound nilotinib (1-10 µM was more potent than imatinib inhibiting the growth of SK-UT-1 and SW982 cells by 33.5-59.6%, respectively. Importantly, only nilotinib synergized the antitumoral effect of DXR (0.05-0.5 µM by at least 2-fold, which clearly surpassed the mere sum of effects according to isobolographic analysis. Moreover, nilotinib in combination with DXR had a sustained effect on cell number (-70.3±5.8% even 12 days after withdrawal of drugs compared to DXR alone. On the molecular level, only nilotinib fully blocked FBS-induced ERK1 and p38 MAPK activation, hence, reducing basal and DXR-induced up-regulation of P-gp levels. Moreover, efflux activity of the MDR-related proteins P-gp and MRP-1 was inhibited, altogether resulting in intracellular DXR retention. In high-risk STS tumors 53.8% and 15.4% were positive for P-gp and MRP-1 expression, respectively, with high incidence of P-gp in synovial sarcoma (72.7%. In summary, nilotinib exhibits antiproliferative effects on cellular models of STS and sensitizes them to DXR by reverting DXR-induced P-gp-mediated MDR and inhibiting MRP-1 activity, leading to a synergistic effect with potential for clinical treatment.

  8. Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera.

    Science.gov (United States)

    Liu, Y; Yan, L; Li, Z; Huang, W-F; Pokhrel, S; Liu, X; Su, S

    2016-06-01

    Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees. PMID:26991518

  9. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling.

    Science.gov (United States)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling.

  10. Altered distribution of regulatory lymphocytes by oral administration of soy-extracts exerts a hepatoprotective effect alleviating immune mediated liver injury, non-alcoholic steatohepatitis and insulin resistance

    Science.gov (United States)

    Khoury, Tawfik; Ben Ya'acov, Ami; Shabat, Yehudit; Zolotarovya, Lidya; Snir, Ram; Ilan, Yaron

    2015-01-01

    AIM: To determine the immune-modulatory and the hepatoprotective effects of oral administration of two soy extracts in immune mediated liver injury and non-alcoholic steatohepatitis (NASH). METHODS: Two soy extracts, M1 and OS, were orally administered to mice with concanavalin A (ConA) immune-mediated hepatitis, to high-fat diet (HFD) mice and to methionine and choline reduced diet combined with HFD mice. Animals were followed for disease and immune biomarkers. RESULTS: Oral administration of OS and M1 had an additive effect in alleviating ConA hepatitis manifested by a decrease in alanine aminotransferase and aspartate aminotransferase serum levels. Oral administration of the OS and M1 soy derived fractions, ameliorated liver injury in the high fat diet model of NASH, manifested by a decrease in hepatic triglyceride levels, improvement in liver histology, decreased serum cholesterol and triglycerides and improved insulin resistance. In the methionine and choline reduced diet combined with the high fat diet model, we noted a decrease in hepatic triglycerides and improvement in blood glucose levels and liver histology. The effects were associated with reduced serum tumor necrosis factor alpha and alteration of regulatory T cell distribution. CONCLUSION: Oral administration of the combination of OS and M1 soy derived extracts exerted an adjuvant effect in the gut-immune system, altering the distribution of regulatory T cells, and alleviating immune mediated liver injury, hyperlipidemia and insulin resistance. PMID:26139990

  11. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling.

    Science.gov (United States)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. PMID:25727013

  12. Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Zhang, Fangrong; Wang, Xiaoyi; Xu, Xiangting; Li, Min; Zhou, Jianping; Wang, Wei

    2016-09-20

    In the past decades, reconstituted high density lipoprotein (rHDL) has been successfully developed as a drug carrier since the enhanced HDL-lipids uptake is demonstrated in several human cancers. In this paper, rHDL, for the first time, was utilized to co-encapsulate two hydrophobic drugs: an anticancer drug, paclitaxel (PTX), and a new reversal agent for P-gp (P-glycoprotein)-mediated multidrug resistance (MDR) of cancer, N-cyano-1-[(3,4-dimethoxyphenyl)methyl]-3,4-dihydro-6,7-dimethoxy-N'-octyl-2(1H)-isoquinoline-carboximidamide (HZ08). We proposed this drug co-delivery strategy to reverse PTX resistance. The study aimed to develop a biomimetic nanovector, reconstituted high density lipoprotein (rHDL), mediating targeted PTX-HZ08 delivery for cancer therapy. Using sodium cholate dialysis method, we successfully formulated dual-agent co-delivering rHDL nanoparticles (PTX-HZ08-rHDL NPs) with a typical spherical morphology, well-distributed size (~100nm), high drug encapsulation efficiency (approximately 90%), sustained drug release properties and exceptional stability even after storage for 1month or incubation in 10% fetal bovine serum (FBS) DMEM for up to 2days. Results demonstrated that PTX-HZ08-rHDL NPs significantly enhanced anticancer efficacy in vitro, including higher cytotoxicity and better ability to induce cell apoptosis against both PTX-sensitive and -resistant MCF-7 human breast cancer cell lines (MCF-7 and MCF-7/PTX cells). Mechanism studies demonstrated that these improvements could be correlated with increased cellular uptake of PTX mediated by scavenger receptor class B type I (SR-BI) as well as prolonged intracellular retention of PTX due to the HZ08 mediated drug-efflux inhibition. In addition, in vivo investigation showed that the PTX-HZ08-rHDL NPs were substantially safer, have higher tumor-targeted capacity and have stronger antitumor activity than the corresponding dosage of paclitaxel injection. These findings suggested that rHDL NPs could

  13. Resistance of non-transgenic papaya plants to papaya ringspot virus (PRSV) mediated by intron-containing hairpin dsRNAs expressed in bacteria.

    Science.gov (United States)

    Shen, W; Yang, G; Chen, Y; Yan, P; Tuo, D; Li, X; Zhou, P

    2014-01-01

    RNA-mediated virus resistance based on natural antiviral RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants. In this study, a conserved 3'-region (positions 9839-10117, 279 nt) of the capsid protein (CP) gene of papaya ringspot virus (PRSV), designated CP279, was used to generate an intron-containing hairpin RNA (ihpRNA) construct by one-step, zero-background ligation-independent cloning (OZ-LIC). The RNaseIII-deficient Escherichia coli strain M-JM109lacY was identified as the best choice for producing large quantities of specific ihpRNA-CP279. Resistance analyses and ELISA data verified that most papaya plants mechanically co-inoculated with TRIzol-extracted ihpRNA-CP279 and PRSV were resistant to PRSV, and resistance was maintained throughout the test period (>2 months post-inoculation). In contrast, a 1-2 day interval between sequential inoculation of PRSV and ihpRNA-CP279 did not result in complete protection against PRSV infection, but delayed the appearance of viral symptoms by 3 to 4 days. These findings indicate that direct mechanical inoculation of papaya plants with bacterially-expressed ihpRNA-CP279 targeting the PRSV CP gene can interfere with virus infection. This work lays a foundation for developing a non-transgenic approach to control PRSV by directly spraying plants with ihpRNA or crude bacterial extract preparations. PMID:25283861

  14. Rack1 Mediates the Interaction of P-Glycoprotein with Anxa2 and Regulates Migration and Invasion of Multidrug-Resistant Breast Cancer Cells

    Science.gov (United States)

    Yang, Yi; Wu, Na; Wang, Zhiyong; Zhang, Fei; Tian, Ran; Ji, Wei; Ren, Xiubao; Niu, Ruifang

    2016-01-01

    The emergence of multidrug resistance is always associated with more rapid tumor recurrence and metastasis. P-glycoprotein (P-gp), which is a well-known multidrug-efflux transporter, confers enhanced invasion ability in drug-resistant cells. Previous studies have shown that P-gp probably exerts its tumor-promoting function via protein-protein interaction. These interactions were implicated in the activation of intracellular signal transduction. We previously showed that P-gp binds to Anxa2 and promotes the invasiveness of multidrug-resistant (MDR) breast cancer cells through regulation of Anxa2 phosphorylation. However, the accurate mechanism remains unclear. In the present study, a co-immunoprecipitation coupled with liquid chromatography tandem mass spectrometry-based interactomic approach was performed to screen P-gp binding proteins. We identified Rack1 as a novel P-gp binding protein. Knockdown of Rack1 significantly inhibited proliferation and invasion of MDR cancer cells. Mechanistic studies demonstrated that Rack1 functioned as a scaffold protein that mediated the binding of P-gp to Anxa2 and Src. We showed that Rack1 regulated P-gp activity, which was necessary for adriamycin-induced P-gp-mediated phosphorylation of Anxa2 and Erk1/2. Overall, the findings in this study augment novel insights to the understanding of the mechanism employed by P-gp for promoting migration and invasion of MDR cancer cells. PMID:27754360

  15. Functional genomics to discover antibiotic resistance genes: The paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in Shewanella algae MARS 14.

    Science.gov (United States)

    Telke, Amar A; Rolain, Jean-Marc

    2015-12-01

    Shewanella algae MARS 14 is a colistin-resistant clinical isolate retrieved from bronchoalveolar lavage of a hospitalised patient. A functional genomics strategy was employed to discover the molecular support for colistin resistance in S. algae MARS 14. A pZE21 MCS-1 plasmid-based genomic expression library was constructed in Escherichia coli TOP10. The estimated library size was 1.30×10(8) bp. Functional screening of colistin-resistant clones was carried out on Luria-Bertani agar containing 8 mg/L colistin. Five colistin-resistant clones were obtained after complete screening of the genomic expression library. Analysis of DNA sequencing results found a unique gene in all selected clones. Amino acid sequence analysis of this unique gene using the Integrated Microbial Genomes (IMG) and KEGG databases revealed that this gene encodes ethanolamine phosphotransferase (EptA, or so-called PmrC). Reverse transcription PCR analysis indicated that resistance to colistin in S. algae MARS 14 was associated with overexpression of EptA (27-fold increase), which plays a crucial role in the arrangement of outer membrane lipopolysaccharide. PMID:26498987

  16. Functional genomics to discover antibiotic resistance genes: The paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in Shewanella algae MARS 14.

    Science.gov (United States)

    Telke, Amar A; Rolain, Jean-Marc

    2015-12-01

    Shewanella algae MARS 14 is a colistin-resistant clinical isolate retrieved from bronchoalveolar lavage of a hospitalised patient. A functional genomics strategy was employed to discover the molecular support for colistin resistance in S. algae MARS 14. A pZE21 MCS-1 plasmid-based genomic expression library was constructed in Escherichia coli TOP10. The estimated library size was 1.30×10(8) bp. Functional screening of colistin-resistant clones was carried out on Luria-Bertani agar containing 8 mg/L colistin. Five colistin-resistant clones were obtained after complete screening of the genomic expression library. Analysis of DNA sequencing results found a unique gene in all selected clones. Amino acid sequence analysis of this unique gene using the Integrated Microbial Genomes (IMG) and KEGG databases revealed that this gene encodes ethanolamine phosphotransferase (EptA, or so-called PmrC). Reverse transcription PCR analysis indicated that resistance to colistin in S. algae MARS 14 was associated with overexpression of EptA (27-fold increase), which plays a crucial role in the arrangement of outer membrane lipopolysaccharide.

  17. 4E-BP1 regulates the differentiation of white adipose tissue.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues.

  18. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins.

    NARCIS (Netherlands)

    S.H.E.J. Gabriels; J.H. Vossen; S.K. Ekengren; G. van Ooijen; A.M. Abd-El-Haliem; G.C.M. van den Berg; D.Y. Rainey; G.B. Martin; F.L.W. Takken; P.J.G.M. de Wit; M.H.A.J. Joosten

    2007-01-01

    Tomato (Solanum lycopersicum) Cf resistance genes confer hypersensitive response (HR)-associated resistance to strains of the pathogenic fungus Cladosporium fulvum that express the matching avirulence (Avr) gene. Previously, we identified an Avr4-responsive tomato (ART) gene that is required for Cf-

  19. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins

    NARCIS (Netherlands)

    Gabriëls, S.H.E.J.; Vossen, J.H.; Ekengren, S.K.; Ooijen, van G.; Abd-El-Haliem, A.M.; Berg, van den G.C.M.; Rainey, D.Y.; Martin, G.B.; Takken, F.L.W.; Wit, de P.J.G.M.; Joosten, M.H.A.J.

    2007-01-01

    Tomato (Solanum lycopersicum) Cf resistance genes confer hypersensitive response (HR)-associated resistance to strains of the pathogenic fungus Cladosporium fulvum that express the matching avirulence (Avr) gene. Previously, we identified an Avr4-responsive tomato (ART) gene that is required for Cf-

  20. Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance

    Science.gov (United States)

    The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inocula...

  1. Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drug transporters in human breast cancer cells

    NARCIS (Netherlands)

    Greijer, A.E.; Jong, M.C. de; Scheffer, G.L.; Shvarts, A.; Diest, P.J. van; Wall, E. van der

    2005-01-01

    Hypoxia has clinically been associated with resistance to chemotherapy. The aim of this study was to investigate whether hypoxia induces resistance to doxorubicin and mitoxantrone, two common drugs in cancer treatment, in MCF-7 breast cancer cells, and SW1573 non-small lung cancer cells. In addition

  2. Sex-Specific Mediating Role of Insulin Resistance and Inflammation in the Effect of Adiposity on Blood Pressure of Prepubertal Children

    OpenAIRE

    Liane Correia-Costa; Ana Cristina Santos; Milton Severo; António Guerra; Franz Schaefer; Alberto Caldas Afonso; Henrique Barros; Ana Azevedo

    2015-01-01

    Objective To evaluate the association between obesity indices and blood pressure (BP) at 4 years of age, in each sex, and to quantify to which extent this association is mediated by inflammation and insulin resistance (IR). Materials and Methods We studied 1250 4-year-old children selected from the population-based birth cohort Generation XXI. Associations between body mass index (BMI) z-score and waist-to-height ratio (WHtR), office BP, inflammation (high sensitivity C-reactive protein) and ...

  3. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015

    DEFF Research Database (Denmark)

    Hasman, H.; Hammerum, A. M.; Hansen, F.;

    2015-01-01

    The plasmid-mediated colistin resistance gene, mcr-1, was detected in an Escherichia coli isolate from a Danish patient with bloodstream infection and in five E. coli isolates from imported chicken meat. One isolate from chicken meat belonged to the epidemic spreading sequence type ST131....... In addition to IncI2*, an incX4 replicon was found to be linked to mcr-1. This report follows a recent detection of mcr-1 in E. coli from animals, food and humans in China....

  4. Real-time quantitative PCR assay with Taqman(®) probe for rapid detection of MCR-1 plasmid-mediated colistin resistance.

    Science.gov (United States)

    Chabou, S; Leangapichart, T; Okdah, L; Le Page, S; Hadjadj, L; Rolain, J-M

    2016-09-01

    Here we report the development of two rapid real-time quantitative PCR assays with TaqMan(®) probes to detect the MCR-1 plasmid-mediated colistin resistance gene from bacterial isolates and faecal samples from chickens. Specificity and sensitivity of the assay were 100% on bacterial isolates including 18 colistin-resistant isolates carrying the mcr-1 gene (six Klebsiella pneumoniae and 12 Escherichia coli) with a calibration curve that was linear from 10(1) to 10(8) DNA copies. Five out of 833 faecal samples from chickens from Algeria were positive, from which three E. coli strains were isolated and confirmed to harbour the mcr-1 gene by standard PCR and sequencing. PMID:27489722

  5. Detection of plasmid mediated colistin resistance (MCR-1) in Escherichia coli and Salmonella enterica isolated from poultry and swine in Spain.

    Science.gov (United States)

    Quesada, Alberto; Ugarte-Ruiz, María; Iglesias, M Rocío; Porrero, M Concepción; Martínez, Remigio; Florez-Cuadrado, Diego; Campos, María J; García, María; Píriz, Segundo; Sáez, José Luis; Domínguez, Lucas

    2016-04-01

    Recent findings suggest that use of colistin as a last resort antibiotic is seriously threatened by the rise of a new plasmid mediated mechanism of resistance (MCR-1). This work identifies, for the first time in Southern Europe, the gene mcr-1 in nine strains from farm animals (poultry and swine) corresponding to five Escherichia coli and four Salmonella enterica, among which three belong to serovar Typhimurium and one to Rissen. The MCR-1 was found encoded by a plasmid highly mobilizable by conjugation to the E. coli J53 strain. Two E. coli strains carried two determinants, mcr-1 plus pmrA or pmrB mutations, known to confer colistin resistance.

  6. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 enhances the antiviral response in porcine cells.

    Science.gov (United States)

    Ramírez-Carvajal, Lisbeth; Singh, Neetu; de los Santos, Teresa; Rodríguez, Luis L; Long, Charles R

    2016-01-01

    Type I interferons (IFNs) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF-7), the "master regulator" of IFN transcription. Previous studies have suggested that mouse cells depleted of 4E-BPs are more sensitive to IFNβ treatment and had lower viral loads as compared to wild type (WT) cells. However, such approach has not been tested as an antiviral strategy in livestock species. In this study, we tested the antiviral activity of porcine cells depleted of 4E-BP1 by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome engineering system. We found that 4E-BP1 knockout (KO) porcine cells had increased expression of IFNα and β, IFN stimulated genes, and significant reduction in vesicular stomatitis virus titer as compare to WT cells. No phenotypical changes associated with CRISPR/Cas9 manipulation were observed in 4E-BP1 KO cells. This work highlights the use of the CRISPR/Cas9 system to enhance the antiviral response in porcine cells.

  7. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  8. A novel requirement for Janus kinases as mediators of drug resistance induced by fibroblast growth factor-2 in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Catarina R Carmo

    Full Text Available The development of resistance to chemotherapy is a major cause of cancer-related death. Elucidating the mechanisms of drug resistance should thus lead to novel therapeutic strategies. Fibroblast growth factor (FGF-2 signaling induces the assembly of a multi-protein complex that provides tumor cells with the molecular machinery necessary for drug resistance. This complex, which involves protein kinase C (PKC ε, v-raf murine sarcoma viral oncogene homolog B1 (B-RAF and p70 S6 kinase β (S6K2, enhances the selective translation of anti-apoptotic proteins such as B-cell leukaemia/lymphoma-2 (BCL-2 and inhibitors of apoptosis protein (IAP family members and these are able to protect multiple cancer cell types from chemotherapy-induced cell death. The Janus kinases (JAKs are most noted for their critical roles in mediating cytokine signaling and immune responses. Here, we show that JAKs have novel functions that support their consideration as new targets in therapies aimed at reducing drug resistance. As an example, we show that the Janus kinase TYK2 is phosphorylated downstream of FGF-2 signaling and required for the full phosphorylation of extracellular signal-regulated kinase (ERK 1/2. Moreover, TYK2 is necessary for the induction of key anti-apoptotic proteins, such as BCL-2 and myeloid cell leukemia sequence (MCL 1, and for the promotion of cell survival upon FGF-2. Silencing JAK1, JAK2 or TYK2 using RNA interference (RNAi inhibits FGF2-mediated proliferation and results in the sensitization of tumor cells to chemotherapy-induced killing. These effects are independent of activation of signal transducer and activator of transcription (STAT 1, STAT3 and STAT5A/B, the normal targets of JAK signaling. Instead, TYK2 associates with the other kinases previously implicated in FGF-2-mediated drug resistance. In light of these findings we hypothesize that TYK2 and other JAKs are important modulators of FGF-2-driven cell survival and that inhibitors of

  9. Selective reversal of drug resistance in drug-resistant lung adenocarcinoma cells by tumor-specific expression of MDR1 ribozyme gene mediated by retrovirus

    Institute of Scientific and Technical Information of China (English)

    高振强; 高志萍; 刘喜富; 张涛

    1997-01-01

    According to the fact that CEA gene expressed only in lung adenocarcinoma and not in normal lung cells, a retroviral vector (pCEAMR) was constructed which carried the CEA promoter coupled to MDR1 ribozyme gene. pCEAMR was introduced into drug-resistant lung adenocarcinoma cells GAOK with CEA expression and HeLaK without CEA expression; the expression of pCEAMR and drug resistance in the infected cells were analyzed in vitro and in vivo ; pCEAMR expressed only in CEA-producing GAOK cells and not in non-CEA-producing HeLa cells. The drug resistance to doxorubicin (DOX) decreased 91.5% in the infected GAOK cells and did not change in the infected HeLa cells. In nude mice, DOX could obviously inhibit the growth of the infected GAOK tumors, and had no effect on the growth of the infected HeLa cells. These results indicated that MDR1 ribozyme gene regulated by CEA promoter expressed only in human adenocarcinoma cells and reversed their drug resistance selectively. This gene-drug therapy might serve as an effe

  10. Resistance to toxin-mediated fungal infection: role of lignins, isoflavones, other seed phenolics, sugars and boron in the mechanism of resistance to charcoal rot disease in soybean

    Science.gov (United States)

    The objective of this research was to investigate the combined effects of charcoal rot and drought on total seed phenol, isoflavones, sugars, and boron in susceptible (S) and moderately resistant (MR) soybean genotypes to charcoal rot pathogen. A field experiment was conducted for two years under ir...

  11. Analysis of plasmid-mediated quinolone and oxyimino-cephalosporin resistance mechanisms in Uruguayan Salmonella enterica isolates from 2011-2013.

    Science.gov (United States)

    Cordeiro, Nicolás F; Nabón, Adriana; García-Fulgueiras, Virginia; Álvez, Marcelo; Sirok, Alfredo; Camou, Teresa; Vignoli, Rafael

    2016-09-01

    This study characterised the mechanisms of fluoroquinolone and oxyimino-cephalosporin resistance in human Salmonella enterica isolates in Uruguay. Salmonella enterica isolates were collected from 2011-2013 and were selected based on non-susceptibility to ciprofloxacin and/or oxyimino-cephalosporins. The disk diffusion assay was performed for various antibiotics, and the ciprofloxacin minimum inhibitory concentration (MIC) was determined following CLSI guidelines. Genetic relatedness was determined following PulseNet protocols. Extended-spectrum β-lactamases, ampC alleles and plasmid-mediated quinolone resistance were characterised by PCR and sequencing. Plasmid analyses were carried out by conjugation or transformation assays, and plasmid-encoded genes were identified by PCR. Mutations in the quinolone resistance-determining region of gyrases were sought by PCR and sequencing. Among 579 isolates, 105 (18.4%) ciprofloxacin-non-susceptible (CIP-NS) isolates, 9 (1.6%) oxyimino-cephalosporin-resistant isolates and 2 (0.3%) isolates resistant to both antibiotic families were detected. Thirteen isolates carried qnrB alleles (twelve qnrB19 and one qnrB2), four carried blaCTX-M-8, two blaCTX-M-14, two blaSHV-2 and three blaCMY-2-like genes. No correlation was found between mutations in gyrases and ciprofloxacin MICs. Several co-circulating clones of S. enterica ssp. enterica serovar Typhimurium were detected; conversely, S. enterica ssp. enterica serovar Enteritidis corresponded mainly to a single circulating clone. Nine (75%) of twelve of CIP-NS extraintestinal isolates shared the same pulsotype with intestinal isolates. During the study period, the frequency of CIP-NS isolates increased, albeit with ciprofloxacin MICs of 0.125-0.5mg/L. Detection of the same quinolone-resistant clones recovered both from intestinal and extraintestinal samples highlights the significance of epidemiological surveillance of antibiotic susceptibility for every human Salmonella isolate. PMID

  12. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Christoph Sasse

    Full Text Available The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis, by the overexpression of genes encoding multidrug efflux pumps or ergosterol biosynthesis enzymes. Zinc cluster transcription factors play a central role in the transcriptional regulation of drug resistance. Mrr1 regulates the expression of the major facilitator MDR1, Tac1 controls the expression of the ABC transporters CDR1 and CDR2, and Upc2 regulates ergosterol biosynthesis (ERG genes. Gain-of-function mutations in these transcription factors result in constitutive overexpression of their target genes and are responsible for fluconazole resistance in many clinical C. albicans isolates. The transcription factor Ndt80 contributes to the drug-induced upregulation of CDR1 and ERG genes and also binds to the MDR1 and CDR2 promoters, suggesting that it is an important component of all major transcriptional mechanisms of fluconazole resistance. However, we found that Ndt80 is not required for the induction of MDR1 and CDR2 expression by inducing chemicals. CDR2 was even partially derepressed in ndt80Δ mutants, indicating that Ndt80 is a repressor of CDR2 expression. Hyperactive forms of Mrr1, Tac1, and Upc2 promoted overexpression of MDR1, CDR1/CDR2, and ERG11, respectively, with the same efficiency in the presence and absence of Ndt80. Mrr1- and Tac1-mediated fluconazole resistance was even slightly enhanced in ndt80Δ mutants compared to wild-type cells. These results demonstrate that Ndt80 is dispensable for the constitutive overexpression of Mrr1, Tac1, and Upc2 target genes and the increased fluconazole resistance of strains that have acquired activating mutations in these transcription factors.

  13. Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae.

    LENUS (Irish Health Repository)

    Walsh, Fiona

    2010-06-01

    A DNA microarray was developed to detect plasmid-mediated antimicrobial resistance (AR) and virulence factor (VF) genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. The array was validated with the following bacterial species: Escherichiacoli (n=17); Klebsiellapneumoniae (n=3); Enterobacter spp. (n=6); Acinetobacter genospecies 3 (n=1); Acinetobacterbaumannii (n=1); Pseudomonasaeruginosa (n=2); and Stenotrophomonasmaltophilia (n=2). The AR gene profiles of these isolates were identified by polymerase chain reaction (PCR). The DNA microarray consisted of 155 and 133 AR and VF gene probes, respectively. Results were compared with the commercially available Identibac AMR-ve Array Tube. Hybridisation results indicated that there was excellent correlation between PCR and array results for AR and VF genes. Genes conferring resistance to each antibiotic class were identified by the DNA array. Unusual resistance genes were also identified, such as bla(SHV-5) in a bla(OXA-23)-positive carbapenem-resistant A. baumannii. The phylogenetic group of each E. coli isolate was verified by the array. These data demonstrate that it is possible to screen simultaneously for all important classes of mobile AR and VF genes in Enterobacteriaceae and non-Enterobacteriaceae whilst also assigning a correct phylogenetic group to E. coli isolates. Therefore, it is feasible to test clinical Gram-negative bacteria for all known AR genes and to provide important information regarding pathogenicity simultaneously.

  14. Nutritional and hormonal regulation of the TOR effector 4E-binding protein (4E-BP) in the mosquito Aedes aegypti

    OpenAIRE

    Roy, Saurabh G.; Raikhel, Alexander S.

    2012-01-01

    Mosquitoes require blood for egg development, and, as a consequence, they transmit pathogens of devastating diseases. Target of rapamycin (TOR) signaling is a key pathway linking blood feeding and egg development in the mosquito Aedes aegypti. We show that the regulation of the TOR effector translational repressor 4E-BP is finely tuned to the nutritional requirements of the female mosquito, and it occurs at transcriptional and post-translational levels. Immediately after blood feeding, 4E-BP ...

  15. Relationship between Eukaryotic Translation Initiation Factor 4E and Malignant Angiogenesis in Non-Hodgkin Lymphoma

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yanxia; LIU Wenli; ZHOU Sheng; ZHOU Jianfeng; SUN Hanying

    2005-01-01

    The relationship between angiogenesis and eukaryotic translation initiation factor 4E (EIF4E) expression level in non-Hodgkin lymphoma (NHL) was studied. Mean microvessel density (MVD) and EIF4E were detected in 52 lymph node samples paraffin sections of patients with newly diagnosed NHL by the way of immunohistochemistry. Antisense EIF4E cDNA was cloned into plasmid pcDNA3.1 (+) and transfected into Raji cells. A series of angiogenesis related factors,including vascular endothelial growth factor (VEGF), matrix metalloproteinases 9 (MMP-9)and tissue inhibitor of metalloproteinases-2 (TIMP-2) proteins were detected by Western blot. The results showed that: (1) The Expression of EIF4E and MVD was higher in aggressive lymphomas than in indolent lymphomas(P<0.05)and the expression of EIF4E was positively correlated with MVD in lymph node of NHL(r=0. 695, P<0.01). (2) Antisense EIF4E eukaryocytic expression vector (pcDNA3.1-EIF4Eas) was constructed successfully. (3) EIF4E, VEGF and MMP-9 were expressed at high levels in Raji cells as compared to normal human peripheral blood monocular cells ( NHPMC), and blockage of EIF4E expression brought down the expression of VEGF and MMP-9.However, TIMP-2 was undetectable in Raji cells, although a moderate level of TIMP-2 was detected in NHPMC. It was concluded that the increased EIF4E expression was associated with aggressive property of NHL.

  16. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors

    Science.gov (United States)

    Zhang, Peisheng; Chen, Lei; Baird, Jason R.; Demidenko, Eugene; Turk, Mary Jo; Hoopes, P. Jack; Conejo-Garcia, Jose R.; Fiering, Steven

    2014-01-01

    Combinatorial use of iron oxide nanoparticles (IONPs) and an alternating magnetic filed (AMF) can induce local hyperthermia in tumors in a controlled and uniform manner. Heating B16 primary tumors at 43°C for 30 minutes activated dendritic cells (DCs) and subsequently CD8+ T cells in the draining lymph node (dLN) and conferred resistance against rechallenge with B16 (but not unrelated Lewis Lung carcinoma) given 7 days post hyperthermia on both the primary tumor side and the contralateral side in a CD8+ T cell-dependent manner. Mice with heated primary tumors also resisted rechallenge given 30 days post hyperthermia. Mice with larger heated primary tumors had greater resistance to secondary tumors. No rechallenge resistance occurred when tumors were heated at 45°C. Our results demonstrate the promising potential of local hyperthermia treatment applied to identified tumors in inducing anti-tumor immune responses that reduce the risk of recurrence and metastasis. PMID:24566274

  17. Agrobacterium mediated transfer of a mutant Arabidopsis acetolactate synthase gene confers resistance to chlorsulfuron in chicory (Cichorium intybus L.).

    Science.gov (United States)

    Vermeulen, A; Vaucheret, H; Pautot, V; Chupeau, Y

    1992-06-01

    Leaf discs of C. intybus were inoculated with an Agrobacterium tumefaciens strain harboring a neomycin phosphotransferase (neo) gene for kanamycin resistance and a mutant acetolactate synthase gene (csr1-1) from Arabidopsis thaliana conferring resistance to sulfonylurea herbicides. A regeneration medium was optimized which permitted an efficient shoot regeneration from leaf discs. Transgenic shoots were selected on rooting medium containing 100 mg/l kanamycin sulfate. Integration of the csr1-1 gene into genomic DNA of kanamycin resistant chicory plants was confirmed by Southern blot hybridizations. Analysis of the selfed progenies (S1 and S2) of two independent transformed clones showed that kanamycin and chlorsulfuron resistances were inherited as dominant Mendelian traits. The method described here for producing transformed plants will allow new opportunities for chicory breeding. PMID:24203132

  18. A set of vectors for introduction of antibiotic resistance genes by in vitro Cre-mediated recombination

    OpenAIRE

    Vassetzky Yegor S; Dmitriev Petr V

    2008-01-01

    Abstract Background Introduction of new antibiotic resistance genes in the plasmids of interest is a frequent task in molecular cloning practice. Classical approaches involving digestion with restriction endonucleases and ligation are time-consuming. Findings We have created a set of insertion vectors (pINS) carrying genes that provide resistance to various antibiotics (puromycin, blasticidin and G418) and containing a loxP site. Each vector (pINS-Puro, pINS-Blast or pINS-Neo) contains either...

  19. Multidrug resistance mediated by ABC transporters in osteosarcoma cell lines: mRNA analysis and functional radiotracer studies

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Celia Maria Freitas [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal)]. E-mail: cgomes@ibili.uc.pt; van Paassen, Heidi [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Romeo, Salvatore [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Welling, Mick M. [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Feitsma, R.I.J. [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Abrunhosa, Antero J. [Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal); Botelho, M. Filomena [Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal); Hogendoorn, Pancras C.W. [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Pauwels, Ernest [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Cleton-Jansen, Anne Marie [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands)

    2006-10-15

    Drug resistance remains a significant impediment to successful chemotherapy and constitutes a major prognostic factor in osteosarcoma (OS) patients. This study was designed to identify the role and prognostic significance of multidrug-resistance (MDR)-related transporters, such as multidrug resistance protein 1 (MDR1), multidrug-resistance-associated protein (MRP1) and breast-cancer-related protein (BCRP), in OS using cationic lipophilic radiotracers. We evaluated the chemosensitivity of four OS cell lines (Saos-2, 143B, MNNG/HOS and U-2OS) to doxorubicin (DOX), cisplatin (CIS) and methotrexate. The expression of MDR-related transporters was analyzed at mRNA level by quantitative polymerase chain reaction and at functional level by {sup 99m}Tc sestamibi and {sup 99m}Tc tetrofosmin. The effectiveness of MDR modulators [cyclosporin A (CsA) and imatinib] on transporter inhibition and on the reversal of resistance was also assessed. MNNG/HOS and U-2OS cells expressing high levels of MDR1 were highly resistant to DOX and showed reduced accumulation and higher efflux for radiotracers. Although MRP1 was uniformly expressed in all cells, only U-2OS was resistant to CIS. CsA restored sensitivity to DOX and CIS, and enhanced the accumulation and efflux half-life of radiotracers in MDR1-expressing cell lines. The chemosensitivity of OS cells to DOX was strongly dependent on mRNA MDR1 expression and could be circumvented by adding CsA. The kinetic parameters of radiotracers correlated with MDR1 expression levels, hence predicting DOX resistance. We concluded that sensitivity to chemotherapy is strongly dependent on the expression of MDR1 transporter and that radiotracer studies could prove clinically useful in predicting chemotherapy response and in evaluating the efficacy of MDR-reversing agents.

  20. Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance

    OpenAIRE

    Nirmala, Jayaveeramuthu; Drader, Tom; Lawrence, Paulraj K.; Yin, Chuntao; Hulbert, Scot; Steber, Camille M; Steffenson, Brian J.; Les J Szabo; von Wettstein, Diter; Kleinhofs, Andris

    2011-01-01

    The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inoculation, followed by hyphae and haustorium formation. The RPG1 protein is constitutively expressed and not phosphorylated. On inoculation with avirulent urediniospores, it is phosphorylated in vivo wit...

  1. A gamma-ray-resistant derivative of an ataxia telangiectasia cell line obtained following DNA-mediated gene transfer

    International Nuclear Information System (INIS)

    Genomic DNA from normal human or mouse cells was transfected together with the selectable market gpt into the simian virus 40-transformed ataxia telangiectasia fibroblast line, AT5BIVA. From a series of experiments involving over 400 000 clones selected for the gpt marker, one unambiguously radiation-resistant clone (clone 67) was recovered following selection with repeated cyles of gamma irradiation. The normal level of radiation resistance of clone 67 has been maintained for at least 11 months in the absence of further selection by radiation. The resistant clone contains one copy of the gpt gene. Its DNA synthesis following gamma-radiation is inhibited to an extent intermediate between that of ataxia telangiectasia and normal cells. Three out of four thioguanine-resistant derivatives of clone 67 have either lost or do not express the gpt sequence and show almost the same sensitivity to gamma irradiation as the original AT5BIVA line. This suggests that the radiation resistance of clone 67 may be linked to the gpt sequence and may have arisen as a consequence of the transfection, rather than as the result of an independent mutation to radiation resistance. (author)

  2. Loss of Microbiota-Mediated Colonization Resistance to Clostridium difficile Infection With Oral Vancomycin Compared With Metronidazole.

    Science.gov (United States)

    Lewis, Brittany B; Buffie, Charlie G; Carter, Rebecca A; Leiner, Ingrid; Toussaint, Nora C; Miller, Liza C; Gobourne, Asia; Ling, Lilan; Pamer, Eric G

    2015-11-15

    Antibiotic administration disrupts the intestinal microbiota, increasing susceptibility to pathogens such as Clostridium difficile. Metronidazole or oral vancomycin can cure C. difficile infection, and administration of these agents to prevent C. difficile infection in high-risk patients, although not sanctioned by Infectious Disease Society of America guidelines, has been considered. The relative impacts of metronidazole and vancomycin on the intestinal microbiota and colonization resistance are unknown. We investigated the effect of brief treatment with metronidazole and/or oral vancomycin on susceptibility to C. difficile, vancomycin-resistant Enterococcus, carbapenem-resistant Klebsiella pneumoniae, and Escherichia coli infection in mice. Although metronidazole resulted in transient loss of colonization resistance, oral vancomycin markedly disrupted the microbiota, leading to prolonged loss of colonization resistance to C. difficile infection and dense colonization by vancomycin-resistant Enterococcus, K. pneumoniae, and E. coli. Our results demonstrate that vancomycin, and to a lesser extent metronidazole, are associated with marked intestinal microbiota destruction and greater risk of colonization by nosocomial pathogens.

  3. Prevalence and characteristics of extended-spectrum β-lactamase and plasmid-mediated fluoroquinolone resistance genes in Escherichia coli isolated from chickens in Anhui province, China.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The aim of this study was to characterize the prevalence of extended-spectrum β-lactamase (ESBL genes and plasmid-mediated fluoroquinolone resistance (PMQR determinants in 202 Escherichia coli isolates from chickens in Anhui Province, China, and to determine whether ESBL and PMQR genes co-localized in the isolates. Antimicrobial susceptibility for 12 antimicrobials was determined by broth microdilution. Polymerase chain reactions (PCRs, DNA sequencing, and pulsed field gel electrophoresis (PFGE were employed to characterize the molecular basis for β-lactam and fluoroquinolone resistance. High rates of antimicrobial resistance were observed, 147 out of the 202 (72.8% isolates were resistant to at least 6 antimicrobial agents and 28 (13.9% of the isolates were resistant to at least 10 antimicrobials. The prevalence of blaCTX-M, blaTEM-1 and blaTEM-206 genes was 19.8%, 24.3% and 11.9%, respectively. Seventy-five out of the 202 (37.1% isolates possessed a plasmid-mediated quinolone resistance determinant in the form of qnrS (n = 21; this determinant occurred occasionally in combination with aac(6'-1b-cr (n = 65. Coexistence of ESBL and/or PMQR genes was identified in 31 of the isolates. Two E. coli isolates carried blaTEM-1, blaCTX-M and qnrS, while two others carried blaCTX-M, qnrS and aac(6'-1b-cr. In addition, blaTEM-1, qnrS and aac(6'-1b-cr were co-located in two other E. coli isolates. PFGE analysis showed that these isolates were not clonally related and were genetically diverse. To the best of our knowledge, this study is the first to describe detection of TEM-206-producing E. coli in farmed chickens, and the presence of blaTEM-206, qnrS and aac(6'-1b-cr in one of the isolates.

  4. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Min, Joong Won [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeon, Hong Bae [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of); Cho, Dong-Hyung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of); Oh, Jeong Su [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Park, In-Chul; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jae-Sung, E-mail: jaesung@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-10-11

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.

  5. Synthesis of new steroidal inhibitors of P-glycoprotein-mediated multidrug resistance and biological evaluation on K562/R7 erythroleukemia cells.

    Science.gov (United States)

    de Ravel, Marc Rolland; Alameh, Ghina; Melikian, Maxime; Mahiout, Zahia; Emptoz-Bonneton, Agnès; Matera, Eva-Laure; Lomberget, Thierry; Barret, Roland; Rocheblave, Luc; Walchshofer, Nadia; Beltran, Sonia; El Jawad, Lucienne; Mappus, Elisabeth; Grenot, Catherine; Pugeat, Michel; Dumontet, Charles; Le Borgne, Marc; Cuilleron, Claude Yves

    2015-02-26

    A simple route for improving the potency of progesterone as a modulator of P-gp-mediated multidrug resistance was established by esterification or etherification of hydroxylated 5α/β-pregnane-3,20-dione or 5β-cholan-3-one precursors. X-ray crystallography of representative 7α-, 11α-, and 17α-(2'R/S)-O-tetrahydropyranyl ether diastereoisomers revealed different combinations of axial-equatorial configurations of the anomeric oxygen. Substantial stimulation of accumulation and chemosensitization was observed on K562/R7 erythroleukemia cells resistant to doxorubicin, especially using 7α,11α-O-disubstituted derivatives of 5α/β-pregnane-3,20-dione, among which the 5β-H-7α-benzoyloxy-11α-(2'R)-O-tetrahydropyranyl ether 22a revealed promising properties (accumulation index 2.9, IC50 0.5 μM versus 1.2 and 10.6 μM for progesterone), slightly overcoming those of verapamil and cyclosporin A. Several 7α,12α-O-disubstituted derivatives of 5β-cholan-3-one proved even more active, especially the 7α-O-methoxymethyl-12α-benzoate 56 (accumulation index 3.8, IC50 0.2 μM). The panel of modulating effects from different O-substitutions at a same position suggests a structural influence of the substituent completing a simple protection against stimulating effects of hydroxyl groups on P-gp-mediated transport.

  6. Successful international clones of blaCTX-M-15-producing Klebsiella pneumoniae with coexpression of plasmid-mediated quinolone resistance (PMQR) determinants in Tehran hospitals.

    Science.gov (United States)

    Nematzadeh, Shoeib; Shahcheraghi, Fereshteh; Iversen, Aina; Giske, Christian G

    2015-12-01

    The dissemination of plasmid-mediated multidrug resistance in Enterobacteriaceae is a major public health concern. We investigated the prevalence of plasmid-mediated quinolone resistance (PMQR), 16S rRNA methylases, CTX-M, and acquired AmpC enzymes in ESBL-producing Klebsiella pneumoniae (n=40) from Tehran hospitals. Plasmid replicon typing, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) were carried out for typing. CTX-M group 1 (confirmed as bla(CTX-M-15) in selected isolates) was found in 35/40 isolates. Thirty-two isolates hosted PMQR genes. Twenty isolates featured aac(6')-Ib-CR only; 9 isolates had aac(6')-Ib-CR and qnrB; 2 isolates had aac(6')-Ib-CR and qnrS; and 1 isolate had aac(6')-Ib-CR, qnrS, and qepA. The 16S rRNA methylase RmtB was found in 1 isolate; and acquired AmpC enzymes, in 6 isolates. PFGE detected 7 pulsotypes, the largest corresponded to sequence type 16. The successful clone ST101 was also found. The emergence of successful clones of K. pneumoniae in Tehran hospitals is concerning. PMID:26458278

  7. Regulation of Mucin 1 and multidrug resistance protein 1 by honokiol enhances the efficacy of doxorubicin-mediated growth suppression in mammary carcinoma cells.

    Science.gov (United States)

    Thulasiraman, Padmamalini; Johnson, Andrea Butts

    2016-08-01

    Understanding the link between chemoresistance and cancer progression may identify future targeted therapy for breast cancer. One of the mechanisms by which chemoresistance is attained in cancer cells is mediated through the expression of multidrug resistance proteins (MRPs). Acquiring drug resistance has been correlated to the emergence of metastasis, accounting for the progression of the disease. One of the diagnostic markers of metastatic progression is the overexpression of a transmembrane protein called Mucin 1 (MUC1) which has been implicated in reduced survival rate. The objective of this study was to understand the relationship between MUC1 and MRP1 using natural phenolic compound isolated from Magnolia grandiflora, honokiol, in mammary carcinoma cells. We provide evidence that honokiol suppresses the expression level of MUC1 and MRP1 in mammary carcinoma cells. In a time-dependent manner, honokiol-mediated reduction of MUC1 is followed by a reduction of MRP1 expression in the breast cancer cells. Additionally, silencing MUC1 suppresses the expression level of MRP1 and enhances the efficacy of doxorubicin, an MRP1 substrate. Taken together, these findings suggest MUC1 regulates the expression of MRP1 and provides a direct link between cancer progression and chemoresistance in mammary carcinoma cells. PMID:27221150

  8. Interactions on the Dorsal Surface of eIF4E

    OpenAIRE

    Tait, Shirley

    2010-01-01

    AbstractUniversity of ManchesterShirley TaitMaster of PhilosophyInteractions on the Dorsal Surface of eIF4E2010Eukaryotic initiation factor 4E (eIF4E) is the messenger RNA cap binding protein, which recruits eIF4G and eIF4A allowing translation initiation to proceed. The eIF4E binding proteins (4E-BPs) are small, heat-stable proteins (~12KDa) that act as repressors of translation. They function by binding the same site as eIF4G on the dorsal region of eIF4E, opposite the cap binding site, the...

  9. Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa

    Science.gov (United States)

    Morita, Yuji; Nakashima, Ken-ichi; Nishino, Kunihiko; Kotani, Kenta; Tomida, Junko; Inoue, Makoto; Kawamura, Yoshiaki

    2016-01-01

    The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake) or Phellodendri Cortex (the bark of Phellodendron chinense Schneider) markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g., amikacin) in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime), macrolides (erythromycin), and lincosamides (lincomycin) demonstrated using a pseudomonad lacking the four other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa) in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important. PMID:27547203

  10. Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Morita, Yuji; Nakashima, Ken-Ichi; Nishino, Kunihiko; Kotani, Kenta; Tomida, Junko; Inoue, Makoto; Kawamura, Yoshiaki

    2016-01-01

    The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake) or Phellodendri Cortex (the bark of Phellodendron chinense Schneider) markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g., amikacin) in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime), macrolides (erythromycin), and lincosamides (lincomycin) demonstrated using a pseudomonad lacking the four other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa) in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important. PMID:27547203

  11. Deltamethrin-mediated survival, behavior, and oenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitos (Aedes aegypti).

    Science.gov (United States)

    Marriel, Nadja Biondine; Tomé, Hudson Vaner Ventura; Guedes, Raul Carvalho Narciso; Martins, Gustavo Ferreira

    2016-06-01

    Insecticide use is the prevailing control tactic for the mosquito Aedes aegypti, a vector of several human viruses, which leads to ever-increasing problems of insecticide resistance in populations of this insect pest species. The underlying mechanisms of insecticide resistance may be linked to the metabolism of insecticides by various cells, including oenocytes. Oenocytes are ectodermal cells responsible for lipid metabolism and detoxification. The goal of this study was to evaluate the sublethal effects of deltamethrin on survival, behavior, and oenocyte structure in the immature mosquitoes of insecticide-susceptible and resistant strains of A. aegypti. Fourth instar larvae (L4) of both strains were exposed to different concentrations of deltamethrin (i.e., 0.001, 0.003, 0.005, and 0.007 ppm). After exposure, L4 were subjected to behavioral bioassays. Insecticide effects on cell integrity after deltamethrin exposure (at 0.003 or 0.005 ppm) were assessed by processing pupal oenocytes for transmission electron microscopy or TUNEL reaction. The insecticide resistant L4 survived all the tested concentrations, whereas the 0.007-ppm deltamethrin concentration had lethal effects on susceptible L4. Susceptible L4 were lethargic and exhibited less swimming activity than unexposed larvae, whereas the resistant L4 were hyperexcited following exposure to 0.005 ppm deltamethrin. No sublethal effects and no significant cell death were observed in the oenocytes of either susceptible or resistant insects exposed to deltamethrin. The present study illustrated the different responses of susceptible and resistant strains of A. aegypti following exposure to sublethal concentration of deltamethrin, and demonstrated how the behavior of the immature stage of the two strains varied, as well as oenocyte structure following insecticide exposure. PMID:26943998

  12. Cell type-specific control of protein synthesis and proliferation by FGF-dependent signaling to the translation repressor 4E-BP.

    Science.gov (United States)

    Ruoff, Rachel; Katsara, Olga; Kolupaeva, Victoria

    2016-07-01

    Regulation of protein synthesis plays a vital role in posttranscriptional modulation of gene expression. Translational control most commonly targets the initiation of protein synthesis: loading 40S ribosome complexes onto mRNA and AUG start codon recognition. This step is initiated by eukaryotic initiation factor 4E (eIF4E) (the m7GTP cap-binding protein), whose binding to eIF4G (a scaffolding subunit) and eIF4A (an ATP-dependent RNA helicase) leads to assembly of active eIF4F complex. The ability of eIF4E to recognize the cap is prevented by its binding to eIF4E binding protein (4E-BP), which thereby inhibits cap-dependent translation by sequestering eIF4E. The 4E-BP activity is, in turn, inhibited by mTORC1 [mTOR (the mechanistic target of rapamycin) complex 1] mediated phosphorylation. Here, we define a previously unidentified mechanism of mTOR-independent 4E-BP1 regulation that is used by chondrocytes upon FGF signaling. Chondrocytes are responsible for the formation of the skeleton long bones. Unlike the majority of cell types where FGF signaling triggers proliferation, chondrocytes respond to FGF with inhibition. We establish that FGF specifically suppresses protein synthesis in chondrocytes, but not in any other cells of mesenchymal origin. Furthermore, 4E-BP1 repressor activity is necessary not only for suppression of protein synthesis, but also for FGF-induced cell-cycle arrest. Importantly, FGF-induced changes in the 4E-BP1 activity observed in cell culture are likewise detected in vivo and reflect the action of FGF signaling on downstream targets during bone development. Thus, our findings demonstrate that FGF signaling differentially impacts protein synthesis through either stimulation or repression, in a cell-type-dependent manner, with 4E-BP1 being a key player. PMID:27313212

  13. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis

    Directory of Open Access Journals (Sweden)

    Xu T

    2016-02-01

    Full Text Available Tao Xu,1 Yuanyuan Zong,2 Lipan Peng,1 Shuai Kong,1 Mingliang Zhou,1 Jianqiang Zou,1 Jinglei Liu,1 Ruizheng Miao,1 Xichao Sun,2 Leping Li11Department of Gastrointestinal Surgery, 2Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China Purpose: Liver metastasis is one of the leading causes of death in colorectal cancer (CRC patients. The present study aimed to evaluate the value of eIF4E as a prognostic marker of colo­rectal liver metastasis (CLM and identify the functional role of eIF4E in CRC metastasis. Patients and methods: The expression level of eIF4E in CRC tissues was analyzed by immunohistochemical staining and Western blot. Expression of eIF4E in CRC cell lines was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR and Western blot. Cell Counting Kit-8 (CCK-8 and Transwell assays were performed to assess the effects of eIF4E on cell proliferation, migration, and invasion. Western blot was further used to investigate the mechanism of eIF4E in tumor metastasis. Results: The upregulation frequency of eIF4E in the CLM group (82.5% was higher than that in the non-CLM group (65.0%. Of the 80 patients recruited for the follow-up study, 23 were in the low eIF4E group (ratio of tumor to nontumor tissue < twofold, and 57 were in the high eIF4E group (ratio of tumor to nontumor tissue ≥twofold. In addition, the group exhibiting high eIF4E expression had a higher rate of liver metastasis (47.4% than the group exhibiting low eIF4E expression (13.0%. In CRC cell lines, the expression of eIF4E was higher than in the normal cells. In vitro functional studies indicated that eIF4E knockdown inhibited the proliferation, migration, and invasion of Lovo and SW480 cells, and suppressed the expression of cyclin D1, VEGF, MMP-2, and MMP-9.Conclusion: The results of the present study indicated that high eIF4E levels in CRC patients predicted a high

  14. More than resisting temptation: Beneficial habits mediate the relationship between self-control and positive life outcomes.

    Science.gov (United States)

    Galla, Brian M; Duckworth, Angela L

    2015-09-01

    Why does self-control predict such a wide array of positive life outcomes? Conventional wisdom holds that self-control is used to effortfully inhibit maladaptive impulses, yet this view conflicts with emerging evidence that self-control is associated with less inhibition in daily life. We propose that one of the reasons individuals with better self-control use less effortful inhibition, yet make better progress on their goals is that they rely on beneficial habits. Across 6 studies (total N = 2,274), we found support for this hypothesis. In Study 1, habits for eating healthy snacks, exercising, and getting consistent sleep mediated the effect of self-control on both increased automaticity and lower reported effortful inhibition in enacting those behaviors. In Studies 2 and 3, study habits mediated the effect of self-control on reduced motivational interference during a work-leisure conflict and on greater ability to study even under difficult circumstances. In Study 4, homework habits mediated the effect of self-control on classroom engagement and homework completion. Study 5 was a prospective longitudinal study of teenage youth who participated in a 5-day meditation retreat. Better self-control before the retreat predicted stronger meditation habits 3 months after the retreat, and habits mediated the effect of self-control on successfully accomplishing meditation practice goals. Finally, in Study 6, study habits mediated the effect of self-control on homework completion and 2 objectively measured long-term academic outcomes: grade point average and first-year college persistence. Collectively, these results suggest that beneficial habits-perhaps more so than effortful inhibition-are an important factor linking self-control with positive life outcomes. PMID:25643222

  15. More than Resisting Temptation: Beneficial Habits Mediate the Relationship between Self-Control and Positive Life Outcomes

    Science.gov (United States)

    Galla, Brian M.; Duckworth, Angela L.

    2015-01-01

    Why does self-control predict such a wide array of positive life outcomes? Conventional wisdom holds that self-control is used to effortfully inhibit maladaptive impulses, yet this view conflicts with emerging evidence that self-control is associated with less inhibition in daily life. We propose that one of the reasons individuals with better self-control use less effortful inhibition, yet make better progress on their goals is that they rely on beneficial habits. Across six studies (total N = 2,274), we found support for this hypothesis. In Study 1, habits for eating healthy snacks, exercising, and getting consistent sleep mediated the effect of self-control on both increased automaticity and lower reported effortful inhibition in enacting those behaviors. In Studies 2 and 3, study habits mediated the effect of self-control on reduced motivational interference during a work-leisure conflict and on greater ability to study even under difficult circumstances. In Study 4, homework habits mediated the effect of self-control on classroom engagement and homework completion. Study 5 was a prospective longitudinal study of teenage youth who participated in a five-day meditation retreat. Better self-control before the retreat predicted stronger meditation habits three months after the retreat, and habits mediated the effect of self-control on successfully accomplishing meditation practice goals. Finally, in Study 6, study habits mediated the effect of self-control on homework completion and two objectively measured long-term academic outcomes: grade point average and first-year college persistence. Collectively, these results suggest that beneficial habits--perhaps more so than effortful inhibition--are an important factor linking self-control with positive life outcomes. PMID:25643222

  16. More than resisting temptation: Beneficial habits mediate the relationship between self-control and positive life outcomes.

    Science.gov (United States)

    Galla, Brian M; Duckworth, Angela L

    2015-09-01

    Why does self-control predict such a wide array of positive life outcomes? Conventional wisdom holds that self-control is used to effortfully inhibit maladaptive impulses, yet this view conflicts with emerging evidence that self-control is associated with less inhibition in daily life. We propose that one of the reasons individuals with better self-control use less effortful inhibition, yet make better progress on their goals is that they rely on beneficial habits. Across 6 studies (total N = 2,274), we found support for this hypothesis. In Study 1, habits for eating healthy snacks, exercising, and getting consistent sleep mediated the effect of self-control on both increased automaticity and lower reported effortful inhibition in enacting those behaviors. In Studies 2 and 3, study habits mediated the effect of self-control on reduced motivational interference during a work-leisure conflict and on greater ability to study even under difficult circumstances. In Study 4, homework habits mediated the effect of self-control on classroom engagement and homework completion. Study 5 was a prospective longitudinal study of teenage youth who participated in a 5-day meditation retreat. Better self-control before the retreat predicted stronger meditation habits 3 months after the retreat, and habits mediated the effect of self-control on successfully accomplishing meditation practice goals. Finally, in Study 6, study habits mediated the effect of self-control on homework completion and 2 objectively measured long-term academic outcomes: grade point average and first-year college persistence. Collectively, these results suggest that beneficial habits-perhaps more so than effortful inhibition-are an important factor linking self-control with positive life outcomes.

  17. ENO1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) in Non-Hodgkin's Lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xinghua; Miao, Xiaobing; Wu, Yaxun; Li, Chunsun; Guo, Yan; Liu, Yushan; Chen, Yali; Lu, Xiaoyun [Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong 226361, Jiangsu (China); Wang, Yuchan, E-mail: wangyuchannt@126.com [Department of Pathogen and Immunology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu (China); He, Song, E-mail: hesongnt@126.com [Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong 226361, Jiangsu (China)

    2015-07-15

    Enolases are glycolytic enzymes responsible for the ATP-generated conversion of 2-phosphoglycerate to phosphoenolpyruvate. In addition to the glycolytic function, Enolase 1 (ENO1) has been reported up-regulation in several tumor tissues. In this study, we investigated the expression and biologic function of ENO1 in Non-Hodgkin's Lymphomas (NHLs). Clinically, by western blot analysis we observed that ENO1 expression was apparently higher in diffuse large B-cell lymphoma than in the reactive lymphoid tissues. Subsequently, immunohistochemical staining of 144 NHLs suggested that the expression of ENO1 was significantly lower in the indolent lymphomas compared with the progressive lymphomas. Further, we identified ENO1 as an independent prognostic factor, and it was significantly correlated with overall survival of NHL patients. In addition, we found that ENO1 could promote cell proliferation, regulate cell cycle associated gene and PI3K/AKT signaling pathway in NHLs. Finally, we verified that ENO1 participated in the process of lymphoma cell adhesion mediated drug resistance (CAM-DR). Adhesion to FN or HS5 cells significantly protected OCI-Ly8 and Daudi cells from cytotoxicity compared with those cultured in suspension, and these effects were attenuated when transfected with ENO1-siRNA. Based on the study, we propose that inhibition of ENO1 expression may be a novel strategy for therapy for NHLs patients, and it may be a target for drug resistance. - Highlights: • ENO1 expression is reversely correlated with clinical outcomes of patients with NHLs. • ENO1 promotes the proliferation of NHL cells. • ENO1 regulates cell adhesion mediated drug resistance.

  18. Plasmid mediated multiple antibiotic resistance in Escherichia coli isolated from community acquired infection of urinary tract in Aligarh Hospital

    Institute of Scientific and Technical Information of China (English)

    Asad U Khan; Saeedut Zafar Ali; Mohammed S Zaman

    2008-01-01

    This study was to investigate the current trends of multiple drug resistance in bacteria against antibiotics for the proper empirical treatmen.Clinical isolates were collected from community-acquired infection of urinary tract patients in Aligarh India from March 1999 to August 1999.Antibiotic susceptibility test was performed,using the disc diffusion method followed by plasmid isolation by the method of Kado and Liu.Transfer experiments were performed by the method of Lederberg and Cohen.Clinical study revealed that this infection was more common in young women.Various strains of E.coli isolated during the course of study were found to show multiple antibiotic resistance which was further characterized as plasmid-borne drug resistance.This study shows that E.coli may be one of the important causative agents of urinary tract infection (UTI )in young women.

  19. Travelers Can Import Colistin-Resistant Enterobacteriaceae, Including Those Possessing the Plasmid-Mediated mcr-1 Gene.

    Science.gov (United States)

    Bernasconi, Odette J; Kuenzli, Esther; Pires, João; Tinguely, Regula; Carattoli, Alessandra; Hatz, Christoph; Perreten, Vincent; Endimiani, Andrea

    2016-08-01

    Stool samples from 38 travelers returning from India were screened for extended-spectrum cephalosporin- and carbapenem-resistant Enterobacteriaceae implementing standard selective plates. Twenty-six (76.3%) people were colonized with CTX-M or DHA producers, but none of the strains was colistin resistant and/or mcr-1 positive. Nevertheless, using overnight enrichment and CHROMagar Orientation plates supplemented with colistin, four people (10.5%) were found to be colonized with colistin-resistant Escherichia coli One cephalosporin-susceptible sequence type 10 (ST10) strain carried a 4,211-bp ISApl1-mcr-1-ISApl1 element in an IncHI2 plasmid backbone. PMID:27297483

  20. Mercury-mediated cross-resistance to tellurite in Pseudomonas spp. isolated from the Chilean Antarctic territory.

    Science.gov (United States)

    Rodríguez-Rojas, F; Díaz-Vásquez, W; Undabarrena, A; Muñoz-Díaz, P; Arenas, F; Vásquez, C

    2016-01-01

    Mercury salts and tellurite are among the most toxic compounds for microorganisms on Earth. Bacterial mercury resistance is established mainly via mercury reduction by the mer operon system. However, specific mechanisms underlying tellurite resistance are unknown to date. To identify new mechanisms for tellurite detoxification we demonstrate that mercury resistance mechanisms can trigger cross-protection against tellurite to a group of Pseudomonads isolated from the Chilean Antarctic territory. Sequencing of 16S rRNA of four isolated strains resulted in the identification of three Pseudomonads (ATH-5, ATH-41 and ATH-43) and a Psychrobacter (ATH-62) bacteria species. Phylogenetic analysis showed that ATH strains were related to other species previously isolated from cold aquatic and soil environments. Furthermore, the identified merA genes were related to merA sequences belonging to transposons commonly found in isolated bacteria from mercury contaminated sites. Pseudomonas ATH isolates exhibited increased tellurite resistance only in the presence of mercury, especially ATH-43. Determination of the growth curves, minimal inhibitory concentrations and growth inhibition zones showed different tellurite cross-resistance of the ATH strains and suggested a correlation with the presence of a mer operon. On the other hand, reactive oxygen species levels decreased while the thiol content increased when the isolates were grown in the presence of both toxicants. Finally, qPCR determinations of merA, merC and rpoS transcripts from ATH-43 showed a synergic expression pattern upon combined tellurite and mercury treatments. Altogether, the results suggest that mercury could trigger a cell response that confers mercury and tellurite resistance, and that the underlying mechanism participates in protection against oxidative damage.

  1. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Bhavna Chawla

    Full Text Available Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis (VL and is responsible for significant mortality and morbidity. Increasing resistance towards antimonial drugs poses a great challenge in chemotherapy of VL. Paromomycin is an aminoglycosidic antibiotic and is one of the drugs currently being used in the chemotherapy of cutaneous and visceral leishmaniasis. To understand the mode of action of this antibiotic at the molecular level, we have investigated the global proteome differences between the wild type AG83 strain and a paromomycin resistant (PRr strain of L. donovani. Stable isotope labeling of amino acids in cell culture (SILAC followed by quantitative mass spectrometry of the wild type AG83 strain and the paromomycin resistant (PRr strain identified a total of 226 proteins at ≥ 95% confidence. Data analysis revealed upregulation of 29 proteins and down-regulation of 21 proteins in the PRr strain. Comparative proteomic analysis of the wild type and the paromomycin resistant strains showed upregulation of the ribosomal proteins in the resistant strain indicating role in translation. Elevated levels of glycolytic enzymes and stress proteins were also observed in the PRr strain. Most importantly, we observed upregulation of proteins that may have a role in intracellular survival and vesicular trafficking in the PRr strain. Furthermore, ultra-structural analysis by electron microscopy demonstrated increased number of vesicular vacuoles in PRr strain when compared to the wild-type strain. Drug affinity pull-down assay followed by mass spectrometery identified proteins in L. donovani wild type strain that were specifically and covalently bound to paromomycin. These results provide the first comprehensive insight into the mode of action and underlying mechanism of resistance to paromomycin in Leishmania donovani.

  2. Extended-spectrum-beta-lactamases, AmpC beta-lactamases and plasmid mediated quinolone resistance in klebsiella spp. from companion animals in Italy.

    Directory of Open Access Journals (Sweden)

    Valentina Donati

    Full Text Available We report the genetic characterization of 15 Klebsiella pneumoniae (KP and 4 isolates of K. oxytoca (KO from clinical cases in dogs and cats and showing extended-spectrum cephalosporin (ESC resistance. Extended spectrum beta-lactamase (ESBL and AmpC genes, plasmid-mediated quinolone resistance (PMQR and co-resistances were investigated. Among KP isolates, ST101 clone was predominant (8/15, 53%, followed by ST15 (4/15, 27%. ST11 and ST340, belonging to Clonal Complex (CC11, were detected in 2012 (3/15, 20%. MLST on KP isolates corresponded well with PFGE results, with 11 different PFGE patterns observed, including two clusters of two (ST340 and four (ST101 indistinguishable isolates, respectively. All isolates harbored at least one ESBL or AmpC gene, all carried on transferable plasmids (IncR, IncFII, IncI1, IncN, and 16/19 were positive for PMQR genes (qnr family or aac(6'-Ib-cr. The most frequent ESBL was CTX-M-15 (11/19, 58%, detected in all KP ST101, in one KP ST15 and in both KP ST340. blaCTX-M-15 was carried on IncR plasmids in all but one KP isolate. All KP ST15 isolates harbored different ESC resistance genes and different plasmids, and presented the non-transferable blaSHV-28 gene, in association with blaCTX-M-15, blaCTX-M-1 (on IncR, or on IncN, blaSHV-2a (on IncR or blaCMY-2 genes (on IncI1. KO isolates were positive for blaCTX-M-9 gene (on IncHI2, or for the blaSHV-12 and blaDHA-1 genes (on IncL/M. They were all positive for qnr genes, and one also for the aac(6'-Ib-cr gene. All Klebsiella isolates showed multiresistance towards aminoglycosides, sulfonamides, tetracyclines, trimethoprim and amphenicols, mediated by strA/B, aadA2, aadB, ant (2"-Ia, aac(6'-Ib, sul, tet, dfr and cat genes in various combinations. The emergence in pets of multidrug-resistant Klebsiella with ESBL, AmpC and PMQR determinants, poses further and serious challenges in companion animal therapy and raise concerns for possible bi-directional transmission between

  3. Simultaneous Inhibition of CXCR4 and VLA-4 Exhibits Combinatorial Effect in Overcoming Stroma-Mediated Chemotherapy Resistance in Mantle Cell Lymphoma Cells.

    Science.gov (United States)

    Kim, Yu-Ri; Eom, Ki-Seong

    2014-12-01

    There is growing evidence that crosstalk between mantle cell lymphoma (MCL) cells and stromal microenvironments, such as bone marrow and secondary lymphoid tissues, promotes tumor progression by enhancing survival and growth as well as drug resistance of MCL cells. Recent advances in the understanding of lymphoma microenvironment have led to the identification of crucial factors involved in the crosstalk and subsequent generation of their targeted agents. In the present study, we evaluated the combinatory effect of blocking antibodies (Ab) targeting CXCR4 and VLA-4, both of which were known to play significant roles in the induction of environment-mediated drug resistance (EMDR) in MCL cell line, Jeko-1. Simultaneous treatment with anti-CXCR4 and anti-VLA-4 Ab not only reduced the migration of Jeko-1 cells into the protective stromal cells, but also enhanced sensitivity of Jeko-1 to a chemotherapeutic agent to a greater degree than with either Ab alone. These combinatorial effects were associated with decreased phosphorylation of ERK1/2, AKT and NF-κB. Importantly, drug resistance could not be overcome once the adhesion of Jeko-1 to the stromal occurred despite the combined use of Abs, suggesting that the efforts to mitigate migration of MCLs should be attempted as much as possible. Our results provide a basis for a future development of therapeutic strategies targeting both CXCR4 and VLA-4, such as Ab combinations or bispecific antibodies, to improve treatment outcomes of MCL with grave prognosis. PMID:25550696

  4. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.).

    Science.gov (United States)

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-08-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.

  5. Vancomycin susceptibility in methicillin-resistant Staphylococcus aureus is mediated by YycHI activation of the WalRK essential two-component regulatory system.

    Science.gov (United States)

    Cameron, David R; Jiang, Jhih-Hang; Kostoulias, Xenia; Foxwell, Daniel J; Peleg, Anton Y

    2016-01-01

    The treatment of infections caused by methicillin-resistant Staphylococcus aureus is complicated by the emergence of strains with intermediate-level resistance to vancomycin (termed VISA). We have characterised a molecular pathway involved in the in vivo evolution of VISA mediated by the regulatory proteins YycH and YycI. In contrast to their function in other bacterial species, we report a positive role for these auxiliary proteins in regulation of the two-component regulator WalRK. Transcriptional profiling of yycH and yycI deletion mutants revealed downregulation of the 'WalRK regulon' including cell wall hydrolase genes atlA and sle1, with functional autolysis assays supporting these data by showing an impaired autolytic phenotype for each deletion strain. Using bacterial-two hybrid assays, we showed that YycH and YycI interact, and that YycHI also interacts with the sensor kinase WalK, forming a ternary protein complex. Mutation to YycH or YycI associated with clinical VISA strains had a deleterious impact on the YycHI/WalK complex, suggesting that the interaction is important for the regulation of WalRK. Taken together, we have described a novel antibiotic resistance strategy for the human pathogen S. aureus, whereby YycHI mutations are selected for in vivo leading to reduced WalRK activation, impaired cell wall turnover and ultimately reduced vancomycin efficacy. PMID:27600558

  6. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase.

    Science.gov (United States)

    Peng, Chiung-Huei; Yang, Yi-Sun; Chan, Kuei-Chuan; Wang, Chau-Jong; Chen, Mu-Lin; Huang, Chien-Ning

    2014-10-01

    The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT. Recently it has been observed that type 4 dipeptidyl peptidase (DPP-4) inhibitor linagliptin is effective for treating type 2 diabetes and albuminuria. We investigated if DPP-4 and insulin resistance are involved in renal EMT and explored the role of HPE. In high glucose-stimulated tubular cells, HPE, like linagliptin, inhibited DPP-4 activation, thereby regulating vimentin (EMT marker) and IRS-1 (S307). IRS-1 knockdown revealed its essential role in mediating downstream EMT. In type 2 diabetic rats, pIRS-1 (S307) abundantly surrounds the tubular region, with increased vimentin in kidney. Both the expressions were reduced by HPE. In conclusion, HPE exerts effects similar to those of linagliptin, which improves insulin resistance and EMT, and could be an adjuvant to prevent diabetic nephropathy. PMID:25226384

  7. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression

    Directory of Open Access Journals (Sweden)

    Merino Fuencisla

    2010-10-01

    Full Text Available Abstract Background Verticillium dahliae is a fungal pathogen that infects a wide range of hosts. The only known genes for resistance to Verticillium in the Solanaceae are found in the tomato (Solanum lycopersicum Ve locus, formed by two linked genes, Ve1 and Ve2. To characterize the resistance response mediated by the tomato Ve gene, we inoculated two nearly isogenic tomato lines, LA3030 (ve/ve and LA3038 (Ve/Ve, with V. dahliae. Results We found induction of H2O2 production in roots of inoculated plants, followed by an increase in peroxidase activity only in roots of inoculated resistant plants. Phenylalanine-ammonia lyase (PAL activity was also increased in resistant roots 2 hours after inoculation, while induction of PAL activity in susceptible roots was not seen until 48 hours after inoculation. Phenylpropanoid metabolism was also affected, with increases in ferulic acid, p-coumaric acid, vanillin and p-hydroxybenzaldehyde contents in resistant roots after inoculation. Six tomato PAL cDNA sequences (PAL1 - PAL6 were found in the SolGenes tomato EST database. RT-PCR analysis showed that these genes were expressed in all organs of the plant, albeit at different levels. Real-time RT-PCR indicated distinct patterns of expression of the different PAL genes in V. dahliae-inoculated roots. Phylogenetic analysis of 48 partial PAL cDNAs corresponding to 19 plant species grouped angiosperm PAL sequences into four clusters, suggesting functional differences among the six tomato genes, with PAL2 and PAL6 presumably involved in lignification, and the remaining PAL genes implicated in other biological processes. An increase in the synthesis of lignins was found 16 and 28 days after inoculation in both lines; this increase was greater and faster to develop in the resistant line. In both resistant and susceptible inoculated plants, an increase in the ratio of guaiacyl/syringyl units was detected 16 days after inoculation, resulting from the lowered amount

  8. OVEREXPRESSION OF A M(R) 110,000 VESICULAR PROTEIN IN NON-P-GLYCOPROTEIN-MEDIATED MULTIDRUG RESISTANCE

    NARCIS (Netherlands)

    SCHEPER, RJ; BROXTERMAN, HJ; SCHEFFER, GL; KAAIJK, P; DALTON, WS; VANHEIJNINGEN, THM; VANKALKEN, CK; SLOVAK, ML; DEVRIES, EGE; VANDERVALK, P; MEIJER, CJLM; PINEDO, HM

    1993-01-01

    A M(r)110,000 protein (p110) is overexpressed in P-glycoprotein-negative multidrug-resistant tumor cell lines of different histogenetic origins. These cell lines show an ATP-dependent drug accumulation defect, suggesting the presence of drug transporter molecules different from P-glycoprotein. Immun

  9. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on diots and monocots

    NARCIS (Netherlands)

    Stergiopoulos, I.; Burg, van den H.A.; Ökmen, B.; Beenen, H.G.; Liere, van S.; Kema, G.H.J.; Wit, de P.J.G.M.

    2010-01-01

    Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce effector-tri

  10. Baculovirus-mediated Expression of p35 Confers Resistance to Apoptosis in Human Embryo Kidney 293 cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Baculovirus has many advantages as vectors for gene transfer. We demonstrated that recombinant baculovirus vectors expressing p35 (Ac-CMV-p35) and eGFP (Ac-CMV-GFP) could be transduced into human kidney 293 cells efficiently. The level of transgene expression was viral dose dependent and high-level expression of the target gene could be achieved under the heterogonous promoter. MTT assay suggested that both Ac-CMV-p35 and Ac-CMV-GFP did not have cytotoxic effect on human embryo kidney 293 cells. Cell growth curve showed the Ac-CMV-p35 and Ac- CMV-GFP transduced and non-transduced cells had similar proliferation rate, so baculovirus-mediated p35expression had no adverse effect on cell proliferation. In addition, baculovirus-mediated p35 gene expression protected human embryo kidney 293 cells against apoptosis induced by various apoptosis inducers such as Actinomycin D, UV or serum-free media. These results suggested that the baculovirus vector mediated p35 gene expression was functional and it could be widely used in molecular research and even gene therapy.

  11. P-Glycoprotein-Mediated Efflux and Drug Sequestration in Lysosomes Confer Advantages of K562 Multidrug Resistance Sublines to Survive Prolonged Exposure to Cytotoxic Agents

    Directory of Open Access Journals (Sweden)

    Nathupakorn Dechsupa

    2009-01-01

    Full Text Available Problem statement: Cellular drug resistance to anticancer agents is major obstacle in cancer chemotherapy and the mechanisms by which these MDR cells possess for protecting themselves to survive prolonged exposure to cytotoxic agents still debating. The study aimed to clarify the role of P-glycoprotein (Pgp and enhanced drug sequestration in lysosomes to confer the multidrug resistance K562 cells with varied degree of Pgp expression. Approach: Erythromyelogenous leukemic K562 and its corresponding Pgp-over expression K562/adr (RF = 26.5 and K562/10000 (RF = 39.6 cells were used. The transport of intrinsic fluorescence molecules including acridine orange and pirarubicin across plasma membrane of living cells was performed by using spectrofluorometric and flow cytometric analysis. Results: Pirarubicin passively diffused through the plasma membrane of K562, K562/adr and K562/10000 cells with the same values of k+ = 3.4±0.3 pL. s-1.cell-1. Similar results were found for acridine orange, which passively diffused through plasma membrane of these cell lines about 30-fold faster than pirarubicin. The mean rate of Pgp-mediated efflux coefficient (ka of pirarubicin was equal to 2.6 ± 0.9 pL.s-1.cell-1 for K562/adr and 4.7 ± 1.0 pL.s-1.cell-1 for K562/10000 cells. The Pgp-mediated efflux of acridine orange could not be determined for K562/adr cells while an enhancement of exocytosis in K562/10000 cells was characterized. The acridine orange exhibited antiproliferative activity and IC50 for K562, K562/adr and K562/10000 cells was 447±40, 715±19 and 1,719±258 nM, respectively. Cytotoxicity of acridine orange was increased by 2-fold in the presence of and 25 nM monensin. Conclusion: The results clearly demonstrated for the first time that by using the same methods and cell lines. The predominant cellular defense mechanism determined in multidrug resistant cells depends upon the nature of molecular probes used. As molecular probe, pirarubicin clearly

  12. The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Patricia L Graham

    2011-07-01

    Full Text Available In female fruit flies, Sex-lethal (Sxl turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2 mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors--the U1/U2 snRNP protein Sans-fils (Snf, the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2d--that have been directly implicated in Sxl splicing regulation.

  13. Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus.

    Science.gov (United States)

    Nixon, Gavin; Garson, Jeremy A; Grant, Paul; Nastouli, Eleni; Foy, Carole A; Huggett, Jim F

    2014-05-01

    Performing nucleic acid amplification techniques (NAATs) in digital format using limiting dilution provides potential advantages that have recently been demonstrated with digital polymerase chain reaction (dPCR). Key benefits that have been claimed are the ability to quantify nucleic acids without the need of an external calibrator and a greater resistance to inhibitors than real-time quantitative PCR (qPCR). In this study, we evaluated the performance of four NAATs, qPCR, dPCR, real-time quantitative loop mediated isothermal amplification (qLAMP), and digital LAMP (dLAMP), for the detection and quantification of human cytomegalovirus (hCMV). We used various DNA templates and inhibitors to compare the performance of these methods using a conventional real-time thermocycler platform (Bio-Rad CFX96) and a chip based digital platform (Fluidigm Biomark 12.765 Digital Array). dPCR performed well and demonstrated greater resistance to inhibitors than the other methods although this resistance did not apply equally to all inhibitors tested. dLAMP was found to be less sensitive than dPCR, but its quantitative performance was better than qLAMP, the latter being unable to quantify below 1000 copies. dLAMP was also more resistant to inhibitors than qLAMP. Unlike qPCR, both digital methods were able to quantify viral genomes without requiring a calibrator; however, neither can currently compete with the large reaction volumes, and thus the greater absolute sensitivity, of qPCR. With the introduction of digital instrumentation that will enable larger reaction volumes, digital amplification methods such as those evaluated in this study could potentially offer a robust alternative to qPCR for nucleic acid quantification. PMID:24684191

  14. Increased infectivity in human cells and resistance to antibody-mediated neutralization by truncation of the SIV gp41 cytoplasmic tail.

    Science.gov (United States)

    Kuwata, Takeo; Kaori, Takaki; Enomoto, Ikumi; Yoshimura, Kazuhisa; Matsushita, Shuzo

    2013-01-01

    The role of antibodies in protecting the host from human immunodeficiency virus type 1 (HIV-1) infection is of considerable interest, particularly because the RV144 trial results suggest that antibodies contribute to protection. Although infection of non-human primates with simian immunodeficiency virus (SIV) is commonly used as an animal model of HIV-1 infection, the viral epitopes that elicit potent and broad neutralizing antibodies to SIV have not been identified. We isolated a monoclonal antibody (MAb) B404 that potently and broadly neutralizes various SIV strains. B404 targets a conformational epitope comprising the V3 and V4 loops of Env that intensely exposed when Env binds CD4. B404-resistant variants were obtained by passaging viruses in the presence of increasing concentration of B404 in PM1/CCR5 cells. Genetic analysis revealed that the Q733stop mutation, which truncates the cytoplasmic tail of gp41, was the first major substitution in Env during passage. The maximal inhibition by B404 and other MAbs were significantly decreased against a recombinant virus with a gp41 truncation compared with the parental SIVmac316. This indicates that the gp41 truncation was associated with resistance to antibody-mediated neutralization. The infectivities of the recombinant virus with the gp41 truncation were 7,900-, 1,000-, and 140-fold higher than those of SIVmac316 in PM1, PM1/CCR5, and TZM-bl cells, respectively. Immunoblotting analysis revealed that the gp41 truncation enhanced the incorporation of Env into virions. The effect of the gp41 truncation on infectivity was not obvious in the HSC-F macaque cell line, although the resistance of viruses harboring the gp41 truncation to neutralization was maintained. These results suggest that viruses with a truncated gp41 cytoplasmic tail were selected by increased infectivity in human cells and by acquiring resistance to neutralizing antibody. PMID:23717307

  15. Increased infectivity in human cells and resistance to antibody-mediated neutralization by truncation of the SIV gp41 cytoplasmic tail

    Directory of Open Access Journals (Sweden)

    Takeo eKuwata

    2013-05-01

    Full Text Available The role of antibodies in protecting the host from human immunodeficiency virus type 1 (HIV-1 infection is of considerable interest, particularly because the RV144 trial results suggest that antibodies contribute to protection. Although infection of nonhuman primates with simian immunodeficiency virus (SIV is commonly used as an animal model of HIV-1 infection, the viral epitopes that elicit potent and broad neutralizing antibodies to SIV have not been identified. We isolated a monoclonal antibody (MAb B404 that potently and broadly neutralizes various SIV strains. B404 targets a conformational epitope comprising the V3 and V4 loops of Env that intensely exposed when Env binds CD4. B404-resistant variants were obtained by passaging viruses in the presence of increasing concentration of B404 in PM1/CCR5 cells. Genetic analysis revealed that the Q733stop mutation, which truncates the cytoplasmic tail of gp41, was the first major substitution in Env during passage. The maximal inhibition by B404 and other MAbs were significantly decreased against a recombinant virus with a gp41 truncation compared with the parental SIVmac316. This indicates that the gp41 truncation was associated with resistance to antibody-mediated neutralization. The infectivities of the recombinant virus with the gp41 truncation were 7900-fold, 1000-fold, and 140-fold higher than those of SIVmac316 in PM1, PM1/CCR5, and TZM-bl cells, respectively. Immunoblotting analysis revealed that the gp41 truncation enhanced the incorporation of Env into virions. The effect of the gp41 truncation on infectivity was not obvious in the HSC-F macaque cell line, although the resistance of viruses harboring the gp41 truncation to neutralization was maintained. These results suggest that viruses with a truncated gp41 cytoplasmic tail were selected by increased infectivity in human cells and by acquiring resistance to neutralizing antibody.

  16. Heat-resistant, extended-spectrum β-lactamase-producing Klebsiella pneumoniae in endoscope-mediated outbreak

    DEFF Research Database (Denmark)

    Jørgensen, S.B.; Bojer, Martin Saxtorph; Boll, E.J.;

    2016-01-01

    Background We describe an outbreak with an extended-spectrum β-lactamase-producing Klebsiella pneumoniae strain in an intensive care unit in a secondary care hospital in Norway. The outbreak source was a fibreoptic intubation endoscope in which the outbreak strain survived despite chemothermal...... disinfection in a decontaminator designated for such use. The genetic marker clpK, which increases microbial heat resistance, has previously been described in K. pneumoniae outbreak strains. Aim To investigate the role of clpK in biofilm formation and heat-shock stability in the outbreak strain. Methods...... construction and heat-shock assays. Findings Five patients and one intubation endoscope contained K. pneumoniae with the same amplified fragment length polymorphism pattern. The outbreak strain contained the clpK genetic marker, which rendered the strain its increased heat resistance. The survival rate...

  17. The B-cell receptor orchestrates environment-mediated lymphoma survival and drug resistance in B-cell malignancies

    OpenAIRE

    Shain, KH; Tao, J.

    2013-01-01

    Specific niches within the lymphoma tumor microenvironment (TME) provide sanctuary for subpopulations of tumor cells through stromal cell–tumor cell interactions. These interactions notably dictate growth, response to therapy and resistance of residual malignant B cells to therapeutic agents. This minimal residual disease (MRD) remains a major challenge in the treatment of B-cell malignancies and contributes to subsequent disease relapse. B-cell receptor (BCR) signaling has emerged as essenti...

  18. The BaeSR Two-Component Regulatory System Mediates Resistance to Condensed Tannins in Escherichia coli▿ †

    OpenAIRE

    Zoetendal, E.G.; Smith, A H; Sundset, M.A.; Mackie, R. I.

    2007-01-01

    The gene expression profiles of Escherichia coli strains grown anaerobically with or without Acacia mearnsii (black wattle) extract were compared to identify tannin resistance strategies. The cell envelope stress protein gene spy and the multidrug transporter-encoding operon mdtABCD, both under the control of the BaeSR two-component regulatory system, were significantly up-regulated in the presence of tannins. BaeSR mutants were more tannin sensitive than their wild-type counterparts.

  19. Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells

    OpenAIRE

    Abraham, Ioana; Jain, Sandeep; Wu, Chung-pu; Khanfar, Mohammad A.; Kuang, Yehong; Dai, Chun-ling; Shi, Zhi; Chen, Xiang; FU, LIWU; Suresh V Ambudkar; Sayed, Khalid El; Chen, Zhe-Sheng

    2010-01-01

    Previously, we reported sipholenol A, a sipholane triterpenoid from the Red Sea sponge Callyspongia siphonella, as a potent reversal of multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp). Through extensive screening of several related sipholane triterpenoids that have been isolated from the same sponge, we identified sipholenone E, sipholenol L and siphonellinol D as potent reversals of MDR in cancer cells. These compounds enhanced the cytotoxicity of several ...

  20. Multifunctional Cu2−xTe Nanocubes Mediated Combination Therapy for Multi-Drug Resistant MDA MB 453

    Science.gov (United States)

    Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Aburto, Rebeca Romero; Mitcham, Trevor; Bouchard, Richard R.; Ajayan, Pulickel M.; Sakamoto, Yasushi; Maekawa, Toru; Kumar, D. Sakthi

    2016-01-01

    Hypermethylated cancer populations are hard to treat due to their enhanced chemo-resistance, characterized by aberrant methylated DNA subunits. Herein, we report on invoking response from such a cancer lineage to chemotherapy utilizing multifunctional copper telluride (Cu2−XTe) nanocubes (NCs) as photothermal and photodynamic agents, leading to significant anticancer activity. The NCs additionally possessed photoacoustic and X-ray contrast imaging abilities that could serve in image-guided therapeutic studies. PMID:27775048

  1. Agrobacterium tumefaciens-mediated transformation of rice with the spider insecticidal gene conferring resistance to leaffolder and striped stem borer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Immature embryos of rice varieties “Xiushui11” and “Chunjiang 11” precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7(containing the spider insecticidal gene).The resistant calli were transferred onto the differentiation medium and plants were regenerated.The transformation frequency reached 56%~72% measured as numbers of Geneticin(G418)-resistant calli produced and 36%~60% measured as numbers of transgenic plants regenerated,respectively.PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome.Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder(Cnaphalocrasis medinalis)after 7d of leaf feeding reached 38%~61% and the corrected mortality of the striped stem borer(Chilo suppressalis)after 7d of leaf feeding reached 16%~75%.The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.

  2. Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralidae.

    Directory of Open Access Journals (Sweden)

    Yongqiang Han

    Full Text Available The rice leaf folder, Cnaphalocrocis medinalis (Guenée, is one of the most destructive rice pests in Asian countries. Rice varieties resistant to the rice leaf folder are generally characterized by high silicon content. In this study, silicon amendment, at 0.16 and 0.32 g Si/kg soil, enhanced resistance of a susceptible rice variety to the rice leaf folder. Silicon addition to rice plants at both the low and high rates significantly extended larval development and reduced larval survival rate and pupation rate in the rice leaf folder. When applied at the high rate, silicon amendment reduced third-instars' weight gain and pupal weight. Altogether, intrinsic rate of increase, finite rate of increase and net reproduction rate of the rice leaf folder population were all reduced at both the low and high silicon addition rates. Although the third instars consumed more in silicon-amended treatments, C:N ratio in rice leaves was significantly increased and food conversion efficiencies were reduced due to increased silicon concentration in rice leaves. Our results indicate that reduced food quality and food conversion efficiencies resulted from silicon addition account for the enhanced resistance in the susceptible rice variety to the rice leaf folder.

  3. Transposon-mediated resistance to Bacillus sphaericus in a field-evolved population of Culex pipiens (Diptera: Culicidae).

    Science.gov (United States)

    Darboux, Isabelle; Charles, Jean-François; Pauchet, Yannick; Warot, Sylvie; Pauron, David

    2007-08-01

    The binary toxin is the major active component of Bacillus sphaericus, a microbial larvicide used for controlling some vector mosquito-borne diseases. B. sphaericus resistance has been reported in many part of the world, leading to a growing concern for the usefulness of this environmental friendly insecticide. Here we characterize a novel mechanism of resistance to the binary toxin in a natural population of the West Nile virus vector, Culex pipiens. We show that the insertion of a transposable element-like DNA into the coding sequence of the midgut toxin receptor induces a new mRNA splicing event, unmasking cryptic donor and acceptor sites located in the host gene. The creation of the new intron causes the expression of an altered membrane protein, which is incapable of interacting with the toxin, thus providing the host mosquito with an advantageous phenotype. As a large portion of insect genomes is composed of transposable elements or transposable elements-related sequences, this new mechanism may be of general importance to appreciate their significance as potent agents for insect resistance to the microbial insecticides. PMID:17394558

  4. Carbon Nanotube-Mediated Photothermal Disruption of Endosomes/Lysosomes Reverses Doxorubicin Resistance in MCF-7/ADR Cells.

    Science.gov (United States)

    Pai, Chin-Ling; Chen, Yu-Chun; Hsu, Chia-Yen; Su, Hong-Lin; Lai, Ping-Shan

    2016-04-01

    Cancer is the leading cause of human death worldwide. Although many scientists work to fight this disease, multiple drug resistance is a predominant obstacle for effective cancer therapy. In drug-resistant MCF-7/ADR cells, the acidic organelles with lower pH value than normal one can cause the protonation of anthracycline drugs, inducing drug accumulation in these organelles. In this study, single-walled carbon nanotubes with polyethylene glycol phospholipids surface modification (PEGylated SWNTs) were utilized as near infrared-activated drug carriers for doxorubicin (DOX) delivery against MCF-7/ADR cells. Our results showed that a concentration-dependent temperature increase was observed in a solution of PEGylated SWNTs with 808 nm laser irradiation, whereas a water solution showed no significant changes in temperature under a thermal camera using the same irradiation dose. Interestingly, PEGylated DOX-SWNTs enhanced the nuclear accumulation of DOX with 808 nm irradiation whereas free DOX or PEGylated DOX-SWNTs revealed discrete red spots in MCF-7/ADR cells by confocal microscopic observation. Cell viability of PEGylated DOX-SWNTs-treated cells was also significantly decreased after 808 nm laser irradiation. Thus, photothermally activated PEGylated SWNTs can be a potential nanocarrier to deliver DOX into cancer cells and successfully overcome drug-resistant behavior in MCF-7/ADR breast cancer cells. PMID:27301189

  5. Molecular mechanisms of master regulator VqsM mediating quorum-sensing and antibiotic resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Liang, Haihua; Deng, Xin; Li, Xuefeng; Ye, Yan; Wu, Min

    2014-01-01

    The Pseudomonas aeruginosa quorum-sensing (QS) systems contribute to bacterial homeostasis and pathogenicity. Although the AraC-family transcription factor VqsM has been characterized to control the production of virulence factors and QS signaling molecules, its detailed regulatory mechanisms still remain elusive. Here, we report that VqsM directly binds to the lasI promoter region, and thus regulates its expression. To identify additional targets of VqsM in P. aeruginosa PAO1, we performed chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) and detected 48 enriched loci harboring VqsM-binding peaks in the P. aeruginosa genome. The direct regulation of these genes by VqsM has been confirmed by electrophoretic mobility shift assays and quantitative real-time polymerase chain reactions. A VqsM-binding motif was identified by using the MEME suite and verified by footprint assays in vitro. In addition, VqsM directly bound to the promoter regions of the antibiotic resistance regulator NfxB and the master type III secretion system (T3SS) regulator ExsA. Notably, the vqsM mutant displayed more resistance to two types of antibiotics and promoted bacterial survival in a mouse model, compared to wild-type PAO1. Collectively, this work provides new cues to better understand the detailed regulatory networks of QS systems, T3SS, and antibiotic resistance. PMID:25034696

  6. A Multicenter Study of Beta-Lactamase Resistant Escherichia coli and Klebsiella pneumoniae Reveals High Level Chromosome Mediated Extended Spectrum β Lactamase Resistance in Ogun State, Nigeria

    Directory of Open Access Journals (Sweden)

    Folasoge A. Adeyankinnu

    2014-01-01

    Full Text Available As a result of the ever increasing problem of multiresistant bacteria, we instituted a surveillance program with the aim of identifying the basic molecular properties of ESBL in our environment. About 197 isolates of Escherichia coli and Klebsiella pneumoniae were selected and tested for ESBL production and antimicrobial susceptibility. Plasmid profiles were determined and curing ability was tested. ESBL prevalence was 26.4% for all isolates tested, with E. coli having a greater proportion. There was absolute resistance to ampicilin, tetracycline, and co-trimaxole among tested isolates. There was above average susceptibility to the 2nd and 3rd generation cephalosporins. Plasmid profiles of tested isolates ranged from 9 kbp to 26 kbp with average of 14.99±2.3 kbp for E. coli and 20.98±1.8 kbp K. pneumoniae, 9.6% of ESBL positive E. coli plasmids were cured, while 3.9% of K. pneumoniae plasmids were cured after treatment. The present study shows an upsurge in ESBL acquisition by gram negative bacteria and evidence of cocirculation of varying subtypes of ESBL with both plasmid transmissible and chromosome encoded subtypes. This calls for universal surveillance and more effort towards molecular epidemiology of this public health treatment.

  7. Synthesis of new steroidal inhibitors of P-glycoprotein-mediated multidrug resistance and biological evaluation on K562/R7 erythroleukemia cells.

    Science.gov (United States)

    de Ravel, Marc Rolland; Alameh, Ghina; Melikian, Maxime; Mahiout, Zahia; Emptoz-Bonneton, Agnès; Matera, Eva-Laure; Lomberget, Thierry; Barret, Roland; Rocheblave, Luc; Walchshofer, Nadia; Beltran, Sonia; El Jawad, Lucienne; Mappus, Elisabeth; Grenot, Catherine; Pugeat, Michel; Dumontet, Charles; Le Borgne, Marc; Cuilleron, Claude Yves

    2015-02-26

    A simple route for improving the potency of progesterone as a modulator of P-gp-mediated multidrug resistance was established by esterification or etherification of hydroxylated 5α/β-pregnane-3,20-dione or 5β-cholan-3-one precursors. X-ray crystallography of representative 7α-, 11α-, and 17α-(2'R/S)-O-tetrahydropyranyl ether diastereoisomers revealed different combinations of axial-equatorial configurations of the anomeric oxygen. Substantial stimulation of accumulation and chemosensitization was observed on K562/R7 erythroleukemia cells resistant to doxorubicin, especially using 7α,11α-O-disubstituted derivatives of 5α/β-pregnane-3,20-dione, among which the 5β-H-7α-benzoyloxy-11α-(2'R)-O-tetrahydropyranyl ether 22a revealed promising properties (accumulation index 2.9, IC50 0.5 μM versus 1.2 and 10.6 μM for progesterone), slightly overcoming those of verapamil and cyclosporin A. Several 7α,12α-O-disubstituted derivatives of 5β-cholan-3-one proved even more active, especially the 7α-O-methoxymethyl-12α-benzoate 56 (accumulation index 3.8, IC50 0.2 μM). The panel of modulating effects from different O-substitutions at a same position suggests a structural influence of the substituent completing a simple protection against stimulating effects of hydroxyl groups on P-gp-mediated transport. PMID:25634041

  8. Hippocampal Transcriptome Profile of Persistent Memory Rescue in a Mouse Model of THRA1 Mutation-Mediated Resistance to Thyroid Hormone.

    Science.gov (United States)

    Wang, Yiqiao; Fisahn, André; Sinha, Indranil; Nguyen, Dinh Phong; Sterzenbach, Ulrich; Lallemend, Francois; Hadjab, Saїda

    2016-01-01

    Hypothyroidism due to THRA1 (gene coding for thyroid hormone receptor α1) mutation-mediated Resistance to Thyroid Hormone (RTH) has been recently reported in human and is associated with memory deficits similar to those found in a mouse model for Thra1 mutation mediated RTH (Thra1(+/m) mice). Here, we show that a short-term treatment of Thra1(+/m) mice with GABAA receptor antagonist pentylenetetrazol (PTZ) completely and durably rescues their memory performance. In the CA1 region of the hippocampus, improvement of memory is associated with increased in long-term potentiation (LTP) and an augmentation of density of dendritic spines (DDS) onto the apical dendrites of pyramidal cells reflecting an increase in the local excitatory drive. Unbiased gene profiling analysis of hippocampi of treated Thra1(+/+) and Thra1(+/m) mice were performed two weeks and three months post treatment and identified co-expression modules that include differentially expressed genes related with and predicting higher memory, LTP and DDS in the hippocampi of PTZ-treated animals. We observed that PTZ treatment changed similar sets of genes in both Thra1(+/+) and Thra1(+/m) mice, which are known to be involved in memory consolidation and neurotransmission dynamics and could participate in the persistent effects of PTZ on memory recovery. PMID:26743578

  9. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation

    Science.gov (United States)

    Cheng, Yu Ti; Li, Yingzhong; Huang, Shuai; Huang, Yan; Dong, Xinnian; Zhang, Yuelin; Li, Xin

    2011-01-01

    The nucleotide-binding domain and leucine-rich repeats containing proteins (NLRs) serve as immune receptors in both plants and animals. Overaccumulation of NLRs often leads to autoimmune responses, suggesting that the levels of these immune receptors must be tightly controlled. However, the mechanism by which NLR protein levels are regulated is unknown. Here we report that the F-box protein CPR1 controls the stability of plant NLR resistance proteins. Loss-of-function mutations in CPR1 lead to higher accumulation of the NLR proteins SNC1 and RPS2, as well as autoactivation of immune responses. The autoimmune responses in cpr1 mutant plants can be largely suppressed by knocking out SNC1. Furthermore, CPR1 interacts with SNC1 and RPS2 in vivo, and overexpressing CPR1 results in reduced accumulation of SNC1 and RPS2, as well as suppression of immunity mediated by these two NLR proteins. Our data suggest that SKP1-CULLIN1-F-box (SCF) complex-mediated stability control of plant NLR proteins plays an important role in regulating their protein levels and preventing autoimmunity. PMID:21873230

  10. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  11. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance.

    Science.gov (United States)

    Yu, Da Young; Noh, Soo Min; Lee, Gyun Min

    2016-08-10

    To investigate the feasibility of glutamine synthetase (GS)-mediated gene amplification in HEK293 cells for the high-level stable production of therapeutic proteins, HEK293E cells were transfected by the GS expression vector containing antibody genes and were selected at various methionine sulfoximine (MSX) concentrations in 96-well plates. For a comparison, CHOK1 cells were transfected by the same GS expression vector and selected at various MSX concentrations. Unlike CHOK1 cells, HEK293E cells producing high levels of antibodies were not selected at all. For HEK293E cells, the number of wells with the cell pool did not decrease with an increase in the concentration of MSX up to 500μM MSX. A q-RT-PCR analysis confirmed that the antibody genes in the HEK293E cells, unlike the CHOK1 cells, were not amplified after increasing the MSX concentration. It was found that the GS activity in HEK293E cells was much higher than that in CHOK1 cells (Pglutamine-free medium, the GS activity of HEK293E cells was approximately 4.8 times higher than that in CHOK1 cells. Accordingly, it is inferred that high GS activity of HEK293E cells results in elevated resistance to MSX and therefore hampers GS-mediated gene amplification by MSX. Thus, in order to apply the GS-mediated gene amplification system to HEK293 cells, the endogenous GS expression level in HEK293 cells needs to be minimized by knock-out or down-regulation methods.

  12. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance.

    Science.gov (United States)

    Yu, Da Young; Noh, Soo Min; Lee, Gyun Min

    2016-08-10

    To investigate the feasibility of glutamine synthetase (GS)-mediated gene amplification in HEK293 cells for the high-level stable production of therapeutic proteins, HEK293E cells were transfected by the GS expression vector containing antibody genes and were selected at various methionine sulfoximine (MSX) concentrations in 96-well plates. For a comparison, CHOK1 cells were transfected by the same GS expression vector and selected at various MSX concentrations. Unlike CHOK1 cells, HEK293E cells producing high levels of antibodies were not selected at all. For HEK293E cells, the number of wells with the cell pool did not decrease with an increase in the concentration of MSX up to 500μM MSX. A q-RT-PCR analysis confirmed that the antibody genes in the HEK293E cells, unlike the CHOK1 cells, were not amplified after increasing the MSX concentration. It was found that the GS activity in HEK293E cells was much higher than that in CHOK1 cells (Pglutamine-free medium, the GS activity of HEK293E cells was approximately 4.8 times higher than that in CHOK1 cells. Accordingly, it is inferred that high GS activity of HEK293E cells results in elevated resistance to MSX and therefore hampers GS-mediated gene amplification by MSX. Thus, in order to apply the GS-mediated gene amplification system to HEK293 cells, the endogenous GS expression level in HEK293 cells needs to be minimized by knock-out or down-regulation methods. PMID:27288593

  13. 环境介导的耐药性促成微小残留病变的研究进展%Research progress of evironment-mediated drug resistance contributed to minimal residual disease

    Institute of Scientific and Technical Information of China (English)

    王松; 张天禹

    2011-01-01

    Environment - mediated drug resistance is a form of de novo drug resistance that protects tumour cells from the initial effects of diverse therapies. Surviving foci of residual disease can then develop complex and permanent acquired resistance in response to the pressure of therapy. Recent evidence indicates that environment - mediated drug resistance arises from an adaptive, reciprocal signalling dialogue between tumour cells and the surrounding microenvironment, that new therapeutic strategies targeting this interaction should be applied during initial treatment to prevent the emergence of acquired resistance.%环境介导的耐药性(environment-mediated drug resistance,EMDR)是一种新形成的耐药性形式,可以在不同治疗方案的最初阶段保护肿瘤细胞.尚存的残余病灶能够发生复杂而持久的获得性耐药,以适应治疗的选择压力.最近的研究表明,EMDR从肿瘤细胞相互之间和周围微环境信号的传导中出现.因此,针对这种新的治疗策略应该在初始治疗中应用,以防止获得性耐药.

  14. Nisin Resistance of Listeria monocytogenes Is Increased by Exposure to Salt Stress and Is Mediated via LiaR

    OpenAIRE

    Bergholz, Teresa M.; Tang, Silin; Wiedmann, Martin; Boor, Kathryn J.

    2013-01-01

    Growth of Listeria monocytogenes on refrigerated, ready-to-eat food is a significant food safety concern. Natural antimicrobials, such as nisin, can be used to control this pathogen on food, but little is known about how other food-related stresses may impact how the pathogen responds to these compounds. Prior work demonstrated that exposure of L. monocytogenes to salt stress at 7°C led to increased expression of genes involved in nisin resistance, including the response regulator liaR. We hy...

  15. Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea.

    Science.gov (United States)

    Liu, Wen-Yu; Chiou, Shu-Jiau; Ko, Chia-Yun; Lin, Tsai-Yun

    2011-03-01

    Three novel ethylene response factor (ERF) genes, BkERF1, BkERF2.1 and BkERF2.2, were isolated from a medicinal plant, Bupleurum kaoi. The deduced BkERFs contain a canonical nuclear localization signal and an ERF/AP2 DNA binding domain. RNA gel blot analysis revealed that BkERF1 and BkERF2.1 were ubiquitously expressed at low levels in all parts of mature plants, and that BkERF2.2 was expressed at moderate levels in vegetative tissues. Exogenous application of methyl jasmonate induced BkERF1/2.1/2.2 transcripts. BkERF2.2 transcript levels were slightly increased by addition of ethephon and salicylic acid. BkERFs were localized in the plant nucleus and functioned as transcriptional activators. In B. kaoi cells overexpressing BKERFs, inoculation with Botrytis cinerea increased expression of some defense genes which are associated with enhanced disease resistance. Similarly, overexpression of BkERFs in transgenic Arabidopsis thaliana resulted in elevated mRNA levels of the defense gene PDF1.2, and in enhanced resistance to B. cinerea. Collectively, these results provide evidence that BkERFs mediate the expression of defense-related genes in plants.

  16. An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.

    Science.gov (United States)

    Chrysostomou, Constantine; Quandt, Erik M; Marshall, Nicholas M; Stone, Everett; Georgiou, George

    2015-03-20

    Microbial arsenate resistance is known to be conferred by specialized oxidoreductase enzymes termed arsenate reductases. We carried out a genetic selection on media supplemented with sodium arsenate for multicopy genes that can confer growth to E. coli mutant cells lacking the gene for arsenate reductase (E. coli ΔarsC). We found that overexpression of glutathione S-transferase B (GstB) complemented the ΔarsC allele and conferred growth on media containing up to 5 mM sodium arsenate. Interestingly, unlike wild type E. coli arsenate reductase, arsenate resistance via GstB was not dependent on reducing equivalents provided by glutaredoxins or a catalytic cysteine residue. Instead, two arginine residues, which presumably coordinate the arsenate substrate within the electrophilic binding site of GstB, were found to be critical for transferase activity. We provide biochemical evidence that GstB acts to directly reduce arsenate to arsenite with reduced glutathione (GSH) as the electron donor. Our results reveal a pathway for the detoxification of arsenate in bacteria that hinges on a previously undescribed function of a bacterial glutathione S-transferase.

  17. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process?

    Science.gov (United States)

    Gabriely, Ilan; Ma, Xiao Hui; Yang, Xiao Man; Atzmon, Gil; Rajala, Michael W; Berg, Anders H; Scherer, Phillip; Rossetti, Luciano; Barzilai, Nir

    2002-10-01

    Age-dependent changes in insulin action and body fat distribution are risk factors for the development of type 2 diabetes. To examine whether the accumulation of visceral fat (VF) could play a direct role in the pathophysiology of insulin resistance and type 2 diabetes, we monitored insulin action, glucose tolerance, and the expression of adipo-derived peptides after surgical removal of VF in aging (20-month-old) F344/Brown Norway (FBN) and in Zucker Diabetic Fatty (ZDF) rats. As expected, peripheral and hepatic insulin action were markedly impaired in aging FBN rats, and extraction of VF (accounting for approximately 18% of their total body fat) was sufficient to restore peripheral and hepatic insulin action to the levels of young rats. When examined at the mechanistic level, removal of VF in ZDF rats prevented the progressive decrease in insulin action and delayed the onset of diabetes, but VF extraction did not alter plasma free fatty acid levels. However, the expression of tumor necrosis factor-alpha and leptin in subcutaneous (SC) adipose tissue were markedly decreased after VF removal (by approximately three- and twofold, respectively). Finally, extracted VF retained approximately 15-fold higher resistin mRNA compared with SC fat. Our data suggest that insulin resistance and the development of diabetes can be significantly reduced in aging rats by preventing the age-dependent accumulation of VF. This study documents a cause-and-effect relationship between VF and major components of the metabolic syndrome. PMID:12351432

  18. Epoxylathyrol Derivatives: Modulation of ABCB1-Mediated Multidrug Resistance in Human Colon Adenocarcinoma and Mouse T-Lymphoma Cells.

    Science.gov (United States)

    Matos, Ana M; Reis, Mariana; Duarte, Noélia; Spengler, Gabriella; Molnár, Joseph; Ferreira, Maria-José U

    2015-09-25

    Epoxyboetirane A (1), a macrocyclic diterpene that was found to be inactive as an ABCB1 modulator, was submitted to several chemical transformations, aimed at generating a series of compounds with improved multidrug resistance (MDR)-modifying activity. Overall, 23 new derivatives were prepared, in addition to the already reported epoxylathyrol (2) and methoxyboetirol (3). Their anti-MDR potential was assessed through both functional and chemosensitivity assays on resistant human colon adenocarcinoma and human ABCB1-gene transfected L5178Y mouse lymphoma cells. Structure-activity relationship analysis showed that different substitution patterns led to distinct ABCB1 inhibitory activities, although intrinsic cellular characteristics seemed to influence the modulatory behavior. A considerable enhancement in MDR-modifying activity was observed for aromatic compounds in both cell lines, particularly in 3,17-disubstituted esters derived from 3, a Payne-rearranged Michael adduct of 2. All compounds tested were revealed to interact synergistically with doxorubicin, and ATPase inhibition by three representative MDR-modifying compounds was also investigated. On account of its outstanding ABCB1 inhibitory activity at 0.2 μM and overall remarkable bioactive profile, methoxyboetirane B (22) was found to be a new promising lead for MDR-reversing anticancer drug development. PMID:26331763

  19. hMENA(11a) contributes to HER3-mediated resistance to PI3K inhibitors in HER2-overexpressing breast cancer cells.

    Science.gov (United States)

    Trono, P; Di Modugno, F; Circo, R; Spada, S; Di Benedetto, A; Melchionna, R; Palermo, B; Matteoni, S; Soddu, S; Mottolese, M; De Maria, R; Nisticò, P

    2016-02-18

    Human Mena (hMENA), an actin regulatory protein of the ENA/VASP family, cooperates with ErbB receptor family signaling in breast cancer. It is overexpressed in high-risk preneoplastic lesions and in primary breast tumors where it correlates with HER2 overexpression and an activated status of AKT and MAPK. The concomitant overexpression of hMENA and HER2 in breast cancer patients is indicative of a worse prognosis. hMENA is expressed along with alternatively expressed isoforms, hMENA(11a) and hMENAΔv6 with opposite functions. A novel role for the epithelial-associated hMENA(11a) isoform in sustaining HER3 activation and pro-survival pathways in HER2-overexpressing breast cancer cells has been identified by reverse phase protein array and validated in vivo in a series of breast cancer tissues. As HER3 activation is crucial in mechanisms of cell resistance to PI3K inhibitors, we explored whether hMENA(11a) is involved in these resistance mechanisms. The specific hMENA(11a) depletion switched off the HER3-related pathway activated by PI3K inhibitors and impaired the nuclear accumulation of HER3 transcription factor FOXO3a induced by PI3K inhibitors, whereas PI3K inhibitors activated hMENA(11a) phosphorylation and affected its localization. At the functional level, we found that hMENA(11a) sustains cell proliferation and survival in response to PI3K inhibitor treatment, whereas hMENA(11a) silencing increases molecules involved in cancer cell apoptosis. As shown in three-dimensional cultures, hMENA(11a) contributes to resistance to PI3K inhibition because its depletion drastically reduced cell viability upon treatment with PI3K inhibitor BEZ235. Altogether, these results indicate that hMENA(11a) in HER2-overexpressing breast cancer cells sustains HER3/AKT axis activation and contributes to HER3-mediated resistance mechanisms to PI3K inhibitors. Thus, hMENA(11a) expression can be proposed as a marker of HER3 activation and resistance to PI3K inhibition therapies, to

  20. Long-term Smoking Mediated Down-regulation of Smad3 Induces Resistance to Carboplatin in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Debangshu Samanta

    2012-07-01

    Full Text Available While numerous cell signaling pathways are known to play decisive roles in chemotherapeutic response, relatively little is known about the impact of the Smad-dependent transforming growth factor β pathway on the therapeutic outcome. Previous reports suggested that patients with lung cancer who continue to smoke while receiving chemotherapy have a poorer outcome than their nonsmoking counterparts do. In our previous study, we showed that long-term cigarette smoke condensate (CSC-mediated down-regulation of Smad3 induces tumorigenesis. The objective of this study was to determine the mechanism of function of Smad3 in chemoresistance induced by CSC in human lung cell lines, namely, A549 and HPL1A. Long-term CSC treatment increases the half-maximal inhibitory concentration (IC50 of carboplatin and makes cells resistant to carboplatin. The increase in IC50 of long-term CSC-treated cells is due to the reduced induction in apoptosis by carboplatin. The increase in IC50 and decrease in apoptosis in long-term CSC-treated cells is correlated with the expression of Bcl2. We have determined that Bcl2 is both necessary and sufficient to make the cells resistant to carboplatin. We have also shown that Smad3 acts upstream to regulate the expression of Bcl2 specifically and, thus, sensitivity of the cells to carboplatin. This is supported by the inverse correlation between the expressions of Smad3 and Bcl2 in human lung tumors. Collectively, these data suggest that loss of Smad3 expression in CSC-treated cells induces resistance to carboplatin by upregulating the expression of Bcl2. This study explains, at least in part, the higher chemoresistance rate observed in smokers.

  1. Card9- and MyD88-Mediated Gamma Interferon and Nitric Oxide Production Is Essential for Resistance to Subcutaneous Coccidioides posadasii Infection.

    Science.gov (United States)

    Hung, Chiung-Yu; Castro-Lopez, Natalia; Cole, Garry T

    2016-04-01

    Coccidioidomycosis is a potentially life-threatening respiratory disease which is endemic to the southwestern United States and arid regions of Central and South America. It is responsible for approximately 150,000 infections annually in the United States alone. Almost every human organ has been reported to harbor parasitic cells of Coccidioides spp. in collective cases of the disseminated form of this mycosis. Current understanding of the mechanisms of protective immunity against lung infection has been largely derived from murine models of pulmonary coccidioidomycosis. However, little is known about the nature of the host response to Coccidioides in extrapulmonary tissue. Primary subcutaneous coccidioidal infection is rare but has been reported to result in disseminated disease. Here, we show that activation of MyD88 and Card9 signal pathways are required for resistance to Coccidioides infection following subcutaneous challenge of C57BL/6 mice, which correlates with earlier findings of the protective response to pulmonary infection. MyD88(-/-) andCard9(-/-) mice recruited reduced numbers of T cells, B cells, and neutrophils to the Coccidioides-infected hypodermis com pared to wild-type mice; however, neutrophils were dispensable for resistance to skin infection. Further studies have shown that gamma interferon (IFN-γ) production and activation of Th1 cells characterize resistance to subcutaneous infection. Furthermore, activation of a phagosomal enzyme, inducible nitric oxide synthase, which is necessary for NO production, is a requisite for fungal clearance in the hypodermis. Collectively, our data demonstrate that MyD88- and Card9-mediated IFN-γ and nitric oxide production is essential for protection against subcutaneous Coccidioides infection. PMID:26857574

  2. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance.

    Science.gov (United States)

    Lazar Adler, Natalie R; Stevens, Mark P; Dean, Rachel E; Saint, Richard J; Pankhania, Depesh; Prior, Joann L; Atkins, Timothy P; Kessler, Bianca; Nithichanon, Arnone; Lertmemongkolchai, Ganjana; Galyov, Edouard E

    2015-01-01

    Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were

  3. Induction of Fibronectin Adhesins in Quinolone-Resistant Staphylococcus aureus by Subinhibitory Levels of Ciprofloxacin or by Sigma B Transcription Factor Activity Is Mediated by Two Separate Pathways

    Science.gov (United States)

    Li, Dongmei; Renzoni, Adriana; Estoppey, Tristan; Bisognano, Carmelo; Francois, Patrice; Kelley, William L.; Lew, Daniel P.; Schrenzel, Jacques; Vaudaux, Pierre

    2005-01-01

    We recently reported on the involvement of a RecA-LexA-dependent pathway in the ciprofloxacin-triggered upregulation of fibronectin-binding proteins (FnBPs) by fluoroquinolone-resistant Staphylococcus aureus. The potential additional contribution of the transcription factor sigma B (SigB) to the ciprofloxacin-triggered upregulation of FnBPs was studied in isogenic mutants of fluoroquinolone-resistant strain RA1 (a topoisomerase IV gyrase double mutant of S. aureus NCTC strain 8325), which exhibited widely different levels of SigB activity, as assessed by quantitative reverse transcription-PCR of their respective sigB and SigB-dependent asp23 transcript levels. These mutants were Tn551 insertion sigB strain TE1 and rsbU+ complemented strain TE2, which exhibited a wild-type SigB operon. Levels of FnBP surface display and fibronectin-mediated adhesion were lower in sigB mutant TE1 or higher in the rsbU+-restored strain TE2 compared to their sigB+ but rsbU parent, strain RA1, exhibiting low levels of SigB activity. Steady-state fnbA and fnbB transcripts levels were similar in strains TE1 and RA1 but increased by 4- and 12-fold, respectively, in strain TE2 compared to those in strain RA1. In contrast, fibronectin-mediated adhesion of strains TE1, RA1, and TE2 was similarly enhanced by growth in the presence of one-eighth the MIC of ciprofloxacin, which led to a significantly higher increase in their fnbB transcript levels compared to the increase in their fnbA transcript levels. Increased SigB levels led to a significant reduction in agr RNAIII; in contrast, it led to a slight increase in sarA transcript levels. In conclusion, upregulation of FnBPs by increased SigB levels and ciprofloxacin exposure in fluoroquinolone-resistant S. aureus occurs via independent pathways whose concerted actions may significantly promote bacterial adhesion and colonization. PMID:15728884

  4. IncA/C plasmid-mediated spread of CMY-2 in multidrug-resistant Escherichia coli from food animals in China.

    Directory of Open Access Journals (Sweden)

    Yu-Fang Guo

    Full Text Available OBJECTIVES: To obtain a broad molecular epidemiological characterization of plasmid-mediated AmpC β-lactamase CMY-2 in Escherichia coli isolates from food animals in China. METHODS: A total of 1083 E. coli isolates from feces, viscera, blood, drinking water, and sub-surface soil were examined for the presence of CMY-2 β-lactamases. CMY-2-producing isolates were characterized as follows: the blaCMY-2 genotype was determined using PCR and sequencing, characterization of the blaCMY-2 genetic environment, plasmid sizing using S1 nuclease pulsed-field gel electrophoresis (PFGE, PCR-based replicon typing, phylogenetic grouping, XbaI-PFGE, and multi-locus sequence typing (MLST. RESULTS: All 31 CMY-2 producers were only detected in feces, and presented with multidrug resistant phenotypes. All CMY-2 strains also co-harbored genes conferring resistance to other antimicrobials, including extended spectrum β-lactamases genes (blaCTX-M-14 or blaCTX-M-55, plasmid-mediated quinolone resistance determinants (qnr, oqxA, and aac-(6'-Ib-cr, floR and rmtB. The co-transferring of blaCMY-2 with qnrS1 and floR (alone and together was mainly driven by the Inc A/C type plasmid, with sizes of 160 or 200 kb. Gene cassette arrays inserted in the class 1 or class 2 integron were amplified among 12 CMY-2 producers. CMY-2 producers belonged to avirulent groups B1 (n = 12 and A (n = 11, and virulent group D (n = 8. There was a good correlation between phylogenetic groups and sequence types (ST. Twenty-four STs were identified, of which the ST complexes (STC 101/B1 (n = 6, STC10/A (n = 5, and STC155/B1 (n = 3 were dominant. CONCLUSIONS: CMY-2 is the dominant AmpC β-lactamase in food animals and is associated with a transferable replicon IncA/C plasmid in the STC101, STC10, and STC155 strains.

  5. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis.

    Science.gov (United States)

    Hölscher, Dirk; Dhakshinamoorthy, Suganthagunthalam; Alexandrov, Theodore; Becker, Michael; Bretschneider, Tom; Buerkert, Andreas; Crecelius, Anna C; De Waele, Dirk; Elsen, Annemie; Heckel, David G; Heklau, Heike; Hertweck, Christian; Kai, Marco; Knop, Katrin; Krafft, Christoph; Maddula, Ravi K; Matthäus, Christian; Popp, Jürgen; Schneider, Bernd; Schubert, Ulrich S; Sikora, Richard A; Svatoš, Aleš; Swennen, Rony L

    2014-01-01

    The global yield of bananas-one of the most important food crops-is severely hampered by parasites, such as nematodes, which cause yield losses up to 75%. Plant-nematode interactions of two banana cultivars differing in susceptibility to Radopholus similis were investigated by combining the conventional and spatially resolved analytical techniques (1)H NMR spectroscopy, matrix-free UV-laser desorption/ionization mass spectrometric imaging, and Raman microspectroscopy. This innovative combination of analytical techniques was applied to isolate, identify, and locate the banana-specific type of phytoalexins, phenylphenalenones, in the R. similis-caused lesions of the plants. The striking antinematode activity of the phenylphenalenone anigorufone, its ingestion by the nematode, and its subsequent localization in lipid droplets within the nematode is reported. The importance of varying local concentrations of these specialized metabolites in infected plant tissues, their involvement in the plant's defense system, and derived strategies for improving banana resistance are highlighted.

  6. Charge transfer in a sharply nonuniform electric field mediated by swirling liquid flow with minimal hydraulic resistance

    Science.gov (United States)

    Nagorny, V. S.; Smirnovsky, A. A.; Chernyshev, A. S.; Kolodyazhny, D. Yu.

    2015-09-01

    A scheme of a fuel nozzle with "needle-plane" electrode system, the location of which enables one to minimize the imparted hydraulic resistance, is proposed. We consider the processes of charge transfer in a sharply inhomogeneous electric field in order to estimate the amount of charge coming out of the channel. For this purpose, we used the OpenFOAM software package, modified to account for the electrohydrodynamic effects. By using the k-ω SST turbulence model within an axial-symmetrical RANS problem, the vortex liquid flow and charge transfer are calculated. The impact of vorticity degree on the processes of charge transfer is studied. It is found that the charge flowing out of the calculation domain is about 80% of the injected charge. The vorticity degree in the above range of values has little effect on the process of charge transfer.

  7. Reversal of P-glycoprotein-mediated multidrug resistance in MCF-7/Adr cancer cells by sesquiterpene coumarins.

    Science.gov (United States)

    Kasaian, Jamal; Mosaffa, Fatemeh; Behravan, Javad; Masullo, Milena; Piacente, Sonia; Ghandadi, Morteza; Iranshahi, Mehrdad

    2015-06-01

    In the present study, fifteen sesquiterpene coumarins were isolated and purified from different Ferula species, and were tested for their MDR reversal properties. Enhancement of doxorubicin cytotoxicity in MCF-7/Adr cells (doxorubicin resistant derivatives of MCF-7 cells overexpressing P-gp), when combined with very non-toxic concentrations of the sesquiterpene coumarins (50 μM) including umbelliprenin, farnesiferol B, farnesiferol C and lehmferin, proved significant MDR reversal activity of these coumarins. Flow cytometric efflux assay confirmed that the intracellular accumulation of Rho123 was significantly increased in MCF-7/Adr cells when treated with sesquiterpene coumarins. A deeper insight into the structure-activity relationship of sesquiterpene coumarins revealed that ring-opened drimane-type sesquiterpene coumarins including farnesiferol B, farnesiferol C and lehmferin possessed the best inhibitory effects on P-gp pump efflux and they could be considered as lead scaffolds for further structure modifications. PMID:25843566

  8. Trypanosoma brucei translation initiation factor homolog EIF4E6 forms a tripartite cytosolic complex with EIF4G5 and a capping enzyme homolog.

    Science.gov (United States)

    Freire, Eden R; Malvezzi, Amaranta M; Vashisht, Ajay A; Zuberek, Joanna; Saada, Edwin A; Langousis, Gerasimos; Nascimento, Janaína D F; Moura, Danielle; Darzynkiewicz, Edward; Hill, Kent; de Melo Neto, Osvaldo P; Wohlschlegel, James A; Sturm, Nancy R; Campbell, David A

    2014-07-01

    Trypanosomes lack the transcriptional control characteristic of the majority of eukaryotes that is mediated by gene-specific promoters in a one-gene-one-promoter arrangement. Rather, their genomes are transcribed in large polycistrons with no obvious functional linkage. Posttranscriptional regulation of gene expression must thus play a larger role in these organisms. The eIF4E homolog TbEIF4E6 binds mRNA cap analogs in vitro and is part of a complex in vivo that may fulfill such a role. Knockdown of TbEIF4E6 tagged with protein A-tobacco etch virus protease cleavage site-protein C to approximately 15% of the normal expression level resulted in viable cells that displayed a set of phenotypes linked to detachment of the flagellum from the length of the cell body, if not outright flagellum loss. While these cells appeared and behaved as normal under stationary liquid culture conditions, standard centrifugation resulted in a marked increase in flagellar detachment. Furthermore, the ability of TbEIF4E6-depleted cells to engage in social motility was reduced. The TbEIF4E6 protein forms a cytosolic complex containing a triad of proteins, including the eIF4G homolog TbEIF4G5 and a hypothetical protein of 70.3 kDa, referred to as TbG5-IP. The TbG5-IP analysis revealed two domains with predicted secondary structures conserved in mRNA capping enzymes: nucleoside triphosphate hydrolase and guanylyltransferase. These complex members have the potential for RNA interaction, either via the 5' cap structure for TbEIF4E6 and TbG5-IP or through RNA-binding domains in TbEIF4G5. The associated proteins provide a signpost for future studies to determine how this complex affects capped RNA molecules. PMID:24839125

  9. The Distribution of eIF4E-Family Members across Insecta

    Directory of Open Access Journals (Sweden)

    Gritta Tettweiler

    2012-01-01

    Full Text Available Insects are part of the earliest faunas that invaded terrestrial environments and are the first organisms that evolved controlled flight. Nowadays, insects are the most diverse animal group on the planet and comprise the majority of extant animal species described. Moreover, they have a huge impact in the biosphere as well as in all aspects of human life and economy; therefore understanding all aspects of insect biology is of great importance. In insects, as in all cells, translation is a fundamental process for gene expression. However, translation in insects has been mostly studied only in the model organism Drosophila melanogaster. We used all publicly available genomic sequences to investigate in insects the distribution of the genes encoding the cap-binding protein eIF4E, a protein that plays a crucial role in eukaryotic translation. We found that there is a diversity of multiple ortholog genes encoding eIF4E isoforms within the genus Drosophila. In striking contrast, insects outside this genus contain only a single eIF4E gene, related to D. melanogaster eIF4E-1. We also found that all insect species here analyzed contain only one Class II gene, termed 4E-HP. We discuss the possible evolutionary causes originating the multiplicity of eIF4E genes within the genus Drosophila.

  10. Evaluation of agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance.

    Science.gov (United States)

    Burns, C; Leach, K M; Elliott, T J; Challen, M P; Foster, G D; Bailey, A

    2006-02-01

    There is interest in establishing genetic modification technologies for the cultivated mushroom Agaricus bisporus, both for improved crop characteristics and for molecular pharming. For these methods to be successful, it is necessary to establish a set of transformation systems that include robust and reliable vectors for gene manipulation. In this article, we report the evaluation of a series of promoters for driving expression of the Escherichia coli hph gene encoding hygromycin phosphotransferase. This was achieved using the Aspergillus nidulans gpdA and the A. bisporus gpdII and trp2 promoters. The Coprinus cinereus beta-tubulin promoter gave contrasting results depending on the size of promoter used, with a 393-bp region being effective, whereas the longer 453-bp fragment failed to yield any hygromycin-resistant transformants. The C. cinereus trp1 and the A. bisporus lcc1 promoters both failed to yield transformants. We also show that transformation efficiency may be improved by careful selection of both appropriate Agrobacterium strains, with AGL-1 yielding more than LBA1126 and by the choice of the binary vectors used to mobilize the DNA, with pCAMBIA vectors appearing to be more efficient than either pBIN19- or pGREEN-based systems. PMID:16444014

  11. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

    Science.gov (United States)

    Garros-Regulez, Laura; Aldaz, Paula; Arrizabalaga, Olatz; Moncho-Amor, Veronica; Carrasco-Garcia, Estefania; Manterola, Lorea; Moreno-Cugnon, Leire; Barrena, Cristina; Villanua, Jorge; Ruiz, Irune; Pollard, Steven; Lovell-Badge, Robin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9. PMID:26878385

  12. Evaluation of agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance.

    Science.gov (United States)

    Burns, C; Leach, K M; Elliott, T J; Challen, M P; Foster, G D; Bailey, A

    2006-02-01

    There is interest in establishing genetic modification technologies for the cultivated mushroom Agaricus bisporus, both for improved crop characteristics and for molecular pharming. For these methods to be successful, it is necessary to establish a set of transformation systems that include robust and reliable vectors for gene manipulation. In this article, we report the evaluation of a series of promoters for driving expression of the Escherichia coli hph gene encoding hygromycin phosphotransferase. This was achieved using the Aspergillus nidulans gpdA and the A. bisporus gpdII and trp2 promoters. The Coprinus cinereus beta-tubulin promoter gave contrasting results depending on the size of promoter used, with a 393-bp region being effective, whereas the longer 453-bp fragment failed to yield any hygromycin-resistant transformants. The C. cinereus trp1 and the A. bisporus lcc1 promoters both failed to yield transformants. We also show that transformation efficiency may be improved by careful selection of both appropriate Agrobacterium strains, with AGL-1 yielding more than LBA1126 and by the choice of the binary vectors used to mobilize the DNA, with pCAMBIA vectors appearing to be more efficient than either pBIN19- or pGREEN-based systems.

  13. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases.

    Science.gov (United States)

    Falk, A; Feys, B J; Frost, L N; Jones, J D; Daniels, M J; Parker, J E

    1999-03-16

    A major class of plant disease resistance (R) genes encodes leucine-rich-repeat proteins that possess a nucleotide binding site and amino-terminal similarity to the cytoplasmic domains of the Drosophila Toll and human IL-1 receptors. In Arabidopsis thaliana, EDS1 is indispensable for the function of these R genes. The EDS1 gene was cloned by targeted transposon tagging and found to encode a protein that has similarity in its amino-terminal portion to the catalytic site of eukaryotic lipases. Thus, hydrolase activity, possibly on a lipid-based substrate, is anticipated to be central to EDS1 function. The predicted EDS1 carboxyl terminus has no significant sequence homologies, although analysis of eight defective eds1 alleles reveals it to be essential for EDS1 function. Two plant defense pathways have been defined previously that depend on salicylic acid, a phenolic compound, or jasmonic acid, a lipid-derived molecule. We examined the expression of EDS1 mRNA and marker mRNAs (PR1 and PDF1.2, respectively) for these two pathways in wild-type and eds1 mutant plants after different challenges. The results suggest that EDS1 functions upstream of salicylic acid-dependent PR1 mRNA accumulation and is not required for jasmonic acid-induced PDF1.2 mRNA expression.

  14. Increasing drug resistance in human lung cancer cells by mutant-type p53 gene mediated by retrovirus

    Institute of Scientific and Technical Information of China (English)

    高振强; 高志萍; 刘喜富; 张涛

    1997-01-01

    Human mutant-type (mt) p53 cDNA was synthesized and cloned from human lung cancer cell line GL containing mt-p53 gene by using polymerase chain reaction (PCR). It was confirmed that the mt-p53 cDNA con-tained the complete coding sequence of p53 gene but mutated at codon 245 (G→T) and resulted in glycine to cysteine by sequencing analysis. The retroviral vector pD53M of the mt-p53 was constructed and introduced into the drug-sen-sitive human lung cancer cells GAO in which p53 gene did not mutate. The transfected GAO cells strongly expressed mutant-type p53 protein by immunohistochemistry, showing that pD53M vector could steadily express in GAO cells. The drug resistance to several anticancer agents of GAO cells infected by pD53M increased in varying degrees, with the highest increase of 4-fold, in vitro and in vivo. By quantitative PCR and flow cytometry (FCM) analyses, the expression of MDR1 gene and the activity of P-glycoprotein (Pgp) did not increase, the expression of MRP gene and the activity of m

  15. Tongue Epithelium Cells from shRNA Mediated Transgenic Goat Show High Resistance to Foot and Mouth Disease Virus

    Science.gov (United States)

    Li, Wenting; Wang, Kejun; Kang, Shimeng; Deng, Shoulong; Han, Hongbing; Lian, Ling; Lian, Zhengxing

    2015-01-01

    Foot and mouth disease induced by foot and mouth disease virus (FMDV) is severe threat to cloven-hoofed domestic animals. The gene 3Dpol in FMDV genome encodes the viral RNA polymerase, a vital element for FMDV replication. In this study, a conserved 3D-7414shRNA targeting FMDV-3Dpol gene was designed and injected into pronuclear embryos to produce the transgenic goats. Sixty-one goats were produced, of which, seven goats positively integrated 3D-7414shRNA. Loss of function assay demonstrated that siRNA effectively knockdown 3Dpol gene in skin epithelium cells of transgenic goats. Subsequently, the tongue epithelium cells from transgenic and non-transgenic goats were infected with FMDV O/YS/CHA/05 strain. A significant decrease of virus titres and virus copy number was observed in cells of transgenic goats compared with that of non-transgenic goats, which indicated that 3D-7414siRNA inhibited FMDV replication by interfering FMDV-3Dpol gene. Furthermore, we found that expression of TLR7, RIG-I and TRAF6 was lower in FMDV infected cells from transgenic goats compared to that from non-transgenic goats, which might result from lower virus copy number in transgenic goats’ cells. In conclusion, we successfully produced transgenic goats highly expressing 3D-7414siRNA targeting 3Dpol gene, and the tongue epithelium cells from the transgenic goats showed effective resistance to FMDV. PMID:26671568

  16. PINK1 alleviates palmitate induced insulin resistance in HepG2 cells by suppressing ROS mediated MAPK pathways.

    Science.gov (United States)

    Cang, Xiaomin; Wang, Xiaohua; Liu, Pingli; Wu, Xue; Yan, Jin; Chen, Jinfeng; Wu, Gang; Jin, Yan; Xu, Feng; Su, Jianbin; Wan, Chunhua; Wang, Xueqin

    2016-09-01

    Oxidative stress is an important pathogenesis of insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). Studies have shown that knockdown of PTEN-induced putative kinase 1 (PINK1) causes oxidative stress and mitophagy. In db/db mice, PINK1 protein level is down-regulated. However, little is known regarding the mechanism by which PINK1 modulates IR in response to reactive oxygen species (ROS) induced stress. In our study, PINK1 expression decreased during palmitate (PA) induced IR in HepG2 cells and the hepatic tissues of high fat diet (HFD) fed mice. Additionally, free fatty acids (FFAs) could increase ROS and suppress insulin signaling pathway, which was indicated by reduced phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK-3β). In addition, insulin induced glucose uptake decreased and the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), two key gluconeogenic enzymes, was up-regulated after PA treatment. Intriguingly, PINK1 overexpression could lead to opposite results. Moreover, PA induced hepatic IR through C-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways, which were rescued by PINK1 overexpression. In summary, our results demonstrate that PINK1 promoted hepatic IR via JNK and ERK pathway in PA treated HepG2 cells, implying a novel molecular target for the therapy of diabetes. PMID:27423393

  17. Development of cell mediated immunity to flagellar antigens and acquired resistance to infection by Trypanosoma cruzi in mice

    Directory of Open Access Journals (Sweden)

    S. C. Gonçalves da Costa

    1981-12-01

    apenas ou modulados pelo BCG ou ciclofosfamida ou ambos, constatou-se um estado de resistência cujo nível avaliado pela parasitemia e mortalidade estava relacionado com o nível de hipersensibilidade retardada medida 24 horas após no local da dose infecção. A transferência adotiva da hipersensibilidade retardada foi obtida quando células do linfo-nodo de doadores imunes foram injetadas com a Fração Flagelar em camundongos normais. A correlação entre o nível de hipersensibilidade retardada e o grau de resistência à infecção experimental pelo T. cruzi poderá ampliar os fenômenos imunológicos envolvidos nos mecanismos de imunoproteção à tripanosomiase americana.

  18. Stage-specific reprogramming of gene expression characterizes Lr48-mediated adult plant leaf rust resistance in wheat.

    Science.gov (United States)

    Dhariwal, Raman; Gahlaut, Vijay; Govindraj, Bhaganagare R; Singh, Dharmendra; Mathur, Saloni; Vyas, Shailendra; Bandopadhyay, Rajib; Khurana, Jitendra Paul; Tyagi, Akhilesh Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal; Balyan, Harindra Singh; Gupta, Pushpendra Kumar

    2015-03-01

    Wheat genotype CSP44 carrying a recessive gene Lr48 exhibits adult plant resistance (APR; incompatible reaction) but gives a compatible reaction (susceptibility) at the seedling stage against leaf rust. A comparative gene expression analysis involving cDNA-amplified fragment length polymorphism (cDNA-AFLP) and quantitative PCR (qPCR) was carried out for incompatible and compatible reactions in the genotype CSP44. cDNA-AFLP analysis was conducted using RNA samples that were isolated from flag leaves following inoculation with leaf rust race 77-5 (the most virulent race) and also after mock inoculation. As many as 298 of a total of 493 expressed transcript-derived fragments (TDFs) exhibited differential expression (262 upregulated and 36 downregulated). Of these 298 TDFs, 48 TDFs were eluted from gels, re-amplified, cloned, and sequenced. Forty two of these 48 TDFs had homology with known genes involved in the following biological processes: energy production, metabolism, transport, signaling, defense response, plant-pathogen interaction, transcriptional regulation, translation, and proteolysis. The functions of the remaining six TDFs could not be determined; apparently, these represented some novel genes. The qPCR analysis for 18 TDFs (with known and unknown functions, but showing major differences in expression) was conducted using RNA isolated from the seedlings as well as from the adult plants. The expression of at least 11 TDFs was induced and that of 4 other TDFs attenuated or remained near normal in adult plants following leaf rust inoculations. The remaining three TDFs had non-specific/developmental stage-specific expression. Functional annotation of TDFs that were upregulated suggest that the APR was supported by transient recruitment and reprogramming of processes like perception and recognition of pathogen effector by receptors, followed by CDPK and MAPK signaling, transport, metabolism, and energy release.

  19. Wild-type and mutant p53 mediate cisplatin resistance through interaction and inhibition of active caspase-9.

    Science.gov (United States)

    Chee, Jacqueline L Y; Saidin, Suzan; Lane, David P; Leong, Sai Mun; Noll, Jacqueline E; Neilsen, Paul M; Phua, Yi Ting; Gabra, Hani; Lim, Tit Meng

    2013-01-15

    The p53 gene has been implicated in many cancers due to its frequent mutations as well as mutations in other genes whose proteins directly affect p53's functions. In addition, high expression of p53 [wild-type (WT) or mutant] has been found in the cytoplasm of many tumor cells, and studies have associated these observations with more aggressive tumors and poor prognosis. Cytoplasmic mis-localization of p53 subsequently reduced its transcriptional activity and this loss-of-function (LOF) was used to explain the lack of response to chemotherapeutic agents. However, this hypothesis seemed inadequate in explaining the apparent selection for tumor cells with high levels of p53 protein, a phenomenon that suggests a gain-of-function (GOF) of these mis-localized p53 proteins. In this study, we explored whether the direct involvement of p53 in the apoptotic response is via regulation of the caspase pathway in the cytoplasm. We demonstrate that p53, when present at high levels in the cytoplasm, has an inhibitory effect on caspase-9. Concurrently, knockdown of endogenous p53 caused an increase in the activity of caspase-9. p53 was found to interact with the p35 fragment of caspase-9, and this interaction inhibits the caspase-9 activity. In a p53-null background, the high-level expression of both exogenous WT and mutant p53 increased the resistance of these cells to cisplatin, and the data showed a correlation between high p53 expression and caspase-9 inhibition. These results suggest the inhibition of caspase-9 as a potential mechanism in evading apoptosis in tumors with high-level p53 expression that is cytoplasmically localized. PMID:23255126

  20. Haemophilus influenzae with Non-Beta-Lactamase-Mediated Beta-Lactam Resistance: Easy To Find but Hard To Categorize

    Science.gov (United States)

    Lia, Astrid; Hannisdal, Anja; Tveten, Yngvar; Matuschek, Erika; Kahlmeter, Gunnar; Kristiansen, Bjørn-Erik

    2015-01-01

    Haemophilus influenzae is a major pathogen, and beta-lactams are first-line drugs. Resistance due to altered penicillin-binding protein 3 (rPBP3) is frequent, and susceptibility testing of such strains is challenging. A collection of 154 beta-lactamase-negative isolates with a large proportion of rPBP3 (67.5%) was used to evaluate and compare Etest (Haemophilus test medium [HTM]) and disk diffusion (EUCAST method) for categorization of susceptibility to aminopenicillins and cefuroxime, using MICs generated with broth (HTM) microdilution and clinical breakpoints from CLSI and EUCAST as the gold standards. In addition, the proficiency of nine disks in screening for the rPBP3 genotype (N526K positive) was evaluated. By Etest, both essential and categorical agreement were generally poor (<70%), with high very major errors (VME) (CLSI, 13.0%; EUCAST, 34.3%) and falsely susceptible rates (FSR) (CLSI, 87.0%; EUCAST, 88.3%) for ampicillin. Ampicillin (2 μg) with adjusted (+2 mm) zone breakpoints was superior to Etest for categorization of susceptibility to ampicillin (agreement, 74.0%; VME, 11.0%; FSR, 28.3%). Conversely, Etest was superior to 30 μg cefuroxime for categorization of susceptibility to cefuroxime (agreement, 57.1% versus 60.4%; VME, 2.6% versus 9.7%; FSR, 7.1% versus 26.8%). Benzylpenicillin (1 unit) (EUCAST screening disk) and cefuroxime (5 μg) identified rPBP3 isolates with highest accuracies (95.5% and 92.2%, respectively). In conclusion, disk screening reliably detects rPBP3 H. influenzae, but false ampicillin susceptibility is frequent with routine methods. We suggest adding a comment recommending high-dose aminopenicillin therapy or the use of other agents for severe infections with screening-positive isolates that are susceptible to aminopenicillins by gradient or disk diffusion. PMID:26354813

  1. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats.

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    Full Text Available Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs, most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q(2>0.6 for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.

  2. An isoform of eukaryotic initiation factor 4E from Chrysanthemum morifolium interacts with Chrysanthemum virus B coat protein.

    Directory of Open Access Journals (Sweden)

    Aiping Song

    Full Text Available BACKGROUND: Eukaryotic translation initiation factor 4E (eIF4E plays an important role in plant virus infection as well as the regulation of gene translation. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe the isolation of a cDNA encoding CmeIF(iso4E (GenBank accession no. JQ904592, an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso4E and the Chrysanthemum virus B coat protein (CVBCP. Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso4E with other reported plant eIF(iso4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso4E belongs to the eIF(iso4E subfamily of the eIF4E family. CmeIF(iso4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins. CONCLUSIONS/SIGNIFICANCE: These results inferred that CmeIF(iso4E as the cap-binding subunit eIF(iso4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial.

  3. Synthesis of methylated quercetin derivatives and their reversal activities on P-gp- and BCRP-mediated multidrug resistance tumour cells.

    Science.gov (United States)

    Yuan, Jian; Wong, Iris L K; Jiang, Tao; Wang, Si Wen; Liu, Tao; Wen, Bin Jin; Chow, Larry M C; Wan Sheng, Biao

    2012-08-01

    Three methylated quercetins and a series of O-3 substituted 5,7,3',4'-tetra-O-methylated quercetin derivatives have been synthesized and evaluated on the modulating activity of P-gp, BCRP and MRP1 in cancer cell lines. Compound 17 (with a 2-((4-methoxybenzoyl)oxy)ethyl at O-3) is the most potent P-gp modulator. Three derivatives, compound 9 (3,7,3',4'-tetra-O-methylated quercetin), compound 14 (with a 2-((3-oxo-3-(3,4,5trimethoxyphenyl)prop-1-en-1-yl)oxy)ethyl at O-3) and compound 17, consistently exhibited promising BCRP-modulating activity. Interestingly, compound 17 was found to be equipotent against both P-gp and BCRP. Importantly, these synthetic quercetin derivatives did not exhibit any inherent cytotoxicity to cancer cell lines or normal mouse