WorldWideScience

Sample records for 4d phase-contrast magnetic

  1. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Gabbour, Maya [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Schnell, Susanne [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Jarvis, Kelly [Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Robinson, Joshua D. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Division of Pediatric Cardiology, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, IL (United States); Markl, Michael [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Rigsby, Cynthia K. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States)

    2015-06-15

    Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1 ± 6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r = 0.97, P < 0.001) and excellent correlation with good agreement was found for regurgitant fraction (r = 0.88, P < 0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P = 0.032) and MPA (P < 0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P = 0.001) or similar (MPA: P = 0.98) peak

  2. 4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents – A phantom study

    International Nuclear Information System (INIS)

    Purpose: 4D phase contrast flow imaging is increasingly used to study the hemodynamics in various vascular territories and pathologies. The aim of this study was to assess the feasibility and validity of MRI based 4D phase contrast flow imaging for the evaluation of in-stent blood flow in 17 commonly used peripheral stents. Materials and methods: 17 different peripheral stents were implanted into a MR compatible flow phantom. In-stent visibility, maximal velocity and flow visualization were assessed and estimates of in-stent patency obtained from 4D phase contrast flow data sets were compared to a conventional 3D contrast-enhanced magnetic resonance angiography (CE-MRA) as well as 2D PC flow measurements. Results: In all but 3 of the tested stents time-resolved 3D particle traces could be visualized inside the stent lumen. Quality of 4D flow visualization and CE-MRA images depended on stent type and stent orientation relative to the magnetic field. Compared to the visible lumen area determined by 3D CE-MRA, estimates of lumen patency derived from 4D flow measurements were significantly higher and less dependent on stent type. A higher number of stents could be assessed for in-stent patency by 4D phase contrast flow imaging (n = 14) than by 2D phase contrast flow imaging (n = 10). Conclusions: 4D phase contrast flow imaging in peripheral vascular stents is feasible and appears advantageous over conventional 3D contrast-enhanced MR angiography and 2D phase contrast flow imaging. It allows for in-stent flow visualization and flow quantification with varying quality depending on stent type

  3. 4D x-ray phase contrast tomography for repeatable motion of biological samples

    Science.gov (United States)

    Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto

    2016-09-01

    X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm3. A maximum volume size of 13 × 13 × 6 mm3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.

  4. Application of phase-contrast cine magnetic resonance imaging in endoscopic aqueductoplasty.

    Science.gov (United States)

    Chen, Guoqiang; Zheng, Jiaping; Xiao, Qing; Liu, Yunsheng

    2013-06-01

    The aim of this study was to evaluate the application of phase-contrast cine magnetic resonance imaging (MRI) in endoscopic aqueductoplasty (EA) for patients with obstructive hydrocephalus. The clinical diagnosis of hydrocephalus caused by aqueduct obstruction in 23 patients was confirmed by phase-contrast cine MRI examination. The patients were treated with EA and MRI was repeated during the follow-up. The cerebrospinal fluid (CSF) flow velocity in the aqueduct was measured to determine whether the aqueduct was obstructed. The results of phase-contrast cine MRI examinations indicated that there was no CSF flow in the aqueduct for all patients prior to surgery. Aqueductoplasty was successfully performed in all patients. The results of phase-contrast cine MRI examinations performed a week after surgery demonstrated an average CSF flow velocity of 4.74±1.77 cm/sec. During the follow-up, intracranial hypertension recurred in two patients in whom CSF flow was not observed in the aqueduct by the phase-contrast cine MRI scan. Aqueduct re-occlusion was revealed by an endoscopic exploration. By measuring the CSF flow velocity, phase-contrast cine MRI accurately identifies aqueduct obstruction. Cine MRI is a nontraumatic, simple and reliable method for determining whether the aqueduct is successfully opened following aqueductoplasty.

  5. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics.

    Science.gov (United States)

    Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J

    2016-10-01

    The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = -3 to 6 %), peak flow (-7 %) and net volume (-14 to -9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = -35 to -7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA).

  6. Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast.

    Science.gov (United States)

    Krajnak, Matus; McGrouther, Damien; Maneuski, Dzmitry; Shea, Val O'; McVitie, Stephen

    2016-06-01

    The application of differential phase contrast imaging to the study of polycrystalline magnetic thin films and nanostructures has been hampered by the strong diffraction contrast resulting from the granular structure of the materials. In this paper we demonstrate how a pixelated detector has been used to detect the bright field disk in aberration corrected scanning transmission electron microscopy (STEM) and subsequent processing of the acquired data allows efficient enhancement of the magnetic contrast in the resulting images. Initial results from a charged coupled device (CCD) camera demonstrate the highly efficient nature of this improvement over previous methods. Further hardware development with the use of a direct radiation detector, the Medipix3, also shows the possibilities where the reduction in collection time is more than an order of magnitude compared to the CCD. We show that this allows subpixel measurement of the beam deflection due to the magnetic induction. While the detection and processing is data intensive we have demonstrated highly efficient DPC imaging whereby pixel by pixel interpretation of the induction variation is realised with great potential for nanomagnetic imaging. PMID:27085170

  7. Use of phase-contrast magnetic resonance angiography to measure blood flow in the ophthalmic artery

    International Nuclear Information System (INIS)

    The aim of this study was to examine the usefulness of phase-contrast magnetic resonance (MR) angiography (PC-MRA) to measure blood flow in the ophthalmic artery. PC-MRA was performed in 16 volunteers with no ophthalmic abnormalities and measurement of blood flow based on the results was attempted. It was possible to measure blood flow in the ophthalmic artery using PC-MRA in all 16 volunteers. The mean (±1 standard deviation) velocity was 9.17±2.28 cm/second, peak systolic velocity was 16.69±3.33 cm/second, and end diastolic velocity was 3.69±2.44 cm/second. The resistivity index was 0.79±0.12, the pulsatility index was 1.49±0.41, and flow was 6.25±2.33 ml/minute. It was possible to identify the ophthalmic artery and a portion of the artery in which blood flow could be measured using MR imaging, a preliminary step to blood flow measurement using MR angiography. In addition to the velocity of blood flow in the ophthalmic artery, measurement of the amount of flow was possible with PC-MRA, which is one advantage of this method. (author)

  8. Optimal velocity encoding during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography

    Institute of Scientific and Technical Information of China (English)

    Gang Guo; Yonggui Yang; Weiqun Yang

    2011-01-01

    This study investigated the effect of velocity encoding on measurement of brain blood flow and blood volume of inflow and outflow using phase-contrast magnetic resonance angiography. A single two-dimensional phase-contrast magnetic resonance angiography slice was applied perpendicular to the internal carotid artery and the vertebral artery at C2 level. For each subject, the velocity encoding was set from 30 to 90 cm/s with an interval of 10 cm/s for a total of seven settings. Various velocity encodings greatly affected blood flow volume, maximal blood flow velocity and mean blood flow velocity in the internal carotid artery, but did not significantly affect vertebral arteries and jugular veins. When velocity encoding was 60-80 cm/s, the inflow blood volume was 655 ± 118 mL/min, and the outflow volume was 506 ± 186 mL/min. The ratio of outflow/inflow was steady at 0.78-0.83, and there was no aliasing in any of the images. These findings suggest that velocity encodings of 60-80 cm/s should be selected during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography.

  9. Peak flow velocities in the ascending aorta-real-time phase-contrast magnetic resonance imaging vs. cine magnetic resonance imaging and echocardiography.

    Science.gov (United States)

    Sohns, Jan M; Kowallick, Johannes T; Joseph, Arun A; Merboldt, K Dietmar; Voit, Dirk; Fasshauer, Martin; Staab, Wieland; Frahm, Jens; Lotz, Joachim; Unterberg-Buchwald, Christina

    2015-10-01

    This prospective study of eight healthy volunteers evaluates peak flow velocities (PFV) in the ascending aorta using real-time phase-contrast magnetic resonance imaging (MRI) in comparison to cine phase-contrast MRI and echocardiography. Flow measurements by echocardiography and cine phase-contrast MRI with breath-holding were performed according to clinical standards. Real-time phase-contrast MRI at 40 ms temporal resolution and 1.3 mm in-plane resolution was based on highly undersampled radial fast low-angle shot (FLASH) sequences with image reconstruction by regularized nonlinear inversion (NLINV). Evaluations focused on the determination of PFV. Linear regressions and Bland-Altman plots were used for comparisons of methods. When averaged across subjects, real-time phase-contrast MRI resulted in PFV of 120±20 cm s(-1) (mean ± SD) in comparison to 122±16 cm s(-1) for cine MRI and 124±20 cm s(-1) for echocardiography. The maximum deviations between real-time phase-contrast MRI and echocardiography ranged from -20 to +14 cm s(-1) (cine MRI: -10 to +12 cm s(-1)). Thus, in general, real-time phase-contrast MRI of cardiac outflow revealed quantitative agreement with cine MRI and echocardiography. The advantages of real-time MRI are measurements during free breathing and access to individual cardiac cycles.

  10. Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Lai Wyman W

    2010-03-01

    Full Text Available Abstract Background One potential source of error in phase contrast (PC congenital CMR flow measurements is caused by phase offsets due to local non-compensated eddy currents. Phantom correction of these phase offset errors has been shown to result in more accurate measurements of blood flow in adults with structurally normal hearts. We report the effect of phantom correction on PC flow measurements at a clinical congenital CMR program. Results Flow was measured in the ascending aorta, main pulmonary artery, and right and left pulmonary arteries as clinically indicated, and additional values such as Qp/Qs were derived from these measurements. Phantom correction in our study population of 149 patients resulted in clinically significant changes in 13% to 48% of these phase-contrast measurements in patients with known or suspected heart disease. Overall, 640 measurements or calculated values were analyzed, and clinically significant changes were found in 31%. Larger vessels were associated with greater phase offset errors, with 22% of the changes in PC flow measurements attributed to the size of the vessel measured. In patients with structurally normal hearts, the pulmonary-to-systemic flow ratio after phantom correction was closer to 1.0 than before phantom correction. There was no significant difference in the effect of phantom correction for patients with tetralogy of Fallot as compared to the group as a whole. Conclusions Phantom correction often resulted in clinically significant changes in PC blood flow measurements in patients with known or suspected congenital heart disease. In laboratories performing clinical CMR with suspected phase offset errors of significance, the routine use of phantom correction for PC flow measurements should be considered.

  11. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 T.

    Science.gov (United States)

    Johnson, Kevin; Sharma, Puneet; Oshinski, John

    2008-01-01

    A validation study and early results for non-invasive, in vivo measurement of coronary artery blood flow using phase contrast magnetic resonance imaging (PC-MRI) at 3.0T is presented. Accuracy of coronary artery blood flow measurements by phase contrast MRI is limited by heart and respiratory motion as well as the small size of the coronary arteries. In this study, a navigator echo gated, cine phase velocity mapping technique is described to obtain time-resolved velocity and flow waveforms of small diameter vessels at 3.0T. Phantom experiments using steady, laminar flow are presented to validate the technique and show flow rates measured by 3.0T phase contrast MRI to be accurate within 15% of true flow rates. Subsequently, in vivo scans on healthy volunteers yield velocity measurements for blood flow in the right, left anterior descending, and left circumflex arteries. Measurements of average, cross-sectional velocity were obtainable in 224/243 (92%) of the cardiac phases. Time-averaged, cross-sectional velocity of the blood flow was 6.8+/-4.3cm/s in the LAD, 8.0+/-3.8cm/s in the LCX, and 6.0+/-1.6cm/s in the RCA.

  12. Real-time phase contrast magnetic resonance imaging for assessment of haemodynamics: from phantom to patients

    Energy Technology Data Exchange (ETDEWEB)

    Traber, Julius; Wurche, Lennart; Dieringer, Matthias A.; Utz, Wolfgang; Knobelsdorff-Brenkenhoff, Florian von; Schulz-Menger, Jeanette [Max-Delbrueck-Centrum and Charite -Medical University Berlin and HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Working Group on Cardiovascular Magnetic Resonance Imaging, Experimental and Clinical Research Center, Berlin (Germany); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany); Jin, Ning [Siemens Medical Solutions USA, Inc., Columbus, OH (United States)

    2016-04-15

    Assessment of haemodynamics is crucial in many cardiac diseases. Phase contrast MRI (PC-MRI) can accurately access it. Arrhythmia is a major limitation in conventional segmented PC-MRI (SEG). A real-time PC-MRI sequence (RT) could overcome this. We validated RT by comparing to SEG. A prototype RT using shared velocity encoding was tested against SEG at 1.5 T in a flow phantom and consecutively included patients with (n = 55) or without (n = 59) aortic valve disease. In patients with atrial fibrillation (Afib, n = 15), only RT was applied. Phantom: PC images were acquired in front of and behind an interchangeable aortic-stenosis-like inlay. Mean velocity and flow were quantified. Patients: PC images were acquired in the ascending aorta, pulmonary trunk and superior caval vein. Peak velocity, stroke volume and regurgitant fraction were quantified. Phantom: Mean velocities (11 ± 1 to 207 ± 10 cm/s) and flow correlated closely between SEG and RT (r ≥ 0.99, ICC ≥ 0.98, p < 0.0005). Patients without AVD or with aortic regurgitation: Concordance of SEG and RT was excellent regarding peak velocities, stroke volumes (r ≥ 0.91, ICC ≥ 0.94, p < 0.0005) and regurgitant fractions (r = 0.95, ICC = 0.95, p < 0.0005). RT was feasible in all patients with Afib. The real-time sequence is accurate compared to conventional segmented PC-MRI. Its applicability in Afib was shown. Real-time PC-MRI might become a valuable tool in arrhythmia. (orig.)

  13. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Ringstad, Geir; Emblem, Kyrre Eeg; Eide, Per Kristian

    2016-06-01

    OBJECT The objective of this study was to assess the net aqueductal stroke volume (ASV) and CSF aqueductal flow rate derived from phase-contrast MRI (PC-MRI) in patients with probable idiopathic normal pressure hydrocephalus (iNPH) before and after ventriculoperitoneal shunt surgery, and to compare observations with intracranial pressure (ICP) scores. METHODS PC-MRI at the level of the sylvian aqueduct was undertaken in patients undergoing assessment for probable iNPH. Aqueductal flow in the craniocaudal direction was defined as positive, or antegrade flow, and net ASV was calculated by subtracting retrograde from antegrade aqueductal flow. Aqueductal flow rate per minute was calculated by multiplying net ASV by heart rate. During the same hospital admission, clinical examination was performed using NPH score and overnight continuous ICP monitoring. Twelve patients were followed prospectively 12 months after shunt placement with clinical assessment and a second PC-MRI. The study also included 2 healthy controls. RESULTS Among 21 patients examined for iNPH, 17 (81%) received a shunt (shunt group), and 4 were treated conservatively (conservative group). Among the patients with shunts, a clinical improvement was observed in 16 (94%) of the 17. Net ASV was negative in 16 (76%) of 21 patients before shunt placement and in 5 (42%) of 12 patients after shunt placement, and increased from a median of -5 μl (range -175 to 27 μl) to a median of 1 μl (range -61 to 30 μl; p = 0.04). Among the 12 patients with PC-MRI after shunt placement, 11 were shunt responders, and in 9 of these 11 either a reduced magnitude of retrograde aqueductal flow, or a complete reversal from retrograde to antegrade flow, occurred. Net ASV was significantly lower in the shunt group than in the conservative group (p = 0.01). The aqueductal flow rate increased from -0.56 ml/min (range -12.78 to 0.58 ml/min) to 0.06 ml/min (range -4.51 to 1.93 ml/min; p = 0.04) after shunt placement. CONCLUSIONS In

  14. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Ringstad, Geir; Emblem, Kyrre Eeg; Eide, Per Kristian

    2016-06-01

    OBJECT The objective of this study was to assess the net aqueductal stroke volume (ASV) and CSF aqueductal flow rate derived from phase-contrast MRI (PC-MRI) in patients with probable idiopathic normal pressure hydrocephalus (iNPH) before and after ventriculoperitoneal shunt surgery, and to compare observations with intracranial pressure (ICP) scores. METHODS PC-MRI at the level of the sylvian aqueduct was undertaken in patients undergoing assessment for probable iNPH. Aqueductal flow in the craniocaudal direction was defined as positive, or antegrade flow, and net ASV was calculated by subtracting retrograde from antegrade aqueductal flow. Aqueductal flow rate per minute was calculated by multiplying net ASV by heart rate. During the same hospital admission, clinical examination was performed using NPH score and overnight continuous ICP monitoring. Twelve patients were followed prospectively 12 months after shunt placement with clinical assessment and a second PC-MRI. The study also included 2 healthy controls. RESULTS Among 21 patients examined for iNPH, 17 (81%) received a shunt (shunt group), and 4 were treated conservatively (conservative group). Among the patients with shunts, a clinical improvement was observed in 16 (94%) of the 17. Net ASV was negative in 16 (76%) of 21 patients before shunt placement and in 5 (42%) of 12 patients after shunt placement, and increased from a median of -5 μl (range -175 to 27 μl) to a median of 1 μl (range -61 to 30 μl; p = 0.04). Among the 12 patients with PC-MRI after shunt placement, 11 were shunt responders, and in 9 of these 11 either a reduced magnitude of retrograde aqueductal flow, or a complete reversal from retrograde to antegrade flow, occurred. Net ASV was significantly lower in the shunt group than in the conservative group (p = 0.01). The aqueductal flow rate increased from -0.56 ml/min (range -12.78 to 0.58 ml/min) to 0.06 ml/min (range -4.51 to 1.93 ml/min; p = 0.04) after shunt placement. CONCLUSIONS In

  15. Phase contrast image simulations for electron holography of magnetic and electric fields

    DEFF Research Database (Denmark)

    Beleggia, Marco; Pozzi, Giulio

    2013-01-01

    The research on flux line lattices and pancake vortices in superconducting materials, carried out within a long and fruitful collaboration with Akira Tonomura and his group at the Hitachi Advanced Research Laboratory, led us to develop a mathematical framework, based on the reciprocal representat......The research on flux line lattices and pancake vortices in superconducting materials, carried out within a long and fruitful collaboration with Akira Tonomura and his group at the Hitachi Advanced Research Laboratory, led us to develop a mathematical framework, based on the reciprocal...... representation of the magnetic vector potential, that enables us to simulate realistic phase images of fluxons. The aim of this paper is to review the main ideas underpinning our computational framework and the results we have obtained throughout the collaboration. Furthermore, we outline how to generalize...

  16. Magnetic Mass in 4D AdS Gravity

    CERN Document Server

    Araneda, Rene; Miskovic, Olivera; Olea, Rodrigo

    2016-01-01

    We provide a fully-covariant expression for the diffeomorphic charge in 4D anti-de Sitter gravity, when the Gauss-Bonnet and Pontryagin terms are added to the action. The couplings of these topological invariants are such that the Weyl tensor and its dual appear in the on-shell variation of the action, and such that the action is stationary for asymptotic (anti) self-dual solutions in the Weyl tensor. In analogy with Euclidean electromagnetism, whenever the self-duality condition is global, both the action and the total charge are identically vanishing. Therefore, for such configurations the magnetic mass equals the Ashtekhar-Magnon-Das definition.

  17. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  18. Flow velocity and volume measurement of superior and inferior mesenteric artery with cine phase contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    The flow velocity and volume of the superior and inferior mesenteric arteries (SMA, IMA) were measured with cine phase contrast magnetic resonance (MR) imaging in five healthy volunteers. Each volunteer was first measured in a fasting state, and then one, two, and three hours after a meal. The average SMA flow volume of the volunteers was 230.3±46.8 ml/min (mean±standard error) during the fasting state, and 714.7±207.7 ml/min, 339.2±85.7 ml/min, and 263.8±21.0 ml/min, respectively, at one, two, and three hours postmeal. The increase at one hour postmeal was statistically significant (p<0.05). The corresponding flow measurements in the IMA were 63.1±11.2 ml/min, 67.6±11.2 ml/min, 57.9±8.6 ml/min, and 53.2±6.8 ml/min. These values do not represent a statistically significant flow volume change in the IMA. In all volunteers, the SMA volumetric flow increased the most one hour after the food challenge (72-400% relative to baseline). Diastolic velocity in the SMA increased significantly one hour postmeal, but systolic velocity did not change significantly. The IMA did not demonstrate a significant change in either systolic or diastolic velocity. The difference between the SMA and IMA in the way of reacting against the food challenge is thought to represent the difference between the requirements of small and large intestine for blood supply after the food challenge. These data demonstrate the possibility of this modality for the assessment of conditions such as chronic mesenteric ischemia. (author)

  19. Evaluation of vortex flow in left ventricle by echo-dynamography and phase contrast magnetic resonance angiography.

    Science.gov (United States)

    Kojima, Takanori; Kameyama, Takeyoshi; Nakajima, Hiroyuki; Khmyrova, Elena; Kurokawa, Takafumi; Saijo, Yoshifumi

    2012-01-01

    Echo-dynamography (EDG) is a method for visualizing left ventricular (LV) blood flow based on cardiac Doppler measurement in which blood flow component perpendicular to the ultrasonic beam is deduced by applying fluid dynamics theories to two-dimensional (2D) distribution of blood flow component along the ultrasonic beam. EDG has been validated by numerical simulation and particle image velocimetry of model circulation. However, these validations were too simple to reproduce unstable and asymmetrical flow in a beating heart. In the present study, EDG is compared with three-directional (3D) blood flow distribution on the same plane obtained with phase contrast magnetic resonance angiography (PCMRA) for clinical validation. Moreover, the location and vorticity of the vortex flow in LV are measured quantitatively and the relation to echocardiographic parameters of systolic and diastolic functions is discussed. 3D components of blood flow on a plane were obtained with triple scans of the same plane with ECG trigger and breath holding; 1) phase encode (x-axis), 2) read out (y-axis) and 3) slice selection (z-axis). After the acquisition of MRA dataset, color Doppler dataset of the same plane was acquired and 2D velocity distribution was obtained with EDG in MATLAB programs. EDG and PCMRA showed similar velocity vector distribution and formation of LV vortex flow. The vortex at mid diastolic phase was strongly affected by early diastolic filling while the vortex at isometric contraction was affected by atrial filling. EDG gained a new insight on systolic-diastolic coupling from the view point of LV blood flow such as LV vortex formation. PMID:23366476

  20. Generalized Phase Contrast

    CERN Document Server

    Glückstad, Jesper

    2009-01-01

    Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast (GPC) method including an overview of the range of current and potential applications of GPC in wavefront sensing and phase imaging, structured laser illumination and image projection, optical trapping and manipulation, and optical encryption and decryption. The GPC method goes further than the restrictive assumptions of conventional Zernike phase contrast analysis and achieves an expanded range of validity beyond weak phase perturbations. The generalized analysis yields design criteria for tuning experimental parameters to achieve optimal performance in terms of accuracy, fidelity and light efficiency. Optimization can address practical issues, such as finding an optimal spatial filter for the chosen application, ...

  1. Aortic valve stenotic area calculation from phase contrast cardiovascular magnetic resonance: the importance of short echo time

    Directory of Open Access Journals (Sweden)

    Cowan Brett R

    2009-11-01

    Full Text Available Abstract Background Cardiovascular magnetic resonance (CMR can potentially quantify aortic valve area (AVA in aortic stenosis (AS using a single-slice phase contrast (PC acquisition at valve level: AVA = aortic flow/aortic velocity-time integral (VTI. However, CMR has been shown to underestimate aortic flow in turbulent high velocity jets, due to intra-voxel dephasing. This study investigated the effect of decreasing intra-voxel dephasing by reducing the echo time (TE on AVA estimates in patients with AS. Method 15 patients with moderate or severe AS, were studied with three different TEs (2.8 ms/2.0 ms/1.5 ms, in the main pulmonary artery (MPA, left ventricular outflow tract (LVOT and 0 cm/1 cm/2.5 cm above the aortic valve (AoV. PC estimates of stroke volume (SV were compared with CMR left ventricular SV measurements and PC peak velocity, VTI and AVA were compared with Doppler echocardiography. CMR estimates of AVA obtained by direct planimetry from cine acquisitions were also compared with the echoAVA. Results With a TE of 2.8 ms, the mean PC SV was similar to the ventricular SV at the MPA, LVOT and AoV0 cm (by Bland-Altman analysis bias ± 1.96 SD, 1.3 ± 20.2 mL/-6.8 ± 21.9 mL/6.5 ± 50.7 mL respectively, but was significantly lower at AoV1 and AoV2.5 (-29.3 ± 31.2 mL/-21.1 ± 35.7 mL. PC peak velocity and VTI underestimated Doppler echo estimates by approximately 10% with only moderate agreement. Shortening the TE from 2.8 to 1.5 msec improved the agreement between ventricular SV and PC SV at AoV0 cm (6.5 ± 50.7 mL vs 1.5 ± 37.9 mL respectively but did not satisfactorily improve the PC SV estimate at AoV1 cm and AoV2.5 cm. Agreement of CMR AVA with echoAVA was improved at TE 1.5 ms (0.00 ± 0.39 cm2 versus TE 2.8 (0.11 ± 0.81 cm2. The CMR method which agreed best with echoAVA was direct planimetry (-0.03 cm2 ± 0.24 cm2. Conclusion Agreement of CMR AVA at the aortic valve level with echo AVA improves with a reduced TE of 1.5 ms

  2. Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia

    International Nuclear Information System (INIS)

    To analyse cerebrospinal fluid (CSF) hydrodynamics in patients with Chiari type I malformation (CM) with and without syringomyelia using 4D magnetic resonance (MR) phase contrast (PC) flow imaging. 4D-PC CSF flow data were acquired in 20 patients with CM (12 patients with presyrinx/syrinx). Characteristic 4D-CSF flow patterns were identified. Quantitative CSF flow parameters were assessed at the craniocervical junction and the cervical spinal canal and compared with healthy volunteers and between patients with and without syringomyelia. Compared with healthy volunteers, 17 CM patients showed flow abnormalities at the craniocervical junction in the form of heterogeneous flow (n = 3), anterolateral flow jets (n = 14) and flow vortex formation (n = 5), most prevalent in patients with syringomyelia. Peak flow velocities at the craniocervical junction were significantly increased in patients (-15.5 ± 11.3 vs. -4.7 ± 0.7 cm/s in healthy volunteers, P < 0.001). At the level of C1, maximum systolic flow was found to be significantly later in the cardiac cycle in patients (30.8 ± 10.3 vs. 22.7 ± 4.1%, P < 0.05). 4D-PC flow imaging allowed comprehensive analysis of CSF flow in patients with Chiari I malformation. Alterations of CSF hydrodynamics were most pronounced in patients with syringomyelia. (orig.)

  3. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation with a si......The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...

  4. Resolving 4-D Nature of Magnetism with Depolarization and Faraday Tomography: Japanese SKA Cosmic Magnetism Science

    CERN Document Server

    Akahori, Takuya; Ichaki, Kiyotomo; Ideguchi, Shinsuke; Kudoh, Takahiro; Kudoh, Yuki; Machida, Mami; Nakanishi, Hiroyuki; Ohno, Hiroshi; Ozawa, Takeaki; Takahashi, Keitaro; Takizawa, Motokazu

    2016-01-01

    Magnetic fields play essential roles in various astronomical objects. Radio astronomy has revealed that magnetic fields are ubiquitous in our Universe. However, the real origin and evolution of magnetic fields is poorly proven. In order to advance our knowledge of cosmic magnetism in coming decades, the Square Kilometre Array (SKA) should have supreme sensitivity than ever before, which provides numerous observation points in the cosmic space. Furthermore, the SKA should be designed to facilitate wideband polarimetry so as to allow us to examine sightline structures of magnetic fields by means of depolarization and Faraday Tomography. The SKA will be able to drive cosmic magnetism of the interstellar medium, the Milky Way, galaxies, AGN, galaxy clusters, and potentially the cosmic web which may preserve information of the primeval Universe. The Japan SKA Consortium (SKA-JP) Magnetism Science Working Group (SWG) proposes the project "Resolving 4-D Nature of Magnetism with Depolarization and Faraday Tomography"...

  5. Compressive Phase Contrast Tomography

    OpenAIRE

    Maia, F. R. N. C.; MacDowell, A.; Marchesini, S.; Padmore, H. A.; Parkinson, D. Y.; PIEN., J.; Schirotzek, A.; Yang, C

    2010-01-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. In- terference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher con- trast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard...

  6. Compressive Phase Contrast Tomography

    OpenAIRE

    Maia, Filipe

    2010-01-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-R...

  7. Compressive Phase Contrast Tomography

    CERN Document Server

    Maia, F R N C; Marchesini, S; Padmore, H A; Parkinson, D Y; Pien, J; Schirotzek, A; Yang, C; 10.1117/12.861946

    2010-01-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. In- terference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher con- trast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  8. Compressive Phase Contrast Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-09-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  9. [Pulmonary blood flow measurement using magnetic resonance imaging (MRI) without contrast medium;comparison of phase contrast MRI and perfusion-ventilation scintigraphy].

    Science.gov (United States)

    Yatsuyanagi, Eiji; Sato, Kazuhiro; Kikuchi, Keisuke; Saito, Hirotsugu

    2014-02-01

    To define the accuracy of pulmonary arterial blood flow (PA-flow) measured by phase contrast magnetic resonance imaging (PC-MRI), we compared the PA-flow data of PC-MRI with the data of perfusion-ventilation lung scintigraphy. Eighteen patients who preoperatively underwent PA-flow measurement using PC-MRI and perfusion-ventilation lung scintigraphy were evaluated. The PA-flow (cm3/sec) of MRI was calculated by multiplying maximum velocity (cm/sec) by region of interest (ROI) area (cm2) of measured main pulmonary artery using phase contrast method. The left to right ratio (R/L ratio) of PA-flow measured by PC-MRI was compared with the R/L ratios of the date of perfusion-ventilation lung scintigraphy. The R/L ratios of PC-MRI and perfusion lung scintigraphy were 1.43 ± 1.07 and 1.35 ± 0.82, respectively. Both ratios showed excellent correlation( y=-0.50+1.30x, r=0.99,pperfusion lung scintigraphy in the patients with a past history of lung resection, even if their R/L ratios of perfusion lung scintigraphy differed from those of ventilation lung scintigraphy. These results revealed that the PA-flow could be accurately measured by PC-MRI without contrast medium and nuclear medicine instruments.

  10. Magnetic mass in 4D AdS gravity

    Science.gov (United States)

    Araneda, René; Aros, Rodrigo; Miskovic, Olivera; Olea, Rodrigo

    2016-04-01

    We provide a fully covariant expression for the diffeomorphic charge in four-dimensional anti-de Sitter gravity, when the Gauss-Bonnet and Pontryagin terms are added to the action. The couplings of these topological invariants are such that the Weyl tensor and its dual appear in the on-shell variation of the action and such that the action is stationary for asymptotic (anti-)self-dual solutions in the Weyl tensor. In analogy with Euclidean electromagnetism, whenever the self-duality condition is global, both the action and the total charge are identically vanishing. Therefore, for such configurations, the magnetic mass equals the Ashtekhar-Magnon-Das definition.

  11. Cerebral blood flow volume measurements of the carotid artery and ipsilateral branches using two-dimensional phase-contrast magnetic resonance angiography

    Institute of Scientific and Technical Information of China (English)

    Gang Guo; Yonggui Yang; Weiqun Yang

    2011-01-01

    The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC MRA, the present study localized the region of interest at blood vessels of the neck using PC MRA based on three-dimensional time-of-flight sequences, and the velocity encodingwas set to 80 cm/s. Results of the measurements showed that the error rate was 7.0 ± 6.0%in the estimation of BFV in the internal carotid artery, the external carotid artery and the ipsilateralcommon carotid artery. There was no significant difference, and a significant correlation in BFV between internal carotid artery + external carotid artery and ipsilateral common carotid artery. Inaddition, the BFV of the common carotid artery was correlated with that of the ipsilateral internal carotid artery. The main error was attributed to the external carotid artery and its branches. Therefore,after selecting the appropriate scanning parameters and protocols, 2D PC MRA is more accuratein the determination of BFV in the carotid arteries.

  12. Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla

    International Nuclear Information System (INIS)

    It was the aim to analyse the impact of age, aortic arch geometry, and size on secondary flow patterns such as helix and vortex flow derived from flow-sensitive magnetic resonance imaging (4D PC-MRI). 62 subjects (age range = 20-80 years) without circumscribed pathologies of the thoracic aorta (ascending aortic (AAo) diameter: 3.2 ± 0.6 cm [range 2.2-5.1]) were examined by 4D PC-MRI after IRB-approval and written informed consent. Blood flow visualisation based on streamlines and time-resolved 3D particle traces was performed. Aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age were correlated with existence and extent of secondary flow patterns (helicity, vortices); statistical modelling was performed. Helical flow was the typical pattern in standard crook-shaped aortic arches. With altered shapes and increasing age, helicity was less common. AAo diameter and age had the highest correlation (r = 0.69 and 0.68, respectively) with number of detected vortices. None of the other arch geometric or demographic variables (for all, P ≥ 0.177) improved statistical modelling. Substantially different secondary flow patterns can be observed in the normal thoracic aorta. Age and the AAo diameter were the parameters correlating best with presence and amount of vortices. Findings underline the importance of age- and geometry-matched control groups for haemodynamic studies. (orig.)

  13. Non-Abelian Electric-Magnetic Duality with Supersymmetry in 4D and 10D

    CERN Document Server

    Nishino, Hitoshi

    2015-01-01

    We present electric-magnetic (Hodge) duality formulation for non-Abelian gauge groups with N=1 supersymmetry in 3+1 (4D) dimensions. Our system consists of three multiplets: (i) A super-Yang-Mills vector multiplet (YMVM) $(A_\\mu{}^I, \\lambda^I)$, (ii) a dual vector multiplet (DVM) $(B_\\mu{}^I, \\chi^I)$, and (iii) an unphysical tensor multiplet (TM) $(C_{\\mu\

  14. Ab initio investigations of magnetic properties of ultrathin transition-metal films on 4d substrates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zubi, Ali

    2010-12-22

    In this thesis, we investigate the magnetic properties of 3d transition-metal monolayers on 4d transition-metal substrates by means of state of the art first-principles quantum theory. In order to reveal the underlying physics of these systems we study trends by performing systematic investigations across the transition-metal series. Case studies are presented for which Rh has been chosen as exemplary 4d substrate. We consider two substrate orientations, a square lattice provided by Rh(001) and a hexagonal lattice provided by Rh(111). We find, all 3d transition-metal (V, Cr, Mn, Fe, Co and Ni) monolayers deposited on the Rh substrate are magnetic and exhibit large local moments which follow Hund's rule with a maximum magnetic moment for Mn of about 3.7 {mu}{sub B} depending on the substrate orientation. The largest induced magnetic moment of about 0.46 {mu}{sub B} is found for Rh atoms adjacent to the Co(001)-film. On Rh(001) we predict a ferromagnetic (FM) ground state for V, Co and Ni, while Cr, Mn and Fe monolayers favor a c(2 x 2) antiferromagnetic (AFM) state, a checkerboard arrangement of up and down magnetic moments. The magnetic anisotropy energies of these ultrathin magnetic films are calculated for the FM and the AFM states. With the exception of V and Cr, the easy axis of the magnetization is predicted to be in the film plane. With the exception of Fe, analogous results are obtained for the 3d-metal monolayers on Rh(111). For Fe on Rh(111) a novel magnetic ground state is predicted, a double-row-wise antiferromagnetic state along the [11 anti 2] direction, a sequence of ferromagnetic double-rows of atoms, whose magnetic moments couple antiferromagnetically from double row to double row. The magnetic structure can be understood as superposition of a left- and right-rotating flat spin spiral. In a second set of case studies the properties of an Fe monolayer deposited on varies hexagonally terminated hcp (0001) and fcc (111) surfaces of 4d

  15. Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Spithoven, E.M.; Meijer, E.; Boertien, W.E.; Gaillard, C.A.J.M.; Jong, P.E. de; Gansevoort, R.T. [University of Groningen, Department of Nephrology, Community and Occupational Medicine, University Medical Center Groningen, PO Box 30.001, RB Groningen (Netherlands); Borns, C.; Kappert, P.; Greuter, M.J.W.; Jagt, E. van der [University of Groningen, Department of Radiology, Community and Occupational Medicine, University Medical Center Groningen, Groningen (Netherlands); Vart, P. [University of Groningen, Department of Health Sciences, Community and Occupational Medicine, University Medical Center Groningen, Groningen (Netherlands)

    2016-03-15

    Renal blood flow (RBF) has been shown to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). We investigated the feasibility and accuracy of phase-contrast RBF by MRI (RBF{sub MRI}) in ADPKD patients with a wide range of estimated glomerular filtration rate (eGFR) values. First, we validated RBF{sub MRI} measurement using phantoms simulating renal artery hemodynamics. Thereafter, we investigated in a test-set of 21 patients intra- and inter-observer coefficient of variation of RBF{sub MRI}. After validation, we measured RBF{sub MRI} in a cohort of 91 patients and compared the variability explained by characteristics indicative for disease severity for RBF{sub MRI} and RBF measured by continuous hippuran infusion. The correlation in flow measurement using phantoms by phase-contrast MRI was high and fluid collection was high (CCC=0.969). Technical problems that precluded RBF{sub MRI} measurement occurred predominantly in patients with a lower eGFR (34% vs. 16%). In subjects with higher eGFRs, variability in RBF explained by disease characteristics was similar for RBF{sub MRI} compared to RBF{sub Hip,} whereas in subjects with lower eGFRs, this was significantly less for RBF{sub MRI}. Our study shows that RBF can be measured accurately in ADPKD patients by phase-contrast, but this technique may be less feasible in subjects with a lower eGFR. (orig.)

  16. Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease

    International Nuclear Information System (INIS)

    Renal blood flow (RBF) has been shown to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). We investigated the feasibility and accuracy of phase-contrast RBF by MRI (RBFMRI) in ADPKD patients with a wide range of estimated glomerular filtration rate (eGFR) values. First, we validated RBFMRI measurement using phantoms simulating renal artery hemodynamics. Thereafter, we investigated in a test-set of 21 patients intra- and inter-observer coefficient of variation of RBFMRI. After validation, we measured RBFMRI in a cohort of 91 patients and compared the variability explained by characteristics indicative for disease severity for RBFMRI and RBF measured by continuous hippuran infusion. The correlation in flow measurement using phantoms by phase-contrast MRI was high and fluid collection was high (CCC=0.969). Technical problems that precluded RBFMRI measurement occurred predominantly in patients with a lower eGFR (34% vs. 16%). In subjects with higher eGFRs, variability in RBF explained by disease characteristics was similar for RBFMRI compared to RBFHip, whereas in subjects with lower eGFRs, this was significantly less for RBFMRI. Our study shows that RBF can be measured accurately in ADPKD patients by phase-contrast, but this technique may be less feasible in subjects with a lower eGFR. (orig.)

  17. The Generalised Phase Contrast Method

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    An analytic framework and a complete description for the design and optimisation of on-axis centred spatially filtering common path systems are presented. The Generalised Phase Contrast method is derived and introduced as the common denominator for these systems basically extending Zernike....... Optimal conditions for visibility, peak irradiance and accuracy are derived and shown to be perfectly in line with empirical results from the literature. New graphic methods for advanced analysis purposes are demonstrated supporting these conclusions as well as providing new tools for innovative filter...... designs and parameter settings. Finally, a number of original applications facilitated by the parallel light-beam encoding of the Generalised Phase Contrast method are briefly outlined. These include among others, wavefront sensing and generation, advanced usercontrolled optical micro...

  18. Phase-contrast MRI and applications in congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A., E-mail: adgoldberg@geisinger.edu [Department of Radiology, Geisinger Health System, Danville, PA (United States); Jha, S. [Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA (United States)

    2012-05-15

    A review of phase-contrast magnetic resonance imaging techniques, with specific application to congenital heart disease, is presented. Theory, pitfalls, advantages, and specific examples of multiple, well-described congenital heart disease presentations are discussed.

  19. Use of three-dimensional time-resolved phase-contrast magnetic resonance imaging with vastly undersampled isotropic projection reconstruction to assess renal blood flow in a renal cell carcinoma patient treated with sunitinib: a case report

    OpenAIRE

    Takayama, Tatsuya; Takehara, Yasuo; Sugiyama, Masataka; Sugiyama, Takayuki; Ishii, Yasuo; Johnson, Kevin E; Wieben, Oliver; Wakayama, Tetsuya; Sakahara, Harumi; Ozono, Seiichiro

    2014-01-01

    Background New imaging modalities to assess the efficacy of drugs that have molecular targets remain under development. Here, we describe for the first time the use of time-resolved three-dimensional phase-contrast magnetic resonance imaging to monitor changes in blood supply to a tumor during sunitinib treatment in a patient with localized renal cell carcinoma. Case presentation A 43-year-old Japanese woman with a tumor-bearing but functional single kidney presented at our hospital in July 2...

  20. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)

    2016-05-15

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  1. Minimally-destructive Partial Phase Contrast Imaging

    CERN Document Server

    Wigley, Paul; Hardman, Kyle; Sooriyabandara, Mahasen; Perumbil, Manju; Close, John; Robins, Nicholas; Kuhn, Carlos

    2016-01-01

    This paper presents a minimally-destructive imaging technique based on a combination of phase contrast and Faraday rotation imaging used to continuously observe a condensate of 85 Rb. We demonstrate that the technique is capable of imaging a small sample of only 10 4 atoms up to 100 times with negligible decreases in atom number and no observable heating. At approximately 1GHz detuning, the SNR remains at approximately 7 for all 100 images, with a 22ms TOF absorption image confirming the survival of the condensate. The splitting of the magnetic sublevels of this species at such fields show non-trivial selection rules. We present experimental data outlining particular allowed transitions in this regime.

  2. Image Quality of the 3 Dimensional Phase-Contrast Technique in an Intracranial Magnetic Resonance Angiography with Artifacts Caused by Orthodontic Devices: A Comparison with 3 Dimensional Time-of-Flight Technique

    International Nuclear Information System (INIS)

    To evaluate the degree of image distortion caused by orthodontic devices during a intracranial magnetic resonance angiography (MRA), and to determine the effectiveness of the 3 dimensional phase-contrast (3D PC). Subjects were divided into group A (n = 20) wearing a home-made orthodontic device, and group B (n = 10) with an actual orthodontic device. A 3.0T MR scanner was used, applying 3D time-of-flight (TOF) and 3D PC. Two board-certified radiologists evaluated images independently based on a four point scale classifying segments of the circle of Willis. Magnetic susceptibility variations and contrast-to-noise ratio (CNR) on maximum intensity projection images were measured. In group A, scores of the 3D TOF and 3D PC were 2.84 ± 0.1 vs. 2.88 ± 0.1 (before) and 1.8 ± 0.4 vs 2.83 ± 0.1 (after wearing device), respectively. In group B, the scores of 3D TOF and 3D PC were 1.86 ± 0.43 and 2.81 ± 0.15 (p = 0.005), respectively. Magnetic susceptibility variations showed meaningful results after wearing the device (p = 0.0001). CNRs of the 3D PC before and after wearing device were 142.9 ± 6.6 vs. 140.8 ± 7.2 (p = 0.7507), respectively. In the 3D TOF, CNRs were 324.8 ± 25.4 vs. 466.3 ± 41.7 (p = 0.0001). The 3D PC may be a solution method for distorted images by magnetic susceptibility in the intracranial MRA compared with 3D TOF.

  3. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach

    OpenAIRE

    Johannes Salamon; Martin Hofmann; Caroline Jung; Michael Gerhard Kaul; Franziska Werner; Kolja Them; Rudolph Reimer; Peter Nielsen; Annika Vom Scheidt; Gerhard Adam; Tobias Knopp; Harald Ittrich

    2016-01-01

    Purpose In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI) / magnetic resonance imaging (MRI) road map approach and an MPI-guided approach using a blood pool tracer. Materials and Methods A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superp...

  4. Phase contrast imaging of cochlear soft tissue.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Hwang, M.; Rau, C.; Fishman, A.; Lee, W.; Richter, C. (X-Ray Science Division); (Northwestern Univ.); (Diamond Light Source, Ltd.)

    2011-01-01

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imaging and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.

  5. The Electronic and Magnetic Properties of FCC Iron Clusters in FCC 4D Metals

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M. E., E-mail: elzain@squ.edu.om; Yousif, A. A.; Rawas, A. D. Al; Gismelseed, A. M.; Widatallah, H.; Bouziani, K.; Al-Omari, I. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2005-07-15

    The electronic and magnetic structures of small FCC iron clusters in FCC Rh, Pd and Ag were calculated using the discrete variational method as a function of cluster size and lattice relaxation. It was found that unrelaxed iron clusters, remain ferromagnetic as the cluster sizes increase, while for relaxed clusters antiferromagnetism develops as the size increases depending on the host metal. For iron in Rh the magnetic structure changes from ferromagnetic to antiferromagnetic for clusters as small as 13 Fe atoms, whereas for Fe in Ag antiferromagnetism is exhibited for clusters of 24 Fe atoms. On the hand, for Fe in Pd the transition from ferromagnetism to antiferromagnetism occurs for clusters as large as 42 Fe atoms. The difference in the magnetic trends of these Fe clusters is related to the electronic properties of the underlying metallic matrix. The local d densities of states, the magnetic moments and hyperfine parameters are calculated in the ferromagnetic and the antiferromagnetic regions. In addition, the average local moment in iron-palladium alloys is calculated and compared to experimental results.

  6. Polychromatic phase-contrast computed tomography

    International Nuclear Information System (INIS)

    Polychromatic phase-contrast radiography differs from traditional (absorption-only) radiography in that the method requires at least a partially coherent x-ray source and the resulting images contain information about the phase shifts of x-rays in addition to the traditional absorption information. In a typical embodiment, this effect results in a measurable enhancement in image contrast at the edges of objects. In this study, a phase-contrast imaging system was adapted to allow an object to be imaged at multiple projections, and these projections were used to generate phase-contrast computed tomography images. The images obtained with this technique show edge enhancements surrounding the objects within the image

  7. Magnetism of iron in face-centered cubic 4d metals

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M.; Al Rawas, A.; Yousif, A.; Gismelseed, A.; Rais, A.; Al Omari, I.; Widatallah, H. [Physics Department, College of Science, Box 36, Sultan Qaboos University, Al Khod 123 (Oman)

    2004-05-01

    The magnetic moments and hyperfine fields at iron sites embedded in Rh, Pd and Ag face centered cubic structures were calculated using the first principle discrete variational method (DVM) and the full-potential linear-augment plane wave (FP-LAPW) method. In DVM the systems were represented by, clusters of atoms, while in FP-LAPW supercells were used. The objectives of this work are to compare and contrast results from the two different computational methods in addition to comparison to experimental data. Large magnetic moments were obtained for iron in Pd, relatively smaller moments for iron in Ag and smaller moments for iron in Rh. Iron atoms were found to couple ferromagnetically to Pd atoms and antiferromagnetically to Rh. No moment is induced on the Ag atom. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. X-ray phase-contrast methods

    Energy Technology Data Exchange (ETDEWEB)

    Lider, V. V., E-mail: lider@ns.crys.ras.ru; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  9. Laser projection using generalized phase contrast

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Rodrigo, Peter John;

    2007-01-01

    We demonstrate experimental laser projection of a gray-level photographic image with 74% light efficiency using the generalized phase contrast (GPC) method. In contrast with a previously proposed technique [Alonzo et al., New J. Phys. 9, 132 (2007)], a new approach to image construction via GPC...

  10. Phase contrast imaging of Bose condensed clouds

    NARCIS (Netherlands)

    Meppelink, R; Rozendaal, R.A.; Koller, S.B.; Vogels, J.M.; van der Straten, P.

    2010-01-01

    Phase contrast imaging is used to observe Bose-Einstein condensates (BECs) at finite temperature in situ. The imaging technique is used to accurately derive the absolute phase shift of a probe laser beam due to both the condensate and the thermal cloud. The accuracy of the method is enhanced by usin

  11. Generalised phase contrast: microscopy, manipulation and more

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2010-01-01

    Generalised phase contrast (GPC) not only leads to more accurate phase imaging beyond thin biological samples, but serves as an enabling framework in developing tools over a wide spectrum of contemporary applications in optics and photonics, including optical trapping and micromanipulation, optic...

  12. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei

    2015-12-30

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  13. Structural, elastic, magnetic and electronic properties of 4d perovskite CaTcO3: a DFT+U investigation

    Science.gov (United States)

    Zhang, Wei; Tong, Peiqing

    2012-05-01

    The structural, elastic, magnetic and electronic properties of 4d high Neél temperature perovskite (Pv) CaTcO3 have been studied using density functional theory plus the Hubbard U (DFT+U) method. The degree of correlations of CaTcO3 is determined with a reasonable value of U. The compound is found to be an indirect band gap semiconductor with G-type antiferromagnetic ordering and large superexchange interactions. Large anisotropic compression behavior is found that is much alike the case of Pv CaIrO3 reported by recent high pressure experiment. The b and c axes decrease linearly with pressure whereas the a axis nearly keeps constant and even slightly expands after ˜23 GPa. Finally, we predict the single crystal elastic constants and investigate the polycrystalline elastic properties.

  14. Magnetic resonance imaging in fetal anomalies: What does it add to 3D and 4D US?

    Energy Technology Data Exchange (ETDEWEB)

    Behairy, Noha H. [Department of Radiodiagnosis, Kasr El Aini Hospital, Cairo University, Cairo (Egypt)], E-mail: noha_behairy@yahoo.com; Talaat, Soha; Saleem, Sahar N. [Department of Radiodiagnosis, Kasr El Aini Hospital, Cairo University, Cairo (Egypt); El-Raouf, Maged Abd [Department of Obstetric and Gynecology, Kasr El Aini Hospital, Cairo University (Egypt)

    2010-04-15

    Objective: The objective of our study is to evaluate the contribution of adding MRI findings to sonographic data when assessing fetal anomalies and to determine how this addition may affect the management of pregnancy. Study design: We prospectively examined 26 fetuses who had sonographically suspected congenital anomalies over a period of 1 year. 2D/3D and 4D ultrasound, Doppler and magnetic resonant imaging was done for all patients. MRI was done within 1 week following US examination. The maternal age range was 18-39 years. The gestational age range was 15-38 weeks (mean age = 29 weeks). Ultrasound and magnetic resonance findings were compared together. Results: We reported different types of congenital anomalies including eight cases of isolated central nervous system anomalies, four abdominal, five musculoskeletal anomalies, seven cases of renal anomalies and two cases of Meckel Gruber syndrome. MRI and sonography showed concordant findings in 18 cases. MRI changed the diagnosis in five cases and provided additional information in three cases. Ultrasound was superior to magnetic resonance imaging in three cases. Conclusion: Our results showed that fetal MR imaging can be used as a complementary modality to US in diagnosing fetal abnormality in which US findings are inconclusive or equivocal.

  15. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach

    Science.gov (United States)

    Jung, Caroline; Kaul, Michael Gerhard; Werner, Franziska; Them, Kolja; Reimer, Rudolph; Nielsen, Peter; vom Scheidt, Annika; Adam, Gerhard; Knopp, Tobias; Ittrich, Harald

    2016-01-01

    Purpose In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI) / magnetic resonance imaging (MRI) road map approach and an MPI-guided approach using a blood pool tracer. Materials and Methods A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4) was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography. Results Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide. Conclusions 4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions. PMID:27249022

  16. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

    Directory of Open Access Journals (Sweden)

    Johannes Salamon

    Full Text Available In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI / magnetic resonance imaging (MRI road map approach and an MPI-guided approach using a blood pool tracer.A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4 was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography.Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide.4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.

  17. Reconstruction methods for phase-contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raven, C.

    1997-02-01

    Phase contrast imaging with coherent x-rays can be distinguished in outline imaging and holography, depending on the wavelength {lambda}, the object size d and the object-to-detector distance r. When r << d{sup 2}{lambda}, phase contrast occurs only in regions where the refractive index fastly changes, i.e. at interfaces and edges in the sample. With increasing object-to-detector distance we come in the area of holographic imaging. The image contrast outside the shadow region of the object is due to interference of the direct, undiffracted beam and a beam diffracted by the object, or, in terms of holography, the interference of a reference wave with the object wave. Both, outline imaging and holography, offer the possibility to obtain three dimensional information of the sample in conjunction with a tomographic technique. But the data treatment and the kind of information one can obtain from the reconstruction is different.

  18. Phase contrast portal imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures

  19. Nonlinear phase contrast using a bacteriorhodopsin film

    Science.gov (United States)

    Iturbe Castillo, Marcelo D.; Sanchez-de-la-Llave, J. D.; Ramos Garcia, Ruben; Tepichin-Rodriguez, Eduardo; Olivos-Perez, L. I.

    2002-11-01

    In this paper we demonstrate a novel phase contrast system that employs a BR film. Since the filter is optically induced by the Fourier transform of the phase object, no alignment is necessary at the filter plane making it extremely robust. Due to the optical properties of BR films the phase filter can be induced with low light intensity levels. The material response allows operation at video frame rates, processing of high spatial resolution objects, and the use of relatively inexpensive laser sources. Such characteristics and the fact that BR films can be produced at a low cost makes the system simple to implement, relatively inexpensive and extremely robust. The effects of varying the illuminating area beyond the phase object area and filter saturation are also analyzed.

  20. Monitoring stem cells in phase contrast imaging

    Science.gov (United States)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  1. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    OpenAIRE

    Hugo, Geoffrey D.; Rosu, Mihaela

    2012-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are descri...

  2. Nanometer size 3d–4d and 3d–5d substitutional clusters: Promising candidates for magnetic storageapplications

    KAUST Repository

    Habeeb Mokkath, Junais

    2013-05-01

    Spin-polarized density-functional calculations including spin-orbit coupling (SOC) have been performed for FemRhn and FemPtn clusters having N=m+n,N≤19 atoms. The spin magnetic moments, orbital magnetic moments, and the magnetic anisotropy energies have been determined. A significant enhancement of magnetic anisotropy energies is found by the substitutional nanoalloying of Fe with Rh and Pt atoms. We obtained a remarkable non-monotonous dependence of the MAE as a function of Fe content, i.e., upon going from pure Fe to pure Rh and Pt. The substitutional nanoalloying boost the magnetic anisotropy energies by creating significant cluster symmetry lowerings. © 2013 Elsevier B.V.

  3. Image Fusion Algorithm for Differential Phase Contrast Imaging

    NARCIS (Netherlands)

    Roessl, E.; Koehler, T.; Van Stevendaal, U.; Hauser, N.; Wang, Z.; Stampanoni, M.

    2011-01-01

    Differential phase-contrast imaging in the x-ray domain provides three physically complementary pieces of information: the attenuation,the differential phase-contrast, related to the refractive index, and the dark-field signal, related to the total amount of radiation scattered into very small angle

  4. Phase contrast imaging diagnostic for Wendelstein 7-X

    International Nuclear Information System (INIS)

    The Phase Contrast Imaging (PCI) diagnostic allows non-invasive measurements of density fluctuations in high temperature plasmas. The index of refraction in a plasma depends approximately linearly on its density. Therefore an incoming probing laser beam is shifted in phase by the density fluctuations. This phase shift information can be translated into intensity variations by interference after a phase plate. In general the signal contains only the line-integrated information along the beam path. This limitation can be overcome by the fact that the density fluctuations form filament structures well aligned with the local magnetic field. If the pitch angle of the magnetic field varies significantly along the beam path, optical filtering allows for localization of the density fluctuations. First estimates show that a resolution of about 15 cm in W7-X can be achieved, which will allow for a clear separation of edge and core fluctuations. The process of integration starts with the development of a virtual diagnostic revealing the specific behaviour of the PCI diagnostic at W7-X for standard operation scenarios. In this contribution first results of these investigations are presented.

  5. Phase-contrast radiography with a polychromatic neutron beam

    International Nuclear Information System (INIS)

    The phase-contrast imaging is based not only on the absorption contrast like in the conventional radiography but also on the contributions of the phase shifts induced by the propagation of a coherent radiation through the investigated sample. The strong phase changes on the borders between two media can be observed as sharp intensity variations on the radiography image. So the phase-contrast method is an edge-enhancement method which allows to visualize very fine structures where the conventional radiography provides unsatisfactory results. For the aims of the phase-contrast imaging a radiation with a high spatial but not necessarily chromatic coherence is required. In this way phase-contrast radiography experiments with a polychromatic thermal neutron beam possessing a high spatial transversal coherence can be performed. The reported results show that the developed phase-contrast neutron radiography can be used as a standard non-destructive investigation method

  6. X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model.

    Directory of Open Access Journals (Sweden)

    Arne Tapfer

    Full Text Available To explore the potential of grating-based x-ray phase-contrast computed tomography (CT for preclinical research, a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC was investigated. One ex-vivo mouse specimen was scanned with different grating-based phase-contrast CT imaging setups covering two different settings: i high-resolution synchrotron radiation (SR imaging and ii dose-reduced imaging using either synchrotron radiation or a conventional x-ray tube source. These experimental settings were chosen to assess the potential of phase-contrast imaging for two different types of application: i high-performance imaging for virtual microscopy applications and ii biomedical imaging with increased soft-tissue contrast for in-vivo applications. For validation and as a reference, histological slicing and magnetic resonance imaging (MRI were performed on the same mouse specimen. For each x-ray imaging setup, attenuation and phase-contrast images were compared visually with regard to contrast in general, and specifically concerning the recognizability of lesions and cancerous tissue. To quantitatively assess contrast, the contrast-to-noise ratios (CNR of selected regions of interest (ROI in the attenuation images and the phase images were analyzed and compared. It was found that both for virtual microscopy and for in-vivo applications, there is great potential for phase-contrast imaging: in the SR-based benchmarking data, fine details about tissue composition are accessible in the phase images and the visibility of solid tumor tissue under dose-reduced conditions is markedly superior in the phase images. The present study hence demonstrates improved diagnostic value with phase-contrast CT in a mouse model of a complex endogenous cancer, promoting the use and further development of grating-based phase-contrast CT for biomedical imaging applications.

  7. 4D STUDY OF STRAIN GRADIENTS EVOLUTION IN TWINNED NiMnGa SINGLE CRYSTALS UNDER MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, Rozaliya [ORNL; Xu, Ruqing [Argonne National Laboratory (ANL); Barabash, Oleg M [ORNL; Sozinov, Alexei [AdaptaMat, Finland

    2014-01-01

    Time-resolved 3D X-ray microscopy with a submicron beam size was used to follow the evolution of strains in off-stoichiometric NiMnGa twinned crystals near type I (hard) twin boundary under magnetic field. Laminate A/B microstructure was revealed near the twin boundaries in A variant. Large strain gradients are observed in the C variant in the immediate vicinity of the type I twin boundary: the lattice is under large tensile strains ~0.4% along the c- axes within first micron. Distinct a and b lattice parameter evolution with temperature and magnetic field is demonstrated. In an applied magnetic field the strain field was observed at larger distances from the twin boundary and becomes more complex. Stochastic twin boundary motion was observed after the magnetic field reaches a certain critical value.

  8. Phase contrast image guidance for synchrotron microbeam radiotherapy

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C.; Larkin, Kieran G.

    2016-08-01

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required.

  9. Phase contrast image guidance for synchrotron microbeam radiotherapy.

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C; Larkin, Kieran G

    2016-08-21

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required. PMID:27436750

  10. NiftyFit: a Software Package for Multi-parametric Model-Fitting of 4D Magnetic Resonance Imaging Data.

    Science.gov (United States)

    Melbourne, Andrew; Toussaint, Nicolas; Owen, David; Simpson, Ivor; Anthopoulos, Thanasis; De Vita, Enrico; Atkinson, David; Ourselin, Sebastien

    2016-07-01

    Multi-modal, multi-parametric Magnetic Resonance (MR) Imaging is becoming an increasingly sophisticated tool for neuroimaging. The relationships between parameters estimated from different individual MR modalities have the potential to transform our understanding of brain function, structure, development and disease. This article describes a new software package for such multi-contrast Magnetic Resonance Imaging that provides a unified model-fitting framework. We describe model-fitting functionality for Arterial Spin Labeled MRI, T1 Relaxometry, T2 relaxometry and Diffusion Weighted imaging, providing command line documentation to generate the figures in the manuscript. Software and data (using the nifti file format) used in this article are simultaneously provided for download. We also present some extended applications of the joint model fitting framework applied to diffusion weighted imaging and T2 relaxometry, in order to both improve parameter estimation in these models and generate new parameters that link different MR modalities. NiftyFit is intended as a clear and open-source educational release so that the user may adapt and develop their own functionality as they require. PMID:26972806

  11. X-ray phase-contrast imaging: the quantum perspective

    International Nuclear Information System (INIS)

    Time-resolved phase-contrast imaging using ultrafast x-ray sources is an emerging method to investigate ultrafast dynamical processes in matter. Schemes to generate attosecond x-ray pulses have been proposed, bringing electronic timescales into reach and emphasizing the demand for a quantum description. In this paper, we present a method to describe propagation-based x-ray phase-contrast imaging in nonrelativistic quantum electrodynamics. We explain why the standard scattering treatment via Fermi’s golden rule cannot be applied. Instead, the quantum electrodynamical treatment of phase-contrast imaging must be based on a different approach. It turns out that it is essential to select a suitable observable. Here, we choose the quantum-mechanical Poynting operator. We determine the expectation value of our observable and demonstrate that the leading order term describes phase-contrast imaging. It recovers the classical expression of phase-contrast imaging. Thus, it makes the instantaneous electron density of non-stationary electronic states accessible to time-resolved imaging. Interestingly, inelastic (Compton) scattering does automatically not contribute in leading order, explaining the success of the semiclassical description. (paper)

  12. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition

    Directory of Open Access Journals (Sweden)

    Valverde Israel

    2012-04-01

    Full Text Available Abstract Background Systemic-to-pulmonary collateral flow (SPCF may constitute a risk factor for increased morbidity and mortality in patients with single-ventricle physiology (SV. However, clinical research is limited by the complexity of multi-vessel two-dimensional (2D cardiovascular magnetic resonance (CMR flow measurements. We sought to validate four-dimensional (4D velocity acquisition sequence for concise quantification of SPCF and flow distribution in patients with SV. Methods 29 patients with SV physiology prospectively underwent CMR (1.5 T (n = 14 bidirectional cavopulmonary connection [BCPC], age 2.9 ± 1.3 years; and n = 15 Fontan, 14.4 ± 5.9 years and 20 healthy volunteers (age, 28.7 ± 13.1 years served as controls. A single whole-heart 4D velocity acquisition and five 2D flow acquisitions were performed in the aorta, superior/inferior caval veins, right/left pulmonary arteries to serve as gold-standard. The five 2D velocity acquisition measurements were compared with 4D velocity acquisition for validation of individual vessel flow quantification and time efficiency. The SPCF was calculated by evaluating the disparity between systemic (aortic minus caval vein flows and pulmonary flows (arterial and venour return. The pulmonary right to left and the systemic lower to upper body flow distribution were also calculated. Results The comparison between 4D velocity and 2D flow acquisitions showed good Bland-Altman agreement for all individual vessels (mean bias, 0.05±0.24 l/min/m2, calculated SPCF (−0.02±0.18 l/min/m2 and significantly shorter 4D velocity acquisition-time (12:34 min/17:28 min,p 2; Fontan 0.62±0.82 l/min/m2 and not in controls (0.01 + 0.16 l/min/m2, (3 inverse relation of right/left pulmonary artery perfusion and right/left SPCF (Pearson = −0.47,p = 0.01 and (4 upper to lower body flow distribution trend related to the weight (r = 0.742, p  Conclusions 4D

  13. Bi-directional x-ray phase-contrast mammography.

    Directory of Open Access Journals (Sweden)

    Kai Scherer

    Full Text Available Phase-contrast x-ray imaging is a promising improvement of conventional absorption-based mammography for early tumor detection. This potential has been demonstrated recently, utilizing structured gratings to obtain differential phase and dark-field scattering images. However, the inherently anisotropic imaging sensitivity of the proposed mono-directional approach yields only insufficient diagnostic information, and has low diagnostic sensitivity to highly oriented structures. To overcome these limitations, we present a two-directional x-ray phase-contrast mammography approach and demonstrate its advantages by applying it to a freshly dissected, cancerous mastectomy breast specimen. We illustrate that the two-directional scanning procedure overcomes the insufficient diagnostic value of a single scan, and reliably detects tumor structures, independently from their orientation within the breast. Our results indicate the indispensable diagnostic necessity and benefit of a multi-directional approach for x-ray phase-contrast mammography.

  14. Resolution enhancement phase-contrast imaging by microsphere digital holography

    Science.gov (United States)

    Wang, Yunxin; Guo, Sha; Wang, Dayong; Lin, Qiaowen; Rong, Lu; Zhao, Jie

    2016-05-01

    Microsphere has shown the superiority of super-resolution imaging in the traditional 2D intensity microscope. Here a microsphere digital holography approach is presented to realize the resolution enhancement phase-contrast imaging. The system is designed by combining the microsphere with the image-plane digital holography. A microsphere very close to the object can increase the resolution by transforming the object wave from the higher frequency to the lower one. The resolution enhancement amplitude and phase images can be retrieved from a single hologram. The experiments are carried on the 1D and 2D gratings, and the results demonstrate that the observed resolution has been improved, meanwhile, the phase-contrast image is obtained. The proposed method can improve the transverse resolution in all directions based on a single exposure. Furthermore, this system has extended the application of the microsphere from the conventional 2D microscopic imaging to 3D phase-contrast microscopic imaging.

  15. Polychromatic cone-beam phase-contrast tomography

    International Nuclear Information System (INIS)

    A method is presented for quantitative phase-contrast tomography using unfiltered radiation from a small polychromatic source. The three-dimensional distribution of complex refractive index in a monomorphous object is reconstructed given a single projection image per view angle. The reconstruction algorithm is achromatic and stable with respect to high-spatial-frequency noise, in contrast to conventional tomography. The density distribution in a test sample was accurately reconstructed from polychromatic phase-contrast data collected with a point-projection x-ray microscope

  16. Simultaneous de-noising in phase contrast tomography

    Science.gov (United States)

    Koehler, Thomas; Roessl, Ewald

    2012-07-01

    In this work, we investigate methods for de-noising of tomographic differential phase contrast and absorption contrast images. We exploit the fact that in grating-based differential phase contrast imaging (DPCI), first, several images are acquired simultaneously in exactly the same geometry, and second, these different images can show very different contrast-to-noise-ratios. These features of grating-based DPCI are used to generalize the conventional bilateral filter. Experiments using simulations show a superior de-noising performance of the generalized algorithm compared with the conventional one.

  17. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  18. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    Science.gov (United States)

    Hugo, Geoffrey D.; Rosu, Mihaela

    2014-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described. PMID:22784929

  19. Elemental x-ray imaging using Zernike phase contrast

    Science.gov (United States)

    Shao, Qi-Gang; Chen, Jian; Wali, Faiz; Bao, Yuan; Wang, Zhi-Li; Zhu, Pei-Ping; Tian, Yang-Chao; Gao, Kun

    2016-10-01

    We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method. Project supported by the National Basic Research Program of China (Grant No. 2012CB825801) and the National Natural Science Foundation of China (Grant Nos. 11505188, and 11305173).

  20. Nonlinear dynamic phase contrast microscopy for microfluidic and microbiological applications

    Science.gov (United States)

    Denz, C.; Holtmann, F.; Woerdemann, M.; Oevermann, M.

    2008-08-01

    In live sciences, the observation and analysis of moving living cells, molecular motors or motion of micro- and nano-objects is a current field of research. At the same time, microfluidic innovations are needed for biological and medical applications on a micro- and nano-scale. Conventional microscopy techniques are reaching considerable limits with respect to these issues. A promising approach for this challenge is nonlinear dynamic phase contrast microscopy. It is an alternative full field approach that allows to detect motion as well as phase changes of living unstained micro-objects in real-time, thereby being marker free, without contact and non destructive, i.e. fully biocompatible. The generality of this system allows it to be combined with several other microscope techniques such as conventional bright field or fluorescence microscopy. In this article we will present the dynamic phase contrast technique and its applications in analysis of micro organismic dynamics, micro flow velocimetry and micro-mixing analysis.

  1. Interactive cell segmentation based on phase contrast optics.

    Science.gov (United States)

    Su, Hang; Su, Zhou; Zheng, Shibao; Yang, Hua; Wei, Sha

    2014-01-01

    Cell segmentation in phase contrast microscopy images lays a crucial foundation for numerous subsequent computer-aided cell image analysis, but it encounters many unsolved challenges due to image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose an interactive cell segmentation scheme over phase retardation features. After partitioning the images into phase homogeneous atoms, human annotations are propagated to unlabeled atoms over an affinity graph that is learned based on discrimination analysis. Then, an active query strategy is proposed for which the most informative unlabeled atom is selected for annotation, which is also propagated to the other unlabeled atoms. Cell segmentation converges to quality results after several rounds of interactions involving both the user's intentions and characteristics of image features. Experimental results demonstrate that cells with different optical properties are well segmented via the proposed approach.

  2. Advanced phase-contrast imaging using a grating interferometer

    OpenAIRE

    McDonald, S.A.; Marone, F.; Hintermüller, C; Mikuljan, G; David, C.; Pfeiffer, F.; Stampanoni, M.

    2009-01-01

    Phase-sensitive X-ray imaging methods can provide substantially increased contrast over conventional absorption-based imaging, and therefore new and otherwise inaccessible information. Differential phase-contrast (DPC) imaging, which uses a grating interferometer and a phase-stepping technique, has been integrated into TOMCAT, a beamline dedicated to tomographic microscopy and coherent radiology experiments at the Swiss Light Source. Developments have been made focusing on the fast acquisitio...

  3. Phase-contrast imaging using polychromatic hard X-rays

    International Nuclear Information System (INIS)

    In conventional radiography, X-rays which pass through an object along different paths are differentially absorbed, and the intensity pattern of the emerging beam records the distribution of absorbing materials within the sample. An alternative approach is phase-contrast radiography, which instead records variations of the phase of the emerging radiation. Such an approach offers improved contrast sensitivity, especially when imaging weakly absorbing samples. Unfortunately, current phase-contrast imaging techniques generally require highly monochromatic plane-wave radiation and sophisticated X-ray optics, so their use is greatly restricted. Here we describe and demonstrate a simplified scheme for phase-contrast imaging based on an X-ray source having high spatial (but essentially no chromatic) coherence. The method is compatible with conventional polychromatic micro-focus X-ray tube sources, is well suited to large areas of irradiation, can operate with a lower absorbed dose than traditional X-ray imaging techniques, and should find broad application in clinical, biological and industrial settings. (Author)

  4. Image fusion algorithm for differential phase contrast imaging

    Science.gov (United States)

    Roessl, Ewald; Koehler, Thomas; van Stevendaal, Udo; Martens, Gerhard; Hauser, Nik; Wang, Zhentian; Stampanoni, Marco

    2012-03-01

    Differential phase-contrast imaging in the x-ray domain provides three physically complementary signals:1, 2 the attenuation, the differential phase-contrast, related to the refractive index, and the dark-field signal, strongly influenced by the total amount of radiation scattered into very small angles. In medical applications, it is of the utmost importance to present to the radiologist all clinically relevant information in as compact a way as possible. Hence, the need arises for a method to combine two or more of the above mentioned signals into one image containing all information relevant for diagnosis. We present an image composition algorithm that fuses the attenuation image and the differential phase contrast image into a composite, final image based on the assumption that the real and imaginary part of the complex refractive index of the sample can be related by a constant scaling factor. The merging is performed in such a way that the composite image is characterized by minimal noise-power at each frequency component.

  5. Grid-Based Fourier Transform Phase Contrast Imaging

    Science.gov (United States)

    Tahir, Sajjad

    Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

  6. 4-D Photoacoustic Tomography

    Science.gov (United States)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  7. Enhancing 4D PC-MRI in an aortic phantom considering numerical simulations

    Science.gov (United States)

    Kratzke, Jonas; Schoch, Nicolai; Weis, Christian; Müller-Eschner, Matthias; Speidel, Stefanie; Farag, Mina; Beller, Carsten J.; Heuveline, Vincent

    2015-03-01

    To date, cardiovascular surgery enables the treatment of a wide range of aortic pathologies. One of the current challenges in this field is given by the detection of high-risk patients for adverse aortic events, who should be treated electively. Reliable diagnostic parameters, which indicate the urge of treatment, have to be determined. Functional imaging by means of 4D phase contrast-magnetic resonance imaging (PC-MRI) enables the time-resolved measurement of blood flow velocity in 3D. Applied to aortic phantoms, three dimensional blood flow properties and their relation to adverse dynamics can be investigated in vitro. Emerging "in silico" methods of numerical simulation can supplement these measurements in computing additional information on crucial parameters. We propose a framework that complements 4D PC-MRI imaging by means of numerical simulation based on the Finite Element Method (FEM). The framework is developed on the basis of a prototypic aortic phantom and validated by 4D PC-MRI measurements of the phantom. Based on physical principles of biomechanics, the derived simulation depicts aortic blood flow properties and characteristics. The framework might help identifying factors that induce aortic pathologies such as aortic dilatation or aortic dissection. Alarming thresholds of parameters such as wall shear stress distribution can be evaluated. The combined techniques of 4D PC-MRI and numerical simulation can be used as complementary tools for risk-stratification of aortic pathology.

  8. Decompressive craniectomy arrests pulsatile aqueductal CSF flux: An in vivo demonstration using phase-contrast MRI. Case report.

    Science.gov (United States)

    Scollato, Antonio; Gallina, Pasquale; Bahl, Gautam; Di Lorenzo, Nicola

    2015-06-01

    We give a case study demonstration, using aqueductal cerebrospinal fluid (CSF) stroke volume quantification with phase-contrast magnetic resonance imaging, of a large opening in the rigid cranium by a decompressive craniectomy and its subsequent closure by bone flap repositioning resulted in the arrest and subsequent restoration of aqueductal CSF flow. PMID:25958958

  9. Phase-contrast microtomography with polychromatic sealed source

    International Nuclear Information System (INIS)

    Conventional X-ray microradiography and microtomography are based on X-ray attenuation inside an object. For light objects (in the terms of X-ray absorption) much better way would be to use phase contrast, rather than attenuation contrast. Recently it has been shown that one can obtain phase by using a polychromatic source provided the focal spot size and detector resolution are small enough to maintain sufficient spatial coherence. The technique opens perspectives for high-resolution micro-CT for the objects with low X-ray attenuation, such as diamonds, biomedical objects, etc

  10. Phase contrast and operation regimes in multifrequency atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sergio [Departament de Disseny i Programació de Sistemes Electrònics, UPC—Universitat Politècnica de Catalunya Av. Bases, 61, 08242 Manresa (Barcelona) (Spain)

    2014-04-07

    In amplitude modulation atomic force microscopy the attractive and the repulsive force regimes induce phase shifts above and below 90°, respectively. In the more recent multifrequency approach, however, multiple operation regimes have been reported and the theory should be revisited. Here, a theory of phase contrast in multifrequency atomic force microscopy is developed and discussed in terms of energy transfer between modes, energy dissipation and the kinetic energy and energy transfer associated with externally driven harmonics. The single frequency virial that controls the phase shift might undergo transitions in sign while the average force (modal virial) remains positive (negative)

  11. Reduction of phase artifacts in differential phase contrast computed tomography.

    Science.gov (United States)

    Jerjen, Iwan; Revol, Vincent; Schuetz, Philipp; Kottler, Christian; Kaufmann, Rolf; Luethi, Thomas; Jefimovs, Konstantins; Urban, Claus; Sennhauser, Urs

    2011-07-01

    X-ray differential phase contrast computed tomography (DPC CT) with a Talbot-Lau interferometer setup allows visualizing the three-dimensional distribution of the refractive index by measuring the shifts of an interference pattern due to phase variations of the X-ray beam. Unfortunately, severe reconstruction artifacts appear in the presence of differential phase wrapping and clipping. In this paper, we propose to use the attenuation contrast, which is obtained from the same measurement, for correcting the DPC signal. Using the example of a DPC CT measurement with pronounced phase artifacts, we will discuss the efficiency of our phase artifact correction method. PMID:21747516

  12. Implementation of neutron phase contrast imaging at FRM-II

    International Nuclear Information System (INIS)

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  13. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  14. Phase-contrast X-ray imaging of breast

    Energy Technology Data Exchange (ETDEWEB)

    Keyrilaeinen, Jani; Tenhunen, Mikko (Dept. of Physics, HUCH Cancer Center, Helsinki Univ. Central Hospital, Helsinki (Finland)), e-mail: jani.keyrilainen@hus.fi; Bravin, Alberto (Bio-medical Beamline ID17, European Synchrotron Radiation Facility, Grenoble (France)); Fernandez, Manuel (High Brilliance Beamline ID2, European Synchrotron Radiation Facility, Grenoble (France)); Virkkunen, Pekka (Dept. of Radiology, HUCH Cancer Center, Helsinki Univ. Central Hospital, Helsinki (Finland)); Suortti, Pekka (Dept. of Physics, Univ. of Helsinki, Helsinki (Finland))

    2010-10-15

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here

  15. Phase-contrast X-ray imaging of breast.

    Science.gov (United States)

    Keyriläinen, Jani; Bravin, Alberto; Fernández, Manuel; Tenhunen, Mikko; Virkkunen, Pekka; Suortti, Pekka

    2010-10-01

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here. PMID:20799921

  16. Phase contrast microscopy with full numerical aperture illumination.

    Science.gov (United States)

    Maurer, Christian; Jesacher, Alexander; Bernet, Stefan; Ritsch-Marte, Monika

    2008-11-24

    A modification of the phase contrast method in microscopy is presented, which reduces inherent artifacts and improves the spatial resolution. In standard Zernike phase contrast microscopy the illumination is achieved through an annular ring aperture, and the phase filtering operation is performed by a corresponding phase ring in the back focal plane of the objective. The Zernike method increases the spatial resolution as compared to plane wave illumination, but it also produces artifacts, such as the halo- and the shade-off effect. Our modification consists in replacing the illumination ring by a set of point apertures which are randomly distributed over the whole aperture of the condenser, and in replacing the Zernike phase ring by a matched set of point-like phase shifters in the back focal plane of the objective. Experimentally this is done by illuminating the sample with light diffracted from a phase hologram displayed at a spatial light modulator (SLM). The subsequent filtering operation is then done with a second matched phase hologram displayed at another SLM in a Fourier plane of the imaging pathway. This method significantly reduces the halo- and shade-off artifacts whilst providing the full spatial resolution of the microscope. PMID:19030068

  17. 4D flow MRI assessment of extracranial-intracranial bypass: qualitative and quantitative evaluation of the hemodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Tetsuro [University Hospital Zurich/University of Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland); Nippon Medical School, Department of Radiology, Tokyo (Japan); Takagi, Ryo; Amano, Yasuo; Orita, Erika; Matsumura, Yoshio; Kumita, Shin-ichiro [Nippon Medical School, Department of Radiology, Tokyo (Japan); Murai, Yasuo [Nippon Medical School, Department of Neurological Surgery, Tokyo (Japan)

    2016-03-15

    Our aim was to assess the feasibility of using time-resolved 3D phase-contrast (4D flow) MRI to characterize extracranial-intracranial (EC-IC) bypass. We enrolled 32 patients who underwent EC-IC bypass (15 men, 17 women; mean age 66.4 years). In all, 16 underwent radial artery graft (RAG) bypass and 16 underwent superficial temporal artery (STA) bypass. 4D flow MRI, time-of-flight (TOF) magnetic resonance angiography (MRA), and computed tomography angiography (CTA) were performed. Bypass patency, flow direction, and blood flow volume (BFV) of each artery were determined by 4D flow MRI. Arterial diameters were measured by TOF-MRA and CTA. We compared RAG and STA bypasses by evaluating the flow direction and BFV of each artery. We evaluated the correlation between arterial diameters (measured by CTA or MRA) and the BFV and the detectability of flow direction (measured by 4D flow MRI) of each artery. 4D flow MRI confirmed the patency of each bypass artery. Flow direction of the M1 segment of the middle cerebral artery and BFV in the bypass artery differed between RAG and STA groups (p < 0.01). BFV in the bypass slightly correlated with the diameters on CTA (p < 0.05, R{sup 2} = 0.287). Of the 29 arteries in the circle of Willis, nine were not depicted on 4D flow MRI. Cutoff values for arterial diameters on CTA and TOF-MRA for detecting the artery on 4D flow MRI were 2.4 and 1.8 mm, respectively. 4D flow MRI provided unique information for characterizing EC-IC bypasses, although this detectability is limited when addressing small arteries with slow flow. (orig.)

  18. Improved Hilbert phase contrast for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, Philip J.B.

    2015-07-15

    Hilbert phase contrast has been recognized as a means of recording high resolution images with high contrast using a transmission electron microscope. This imaging mode could be used to image typical phase objects such as unstained biological molecules or cryo sections of biological tissue. According to the original proposal by (Danev et al., 2002) the Hilbert phase plate applies a phase shift of π to approximately half the focal plane (for example the right half excluding the central beam) and an image is recorded at Gaussian focus. After correction for the inbuilt asymmetry of differential phase contrast this image will have an almost perfect contrast transfer function (close to 1) from the lowest spatial frequency up to a maximum resolution determined by the wave length and spherical aberration of the microscope. In this paper I present theory and simulations showing that this maximum spatial frequency can be increased considerably almost without loss of contrast by using a Hilbert phase plate of half the thickness, leading to a phase shift of π/2, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. - Highlights: • In this paper I present theory and simulations for a Hilbert phase plate that phase shifts the electron wave by π/2 instead of π while images are recorded close to Scherzer defocus instead of Gaussian focus. • I show that the point resolution for this new imaging mode is considerably higher without loss of contrast. • An additional advantage lies in the reduced thickness of the phase plate which leads to reduced inelastic scattering in the phase plate and less noise.

  19. Effect of coherence loss in differential phase contrast imaging

    Science.gov (United States)

    Cai, Weixing; Ning, Ruola; Liu, Jiangkun

    2014-03-01

    Coherence property of x-rays is critical in the grating-based differential phase contrast (DPC) imaging because it is the physical foundation that makes any form of phase contrast imaging possible. Loss of coherence is an important experimental issue, which results in increased image noise and reduced object contrast in DPC images and DPC cone beam CT (DPC-CBCT) reconstructions. In this study, experimental results are investigated to characterize the visibility loss (a measurement of coherence loss) in several different applications, including different-sized phantom imaging, specimen imaging and small animal imaging. Key measurements include coherence loss (relative intensity changes in the area of interest in phase-stepping images), contrast and noise level in retrieved DPC images, and contrast and noise level in reconstructed DPC-CBCT images. The influence of size and composition of imaged object (uniform object, bones, skin hairs, tissues, and etc) will be quantified. The same investigation is also applied for moiré pattern-based DPC-CBCT imaging with the same exposure dose. A theoretical model is established to relate coherence loss, noise level in phase stepping images (or moiré images), and the contrast and noise in the retrieved DPC images. Experiment results show that uniform objects lead to a small coherence loss even when the attenuation is higher, while objects with large amount of small structures result in huge coherence loss even when the attenuation is small. The theoretical model predicts the noise level in retrieved DPC images, and it also suggests a minimum dose required for DPC imaging to compensate for coherence loss.

  20. On detector linearity and precision of beam shift detection for quantitative differential phase contrast applications.

    Science.gov (United States)

    Zweck, Josef; Schwarzhuber, Felix; Wild, Johannes; Galioit, Vincent

    2016-09-01

    Differential phase contrast is a STEM imaging mode where minute sideways deflections of the electron probe are monitored, usually by using a position sensitive device (Chapman, 1984 [1]; Lohr et al., 2012 [2]) or, alternatively in some cases, a fast camera (Müller et al., 2012 [3,4]; Yang et al., 2015 [5]; Pennycook et al., 2015 [6]) as a pixelated detector. While traditionally differential phase contrast electron microscopy was mainly focused on investigations of micro-magnetic domain structures and their specific features, such as domain wall widths, etc. (Chapman, 1984 [1]; Chapman et al., 1978, 1981, 1985 [7-9]; Sannomiya et al., 2004 [10]), its usage has recently been extended to mesoscopic (Lohr et al., 2012, 2016 [2,12]; Bauer et al., 2014 [11]; Shibata et al., 2015 [13]) and nano-scale electric fields (Shibata et al., 2012 [14]; Mueller et al., 2014 [15]). In this paper, the various interactions which can cause a beam deflection are reviewed and expanded by two so far undiscussed mechanisms which may be important for biological applications. As differential phase contrast microscopy strongly depends on the ability to detect minute beam deflections we first treat the linearity problem for an annular four quadrant detector and then determine the factors which limit the minimum measurable deflection angle, such as S/N ratio, current density, dwell time and detector geometry. Knowing these factors enables the experimenter to optimize the set-up for optimum performance of the microscope and to get a clear figure for the achievable field resolution error margins.

  1. A novel high temporal resolution phase contrast MRI technique for measuring mitral valve flows

    Science.gov (United States)

    Voorhees, Abram; Bohmann, Katja; McGorty, Kelly Anne; Wei, Timothy; Chen, Qun

    2005-11-01

    Mitral valve flow imaging is inherently difficult due to valve plane motion and high blood flow velocities, which can range from 200 cm/s to 700 cm/s under regurgitant conditions. As such, insufficient temporal resolution has hampered imaging of mitral valve flows using magnetic resonance imaging (MRI). A novel phase contrast MRI technique, phase contrast using phase train imaging (PCPTI), has been developed to address the high temporal resolution needs for imaging mitral valve flows. The PCPTI sequence provides the highest temporal resolution to-date (6 ms) for measuring in-plane and through-plane flow patterns, with each velocity component acquired in a separate breathhold. Tested on healthy human volunteers, comparison to a conventional retrogated PC-FLASH cine sequence showed reasonable agreement. Results from a more rigorous validation using digital particle image velocimetry technique will be presented. The technique will be demonstrated in vitro using a physiological flow phantom and a St. Jude Medical Masters Series prosthetic valve.

  2. Assessment of fluctuating velocities in disturbed cardiovascular blood flow : in vivo feasibility of generalized phase-contrast MRI

    OpenAIRE

    Dyverfeldt, Petter; Escobar Kvitting, John-Peder; Sigfridsson, Andreas; Engvall, Jan; Bolger, Ann F.; Ebbers, Tino

    2008-01-01

    Purpose To evaluate the feasibility of generalized phase-contrast magnetic resonance imaging (PC-MRI) for the noninvasive assessment of fluctuating velocities in cardiovascular blood flow. Materials and Methods Multidimensional PC-MRI was used in a generalized manner to map mean flow velocities and intravoxel velocity standard deviation (IVSD) values in one healthy aorta and in three patients with different cardiovascular diseases. The acquired data were used to assess the kinetic energy of b...

  3. In vivo comparison of three ultrasound vector velocity techniques to MR phase contrast angiography

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Oddershede, Niels;

    2009-01-01

    The objective of this paper is to validate angle independent vector velocity methods for blood velocity estimation. Conventional Doppler ultrasound (US) only estimates the blood velocity along the US beam direction where the estimate is angle corrected assuming laminar flow parallel to vessel...... boundaries. This results in incorrect blood velocity estimates, when angle of insonation approaches 90° or when blood flow is non-laminar. Three angle independent vector velocity methods are evaluated in this paper: directional beamforming (DB), synthetic aperture flow imaging (STA) and transverse...... oscillation (TO). The performances of the three methods were investigated by measuring the stroke volume in the right common carotid artery of 11 healthy volunteers with magnetic resonance phase contrast angiography (MRA) as reference. The correlation with confidence intervals (CI) between the three vector...

  4. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI

    DEFF Research Database (Denmark)

    Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S;

    2015-01-01

    BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid...... approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution of...... dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose of this...

  5. Understanding phase contrast MR angiography a practical approach with Matlab examples

    CERN Document Server

    Suresh Paul, Joseph

    2016-01-01

    Providing many unique MATLAB codes and functions throughout, this book covers the basics of Magnetic Resonance Imaging (MRI), leading to an in-depth understanding of the concepts and tools required for analysis and interpretation of Phase Contrast MR Angiography (PC-MRA). The concept of PC-MRA is often difficult, but essential for practicing engineers and scientists working in MR related areas. The concepts are better understood by uniquely combining the physical principles of fluid flow and MR imaging, laid out by modeling the theory and applications using a commonly used software tool MATLAB®. The book starts with a detailed theory of PC-MRA followed by a description of various image processing methods, including detailed MATLAB codes used for their implementation. The flow concepts in the context of MR imaging are explained using MATLAB based simulations.

  6. Differential phase contrast 2.0-Opening new 'fields' for an established technique

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, Matthias; Schregle, Ralph [Physics Faculty, Regensburg University, Universitaetsstrasse 31, D-93040 Regensburg (Germany); Jetter, Michael; Waechter, Clemens [Institute for Semiconductor Optics and Functional Interfaces, Stuttgart University, Pfaffenwaldring 57, D-70569 Stuttgart (Germany); Wunderer, Thomas; Scholz, Ferdinand [Institute for Optoelectronics, Ulm University, Albert-Einstein-Allee 45, D-89081 Ulm (Germany); Zweck, Josef, E-mail: josef.zweck@physik.uni-regensburg.de [Physics Faculty, Regensburg University, Universitaetsstrasse 31, D-93040 Regensburg (Germany)

    2012-06-15

    Differential phase contrast microscopy has become known as a high resolution imaging technique for magnetic micro-structures in the past. The method senses the local induction by measuring the deflection of the probe beam after it passes through a specimen area carrying a magnetic field. Little attention has been paid, however, to the fact that this technique is also capable of measuring electric fields. An application of the technique to measure piezoelectric polarization fields inside multi-layered structures such as quantum wells is demonstrated. For this purpose, piezoelectric fields within non-centrosymmetric crystal structures, based on GaN/InGaN/GaN quantum wells, are investigated. It can be shown that the technique is sensitive to these fields and yields detailed information about the field distribution. The specific information and experimental limitations as well as artefacts of the technique will be discussed in detail and first measurements are shown. The main advantages turn out to be high sensitivity for electric fields, combined with a very high resolution, which is limited only by the STEM probe size. Another advantage is the large achievable field of view. -- Highlights: Black-Right-Pointing-Pointer We describe a technique which allows the determination of inner electric fields in matter. Black-Right-Pointing-Pointer Inner fields are believed to be one major reason for the so-called efficiency 'droop' in green solid state lasers. Black-Right-Pointing-Pointer The technique used is differential phase contrast, used for the first time for inner electric field determination. Black-Right-Pointing-Pointer The technique is complementary to electron holography, offers a wider field of view and reveals new structures.

  7. Understanding the Phase Contrast Optics to Restore Artifact-free Microscopy Images for Segmentation

    OpenAIRE

    Yin, Zhaozheng; Kanade, Takeo; Chen, Mei

    2012-01-01

    Phase contrast, a noninvasive microscopy imaging technique, is widely used to capture time-lapse images to monitor the behavior of transparent cells without staining or altering them. Due to the optical principle, phase contrast microscopy images contain artifacts such as the halo and shade-off that hinder image segmentation, a critical step in automated microscopy image analysis. Rather than treating phase contrast microscopy images as general natural images and applying generic image proces...

  8. Comparison of subtracted venography and phase contrast in cerebral regions by utilizing 3DT1TFE

    Science.gov (United States)

    Heo, Yeong-Cheol; Cho, Jae-Hwan; Jang, Hyon-Chol; Lee, Chang-Hee; Kim, Jung-Su; Lee, Hae-Kag

    2013-06-01

    In this study, we evaluated the 3D venography images and the phase contrast images that were subtracted by using the images that had been obtained before and after utilizing the contrast medium with a 3D, segmented, T1-weighted gradient echo sequence (3DT1TFE) when performing a cerebral magnetic resonance imaging (MRI) examination with contrast medium. The study was carried out in 10 patients who under went a brain examination with a contrast medium by using the 3.0T MR System and 8-channel sensitivity encoding (SENSE) head coil. The 3DT1TFE images after the contrast medium had been used was subtracted from the 3DT1TFE images before the utilization. The subtracted images were re-formed to venography images by using maximum intensity projection (MIP) techniques; then, the re-formed images and 3D phase contrast (PC) venography were evaluated qualitative analysis. The qualitative analysis was done to confirm the reliability of the ratings of the observers via the ICC (intraclass correlation coefficient) and then to evaluate of the statistical significance via an independent T-test. The ICC test showed that 3D PC venography images and subtracted venography images had reliabilities of 0.677 and 0.734 on average, respectively, indicating good reliability of the ratings by the observers. Because the proximal superior sagittal sinus (SSS), the middle SSS, the confluence SSS, the vein of labbe, the internal cerebral vein, and the Vein of Galen represented p > 0.05 a the independent T-test, no statistically significant difference was observed between the two images. However, a significant difference was observed between the images regarding the straight sinus (p images subtracted from the straight sinus would be better, because the average of the straight sinus was higher in subtracted venography.

  9. Structure and magnetism of 3d and 4d transition-metal alloys TT' (T = Mn, Fe and T' = Rh, Pd) with CuAu-I type ordered structure

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H. [Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan)]. E-mail: hyamada@gipac.shinshu-u.ac.jp; Shimizu, H. [Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan); Yamamoto, K. [Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan); Uebayashi, K. [Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan)

    2006-05-18

    First-principle band calculations of 3d and 4d transition-metal alloys FeRh, FePd, MnRh and MnPd with CuAu-I type ordered structure are carried out by a linear muffin-tin orbital method within an atomic sphere approximation, where a generalized gradient correction for exchange-correlation potential is taken into account. Total energies for paramagnetic, ferromagnetic and three kinds of antiferromagnetic states are estimated as a function of lattice constants a and c. Observed lattice constants and spin structures of these alloys are well described by the present calculations. It is shown that the paramagnetic (non-magnetic) state without local magnetic moments is not stable in CsCl-type structure for these alloys.

  10. 脑卒中恢复期患者小腿肌肉功能的速度编码相位对比磁共振观察%Study of lower extremity muscle function in stroke patients by velocity-encoded phase-contrast magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    姜丽; 窦祖林; 温红梅; 胡昔权; 丘卫红; 兰月; 解东风; 李奎

    2011-01-01

    Objective To compare the difference of muscle dynamic characteristics for the ankle dorsiflexors and plantarflexors between stroke patients at the chronic stage and healthy controls so as to provide a new method of assessing thein vivo muscle function in patients with hemiplegia. Methods From May 2008 to May 2009, 26 stroke patients and 21 age-and gender-matched normal controls were recruited. All subjects were positioned on a scanner table and requested to perform the voluntary movement of ankle flexion-extension. The velocity encoded phase contrast magnetic resonance imaging (VE-PC MRI )provided the images of tibialis anterior muscle ( TA), medial head of gastrocnemius muscle (MG) and soleus muscle (SOL) during a movement cycle. By measuring the calf muscle contraction velocity, the balance function was assessed by Berg balance scale(BBS). The correlation between scores of BBS and the mean maximum velocity were compared and analyzed. Results The peak velocity of TA( 1-8 phase,8. 900-21. 120 mm/s vs 12.99-34.50 mm/s), MG(12-19phase,13.60-13. 28 mm/s vs 25.85-18.38 mm/s)and SOL(12-16 phase,18. 63-33. 62 mm/s vs 27.68-47.22 mm/s) was lower in the affected side than that in the controls during ankle extension(P <0. 05 ); During ankle dorsiflexion, the co-contraction index of SOL/TA(2-9 phase,0. 81-0. 82 vs 0. 27-0. 44)and the co-contraction index of GM/TA(2-9 phase,0. 73-0. 58 vs 0. 10-0. 11 ) was markedly higher in the affected side than the controls. The patient score of BBS was negatively correlated with the mean velocity of TA ( r = - 0. 69, P = 0. 001 ) and GM ( r = - 0. 47, P =0. 01 ) in the affected side. There was correlation between TA ( r = - 0. 60, P = 0. 001 ) and GM ( r =-0. 49 ,P =0. 01 )in the unaffected side. Conclusion During the movement of active ankle flexionextension, the velocities of TA, SOL and MG are lower in the affected side. The co-contraction index is markedly higher in the affected side during ankle dorsiflexion. This in turn leads to

  11. Biophysical mechanisms of phase contrast in gradient echo MRI

    OpenAIRE

    He, Xiang; Dmitriy A. Yablonskiy

    2009-01-01

    Recently reported contrast in phase images of human and animal brains obtained with gradient-recalled echo MRI holds great promise for the in vivo study of biological tissue structure with substantially improved resolution. Herein we investigate the origins of this contrast and demonstrate that it depends on the tissue “magnetic architecture” at the subcellular and cellular levels. This architecture is mostly determined by the structural arrangements of proteins, lipids, non-heme tissue iron,...

  12. Tumour visualisation in human soft tissue using grating-based X-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Herzen, Julia; Willner, Marian; Schleede, Simone; Bech, Martin; Tapfer, Arne; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz [Department of Physics (E17) and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany)

    2011-07-01

    The grating-based phase-contrast imaging provides enhanced image structure details, which are partly complementary or even not attainable with standard X-ray absorption imaging. Especially in the case of biological soft tissue when standard x-ray radiography is often limited due to the weak absorption contrast, this method represents a real alternative. Based on X-ray optical transmission gratings this modality has transferred the phase-contrast imaging from the highly brilliant synchrotron radiation sources to conventional laboratory-based broadband x-ray tubes. Here, we present a study on human soft tissue specimens containing tumours using the grating-based phase contrast imaging at both highly brilliant synchrotron (ESRF, Grenoble), and at conventional X-ray laboratory radiation sources. Our results demonstrate a superior contrast for different kinds of soft tissue in the phase contrast and verify this imaging modality to be a promising candidate to establish phase-contrast imaging in clinical radiology.

  13. The energy levels and radiative transition probabilities for electric quadrupole and magnetic dipole transitions among the levels of the ground configuration, [Kr]4d104f4, of W24+

    International Nuclear Information System (INIS)

    Large-scale multiconfiguration Hartree–Fock and Dirac–Fock calculations have been performed for the ground configuration, [Kr]4d104f4, energy levels of the W24+ ion. The relativistic corrections were taken into account in the quasirelativistic Breit–Pauli and fully relativistic Breit (taking into account QED effects) approximations. The role of correlation, relativistic, and QED corrections is discussed. Line strengths, oscillator strengths, and transition probabilities in the Coulomb and Babushkin gauges are presented for the electric quadrupole (E2) transitions among these levels. The magnetic dipole transitions are also investigated. Dependence of the E2 transition probabilities on the gauge condition of the electromagnetic field potential is studied as well.

  14. Optical Fourier techniques for medical image processing and phase contrast imaging.

    Science.gov (United States)

    Yelleswarapu, Chandra S; Kothapalli, Sri-Rajasekhar; Rao, D V G L N

    2008-04-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy.

  15. Results from the first preclinical CT scanner with grating based phase contrast and a rotating gantry

    Science.gov (United States)

    Bech, Martin; Tapfer, Arne; Velroyen, Astrid; Yaroshenko, Andre; Pauwels, Bart; Bruyndonckx, Peter; Liu, Xuan; Sasov, Alexander; Mohr, Jürgen; Walter, Marco; Pfeiffer, Franz

    2012-07-01

    After successful demonstrations of soft-tissue phase-contrast imaging with grating interferometers at synchrotron radiation sources and at laboratory based x-ray tubes, a first preclinical CT scanner with grating based phase contrast imaging modality has been constructed. The rotating gantry is equipped with a three-grating interferometer, a 50 watt tungsten anode source and a Hamamatsu flat panel detector. The total length of the interferometer is 45 cm, and the bed of the scanner is optimized for mice, with a scanning diameter of 35 mm. From one single scan both phase-contrast and standard attenuation based tomography can be attained, providing an overall gain in image contrast.

  16. In-line phase contrast for weakly absorbing materials with a microfocus x-ray source

    Institute of Scientific and Technical Information of China (English)

    Zhang Di; Li Zheng; Huang Zhi-Feng; Yu Ai-Min; Sha Wei

    2006-01-01

    For weakly absorbing materials, image contrast can be enhanced by phase contrast in formation. The effectiveness of the in-line phase contrast technique relies on its ability to record intensity data which contain information on the x-ray's phase shift. Four kinds of approaches to the relationship between intensity distribution and phase shift are reviewed and discussed. A micro-focal x-ray source with high geometrical magnification is used to acquire phase contrast images. A great improvement on image quality is shown and geometrical parameters are modified for comparison between different imaging positions.

  17. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    OpenAIRE

    Sheridan C. Mayo; Stevenson, Andrew W.; Stephen W. Wilkins

    2012-01-01

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image ...

  18. Near-field x-ray phase contrast imaging and phase retrieval algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhu Hua-Feng; Xie Hong-Lan; Gao Hong-Yi; Chen Jian-Wen; Li Ru-Xin; Xu Zhi-Zhan

    2005-01-01

    Theoretical analyses of x-ray diffraction phase contrast imaging and near field phase retrieval method are presented.A new variant of the near field intensity distribution is derived with the optimal phase imaging distance and spatial frequency of object taken into account. Numerical examples of phase retrieval using simulated data are also given. On the above basis, the influence of detecting distance and polychroism of radiation on the phase contrast image and the retrieved phase distribution are discussed. The present results should be useful in the practical application of in-line phase contrast imaging.

  19. Edge fluctuation measurements by phase contrast imaging on DIII-D

    International Nuclear Information System (INIS)

    A novel CO2 laser phase contrast imaging diagnostic has been developed for the DIII-D tokamak, where it is being employed to investigate density fluctuations at the outer edge of the plasma. This system generates 16-point, 1-D images of a 7.6 cm wide region in the radial direction, and is characterized by long wavelength (7.6 cm) and high frequency (100 MHz) capability, as well as excellent sensitivity (rvec n approx-gt 109 cm-3). The effects of vertical line integration have been studied in detail, both analytically and numerically with actual flux surface geometries generated by the EFITD magnetic equilibrium code. It is shown that in the present configuration the measurement is mostly sensitive to radial wave vectors. Experimental results on fluctuation suppression at the L- to H-mode transition and on the L-mode wave number spectrum are discussed briefly. Finally, future plans for extending the measurement to the core of the plasma and for investigating externally launched fast waves are presented

  20. A feasibility study for compressed sensing combined phase contrast MR angiography reconstruction

    Science.gov (United States)

    Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo; Han, Bong-Soo

    2012-02-01

    Phase contrast magnetic resonance angiography (PC MRA) is a technique for flow velocity measurement and vessels visualization, simultaneously. The PC MRA takes long scan time because each flow encoding gradients which are composed bipolar gradient type need to reconstruct the angiography image. Moreover, it takes more image acquisition time when we use the PC MRA at the low-tesla MRI system. In this study, we studied and evaluation of feasibility for CS MRI reconstruction combined PC MRA which data acquired by low-tesla MRI system. We used non-linear reconstruction algorithm which named Bregman iteration for CS image reconstruction and validate the usefulness of CS combined PC MRA reconstruction technique. The results of CS reconstructed PC MRA images provide similar level of image quality between fully sampled reconstruction data and sparse sampled reconstruction using CS technique. Although our results used half of sampling ratio and do not used specification hardware device or performance which are improving the temporal resolution of MR image acquisition such as parallel imaging reconstruction using phased array coil or non-cartesian trajectory, we think that CS combined PC MRA technique will be helpful to increase the temporal resolution and at low-tesla MRI system.

  1. CHY formulae in 4d

    CERN Document Server

    Zhang, Yong

    2016-01-01

    In this paper, we develop a rather general way to reduce integrands with polarisation involved in the Cachazo-He-Yuan formulae, such as the reduced Pfaffian and its compactification, as well as the new object for F3 amplitude. We prove that the reduced Pfaffian vanishes unless on a certain set of solutions. It leads us to build up the 4d CHY formulae using spinors, which strains off many useless solutions. The supersymmetrization is straightforward and may provide a hint to understanding ambitwistor string in 4d.

  2. Differential phase contrast with a segmented detector in a scanning X-ray microprobe

    OpenAIRE

    Hornberger, B.; de Jonge, M. D.; M. Feser; Holl, P.; Holzner, C.; Jacobsen, C.; Legnini, D.; Paterson, D; Rehak, P; Strüder, L.; Vogt, S

    2008-01-01

    A segmented transmission detector has been developed and installed at sector 2 instruments at the Advanced Photon Source for differential phase-contrast imaging in parallel with absorption and fluorescence measurements.

  3. Correcting Intensity Drift in X-ray Grating-based Phase Contrast Imaging

    International Nuclear Information System (INIS)

    X-ray phase-contrast imaging has become an attractive technique because it can deliver additional information on weakly absorbing materials. Grating-based phase contrast imaging with conventional x-ray source is a breakthrough in x-ray phase contrast imaging because it provides attenuation, refraction and scattering information simultaneously. Therefore, it has potential to be applied in medical and industrial applications. However, in actual experiments, we found that the photon intensity drift of the x-ray source would influence the final images, especially the refraction images. After analyzing the phase-stepping curve, we proposed a correction method to fix the problem due to the effect of intensity drift. The proposed correction method is successfully applied to grating-based phase-contrast imaging setup having un-stable x-ray source. The experimental results show that our method could solve this problem

  4. Phase-Contrast Imaging of Nanostructures with Incoherent Femtosecond Laser Driven Soft X-Ray Source

    International Nuclear Information System (INIS)

    Application of polychromatic (1.5-15 nm) soft X-ray emission of a spatially large (>0.1 mm) bright femtosecond laser driven plasma source for propagation based phase contrast imaging of nanometer thick foils and biological samples is considered. Diffraction and phase contrast effects increased quality and contrast of the experimental images, registered by LiF crystal X-ray detector with submicron resolution.

  5. Helical X-ray phase-contrast computed tomography without phase stepping

    OpenAIRE

    M. Marschner; Willner, M.; Potdevin, G.; A. Fehringer; Noël, P. B.; Pfeiffer, F.; Herzen, J.

    2016-01-01

    X-ray phase-contrast computed tomography (PCCT) using grating interferometry provides enhanced soft-tissue contrast. The possibility to use standard polychromatic laboratory sources enables an implementation into a clinical setting. Thus, PCCT has gained significant attention in recent years. However, phase-contrast CT scans still require significantly increased measurement times in comparison to conventional attenuation-based CT imaging. This is mainly due to a time-consuming stepping of a g...

  6. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples

    OpenAIRE

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Peter B Noël; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia

    2015-01-01

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of ...

  7. A Generalized Bidiagonal-Tikhonov Method Applied To Differential Phase Contrast Tomography

    OpenAIRE

    Schenkels, Nick; Sijbers, Jan; van Aarle, Wim; Vanroose, Wim

    2015-01-01

    Phase contrast tomography is an alternative to classic absorption contrast tomography that leads to higher contrast reconstructions in many applications. We review how phase contrast data can be acquired by using a combination of phase and absorption gratings. Using algebraic reconstruction techniques the object can be reconstructed from the measured data. In order to solve the resulting linear system we propose the Generalized Bidiagonal Tikhonov (GBiT) method, an adaptation of the generaliz...

  8. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography. (paper)

  9. Image fusion in x-ray differential phase-contrast imaging

    Science.gov (United States)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  10. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  11. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation.

    Science.gov (United States)

    Yin, Zhaozheng; Kanade, Takeo; Chen, Mei

    2012-07-01

    Phase contrast, a noninvasive microscopy imaging technique, is widely used to capture time-lapse images to monitor the behavior of transparent cells without staining or altering them. Due to the optical principle, phase contrast microscopy images contain artifacts such as the halo and shade-off that hinder image segmentation, a critical step in automated microscopy image analysis. Rather than treating phase contrast microscopy images as general natural images and applying generic image processing techniques on them, we propose to study the optical properties of the phase contrast microscope to model its image formation process. The phase contrast imaging system can be approximated by a linear imaging model. Based on this model and input image properties, we formulate a regularized quadratic cost function to restore artifact-free phase contrast images that directly correspond to the specimen's optical path length. With artifacts removed, high quality segmentation can be achieved by simply thresholding the restored images. The imaging model and restoration method are quantitatively evaluated on microscopy image sequences with thousands of cells captured over several days. We also demonstrate that accurate restoration lays the foundation for high performance in cell detection and tracking. PMID:22386070

  12. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    Directory of Open Access Journals (Sweden)

    Sheridan C. Mayo

    2012-05-01

    Full Text Available X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  13. Instant Cinema 4D starter

    CERN Document Server

    Kaminar, Aaron

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks.This book is written in a friendly, practical style with lots of screenshots and help that will ensure you grow in confidence chapter by chapter.This book is recommended for artists that have experience in other 3D software packages, and who want to learn Cinema 4D. That being said, dedicated readers without experience in other 3D software should not be discouraged from reading this book to learn the basics of Cinema 4D as their first 3D package.

  14. Noise properties of grating-based x-ray phase contrast computed tomography

    International Nuclear Information System (INIS)

    Purpose: To investigate the properties of tomographic grating-based phase contrast imaging with respect to its noise power spectrum and the energy dependence of the achievable contrast to noise ratio. Methods: Tomographic simulations of an object with 11 cm diameter constituted of materials of biological interest were conducted at different energies ranging from 25 to 85 keV by using a wave propagation approach. Using a Monte Carlo simulation of the x-ray attenuation within the object, it is verified that the simulated measurement deposits the same dose within the object at each energy. Results: The noise in reconstructed phase contrast computed tomography images shows a maximum at low spatial frequencies. The contrast to noise ratio reaches a maximum around 45 keV for the simulated object. The general dependence of the contrast to noise on the energy appears to be independent of the material. Compared with reconstructed absorption contrast images, the reconstructed phase contrast images show sometimes better, sometimes worse, and sometimes similar contrast to noise, depending on the material and the energy. Conclusions: Phase contrast images provide additional information to the conventional absorption contrast images and might thus be useful for medical applications. However, the observed noise power spectrum in reconstructed phase contrast images implies that the usual trade-off between noise and resolution is less efficient for phase contrast imaging compared with absorption contrast imaging. Therefore, high-resolution imaging is a strength of phase contrast imaging, but low-resolution imaging is not. This might hamper the clinical application of the method, in cases where a low spatial resolution is sufficient for diagnosis.

  15. Report of improved performance in Talbot–Lau phase-contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: thomas.weber@fau.de; Pelzer, Georg; Rieger, Jens; Ritter, André; Anton, Gisela [Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics (ECAP), Radiation and Detector Physics Group, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2015-06-15

    Purpose: Many expectations have been raised since the use of conventional x-ray tubes on grating-based x-ray phase-contrast imaging. Despite a reported increase in contrast-to-noise ratio (CNR) in many publications, there is doubt on whether phase-contrast computed tomography (CT) is advantageous in clinical CT scanners in vivo. The aim of this paper is to contribute to this discussion by analyzing the performance of a phase-contrast CT laboratory setup. Methods: A phase-contrast CT performance analysis was done. Projection images of a phantom were recorded, and image slices were reconstructed using standard filtered back projection methods. The resulting image slices were analyzed by determining the CNRs in the attenuation and phase image. These results were compared to analytically calculated expectations according to the already published phase-contrast CT performance analysis by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. There, a severe mistake was found leading to wrong predictions of the performance of phase-contrast CT. The error was corrected and with the new formulae, the experimentally obtained results matched the analytical calculations. Results: The squared ratios of the phase-contrast CNR and the attenuation CNR obtained in the authors’ experiment are five- to ten-fold higher than predicted by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. The effective lateral spatial coherence length deduced outnumbers the already optimistic assumption of Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)] by a factor of 3. Conclusions: The authors’ results indicate that the assumptions made in former performance analyses are pessimistic. The break-even point, when phase-contrast CT outperforms attenuation CT, is within reach even with realistic, nonperfect gratings. Further improvements to state-of-the-art clinical CT scanners, like increasing the spatial resolution, could change the balance in favor of phase-contrast computed tomography

  16. Non-invasive evaluation of energy loss in the pulmonary arteries using 4D phase contrast MR measurement: a proof of concept

    OpenAIRE

    Lee, Namheon; Taylor, Michael D.; Hor, Kan N; Banerjee, Rupak K.

    2013-01-01

    Background The repair surgery of congenital heart disease (CHD) associated with the right ventricular (RV)-pulmonary artery (PA) pathophysiology often left patients with critical post-operative lesions, leading to regurgitation and obstruction in the PAs. These lesions need longitudinal (with time) assessment for monitoring the RV function, in order for patients to have appropriate treatment before irreversible RV dysfunction occurs. In this research, we computed energy loss in the branch PAs...

  17. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Masato, E-mail: hoshino@spring8.or.jp; Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tsukube, Takuro [Japanese Red Cross Kobe Hospital, 1-3-1 Wakinohamakaigandori, Chuo-ku, Kobe, Hyogo 651-0073 (Japan); Yagi, Naoto [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-10-08

    Quantitative measurements of biological fresh samples based on three-dimensional densitometry using X-ray phase contrast tomography are presented. X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching.

  18. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography

    International Nuclear Information System (INIS)

    Quantitative measurements of biological fresh samples based on three-dimensional densitometry using X-ray phase contrast tomography are presented. X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching

  19. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  20. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  1. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    International Nuclear Information System (INIS)

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy

  2. Artifact characterization and reduction in scanning X-ray Zernike phase contrast microscopy.

    Science.gov (United States)

    Vartiainen, Ismo; Holzner, Christian; Mohacsi, Istvan; Karvinen, Petri; Diaz, Ana; Pigino, Gaia; David, Christian

    2015-05-18

    Zernike phase contrast microscopy is a well-established method for imaging specimens with low absorption contrast. It has been successfully implemented in full-field microscopy using visible light and X-rays. In microscopy Cowley's reciprocity principle connects scanning and full-field imaging. Even though the reciprocity in Zernike phase contrast has been discussed by several authors over the past thirty years, only recently it was experimentally verified using scanning X-ray microscopy. In this paper, we investigate the image and contrast formation in scanning Zernike phase contrast microscopy with a particular and detailed focus on the origin of imaging artifacts that are typically associated with Zernike phase contrast. We demonstrate experimentally with X-rays the effect of the phase mask design on the contrast and halo artifacts and present an optimized design of the phase mask with respect to photon efficiency and artifact reduction. Similarly, due to the principle of reciprocity the observations and conclusions of this work have direct applicability to Zernike phase contrast in full-field microscopy as well. PMID:26074579

  3. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    Science.gov (United States)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  4. Spherical-Wave Far-Field Interferometer for Hard X-Ray Phase Contrast Imaging

    CERN Document Server

    Miao, Houxun; Harmon, Katherine J; Bennett, Eric E; Chedid, Nicholas; Panna, Alireza; Bhandarkar, Priya; Wen, Han

    2014-01-01

    Low dose, high contrast x-ray imaging is of general interest in medical diagnostic applications. X-ray Mach-Zehnder interferometers using collimated synchrotron beams demonstrate the highest levels of phase contrast under a given exposure dose. However, common x-ray sources emit divergent cone beams. Here, we developed a spherical-wave inline Mach-Zehnder interferometer for phase contrast imaging over an extended area with a broadband and divergent source. The first tabletop system was tested in imaging experiments of a mammographic accreditation phantom and various biological specimens. The noise level of the phase contrast images at a clinical radiation dose corresponded to a 6 nano radian bending of the x-ray wavefront. Un-resolved structures with conventional radiography and near-field interferometer techniques became visible at a fraction of the radiation dose.

  5. Analysis of speckle patterns in phase-contrast images of lung tissue

    Science.gov (United States)

    Kitchen, M. J.; Paganin, D.; Lewis, R. A.; Yagi, N.; Uesugi, K.

    2005-08-01

    Propagation-based phase-contrast images of mice lungs have been obtained at the SPring-8 synchrotron research facility. Such images exhibit a speckled intensity pattern that bears a superficial resemblance to alveolar structures. This speckle results from focussing effects as projected air-filled alveoli form aberrated compound refractive lenses. An appropriate phase-retrieval algorithm has been utilized to reconstruct the approximate projected lung tissue thickness from single-phase-contrast mice chest radiographs. The results show projected density variations across the lung, highlighting regions of low density corresponding to air-filled regions. Potentially, this offers a better method than conventional radiography for detecting lung diseases such as fibrosis, emphysema and cancer, though this has yet to be demonstrated. As such, the approach can assist in continuing studies of lung function utilizing propagation-based phase-contrast imaging.

  6. Dynamic measures of regional lung air volume using phase contrast x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, M J; Lewis, R A; Morgan, M J; Siu, K K W; Habib, A [School of Physics, Monash University, Melbourne VIC 3800 (Australia); Wallace, M J; Siew, M L; Hooper, S B [Department of Physiology, Monash University, Melbourne VIC 3800 (Australia); Fouras, A [Division of Biological Engineering, Monash University, Melbourne VIC 3800 (Australia); Yagi, N; Uesugi, K [SPring-8/JASRI, Sayo, Hyogo 679-5198 (Japan)], E-mail: Marcus.Kitchen@sci.monash.edu.au

    2008-11-07

    Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 {mu}m) in near real time. Changes in lung air volume as small as 25 {mu}L were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.

  7. Thickness Measurements from Single X-ray Phase-contrast Speckle Projection

    CERN Document Server

    Xi, Yan; Ma, Jingchen; Zhao, Jun

    2015-01-01

    We propose a one-shot thickness measurement method for sponge-like structures using a propagation-based X-ray phase-contrast imaging (P-PCI) method. In P-PCI, the air-material interface refracts the incident X-ray. Refracted many times along their paths by such a structure, incident X-rays propagate randomly within a small divergent angle range, resulting in a speckle pattern in the captured image. We found structure thickness and contrast of a phase-contrast projection are directly related in images. This relationship can be described by a natural logarithm equation. Thus, from the one phase-contrast view, depth information can be retrieved from its contrast. Our preliminary biological experiments indicate promise in its application to measurements requiring in vivo and ongoing assessment of lung tumor progression.

  8. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented. (paper)

  9. Dynamic measures of regional lung air volume using phase contrast x-ray imaging

    Science.gov (United States)

    Kitchen, M. J.; Lewis, R. A.; Morgan, M. J.; Wallace, M. J.; Siew, M. L.; Siu, K. K. W.; Habib, A.; Fouras, A.; Yagi, N.; Uesugi, K.; Hooper, S. B.

    2008-11-01

    Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 µm) in near real time. Changes in lung air volume as small as 25 µL were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.

  10. Analysis of speckle patterns in phase-contrast images of lung tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, M.J. [School of Physics and Materials Engineering, Monash University, Victoria 3800 (Australia)]. E-mail: Marcus.Kitchen@spme.monash.edu.au; Paganin, D. [School of Physics and Materials Engineering, Monash University, Victoria 3800 (Australia); Lewis, R.A. [School of Physics and Materials Engineering, Monash University, Victoria 3800 (Australia); Yagi, N. [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo 679-5198 (Japan); Uesugi, K. [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo 679-5198 (Japan)

    2005-08-11

    Propagation-based phase-contrast images of mice lungs have been obtained at the SPring-8 synchrotron research facility. Such images exhibit a speckled intensity pattern that bears a superficial resemblance to alveolar structures. This speckle results from focussing effects as projected air-filled alveoli form aberrated compound refractive lenses. An appropriate phase-retrieval algorithm has been utilized to reconstruct the approximate projected lung tissue thickness from single-phase-contrast mice chest radiographs. The results show projected density variations across the lung, highlighting regions of low density corresponding to air-filled regions. Potentially, this offers a better method than conventional radiography for detecting lung diseases such as fibrosis, emphysema and cancer, though this has yet to be demonstrated. As such, the approach can assist in continuing studies of lung function utilizing propagation-based phase-contrast imaging.

  11. HII galaxies in 4D

    CERN Document Server

    Telles, Eduardo

    2014-01-01

    HII galaxies are clumpy and their gas kinematics can be mapped to show the global turbulent motions and the effect of massive star evolution. The distribution of their physical conditions is homogeneous and oxygen abundance is uniform. The presence of nebular HeII 4868 line seems to be higher in a low abundance galaxy, implying a harder ionization power probably due to stars in low metallicity. Innovative methods of data cube analysis, namely PCA tomography (nicknamed 4D), seem promising in revealing additional information not detected with the standard methods. I review some of our own recent work on the 3D spectroscopy of HII galaxies.

  12. Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

    International Nuclear Information System (INIS)

    Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devoted to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements

  13. Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

    Science.gov (United States)

    Golosio, Bruno; Delogu, Pasquale; Zanette, Irene; Carpinelli, Massimo; Masala, Giovanni Luca; Oliva, Piernicola; Stefanini, Arnaldo; Stumbo, Simone

    2008-11-01

    Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devoted to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements.

  14. X-ray Phase Contrast Tomography; Proof of principle for post-mortem imaging

    OpenAIRE

    Zamir, A; Arthurs, O.; Hagen, C. K.; Diemoz, P. C.; Brochard, T.; Bravin, A.; Sebire, N.; A. Olivo

    2015-01-01

    Objectives: To demonstrate the feasibility of using X-ray phase contrast tomography to assess internal organs in a post-mortem piglet model, as a possible non-invasive imaging autopsy technique. Methods: Tomographic images of a new-born piglet were obtained using a Free Space Propagation (FSP) X-ray phase contrast imaging setup at a synchrotron (European Synchrotron Radiation Facility, Grenoble, France). A monochromatic X-ray beam (52 keV) was used in combination with a detector pixel size of...

  15. Soft-tissue phase-contrast tomography with an x-ray tube source

    International Nuclear Information System (INIS)

    We report the first experimental soft-tissue phase-contrast tomography results using a conventional x-ray tube source, with a millimeter-sized focal spot. The setup is based on a Talbot-Lau grating interferometer operated at a mean energy of 28 keV. We present three-dimensional ex vivo images of a chicken heart sample, fixated in formalin. The results clearly demonstrate the advantageous contrast attainable through phase-contrast imaging over conventional attenuation-based approaches.

  16. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  17. Array illumination with minimal non-uniformity based on generalized phase contrast

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2009-01-01

    The generalized phase contrast method (GPC) has been previously shown to be an efficient technique for generating array illumination and is thus highly suitable for such applications as dynamic multiple beam trapping and optical micromanipulation. However, projected arrays usually exhibit intensity...... output spots to improve uniformity. This is combined with matching corrections to the phase shift introduced by the phase contrast filter. Results from numerical experiments show that the array illumination uniformity error improves from over 40% to less than 1% while maintaining the efficiency prior...

  18. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin;

    2011-01-01

    We report the first experimental demonstration of Gaussian beam-shaping based on the Generalized Phase Contrast (GPC) approach. We show that, when using a dynamic spatial light modulator (SLM), this approach can rapidly generate arbitrarily shaped beams. Moreover, we demonstrate that low-cost bin......We report the first experimental demonstration of Gaussian beam-shaping based on the Generalized Phase Contrast (GPC) approach. We show that, when using a dynamic spatial light modulator (SLM), this approach can rapidly generate arbitrarily shaped beams. Moreover, we demonstrate that low...

  19. Differential phase contrast in scanning x-ray microscopy with half-wavelength phase shifter

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio, E-mail: yoshio@spring8.or.jp; Takeuchi, Akihisa [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    A method for differential-phase-contrast imaging in scanning x-ray microscopy is proposed. The microfocus beam is produced with an x-ray focusing optics, and a half of the optical aperture is masked with a λ/2 phase shifter. This generates a pair of focused beam at the focal plane, with π phase difference. Combining with a diaphragm in front of the transmission beam detector, differential phase contrast (contrast proportional to the phase-difference between two foci) can be obtained. Preliminary results with a Fresnel zone plate focusing optics at 12.4 keV x-ray energy are shown.

  20. Differential phase contrast in scanning x-ray microscopy with half-wavelength phase shifter

    International Nuclear Information System (INIS)

    A method for differential-phase-contrast imaging in scanning x-ray microscopy is proposed. The microfocus beam is produced with an x-ray focusing optics, and a half of the optical aperture is masked with a λ/2 phase shifter. This generates a pair of focused beam at the focal plane, with π phase difference. Combining with a diaphragm in front of the transmission beam detector, differential phase contrast (contrast proportional to the phase-difference between two foci) can be obtained. Preliminary results with a Fresnel zone plate focusing optics at 12.4 keV x-ray energy are shown

  1. Combining generalized phase contrast with matched filtering into a versatile beam shaping system

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2009-01-01

    We adapt concepts from matched filtering to propose a method for generating reconfigurable multiple beams. Combined with the Generalized Phase Contrast (GPC) technique, the proposed method coined mGPC can yield dynamically reconfigurable optical beam arrays with high light efficiency for optical ...... manipulation, high-speed sorting and other parallel spatial light applications.......We adapt concepts from matched filtering to propose a method for generating reconfigurable multiple beams. Combined with the Generalized Phase Contrast (GPC) technique, the proposed method coined mGPC can yield dynamically reconfigurable optical beam arrays with high light efficiency for optical...

  2. Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    2010-01-01

    We adapt concepts from matched filtering to propose a method for generating reconfigurable multiple beams. Combined with the Generalized Phase Contrast (GPC) technique, the proposed method coined mGPC can yield dynamically reconfigurable optical beam arrays with high light efficiency for optical ...... manipulation, high-speed sorting and other parallel spatial light applications [1].......We adapt concepts from matched filtering to propose a method for generating reconfigurable multiple beams. Combined with the Generalized Phase Contrast (GPC) technique, the proposed method coined mGPC can yield dynamically reconfigurable optical beam arrays with high light efficiency for optical...

  3. Heralded phase-contrast imaging using an orbital angular momentum phase-filter

    Science.gov (United States)

    Aspden, Reuben S.; Morris, Peter A.; He, Ruiqing; Chen, Qian; Padgett, Miles J.

    2016-05-01

    We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the images exhibit isotropic edge-enhancement. This imaging technique is the first demonstration of a full-field, phase-contrast imaging system with non-local edge enhancement, and enables imaging of phase objects using significantly fewer photons than standard phase-contrast imaging techniques.

  4. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography

    DEFF Research Database (Denmark)

    Jensen, Torben Haugaard; Bech, Martin; Binderup, Tina;

    2013-01-01

    whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years) diagnosed with invasive ductal carcinomas were analyzed by X-ray phase...... was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations...

  5. On the relationship between intensity diffraction tomography and phase-contrast tomography

    Science.gov (United States)

    Anastasio, Mark A.; Shi, Daxin

    2004-10-01

    Diffraction tomography (DT) is a well-known method for reconstructing the complex-valued refractive index distribution of weakly scattering objects. A reconstruction theory of intensity DT (I-DT) has been proposed [Gbur and Wolf, JOSA A, 2002] that can accomplish such a reconstruction from knowledge of only the wavefield intensities on two different transverse planes at each tomographic view angle. In this work, we elucidate the relationship between I-DT and phase-contrast tomography and demonstrate that I-DT reconstruction theory contains some of the existing reconstruction algorithms for phase-contrast tomography as special cases.

  6. Simulation study of phase retrieval for hard X-ray in-line phase contrast imaging

    Institute of Scientific and Technical Information of China (English)

    YU; Bin; PENG; Xiang; TIAN; Jindong; NIU; Hanben; DIAO; Luh

    2005-01-01

    Two algorithms for the phase retrieval of hard X-ray in-line phase contrast imaging are presented. One is referred to as Iterative Angular Spectrum Algorithm (IASA) and the other is a hybrid algorithm that combines IASA with TIE (transport of intensity equation). The calculations of the algorithms are based on free space propagation of the angular spectrum. The new approaches are demonstrated with numerical simulations. Comparisons with other phase retrieval algorithms are also performed. It is shown that the phase retrieval method combining the IASA and TIE is a promising technique for the application of hard X-ray phase contrast imaging.

  7. Thickness Measurements from Single X-ray Phase-contrast Speckle Projection

    OpenAIRE

    Xi, Yan; Tang, Rongbiao; Ma, Jingchen; Zhao, Jun

    2015-01-01

    We propose a one-shot thickness measurement method for sponge-like structures using a propagation-based X-ray phase-contrast imaging (P-PCI) method. In P-PCI, the air-material interface refracts the incident X-ray. Refracted many times along their paths by such a structure, incident X-rays propagate randomly within a small divergent angle range, resulting in a speckle pattern in the captured image. We found structure thickness and contrast of a phase-contrast projection are directly related i...

  8. Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Rigsby, Cynthia K.; Hilpipre, Nicholas; Boylan, Emma E.; Popescu, Andrada R.; Deng, Jie [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); McNeal, Gary R. [Siemens Medical Solutions USA Inc., Customer Solutions Group, Cardiovascular MR R and D, Chicago, IL (United States); Zhang, Gang [Ann and Robert H. Lurie Children' s Hospital of Chicago Research Center, Biostatistics Research Core, Chicago, IL (United States); Choi, Grace [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany)

    2014-03-15

    Phase contrast magnetic resonance imaging (MRI) is a powerful tool for evaluating vessel blood flow. Inherent errors in acquisition, such as phase offset, eddy currents and gradient field effects, can cause significant inaccuracies in flow parameters. These errors can be rectified with the use of background correction software. To evaluate the performance of an automated phase contrast MRI background phase correction method in children and young adults undergoing cardiac MR imaging. We conducted a retrospective review of patients undergoing routine clinical cardiac MRI including phase contrast MRI for flow quantification in the aorta (Ao) and main pulmonary artery (MPA). When phase contrast MRI of the right and left pulmonary arteries was also performed, these data were included. We excluded patients with known shunts and metallic implants causing visible MRI artifact and those with more than mild to moderate aortic or pulmonary stenosis. Phase contrast MRI of the Ao, mid MPA, proximal right pulmonary artery (RPA) and left pulmonary artery (LPA) using 2-D gradient echo Fast Low Angle SHot (FLASH) imaging was acquired during normal respiration with retrospective cardiac gating. Standard phase image reconstruction and the automatic spatially dependent background-phase-corrected reconstruction were performed on each phase contrast MRI dataset. Non-background-corrected and background-phase-corrected net flow, forward flow, regurgitant volume, regurgitant fraction, and vessel cardiac output were recorded for each vessel. We compared standard non-background-corrected and background-phase-corrected mean flow values for the Ao and MPA. The ratio of pulmonary to systemic blood flow (Qp:Qs) was calculated for the standard non-background and background-phase-corrected data and these values were compared to each other and for proximity to 1. In a subset of patients who also underwent phase contrast MRI of the MPA, RPA, and LPA a comparison was made between standard non

  9. Substitutional 4d and 5d impurities in graphene.

    Science.gov (United States)

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities. PMID:27439363

  10. Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation.

    Science.gov (United States)

    Chouhan, Manil D; Mookerjee, Rajeshwar P; Bainbridge, Alan; Walker-Samuel, Simon; Davies, Nathan; Halligan, Steve; Lythgoe, Mark F; Taylor, Stuart A

    2016-09-01

    Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging-derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, -3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, -1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically

  11. E4D_RT

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-22

    Time-lapse ERT imaging for monitoring both natural and engineered subsurface processes has advanced rapidly over the past 15-20 years. However, imaging results generally required a significant amount of manual and computational effort, and therefore were not available while the process was occurring. Although the value of real-time imaging was recognized, several obstacles prevented it's implementation. E4D_RT addresses these obstacles by 1) providing specialized algorithms that negate the need for user intervention, thereby automating the time-lapse data processing steps, 2) linking field data collection systems with parallel supercomputing systems via wireless data transfer link, and 3) addressing the computational burdens by utilizing distributed memory supercomputing resources, thereby enabling rapid data processing and imaging results.

  12. Contrast-to-noise in X-ray differential phase contrast imaging

    NARCIS (Netherlands)

    Engel, K.J.; Geller, D.; Koehler, T.; Martens, G.; Schusser, S.; Vogtmeier, G.; Roessl, E.

    2011-01-01

    A quantitative theory for the contrast-to-noise ratio (CNR) in differential phase contrast imaging (DPCI) is proposed and compared to that of images derived from classical absorption contrast imaging (ACI). Most prominently, the CNR for DPCI contains the reciprocal of thespatial wavelength to be ima

  13. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    International Nuclear Information System (INIS)

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases

  14. In-line phase-contrast imaging for strong absorbing objects

    Energy Technology Data Exchange (ETDEWEB)

    De Caro, Liberato; Giannini, Cinzia [Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), via Amendola 122/O, I-70125 Bari (Italy); Cedola, Alessia; Bukreeva, Inna; Lagomarsino, Stefano [Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), via Cinto Romano 42, I-00156 Roma (Italy)

    2008-11-21

    Phase-contrast imaging is one of the most important emerging x-ray imaging techniques. In this work we analyse, from a theoretical point of view, the in-line phase-contrast image formation under general assumptions. The approach is based on wave-optical theory (Fresnel/Kirchoff diffraction integrals) and on the formalism of the mutual coherence function for the evolution of the coherence wavefield properties. Our theoretical model can be applied to phase-contrast imaging realized both by using highly coherent synchrotron radiation and micro-focus x-ray laboratory sources. Thus, the model is suitable for widespread applications, ranging from material science to medical imaging of human body parts. However, it cannot be applied to polychromatic sources, although the validity of the model does not require particularly demanding characteristics of monochromaticity. In addition, for moderate phase gradients, a useful analytical formula of the phase-contrast visibility is derived, based on the a priori knowledge of source size and distance, pixel detector size, defocus distance, material/tissue dielectric susceptibility and characteristic scales of transversal and longitudinal non-uniformities of the material/tissue dielectric susceptibility. Comparisons both with experimental results published by other authors and with simulations based on a Fourier optics approach have been reported, to confirm the validity of the proposed analytical formula.

  15. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples.

    Directory of Open Access Journals (Sweden)

    Marian Willner

    Full Text Available X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.

  16. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    International Nuclear Information System (INIS)

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results

  17. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao, E-mail: hao.yang@materials.ox.ac.uk [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); Pennycook, Timothy J.; Nellist, Peter D. [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); EPSRC SuperSTEM Facility, Daresbury Laboratory, WA4 4AD (United Kingdom)

    2015-04-15

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases.

  18. Complete staining of human spermatozoa and immature germ cells combined with phase contrast microscopy

    DEFF Research Database (Denmark)

    Michael, A Y; Drejer, J O; Bagger, P V;

    1987-01-01

    A method combining Janus green B and Thymol blue stains the anterior part of the head, the nuclear membrane, middle piece, and tail of spermatozoa light green and the nucleus deep purple. The method provides excellent stained preparations for the evaluation of sperm morphology by phase contrast...... microscopy. It produces significantly less abnormal spermatozoa compared with the Papanicolaou stain....

  19. Noise robustness of a combined phase retrieval and reconstruction method for phase-contrast tomography

    DEFF Research Database (Denmark)

    Kongskov, Rasmus Dalgas; Jørgensen, Jakob Sauer; Poulsen, Henning Friis;

    2016-01-01

    Classical reconstruction methods for phase-contrast tomography consist of two stages: phase retrieval and tomographic reconstruction. A novel algebraic method combining the two was suggested by Kostenko et al. [Opt. Express 21, 12185 (2013) [CrossRef], and preliminary results demonstrated improve...

  20. Modelling of a novel x-ray phase contrast imaging technique based on coded apertures

    Science.gov (United States)

    Olivo, A.; Speller, R.

    2007-11-01

    X-ray phase contrast imaging is probably the most relevant among emerging x-ray imaging techniques, and it has the proven potential of revolutionizing the field of diagnostic radiology. Impressive images of a wide range of samples have been obtained, mostly at synchrotron radiation facilities. The necessity of relying on synchrotron radiation has prevented to a large extent a widespread diffusion of phase contrast imaging, thus precluding its transfer to clinical practice. A new technique, based on the use of coded apertures, was recently developed at UCL. This technique was demonstrated to provide intense phase contrast signals with conventional x-ray sources and detectors. Unlike other attempts at making phase contrast imaging feasible with conventional sources, the coded-aperture approach does not impose substantial limitations and/or filtering of the radiation beam, and it therefore allows, for the first time, exposures compatible with clinical practice. The technique has been thoroughly modelled, and this paper describes the technique in detail by going through the different steps of the modelling. All the main factors influencing image quality are discussed, alongside the viability of realizing a prototype suitable for clinical use. The model has been experimentally validated and a section of the paper shows the comparison between simulated and experimental results.

  1. Differential diagnosis of arachnoid cyst from subarachnoid space enlargement by phase-contrast cine MRI

    Institute of Scientific and Technical Information of China (English)

    于群; 孔祥泉; 刘定西

    2003-01-01

    Objectives To reveal the relationship of brain motion and cerebrospinal fluid (CSF) flow by phase-contrast cine MRI, and to evaluate this technique in differentiating between arachnoid cysts and subarachnoid space enlargement. Methods Using a phase-contrast cine MRI pulse sequence, we measured brain motion and CSF flow during the cardiac cycle in 10 healthy volunteers and 10 patients with MRI-suspected arachnoid cyst or subarachnoid space enlargement. CSF stroke volume curve was illustrated according to flow quantification, and time-signal intensity curve was traced. The two curves were compared. Results This study showed that brain motion was due to the volume difference between arterial and venous blood flow during a cardiac cycle, and thus drives CSF pulsation. Arachnoid cysts and subarachnoid space enlargement carried different curve patterns, demonstrating that phase-contrast MRI and flow quantification can be a useful and reliable technique for non-invasive evaluation of brain motion and CSF flow. Conclusion Arachnoid cysts can be successfully differentiated using phase-contrast cine MRI from subarachnoid space enlargement.

  2. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E; Kozioziemski, B; Moody, J; Koch, J; Mapoles, E; Montesanti, R; Youngblood, K; Letts, S; Nikroo, A; Sater, J; Atherton, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.

  3. Generalized Phase contrast and matched filtering for speckle‐free patterned illumination

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Villangca, Mark Jayson;

    2013-01-01

    Generalized Phase Contrast (GPC) and matched‐filtering GPC use tandem diffractive phase elements on Fourier‐conjugate planes of a 4f optical processor to efficiently reshape incident light into a pattern that resembles the input phase modulation pattern. The synthesized patterns are inherently sp...

  4. Evaluation of a new reconstruction algorithm for x-ray phase-contrast imaging

    Science.gov (United States)

    Seifert, Maria; Hauke, Christian; Horn, Florian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-04-01

    X-ray grating-based phase-contrast imaging might open up entirely new opportunities in medical imaging. However, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, vibrations or distortions of the system lead to inaccuracies within the phase-stepping procedure. Given insufficient stability of the phase-step positions, up to now, artifacts in phase-contrast images occur, which lower the image quality. This is a problem with regard to the intended use of phase-contrast imaging in clinical routine as for example tiny structures of the human anatomy cannot be observed. In this contribution we evaluate an algorithm proposed by Vargas et.al.1 and applied to X-ray imaging by Pelzer et.al. that enables us to reconstruct a differential phase-contrast image without the knowledge of the specific phase-step positions. This method was tested in comparison to the standard reconstruction by Fourier analysis. The quality of phase-contrast images remains stable, even if the phase-step positions are completely unknown and not uniformly distributed. To also achieve attenuation and dark-field images the proposed algorithm has been combined with a further algorithm of Vargas et al.3 Using this algorithm, the phase-step positions can be reconstructed. With the help of the proper phase-step positions it is possible to get information about the phase, the amplitude and the offset of the measured data. We evaluated this algorithm concerning the measurement of thick objects which show a high absorbency.

  5. CO2-based in-line phase contrast imaging of small intestine in mice

    Science.gov (United States)

    Tang, Rongbiao; Li, Wei-Xia; Huang, Wei; Yan, Fuhua; Chai, Wei-Min; Yang, Guo-Yuan; Chen, Ke-Min

    2013-07-01

    The objective of this study was to explore the potential of CO2 single contrast in-line phase contrast imaging (PCI) for pre-clinical small intestine investigation. The absorption and phase contrast images of CO2 gas production were attained and compared. A further increase in image contrast was observed in PCI. Compared with CO2-based absorption contrast imaging (ACI), CO2-based PCI significantly enhanced the detection of mucosal microstructures, such as pits and folds. The CO2-based PCI could provide sufficient image contrast for clearly showing the intestinal mucosa in living mice without using barium. We concluded that CO2-based PCI might be a novel and promising imaging method for future studies of gastrointestinal disorders.

  6. Design of a novel phase contrast X-ray imaging system for mammography

    International Nuclear Information System (INIS)

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an X-ray source of high coherence. The radiation physics group at UCL is currently developing an X-ray phase contrast imaging technique which works with laboratory X-ray sources. The design of this system requires rigorous simulation of the imaging system and the interaction of X-rays with healthy and unhealthy breast tissue. We present in this paper the results of such simulations showing the expected gain in contrast arising from the proposed system and the system's initial design.

  7. A uniqueness result for propagation-based phase contrast imaging from a single measurement

    CERN Document Server

    Maretzke, Simon

    2014-01-01

    Phase contrast imaging seeks to reconstruct the complex refractive index of an unknown sample from scattering intensities, measured for example under illumination with coherent X-rays. By incorporating refraction, this method yields improved contrast compared to purely absorption-based radiography but involves a phase retrieval problem which, in general, allows for ambiguous reconstructions. In this paper, we show uniqueness of propagation-based phase contrast imaging for compactly supported objects in the near field regime, based on a description by the projection- and paraxial approximations. In this setting, propagation is governed by the Fresnel propagator and the unscattered part of the illumination function provides a known reference wave at the detector which facilitates phase reconstruction. The uniqueness theorem is derived using the theory of entire functions. Unlike previous results based on exact solution formulae, it is valid for arbitrary complex objects and requires intensity measurements only ...

  8. X-ray phase-contrast imaging of dynamics of complex fluids

    International Nuclear Information System (INIS)

    Complex fluids often exhibit unusual and/or unexpected behaviours in response to external stresses because of their complicated structures and compositions. It is not easy to understand dynamic behaviours of complex fluids based on using conventional imaging methods such as optical or electron microscopy. Recently, x-ray phase-contrast imaging, as one of the most powerful methods, has been introduced for elucidating the dynamic nature of complex fluids, enabling directly looking into the insides of complex fluids thanks to the strong penetration capability and small refractivity of hard x-rays. In this paper, we review representative x-ray imaging studies on dynamics of various complex fluid systems from droplets, bubbles, granular materials and foams to colloids. It is demonstrated that x-ray phase-contrast imaging would help us better identify and utilize the properties of complex fluids. (paper)

  9. Development of microperiodic mirrors for hard x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Differential phase-contrast imaging with hard x rays can have important applications in medicine, material sciences, and energy research. Phase-contrast methods based on microperiodic optics, such as shearing interferometry, are particularly attractive because they allow the use of conventional x-ray tubes. To enable shearing interferometry with x rays up to 100 keV, we propose using grazing-incidence microperiodic mirrors. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors, based on the difference in grazing-incidence reflectivity between a low-Z substrate and a high-Z film. Using this method, we produced prototype mirrors with 5-100 μm periods and 90 mm active length. Experimental tests with x rays up to 60 keV indicate good microperiodic mirror reflectivity and high-contrast fringe patterns, encouraging further development of the proposed imaging concept.

  10. Generation of a Desired Wavefront with a Plurality of Phase Contrast Filters

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to a method and a system for synthesizing an intensity pattern based on generalized phase contrast imaging. The phase filter contains a plurality of phase shifting regions that is matched to the layout of a light source array, each of the regions being positioned at...... the zero-order diffraction region of a respective element of the array. Further, the shape of each phase shifting region may match the shape of the zero-order diffraction region of the respective element. Thus, the energy of the electromagnetic fields of the system may be distributed over a large area...... compared to the area of a zero-order diffraction region of a single plane electromagnetic field of a known phase contrast imaging system....

  11. A multi-stage random forest classifier for phase contrast cell segmentation.

    Science.gov (United States)

    Essa, Ehab; Xie, Xianghua; Errington, Rachel J; White, Nick

    2015-01-01

    We present a machine learning based approach to automatically detect and segment cells in phase contrast images. The proposed method consists of a multi-stage classification scheme based on random forest (RF) classifier. Both low level and mid level image features are used to determine meaningful cell regions. Pixel-wise RF classification is first carried out to categorize pixels into 4 classes (dark cell, bright cell, halo artifact, and background) and generate a probability map for cell regions. K-means clustering is then applied on the probability map to group similar pixels into candidate cell regions. Finally, cell validation is performed by another RF to verify the candidate cell regions. The proposed method has been tested on U2-OS human osteosarcoma phase contrast images. The experimental results show better performance of the proposed method with precision 92.96% and recall 96.63% compared to a state-of-the-art segmentation technique. PMID:26737137

  12. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    Science.gov (United States)

    Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2016-03-01

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  13. On the origin of speckle in x-ray phase contrast images of lung tissue

    International Nuclear Information System (INIS)

    Phase contrast x-ray imaging of small animal lungs reveals a speckled intensity pattern not seen in other tissues, making the lungs highly visible in comparison to other organs. Although bearing a superficial resemblance to alveoli, the cause of this speckle has not been established. With a view to determining the mechanism for the formation of speckle, this paper details the results of propagation-based phase contrast experiments performed on mice lungs, together with packed glass microspheres used to emulate lung tissue. These experimental studies are compared to numerical simulations, based on wave propagation techniques. We find that speckle arises from focusing effects, with multiple alveoli acting as aberrated compound refractive lenses. Both experiments and modelling suggest that this speckle-formation phenomenon may lead to better screening methods for human lungs than conventional radiography

  14. On the origin of speckle in x-ray phase contrast images of lung tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, M J [Centre for X-ray Physics and Imaging, School of Physics and Materials Engineering, Monash University, VIC 3800 (Australia); Paganin, D [Centre for X-ray Physics and Imaging, School of Physics and Materials Engineering, Monash University, VIC 3800 (Australia); Lewis, R A [Centre for X-ray Physics and Imaging, School of Physics and Materials Engineering, Monash University, VIC 3800 (Australia); Yagi, N [SPring-8/JASRI, Mikazuki, Hyogo 679-5198 (Japan); Uesugi, K [SPring-8/JASRI, Mikazuki, Hyogo 679-5198 (Japan); Mudie, S T [Centre for X-ray Physics and Imaging, School of Physics and Materials Engineering, Monash University, VIC 3800 (Australia)

    2004-09-21

    Phase contrast x-ray imaging of small animal lungs reveals a speckled intensity pattern not seen in other tissues, making the lungs highly visible in comparison to other organs. Although bearing a superficial resemblance to alveoli, the cause of this speckle has not been established. With a view to determining the mechanism for the formation of speckle, this paper details the results of propagation-based phase contrast experiments performed on mice lungs, together with packed glass microspheres used to emulate lung tissue. These experimental studies are compared to numerical simulations, based on wave propagation techniques. We find that speckle arises from focusing effects, with multiple alveoli acting as aberrated compound refractive lenses. Both experiments and modelling suggest that this speckle-formation phenomenon may lead to better screening methods for human lungs than conventional radiography.

  15. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    Directory of Open Access Journals (Sweden)

    Martin Krenkel

    2016-03-01

    Full Text Available We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  16. Visibility in differential phase-contrast imaging with partial coherence source

    Institute of Scientific and Technical Information of China (English)

    Liu Xin; Guo Jin-Chuan; Peng Xiang; Niu Han-Ben

    2007-01-01

    This paper gives theoretical analysis of visibility of fringes, which is influenced by distances, temporal and spatial coherence of source, in hard x-ray differential phase-contrast imaging with microfocus x-ray source. According to the character of longitudinal periodicity of the interferogram, the setup is insensitive to mechanical drift and vibrations. The effect of temporal coherence of x-ray source is investigated and its related bandwidth is derived. Based on the theory of partially coherent light, it shows that the requirement for the spatial coherence of x-ray source is not strict and can be met by the general microfocus x-ray tube for x-ray differential phase-contrast imaging.

  17. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    Directory of Open Access Journals (Sweden)

    Raj K Panta

    2012-01-01

    Conclusions: An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research.

  18. Laser light-field fusion for wide-field lensfree on-chip phase contrast nanoscopy

    OpenAIRE

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-01-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast nanoscopy, where interferometric laser light-field encodings acquired using an on-chip setup with laser pulsations at different wav...

  19. Theoretical analysis of x-ray CT phase-contrast imaging

    Science.gov (United States)

    Feng, Sheng; Liu, Song; Zhang, Xuelong

    2008-12-01

    Recently phase contrast imaging has attracted much attention. An obvious advantage of using X-rays for imaging the internal structure of relatively thick samples lies in its high degree of penetration of solid objects. However, often leads to poor image contrast for soft tissue. Phase contrast imaging can be very useful in such situation, as the phase of the transmitted beam may often be more sensitive indicator of density of sample than convention contrast. On the other hand, Computed Tomography is the best technology in the aspect of X-rays detection. Using the technology, the detected object can be imaged to three-dimensional image, so as to observe the inner structure of object, and be convenient to the disease examination. If the phase contrast imaging can be used to the technology of Computed Tomography, the high resolution image can be gained. The technology will become the development orientation of medical image. The aim of this article was to apply the theory of X-rays phase contrast imaging to the traditional X-CT technique. For this purpose, the formula deduced from the imaging theory with parallel monochromatic X-rays illuminating the object based on the Fresnel-Kircohhof theory had been completed and a formula similar to that of the traditional X-CT reconstruction had been gained, which was Radon transform formula. At last, X-rays reconstruction simulation had been carried out according to the formula, and proved that the method could be used in clinical medical imaging. The method discussed in this paper had a very bright prospect for application.

  20. X-ray phase contrast tomography by tracking near field speckle

    OpenAIRE

    Hongchang Wang; Sebastien Berujon; Julia Herzen; Robert Atwood; David Laundy; Alexander Hipp; Kawal Sawhney

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric informa...

  1. High-sensitivity phase-contrast tomography of rat brain in phosphate buffered saline

    OpenAIRE

    Pfeiffer, F.; David, C.; Bunk, O.; Poitry-Yamate, C.; Grütter, R; B. Müller; Weitkamp, T.

    2009-01-01

    We report advances and complementary results concerning a recently developed method for high-sensitivity grating-based x-ray phase-contrast tomography. In particular we demonstrate how the soft tissue sensitivity of the technique can be used to obtain in-vitro tomographic images of rat brain specimens. Contrary to our previous experiments with fixated specimen (chemically modified or formalin fixed), the present results on the rat's brain are closer to the in-vivo situation. The findings are ...

  2. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research

    OpenAIRE

    Yan Xi; Xiaojie Lin; Falei Yuan; Guo-Yuan Yang; Jun Zhao

    2015-01-01

    Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displa...

  3. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    OpenAIRE

    William Vågberg; Daniel H. Larsson; Mei Li; Anders Arner; Hertz, Hans M.

    2015-01-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-bas...

  4. Experimental results from a preclinical X-ray phase-contrast CT scanner

    OpenAIRE

    Tapfer, Arne; Bech, Martin; Velroyen, Astrid; Meiser, Jan; Mohr, Jürgen; Walter, Marco; Schulz, Joachim; Pauwels, Bart; Bruyndonckx, Peter; Liu, Xuan; Sasov, Alexander; Pfeiffer, Franz

    2012-01-01

    To explore the future clinical potential of improved soft-tissue visibility with grating-based X-ray phase contrast (PC), we have developed a first preclinical computed tomography (CT) scanner featuring a rotating gantry. The main challenge in the transition from previous bench-top systems to a preclinical scanner are phase artifacts that are caused by minimal changes in the grating alignment during gantry rotation. In this paper, we present the first experimental results from the system toge...

  5. Synchrotron radiation phase-contrast X-ray CT imaging of acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongming; Yan, Xiaohui; Zhang, Xinyi [Fudan University, Synchrotron Radiation Research Center, State Key Laboratory of Surface Physics and Department of Physics, Shanghai (China); Liu, Chenglin [Physics Department of Yancheng Teachers' College, Yancheng (China); Dang, Ruishan [The Second Military Medical University, Shanghai (China); Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Shanghai (China); Zhu, Peiping [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China)

    2011-08-15

    Three-dimensional (3D) topographic structures of acupuncture points were investigated by using synchrotron radiation in-line X-ray phase contrast computerized tomography. Two acupuncture points, named Zhongji (RN3) and Zusanli (ST36), were studied. We found an accumulation of microvessels at each acupuncture point region. Images of the tissues surrounding the acupuncture points do not show such kinds of structure. This is the first time that 3D images have revealed the specific structures of acupuncture points. (orig.)

  6. Noise and Analyzer-Crystal Angular Position Analysis for Analyzer-Based Phase-Contrast Imaging

    OpenAIRE

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-01-01

    The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the...

  7. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper

    OpenAIRE

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    We report the first experimental demonstration of Gaussian beam-shaping based on the Generalized Phase Contrast (GPC) approach. We show that, when using a dynamic spatial light modulator (SLM), this approach can rapidly generate arbitrarily shaped beams. Moreover, we demonstrate that low-cost binary-phase optics fabricated using photolithography and chemical etching techniques can replace the SLM in static and high power beam shaping applications. The design parameters for the binary-phase el...

  8. Diffractive generalized phase contrast for adaptive phase imaging and optical security

    OpenAIRE

    Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We analyze the properties of Generalized Phase Contrast (GPC) when the input phase modulation is implemented using diffractive gratings. In GPC applications for patterned illumination, the use of a dynamic diffractive optical element for encoding the GPC input phase allows for onthe- fly optimization of the input aperture parameters according to desired output characteristics. For wavefront sensing, the achieved aperture control opens a new degree of freedom for improving the accuracy of quan...

  9. Generalized Phase contrast and matched filtering for speckle‐free patterned illumination

    OpenAIRE

    Palima, Darwin; Bañas, Andrew Rafael; Villangca, Mark Jayson; Aabo, Thomas; Glückstad, Jesper

    2013-01-01

    Generalized Phase Contrast (GPC) and matched‐filtering GPC use tandem diffractive phase elements on Fourier‐conjugate planes of a 4f optical processor to efficiently reshape incident light into a pattern that resembles the input phase modulation pattern. The synthesized patterns are inherently speckle‐free and the use of phase modulating elements minimizes absorption losses to maximize light efficiency as light is simply redistributed from the dark regions to the intense regions of the output...

  10. Phase contrast enhancement of x-ray mammography: a design study

    International Nuclear Information System (INIS)

    This paper explores the application to mammography of phase contrast produced by variations in x-ray refractive index. As a spatially coherent x-ray beam propagates through an x-ray transparent medium, the phase of the incident wavefront becomes modified in a manner related to the electron density of the medium. The resulting phase gradient across the wavefront is equivalent to a small change in direction of the propagation of the wave. For a general object, the change in propagation direction will vary from point to point depending on the structures within the object. The net effect can be recorded in a radiographic image using an appropriate geometry to produce the visual appearance of edge enhancement at interfaces between materials with differing x-ray refractive indices. Normally these materials will also have differences in attenuation coefficient, so the overall effect is to increase the visibility of interfaces between materials. It is proposed that mammographic images can be subtly enhanced by the use of phase contrast information to overcome some of the known limitations of the imaging process whilst leaving the gross radiological appearance of the images substantially unchanged. The design trade-offs required to utilize phase contrast information were investigated using a conventional mammographic x-ray generator and film-screen system. The Leeds TORMAM mammographic image quality test object was then used to demonstrate a considerable improvement in image quality for the phase contrast enhanced images over those produced in the conventional geometry with no increase in radiation dose to the patient. The results are discussed in terms of their possible practical application. (author)

  11. Solution of the inverse problem of images reconstruction by the X-ray phase contrast method

    International Nuclear Information System (INIS)

    In the approximation of geometrical optics of the wave theory of X-ray diffraction an inverse problem of reconstruction of an internal structure of objects on the base of data of X-ray phase contrast method with the crystal-analyzer, located in Bragg geometry is analytically solved. It is shown, that the approximation of geometrical optics is fair, if the characteristic sizes of object exceed radius of the first Fresnel zone and the extinction length

  12. Efficient formation of extended line intensity patterns using matched-filtering generalized phase contrast

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Aabo, Thomas;

    2013-01-01

    We demonstrate the efficient generation of line patterns using matched-filtering Generalized Phase Contrast (mGPC). So far, the main emphasis of mGPC light addressing has been on the creation of rapidly reconfigurable focused spots. This has recently been extended to encoding extended line patter...... for structured light applications and advanced microscopy. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  13. In-Line Phase-Contrast Imaging Using Partially Coherent Hard X-Ray

    Institute of Scientific and Technical Information of China (English)

    喻虹; 朱频频; 韩申生; 罗震林; 高琛

    2003-01-01

    An experimental study of in-line hard x-ray phase-contrast imaging had been performed, using the polychromatic output of an x-ray tube. The results are in good agreement with partially coherent theory of hard x-ray phasecontrast imaging. The new technique provides the advantage to obtain the radiographs of large samples in an acceptable exposure time, which is very important to clinical applications.

  14. Grating-based X-ray phase contrast imaging using polychromatic laboratory sources

    International Nuclear Information System (INIS)

    Research highlights: → Efficient use of polychromatic laboratory sources for X-ray phase contrast imaging. → The inter-grating distance is not limited by the polychromaticity of the X-ray source. → Sensitivity for phase measurements can be further improved. → Potential optimizations of the imaging system from an application perspective. - Abstract: X-ray phase contrast imaging has been demonstrated to have an improved contrast over conventional absorption imaging for those weakly absorbing objects. However, most of the hard X-ray phase-sensitive imaging has so far been impractical with laboratory available X-ray sources. Grating-based phase imaging approach has the prominent advantage that polychromatic laboratory X-ray generators can be efficiently used in a Talbot-Lau configuration. Through numerical simulations, we demonstrate here the efficient use of polychromatic X-ray laboratory sources for differential phase contrast imaging. The presented results explain why in recently reported experiments, polychromatic X-ray tubes could be efficiently used in a Talbot-Lau interferometer. Furthermore, the results indicate that the fractional Talbot distance is not limited by the polychromaticity of the X-ray source. Since the sensitivity of phase measurements is proportional to the fractional Talbot distance, the image quality for phase measurements can be further improved. Finally, the potential optimizations of the imaging system are discussed from an application perspective, taking into consideration both available X-ray flux and compactness of the system.

  15. Grating-based X-ray phase contrast imaging using polychromatic laboratory sources

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhili [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao Kun [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Zhu Peiping; Yuan Qingxi; Huang Wanxia; Zhang Kai; Hong Youli [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Ge Xin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu, E-mail: wuzy@ustc.edu.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China)

    2011-04-15

    Research highlights: {yields} Efficient use of polychromatic laboratory sources for X-ray phase contrast imaging. {yields} The inter-grating distance is not limited by the polychromaticity of the X-ray source. {yields} Sensitivity for phase measurements can be further improved. {yields} Potential optimizations of the imaging system from an application perspective. - Abstract: X-ray phase contrast imaging has been demonstrated to have an improved contrast over conventional absorption imaging for those weakly absorbing objects. However, most of the hard X-ray phase-sensitive imaging has so far been impractical with laboratory available X-ray sources. Grating-based phase imaging approach has the prominent advantage that polychromatic laboratory X-ray generators can be efficiently used in a Talbot-Lau configuration. Through numerical simulations, we demonstrate here the efficient use of polychromatic X-ray laboratory sources for differential phase contrast imaging. The presented results explain why in recently reported experiments, polychromatic X-ray tubes could be efficiently used in a Talbot-Lau interferometer. Furthermore, the results indicate that the fractional Talbot distance is not limited by the polychromaticity of the X-ray source. Since the sensitivity of phase measurements is proportional to the fractional Talbot distance, the image quality for phase measurements can be further improved. Finally, the potential optimizations of the imaging system are discussed from an application perspective, taking into consideration both available X-ray flux and compactness of the system.

  16. Reverse projection retrieval in edge illumination x-ray phase contrast computed tomography

    Science.gov (United States)

    Hagen, Charlotte K.; Endrizzi, Marco; Diemoz, Paul C.; Olivo, Alessandro

    2016-06-01

    Edge illumination (EI) x-ray phase contrast computed tomography (CT) can provide three-dimensional distributions of the real and imaginary parts of the complex refractive index (n=1-δ +\\text{i}β ) of the sample. Phase retrieval, i.e. the separation of attenuation and refraction data from projections that contain a combination of both, is a key step in the image reconstruction process. In EI-based x-ray phase contrast CT, this is conventionally performed on the basis of two projections acquired in opposite illumination configurations (i.e. with different positions of the pre-sample mask) at each CT angle. Displacing the pre-sample mask at each projection makes the scan susceptible to motor-induced misalignment and prevents a continuous sample rotation. We present an alternative method for the retrieval of attenuation and refraction data that does not require repositioning the pre-sample mask. The method is based on the reverse projection relation published by Zhu et al (2010 Proc. Natl Acad. Sci. USA 107 13576-81) for grating interferometry-based x-ray phase contrast CT. We use this relation to derive a simplified acquisition strategy that allows acquiring data with a continuous sample rotation, which can reduce scan time when combined with a fast read-out detector. Besides discussing the theory and the necessary alignment of the experimental setup, we present tomograms obtained with reverse projection retrieval and demonstrate their agreement with those obtained with the conventional EI retrieval.

  17. Theoretical considerations for X-ray phase contrast mammography by Thomson source

    Energy Technology Data Exchange (ETDEWEB)

    Cedola, A. [Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), via Cineto Romano 42, I-00156 Roma (Italy); INFN, Sezione di Roma1, Piazzale Aldo Moro2, 00185 Rome (Italy)], E-mail: cedola@ifn.cnr.it; Bukreeva, I.; Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), via Cineto Romano 42, I-00156 Roma (Italy); INFN, Sezione di Roma1, Piazzale Aldo Moro2, 00185 Rome (Italy); Petrillo, V.; Maroli, C. [Universita di Milano, Physics Department and INFN Sezione di Milano Via Celoria 16, 20133 Milano (Italy)

    2009-09-01

    The advent, in the near future, of compact X-ray sources like Thomson Back-Scattering (TBS) will allow the clinical application of advanced X-ray imaging techniques, such as phase contrast, with higher sensitivity and lower impact in terms of dose delivery. In this work, we theoretically investigated the possibility of using such sources for phase contrast imaging of micro-calcifications included in a breast tissue. In our study we analyzed the phase and amplitude distribution of the TBS source and we showed that this source can be used for phase contrast imaging since the source coherence at the sample position is sufficiently high for achieving good contrast and micrometer spatial resolution. Indeed the spatial coherence of a TBS source is closer to that of a synchrotron radiation source, and much better than that of a laboratory source. Moreover, we showed the advantages of phase imaging with respect to standard absorption imaging, in the specific case of micro-calcifications detection.

  18. Phase-contrast x-ray imaging of the breast: recent developments towards clinics

    Science.gov (United States)

    Coan, P.; Bravin, A.; Tromba, G.

    2013-12-01

    Breast imaging is one of the most demanding and delicate radiological applications. Mammography is the primary diagnosis tool in breast cancer detection and national screening programmes. Recognition of breast cancer depends on the detection of subtle architectural distortion, masses showing near normal breast tissue density, skin thickening and microcalcifications. The small differences in attenuation of x-rays between normal and malignant tissue result in low contrast and make cancer detection difficult in conventional x-ray absorption mammography. Because of these challenging aspects, breast imaging has been the first and most explored diagnostic field in phase-contrast imaging research. This novel imaging method has been extensively used and has demonstrated a unique capability in producing high-contrast and sensitive images at quasi-histological resolution. The most recent and significant technical developments are introduced and results obtained by the application of various phase-contrast imaging techniques for breast imaging are reported. The first phase-contrast mammography clinical trials project is also presented and the short- and long-term future perspectives of the method are discussed.

  19. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research

    Directory of Open Access Journals (Sweden)

    Yan Xi

    2015-01-01

    Full Text Available Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders.

  20. Simulation of grating-based X-ray phase contrast tomography

    International Nuclear Information System (INIS)

    Grating-based X-ray phase contrast tomography proved to achieve better contrast in soft tissue than conventional X-ray absorption. The real part of the refractive index of the tissue results in a slight deflection of the X-rays. These tiny angles of approximately 20 nrad can be detected by a combination of a phase and absorption gratings. With an absorption grating near the anode of a conventional X-ray tube the method is applicable as part of a medical device. Hence X-ray phase contrast can be used in the detection of soft tissue pathologies e.g. breast tumor in mammography. The application in the clinics demands the lowest dose for the patient though the best contrast to noise ratio (CNR). To accomplish this, we simulated the imaging varying the height and pitch of the gratings for a given power and spectrum of the X-ray tube. Source, detector and grating distances were under the constraint of the dimensions of a putative computer tomograph. Optimal combinations where found for maximal CNR. The results will be important for the design and implementation of the X-ray phase contrast method in commercial CT devices.

  1. Bone histomorphometric quantification by X-ray phase contrast and transmission 3D SR microcomputed tomography

    International Nuclear Information System (INIS)

    Full text: Conventional histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed tomography is a noninvasive technique, which can be used to evaluate histomorphometric indices. In this technique, the output 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. Looking for better resolutions and visualization of soft tissues, X-ray phase contrast imaging technique was developed. The objective of this work was to perform histomorphometric quantification of human cancellous bone using 3D synchrotron X ray computed microtomography, using two distinct techniques: transmission and phase contrast, in order to compare the results and evaluate the viability of applying the same methodology of quantification for both technique. All experiments were performed at the ELETTRA Synchrotron Light Laboratory in Trieste (Italy). MicroCT data sets were collected using the CT set-up on the SYRMEP (Synchrotron Radiation for Medical Physics) beamline. Results showed that there is a better correlation between histomorphometric parameters of both techniques when morphological filters had been used. However, using these filters, some important information given by phase contrast are lost and they shall be explored by new techniques of quantification

  2. Helical X-ray phase-contrast computed tomography without phase stepping.

    Science.gov (United States)

    Marschner, M; Willner, M; Potdevin, G; Fehringer, A; Noël, P B; Pfeiffer, F; Herzen, J

    2016-01-01

    X-ray phase-contrast computed tomography (PCCT) using grating interferometry provides enhanced soft-tissue contrast. The possibility to use standard polychromatic laboratory sources enables an implementation into a clinical setting. Thus, PCCT has gained significant attention in recent years. However, phase-contrast CT scans still require significantly increased measurement times in comparison to conventional attenuation-based CT imaging. This is mainly due to a time-consuming stepping of a grating, which is necessary for an accurate retrieval of the phase information. In this paper, we demonstrate a novel scan technique, which directly allows the determination of the phase signal without a phase-stepping procedure. The presented work is based on moiré fringe scanning, which allows fast data acquisition in radiographic applications such as mammography or in-line product analysis. Here, we demonstrate its extension to tomography enabling a continuous helical sample rotation as routinely performed in clinical CT systems. Compared to standard phase-stepping techniques, the proposed helical fringe-scanning procedure enables faster measurements, an extended field of view and relaxes the stability requirements of the system, since the gratings remain stationary. Finally, our approach exceeds previously introduced methods by not relying on spatial interpolation to acquire the phase-contrast signal. PMID:27052368

  3. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    Science.gov (United States)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  4. Simulation of grating-based X-ray phase contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Achterhold, Klaus; Herzen, Julia; Pfeiffer, Franz [Department of Physics (E17) and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany)

    2011-07-01

    Grating-based X-ray phase contrast tomography proved to achieve better contrast in soft tissue than conventional X-ray absorption. The real part of the refractive index of the tissue results in a slight deflection of the X-rays. These tiny angles of approximately 20 nrad can be detected by a combination of a phase and absorption gratings. With an absorption grating near the anode of a conventional X-ray tube the method is applicable as part of a medical device. Hence X-ray phase contrast can be used in the detection of soft tissue pathologies e.g. breast tumor in mammography. The application in the clinics demands the lowest dose for the patient though the best contrast to noise ratio (CNR). To accomplish this, we simulated the imaging varying the height and pitch of the gratings for a given power and spectrum of the X-ray tube. Source, detector and grating distances were under the constraint of the dimensions of a putative computer tomograph. Optimal combinations where found for maximal CNR. The results will be important for the design and implementation of the X-ray phase contrast method in commercial CT devices.

  5. A phase contrast cytomorphometric study of squames of normal oral mucosa and oral leukoplakia: Original study

    Directory of Open Access Journals (Sweden)

    Afreen Nadaf

    2014-01-01

    Full Text Available Oral leukoplakia represents the most common potentially malignant oral disorder, representing 85% of such lesions. The worldwide prevalence of leukoplakia is 1.5- 4.3%. Leukoplakia is often associated with carcinogenic exposures, such as from use of tobacco, alcohol or betel nut. The level of risk for malignant transformation of leukoplakia is associated with lesion histology. The overall malignant transformation rates for dysplastic lesions range from 11% to 36%, depending on the length of follow-up. Exfoliative cytology is a simple and minimally invasive method. Phase contrast microscope, an essential tool in the field of biology and medical research provides improved discrimination of cellular details. Aims: To study and compare the cytomorphological and cytomorphometric features of squames obtained from the mucosa of normal individuals, tobacco habituates with and without clinically evident leukoplakia. To assess the role of phase contrast microscopy as an alternative and easy method of cytological evaluation of wet and unstained smears. Materials and Methods: Fifty cases from each group were taken. Fixed, unstained smears were viewed under phase contrast microscope and were evaluated morphologically and morphometrically for nuclear and cellular diameters. Results: The study showed a significant increase in the mean nuclear diameter and decrease in the mean cellular diameter. Conclusion: Cytomorphometric changes could be the earliest indicators of cellular alterations. This indicates that there could be a cause-effect relationship between tobacco and quantitative alterations.

  6. A uniqueness result for propagation-based phase contrast imaging from a single measurement

    Science.gov (United States)

    Maretzke, Simon

    2015-06-01

    Phase contrast imaging seeks to reconstruct the complex refractive index of an unknown sample from scattering intensities, measured for example under illumination with coherent x-rays. By incorporating refraction, this method yields improved contrast compared to purely absorption-based radiography but involves a phase retrieval problem which, in general, allows for ambiguous reconstructions. In this paper, we show uniqueness of propagation-based phase contrast imaging for compactly supported objects in the near-field regime, based on a description by the projection- and paraxial approximations. In this setting, propagation is governed by the Fresnel propagator and the unscattered part of the illumination function provides a known reference wave at the detector which facilitates phase reconstruction. The uniqueness theorem is derived using the theory of entire functions. Unlike previous results based on exact solution formulae, it is valid for arbitrary complex objects and requires intensity measurements only at a single detector distance and illumination wavelength. We also deduce a uniqueness criterion for phase contrast tomography, which may be applied to resolve the three-dimensional structure of micro- and nano-scale samples. Moreover, our results may have some significance to electronic imaging methods due to the equivalence of paraxial wave propagation and Schrödinger’s equation.

  7. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    Science.gov (United States)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  8. Helical X-ray phase-contrast computed tomography without phase stepping

    Science.gov (United States)

    Marschner, M.; Willner, M.; Potdevin, G.; Fehringer, A.; Noël, P. B.; Pfeiffer, F.; Herzen, J.

    2016-04-01

    X-ray phase-contrast computed tomography (PCCT) using grating interferometry provides enhanced soft-tissue contrast. The possibility to use standard polychromatic laboratory sources enables an implementation into a clinical setting. Thus, PCCT has gained significant attention in recent years. However, phase-contrast CT scans still require significantly increased measurement times in comparison to conventional attenuation-based CT imaging. This is mainly due to a time-consuming stepping of a grating, which is necessary for an accurate retrieval of the phase information. In this paper, we demonstrate a novel scan technique, which directly allows the determination of the phase signal without a phase-stepping procedure. The presented work is based on moiré fringe scanning, which allows fast data acquisition in radiographic applications such as mammography or in-line product analysis. Here, we demonstrate its extension to tomography enabling a continuous helical sample rotation as routinely performed in clinical CT systems. Compared to standard phase-stepping techniques, the proposed helical fringe-scanning procedure enables faster measurements, an extended field of view and relaxes the stability requirements of the system, since the gratings remain stationary. Finally, our approach exceeds previously introduced methods by not relying on spatial interpolation to acquire the phase-contrast signal.

  9. Reverse projection retrieval in edge illumination x-ray phase contrast computed tomography

    Science.gov (United States)

    Hagen, Charlotte K.; Endrizzi, Marco; Diemoz, Paul C.; Olivo, Alessandro

    2016-06-01

    Edge illumination (EI) x-ray phase contrast computed tomography (CT) can provide three-dimensional distributions of the real and imaginary parts of the complex refractive index (n=1-δ +\\text{i}β ) of the sample. Phase retrieval, i.e. the separation of attenuation and refraction data from projections that contain a combination of both, is a key step in the image reconstruction process. In EI-based x-ray phase contrast CT, this is conventionally performed on the basis of two projections acquired in opposite illumination configurations (i.e. with different positions of the pre-sample mask) at each CT angle. Displacing the pre-sample mask at each projection makes the scan susceptible to motor-induced misalignment and prevents a continuous sample rotation. We present an alternative method for the retrieval of attenuation and refraction data that does not require repositioning the pre-sample mask. The method is based on the reverse projection relation published by Zhu et al (2010 Proc. Natl Acad. Sci. USA 107 13576–81) for grating interferometry-based x-ray phase contrast CT. We use this relation to derive a simplified acquisition strategy that allows acquiring data with a continuous sample rotation, which can reduce scan time when combined with a fast read-out detector. Besides discussing the theory and the necessary alignment of the experimental setup, we present tomograms obtained with reverse projection retrieval and demonstrate their agreement with those obtained with the conventional EI retrieval.

  10. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    Science.gov (United States)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  11. Regularized Newton Methods for X-ray Phase Contrast and General Imaging Problems

    CERN Document Server

    Maretzke, Simon; Krenkel, Martin; Salditt, Tim; Hohage, Thorsten

    2015-01-01

    Like many other advanced imaging methods, x-ray phase contrast imaging and tomography require mathematical inversion of the observed data to obtain real-space information. While an accurate forward model describing the generally nonlinear image formation from a given object to the observations is often available, explicit inversion formulas are typically not known. Moreover, the measured data might be insufficient for stable image reconstruction, in which case it has to be complemented by suitable a priori information. In this work, regularized Newton methods are presented as a general framework for the solution of such ill-posed nonlinear imaging problems. For a proof of principle, the approach is applied to x-ray phase contrast imaging in the near-field propagation regime. Simultaneous recovery of the phase- and amplitude from a single near-field diffraction pattern is demonstrated for the first time. The presented methods further permit all-at-once phase contrast tomography, i.e. simultaneous phase retriev...

  12. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    OpenAIRE

    Panta, Raj K.; Paul Segars; Fang-Fang Yin; Jing Cai

    2012-01-01

    Aims: To establish a framework to implement the 4D integrated extended cardiac torso (XCAT) digital phantom for 4D radiotherapy (RT) research. Materials and Methods: A computer program was developed to facilitate the characterization and implementation of the 4D XCAT phantom. The program can (1) generate 4D XCAT images with customized parameter files; (2) review 4D XCAT images; (3) generate composite images from 4D XCAT images; (4) track motion of selected region-of-interested (ROI); (5) c...

  13. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    International Nuclear Information System (INIS)

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  14. 4-D OCT in Developmental Cardiology

    Science.gov (United States)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  15. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    International Nuclear Information System (INIS)

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed

  16. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Mark, E-mail: mark-mueller@ph.tum.de; Yaroshenko, Andre; Velroyen, Astrid; Tapfer, Arne [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Bech, Martin [Medical Radiation Physics, Lund University, Barngatan 2:1, 221 85 Lund (Sweden); Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander [Bruker microCT, Kartuizersweg 3B, B-2550 Kontich (Belgium); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München (Germany); Institute for Advanced Study, Technische Universität München, 85748 Garching (Germany)

    2015-12-15

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.

  17. CINEMA 4D The Artist's Project Sourcebook

    CERN Document Server

    McQuilkin, Kent

    2011-01-01

    Cinema 4D is a fully integrated 3D modeling, animation, and rendering package used extensively in the film, television, science, architecture, engineering and other industries. Generally ranked as the 3rd most widely-used 3Dapplication Cinema 4D is widely praised for its stability, speed and ease of use. Recent film and broadcast productions that have used Cinema 4D include Open Season, Monster House, Superman Returns, Polar Express, Monday Night Football. This third edition of Cinema 4D is updated to address the latest release of the application as well as its critically acclaimed MoGr

  18. Quantitative In-Line Phase-Contrast Imaging with Multienergy X Rays

    International Nuclear Information System (INIS)

    We present a new method for quantitative nondestructive characterization of objects by x-ray phase-contrast imaging. Spatial distributions of the projected values of the complex refractive index in the sample are reconstructed by processing near-field images collected at a fixed sample-to-detector distance using a polychromatic incident beam and an energy-sensitive area detector, such as a CCD used in the photon-counting spectroscopy mode. The method has the potential advantages of decreased radiation dose and increased accuracy compared to conventional techniques of x-ray imaging

  19. Quantitative In-Line Phase-Contrast Imaging with Multienergy X Rays

    Science.gov (United States)

    Gureyev, T. E.; Mayo, S.; Wilkins, S. W.; Paganin, D.; Stevenson, A. W.

    2001-06-01

    We present a new method for quantitative nondestructive characterization of objects by x-ray phase-contrast imaging. Spatial distributions of the projected values of the complex refractive index in the sample are reconstructed by processing near-field images collected at a fixed sample-to-detector distance using a polychromatic incident beam and an energy-sensitive area detector, such as a CCD used in the photon-counting spectroscopy mode. The method has the potential advantages of decreased radiation dose and increased accuracy compared to conventional techniques of x-ray imaging.

  20. Interior tomography in x-ray differential phase contrast CT imaging

    OpenAIRE

    Lauzier, Pascal Thériault; Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2012-01-01

    Differential phase contrast computed tomography (DPC-CT) is an x-ray imaging method that uses the wave properties of imaging photons as the contrast mechanism. It has been demonstrated that DPC images can be obtained using a conventional x-ray tube and a Talbot–Lau-type interferometer. Due to the limited size of the gratings, current data acquisition systems only offer a limited field of view, and thus are prone to data truncation. As a result, the reconstructed DPC-CT image may suffer from i...

  1. Diffraction enhance x-ray imaging for quantitative phase contrast studies

    Science.gov (United States)

    Agrawal, A. K.; Singh, B.; Kashyap, Y. S.; Shukla, Mayank; Sarkar, P. S.; Sinha, Amar

    2016-05-01

    Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.

  2. Statistical iterative reconstruction algorithm for X-ray phase-contrast CT

    OpenAIRE

    Dieter Hahn; Pierre Thibault; Andreas Fehringer; Martin Bech; Thomas Koehler; Franz Pfeiffer; Peter B Noël

    2015-01-01

    Grating-based phase-contrast computed tomography (PCCT) is a promising imaging tool on the horizon for pre-clinical and clinical applications. Until now PCCT has been plagued by strong artifacts when dense materials like bones are present. In this paper, we present a new statistical iterative reconstruction algorithm which overcomes this limitation. It makes use of the fact that an X-ray interferometer provides a conventional absorption as well as a dark-field signal in addition to the phase-...

  3. A tilted grating interferometer for full vector field differential x-ray phase contrast tomography

    OpenAIRE

    S. Rutishauser; Donath, T.; David, C.; Pfeiffer, F.; Marone, F.; Modregger, P.; Stampanoni, M.

    2011-01-01

    We report on a setup for differential x-ray phase-contrast imaging and tomography, that measures the full 2D phase-gradient information. The setup uses a simple one-dimensional x-ray grating interferometer, in which the grating structures of the interferometer are oriented at a tilt angle with respect to the sample rotation axis. In such a configuration, the differential phase images from opposing tomography projections can be combined to yield both components of the gradient vector. We show ...

  4. The Phase-Contrast Imaging Instrument at the Matter in Extreme Conditions Endstation at LCLS

    CERN Document Server

    Nagler, Bob; Galtier, Eric C; Arnold, Brice; Brown, Shaughnessy B; Fry, Alan; Gleason, Arianna; Granados, Eduardo; Hashim, Akel; Hastings, Jerome B; Samberg, Dirk; Seiboth, Frank; Tavella, Franz; Xing, Zhou; Lee, Hae Ja; Schroer, Christian G

    2016-01-01

    We describe the Phase-Contrast Imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 femtosecond. It was specifically designed for studies relevant to High-Energy-Density Science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.

  5. Wavefront sensing based on phase contrast theory and coherent optical processing

    Science.gov (United States)

    Lei, Huang; Qi, Bian; Chenlu, Zhou; Tenghao, Li; Mali, Gong

    2016-07-01

    A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making high-density detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.

  6. Phase contrast tomography of the mouse cochlea at microfocus x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Matthias; Krenkel, Martin [Institute for X-Ray Physics, University of Göttingen, Göttingen (Germany); Hernandez, Victor H. [InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen (Germany); Bernstein Focus for Neurotechnology, University of Göttingen, Göttingen (Germany); Moser, Tobias [InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen (Germany); Bernstein Focus for Neurotechnology, University of Göttingen, Göttingen (Germany); Center for Nanoscopy and Molecular Physiology of the Brain, Göttingen (Germany); Salditt, Tim [Institute for X-Ray Physics, University of Göttingen, Göttingen (Germany); Center for Nanoscopy and Molecular Physiology of the Brain, Göttingen (Germany)

    2013-08-19

    We present phase contrast x-ray tomography of functional soft tissue within the bony cochlear capsule of mice, carried out at laboratory microfocus sources with well-matched source, detector, geometry, and reconstruction algorithms at spatial resolutions down to 2 μm. Contrast, data quality and resolution enable the visualization of thin membranes and nerve fibers as well as automated segmentation of surrounding bone. By complementing synchrotron radiation imaging techniques, a broad range of biomedical applications becomes possible as demonstrated for optogenetic cochlear implant research.

  7. Measurements of edge fluctuations by phase contrast imaging on DIII-D

    International Nuclear Information System (INIS)

    A novel imaging diagnostic for the investigation of edge plasma density fluctuations was recently installed on the DIII-D tokamak. The diagnostic, which is based on the Zernike phase contrast method, was developed in response to the need for spatially resolved, long wavelength fluctuation measurements. Unique features of this system include: Large bandwidth (100 MHz), high sensitivity (ne ≅ 109 cm-3), and absolute calibration capability. Initial results are presented on the fluctuation suppression at the L- to H-mode transition and on the bursts of turbulent activity which occur during ELMs

  8. Extracting optical scattering properties on the basis of phase contrast images for diagnosing stomach cancer

    International Nuclear Information System (INIS)

    We combine morphological granulometry with Mie theory in order to analyze phase contrast images of biomedical tissue for cancer diagnosis. This method correlates microscopic phase distributions of the tissue image and macroscopic optical scattering properties of the tissue. Our results show that the particle size density distribution can be used to quantitatively identify morphological changes of cancerous stomach tissues. Our method can distinguish normal tissue from cancerous tissues, using the significant differences in scattering coefficient, reduced scattering coefficient and phase function. Therefore, this method can provide not only quantitative information for the diagnosis of cancer, but also accurate optical scattering parameters for photothermal therapy for cancer. (paper)

  9. Diffractive generalized phase contrast for adaptive phase imaging and optical security

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We analyze the properties of Generalized Phase Contrast (GPC) when the input phase modulation is implemented using diffractive gratings. In GPC applications for patterned illumination, the use of a dynamic diffractive optical element for encoding the GPC input phase allows for onthe- fly...... optimization of the input aperture parameters according to desired output characteristics. For wavefront sensing, the achieved aperture control opens a new degree of freedom for improving the accuracy of quantitative phase imaging. Diffractive GPC input modulation also fits well with grating-based optical...

  10. Halo suppression in full-field x-ray Zernike phase contrast microscopy.

    Science.gov (United States)

    Vartiainen, Ismo; Mokso, Rajmund; Stampanoni, Marco; David, Christian

    2014-03-15

    Visible light Zernike phase contrast (ZPC) microscopy is a well established method for imaging weakly absorbing samples. The method is also used with hard x-ray photon energies for structural evaluation of material science and biological applications. However, the method suffers from artifacts that are inherent for the Zernike image formation. In this Letter, we investigate their origin and experimentally show how to suppress them in x-ray full-field ZPC microscopy based on diffractive x-ray optics. PMID:24690848

  11. Micro Soft Tissues Visualization Based on X-Ray Phase-Contrast Imaging

    OpenAIRE

    Zhang, Lu; Luo, Shuqian

    2011-01-01

    The current imaging methods have a limited ability to visualize microstructures of biological soft tissues. Small lesions cannot be detected at the early stage of the disease. Phase contrast imaging (PCI) is a novel non-invasive imaging technique that can provide high contrast images of soft tissues by the use of X-ray phase shift. It is a new choice in terms of non-invasively revealing soft tissue details. In this study, the lung and hepatic fibrosis models of mice and rats were used to inve...

  12. Quantitative Evaluation Methods of In-Line X-Ray Phase Contrast Techniques

    Institute of Scientific and Technical Information of China (English)

    LI Zheng; LI Cheng-Quan; YU Ai-Min

    2007-01-01

    By revealing the relationship between edge visibility and imaging parameters in in-line phase contrast imaging (PCI), we propose a method to quantitatively measure the contribution of absorption and phase shift from acquired images. We also prove that edge visibility will grow with the increasing source-object distance and object-detector distance. The result is validated by relative phase factor and by experiments conducted on a microfocus x-ray source. This method provides a new approach to evaluate in-line PCI images and is helpful for deciding imaging parameters.

  13. Processing of projections containing phase contrast in laboratory micro-computerized tomography imaging

    OpenAIRE

    Zápražný, Zdenko; Korytár, Dušan; Mikulík, Petr; Áč, Vladimír

    2013-01-01

    Free-space-propagation-based imaging belongs to several techniques for achieving phase contrast in the hard X-ray range. The basic precondition is to use an X-ray beam with a high degree of coherence. Although the best sources of coherent X-rays are synchrotrons, spatially coherent X-rays emitted from a sufficiently small spot of laboratory microfocus or sub-microfocus sources allow the transfer of some of the modern imaging techniques from synchrotrons to laboratories. Spatially coherent X-r...

  14. Parallel optical sorting of biological cells using the generalized phase contrast method

    DEFF Research Database (Denmark)

    Rindorf, Lars; Bu, Minqiang; Glückstad, Jesper

    2014-01-01

    Optical forces are used to fixate biological cells with optical tweezers where numerous biological parameters and phenomena can be studied. Optical beams carry a small momentum which generates a weak optical force, but on a cellular level this force is strong enough to allow for manipulation...... of biological cells in microfluidic systems exclusively using light. We demonstrate an optical cell sorter that uses simultaneous manipulation by multiple laser beams using the Generalized Phase Contrast method (GPC). The basic principle in an optical sorter is that the radiation force of the optical beam can...

  15. Quantification of left ventricular volumes and ejection fraction from gated {sup 99m}Tc-MIBI SPECT: validation of an elastic surface model approach in comparison to cardiac magnetic resonance imaging, 4D-MSPECT and QGS

    Energy Technology Data Exchange (ETDEWEB)

    Stegger, Lars; Kies, Peter; Schober, Otmar; Schaefers, Michael [University Hospital, Westfaelische Wilhelms-University Muenster, Department of Nuclear Medicine, Muenster (Germany); Lipke, Claudia S.A.; Nowak, Bernd; Buell, Udalrich; Schaefer, Wolfgang M. [University Hospital,Aachen University of Technology, Department of Nuclear Medicine, Aachen (Germany)

    2007-06-15

    The segmentation algorithm ESM based on an elastic surface model was validated for the assessment of left ventricular volumes and ejection fraction from ECG-gated myocardial perfusion SPECT. Additionally, it was compared with the commercially available quantification packages 4D-MSPECT and QGS. Cardiac MRI was used as the reference method. SPECT and MRI were performed on 70 consecutive patients with suspected or proven coronary artery disease. End-diastolic (EDV) and end-systolic (ESV) volumes and left ventricular ejection fraction (LVEF) were derived from SPECT studies by using the segmentation algorithms ESM, 4D-MSPECT and QGS and from cardiac MRI. ESM-derived values for EDV and ESV correlated well with those from cardiac MRI (correlation coefficients R = 0.90 and R = 0.95, respectively), as did the measurements for LVEF (R = 0.86). Both EDV and ESV were slightly overestimated for larger ventricles but not for smaller ventricles; LVEF was slightly overestimated irrespective of ventricle size. The above correlation coefficients are comparable to those for the 4D-MSPECT and QGS segmentation algorithms. However, results obtained with the three segmentation algorithms are not interchangeable. The ESM algorithm can be used to assess EDV, ESV and LVEF from gated perfusion SPECT images. Overall, the performance was similar to that of 4D-MSPECT and QGS when compared with cardiac MRI. Results obtained with the three tested segmentation methods are not interchangeable, so that the same algorithm should be used for follow-up studies and control subjects. (orig.)

  16. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2010-05-01

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  17. Preliminary research on dual-energy X-ray phase-contrast imaging

    Science.gov (United States)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  18. High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue

    Science.gov (United States)

    Schittny, J. C.; Barré, S. F.; Mokso, R.; Haberthür, D.; Semmler-Behnke, M.; Kreyling, W. G.; Tsuda, A.; Stampanoni, M.

    2011-09-01

    To access the risks and chances of deposition of submicron particles in the gas-exchange area of the lung, a precise three-dimensional (3D)-localization of the sites of deposition is essential—especially because local peaks of deposition are expected in the acinar tree and in individual alveoli. In this study we developed the workflow for such an investigation. We administered 200-nm gold particles to young adult rats by intratracheal instillation. After fixation and paraffin embedding, their lungs were imaged unstained using synchrotron radiation x-ray tomographic microscopy (SRXTM) at the beamline TOMCAT (Swiss Light Source, Villigen, Switzerland) at sample detector distances of 2.5 mm (absorption contrast) and of 52.5 mm (phase contrast). A segmentation based on a global threshold of grey levels was successfully done on absorption-contrast images for the gold and on the phase-contrast images for the tissue. The smallest spots containing gold possessed a size of 1-2 voxels of 370-nm side length. We conclude that a combination of phase and absorption contrast SRXTM imaging is necessary to obtain the correct segmentation of both tissue and gold particles. This method will be used for the 3D localization of deposited particles in the gas-exchange area of the lung.

  19. Quantitative X-Ray Phase-Contrast Microtomography from a Compact Laser Driven Betatron Source

    CERN Document Server

    Wenz, J; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2014-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to brilliant keV X-ray emission. This so-called Betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present the first phase-contrast micro-tomogram revealing quantitative electron density values of a biological sample using betatron X-rays, and a comprehensive source characterization. Our results suggest that laser-based X-ray technology offers the potential fo...

  20. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  1. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  2. Systolically gated 3D phase contrast MRA of mesenteric arteries in suspected mesenteric ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Wasser, M.N.; Schultze Kool, L.J.; Roos, A. de [Leiden Univ. Hospital (Netherlands)] [and others

    1996-03-01

    Our goal was to assess the value of MRA for detecting stenoses in the celiac (CA) and superior mesenteric (SMA) arteries in patients suspected of having chronic mesenteric ischemia, using an optimized systolically gated 3D phase contrast technique. In an initial study in 24 patients who underwent conventional angiography of the abdominal vessels for different clinical indications, a 3D phase contrast MRA technique (3D-PCA) was evaluated and optimized to image the CAs and SMAs. Subsequently, a prospective study was performed to assess the value of systolically gated 3D-PCA in evaluation of the mesenteric arteries in 10 patients with signs and symptoms of chronic mesenteric ischemia. Intraarterial digital subtraction angiography and surgical findings were used as the reference standard. In the initial study, systolic gating appeared to be essential in imaging the SMA on 3D-PCA. In 10 patients suspected of mesenteric ischemia, systolically gated 3D-PCA identified significant proximal disease in the two mesenteric vessels in 4 patients. These patients underwent successful reconstruction of their stenotic vessels. Cardiac-gated MRA may become a useful tool in selection of patients suspected of having mesenteric ischemia who may benefit from surgery. 16 refs., 6 figs., 4 tabs.

  3. First evidence of phase-contrast imaging with laboratory sources and active pixel sensors

    International Nuclear Information System (INIS)

    The aim of the present work is to achieve a first step towards combining the advantages of an innovative X-ray imaging technique-phase-contrast imaging (XPCi)-with those of a new class of sensors, i.e. CMOS-based active pixel sensors (APSs). The advantages of XPCi are well known and include increased image quality and detection of details invisible to conventional techniques, with potential application fields encompassing the medical, biological, industrial and security areas. Vanilla, one of the APSs developed by the MI-3 collaboration (see (http://mi3.shef.ac.uk)), was thoroughly characterised and an appropriate scintillator was selected to provide X-ray sensitivity. During this process, a set of phase-contrast images of different biological samples was acquired by means of the well-established free-space propagation XPCi technique. The obtained results are very encouraging and are in optimum agreement with the predictions of a simulation recently developed by some of the authors thus further supporting its reliability. This paper presents these preliminary results in detail and discusses in brief both the background to this work and its future developments

  4. X-ray phase contrast tomography by tracking near field speckle

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-03-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue.

  5. Complex dark-field contrast in grating-based x-ray phase contrast imaging

    Science.gov (United States)

    Yang, Yi; Tang, Xiangyang

    2015-03-01

    Without assuming that the sub-pixel microstructures of an object to be imaged distribute in space randomly, we investigate the influence of the object's microstructures on grating-based x-ray phase contrast imaging. Our theoretical analysis and 3D computer simulation study based on the paraxial Fresnel-Kirchhoff theory show that the existing dark-field contrast can be generalized into a complex dark-field contrast in a way such that its imaginary part quantifies the effect of the object's sub-pixel microstructures on the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues to be imaged at high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. In comparison to the existing dark-field contrast, the imaginary part of complex dark-field contrast exhibits significantly stronger selectivity on the shape of the object's sub-pixel microstructures. Thus the x-ray imaging corresponding to the imaginary part of complex dark-field contrast can provide additional and complementary information to that corresponding to the attenuation contrast, phase contrast and the existing dark-field contrast.

  6. Quantitative hard x-ray phase contrast imaging of micropipes in SiC

    International Nuclear Information System (INIS)

    Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating the diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters

  7. Phase-contrast imaging using ultrafast x-rays in laser-shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Workman, Jonathan B [Los Alamos National Laboratory; Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk [Los Alamos National Laboratory; Gautier, Donald C [Los Alamos National Laboratory; Montgomery, David S [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory

    2010-01-01

    High-energy x-rays, > 10-keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in Inertial Confinement Fusion (ICF) and High-Energy Density Physics (HEDP). These same x-rays can also be applied to measurements of low-density materials inside high-density hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200-TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17-keV produced from 2-ps, 100-J laser interactions with a 12-micron molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1-mm thick polystyrene target using 2-ns, 250-J, 532-nm laser drive with phase plates. X-ray images of shocks compare well to 1-D hydro calculations, HELIOS-CR.

  8. Cell morphology classification in phase contrast microscopy image reducing halo artifact

    Science.gov (United States)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Since the morphology of tumor cells is a good indicator of their invasiveness, we used time-lapse phase-contrast microscopy to examine the morphology of tumor cells. This technique enables long-term observation of the activity of live cells without photobleaching and phototoxicity which is common in other fluorescence-labeled microscopy. However, it does have certain drawbacks in terms of imaging. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we examined cell morphology to classify tumor cells as malignant and benign.

  9. Laser light-field fusion for wide-field lensfree on-chip phase contrast nanoscopy

    CERN Document Server

    Kazemzadeh, Farnoud

    2016-01-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. Nanoscopy is often synonymous with high equipment costs and limited FOV. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast nanoscopy, where interferometric laser light-field encodings acquired using an on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images with resolving power below the pixel pitch of the sensor array as well as the wavelength of the probing light source, beyond the diffraction limit. Experimental results demonstrate, for the first time, a lensfree on-chip instrument successfully detecting 500 nm nanoparticles without any specialized or intricate sample preparation or the use of synthetic aperture- or lateral shift-based t...

  10. Preliminary Research on Dual-Energy X-Ray Phase-Contrast Imaging

    CERN Document Server

    Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Peiping

    2015-01-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure bone mineral density (BMD) and soft-tissue composition of human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption. While X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method is aiming to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretic ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for future precise and lo...

  11. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography

    OpenAIRE

    Hoshino, Masato; Uesugi, Kentaro; Tsukube, Takuro; Yagi, Naoto

    2014-01-01

    X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and m...

  12. Performance Evaluation of a Differential Phase-contrast Cone-beam (DPC-CBCT) System for Soft Tissue Imaging

    OpenAIRE

    YU, Yang; Ning, Ruola; Cai, Weixing

    2011-01-01

    Differential phase-contrast (DPC) technique is promising as the next breakthrough in the field of X-ray CT imaging. Utilizing the long ignored X-ray phase information, Differential phase-contrast (DPC) technique has the potential of providing us with projection images with higher contrast in a CT scan without increasing the X-ray dose. While traditional absorption-based X-ray imaging is not very efficient at differentiating soft tissues, differential phase-contrast (DPC) is promising as a new...

  13. Two-dimensional wave-number spectral analysis techniques for phase contrast imaging turbulence imaging data on large helical device.

    Science.gov (United States)

    Michael, C A; Tanaka, K; Vyacheslavov, L; Sanin, A; Kawahata, K

    2015-09-01

    An analysis method for unfolding the spatially resolved wave-number spectrum and phase velocity from the 2D CO2 laser phase contrast imaging system on the large helical device is described. This is based on the magnetic shear technique which identifies propagation direction from 2D spatial Fourier analysis of images detected by a 6 × 8 detector array. Because the strongest modes have wave-number at the lower end of the instrumental k range, high resolution spectral techniques are necessary to clearly resolve the propagation direction and hence the spatial distribution of fluctuations along the probing laser beam. Multiple-spatial point cross-correlation averaging is applied before calculating the spatial power spectrum. Different methods are compared, and it is found that the maximum entropy method (MEM) gives best results. The possible generation of artifacts from the over-narrowing of spectra are investigated and found not to be a significant problem. The spatial resolution Δρ (normalized radius) around the peak wave-number, for conventional Fourier analysis, is ∼0.5, making physical interpretation difficult, while for MEM, Δρ ∼ 0.1. PMID:26429439

  14. Phase-contrast MRI and CFD modeling of apparent 3He gas flow in rat pulmonary airways

    Science.gov (United States)

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and (2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  15. Two-dimensional wave-number spectral analysis techniques for phase contrast imaging turbulence imaging data on large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Michael, C. A., E-mail: clive.michael@gmail.com [Plasma Research Lab, Australian National University, Canberra, A.C.T. 2601 (Australia); Tanaka, K.; Kawahata, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Vyacheslavov, L. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Sanin, A. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-09-15

    An analysis method for unfolding the spatially resolved wave-number spectrum and phase velocity from the 2D CO{sub 2} laser phase contrast imaging system on the large helical device is described. This is based on the magnetic shear technique which identifies propagation direction from 2D spatial Fourier analysis of images detected by a 6 × 8 detector array. Because the strongest modes have wave-number at the lower end of the instrumental k range, high resolution spectral techniques are necessary to clearly resolve the propagation direction and hence the spatial distribution of fluctuations along the probing laser beam. Multiple-spatial point cross-correlation averaging is applied before calculating the spatial power spectrum. Different methods are compared, and it is found that the maximum entropy method (MEM) gives best results. The possible generation of artifacts from the over-narrowing of spectra are investigated and found not to be a significant problem. The spatial resolution Δρ (normalized radius) around the peak wave-number, for conventional Fourier analysis, is ∼0.5, making physical interpretation difficult, while for MEM, Δρ ∼ 0.1.

  16. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    International Nuclear Information System (INIS)

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and that (2) remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  17. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    Energy Technology Data Exchange (ETDEWEB)

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Rick E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and that (2) remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  18. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-05-11

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays.

  19. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    International Nuclear Information System (INIS)

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays

  20. In Vitro Validation of an Artefact Suppression Algorithm in X-Ray Phase-Contrast Computed Tomography

    OpenAIRE

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hirano, Shin-ichi; Gupta, Rajiv; Ando, Masami

    2015-01-01

    X-ray phase-contrast tomography can significantly increase the contrast-resolution of conventional attenuation-contrast imaging, especially for soft-tissue structures that have very similar attenuation. Just as in attenuation-based tomography, phase contrast tomography requires a linear dependence of aggregate beam direction on the incremental direction alteration caused by individual voxels along the path of the X-ray beam. Dense objects such as calcifications in biological specimens violate...

  1. Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting

    OpenAIRE

    Bañas, Andrew Rafael; Aabo, Thomas; Palima, Darwin; Glückstad, Jesper

    2013-01-01

    This work discusses the use of matched filtering Generalized Phase Contrast (mGPC) as an efficient and cost-effective beam shaper for applications such as in biophotonics, optical micromanipulation, microscopy and two-photon polymerization. The theoretical foundation of mGPC is described as a combination of Generalized Phase Contrast and phase-only correlation. Such an analysis makes it convenient to optimize an mGPC system for different setup conditions. Results showing binary-only phase gen...

  2. Feasibility testing of a pre-clinical coded aperture phase contrast imaging configuration using a simple fast Monte Carlo simulator

    OpenAIRE

    Kavanagh, A.; Olivo, A.; Speller, R; Vojnovic, B

    2013-01-01

    A simple method of simulating possible coded aperture phase contrast X-ray imaging apparatus is presented. The method is based on ray tracing, with the rays treated ballistically within a voxelized sample and with the phase-shift-induced angular deviations and absorptions applied at a plane in the middle of the sample. For the particular case of a coded aperture phase contrast configuration suitable for small animal pre-clinical imaging we present results obtained using a high resolution voxe...

  3. Non-invasive classification of microcalcifications with phase-contrast X-ray mammography

    Science.gov (United States)

    Wang, Zhentian; Hauser, Nik; Singer, Gad; Trippel, Mafalda; Kubik-Huch, Rahel A.; Schneider, Christof W.; Stampanoni, Marco

    2014-05-01

    Microcalcifications can be indicative in the diagnosis of early breast cancer. Here we report a non-invasive diagnostic method that may potentially distinguish between different types of microcalcifications using X-ray phase-contrast imaging. Our approach exploits the complementary nature of the absorption and small-angle scattering signals of microcalcifications, obtained simultaneously with an X-ray grating interferometer on a conventional X-ray tube. We demonstrate that the new approach has 100% sensitivity and specificity when applied to phantom data, and we provide evidence of the solidity of the technique by showing its discrimination power when applied to fixed biopsies, to non-fixed tissue specimens and to fresh, whole-breast samples. The proposed method might be further developed to improve early breast cancer diagnosis and has the potential to increase the diagnostic accuracy and reduce the number of uncomfortable breast biopsies, or, in case of widespread microcalcifications, to select the biopsy site before intervention.

  4. Theory of single-shot phase contrast imaging in spinor Bose-Einstein condensates.

    Science.gov (United States)

    Ilo-Okeke, Ebubechukwu O; Byrnes, Tim

    2014-06-13

    We introduce a theoretical framework for single-shot phase contrast imaging (PCI) measurements of spinor Bose-Einstein condensates (BECs). Our model allows for the simple calculation of the quantum backaction resulting from the measurement, and the amount of information that is read out. We find that there is an optimum time Gτ ∼ 1/N for the light-matter interaction (G is the ac Stark shift frequency, N is the number of particles in the BEC), where the maximum amount of information can be read out from the BEC. A universal information-disturbance tradeoff law ε(F)ε(G) ∝ 1/N(2) is found where ε(F) is the amount of backaction and ε(G) is the estimation error. The PCI measurement can also be found to be a direct probe of the quantum fluctuations of the BEC, via the noise of the PCI signal.

  5. Theory of single-shot phase contrast imaging in spinor Bose-Einstein condensates

    CERN Document Server

    Ilo-Okeke, Ebubechukwu O

    2014-01-01

    We introduce a theoretical framework for single-shot phase contrast imaging (PCI) measurements of spinor Bose-Einstein condensates. Our model allows for the simple calculation of the quantum backaction resulting from the measurement, and the amount of information that is read out. We find that there is an optimum time $ G\\tau \\sim 1/N $ for the light-matter interaction ($G $ is the ac Stark shift frequency, $ N $ is the number of particles in the BEC), where the maximum amount of information can be read out from the BEC. A universal information-disturbance tradeoff law $ \\epsilon_F \\epsilon_G \\propto 1/N^2 $ is found where $ \\epsilon_F $ is the amount of backaction and $ \\epsilon_G $ is the estimation error. The PCI measurement can also be found to be a direct probe of the quantum fluctuations of the BEC, via the noise of the PCI signal.

  6. Phase Contrast X-Ray Synchrotron Microtomography for Virtual Dissection of the Head of Rhodnius prolixus

    Science.gov (United States)

    Sena, G.; Almeida, A. P.; Braz, D.; Nogueira, L. P.; Colaço, M. V.; Soares, J.; Cardoso, S. C.; Garcia, E. S.; Azambuja, P.; Gonzalez, M. S.; Mohammadi, S.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Phase Contrast X-Ray Synchroton Microtomography is a non-destructive technique that allows the microanatomical investigations of Rhodnius prolixus, one of the most important insect vectors of Trypanosoma cruzi. In this work complete series of virtual thin sections through the heads of selected Rhodnius prolixus were obtained. The sections of the head were important to compare the difference in use the spatial resolution of 2 μm or 4.5 μm and to see anatomical details that couldn't be seen with other technique. Three different groups of Rhodnius prolixus were used. One group was fed with defibrinated rabbit blood and after 10 days was sacrificed, other group was sacrificed 4 days after feeding and the last group remained unfed. The results show some differences for each kind of groups and for the different resolutions.

  7. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    Science.gov (United States)

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  8. Comparison of two x-ray phase-contrast imaging methods with a microfocus source.

    Science.gov (United States)

    Zhou, T; Lundström, U; Thüring, T; Rutishauser, S; Larsson, D H; Stampanoni, M; David, C; Hertz, H M; Burvall, A

    2013-12-16

    We present a comparison for high-resolution imaging with a laboratory source between grating-based (GBI) and propagation-based (PBI) x-ray phase-contrast imaging. The comparison is done through simulations and experiments using a liquid-metal-jet x-ray microfocus source. Radiation doses required for detection in projection images are simulated as a function of the diameter of a cylindrical sample. Using monochromatic radiation, simulations show a lower dose requirement for PBI for small object features and a lower dose for GBI for larger object features. Using polychromatic radiation, such as that from a laboratory microfocus source, experiments and simulations show a lower dose requirement for PBI for a large range of feature sizes. Tested on a biological sample, GBI shows higher noise levels than PBI, but its advantage of quantitative refractive index reconstruction for multi-material samples becomes apparent. PMID:24514597

  9. Optimized three-dimensional phase-contrast MR angiography with reduced acquisition time

    International Nuclear Information System (INIS)

    This paper presents modified acquisition schemes for phase-contrast MR angiography that reduce by 33% the measurement time for three-dimensional data sets sensitive to flow in all directions. The new sequence scheme combines one flow-compensated and three flow-encoded acquisitions. Misregistration artifacts due to patient motion are eliminated through interleaved measurement. Taking the complex difference of each flow-encoded data set from the flow-form, the three flow-sensitive data sets are added to obtain the final angiogram. A more complex pulse sequence scheme was also evaluated with the first data set flow encoded in all directions, and the flow phase inverted for a single direction in each of the other three data sets. Optimization was performed on a standard 1.5-T Magnetom imager with 10 normal subjects and selected patients

  10. Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging

    CERN Document Server

    Szigeti, Stuart S; Carvalho, Andre R R; Hope, Joseph J

    2010-01-01

    The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented in \\cite{Szigeti:2009}. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilising a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.

  11. Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination

    Science.gov (United States)

    Endrizzi, Marco; Astolfo, Alberto; Vittoria, Fabio A.; Millard, Thomas P.; Olivo, Alessandro

    2016-05-01

    We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system.

  12. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging

    Science.gov (United States)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Zhang, Minliang; Chen, Qian

    2016-05-01

    We demonstrate a simple and cost-effective programmable aperture microscope to realize multi-modal computational imaging by integrating a programmable liquid crystal display (LCD) into a conventional wide-field microscope. The LCD selectively modulates the light distribution at the rear aperture of the microscope objective, allowing numerous imaging modalities, such as bright field, dark field, differential phase contrast, quantitative phase imaging, multi-perspective imaging, and full resolution light field imaging to be achieved and switched rapidly in the same setup, without requiring specialized hardwares and any moving parts. We experimentally demonstrate the success of our method by imaging unstained cheek cells, profiling microlens array, and changing perspective views of thick biological specimens. The post-exposure refocusing of a butterfly mouthpart and RFP-labeled dicot stem cross-section is also presented to demonstrate the full resolution light field imaging capability of our system for both translucent and fluorescent specimens.

  13. Fourier transform based iterative method for x-ray differential phase-contrast computed tomography

    CERN Document Server

    Cong, Wenxiang; Wang, Ge

    2011-01-01

    Biological soft tissues encountered in clinical and pre-clinical imaging mainly consist of light element atoms, and their composition is nearly uniform with little density variation. Thus, x-ray attenuation imaging suffers from low image contrast resolution. By contrast, x-ray phase shift of soft tissues is about a thousand times greater than x-ray absorption over the diagnostic energy range, thereby a significantly higher sensitivity can be achieved in terms of phase shift. In this paper, we propose a novel Fourier transform based iterative method to perform x-ray tomographic imaging of the refractive index directly from differential phase shift data. This approach offers distinct advantages in cases of incomplete and noisy data than analytic reconstruction, and especially suitable for phase-contrast interior tomography by incorporating prior knowledge in a region of interest (ROI). Biological experiments demonstrate the merits of the proposed approach.

  14. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  15. A fast-converging iterative method for X-ray in-line phase contrast tomography

    Science.gov (United States)

    Vo, Nghia T.; Atwood, Robert C.; Moser, Herbert O.; Lee, Peter D.; Breese, Mark B. H.; Drakopoulos, Michael

    2012-11-01

    X-ray in-line phase contrast tomography holds great promise for the quantitative analysis of soft materials. However, its applications have been limited, so far, by the fact that direct methods based on the transport-of-intensity equation and the contrast transfer function are sensitive to noise and applicable only to limited types of samples. Here, we propose an iterative method based on the Gerchberg-Saxton algorithm (R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972)), but overcoming its slow convergence by an acceleration technique, named random signed feedback, which shows an excellent performance, both in numerical simulation and tomographic experiment, of discriminating various polymers even when using 53 keV synchrotron X-rays.

  16. Phase contrast and DIC instrumentation and applications in cell, developmental, and marine biology

    Science.gov (United States)

    Gundlach, Heinz

    1994-05-01

    Nomarski's differential interference contrast (DIC) microscopy is discussed in comparison to Zernike's phase contrast (PhC) microscopy. The possibilities and limits of both are demonstrated by various applications. The high contrast and the use of the full numerical aperture of the DIC optics makes it possible to obtain a series of 'optical sections' through rather thick living specimens (e.g. head of water flea, salivary gland of Drosophila, Xenopus nucleolus, sea urchen egg, mouse embryo). PhC and DIC optics are today available for high resolution light microscopy until N.A. 1.4 Oil as well as for long working distance (LWD) optics, mainly combined with inverted biological microscopes.

  17. Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography.

    Science.gov (United States)

    Zhang, Yun; Dong, Bo; Bai, Yulei; Ye, Shuangli; Lei, Zhenkun; Zhou, Yanzhou

    2015-10-19

    An updated B-scan method is proposed for measuring the evolution of thermal deformation fields in polymers. In order to measure the distributions of out-of-plane deformation and normal strain field, phase-contrast spectral optical coherence tomography (PC-SOCT) was performed with the depth range and resolution of 4.3 mm and 10.7 μm, respectively, as thermal loads were applied to three different multilayer samples. The relation between temperature and material refractive index was predetermined before the measurement. After accounting for the refractive index, the thermal deformation fields in the polymer were obtained. The measured thermal expansion coefficient of silicone sealant was approximately equal to its reference value. This method allows correctly assessing the mechanical properties in semitransparent polymers. PMID:26480464

  18. Grating-based phase-contrast computed tomography of thick samples

    International Nuclear Information System (INIS)

    We analyze how the position dependence of the measured signal in phase-contrast imaging using a grating interferometer influences tomographic imaging of samples that are thick in relation to the setup dimensions. The investigations show that there are fundamental differences in image formation depending on the position of the sample relative to the gratings. We discuss tomographic imaging in parallel and fan-beam geometry, with a highlight on tomographic parallel-beam reconstructions for sample positions upstream and downstream of the central beam-splitter grating. Alterations to the standard reconstruction algorithms that result from the position dependence of the measured signal are analyzed analytically and discussed in exemplary computer simulations. We find that the reconstruction results are determined by the position of the axis of rotation relative to the gratings. We conclude that artifact-free reconstructions are feasible for all sample positions within the interferometer, although with different requirements on the angular range and the reconstruction algorithms, respectively.

  19. Generalized Phase Contrast with matched filtering using LCoS pico-projectors

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We report a beam shaping system for generating high intensity programmable optical spots using mGPC: matched filtering combined with Generalized Phase Contrast applying two consumer handheld pico-projectors. Such a system presents a low cost alternative for optical trapping and manipulation......, optical lattices and other beam shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices were used as binary phase-only spatial light modulators by setting the appropriate polarization of the illumination...... in these consumer pico-projector LCoS-devices, the mGPC approach tolerates phase aberrations that would have otherwise been contrasted by a standard phase imaging technique....

  20. A robust phase unwrapping method for phase-contrast X-ray CT using genetic algorithm

    International Nuclear Information System (INIS)

    In hard X-ray regions, X-ray phase information allows image formation with higher contrast for such a biological soft tissue, which cannot be sufficiently delineated by conventional absorption-based imaging. To generate projections from raw fringe pattern images in the process of the CT image reconstruction procedures, frequently 2p-phase jump must be corrected, i.e., the phase unwrapping. However, it is difficult to obtain the satisfactory corrections for noisy fringe pattern images. In this research, regarding the phase unwrapping as a combinatorial optimization, we propose a robust phase-unwrapping algorithm for phase-contrast X-ray CT by using genetic algorithm. We confirm the effectiveness for actual data obtained at SPring-8, and point out left problems. (author)

  1. X-ray phase-contrast CT imaging of the acupoints based on synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chenglin, Liu, E-mail: lclyctc@163.com [Physics Department of Yancheng Teachers’ College, Yancheng 224051 (China); Xiaohua, Wang; Hua, Xu [Physics Department of Yancheng Teachers’ College, Yancheng 224051 (China); Fang, Liu; Ruishan, Dang [Anatomy Department of Second Military Medical University, Shanghai 200433 (China); Dongming, Zhang; Xinyi, Zhang [Synchrotron Radiation Research Center of Fudan University, Shanghai 200433 (China); Honglan, Xie; Tiqiao, Xiao [Shanghai Synchrotron Radiation Facility of Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)

    2014-10-15

    In this paper, the morphology of the acupuncture point (abbreviated as acupoint hereafter) or tissue where there were no acupoints in the fractional rabbit hind limb was studied by in-line phase contrast CT imaging (PCI-CT) methods based on synchrotron radiation. The density of micro-vessels was calculated for tissues with acupoints or without acupoints. Differences between acupoints area and non-acupoint areas determined by the density of the micro-vessels propose a strong evidence of the existence of acupoints. Our results showed that there were two significantly higher densities of the micro-vessels, where two acupoints were located, respectively. In addition, there were large numbers of involutedly microvascular structure in the acupoint areas. Nevertheless, in non-acupoints area, the microvascular structure was relatively simple and flat.

  2. X-ray phase-contrast CT imaging of the acupoints based on synchrotron radiation

    International Nuclear Information System (INIS)

    In this paper, the morphology of the acupuncture point (abbreviated as acupoint hereafter) or tissue where there were no acupoints in the fractional rabbit hind limb was studied by in-line phase contrast CT imaging (PCI-CT) methods based on synchrotron radiation. The density of micro-vessels was calculated for tissues with acupoints or without acupoints. Differences between acupoints area and non-acupoint areas determined by the density of the micro-vessels propose a strong evidence of the existence of acupoints. Our results showed that there were two significantly higher densities of the micro-vessels, where two acupoints were located, respectively. In addition, there were large numbers of involutedly microvascular structure in the acupoint areas. Nevertheless, in non-acupoints area, the microvascular structure was relatively simple and flat

  3. Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering.

    Science.gov (United States)

    Jurna, Martin; Garbacik, Erik T; Korterik, Jeroen P; Herek, Jennifer L; Otto, Cees; Offerhaus, Herman L

    2010-09-15

    In coherent anti-Stokes Raman scattering (CARS), the emitted signal carries both amplitude and phase information of the molecules in the focal volume. Most CARS experiments ignore the phase component, but its detection allows for two advantages over intensity-only CARS. First, the pure resonant response can be determined, and the nonresonant background rejected, by extracting the imaginary component of the complex response, enhancing the sensitivity of CARS measurements. Second, selectivity is increased via determination of the phase and amplitude, allowing separation of individual molecular components of a sample even when their vibrational bands overlap. Here, using vibrational phase contrast CARS (VPC-CARS), we demonstrate enhanced sensitivity in quantitative measurements of ethanol/methanol mixtures and increased selectivity in a heterogeneous mixture of plastics and water. This powerful technique opens a wide range of possibilities for studies of complicated systems where overlapping resonances limit standard methodologies. PMID:20731373

  4. Noise analysis of grating-based x-ray differential phase contrast imaging

    International Nuclear Information System (INIS)

    The sensitivity of x-ray radiographic images, meaning the minimal detectable change in the thickness or in the index of refraction of a sample, is directly related to the uncertainty of the measurement method. In the following work, we report on the recent development of quantitative descriptions for the stochastic error of grating-based differential phase contrast imaging (DPCi). Our model includes the noise transfer characteristics of the x-ray detector and the jitter of the phase steps. We find that the noise in DPCi depends strongly on the phase stepping visibility and the sample properties. The results are supported by experimental evidence acquired with our new instrument with a field of view of 50x70 mm2. Our conclusions provide general guidelines to optimize grating interferometers for specific applications and problems.

  5. Phase contrast X-ray synchrotron microtomography for virtual dissection of the head of Rhodnius prolixus

    International Nuclear Information System (INIS)

    Phase Contrast X-Ray Synchroton Microtomography is a non-destructive technique that allows the microanatomical investigations of Rhodnius prolixus, one of the most important insect vectors of Trypanosoma cruzi. In this work complete series of virtual thin sections through the heads of selected Rhodnius prolixus were obtained. The sections of the head were important to compare the difference in use the spatial resolution of 2 μm or 4.5 μm and to see anatomical details that couldn't be seen with other technique. Three different groups of Rhodnius prolixus were used. One group was fed with defibrinated rabbit blood and after 10 days was sacrificed, other group was sacrificed 4 days after feeding and the last group remained unfed. The results show some differences for each kind of groups and for the different resolutions

  6. Phase-contrast diffuse optical tomography for in vivo breast imaging: a two-step method

    International Nuclear Information System (INIS)

    We present a two-step reconstruction method that can qualitatively and quantitatively improve the reconstruction of tissue refractive index (RI) distribution by phase-contrast diffuse optical tomography (PCDOT). In this two-step method, we first recover the distribution of tissue absorption and scattering coefficients by conventional diffuse optical tomography to obtain the geometrical information of lesions, allowing the incorporation of geometrical information as a priori in the PCDOT reconstruction using a locally refined mesh. The method is validated by a series of phantom experiments and evaluated using in vivo data from 42 human subjects. The results demonstrate clear contrast of RI between the lesion and the surroundings, making the image interpretation straightforward. The sensitivity and specificity from these 42 cases are both 81% when RI is used as an imaging parameter for distinguishing between malignant and benign lesions.

  7. Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging

    Science.gov (United States)

    Szigeti, S. S.; Hush, M. R.; Carvalho, A. R. R.; Hope, J. J.

    2010-10-01

    The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.013614 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.

  8. Phase-contrast x-ray imaging and tomography of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    We have analyzed the model organism Caenorhabditis elegans with the help of phase-contrast x-ray tomography. This work combines techniques from x-ray imaging studies of single biological cells by in-line holography with three-dimensional reconstruction and furthermore extends these studies to the multicellular level. To preserve the sub-cellular ultrastructure of the nematodes, we used the near-native sample preparation of high-pressure freezing as commonly used in the field of electron microscopy. For the presented samples, a standard, non-magnifying parallel-beam setting, as well as a magnifying, divergent-beam setting using nanofocusing optics is evaluated based on their tomographic reconstruction potential. In this paper, we address difficulties in sample preparation and issues of image processing. By experimental refinement and through optimized reconstruction procedures, we were able to perform x-ray imaging studies on a living specimen. (paper)

  9. Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging

    Science.gov (United States)

    Mocella, Vito; Brun, Emmanuel; Ferrero, Claudio; Delattre, Daniel

    2015-01-01

    Hundreds of papyrus rolls, buried by the eruption of Mount Vesuvius in 79 AD and belonging to the only library passed on from Antiquity, were discovered 260 years ago at Herculaneum. These carbonized papyri are extremely fragile and are inevitably damaged or destroyed in the process of trying to open them to read their contents. In recent years, new imaging techniques have been developed to read the texts without unwrapping the rolls. Until now, specialists have been unable to view the carbon-based ink of these papyri, even when they could penetrate the different layers of their spiral structure. Here for the first time, we show that X-ray phase-contrast tomography can reveal various letters hidden inside the precious papyri without unrolling them. This attempt opens up new opportunities to read many Herculaneum papyri, which are still rolled up, thus enhancing our knowledge of ancient Greek literature and philosophy.

  10. High-sensitivity phase-contrast tomography of rat brain in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Franz [Department of Physics, Technical University Munich, 85748 Garching (Germany); David, Christian; Bunk, Oliver [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Poitry-Yamate, Carole; Gruetter, Rolf [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Mueller, Bert [Biomaterials Science Center, University of Basel, 4031 Basel (Switzerland); Weitkamp, Timm, E-mail: franz.pfeiffer@ph.tum.d [European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex (France)

    2009-09-01

    We report advances and complementary results concerning a recently developed method for high-sensitivity grating-based x-ray phase-contrast tomography. In particular we demonstrate how the soft tissue sensitivity of the technique can be used to obtain in-vitro tomographic images of rat brain specimens. Contrary to our previous experiments with fixated specimen (chemically modified or formalin fixed), the present results on the rat's brain are closer to the in-vivo situation. The findings are particularly important from a clinical point of view, since a similar approach using three gratings can be implemented with more readily available x-ray sources, such as standard x-ray tubes.

  11. Long-term quantitative phase-contrast imaging of living cells by digital holographic microscopy

    Science.gov (United States)

    Liu, S.; Pan, F.; Wang, Z.; Wang, F.; Rong, L.; Shang, P.; Xiao, W.

    2011-04-01

    The dynamic analysis of biological living samples is one of the particular interests in life sciences. An improved digital holographic microscope for long-term quantitative phase-contrast imaging of living cells is presented in this paper. The optical configuration is optimized in the form of a free-space-fiber hybrid system which promotes the flexibility of imaging in complex or semi-enclosed experimental environment. Aberrations compensation is implemented taking into account the additional phase aberration induced by liquid culture medium in long-term observation. The proposed approach is applied to investigate living samples of MC3T3-E1 and MLO-Y4 cells. The experimental results demonstrate its availability in the analysis of cellular changes.

  12. Algorithm for phase contrast X-ray tomography based on nonlinear phase retrieval

    Institute of Scientific and Technical Information of China (English)

    NI Wen-lei; ZHOU Tie

    2008-01-01

    A new algorithm for phase contrast X-ray tomography under holographic measurement was proposed in this paper. The main idea of the algorithm was to solve the nonlinear phase retrieval problem using the Newton iterative method. The linear equations for the Newton directions were proved to be ill-posed and the regularized solu- tions were obtained by the conjugate gradient method. Some numerical experiments with computer simulated data were presented. The efficiency, feasibility and the numerical stability of the algorithm were illustrated by the numerical experiments. Compared with the results produced by the linearized phase retrieval algorithm, we can see that the new algorithm is not limited to be only efficient for the data measured in the near-field of the Fresnel region and thus it has a broader validity range.

  13. Typical Microstructures of Chinese Medicines with X-Ray Microscopy in Phase Contrast

    Institute of Scientific and Technical Information of China (English)

    WEI Xun; XIAO Ti-Qiao; LIU Li-Xiang; DU Guo-Hao; CHEN Min; LUO Yu-Yu; XU Hong-Jie

    2005-01-01

    @@ Due to the low absorption contrast of plant tissues, traditional x-ray radiography has not been included in the microscopic techniques used in the identification of traditional Chinese medicines (TCMs). With the development of x-ray phase contrast imaging (XPCI) in recent years, weakly absorbing materials could also be imaged by xrays. Here we investigate microstructures of TCMs utilizing XPCI based on a nano-focus x-ray tube. The results demonstrated that XPCI is capable of revealing the microstructures of TCMs used as judging criteria in the identification of TCMs. The major advantages of the new method are nondestructivity, no special demand for sample preparation and suitability for thick samples.

  14. Tumors in murine brains studied by grating-based phase contrast microtomography

    Science.gov (United States)

    Schulz, Georg; Dominietto, Marco; Kovacs, Zsofia; Schmitz, Rüdiger; Hieber, Simone E.; Thalmann, Peter; Beckmann, Felix; Müller, Bert

    2014-09-01

    Angiogenesis, i.e. the formation of vessels, is one of the key processes during tumor development. The newly formed vessels transport oxygen and nutrients from the healthy tissue to the tumor and gives tumor cells the possibility to replicate. The principle of anti-angiogenic therapy is to block angiogenic process in order to stop tumor growth. The aim of the present study is the investigation of murine glioma vascular architecture at early (7 days), intermediate (10 and 15 days) and late (23 days) stage of growth by means of grating-based phase contrast microtomography. We demonstrate that this technique yields premium contrast between healthy and cancerous parts of murine brain tissues.

  15. Ecdysis period of Rhodnius prolixus head investigated using phase contrast synchrotron microtomography.

    Science.gov (United States)

    Sena, G; Nogueira, L P; Braz, D; Almeida, A P; Gonzalez, M S; Azambuja, P; Colaço, M V; Barroso, R C

    2016-06-01

    Microtomography using synchrotron sources is a useful tool in biological imaging research since the phase coherence of synchrotron beams can be exploited to obtain images with high contrast resolution. This work is part of a series of works using phase contrast synchrotron microtomography in the study of Rhodnius prolixus head, the insect vector of Chagas' disease, responsible for about 12,000 deaths per year. The control of insect vector is the most efficient method to prevent this disease and studies have shown that the use of triflumuron, a chitin synthesis inhibitor, disrupted chitin synthesis during larval development and it's an alternative method against insect pests. The aim of this work was to investigate the biological effects of treatments with triflumuron in the ecdysis period (the moulting of the R. prolixus cuticle) using the new imaging beamline IMX at LNLS (Brazilian Synchrotron Light Laboratory). Nymphs of R. prolixus were taken from the Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Foundation, Brazil. Doses of 0.05mg of triflumuron were applied directly to the abdomen on half of the insects immediately after feeding. The insects were sacrificed 25days after feeding (intermoulting period) and fixed with glutaraldehyde. The results obtained using phase contrast synchrotron microtomography in R. prolixus showed amazing images of the effects of triflumuron on insects in the ecdysis period, and the formation of the new cuticle on those which were not treated with triflumuron. Both formation and malformation of this insect's cuticle have never been seen before with this technique. PMID:27184550

  16. Design and characterization of a phase contrast X-ray CT system

    Science.gov (United States)

    Zambelli, Joseph N.

    Phase contrast x-ray imaging has recently attracted wide research interest, as it offers the possibility to exploit different contrast mechanisms than conventional absorption imaging, with the potential for higher quality images or more available information as a result. This work details design and construction of au experimental grating-interferometer-based differential phase contrast computed tomography (DPC-CT) imaging system, presents measurements of performance, and compares this new imaging technique with conventional absorption imaging. Details of the fabrication of the specialized x-ray phase and absorption gratings are also provided. This system is unique in that makes use of a conventional rotating-anode x-ray tube, unlike previous designs which were based upon stationary anode x-ray tubes or synchrotron sources. The imaging system described here enables simultaneous reconstruction of electron density, effective atomic number, attenuation coefficient, and small-angle scatter density with data acquired from a single scan. It is theoretically shown and experimentally verified that DPC-CT imaging allows imaging of electron density at high spatial resolution with a much less severe dose penalty compared with conventional absorption imaging. Improved object visibility using electron density imaging is demonstrated with CNR measurements in physical phantoms and comparisons of reconstructions of breast tissue samples. The ability to directly image both electron density and effective atomic number provides a truly quantitative imaging technique and accuracy of the technique is shown using phantoms and potential applications are demonstrated using breast tissue samples. A new reconstruction algorithm which allows a doubling of the diameter of the scanning field of view, a potential enabling technology for eventual clinical use, is also demonstrated.

  17. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [BME Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu [ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  18. Phase contrast imaging reveals low lung volumes and surface areas in the developing marsupial.

    Directory of Open Access Journals (Sweden)

    Shannon J Simpson

    Full Text Available Marsupials are born with immature lungs when compared to eutherian mammals and rely, to various extents, on cutaneous gas exchange in order to meet metabolic requirements. Indeed, the fat-tailed dunnart is born with lungs in the canalicular stage of development and relies almost entirely on the skin for gas exchange at birth; consequently undergoing the majority of lung development in air. Plane radiographs and computed tomography data sets were acquired using phase contrast imaging with a synchrotron radiation source for two marsupial species, the fat-tailed dunnart and the larger tammar wallaby, during the first weeks of postnatal life. Phase contrast imaging revealed that only two lung sacs contain air after the first hour of life in the fat-tailed dunnart. While the lung of the tammar wallaby was comparatively more developed, both species demonstrated massive increases in air sac number and architectural complexity during the postnatal period. In addition, both the tammar wallaby and fat-tailed dunnart had lower lung volumes and parenchymal surface areas than were expected from morphometrically determined allometric equations relating these variables to body mass during the neonatal period. However, lung volume is predicted to scale with mass as expected after the neonatal marsupial reaches a body mass of ∼1 g and no longer relies on the skin for gas exchange. Decreased lung volume in the marsupial neonate further supports the maxim that cutaneous gas exchange occurs in the marsupial neonate because the respiratory apparatus is not yet capable of meeting the gas exchange requirements of the newborn.

  19. On "New Massive" 4D Gravity

    CERN Document Server

    Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K

    2012-01-01

    We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a "dual" graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D "new massive gravity", we call this 4D model (linearized) "new massive dual gravity". We analyse its massless limit, and discuss similarities to the Eddington-Schroedinger model.

  20. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification.

  1. Polychromatic phase contrast imaging as a basic step towards a widespread application of the technique

    International Nuclear Information System (INIS)

    Phase contrast imaging (PCI) is probably the most exciting amongst emerging X-ray imaging techniques, as it has the potential to remove some of the main limitations of conventional radiology. As a consequence, significant effort is currently directed towards developing the technique for the first clinical implementations. In recent years, PCI has been widely experimented, but its use has been mainly restricted to synchrotron radiation (SR) facilities. Source-related limitations are in fact the most relevant in this context, and the fact that most phase techniques require monochromatic radiation makes these limitations even more severe. Amongst the different techniques, free-space propagation is the most suited to a polychromatic implementation. A detailed simulation, based on Fresnel/Kirchoff diffraction integrals, was devised to describe this imaging modality. This simulation accounts for source dimensions, beam spectrum and divergence and detector point spread function, and can thus be applied to any X-ray imaging system. In particular, by accepting these parameters as input, along with ones describing the sample, the model can be used to optimize the geometry of the set-up, i.e. to assess the source-to-sample and sample-to-detector distances that maximize feature detection. The simulation was validated experimentally by acquiring a range of images of different samples with a laboratory X-ray source. Good agreement was found between simulated and experimental data in all cases. In order to maximize the generality of the results, all acquisitions were carried out using a polychromatic source and an energy-resolving detector. This effectively allowed the recording of a range of monochromatic and polychromatic images in a single acquisition, as an assortment of the former can be created by integrating different parts of the acquired spectra. The most notable result obtained in this study is that in most practical cases polychromatic PCI can provide the same image

  2. Representing Participation in ICT4D Projects

    DEFF Research Database (Denmark)

    Singh, J. P.; Flyverbom, Mikkel

    2016-01-01

    How do the discourses of participation inform deployment of information and communication technologies for development (ICT4D)? Discourses here mean narratives that assign roles to actors, and specify causes and outcomes for events. Based on the theory and practice of international development we...... identify two dimensions to participation and ICT4D: whether participation 1) is hierarchical/top-down or agent-driven/bottom-up, and 2) involves conflict or cooperation. Based on these dimensions we articulate four ideal types of discourse that permeate ICT and development efforts: stakeholder......-based discourses that emphasize consensus, networked efforts among actors collaborating in network arrangements, mobilization discourses that account for contestation over meanings of participation, and oppositional discourses from ׳grassroots׳ actors that also include conflict. We conclude that ICT4D efforts...

  3. Global 4-D trajectory optimization for spacecraft

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Global 4-D trajectory(x,y,z,t)is optimized for a spacecraft,which is launched from the Earth to fly around the Sun,just as star-drift of 1437 asteroids in the solar system.The spacecraft trajectory is controlled by low thrust.The performance index of optimal trajectory is to maximize the rendezvous times with the intermediate asteroids,and also maximize the final mass.This paper provides a combined algorithm of global 4-D trajectory optimization.The algorithm is composed of dynamic programming and two-point-boundary algorithm based on optimal control theory.The best 4-D trajectory is obtained:the spacecraft flies passing 55 asteroids,and rendezvous with(following or passing again)asteroids for 454 days,and finally rendezvous with the asteroid 2005SN25 on the day 60521(MJD),the final mass of the spacecraft is 836.53 kg.

  4. 4D MR imaging using robust internal respiratory signal

    Science.gov (United States)

    Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam

    2016-05-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.

  5. Shadow-driven 4D haptic visualization.

    Science.gov (United States)

    Zhang, Hui; Hanson, Andrew

    2007-01-01

    Just as we can work with two-dimensional floor plans to communicate 3D architectural design, we can exploit reduced-dimension shadows to manipulate the higher-dimensional objects generating the shadows. In particular, by taking advantage of physically reactive 3D shadow-space controllers, we can transform the task of interacting with 4D objects to a new level of physical reality. We begin with a teaching tool that uses 2D knot diagrams to manipulate the geometry of 3D mathematical knots via their projections; our unique 2D haptic interface allows the user to become familiar with sketching, editing, exploration, and manipulation of 3D knots rendered as projected imageson a 2D shadow space. By combining graphics and collision-sensing haptics, we can enhance the 2D shadow-driven editing protocol to successfully leverage 2D pen-and-paper or blackboard skills. Building on the reduced-dimension 2D editing tool for manipulating 3D shapes, we develop the natural analogy to produce a reduced-dimension 3D tool for manipulating 4D shapes. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the experience accessible to human beings. As far as we are aware, this paper reports the first interactive system with force-feedback that provides "4D haptic visualization" permitting the user to model and interact with 4D cloth-like objects.

  6. Information and backaction due to phase contrast imaging measurements of cold atomic gases: beyond Gaussian states

    CERN Document Server

    Ilo-Okeke, Ebubechukwu O

    2016-01-01

    We further examine a theory of phase contrast imaging (PCI) of cold atomic gases, first introduced by us in Phys. Rev. Lett. {\\bf 112}, 233602 (2014). We model the PCI measurement by directly calculating the entangled state between the light and the atoms due to the ac Stark shift, which induces a conditional phase shift on the light depending upon the atomic state. By interfering the light that passes through the BEC with the original light, one can obtain information of the atomic state at a single shot level. We derive an exact expression for a measurement operator that embodies the information obtained from PCI, as well as the back-action on the atomic state. By the use of exact expressions for the measurement process, we go beyond the continuous variables approximation such that the non-Gaussian regime can be accessed for both the measured state and the post-measurement state. Features such as the photon probability density, signal, signal variance, Fisher information, error of the measurement, and the b...

  7. DESIGN OF A MICROFABRICATED, TWO-ELECTRODE PHASE-CONTRAST ELEMENTSUITABLE FOR ELECTRON MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Cambie, Rossana; Downing, Kenneth H.; Typke, Dieter; Glaeser,Robert M.; Jin, Jian

    2006-09-20

    A miniature electrostatic element has been designed to selectively apply a ninety-degree phase shift to the unscattered beam in the back focal plane of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. The design involves a cylindrically shaped, biased-voltage electrode, which is surrounded by a concentric grounded electrode. Electrostatic calculations have been used to determine that the fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size is greater than 5:1. Unlike the planar, three-electrode einzel lens originally proposed by Boersch for the same purpose, this new design does not require insulating layers to separate the biased and grounded electrodes, and it can thus be produced by a very simple microfabrication process. Scanning electron microscope images confirm that mechanically robust devices with feature sizes of {approx}1 {micro}m can be easily fabricated. Preliminary experimental images demonstrate that these devices do apply a 90-degree phase shift between the scattered and unscattered electrons, as expected.

  8. Feasibility of using energy-resolving detectors in differential phase-contrast imaging

    Science.gov (United States)

    Baturin, Pavlo

    2016-03-01

    In a common clinical setting, conventional absorption-based imaging provides relatively good contrast between bonelike and soft-tissue materials. The reliability of material differentiation, however, is hampered when materials with similar absorption properties are scanned. This problem can be addressed by utilizing a spectral imaging technique whereby multiple X-ray measurements are taken at different beam conditions. In this work, we discuss the possibility of using a spectral imaging approach in a grating-based, differential-phase contrast-imaging (DPCI) modality. Two approaches, dual exposure with a conventional flat-panel detector (FPD) and a single exposure with a photon-counting energy-resolving detector (PCD), were reviewed. The feasibility of a single-exposure DPCI and a two-bin PCD setup was assessed quantitatively by a least-squares minimization algorithm applied to an X-ray diffraction pattern. It was shown that a two-peak-shaped X-ray spectrum can allow PCDs to be placed unambiguously at single Talbot distances making it possible to simultaneously detect photons in each energy bin with comparable efficiencies. The results of this work can help build a bridge between two rapidly developing imaging modalities, X-ray spectral imaging and X-ray DPCI.

  9. Proposed imaging of the ultrafast electronic motion in samples using x-ray phase-contrast

    CERN Document Server

    Dixit, Gopal; Santra, Robin

    2013-01-01

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wavepacket would appear to be the most obvious approach to image the electronic motion in real-time and real-space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wavepacket. However, recent results by Dixit {\\em et al.} [Proc. Natl. Acad. Sci. U.S.A., {\\bf 109}, 11636 (2012)] have put this notion into question and shown that the scattering in the far-field regime probes spatio-temporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wavepacket via ultrafast x-ray {\\em phase contrast imaging}. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field reg...

  10. Interior tomography in x-ray differential phase contrast CT imaging

    Science.gov (United States)

    Thériault Lauzier, Pascal; Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2012-05-01

    Differential phase contrast computed tomography (DPC-CT) is an x-ray imaging method that uses the wave properties of imaging photons as the contrast mechanism. It has been demonstrated that DPC images can be obtained using a conventional x-ray tube and a Talbot-Lau-type interferometer. Due to the limited size of the gratings, current data acquisition systems only offer a limited field of view, and thus are prone to data truncation. As a result, the reconstructed DPC-CT image may suffer from image artifacts and increased inaccuracy in the reconstructed image values. In this paper, we demonstrate that a small region of interest (ROI) within a large object can be accurately and stably reconstructed using fully truncated projection datasets provided that a priori information on electron density is known for a small region inside the ROI. The method reconstructs an image iteratively to satisfy a group of physical conditions by using a projection onto convex set (POCS) approach. In this work, this POCS algorithm is validated using both numerical simulations and physical phantom experimental data. In both cases, the root mean square error is reduced by an order of magnitude with respect to the truncated analytic reconstructions. Truncation artifacts observed in the latter reconstructions are eliminated using the POCS algorithm.

  11. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    Science.gov (United States)

    Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  12. Hierarchical Mergence Approach to Cell Detection in Phase Contrast Microscopy Images

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-01-01

    Full Text Available Phase contrast microscope is one of the most universally used instruments to observe long-term cell movements in different solutions. Most of classic segmentation methods consider a homogeneous patch as an object, while the recorded cell images have rich details and a lot of small inhomogeneous patches, as well as some artifacts, which can impede the applications. To tackle these challenges, this paper presents a hierarchical mergence approach (HMA to extract homogeneous patches out and heuristically add them up. Initially, the maximum region of interest (ROI, in which only cell events exist, is drawn by using gradient information as a mask. Then, different levels of blurring based on kernel or grayscale morphological operations are applied to the whole image to produce reference images. Next, each of unconnected regions in the mask is applied with Otsu method independently according to different reference images. Consequently, the segmentation result is generated by the combination of usable patches in all informative layers. The proposed approach is more than simply a fusion of the basic segmentation methods, but a well-organized strategy that integrates these basic methods. Experiments demonstrate that the proposed method outperforms previous methods within our datasets.

  13. Low-dose phase contrast tomography with conventional x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, C. K., E-mail: charlotte.hagen.10@ucl.ac.uk; Endrizzi, M.; Diemoz, P. C.; Olivo, A. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom); Munro, P. R. T. [Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia and Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2014-07-15

    Purpose: The edge illumination (EI) x-ray phase contrast imaging (XPCi) method has been recently further developed to perform tomographic and, thus, volumetric imaging. In this paper, the first tomographic EI XPCi images acquired with a conventional x-ray source at dose levels below that used for preclinical small animal imaging are presented. Methods: Two test objects, a biological sample and a custom-built phantom, were imaged with a laboratory-based EI XPCi setup in tomography mode. Tomographic maps that show the phase shift and attenuating properties of the object were reconstructed, and analyzed in terms of signal-to-noise ratio and quantitative accuracy. Dose measurements using thermoluminescence devices were performed. Results: The obtained images demonstrate that phase based imaging methods can provide superior results compared to attenuation based modalities for weakly attenuating samples also in 3D. Moreover, and, most importantly, they demonstrate the feasibility of low-dose imaging. In addition, the experimental results can be considered quantitative within the constraints imposed by polychromaticity. Conclusions: The results, together with the method's dose efficiency and compatibility with conventional x-ray sources, indicate that tomographic EI XPCi can become an important tool for the routine imaging of biomedical samples.

  14. Hemodynamic evaluation with TURBO BRISK--a rapid phase contrast angiography technique.

    Science.gov (United States)

    Anayiotos, A S; Kortright, E; Doyle, M; Walsh, E G; Fuisz, A R; Pohost, G M

    2000-01-01

    Hemodynamic imaging by phase contrast angiography was significantly accelerated by selective interpolation and segmentation in k-space using TURBO BRISK. The method was tested in vitro on three independent flowfields, representative of human blood rheology: a straight tube simulating the descending aorta, a curved tube simulating the aortic arch and a two-chamber orifice flow model simulating valvular regurgitation. The results were compared to data obtained by Laser Doppler Velocimetry (LDV) and showed good agreement. For the straight tube, the flow velocity obtained by five TURBO BRISK methods with increasing segmentation factors and corresponding time savings showed good agreement with LDV. For the curved tube, the velocity showed good general agreement with some differences in the decelerating part of the cycle, and in the low-velocity secondary flow structures. The orifice flow evaluation, the most time consuming case, was performed by the control volume method. It showed good agreement with actual flows through the orifice. Data acquisitions for TURBO-4 BRISK could be performed in 20s for each velocity component. The method shows promise for breath-hold acquisitions in clinical applications, including calculation of blood flow volumes through diseased arteries, measurement of blood backflow volumes through dysfunctional heart valves to time valve replacement operations, and evaluation of arterial wall shear stress, an important factor in the genesis of atherosclerosis.

  15. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues.

    Science.gov (United States)

    Appel, Alyssa A; Larson, Jeffery C; Garson, Alfred B; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc B; Fisher, John P; Anastasio, Mark A; Brey, Eric M

    2015-03-01

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. Techniques that allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. These results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  16. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Alyssa A. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Larson, Jeffery C. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Garson, III, Alfred B. [George Washington Univ., Washington, DC (United States); Guan, Huifeng [George Washington Univ., Washington, DC (United States); Zhong, Zhong [Brookhaven National Lab. (BNL), Upton, NY (United States); Nguyen, Bao-Ngoc [Univ. of Maryland, College Park, MD (United States); Fisher, John P. [Univ. of Maryland, College Park, MD (United States); Anastasio, Mark A. [George Washington Univ., Washington, DC (United States); Brey, Eric M. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States)

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  17. Sensitive Phase Gratings for X-ray Phase Contrast -- a Simulation-based Comparison

    CERN Document Server

    Preusche, Oliver

    2016-01-01

    Medical differential phase contrast x-ray imaging (DPCI) promises improved soft-tissue contrast at lower x-ray dose. The dose strongly depends on both the angular sensitivity and on the visibility of a grating-based Talbot-Lau interferometer. Using a conventional x-ray tube, a high sensitivity and a high visibility are somewhat contradicting goals: To increase sensitivity, the grating period has to be reduced and/or the grating distance increased. Technically, this means using a higher Talbot order (3rd or 5th one instead of first one). This however reduces the visibility somewhat, because only a smaller part of the tube spectrum will get used. This work proposes to relax this problem by changing the phase grating geometry. This allows to double sensitivity (i.e., double the Talbot order) without reducing the visibility. One proposed grating geometry is an older binary one (75% of a period $\\pi$-shifting), but applied in a novel way. The second proposed geometry is a novel one, requiring three height levels f...

  18. Schlieren, Phase-Contrast, and Spectroscopy Diagnostics for the LBNL HIF Plasma Channel Experiment

    Science.gov (United States)

    Ponce, D. M.; Niemann, C.; Fessenden, T. J.; Leemans, W.; Vandersloot, K.; Dahlbacka, G.; Yu, S. S.; Sharp, W. M.; Tauschwitz, A.

    1999-11-01

    The LBNL Plasma Channel experiment has demonstrated stable 42-cm Z-pinch discharge plasma channels with peak currents in excess of 50 kA for a 7 torr nitrogen, 30 kV discharge. These channels offer the possibility of transporting heavy-ion beams for inertial fusion. We postulate that the stability of these channels resides in the existance of a neutral-gas density depresion created by a pre-pulse discharge before the main capacitor bank discharge is created. Here, we present the results and experimental diagnostics setup used for the study of the pre-pulse and main bank channels. Observation of both the plasma and neutral gas dynamics is achieved. Schlieren, Zernike's phase-contrast, and spectroscopic techniques are used. Preliminary Schlieren results show a gas shockwave moving radially at a rate of ≈ 10^6 mm/sec as a result of the fast and localized deposited energy during the evolution of the pre-pulse channel. This data will be used to validate simulation codes (BUCKY and CYCLOPS).

  19. Accelerated phase-contrast cine MRI using k-t SPARSE-SENSE.

    Science.gov (United States)

    Kim, Daniel; Dyvorne, Hadrien A; Otazo, Ricardo; Feng, Li; Sodickson, Daniel K; Lee, Vivian S

    2012-04-01

    Phase-contrast (PC) cine MRI is a promising method for assessment of pathologic hemodynamics, including cardiovascular and hepatoportal vascular dynamics, but its low data acquisition efficiency limits the achievable spatial and temporal resolutions within clinically acceptable breath-hold durations. We propose to accelerate PC cine MRI using an approach which combines compressed sensing and parallel imaging (k-t SPARSE-SENSE). We validated the proposed 6-fold accelerated PC cine MRI against 3-fold accelerated PC cine MRI with parallel imaging (generalized autocalibrating partially parallel acquisitions). With the programmable flow pump, we simulated a time varying waveform emulating hepatic blood flow. Normalized root mean square error between two sets of velocity measurements was 2.59%. In multiple blood vessels of 12 control subjects, two sets of mean velocity measurements were in good agreement (mean difference = -0.29 cm/s; lower and upper 95% limits of agreement = -5.26 and 4.67 cm/s, respectively). The mean phase noise, defined as the standard deviation of the phase in a homogeneous stationary region, was significantly lower for k-t SPARSE-SENSE than for generalized autocalibrating partially parallel acquisitions (0.05 ± 0.01 vs. 0.19 ± 0.06 radians, respectively; P cine MRI pulse sequence with k-t SPARSE-SENSE is a promising investigational method for rapid velocity measurement with relatively high spatial (1.7 mm × 1.7 mm) and temporal (∼35 ms) resolutions.

  20. Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging

    CERN Document Server

    Maretzke, Simon

    2016-01-01

    Propagation-based X-ray phase contrast enables nanoscale imaging of biological tissue by probing not only the attenuation, but also the real part of the refractive index of the sample. Since only intensities of diffracted waves can be measured, the main mathematical challenge consists in a phase-retrieval problem in the near-field regime. We treat an often used linearized version of this problem known as contract transfer function model. Surprisingly, this inverse problem turns out to be well-posed assuming only a compact support of the imaged object. Moreover, we establish bounds on the Lipschitz stability constant. In general this constant grows exponentially with the Fresnel number of the imaging setup. However, both for homogeneous objects, characterized by a fixed ratio of the induced refractive phase shifts and attenuation, and in the case of measurements at two distances, a much more favorable algebraic dependence on the Fresnel number can be shown. In some cases we establish order optimality of our es...

  1. The scientific value of 4D visualizations

    Science.gov (United States)

    Minster, J.; Olsen, K.; Day, S.; Moore, R.; Jordan, T. H.; Maechling, P.; Chourasia, A.

    2006-12-01

    Significant scientific insights derive from viewing measured, or calculated three-dimensional, time-dependent -- that is four-dimensional-- fields. This issue cuts across all disciplines of Earth Sciences. Addressing it calls for close collaborations between "domain" scientists and "IT" visualization specialists. Techniques to display such 4D fields in a intuitive way are a major challenge, especially when the relevant variables to be displayed are not scalars but tensors. This talk will illustrate some attempts to deal with this challenge, using seismic wave fields as specific objects to display. We will highlight how 4D displays can help address very difficult issues of significant scientific import.

  2. Cinema 4D R13 Cookbook

    CERN Document Server

    Szabo, Michael

    2012-01-01

    This book contains short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity. This book is for anyone who wants to quickly get up to speed with Cinema 4D to create 3D projects that run laps around simple

  3. 4D, N = 1 Supersymmetry Genomics (I)

    CERN Document Server

    Gates, S J; MacGregor, B; Parker, J; Polo-Sherk, R; Rodgers, V G J; Wassink, L

    2009-01-01

    Presented in this paper the nature of the supersymmetrical representation theory behind 4D, N = 1 theories, as described by component fields, is investigated using the tools of Adinkras and Garden Algebras. A survey of familiar matter multiplets using these techniques reveals they are described by two fundamental valise Adinkras that are given the names of the cis-Valise (c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, N = 1 component descriptions of supermultiplets are associated with two integers - the numbers of c-V and t-V Adinkras that occur in the representation.

  4. Differential phase contrast setup for a non coherent beamline at HASYLAB using hard X-ray grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Herzen, Julia; Beckmann, Felix; Haibel, Astrid; Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany); Donath, Tilman; David, Christian; Gruenzweig, Christian [Paul Scherrer Institute, Villigen PSI (Switzerland); Pfeiffer, Franz [Paul Scherrer Institute, Villigen PSI (Switzerland); EPF Lausanne, Lausanne (Switzerland)

    2009-07-01

    Phase-contrast imaging is a common technique to visualize soft tissue with much higher contrast than the conventional absorption-contrast imaging. Differential phase contrast (DPC), developed at PSI, Switzerland, makes use of a hard x-ray grating interferometer and allows for phase-contrast imaging with high brilliance synchrotron sources as well as with conventional x-ray tubes. It is recently reported also to provide dark field information that is very sensitive to micro structures like porosity within the materials. Here we present the plans to adopt the DPC technique to the HARWI-II materials science beamline, operated by GKSS Research Centre, in cooperation with DESY, Hamburg. This will offer an amount of new applications especially in the field of materials science like for example characterizing new light weight materials like magnesium and studying its corrosion as implant material.

  5. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    International Nuclear Information System (INIS)

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 μm are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system being 4 μm in absorption mode and ∼14 μm in phase contrast mode (z2=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.

  6. Hard X-ray phase-contrast tomography of non-homogeneous specimens: grating interferometry versus propagation-based imaging.

    Science.gov (United States)

    Ruiz-Yaniz, Maite; Zanette, Irene; Sarapata, Adrian; Birnbacher, Lorenz; Marschner, Mathias; Chabior, Michael; Olbinado, Margie; Pfeiffer, Franz; Rack, Alexander

    2016-09-01

    X-ray phase-contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex-valued refractive index of a specimen are nowadays available. A comparative study using experimental data from grating-based interferometry and propagation-based phase contrast combined with single-distance phase retrieval applied to a non-homogeneous sample is presented (acquired at beamline ID19-ESRF). It is shown that grating-based interferometry can handle density gradients in a superior manner. The study underlines the complementarity of the two techniques for practical applications. PMID:27577776

  7. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  8. Imaging Liver Lesions Using Grating-Based Phase-Contrast Computed Tomography with Bi-Lateral Filter Post-Processing

    OpenAIRE

    Herzen, Julia; Marian S Willner; Fingerle, Alexander A.; Peter B Noël; Köhler, Thomas; Drecoll, Enken; Rummeny, Ernst J.; Pfeiffer, Franz

    2014-01-01

    X-ray phase-contrast imaging shows improved soft-tissue contrast compared to standard absorption-based X-ray imaging. Especially the grating-based method seems to be one promising candidate for clinical implementation due to its extendibility to standard laboratory X-ray sources. Therefore the purpose of our study was to evaluate the potential of grating-based phase-contrast computed tomography in combination with a novel bi-lateral denoising method for imaging of focal liver lesions in an ex...

  9. Investigation of the signature of lung tissue in X-ray grating-based phase-contrast imaging

    OpenAIRE

    Weber, Thomas; Bayer, Florian; Haas, Wilhelm; Pelzer, Georg; Rieger, Jens; Ritter, André; Wucherer, Lukas; Braun, Jan Matthias; Durst, Jürgen; Michel, Thilo; Anton, Gisela

    2012-01-01

    Purpose: Grating-based X-ray phase-contrast imaging is a promising modality increasing the soft tissue contrast in medical imaging. In this work, the signature of lung tissue in X-ray grating-based physe-contrast imaging is investigated. Methods: We used a Talbot-Lau interferometer for our investigations of two C57BL/6 mice. Both underwent projection imaging and computed tomography. Results: The results show that the three images obtained by X-ray phase-contrast imaging show complementary ana...

  10. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    Science.gov (United States)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  11. Novel X-ray phase-contrast tomography method for quantitative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur;

    2014-01-01

    The objective of this study was to evaluate the use of X-ray phase-contrast tomography combined with 3D image segmentation to investigate the heat induced structural changes in meat. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric...... and separated into a water phase and a gel phase formed by the sarcoplasmic proteins in the exudate. The results show that X-ray phase contrast tomography offers unique possibilities in studies both the meat structure and the different meat component such as water, fat, connective tissue and myofibrils...

  12. 4D MR phase and magnitude segmentations with GPU parallel computing.

    Science.gov (United States)

    Bergen, Robert V; Lin, Hung-Yu; Alexander, Murray E; Bidinosti, Christopher P

    2015-01-01

    The increasing size and number of data sets of large four dimensional (three spatial, one temporal) magnetic resonance (MR) cardiac images necessitates efficient segmentation algorithms. Analysis of phase-contrast MR images yields cardiac flow information which can be manipulated to produce accurate segmentations of the aorta. Phase contrast segmentation algorithms are proposed that use simple mean-based calculations and least mean squared curve fitting techniques. The initial segmentations are generated on a multi-threaded central processing unit (CPU) in 10 seconds or less, though the computational simplicity of the algorithms results in a loss of accuracy. A more complex graphics processing unit (GPU)-based algorithm fits flow data to Gaussian waveforms, and produces an initial segmentation in 0.5 seconds. Level sets are then applied to a magnitude image, where the initial conditions are given by the previous CPU and GPU algorithms. A comparison of results shows that the GPU algorithm appears to produce the most accurate segmentation.

  13. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-04-15

    Purpose: Phase contrast imaging, particularly of the breast, is being actively investigated. The purpose of this work is to investigate the x-ray phase contrast properties of breast tissues and commonly used breast tissue substitutes or phantom materials with an aim of determining the phantom materials best representative of breast tissues. Methods: Elemental compositions of breast tissues including adipose, fibroglandular, and skin were used to determine the refractive index, n= 1 -{delta}+i {beta}. The real part of the refractive index, specifically the refractive index decrement ({delta}), over the energy range of 5-50 keV were determined using XOP software (version 2.3, European Synchrotron Radiation Facility, France). Calcium oxalate and calcium hydroxyapatite were considered to represent the material compositions of microcalcifications in vivo. Nineteen tissue substitutes were considered as possible candidates to represent adipose tissue, fibroglandular tissue and skin, and four phantom materials were considered as possible candidates to represent microcalcifications. For each material, either the molecular formula, if available, or the elemental composition based on weight fraction, was used to determine {delta}. At each x-ray photon energy, the absolute percent difference in {delta} between the breast tissue and the substitute material was determined, from which three candidates were selected. From these candidate tissue substitutes, the material that minimized the absolute percent difference in linear attenuation coefficient {mu}, and hence {beta}, was considered to be best representative of that breast tissue. Results: Over the energy range of 5-50 keV, while the {delta} of CB3 and fibroglandular tissue-equivalent material were within 1% of that of fibroglandular tissue, the {mu} of fibroglandular tissue-equivalent material better approximated the fibroglandular tissue. While the {delta} of BR10 and adipose tissue-equivalent material were within 1% of

  14. Experimental and theoretical contributions to X-ray phase-contrast techniques for medical imaging

    International Nuclear Information System (INIS)

    Several X-ray phase-contrast techniques have recently been developed. Unlike conventional X-ray methods, which measure the absorption properties of the tissues, these techniques derive contrast also from the modulation of the phase produced by the sample. Since the phase shift can be significant even for small details characterized by weak or absent absorption, the achievable image contrast can be greatly increased, notably for the soft biological tissues. These methods are therefore very promising for applications in the medical domain. The aim of this work is to contribute to a deeper understanding of these techniques, in particular propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GIFM), and to study their potential and the best practical implementation for medical imaging applications. An important part of this work is dedicated to the use of mathematical algorithms for the extraction, from the acquired images, of quantitative sample information (the absorption, refraction and scattering sample properties). In particular, five among the most known algorithms based on the geometrical optics approximation have been theoretically analysed and experimentally compared, in planar and tomographic modalities, by using geometrical phantoms and human bone-cartilage and breast samples. A semi-quantitative method for the acquisition and reconstruction of tomographic images in the ABI and GIFM techniques has also been proposed. The validity conditions are analyzed in detail and the method, enabling a considerable simplification of the imaging procedure, has been experimentally checked on phantoms and human samples. Finally, a theoretical and experimental comparison of the PBI, ABI and GIFM techniques is presented. The advantages and drawbacks of each of these techniques are discussed. The results obtained from this analysis can be very useful for determining the most adapted technique for a given application. (author)

  15. X-ray phase-contrast tomography of renal ischemia-reperfusion damage.

    Directory of Open Access Journals (Sweden)

    Astrid Velroyen

    Full Text Available The aim of the study was to investigate microstructural changes occurring in unilateral renal ischemia-reperfusion injury in a murine animal model using synchrotron radiation.The effects of renal ischemia-reperfusion were investigated in a murine animal model of unilateral ischemia. Kidney samples were harvested on day 18. Grating-Based Phase-Contrast Imaging (GB-PCI of the paraffin-embedded kidney samples was performed at a Synchrotron Radiation Facility (beam energy of 19 keV. To obtain phase information, a two-grating Talbot interferometer was used applying the phase stepping technique. The imaging system provided an effective pixel size of 7.5 µm. The resulting attenuation and differential phase projections were tomographically reconstructed using filtered back-projection. Semi-automated segmentation and volumetry and correlation to histopathology were performed.GB-PCI provided good discrimination of the cortex, outer and inner medulla in non-ischemic control kidneys. Post-ischemic kidneys showed a reduced compartmental differentiation, particularly of the outer stripe of the outer medulla, which could not be differentiated from the inner stripe. Compared to the contralateral kidney, after ischemia a volume loss was detected, while the inner medulla mainly retained its volume (ratio 0.94. Post-ischemic kidneys exhibited severe tissue damage as evidenced by tubular atrophy and dilatation, moderate inflammatory infiltration, loss of brush borders and tubular protein cylinders.In conclusion GB-PCI with synchrotron radiation allows for non-destructive microstructural assessment of parenchymal kidney disease and vessel architecture. If translation to lab-based approaches generates sufficient density resolution, and with a time-optimized image analysis protocol, GB-PCI may ultimately serve as a non-invasive, non-enhanced alternative for imaging of pathological changes of the kidney.

  16. Talbot phase-contrast x-ray imaging for the small joints of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Dan [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Beck, Thomas J [Quantum Medical Metrics, 1450 South Rolling Road, Baltimore, MD 21227 (United States); Carrino, John A [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287 (United States); Bingham, Clifton O, E-mail: stutman@pha.jhu.edu [Divisions of Rheumatology and Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224 (United States)

    2011-09-07

    A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 {mu}m resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 {mu}m period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at {approx}25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a {approx}2 m long 'symmetric' interferometer operated in a high Talbot order.

  17. Low-dose, phase-contrast mammography with high signal-to-noise ratio

    Science.gov (United States)

    Gromann, Lukas B.; Bequé, Dirk; Scherer, Kai; Willer, Konstantin; Birnbacher, Lorenz; Willner, Marian; Herzen, Julia; Grandl, Susanne; Hellerhoff, Karin; Sperl, Jonathan I.; Pfeiffer, Franz; Cozzini, Cristina

    2016-01-01

    Differential phase-contrast X-ray imaging using a Talbot-Lau interferometer has recently shown promising results for applications in medical imaging. However, reducing the applied radiation dose remains a major challenge. In this study, we consider the realization of a Talbot-Lau interferometer in a high Talbot order to increase the signal-to-noise ratio for low-dose applications. The quantitative performance of π and π/2 systems at high Talbot orders is analyzed through simulations, and the design energy and X-ray spectrum are optimized for mammography. It is found that operation even at very high Talbot orders is feasible and beneficial for image quality. As long as the X-ray spectrum is matched to the visibility spectrum, the SNR continuously increases with the Talbot order for π-systems. We find that the optimal X-ray spectra and design energies are almost independent of the Talbot order and that the overall imaging performance is robust against small variations in these parameters. Discontinuous spectra, such as that from molybdenum, are less robust because the characteristic lines may coincide with minima in the visibility spectra; however, they may offer slightly better performance. We verify this hypothesis by realizing a prototype system with a mean fringe visibility of above 40% at the seventh Talbot order. With this prototype, a proof-of-principle measurement of a freshly dissected breast at reasonable compression to 4 cm is conducted with a mean glandular dose of only 3 mGy but with a high SNR. PMID:26977347

  18. Anatomical background noise power spectrum in differential phase contrast breast images

    Science.gov (United States)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  19. Triggering of leukocytes by phase contrast in imaging cytometry with scanning fluorescence microscope (SFM)

    Science.gov (United States)

    Bocsi, József; Pierzchalski, Arkadiusz; Marecka, Monika; Malkusch, Wolf; Tárnok, Attila

    2009-02-01

    Slide-based cytometry (SBC) leads to breakthrough in cytometry of cells in tissues, culture and suspension. Carl Zeiss Imaging Solutions' new automated SFM combines imaging with cytometry. A critical step in image analysis is selection of appropriate triggering signal to detect all objects. Without correct target cell definition analysis is hampered. DNA-staining is among the most common triggering signals. However, the majority of DNA-dyes yield massive spillover into other fluorescence channels limiting their application. By microscopy objects of >5μm diameter can be easily detected by phase-contrast signal (PCS) without any staining. Aim was to establish PCS - triggering for cell identification. Axio Imager.Z1 motorized SFM was used (high-resolution digital camera, AxioCam MRm; AxioVision software: automatic multi-channel scanning, analysis). Leukocytes were stained with FITC (CD4, CD8) and APC (CD3) labelled antibodies in combinations using whole blood method. Samples were scanned in three channels (PCS/FITC/APC). Exposition-times for PCS were set as low as possible; the detection efficiency was verified by fluorescence. CD45-stained leukocytes were counted and compared to the number of PCS detected events. Leukocyte subtyping was compared with other cytometers. In focus the PCS of cells showed ring-form that was not optimal for cell definition. Out of focus PCS allows more effective qualitative and quantitative cell analyses. PCS was an accurate triggering signal for leukocytes enabling cell counting and discrimination of leukocytes from platelets. Leukocyte subpopulation frequencies were comparable to those obtained by other cytometers. In conclusion PCS is a suitable trigger-signal not interfering with fluorescence detection.

  20. Ascending colonic variceal bleeding: utility of phase-contrast MR portography in diagnosis and follow-up after treatment with TIPS and variceal embolization

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, P.; Motamedi, J.P.; Oddo, F.; Padovani, B. [Department of Radiology, Centre Hospitalier Regional et Universitaire de Nice, Hopital Archet II, 06 - Nice (France); Demuth, N.; Caroli-Bosc, F.X. [Department of Hepatology, Centre Hospitalier Regional et Universitaire de Nice, Hopital Archet II, 06 - Nice (France)

    2000-08-01

    The authors describe the discovery of ascending colonic variceal veins via celiomesenteric diagnostic angiography following a bout of melena in a 44-year-old woman. Magnetic resonance imaging, including phase-contrast MR venography, allowed visualization of the portal and systemic veins immediately after the initial angiograms. The hemorrhagic episode did not resolve until after transjugular intrahepatic shunt insertion and selective variceal embolization through the shunt. At 1 week-, 3 months-, and 6 months post treatment, follow-up MR venography no longer revealed the presence of colonic varices. Colonoscopy at 6 months was normal and the patient did not have any further episodes of bleeding until a liver transplantation was performed after 9 months. (orig.)

  1. Study of phase contrast imaging for carbon fiber, polystyrene and lung tissue using monochromatic and polychromatic X-ray sources

    International Nuclear Information System (INIS)

    Phase contrast imaging is a new method of radiography in which the information of change in phase of the X-rays as it passes through the object gets reflected in the intensity. This leads to a better sensitivity and contrast than the conventional absorption radiography. In this paper we discuss the simulation studies of phase contrast imaging using monochromatic and polychromatic X-ray point source for simple two- and three-dimensional objects like circular and spherical objects (made up of carbon-fiber, polystyrene and lung tissue). The advantages of refraction contrast images are discussed in terms of contrast and resolution, and a comparison is made with absorption images. The result obtained shows considerable improvement in contrast with phase contrast imaging as compared to conventional absorption radiography. These results also guide us in proper selection of source to object distance, object to detector distance, etc. These results are proposed to be used in our experiment on phase contrast imaging with microfocus X-rays. The technique is going to be very useful in improving the resolution in the X-ray imaging for the composites, and in detection of cracks at micron level resolution. Moreover, if the doses can be controlled by proper selection of the detector or the source, it can have clinical application in the mammography

  2. Estimation of age based on tooth cementum annulations: A comparative study using light, polarized, and phase contrast microscopy

    Science.gov (United States)

    Kaur, Prabhpreet; Astekar, Madhusudan; Singh, Jappreet; Arora, Karandeep Singh; Bhalla, Gagandeep

    2015-01-01

    Context: The identification of living or deceased persons using unique traits and characteristics of the teeth and jaws is a cornerstone of forensic science. Teeth have been used to estimate age both in the young and old, as well as in the living and dead. Gradual structural changes in teeth throughout life are the basis for age estimation. Tooth cementum annulation (TCA) is a microscopic method for the determination of an individual's age based on the analysis of incremental lines of cementum. Aim: To compare ages estimated using incremental lines of cementum as visualized by bright field microscopy, polarized microscopy, and phase contrast microscopy with the actual age of subject and to determine accuracy and feasibility of the method used. Materials and Methods: Cementum annulations of 60 permanent teeth were analyzed after longitudinal ground sections were made in the mesiodistal plane. The incremental lines were counted manually using a light, polarized and phase contrast microscopy. Ages were estimated and then compared with the actual age of individual. Statistical Analysis: Analysis of variance (ANOVA), Student's t-test, the Pearson product-moment corre (PPMCC) and regression analysis were performed. Results: PPMCC value r = 0.347, 0.542 and 0.989 were obtained using light, polarized and phase contrast microscopy methods respectively. Conclusion: It was concluded that incremental lines of cementum were most clearly visible under a phase contrast microscope, followed by a polarized microscope, and then a light microscope when used for age estimation. PMID:26816462

  3. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    Science.gov (United States)

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-04-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.

  4. Direct signal-to-noise comparison of radiographic attenuation- and differential phase-contrast X-ray images

    International Nuclear Information System (INIS)

    For radiographic applications of X-ray differential phase-contrast imaging, like e.g. mammography, we present the Relative Contrast Gain (RCG) as a novel measure of the relative information content of attenuation- and differential phase-contrast (dpc) radiographs recorded with a grating-based Talbot interferometer. It is a fast and simple method to quantify the gain in soft-tissue contrast of the differential phase-contrast signal compared to the standard attenuation based radiograph. The RCG can also be used as a figure of merit to assess the quality of different experimental setups in terms of providing good feature visibility in soft-tissue samples in the presence of noise. A comparison of a differential signal to a non-differential signal is achieved by analysis of the calculated gradient of the attenuation signal. The Relative Contrast Gain analysis is applied on experimental absorption and phase-contrast projections obtained for human breast samples. The results show a good gain in feature contrast in the dpc signal compared to the attenuation signal as expected from theory.

  5. Correlation between off-axis illumination and apodized phase-contrast: two complementary microscopic phase-imaging modes.

    Science.gov (United States)

    Pelc, Radek; Hostounský, Zdenek; Otaki, Tatsuro

    2008-01-01

    Microscopic images of biological phase specimens of various optical thickness, acquired under off-axis illumination and apodized/conventional phase-contrast are compared. The luminance profiles in appropriately filtered apodized phase-contrast images compare well with those in the original off-axis illumination images. The two unfiltered image types also yield similar results in terms of quasi-three-dimensional surface (pseudo-relief) rendering, and thus are comparable in terms of the information contents (optical thickness map). However, the overall visual impression is very different as the visual cues to depth structure are present in the off-axis illumination images only. The comparison demonstrated in the present paper was made possible owing to apodization, which substantially reduces the "halo"/shade-off artifacts in the phase-contrast images. The results imply the possibility of combining the off-axis illumination and apodized phase-contrast imaging to examine specimens of medium optical thickness, in which the phase visualization capability of the two imaging modes substantially overlaps (e.g., larger cells or cell clusters). PMID:19021445

  6. Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Aabo, Thomas; Palima, Darwin;

    2013-01-01

    This work discusses the use of matched filtering Generalized Phase Contrast (mGPC) as an efficient and cost-effective beam shaper for applications such as in biophotonics, optical micromanipulation, microscopy and two-photon polymerization. The theoretical foundation of mGPC is described as a...

  7. Characterization of an x-ray phase contrast imaging system based on the miniature synchrotron MIRRORCLE-6X

    International Nuclear Information System (INIS)

    Purpose: The implementation of in-line x-ray phase contrast imaging (PCI) for soft-tissue patient imaging is hampered by the lack of a bright and spatially coherent x-ray source that fits into the hospital environment. This article provides a quantitative characterization of the phase-contrast enhancement of a PCI system based on the miniature synchrotron technology MIRRORCLE-6X. Methods: The phase-contrast effect was measured using an edge response of a plexiglass plate as a function of the incident angle of radiation. We have developed a comprehensive x-ray propagation model based on the system's components, properties, and geometry in order to interpret the measurement data. Monte-Carlo simulations are used to estimate the system's spectral properties and resolution. Results: The measured ratio of the detected phase-contrast to the absorption contrast is currently in the range 100% to 200%. Experiments show that with the current implementation of the MIRRORCLE-6X, a target smaller than 30-40 μm does not lead to a larger phase-contrast. The reason for this is that the fraction of x-rays produced by the material (carbon filament and glue) that is used for mounting the target in the electron beam is more than 25% of the total amount of x-rays produced. This increases the apparent source size. The measured phase-contrast is at maximum two times larger than the absorption contrast with the current set-up. Conclusions: Calculations based on our model of the present imaging system predict that the phase-contrast can be up to an order of magnitude larger than the absorption contrast in case the materials used for mounting the target in the electron beam do not (or hardly) produce x-rays. The methods described in this paper provide vital feedback for guiding future modifications to the design of the x-ray target of MIRRORCLE-type system and configuration of the in-line PCI systems in general.

  8. Non-destructive characterisation of polymers and Al-alloys by polychromatic cone-beam phase contrast tomography

    International Nuclear Information System (INIS)

    X-ray computed tomography (XCT) has become a very important tool for the non-destructive characterisation of materials. Continuous improvements in the quality and performance of X-ray tubes and detectors have led to cone-beam XCT systems that can now achieve spatial resolutions down to 1 μm and even below. Since not only the amplitude but also the phase of an X-ray beam is altered while passing through an object, phase contrast effects can occur even for polychromatic sources when the spatial coherence due to a small focal spot size is high enough. This can lead to significant improvements over conventional attenuation-based X-ray computed tomography. Phase contrast can increase by edge enhancement the visibility of small structures and of features which are only slightly different in attenuation. We report on the possibilities of polychromatic cone-beam phase contrast tomography for non-destructive characterisation of materials. A carbon fibre-reinforced polymer and the Al-alloys AlMg5Si7 and AlSi18 were investigated with high resolution cone-beam X-ray computed tomography with a polychromatic tube source. Under certain conditions strong phase contrast resulting in an upward and downward overshooting of the grey values across edges was observed. The phase effects are much stronger for the polymer than for the Al-alloys. The influence on the phase contrast of the parameters, including source-detector distance, focal spot size and tube acceleration voltage is presented. Maximum phase contrast was observed for a maximum distance between the source and the detector, for a low voltage and a minimum focal spot size at the X-ray source. The detectability of the different phases is improved by the edge enhancement and the resulting improvement of sharpness. Thus, a better segmentation of the carbon fibres in the fibre-reinforced polymer and of the Mg2Si-phase in the AlMg5Si7-alloy is achieved. Primary and eutectic Si cannot be detected by attenuation-based X-ray computed

  9. Interactive animation of 4D performance capture.

    Science.gov (United States)

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance.

  10. 4D, N=1 Supergravity Genomics

    CERN Document Server

    Chappell, Isaac; Linch, William D; Parker, James; Randall, Stephen; Ridgway, Alexander; Stiffler, Kory

    2012-01-01

    The off-shell representation theory of 4D, $\\mathcal{N}=1$ supermultiplets can be categorized in terms of distinct irreducible graphical representations called adinkras. Recent evidence has emerged pointing to the existence of three such fundamental adinkras associated with distinct equivalence classes of a Coxeter group. A partial description of these adinkras is given in terms of two types, termed cis-and trans-adinkras (the latter being a degenerate doublet) in analogy to enantiomers in chemistry. Through a new and simple procedure that uses adinkras, we find the irreducible off-shell adinkra representations of 4D, $\\mathcal{N}=1$ supergravity, in the old-minimal, non-minimal, and conformal formulations. We categorize these representations in terms of their supersymmetry `enantiomer' numbers: the number of cis-($n_c$) and trans-($n_t$) adinkras in the representation.

  11. From Femtochemistry to 4D Microscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To celebrate the 10th anniversary of the Nobel Prize for Femtochemistry,the field is overviewed with several classic examples and the new extension to Femtobiology. The revolutionary breakthrough in 4D electron microscopy is briefly introduced here and a new age to structural dynamics is rising on the horizon,an exciting time and a great opportunity for China and for the world.

  12. 4D image reconstruction for emission tomography

    International Nuclear Information System (INIS)

    An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D

  13. Investigation of the effect of tube voltage and imaging geometry on phase contrast imaging for a micro-CT system

    International Nuclear Information System (INIS)

    Based upon a bench-top micro-CT system, propagation-based phase-contrast imaging has been investigated using insects and a thin plastic sheet. The system mainly includes a micro-focus source with focal spot size of 13-20 μm and a cooled X-ray CCD detector with pixel size of 24 μm. The edge-enhancement effect can be found clearly in the acquired images. With a 0.5 mm thickness plastic edge phantom, the effects of X-ray tube voltage and imaging geometry on the phase-contrast imaging were investigated, and quantitative index, edge-enhancement index (EEI), were also calculated. In our study, an interesting phenomenon was observed that the phase-contrast effect becomes more pronounced as the tube voltage increases from 20 kVp to 90 kVp. Further investigation indicates that smaller focal spot size resulting from the reduction of tube current at higher tube voltage, has caused the unexpected phenomenon. Inferred from our results, phase-contrast effect is insensitive to the tube voltage in the range of 20-90 kVp (widely used in medical diagnosis); however, it is sensitive to the focal spot size. In addition, for the investigation of the effect of imaging geometry, an optimal geometric magnification range of 2.5-4.5 is suggested to get a good phase-contrast imaging for a micro-CT system with source-to-detector distance of 720 mm.

  14. Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing.

    Directory of Open Access Journals (Sweden)

    Julia Herzen

    Full Text Available X-ray phase-contrast imaging shows improved soft-tissue contrast compared to standard absorption-based X-ray imaging. Especially the grating-based method seems to be one promising candidate for clinical implementation due to its extendibility to standard laboratory X-ray sources. Therefore the purpose of our study was to evaluate the potential of grating-based phase-contrast computed tomography in combination with a novel bi-lateral denoising method for imaging of focal liver lesions in an ex vivo feasibility study. Our study shows that grating-based phase-contrast CT (PCCT significantly increases the soft-tissue contrast in the ex vivo liver specimens. Combining the information of both signals--absorption and phase-contrast--the bi-lateral filtering leads to an improvement of lesion detectability and higher contrast-to-noise ratios. The normal and the pathological tissue can be clearly delineated and even internal structures of the pathological tissue can be visualized, being invisible in the absorption-based CT alone. Histopathology confirmed the presence of the corresponding findings in the analyzed tissue. The results give strong evidence for a sufficiently high contrast for different liver lesions using non-contrast-enhanced PCCT. Thus, ex vivo imaging of liver lesions is possible with a polychromatic X-ray source and at a spatial resolution of ∼100 µm. The post-processing with the novel bi-lateral denoising method improves the image quality by combining the information from the absorption and the phase-contrast images.

  15. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    International Nuclear Information System (INIS)

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  16. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    Science.gov (United States)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  17. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Andreas [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, Andre; Goelzhaeuser, Armin [University of Bielefeld, Physics of Supramolecular Systems and Surfaces, Universitaetsstr. 25, D-33615 Bielefeld (Germany); Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, Werner [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany)

    2012-05-15

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90 Degree-Sign achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen-hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: Black-Right-Pointing-Pointer Various obstacles need to be overcome before Boersch phase plates can be used routinely. Black-Right-Pointing-Pointer Technical problems include

  18. BPS black holes in gauged N = 4, D = 4 supergravity

    International Nuclear Information System (INIS)

    We find solutions of the bosonic sector of gauged N = 4, D = 4 SU(2) x SU(2) supergravity, which represent dilaton black holes with toroidal or spherical event horizons. The axion is consistently truncated, and the gauge group is broken to U(1) x U(1). The spherical black holes carry two electric and two magnetic abelian charges, whereas the toroidal holes have vanishing magnetic charges. The space-time metrics are warped products, and the manifolds turn out to be globally hyperbolic, in contrast to standard gauged supergravity ground states. It is shown that in the toroidal case, there are solutions preserving one quarter or one half of the supersymmetries, while for spherical topologies all supersymmetries are broken. In general, the toroidal BPS states represent naked singularities, but there is also a supersymmetric black hole with vanishing Hawking temperature. The ((1)/(2)) supersymmetric case arises for vanishing charges and mass, and represents the known domain wall solution of the Freedman-Schwarz model. It provides the background in which the black holes live. Finally, we use Chamseddine's and Volkov's Kaluza-Klein interpretation of gauged N = 4, D = 4 SU(2) x SU(2) supergravity to lift our solutions to ten and eleven dimensions and to consider them as solutions to the leading order equations of motion of the string/M-theory effective action

  19. Cinema 4D R14 cookbook

    CERN Document Server

    Russell, Simon

    2013-01-01

    This book is written in a Cookbook style with short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity.This book is for professional artists working in architecture, design, production, or games and wan

  20. 4D, N = 1 Supersymmetry Genomics (II)

    CERN Document Server

    Gates, S James; Hallett, Jared; Parker, James; Rodgers, Vincent G J; Stiffler, Kory

    2011-01-01

    We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, N = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of $n_c$-cis and $n_t$-trans representations. Analyzing the real scalar and complex linear superfield multiplets, these "chemical enantiomer" numbers are found to be $n_c$ = $n_t$ = 1 and $n_c$ = 1, $n_t$ = 2, respectively.

  1. A LabVIEW based user-friendly X-ray phase-contrast imaging system software platform

    CERN Document Server

    Wang, Shenghao; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Marcelli, Augusto; Wu, Ziyu

    2014-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this manuscript, we introduce an easy and fast way to develop a user-friendly system software platform dedicated for the newly built grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory, University of Science and Technology of China. Unified management and control upon 21 motorized positioning stages, an ultra-precision piezoelectric translation stage and an X-ray tube are achieved with this platform, the software also covers automatic image acquisition with a flat panel detector for phase-stepping scanning. Moreover, data post-processing module for signals retrieval and other custom features could be realized on it. With a seamless integration of all the necessary functions into an organism, this software platform greatly facilitate activity of the users during experimen...

  2. Quantitative Three-Dimensional Imaging of Lipid, Protein, and Water Contents via X-Ray Phase-Contrast Tomography.

    Directory of Open Access Journals (Sweden)

    Marian Willner

    Full Text Available X-ray phase-contrast computed tomography is an emerging imaging technology with powerful capabilities for three-dimensional (3D visualization of weakly absorbing objects such as biological soft tissues. This technique is an extension of existing X-ray applications because conventional attenuation-contrast images are simultaneously acquired. The complementary information provided by both the contrast modalities suggests that enhanced material characterization is possible when performing combined data analysis. In this study, we describe how protein, lipid, and water concentrations in each 3D voxel can be quantified by vector decomposition. Experimental results of dairy products, porcine fat and rind, and different human soft tissue types are presented. The results demonstrate the potential of phase-contrast imaging as a new analysis tool. The 3D representations of protein, lipid, and water contents open up new opportunities in the fields of biology, medicine, and food science.

  3. Quantitative Three-Dimensional Imaging of Lipid, Protein, and Water Contents via X-Ray Phase-Contrast Tomography.

    Science.gov (United States)

    Willner, Marian; Viermetz, Manuel; Marschner, Mathias; Scherer, Kai; Braun, Christian; Fingerle, Alexander; Noël, Peter; Rummeny, Ernst; Pfeiffer, Franz; Herzen, Julia

    2016-01-01

    X-ray phase-contrast computed tomography is an emerging imaging technology with powerful capabilities for three-dimensional (3D) visualization of weakly absorbing objects such as biological soft tissues. This technique is an extension of existing X-ray applications because conventional attenuation-contrast images are simultaneously acquired. The complementary information provided by both the contrast modalities suggests that enhanced material characterization is possible when performing combined data analysis. In this study, we describe how protein, lipid, and water concentrations in each 3D voxel can be quantified by vector decomposition. Experimental results of dairy products, porcine fat and rind, and different human soft tissue types are presented. The results demonstrate the potential of phase-contrast imaging as a new analysis tool. The 3D representations of protein, lipid, and water contents open up new opportunities in the fields of biology, medicine, and food science. PMID:27003308

  4. Reconstruction method for grating-based x-ray phase-contrast images without knowledge of the grating positions

    International Nuclear Information System (INIS)

    To retrieve the phase information of x-rays using a Talbot-Lau interferometer, the knowledge of the grating positions is mandatory. Transferring the interferometer technique from the laboratory to a conventional x-ray imaging system, this requirement is no longer guaranteed. This is due to distortions and vibrations which are coupled into the interferometer. Therefore, we applied a principal-component analysis to Talbot-Lau x-ray phase-contrast data. In experiments we compared this alternative approach for image reconstruction to the conventional procedure. As a result, a superior robustness of the principal-component analysis against imperfect phase-stepping data was found. Furthermore, using the proposed method, the reconstruction of x-ray phase-contrast images from randomly distributed phase-step positions is possible

  5. Limitations imposed by specimen phase gradients on the design of grating based x-ray phase contrast imaging systems

    International Nuclear Information System (INIS)

    X-ray phase contrast imaging is a very promising technique that may lead to significant advancements in a variety of fields, perhaps most notably, medical imaging. The radiation physics group at University College London is currently developing an x-ray phase contrast imaging technique that works with laboratory x-ray sources. This system essentially measures the degree to which photons are refracted by regions of an imaged object. The amount of refraction that may be expected to be encountered in practice impacts strongly upon the design of the imaging system. In this paper, we derive an approximate expression between the properties of archetypal imaged objects encountered in practice and the resulting distribution of refracted photons. This is used to derive constraints governing the design of the system.

  6. Quantitative Three-Dimensional Imaging of Lipid, Protein, and Water Contents via X-Ray Phase-Contrast Tomography

    Science.gov (United States)

    Willner, Marian; Viermetz, Manuel; Marschner, Mathias; Scherer, Kai; Braun, Christian; Fingerle, Alexander; Noël, Peter; Rummeny, Ernst; Pfeiffer, Franz; Herzen, Julia

    2016-01-01

    X-ray phase-contrast computed tomography is an emerging imaging technology with powerful capabilities for three-dimensional (3D) visualization of weakly absorbing objects such as biological soft tissues. This technique is an extension of existing X-ray applications because conventional attenuation-contrast images are simultaneously acquired. The complementary information provided by both the contrast modalities suggests that enhanced material characterization is possible when performing combined data analysis. In this study, we describe how protein, lipid, and water concentrations in each 3D voxel can be quantified by vector decomposition. Experimental results of dairy products, porcine fat and rind, and different human soft tissue types are presented. The results demonstrate the potential of phase-contrast imaging as a new analysis tool. The 3D representations of protein, lipid, and water contents open up new opportunities in the fields of biology, medicine, and food science. PMID:27003308

  7. Aerosol-induced lung injuries observed by synchrotron radiation X-ray phase-contrast imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Yue Weisheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang Guilin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)], E-mail: glzhang@sinap.ac.cn; Liu Ping; Sun Jianqi [Key Laboratory of Systems Biomedicine, Ministry of Education, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240 (China); Hwu Yeukuang [Institute of Physics, Acamemia Sinica, Nankang, Taipei (China); Je, Jung Ho [Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Tan Mingguang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li Yan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)], E-mail: liyan@sinap.ac.cn

    2007-09-15

    Adverse health effects are associated with the inhalation of a variety of atmospheric particles. To study the lung injuries caused by aerosol PM{sub 2.5}, synchrotron radiation (SR) X-ray phase-contrast imaging technique was used. Nude mice were inoculated with PM{sub 2.5} samples collected from suburban area (JD), industrial area (BS) and traffic tunnel (DPQ) of Shanghai. From X-ray phase-contrast images of lung tissues, apart from blood vessels and structures of alveoli, even hemorrhage spots of several microns caused by the inflammation were clearly observed. The studies showed that the PM{sub 2.5} samples collected from the traffic tunnel (DPQ) produced higher level of lung injury, followed by the aerosol samples collected from industrial area (BS) and suburban area (JD). Our studies also helped us to understand the process of lung injuries caused by aerosol particles.

  8. Aerosol-induced lung injuries observed by synchrotron radiation X-ray phase-contrast imaging technique

    Science.gov (United States)

    Yue, Weisheng; Zhang, Guilin; Liu, Ping; Sun, Jianqi; Hwu, Yeukuang; Je, Jung Ho; Tan, Mingguang; Li, Yan

    2007-09-01

    Adverse health effects are associated with the inhalation of a variety of atmospheric particles. To study the lung injuries caused by aerosol PM2.5, synchrotron radiation (SR) X-ray phase-contrast imaging technique was used. Nude mice were inoculated with PM2.5 samples collected from suburban area (JD), industrial area (BS) and traffic tunnel (DPQ) of Shanghai. From X-ray phase-contrast images of lung tissues, apart from blood vessels and structures of alveoli, even hemorrhage spots of several microns caused by the inflammation were clearly observed. The studies showed that the PM2.5 samples collected from the traffic tunnel (DPQ) produced higher level of lung injury, followed by the aerosol samples collected from industrial area (BS) and suburban area (JD). Our studies also helped us to understand the process of lung injuries caused by aerosol particles.

  9. Active origami by 4D printing

    International Nuclear Information System (INIS)

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand. (paper)

  10. Active origami by 4D printing

    Science.gov (United States)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  11. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Larsson, Emanuel [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); University of Trieste, Trieste (Italy); Linkoeping University, SE-581 83 Linkoeping (Sweden); Tromba, Giuliana [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); Markus, Andrea M. [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Alves, Frauke [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Max Planck Institut for Experimental Medicine, Hermann-Rein-Strasse 3, Goettingen, Lower Saxony 37075 (Germany)

    2015-06-17

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma.

  12. Quantitative Three-Dimensional Imaging of Lipid, Protein, and Water Contents via X-Ray Phase-Contrast Tomography

    OpenAIRE

    Willner, Marian; Viermetz, Manuel; Marschner, Mathias; Scherer, Kai; Braun, Christian; Fingerle, Alexander; Noël, Peter; Rummeny, Ernst; Pfeiffer, Franz; Herzen, Julia

    2016-01-01

    X-ray phase-contrast computed tomography is an emerging imaging technology with powerful capabilities for three-dimensional (3D) visualization of weakly absorbing objects such as biological soft tissues. This technique is an extension of existing X-ray applications because conventional attenuation-contrast images are simultaneously acquired. The complementary information provided by both the contrast modalities suggests that enhanced material characterization is possible when performing combi...

  13. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields. PMID:27100408

  14. Imaging of Poly(α-hydroxy-ester) Scaffolds with X-ray Phase-Contrast Microcomputed Tomography

    OpenAIRE

    Appel, Alyssa A.; Larson, Jeffery C.; Somo, Sami; Zhong, Zhong; Spicer, Patrick P.; Kasper, F. Kurtis; Garson, Alfred B.; Zysk, Adam M.; Mikos, Antonios G.; Anastasio, Mark A.; Eric M Brey

    2012-01-01

    Porous scaffolds based on poly(α-hydroxy-esters) are under investigation in many tissue engineering applications. A biological response to these materials is driven, in part, by their three-dimensional (3D) structure. The ability to evaluate quantitatively the material structure in tissue-engineering applications is important for the continued development of these polymer-based approaches. X-ray imaging techniques based on phase contrast (PC) have shown a tremendous promise for a number of bi...

  15. Cone-beam x-ray phase contrast tomography of biological samples; Optimization of contrast, resolution and field of view

    OpenAIRE

    Bartels, Matthias

    2013-01-01

    Three-dimensional information of entire objects can be obtained by the remarkable technique of computed tomography (CT). In combination with phase sensitive X-ray imaging high contrast for soft tissue structures can be achieved as opposed to CT based on classical radiography. In this work biological samples ranging from micrometer sized single cells over multi-cellular nerve tissue to entire millimeter sized organs are investigated by use of cone-beam propagationbased X-ray phase contrast. Op...

  16. Phase contrast medical imaging with compact X-ray sources at the Munich-Centre for Advance Photonics (MAP)

    Energy Technology Data Exchange (ETDEWEB)

    Coan, P. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany)], E-mail: paola.coan@esrf.fr; Gruener, F. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany); Glaser, C.; Schneider, T. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany); Reiser, M. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Habs, D. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany)

    2009-09-01

    In this paper, the excellence cluster 'Munich-Centre for Advance Photonics' (MAP) is presented. One of the aims of the project is the development of innovative X-ray-based diagnostics imaging techniques to be implemented at an ultra-compact high-energy and high-brilliance X-ray source. The basis of the project and the developments towards the clinical application of phase contrast imaging applied to mammography and cartilage studies will be presented and discussed.

  17. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography

    Science.gov (United States)

    Allner, S.; Koehler, T.; Fehringer, A.; Birnbacher, L.; Willner, M.; Pfeiffer, F.; Noël, P. B.

    2016-05-01

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  18. Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    OpenAIRE

    Diemoz, P. C.; M. Endrizzi; Vittoria, F. A.; Hagen, C. K.; Kallon, G.; Basta, D; Marenzana, M.; Delogu, P.; Vincenzi, A.; De Ruvo, L.; Spandre, G.; Brez, A.; Bellazzini, R.; Olivo, A.

    2015-01-01

    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory imple...

  19. Simulation study of spatial resolution in phase-contrast X-ray imaging with Takagi-Taupin equation

    CERN Document Server

    Koyama, I

    2003-01-01

    To evaluate attainable spatial resolution of phase-contrast X-ray imaging using an LLL X-ray interferometer with a thin crystal wafer, a computer simulation study with Takagi-Taupin equation was performed. Modulation transfer function of the wafer for X-ray phase was evaluated. For a polyester film whose thickness is 0.1 mm, it was concluded that the spatial resolution can be improved up to 3 mu m by thinning the wafer, under our experimental condition.

  20. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    International Nuclear Information System (INIS)

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma

  1. Increasing the field of view of x-ray phase contrast imaging using stitched gratings on low absorbent carriers

    Science.gov (United States)

    Meiser, J.; Amberger, M.; Willner, M.; Kunka, D.; Meyer, P.; Koch, F.; Hipp, A.; Walter, M.; Pfeiffer, F.; Mohr, J.

    2014-03-01

    X-ray phase contrast imaging has become a promising biomedical imaging technique for enhancing soft-tissue contrast. In addition to an absorption contrast image it provides two more types of image, a phase contrast and a small-angle scattering contrast image recorded at the same time. In biomedical imaging their combination allows for the conventional investigation of e.g. bone fractures on the one hand and for soft-tissue investigation like cancer detection on the other hand. Among the different methods of X-ray phase contrast imaging the grating based approach, the Talbot-Lau interferometry, has the highest potential for commercial use in biomedical imaging at the moment, because commercially available X-ray sources can be used in a compact setup. In Talbot-Lau interferometers, core elements are phase and absorption gratings with challenging specifications because of their high aspect ratios (structure height over width). For the long grating lamellas structural heights of more than 100 μm together with structural width in the micron range are requested. We are developing a fabrication process based on deep x-ray lithography and electroforming (LIGA) to fabricate these challenging structures. In case of LIGA gratings the structural area is currently limited to several centimeters by several centimeters which limit the field of view in grating based X-ray phase contrast imaging. In order to increase the grating area significantly we are developing a stitching method for gratings using a 625 μm thick silicon wafer as a carrier substrate. In this work we compare the silicon carrier with an alternative one, polyimide, for patient dose reduction and for the use at lower energies in terms of transmission and image reconstruction problems.

  2. Application of X-ray phase-contrast tomography in quantative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, R.; Nielsen, M. S.; Einarsdottir, Hildur;

    2013-01-01

    X-ray computed tomography is increasingly used in the studies of food structure. This paper describes the perspectives of use of phase contrast computed tomography in studies of heat induced structural changes in meat. From the data it was possible to obtain reconstructed images of the sample...... structure for visualization and qualitative studies of the sample structure. Further data segmentation allowed structural changes to be quantified....

  3. Instability of Solution of Phase Retrieval in Direct Diffraction Phase-Contrast Imaging with Partially Coherent X-Ray Source

    Institute of Scientific and Technical Information of China (English)

    GUO Hua; HAN Shen-Sheng

    2006-01-01

    The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressedby an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phaseretrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution ofthe phase retrieval is unstable. The numerical simulation is performed and the result validates that the solutionof the phase retrieval is unstable.

  4. Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography.

    Science.gov (United States)

    Raupach, Rainer; Flohr, Thomas G

    2011-04-01

    We analyze the signal and noise propagation of differential phase-contrast computed tomography (PCT) compared with conventional attenuation-based computed tomography (CT) from a theoretical point of view. This work focuses on grating-based differential phase-contrast imaging. A mathematical framework is derived that is able to analytically predict the relative performance of both imaging techniques in the sense of the relative contrast-to-noise ratio for the contrast of any two materials. Two fundamentally different properties of PCT compared with CT are identified. First, the noise power spectra show qualitatively different characteristics implying a resolution-dependent performance ratio. The break-even point is derived analytically as a function of system parameters such as geometry and visibility. A superior performance of PCT compared with CT can only be achieved at a sufficiently high spatial resolution. Second, due to periodicity of phase information which is non-ambiguous only in a bounded interval statistical phase wrapping can occur. This effect causes a collapse of information propagation for low signals which limits the applicability of phase-contrast imaging at low dose. PMID:21403187

  5. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    International Nuclear Information System (INIS)

    We demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. Finally, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe. - Highlights: • Ptychographic high efficiency phase contrast imaging is demonstrated in STEM. • We rely on a hardware aberration corrector to eliminate aberrations. • High efficiency is achieved by collecting all the relevant interference. • Use of a pixelated detector allows comparison of bright field modes post acquisition. • Ptychography provides the clearest images among the STEM bright field modes tested

  6. Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity

    Science.gov (United States)

    Kagias, M.; Cartier, S.; Wang, Z.; Bergamaschi, A.; Dinapoli, R.; Mozzanica, A.; Schmitt, B.; Stampanoni, M.

    2016-06-01

    X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front of the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.

  7. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  8. Investigation of the signature of lung tissue in X-ray grating-based phase-contrast imaging

    CERN Document Server

    Weber, Thomas; Haas, Wilhelm; Pelzer, Georg; Rieger, Jens; Ritter, André; Wucherer, Lukas; Braun, Jan Matthias; Durst, Jürgen; Michel, Thilo; Anton, Gisela

    2012-01-01

    Purpose: Grating-based X-ray phase-contrast imaging is a promising modality increasing the soft tissue contrast in medical imaging. In this work, the signature of lung tissue in X-ray grating-based physe-contrast imaging is investigated. Methods: We used a Talbot-Lau interferometer for our investigations of two C57BL/6 mice. Both underwent projection imaging and computed tomography. Results: The results show that the three images obtained by X-ray phase-contrast imaging show complementary anatomical structures. Especially the dark field image allows a more-exact determination of the position of the lung in the chest cavity. Conclusion: Due to its sensitivity to granular structures, the dark field image may be used for the diagnosis of lung diseases in earlier stages or without a CT scan. Furthermore, X-ray phase-contrast imaging may also have great potential in the application of animal laboratory sciences to reduce the number of required animals used in long-term translational, toxicity, and regenerative med...

  9. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, Timothy J., E-mail: tpennycook@gmail.com [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lupini, Andrew R. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37830 (United States); Yang, Hao [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Murfitt, Matthew F. [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Jones, Lewys [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D. [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-04-15

    We demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. Finally, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe. - Highlights: • Ptychographic high efficiency phase contrast imaging is demonstrated in STEM. • We rely on a hardware aberration corrector to eliminate aberrations. • High efficiency is achieved by collecting all the relevant interference. • Use of a pixelated detector allows comparison of bright field modes post acquisition. • Ptychography provides the clearest images among the STEM bright field modes tested.

  10. Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raupach, Rainer; Flohr, Thomas G, E-mail: rainer.raupach@siemens.com [Siemens AG Healthcare Sector, H IM CT R and D PA, Siemensstrasse 1, D-91301 Forchheim (Germany)

    2011-04-07

    We analyze the signal and noise propagation of differential phase-contrast computed tomography (PCT) compared with conventional attenuation-based computed tomography (CT) from a theoretical point of view. This work focuses on grating-based differential phase-contrast imaging. A mathematical framework is derived that is able to analytically predict the relative performance of both imaging techniques in the sense of the relative contrast-to-noise ratio for the contrast of any two materials. Two fundamentally different properties of PCT compared with CT are identified. First, the noise power spectra show qualitatively different characteristics implying a resolution-dependent performance ratio. The break-even point is derived analytically as a function of system parameters such as geometry and visibility. A superior performance of PCT compared with CT can only be achieved at a sufficiently high spatial resolution. Second, due to periodicity of phase information which is non-ambiguous only in a bounded interval statistical phase wrapping can occur. This effect causes a collapse of information propagation for low signals which limits the applicability of phase-contrast imaging at low dose.

  11. A preliminary investigation of the potential of phase contrast x-ray imaging in the field of homeland security

    Science.gov (United States)

    Olivo, A.; Chana, D.; Speller, R.

    2008-11-01

    A novel technique based on coded apertures which makes x-ray phase contrast imaging (XPCi) feasible with conventional sources has been recently developed at University College London. This technique is expected to enable for the first time real-world applications of XPCi in fields as diverse as medical, biological and scientific imaging, industrial inspections and security scans. This paper focuses on XPCi applications in homeland security. A simulation of coded-aperture XPCi, which was experimentally validated in a previous work, has been used to produce images of potential threat objects, and to quantitatively assess detail visibility improvements in terms of contrast and signal-to-noise ratio over conventional techniques based on absorption. Free-space propagation phase contrast images taken with synchrotron radiation (SR) are also presented. Although not directly related to the coded-aperture technique used in the simulation, these can be considered indicative of the image quality that would be made available through coded-aperture XPCi with conventional sources: previous studies have demonstrated that this technique provides image enhancements compatible with those obtained with free-space propagation phase contrast with SR. Substantial enhancements in image quality and improvement in detail detectability in cluttered environments are demonstrated in this way. The results presented in this study and the software used to generate them will provide the basis for the design and realization of a dedicated imaging prototype.

  12. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Zhu Pei-Ping; Tian Yang-Chao; Wu Zi-Yu

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique.By using two-dimensional (2D) gratings,the observable contrast is extended to two refraction directions.Recently,we have developed a novel reverse-projection (RP) method,which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging.In this contribution,we present its extension to the 2D grating-based X-ray phase contrast imaging,named the two-dimensional reverseprojection (2D-RP) method,for information retrieval.The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption,the horizontal and the vertical refraction images.The obtained information can be used for the reconstruction of the three-dimensional phase gradient field,and for an improved phase map retrieval and reconstruction.Numerical experiments are carried out,and the results confirm the validity of the 2D-RP method.

  13. Advances in 4D Radiation Therapy for Managing Respiration: Part II – 4D Treatment Planning

    Science.gov (United States)

    Rosu, Mihaela; Hugo, Geoffrey D.

    2014-01-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle – an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems. PMID:22796324

  14. Optimisation of image reconstruction for phase-contrast x-ray Talbot-Lau imaging with regard to mechanical robustness

    Science.gov (United States)

    Seifert, M.; Kaeppler, S.; Hauke, C.; Horn, F.; Pelzer, G.; Rieger, J.; Michel, T.; Riess, C.; Anton, G.

    2016-09-01

    X-ray grating-based phase-contrast imaging opens new opportunities, inter alia, in medical imaging and non-destructive testing. Because, information about the attenuation properties and about the refractive properties of an object are gained simultaneously. Talbot-Lau imaging requires the knowledge of a reference or free-field image. The long-term stability of a Talbot-Lau interferometer is related to the time span of the validity of a measured reference image. It would be desirable to keep the validity of the reference image for a day or longer to improve feasibility of Talbot-Lau imaging. However, for example thermal and other long-term external influences result in drifting effects of the phase images. Therefore, phases are shifting over time and the reference image is not valid for long-term measurements. Thus, artifacts occur in differential phase-contrast images. We developed an algorithm to determine the differential phase-contrast image with the help of just one calibration image, which is valid for a long time-period. With the help of this algorithm, called phase-plane-fit method, it is possible to save measurement-time, as it is not necessary to take a reference image for each measurement. Additionally, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, short-term effects like vibrations or distortions of the system lead to imperfections within the phase-stepping procedure. Consequently, artifacts occur in all three image modalities (differential phase-contrast image, attenuation image and dark-field image) of Talbot-Lau imaging. This is a problem with regard to the intended use of phase-contrast imaging for example in clinical routine or non-destructive testing. In this publication an algorithm of Vargas et al is applied and complemented to correct inaccurate phase-step positions with the help of a principal component analysis (PCA

  15. Zernike phase contrast cryo-electron microscopy reveals 100 kDa component in a protein complex

    Science.gov (United States)

    Wu, Yi-Min; Wang, Chun-Hsiung; Chang, Jen-wei; Chen, Yi-yun; Miyazaki, Naoyuki; Murata, Kazuyoshi; Nagayama, Kuniaki; Chang, Wei-Hau

    2013-12-01

    Cryo-electron microscopy (cryo-EM) has become a powerful technique for obtaining near atomic structures for large protein assemblies or large virus particles, but the application to protein particles smaller than 200-300 kDa has been hampered by the feeble phase contrast obtained for such small samples and the limited number of electrons tolerated by them without incurring excessive radiation damage. By implementing a thin-film quarter-wave phase plate to a cryo-EM, Nagayama, one of the present authors, has recently restored the long-lost very low spatial frequencies, generating in-focus phase contrast superior to that of conventional defocusing phase contrast, and successfully applied the so-called Zernike phase-plate cryo-EM to target various biological samples in native state. Nevertheless, the sought-after goal of using enhanced phase contrast to reveal a native protein as small as 100 kDa waits to be realized. Here, we report a study in which 200 kV Zernike phase-plate cryo-EM with a plate cut-on periodicity of 36 nm was applied to visualize 100 kDa components of various protein complexes, including the small domains on the surface of an icosahedral particle of ˜38 nm derived from the dragon grouper nervous necrosis virus (DGNNV) and the labile sub-complex dissociated from yeast RNA polymerase III of 17 nm. In the former case, we observed a phase contrast reversal phenomenon at the centre of the icosahedral particle and traced its root cause to the near matching of the cut-on size and the particle size. In summary, our work has demonstrated that Zernike phase-plate implementation can indeed expand the size range of proteins that can be successfully investigated by cryo-EM, opening the door for countless proteins. Finally, we briefly discuss the possibility of using a transfer lens system to enlarge the cut-on periodicity without further miniaturizing the plate pinhole.

  16. Optimisation of image reconstruction for phase-contrast x-ray Talbot–Lau imaging with regard to mechanical robustness

    Science.gov (United States)

    Seifert, M.; Kaeppler, S.; Hauke, C.; Horn, F.; Pelzer, G.; Rieger, J.; Michel, T.; Riess, C.; Anton, G.

    2016-09-01

    X-ray grating-based phase-contrast imaging opens new opportunities, inter alia, in medical imaging and non-destructive testing. Because, information about the attenuation properties and about the refractive properties of an object are gained simultaneously. Talbot–Lau imaging requires the knowledge of a reference or free-field image. The long-term stability of a Talbot–Lau interferometer is related to the time span of the validity of a measured reference image. It would be desirable to keep the validity of the reference image for a day or longer to improve feasibility of Talbot–Lau imaging. However, for example thermal and other long-term external influences result in drifting effects of the phase images. Therefore, phases are shifting over time and the reference image is not valid for long-term measurements. Thus, artifacts occur in differential phase-contrast images. We developed an algorithm to determine the differential phase-contrast image with the help of just one calibration image, which is valid for a long time-period. With the help of this algorithm, called phase-plane-fit method, it is possible to save measurement-time, as it is not necessary to take a reference image for each measurement. Additionally, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, short-term effects like vibrations or distortions of the system lead to imperfections within the phase-stepping procedure. Consequently, artifacts occur in all three image modalities (differential phase-contrast image, attenuation image and dark-field image) of Talbot–Lau imaging. This is a problem with regard to the intended use of phase-contrast imaging for example in clinical routine or non-destructive testing. In this publication an algorithm of Vargas et al is applied and complemented to correct inaccurate phase-step positions with the help of a principal component analysis

  17. Optimisation of image reconstruction for phase-contrast x-ray Talbot-Lau imaging with regard to mechanical robustness.

    Science.gov (United States)

    Seifert, M; Kaeppler, S; Hauke, C; Horn, F; Pelzer, G; Rieger, J; Michel, T; Riess, C; Anton, G

    2016-09-01

    X-ray grating-based phase-contrast imaging opens new opportunities, inter alia, in medical imaging and non-destructive testing. Because, information about the attenuation properties and about the refractive properties of an object are gained simultaneously. Talbot-Lau imaging requires the knowledge of a reference or free-field image. The long-term stability of a Talbot-Lau interferometer is related to the time span of the validity of a measured reference image. It would be desirable to keep the validity of the reference image for a day or longer to improve feasibility of Talbot-Lau imaging. However, for example thermal and other long-term external influences result in drifting effects of the phase images. Therefore, phases are shifting over time and the reference image is not valid for long-term measurements. Thus, artifacts occur in differential phase-contrast images. We developed an algorithm to determine the differential phase-contrast image with the help of just one calibration image, which is valid for a long time-period. With the help of this algorithm, called phase-plane-fit method, it is possible to save measurement-time, as it is not necessary to take a reference image for each measurement. Additionally, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, short-term effects like vibrations or distortions of the system lead to imperfections within the phase-stepping procedure. Consequently, artifacts occur in all three image modalities (differential phase-contrast image, attenuation image and dark-field image) of Talbot-Lau imaging. This is a problem with regard to the intended use of phase-contrast imaging for example in clinical routine or non-destructive testing. In this publication an algorithm of Vargas et al is applied and complemented to correct inaccurate phase-step positions with the help of a principal component analysis (PCA

  18. Soft Route to 4D Tomography

    Science.gov (United States)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  19. 4D Lung Reconstruction with Phase Optimization

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Paulsen, Rasmus; Brink, Carsten;

    2009-01-01

    This paper investigates and demonstrates a 4D lung CT reconstruction/registration method which results in a complete volumetric model of the lung that deforms according to a respiratory motion field. The motion field is estimated iteratively between all available slice samples and a reference vol...... than using an optimization which does not correct for phase errors. Knowing how the lung and any tumors located within the lung deforms is relevant in planning the treatment of lung cancer....... volume which is updated on the fly. The method is two part and the second part of the method aims to correct wrong phase information by employing another iterative optimizer. This two part iterative optimization allows for complete reconstruction at any phase and it will be demonstrated that it is better...

  20. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Aslund, Magnus [Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna, Sweden and Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna (Sweden)

    2012-09-15

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  1. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    Science.gov (United States)

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  2. Cerebrospinal fluid flow in empty sella syndrome and normal sellar regions measured by phase-contrast quantitative magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    Weidong Hu; Li Xiang; Xiurong Wang

    2011-01-01

    We used MRI to examine 38 healthy females and 38 female patients with empty sella syndrome. Cerebrospinal fluid flow was examined in six regions of interest, including the anterior clinoid processes, posterior clinoid processes, and 1.0 mm, -1.0 mm, 2.0 mm, -2.0 mm from the midpoint of the line between the anterior and posterior clinoid processes. The results revealed no significant differences in cerebrospinal fluid flow velocity and discharge in a single cardiac cycle, or indicators of cardiac cycles in the control group, indicating that the cerebrospinal fluid flow was relatively steady in the saddle area of the normal brain. In the empty sella syndrome group, cerebrospinal fluid hernia into the saddle area triggered a fluctuation of the anterior and posterior clinoid processes in the saddle area, while the flow in other regions in the saddle area was relatively steady; this resulted in significant differences in cerebrospinal fluid flow velocity and discharge, as well as the cardiac cycle.

  3. Microscopic identification of Chinese medicinal materials based on X-ray phase contrast imaging: from qualitative to quantitative

    Science.gov (United States)

    Xue, Y.; Liang, Z.; Tan, H.; Ni, L.; Zhao, Z.; Xiao, T.; Xu, H.

    2016-07-01

    Although a variety of methods, ranging from simple morphological examination to physical and chemical analysis, and DNA molecular biology, exist for authenticating Chinese medicinal materials(CMMs), no methods can achieve both the source species identification and quality evaluation of CMMs simultaneously. Furthermore, the methods that are currently available for the identification of CMMs, including both optical and electronic microscopy, usually entail strict requirements for sample preparation or testing environment, such as the slicing of super-thin sections, or processing with specific chemical reagents. These treatments not only damage the CMMs but may also cause some of the original microstructures to be missed. Additionally, they may even yield false results. Owing to the unique penetrating character of X-rays, X-ray phase contrast imaging(XPCI) can be used to realize the inner microstructures of CMMs through nondestructive imaging. With the higher flux and luminance of the third generation of synchrotron radiation facility, XPCI can provides clearer and finer microstructures of CMMs, which are mainly composed of C, H, O, and N elements, with better spatial and density resolutions. For more than ten years, the X-ray imaging group at the Shanghai Institute of Applied Physics has investigated the microstructures of CMMs by XPCI and they have established and developed a quantitative X-ray phase contrast micro-CT for investigating the characteristic microstructures of CMMs. During this period, a variety of typical CMMs have been investigated, from two-dimensional (2D) radiography to three-dimensional (3D) micro-CT, from qualitative to quantitative. Taken together, these results verify that quantitative X-ray phase contrast micro-CT is a practical tool for the microscopic investigation of CMMs. Additionally, further efforts are being made to find the relationship between the microstructures' quantitative factors and active chemical components. At present

  4. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.

    Science.gov (United States)

    Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole

    2014-10-01

    Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water. PMID:25175398

  5. Developing a platform for high-resolution phase contrast imaging of high pressure shock waves in matter

    Science.gov (United States)

    Schropp, Andreas; Patommel, Jens; Seiboth, Frank; Arnold, Brice; Galtier, Eric C.; Lee, Hae Ja; Nagler, Bob; Hastings, Jerome B.; Schroer, Christian G.

    2012-10-01

    Current and upcoming X-ray sources, such as the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC, USA), the SPring-8 Angstrom Compact Free Electron Laser (SACLA, Japan), or the X-ray Free Electron Laser (XFEL, Germany) will provide X-ray beams with outstanding properties.1, 2 Short and intense X-ray pulses of about 50 fs time duration and even shorter will push X-ray science to new frontiers such as, e. g., in high-resolution X-ray imaging, high-energy-density physics or in dynamical studies based on pump-probe techniques. Fast processes in matter often require high-resolution imaging capabilities either by magnified imaging in direct space or diffractive imaging in reciprocal space. In both cases highest resolutions require focusing the X-ray beam.3, 4 In order to further develop high-resolution imaging at free-electron laser sources we are planning a platform to carry out high-resolution phase contrast imaging experiments based on Beryllium compound refractive X-ray lenses (Be-CRLs) at the Matter in Extreme Conditions (MEC) endstation of the LCLS. The instrument provides all necessary equipment to induce high pressure shock waves by optical lasers. The propagation of a shock wave is then monitored with an X-ray Free Electron Laser (FEL) pulse by magnified phase contrast imaging. With the CRL optics, X-ray beam sizes in the sub-100nm range are expected, leading to a similar spatial resolution in the direct coherent projection image. The experiment combines different state-of-the art scientific techniques that are currently available at the LCLS. In this proceedings paper we describe the technical developments carried out at the LCLS in order to implement magnified X-ray phase contrast imaging at the MEC endstation.

  6. Investigation of material deformation mechanisms during high-rate loading via simultaneous X-ray diffraction and phase contrast imaging

    OpenAIRE

    Hudspeth, Matthew

    2014-01-01

    Using polychromatic synchrotron radiation, high-rate X-ray diffraction has been performed in-situ during dynamic tensile loading. Strain rates of 1000/s and 5000/s have been achieved with a miniature tension Kolsky bar for superelastic NiTi and 1100-O series aluminum, respectively. Via altering the ICCD exposure time, single pulse and 22-pulse diffraction has been performed thus resulting in temporal resolutions of 153 ns and 3.37 μs, respectively. Furthermore, simultaneous Phase Contrast Ima...

  7. Influence of image processing on noise, sharpness and quantitativeness in grating-based phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Mathias; Willner, Marian; Hahn, Dieter; Hipp, Alexander [Physik Department, Technische Universitaet Muenchen, 85748 Garching (Germany); Herzen, Julia [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str.1, 21502 Geesthacht (Germany); Chabior, Michael; Pfeiffer, Franz [Physik Department, Technische Universitaet Muenchen, 85748 Garching (Germany); Institute of Medical Engineering, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-07-01

    Grating-based phase-contrast X-ray imaging provides additional contrast compared to regular absorption based X-ray imaging. The technique has been adapted to work with conventional X-ray tube sources and allows for quantitative imaging. The choice of processing and tomographic reconstruction algorithms influences the image quality and quantitativeness of the computed tomography. We present an overview of different methods for processing and CT-reconstruction (conventional and iterative) as well as subsequent filtering. The comparison focuses on noise, sharpness and quantitativeness using simple phantoms and biomedical samples measured at a grating interferometer equipped with a polychromatic X-ray tube and a photon counting detector.

  8. Phase contrast X-ray microtomography of the Rhodnius prolixus head: Comparison of direct reconstruction and phase retrieval approach

    Science.gov (United States)

    Almeida, A. P.; Braz, D.; Nogueira, L. P.; Colaço, M. V.; Soares, J.; Cardoso, S. C.; Garcia, E. S.; Azambuja, P.; Gonzalez, M. S.; Mohammadi, S.; Tromba, G.; Barroso, R. C.

    2014-02-01

    We have used phase-contrast X-ray microtomography (PPC-μCT) to study the head of the blood-feeding bug, Rhodnius prolixus, which is one of the most important insect vector of Trypanosoma cruzi, ethiologic agent of Chagas disease in Latin America. Images reconstructed from phase-retrieved projections processed by ANKA phase are compared to those obtained through direct tomographic reconstruction of the flat-field-corrected transmission radiographs. It should be noted that the relative locations of the important morphological internal structures are observable with a precision that is difficult to obtain without the phase retrieval approach.

  9. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming

    OpenAIRE

    Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as...

  10. Phase-contrast imaging with an x-ray grating interferometer in materials science using noncoherent synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herzen, Julia; Beckmann, Felix; Ogurreck, Malte; Riekehr, Stefan; Haibel, Astrid; Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany); Donath, Tilman; David, Christian [Paul Scherrer Institute, Villigen PSI (Switzerland); Pfeiffer, Franz [Technische Universitaet Muenchen, Munich (Germany)

    2010-07-01

    Phase-contrast imaging with a hard X-ray grating interferometer is used to increase contrast for weak absorbing materials. It is a well established imaging method to visualize soft tissue in many medical and biological applications. Here we present the approach of using this method in the field of materials science, especially in imaging of new light-weight materials like magnesium and aluminium alloys. We show that more information from a single X-ray projection image can be gained by combining the different contrasts obtained by this imaging method simultaneously. This information can be used to optimize advanced joining techniques for such materials.

  11. A potential X-pinch based point X-ray source for phase contrast imaging of inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Phase contrast X-ray imaging is necessary to monitor and validate the DT ice layer inside a cryo-ignition target. Presently available sources require a minute long exposure for imaging, thus contributing to blurring of images at the edges. An X-pinch is a bright, pulsed X-ray source that produces pulses of X-rays duration < 1 ns thus eliminating such blurring. Our preliminary results show that with an optimized detection system an X-pinch generated image could be used to locate the ice layer with the accuracy demanded by the NIF (national ignition facility) specifications. (authors)

  12. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics.

    Science.gov (United States)

    van Ooij, P; Guédon, A; Poelma, C; Schneiders, J; Rutten, M C M; Marquering, H A; Majoie, C B; VanBavel, E; Nederveen, A J

    2012-01-01

    The aim of this study was to validate the flow patterns measured by high-resolution, time-resolved, three-dimensional phase contrast MRI in a real-size intracranial aneurysm phantom. Retrospectively gated three-dimensional phase contrast MRI was performed in an intracranial aneurysm phantom at a resolution of 0.2 × 0.2 × 0.3 mm(3) in a solenoid rat coil. Both steady and pulsatile flows were applied. The phase contrast MRI measurements were compared with particle image velocimetry measurements and computational fluid dynamics simulations. A quantitative comparison was performed by calculating the differences between the magnitude of the velocity vectors and angles between the velocity vectors in corresponding voxels. Qualitative analysis of the results was executed by visual inspection and comparison of the flow patterns. The root-mean-square errors of the velocity magnitude in the comparison between phase contrast MRI and computational fluid dynamics were 5% and 4% of the maximum phase contrast MRI velocity, and the medians of the angle distribution between corresponding velocity vectors were 16° and 14° for the steady and pulsatile measurements, respectively. In the phase contrast MRI and particle image velocimetry comparison, the root-mean-square errors were 12% and 10% of the maximum phase contrast MRI velocity, and the medians of the angle distribution between corresponding velocity vectors were 19° and 15° for the steady and pulsatile measurements, respectively. Good agreement was found in the qualitative comparison of flow patterns between the phase contrast MRI measurements and both particle image velocimetry measurements and computational fluid dynamics simulations. High-resolution, time-resolved, three-dimensional phase contrast MRI can accurately measure complex flow patterns in an intracranial aneurysm phantom.

  13. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    Energy Technology Data Exchange (ETDEWEB)

    Sunaguchi, Naoki [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Yuasa, Tetsuya [Graduate School of Engineering and Science, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Gupta, Rajiv [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Ando, Masami [Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510 (Japan)

    2015-12-21

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality.

  14. Evaluation of computer-aided detection of lesions in mammograms obtained with a digital phase-contrast mammography system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Toyohiko; Nitta, Norihisa; Ohta, Shinichi; Tsuchiya, Keiko; Murakami, Yoko; Kitahara, Sawako; Wakamiya, Makoto; Furukawa, Akira; Takahashi, Masashi; Murata, Kiyoshi [Shiga University of Medical Science, Department of Radiology, Shiga (Japan); Kobayashi, Tsuyoshi [Konica Minolta Medical and Graphic Inc, Research and Development Center, Tokyo (Japan); Kano, Akiko [Konica Minolta Medical and Graphic, Inc, Corporate Development Department, Tokyo (Japan)

    2009-12-15

    A computer-aided detection (CAD) system was evaluated for its ability to detect microcalcifications and masses on images obtained with a digital phase-contrast mammography (PCM) system, a system characterised by the sharp images provided by phase contrast and by the high resolution of 25-{mu}m-pixel mammograms. Fifty abnormal and 50 normal mammograms were collected from about 3,500 mammograms and printed on film for reading on a light box. Seven qualified radiologists participated in an observer study based on receiver operating characteristic (ROC) analysis. The average of the areas under ROC curve (AUC) values for the ROC analysis with and without CAD were 0.927 and 0.897 respectively (P = 0.015). The AUC values improved from 0.840 to 0.888 for microcalcifications (P = 0.034) and from 0.947 to 0.962 for masses (P = 0.025) respectively. The application of CAD to the PCM system is a promising approach for the detection of breast cancer in its early stages. (orig.)

  15. In Vitro Validation of an Artefact Suppression Algorithm in X-Ray Phase-Contrast Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Naoki Sunaguchi

    Full Text Available X-ray phase-contrast tomography can significantly increase the contrast-resolution of conventional attenuation-contrast imaging, especially for soft-tissue structures that have very similar attenuation. Just as in attenuation-based tomography, phase contrast tomography requires a linear dependence of aggregate beam direction on the incremental direction alteration caused by individual voxels along the path of the X-ray beam. Dense objects such as calcifications in biological specimens violate this condition. There are extensive beam deflection artefacts in the vicinity of such structures because they result in large distortion of wave front due to the large difference of refractive index; for such large changes in beam direction, the transmittance of the silicon analyzer crystal saturates and is no longer linearly dependent on the angle of refraction. This paper describes a method by which these effects can be overcome and excellent soft-tissue contrast of phase tomography can be preserved in the vicinity of such artefact-producing structures.

  16. Flexible retrospective phase stepping in x-ray scatter correction and phase contrast imaging using structured illumination.

    Directory of Open Access Journals (Sweden)

    Han Wen

    Full Text Available The development of phase contrast methods for diagnostic x-ray imaging is inspired by the potential of seeing the internal structures of the human body without the need to deposit any harmful radiation. An efficient class of x-ray phase contrast imaging and scatter correction methods share the idea of using structured illumination in the form of a periodic fringe pattern created with gratings or grids. They measure the scatter and distortion of the x-ray wavefront through the attenuation and deformation of the fringe pattern via a phase stepping process. Phase stepping describes image acquisition at regular phase intervals by shifting a grating in uniform steps. However, in practical conditions the actual phase intervals can vary from step to step and also spatially. Particularly with the advent of electromagnetic phase stepping without physical movement of a grating, the phase intervals are dependent upon the focal plane of interest. We describe a demodulation algorithm for phase stepping at arbitrary and position-dependent (APD phase intervals without assuming a priori knowledge of the phase steps. The algorithm retrospectively determines the spatial distribution of the phase intervals by a Fourier transform method. With this ability, grating-based x-ray imaging becomes more adaptable and robust for broader applications.

  17. Quantifying morphological parameters of the terminal branching units in a mouse lung by phase contrast synchrotron radiation computed tomography.

    Directory of Open Access Journals (Sweden)

    Jeongeun Hwang

    Full Text Available An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman's method was adopted for the whole-lung sample preparation, and Canny's edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method's feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies.

  18. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    International Nuclear Information System (INIS)

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality

  19. Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging

    International Nuclear Information System (INIS)

    Grating-based x-ray differential phase contrast (DPC) imaging has shown huge potential. For broad applications, it is essential that the key components are low-cost, especially the absorption gratings. We therefore proposed and developed a micro-casting process for fabricating x-ray absorption gratings with bismuth. This process is feasible for mass production at low cost, with a large format, and a high aspect ratio. To develop this kind of absorption grating, an array with deep trenches was fabricated by photo-assisted electrochemical etching in a silicon wafer. The trenches were then filled with bubble-free, molten bismuth via capillary action and surface tension. Bismuth was attractive as a filling material because of its great mass absorption coefficient, low cost and broad environmental compatibility. Furthermore, our micro-casting process provided bismuth absorption gratings with a clean surface and no need for post treatment. To test their performance in x-ray DPC imaging, two bismuth absorption gratings, one as a periodic source and another as the analyzer, were used with periods of 42 and 3 µm and depths of 110 and 150 µm, respectively. The acquired phase-contrast images demonstrated that the micro-casting process produces qualified gratings for x-ray DPC imaging. (paper)

  20. Non-destructive phase contrast hard x-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues

    Science.gov (United States)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Hieber, Simone E.; Hasan, Samiul; Bikis, Christos; Schulz, Joachim; Costeur, Loïc.; Müller, Bert

    2016-04-01

    X-ray imaging in the absorption contrast mode is an established method of visualising calcified tissues such as bone and teeth. Physically soft tissues such as brain or muscle are often imaged using magnetic resonance imaging (MRI). However, the spatial resolution of MRI is insufficient for identifying individual biological cells within three-dimensional tissue. X-ray grating interferometry (XGI) has advantages for the investigation of soft tissues or the simultaneous three-dimensional visualisation of soft and hard tissues. Since laboratory microtomography (μCT) systems have better accessibility than tomography set-ups at synchrotron radiation facilities, a great deal of effort has been invested in optimising XGI set-ups for conventional μCT systems. In this conference proceeding, we present how a two-grating interferometer is incorporated into a commercially available nanotom m (GE Sensing and Inspection Technologies GmbH) μCT system to extend its capabilities toward phase contrast. We intend to demonstrate superior contrast in spiders (Hogna radiata (Fam. Lycosidae) and Xysticus erraticus (Fam. Thomisidae)), as well as the simultaneous visualisation of hard and soft tissues. XGI is an imaging modality that provides quantitative data, and visualisation is an important part of biomimetics; consequently, hard X-ray imaging provides a sound basis for bioinspiration, bioreplication and biomimetics and allows for the quantitative comparison of biofabricated products with their natural counterparts.

  1. Development operators on 4D moving object databases

    Institute of Scientific and Technical Information of China (English)

    JUN Sung-woo; LEE Yang-koo; KIM Sang-ho; CHI Jeong-hee; RYU Keun-ho

    2004-01-01

    In this paper we propose four-dimensional (4D) operators, which can be used to deal with sequential changes of topological relationships between 4D moving objects and we call them 4D development operators. In contrast to the existing operators, we can apply the operators to real applications on 4D moving objects. We also propose a new approach to define them. The approach is based on a dimension-separated method, which considers x-y coordinates and z coordinates separately. In order to show the applicability of our operators, we show the algorithms for the proposed operators and development graph between 4D moving objects.

  2. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron.

    Science.gov (United States)

    Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana

    2015-11-01

    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses. PMID:26524316

  3. Sex-differential genetic effect of phosphodiesterase 4D (PDE4D on carotid atherosclerosis

    Directory of Open Access Journals (Sweden)

    Guo Yuh-Cherng

    2010-06-01

    Full Text Available Abstract Background The phosphodiesterase 4D (PDE4D gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis. Methods Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men. Genotype distribution was compared among the high-risk (plaque index ≥ 4, low-risk (index = 1-3, and reference (index = 0 groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect. Results In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034 for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008. For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032 for a thicker IMT at the common carotid artery compared with the (AA + AT genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025 but not in women (p = 0

  4. Spectral x-ray phase contrast imaging for single-shot retrieval of absorption, phase, and differential-phase imagery.

    Science.gov (United States)

    Das, Mini; Liang, Zhihua

    2014-11-01

    In this Letter, we propose the first single-shot, noninterferometric x-ray imaging method for simultaneous retrieval of absorption, phase, and differential-phase imagery with quantitative accuracy. Our method utilizes a photon-counting spectral x-ray detector in conjunction with a simplified transport-of-intensity equation for coded-aperture phase-contrast imaging to efficiently solve the retrieval problem. This method can utilize an incoherent and polychromatic (clinical or laboratory) x-ray tube and can enable retrieval for a wide range and composition of material properties. The proposed method has been validated via computer simulations and is expected to significantly benefit applications that are sensitive to complexity of measurement, radiation dose and imaging time. PMID:25361350

  5. Measurement and simulation of ICRF wave intensity with a recalibrated phase contrast imaging diagnostic on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Tsujii, N., E-mail: tsujii@k.u-tokyo.ac.jp [The University of Tokyo, Kashiwa (Japan); Porkolab, M.; Bonoli, P. T.; Edlund, E. M.; Ennever, P. C.; Lin, Y.; Wright, J. C.; Wukitch, S. J. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts (United States); Jaeger, E. F. [XCEL Engineering, Oak Ridge, Tennessee (United States); Green, D. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States); Harvey, R. W. [CompX, Del Mar, California (United States)

    2015-12-10

    Waves in the ion cyclotron range of frequencies (ICRF) are one of the major tools to heat fusion plasmas. Full-wave simulations are essential to predict the wave propagation and absorption quantitatively, and it is important that these codes be validated against actual experimental measurements. In this work, the absolute intensity of the ICRF waves previously measured with a phase contrast imaging diagnostic was recalibrated and compared once more with full-wave predictions. In the earlier work, significant discrepancies were found between the measured and the simulated mode converted wave intensity [N. Tsujii et al., Phys. Plasmas 19, 082508]. With the new calibration of the detector array, the measured mode converted wave intensity is now in much better agreement with the full-wave predictions. The agreement is especially good for comparisons performed close to the antenna.

  6. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    Science.gov (United States)

    Hönnicke, M. G.; Cusatis, C.; Rigon, L.; Menk, R.-H.; Arfelli, F.; Foerster, L. A.; Rosado-Neto, G. H.

    2010-08-01

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures ( Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  7. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M.G., E-mail: mhonnicke@bnl.go [NSLS II, Brookhaven National Laboratory, Upton, NY (United States); Cusatis, C. [LORXI, Departamento de Fisica-UFPR, Curitiba (Brazil); Rigon, L. [Instituto Nazionale di Fisica Nucleare, Trieste (Italy); Menk, R.-H. [Sincrotrone Trieste SCPa, Basovizza, Trieste (Italy); Arfelli, F. [Instituto Nazionale di Fisica Nucleare, Trieste (Italy); Dipartamento di Fisica-Universita di Trieste, Trieste (Italy); Foerster, L.A.; Rosado-Neto, G.H. [Departamento de Zoologia-UFPR, Curitiba (Brazil)

    2010-08-21

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures (Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  8. Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology

    Science.gov (United States)

    Brunel, M.; Shen, H.; Coetmellec, S.; Lebrun, D.; Ait Ameur, K.

    2012-03-01

    The possibility to analyze transparent phase objects using femtosecond digital in-line holography is demonstrated. We show that the diffraction patterns produced by the diffraction of 20-fs pulses by pure phase objects can be advantageously processed by using the fractional Fourier transform. The optimal fractional orders lead to the longitudinal location of the phase object while the analysis of the reconstructed patterns leads to its diameter and to the value of the phase shift. Simulations and experimental results are in good concordance. This work shows new important applications of these reconstruction techniques in the domain of digital phase-contrast metrology. We further show that the use of femtosecond pulses results in a significant reduction of coherent noise.

  9. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    Science.gov (United States)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  10. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation......, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser...... patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection....

  11. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (Source-code for MATLAB and ImageJ is freely available under a permissive open-source license.

  12. Phase contrast imaging measurements of reversed shear Alfvén eigenmodes during sawteeth in Alcator C-Moda)

    Science.gov (United States)

    Edlund, E. M.; Porkolab, M.; Kramer, G. J.; Lin, L.; Lin, Y.; Wukitch, S. J.

    2009-05-01

    Reversed shear Alfvén eigenmodes (RSAEs) have been observed with the phase contrast imaging diagnostic and Mirnov coils during the sawtooth cycle in Alcator C-mod [M. Greenwald et al., Nucl. Fusion 45, S109 (2005)] plasmas with minority ion-cyclotron resonance heating. Both down-chirping RSAEs and up-chirping RSAEs have been observed during the sawtooth cycle. Experimental measurements of the spatial structure of the RSAEs are compared to theoretical models based on the code NOVA [C. Z. Cheng and M. S. Chance, J. Comput. Phys. 71, 124 (1987)] and used to derive constraints on the q profile. It is shown that the observed RSAEs can be understood by assuming a reversed shear q profile (up chirping) or a q profile with a local maximum (down chirping) with q ≈1.

  13. Fast one-dimensional wave-front propagation for x-ray differential phase-contrast imaging.

    Science.gov (United States)

    Wolf, Johannes; Malecki, Andreas; Sperl, Jonathan; Chabior, Michael; Schüttler, Markus; Bequé, Dirk; Cozzini, Cristina; Pfeiffer, Franz

    2014-10-01

    Numerical wave-optical simulations of X-ray differential phase-contrast imaging using grating interferometry require the oversampling of gratings and object structures in the range of few micrometers. Consequently, fields of view of few millimeters already use large amounts of a computer's main memory to store the propagating wave front, limiting the scope of the investigations to only small-scale problems. In this study, we apply an approximation to the Fresnel-Kirchhoff diffraction theory to overcome these restrictions by dividing the two-dimensional wave front up into 1D lines, which are processed separately. The approach enables simulations with samples of clinically relevant dimensions by significantly reducing the memory footprint and the execution time and, thus, allows the qualitative comparison of different setup configurations. We analyze advantages as well as limitations and present the simulation of a virtual mammography phantom of several centimeters of size.

  14. Measurement and simulation of ICRF wave intensity with a recalibrated phase contrast imaging diagnostic on Alcator C-Mod

    International Nuclear Information System (INIS)

    Waves in the ion cyclotron range of frequencies (ICRF) are one of the major tools to heat fusion plasmas. Full-wave simulations are essential to predict the wave propagation and absorption quantitatively, and it is important that these codes be validated against actual experimental measurements. In this work, the absolute intensity of the ICRF waves previously measured with a phase contrast imaging diagnostic was recalibrated and compared once more with full-wave predictions. In the earlier work, significant discrepancies were found between the measured and the simulated mode converted wave intensity [N. Tsujii et al., Phys. Plasmas 19, 082508]. With the new calibration of the detector array, the measured mode converted wave intensity is now in much better agreement with the full-wave predictions. The agreement is especially good for comparisons performed close to the antenna

  15. Edge-illumination X-ray phase contrast imaging: matching the imaging method to the detector technology

    International Nuclear Information System (INIS)

    X-Ray Phase Contrast Imaging (XPCI) has been arguably the hottest topic in X-ray imaging research over the last two decades, due to the significant advantages it can bring to medicine, biology, material science and many other areas of application. Considerable progress has recently been achieved, in terms of the first in vivo implementations at synchrotrons (notably at Elettra in Trieste), and of new XPCI methods working with conventional sources. Among the latter, edge-illumination (EI) is possibly one of the most promising in terms of mainstream translation, due to set-up simplicity, scalability and flux efficiency compared to other approaches. EI is indeed the only method working with a completely incoherent source: however, it was recently demonstrated that neither the ability to perform quantitative phase retrieval, nor the method's phase sensitivity are affected by the source's incoherence. Here its implementation with different detector technologies is discussed

  16. Observation of cavitation and water-refilling processes in plants with X-ray phase contrast microscopy

    International Nuclear Information System (INIS)

    With the spatial coherence of X-rays and high flux and brightness of the 3rd generation synchrotron radiation facility, X-ray phase contrast microscopy (XPCM) at Shanghai Synchrotron Radiation Facility (SSRF) can provide high resolution dynamic imaging of low electron density materials in principle. In this paper, we investigated the cavitation and water-refilling processes in rice and bamboo leaves utilizing XPCM at SSRF. The occurrence of xylem cavitation was recorded in vivo. The study also revealed that under different dehydration conditions, cavitation occurs in different degrees, and therefore, the refilling process is different. The results demonstrate that SSRF can provide high enough fluxes to study dynamic processes in plants in real-time, and XPCM is expected to be a promising method to reveal the mechanisms of cavitation and its repair in plants nondestructively. (authors)

  17. Influence of tube voltage and current on in-line phase contrast imaging using a microfocus x-ray source

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Yu Ai-Min; Li Cheng-Quan

    2007-01-01

    In-line x-ray phase contrast imaging has attracted much attention due to two major advantages:its effectiveness in imaging weakly absorbing materials,and the simplicity of its facilities.In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med.Phys.31 2378-2384(2004)] is reviewed.The influence of x-ray source and detector on the image is discussed.Experiments using a microfocus x-ray source and a CCD detector are conducted,which show the role of two key factors on imaging:the tube voltage and tube current.High tube current and moderate tube voltage are suggested for imaging.

  18. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    International Nuclear Information System (INIS)

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures (Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  19. Blood flow measurement of portal vein with fast cine phase contrast MR imaging under breath-holding

    International Nuclear Information System (INIS)

    Flow measurements of the right portal vein were performed in seven healthy volunteers with the segmented k-space fast gradient-echo phase-contrast (fcard-PC) sequence under breath-holding. The mean velocity and the flow rate of the right portal vein at maximal expiration, 14.3±4.4 cm/sec and 457±218 ml/min, were significantly greater (p<0.01) than those at maximal inspiration: 11.8±3.8 cm/sec (mean±SD) and 364±191 ml/min, respectively. Fcard-PC enabled flow measurements to be obtained under breath-holding. Using this technique, we demonstrated portal venous flow changes according to respiratory phase. (author)

  20. Blood flow measurement of portal vein with fast cine phase contrast MR imaging under breath-holding

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Fumitaka; Murakami, Takamichi; Sakurai, Kosuke; Tsuda, Kyo; Kim, Tonsoku; Tanaka, Hisashi; Kashiwagi, Nobuo; Nakamura, Hironobu [Osaka Univ. (Japan). Faculty of Medicine; Harada, Koshi

    1996-03-01

    Flow measurements of the right portal vein were performed in seven healthy volunteers with the segmented k-space fast gradient-echo phase-contrast (fcard-PC) sequence under breath-holding. The mean velocity and the flow rate of the right portal vein at maximal expiration, 14.3{+-}4.4 cm/sec and 457{+-}218 ml/min, were significantly greater (p<0.01) than those at maximal inspiration: 11.8{+-}3.8 cm/sec (mean{+-}SD) and 364{+-}191 ml/min, respectively. Fcard-PC enabled flow measurements to be obtained under breath-holding. Using this technique, we demonstrated portal venous flow changes according to respiratory phase. (author).

  1. Investigation of physical image characteristics and phenomenon of edge enhancement by phase contrast using equipment typical for mammography

    International Nuclear Information System (INIS)

    A technique called phase contrast mammography (PCM) has only recently been applied in clinical examination. In this application, PCM images are acquired at a 1.75x magnification using an x-ray tube for clinical use, and then reduced to the real size of the object by image processing. The images showed enhanced object edges; reportedly, this enhancement occurred because of the refraction of x rays through a cylindrical object. The authors measured the physical image characteristics of PCM to compare the image characteristics of PCM with those of conventional mammography. More specifically, they measured the object-edge-response characteristics and the noise characteristics in the spatial frequency domain. The results revealed that the edge-response characteristics of PCM outperformed those of conventional mammography. In addition, the characteristics changed with the object-placement conditions and the object shapes. The noise characteristics of PCM were better than those of conventional mammography. Subsequently, to verify why object edges were enhanced in PCM images, the authors simulated image profiles that would be obtained if the x rays were refracted and totally reflected by using not only a cylindrical substance but also a planar substance as the object. So, they confirmed that the object edges in PCM images were enhanced because x rays were refracted irrespective of the object shapes. Further, they found that the edge enhancements depended on the object shapes and positions. It was also proposed that the larger magnification than 1.75 in the commercialized system might be more suitable for PCM. Finally, the authors investigated phase-contrast effects to breast tissues by the simulation and demonstrated that PCM would be helpful in the diagnoses of mammography.

  2. In-line phase-contrast breast tomosynthesis: a phantom feasibility study at a synchrotron radiation facility

    Science.gov (United States)

    Bliznakova, K.; Russo, P.; Kamarianakis, Z.; Mettivier, G.; Requardt, H.; Bravin, A.; Buliev, I.

    2016-08-01

    The major objective is to adopt, apply and test developed in-house algorithms for volumetric breast reconstructions from projection images, obtained in in-line phase-contrast mode. Four angular sets, each consisting of 17 projection images obtained from four physical phantoms, were acquired at beamline ID17, European Synchroton Radiation Facility, Grenoble, France. The tomosynthesis arc was  ±32°. The physical phantoms differed in complexity of texture and introduced features of interest. Three of the used phantoms were in-house developed, and made of epoxy resin, polymethyl-methacrylate and paraffin wax, while the fourth phantom was the CIRS BR3D. The projection images had a pixel size of 47 µm  ×  47 µm. Tomosynthesis images were reconstructed with standard shift-and-add (SAA) and filtered backprojection (FBP) algorithms. It was found that the edge enhancement observed in planar x-ray images is preserved in tomosynthesis images from both phantoms with homogeneous and highly heterogeneous backgrounds. In case of BR3D, it was found that features not visible in the planar case were well outlined in the tomosynthesis slices. In addition, the edge enhancement index calculated for features of interest was found to be much higher in tomosynthesis images reconstructed with FBP than in planar images and tomosynthesis images reconstructed with SAA. The comparison between images reconstructed by the two reconstruction algorithms shows an advantage for the FBP method in terms of better edge enhancement. Phase-contrast breast tomosynthesis realized in in-line mode benefits the detection of suspicious areas in mammography images by adding the edge enhancement effect to the reconstructed slices.

  3. Using X-ray in-line phase-contrast imaging for the investigation of nude mouse hepatic tumors.

    Directory of Open Access Journals (Sweden)

    Qiang Tao

    Full Text Available The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI. The projection images' texture feature based on gray level co-occurrence matrix (GLCM and dual-tree complex wavelet transforms (DTCWT were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM. Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors.

  4. Grating-based X-ray phase-contrast tomography of atherosclerotic plaque at high photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Hetterich, Holger; Fill, Sandra [Klinikum der Ludwig-Maximilians-Univ., Muenchen (Germany). Inst. fuer Klinische Radiologie; Herzen, Julia [Technische Univ. Muenchen, Garching (Germany). Physik-Dept. und Inst. fuer Medizintechnik; Helmholtz-Zentrum Geesthacht, Geesthacht (Germany). Zentrum fuer Materialforschung] [and others

    2013-10-01

    Background: Tissue characterization of atherosclerosis by absorption-based imaging methods is limited due to low soft-tissue contrast. Grating-based phase-contrast computed tomography (PC-CT) may become an alternative for plaque assessment if the phase signal can be retrieved at clinically applicable photon energies. The aims of this feasibility study were (i) to characterize arterial vessels at low and high photon energies, (ii) to extract qualitative features and (iii) quantitative phase-contrast Hounsfield units (HU-phase) of plaque components at 53 keV using histopathology as gold standard. Materials and methods: Five human carotid artery specimens underwent grating-based PC-CT using synchrotron radiation of either 23 keV or 53 keV and histological work-up. Specimens without advanced atherosclerosis were used to extract signal criteria of vessel layers. Diseased specimens were screened for important plaque components including fibrous tissue (FT), lipid (LIP), necrotic core (NEC), intraplaque hemorrhage (IPH), inflammatory cell infiltration (INF) and calcifications (CA). Qualitative features as well as quantitative HU-phase were analyzed. Results: Thirty-three regions in 6 corresponding PC-CT scans and histology sections were identified. Healthy samples had the same signal characteristics at 23 keV and 53 keV with bright tunica intima and adventitia and dark media. Plaque components showed differences in signal intensity and texture at 53 keV. Quantitative analysis demonstrated the highest HU-phase of soft plaque in dense FT. Less organized LIP, NEC and INF were associated with lower HU-phase values. The highest HU-phase were measured in CA. Conclusion: PC-CT of atherosclerosis is feasible at high, clinically relevant photon energies and provides detailed information about plaque structure including features of high risk vulnerable plaques. (orig.)

  5. A phase-contrast microscopy-based method for modeling the mechanical behavior of mesenchymal stem cells.

    Science.gov (United States)

    Saeed, Mayssam; Sharabani-Yosef, Orna; Weihs, Daphne; Gefen, Amit

    2016-10-01

    We present three-dimensional (3D) finite element (FE) models of single, mesenchymal stem cells (MSCs), generated from images obtained by optical phase-contrast microscopy and used to quantify the structural responses of the studied cells to externally applied mechanical loads. Mechanical loading has been shown to affect cell morphology and structure, phenotype, motility and other biological functions. Cells experience mechanical loads naturally, yet under prolonged or sizable loading, damage and cell death may occur, which motivates research regarding the structural behavior of loaded cells. For example, near the weight-bearing boney prominences of the buttocks of immobile persons, tissues may become highly loaded, eventually leading to massive cell death that manifests as pressure ulcers. Cell-specific computational models have previously been developed by our group, allowing simulations of cell deformations under compressive or stretching loads. These models were obtained by reconstructing specific cell structures from series of 2D fluorescence, confocal image-slices, requiring cell-specific fluorescent-staining protocols and costly (confocal) microscopy equipment. Alternative modeling approaches represent cells simply as half-spheres or half-ellipsoids (i.e. idealized geometries), which neglects the curvature details of the cell surfaces associated with changes in concentrations of strains and stresses. Thus, we introduce here for the first time an optical image-based FE modeling, where loads are simulated on reconstructed 3D geometrical cell models from a single 2D, phase-contrast image. Our novel modeling method eliminates the need for confocal imaging and fluorescent staining preparations (both expensive), and makes cell-specific FE modeling affordable and accessible to the biomechanics community. We demonstrate the utility of this cost-effective modeling method by performing simulations of compression of MSCs embedded in a gel. PMID:26856632

  6. Four-dimensional (4D) tracking of high-temperature microparticles

    Science.gov (United States)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  7. 4d/5d Correspondence for the Black Hole Potential and its Critical Points

    CERN Document Server

    Ceresole, A; Marrani, A

    2007-01-01

    We express the d=4, N=2 black hole effective potential for cubic holomorphic F functions and generic dyonic charges in terms of d=5 real special geometry data. The 4d critical points are computed from the 5d ones, and their relation is elucidated. For symmetric spaces, we identify the BPS and non-BPS classes of attractors and the respective entropies. These are related by simple formulae, interpolating between four and five dimensions, depending on the volume modulus and on the 4d magnetic (or electric) charges, and holding true also for generic field configurations and for non-symmetric cubic geometries.

  8. Chaos synchronization between two different 4D hyperchaotic Chen systems

    Institute of Scientific and Technical Information of China (English)

    Liu Yang-Zheng; Jiang Chang-Sheng; Lin Chang-Sheng; Jiang Yao-Mei

    2007-01-01

    This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws.A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system,furthermore,an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed.With nonlinear feedback control method,chaos synchronization between two different 4D hyperchaotic Chen systems is achieved.Based on the stability theory,the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived,the range of feedback gains is determined.Numerical simulations are shown to verify the theoretical results.

  9. Generalized phase contrast:

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    (GPC) method including an overview of the range of current and potential applications of GPC in wavefront sensing and phase imaging, structured laser illumination and image projection, optical trapping and manipulation, and optical encryption and decryption. The GPC method goes further than...

  10. Pros and cons for C4d as a biomarker

    OpenAIRE

    Cohen, Danielle; Colvin, Robert B.; Mohamed R. Daha; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E.; Sis, Banu; ZHAO, Ming-Hui; Bruijn, Jan A.; Bajema, Ingeborg M.

    2012-01-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations...

  11. Pros and cons for C4d as a biomarker.

    Science.gov (United States)

    Cohen, Danielle; Colvin, Robert B; Daha, Mohamed R; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E; Sis, Banu; Zhao, Ming-Hui; Bruijn, Jan A; Bajema, Ingeborg M

    2012-04-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations C4d is present in the majority of grafts but this seems to point at 'graft accommodation' rather than antibody-mediated rejection. C4d is now increasingly recognized as a potential biomarker in other fields where antibodies can cause tissue damage, such as systemic autoimmune diseases and pregnancy. In all these fields, C4d holds promise to detect patients at risk for the consequences of antibody-mediated disease. Moreover, the emergence of new therapeutics that block complement activation makes C4d a marker with potential to identify patients who may possibly benefit from these drugs. This review provides an overview of the past, present, and future perspectives of C4d as a biomarker, focusing on its use in solid organ transplantation and discussing its possible new roles in autoimmunity and pregnancy. PMID:22297669

  12. Effortless assignment with 4D covariance sequential correlation maps.

    Science.gov (United States)

    Harden, Bradley J; Mishra, Subrata H; Frueh, Dominique P

    2015-11-01

    Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase.

  13. High-resolution phase-contrast MRI of aortic and pulmonary blood flow during rest and physical exercise using a MRI compatible bicycle ergometer

    International Nuclear Information System (INIS)

    Purpose: To establish high-resolution phase-contrast magnetic resonance imaging (PC-MRI) using a MRI compatible bicycle ergometer to quantify aortic and pulmonary blood flow during resting conditions and exercise. Materials and methods: In 20 healthy volunteers (mean age, 26.8 ± 5.0 years) high-resolution PC-MRI (mean temporal resolution, 7.4 ± 3.2 ms) was performed in the ascending aorta (AA) and main pulmonary artery (PA) during physical rest and three exercise stages: stage 1, no-load operation; stage 2, heart rate increase 40% compared to rest; stage 3, heart rate increase 80% compared to rest. Flow quantification in AA and PA included flow volume (FV), average velocity (AV), peak velocity (PV) and time to PV (TP). Results: In stage 1 only TP demonstrated a significant change. With progression to stage 2, all parameters altered significantly. Flow measurements during stage 3 evidenced further alterations only of AV and TP regarding both AA and PA. The deviation of the heart rate from the desired target value was significantly higher for stage 3 compared to stage 2, and 15% of the subjects did not reach the desired target heart rate of stage 3 at all. Conclusion: Flow quantification by high-resolution PC-MRI during exercise using a MRI compatible bicycle ergometer is feasible. Medium exercise stages are necessary and sufficient to demonstrate flow alterations in healthy volunteers. PC-MRI ergometry may give insights into aberrant hemodynamic conditions in patients with cardiovascular and pulmonary disease.

  14. High-resolution phase-contrast MRI of aortic and pulmonary blood flow during rest and physical exercise using a MRI compatible bicycle ergometer

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Tim Frederik, E-mail: tim.weber@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, INF 110, 69120 Heidelberg (Germany); Department of Radiology, German Cancer Research Center, INF 280, 69120 Heidelberg (Germany); Tengg-Kobligk, Hendrik von, E-mail: hendrik.tengg-kobligk@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, INF 110, 69120 Heidelberg (Germany); Department of Radiology, German Cancer Research Center, INF 280, 69120 Heidelberg (Germany); Kopp-Schneider, Annette, E-mail: kopp@dkfz-heidelberg.de [Department of Biostatistics, German Cancer Research Center, INF 280, 69120 Heidelberg (Germany); Ley-Zaporozhan, Julia, E-mail: julia.ley-zaporozhan@med.uni-heidelberg.de [Department of Pediatric Radiology, University Medical Center Heidelberg, INF 430, 69120 Heidelberg (Germany); Kauczor, Hans-Ulrich, E-mail: hans-ulrich.kauczor@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, INF 110, 69120 Heidelberg (Germany); Ley, Sebastian, E-mail: sebastian.ley@med.uni.heidelberg.de [Department of Radiology, German Cancer Research Center, INF 280, 69120 Heidelberg (Germany); Department of Pediatric Radiology, University Medical Center Heidelberg, INF 430, 69120 Heidelberg (Germany)

    2011-10-15

    Purpose: To establish high-resolution phase-contrast magnetic resonance imaging (PC-MRI) using a MRI compatible bicycle ergometer to quantify aortic and pulmonary blood flow during resting conditions and exercise. Materials and methods: In 20 healthy volunteers (mean age, 26.8 {+-} 5.0 years) high-resolution PC-MRI (mean temporal resolution, 7.4 {+-} 3.2 ms) was performed in the ascending aorta (AA) and main pulmonary artery (PA) during physical rest and three exercise stages: stage 1, no-load operation; stage 2, heart rate increase 40% compared to rest; stage 3, heart rate increase 80% compared to rest. Flow quantification in AA and PA included flow volume (FV), average velocity (AV), peak velocity (PV) and time to PV (TP). Results: In stage 1 only TP demonstrated a significant change. With progression to stage 2, all parameters altered significantly. Flow measurements during stage 3 evidenced further alterations only of AV and TP regarding both AA and PA. The deviation of the heart rate from the desired target value was significantly higher for stage 3 compared to stage 2, and 15% of the subjects did not reach the desired target heart rate of stage 3 at all. Conclusion: Flow quantification by high-resolution PC-MRI during exercise using a MRI compatible bicycle ergometer is feasible. Medium exercise stages are necessary and sufficient to demonstrate flow alterations in healthy volunteers. PC-MRI ergometry may give insights into aberrant hemodynamic conditions in patients with cardiovascular and pulmonary disease.

  15. Assessment of hemodynamic changes in the systemic and pulmonary arterial circulation in patients with cystic fibrosis using phase-contrast MRI

    International Nuclear Information System (INIS)

    Cystic fibrosis (CF) leads to disabling lung disease and pulmonary hypertension (PH). The goal of this study was to assess the hemodynamics in the systemic and pulmonary arterial circulation of patients with CF using MRI. Ten patients with CF and 15 healthy volunteers were examined (1.5-T MRI). Phase-contrast flow measurements were assessed in the ascending aorta, pulmonary trunc, and the left and right pulmonary arteries (PA), resulting in the following parameters: peak velocity (PV) (centimeters per second) velocity rise gradient (VRG), time to PV (milliseconds), and the average area (centimeters squared). The blood flow ratio between the right and left lungs and the bronchosystemic shunt were calculated. For the ascending aorta and pulmonary trunc no parameter was significantly different between both populations. In the right PA a significantly lower PV (p=0.001) and VRG (p=0.02) was found. In the left PA there was a significantly (p=0.007) lower PV but no significant (p=0.07) difference between the VRG. The areas of the right (p=0.08) and left (p=0.5) PA were not significantly enlarged. For the volunteers a linear increase of PV in both PA was found with age, while it decreased in patients with CF. The blood flow distribution (right/left lung) showed no significant (p=0.7) difference between the groups. There was a significantly (p<0.001) higher bronchosystemic shunt volume in patients with CF (1.3 l/min) than in volunteers (0.1 l/min). Magnetic resonance based flow measurements in the right and left PA showed first indications for early development of PH. The significant increase in bronchosystemic shunt volume might be indicative fo the extent of parenchymal changes. (orig.)

  16. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Leong, Andrew F. T.; Islam, M. Sirajul; Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia); Fouras, Andreas [Division of Biological Engineering, Monash University, Victoria 3800 (Australia); Wallace, Megan J.; Hooper, Stuart B. [Ritchie Centre and Department of Obstetrics and Gynaecology, Monash Institute of Medical Research, Monash University, Victoria 3168 (Australia)

    2013-04-15

    Purpose: Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. Methods: The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions {approx}16.2 {mu}m). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Results: Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. Conclusions: This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using

  17. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images

    International Nuclear Information System (INIS)

    Purpose: Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. Methods: The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ∼16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Results: Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. Conclusions: This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this

  18. Evaluation of the dark-medium objective lens in counting asbestos fibers by phase-contrast microscopy.

    Science.gov (United States)

    Lee, Eun Gyung; Nelson, John H; Kashon, Michael L; Harper, Martin

    2015-06-01

    samples indicates that there is a fraction of fibers in the PAT samples approaching the theoretical limit of visibility of the phase-contrast microscope with 3-degree phase-shift. These fibers become more clearly visible through the greater contrast from the phase plate absorption of the DM objective. However, as such fibers are not present in field samples, no difference in counts between the two objectives was observed in this study. The DM objective, therefore, could be allowed for routine fiber counting as it will maintain continuity with risk assessments based on earlier phase-contrast microscopy fiber counts from field samples. Published standard methods would need to be modified to allow a higher aperture specification for the objective.

  19. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.

    Science.gov (United States)

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2015-06-01

    A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials.

  20. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Science.gov (United States)

    2010-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  1. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  2. A laboratory-based X-ray phase contrast imaging scanner with applications in biomedical and non-medical disciplines

    International Nuclear Information System (INIS)

    X-ray phase contrast imaging (XPCi) provides a much higher visibility of low-absorbing details than conventional, attenuation-based radiography. This is due to the fact that image contrast is determined by the unit decrement of the real part of the complex refractive index of an object rather than by its imaginary part (the absorption coefficient), which can be up to 1000 times larger for energies in the X-ray regime. This finds applications in many areas, including medicine, biology, material testing, and homeland security. Until lately, XPCi has been restricted to synchrotron facilities due to its demanding coherence requirements on the radiation source. However, edge illumination XPCi, first developed by one of the authors at the ELETTRA Synchrotron in Italy, substantially relaxes these requirements and therefore provides options to overcome this problem. Our group has built a prototype scanner that adapts the edge-illumination concept to standard laboratory conditions and extends it to large fields of view. This is based on X-ray sources and detectors available off the shelf, and its use has led to impressive results in mammography, cartilage imaging, testing of composite materials and security inspection. This article presents the method and the scanner prototype, and reviews its applications in selected biomedical and non-medical disciplines. (author)

  3. Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    Science.gov (United States)

    Diemoz, P. C.; Endrizzi, M.; Vittoria, F. A.; Hagen, C. K.; Kallon, G.; Basta, D.; Marenzana, M.; Delogu, P.; Vincenzi, A.; De Ruvo, L.; Spandre, G.; Brez, A.; Bellazzini, R.; Olivo, A.

    2015-03-01

    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI's achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI.

  4. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    International Nuclear Information System (INIS)

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects

  5. Analysis of a deconvolution-based information retrieval algorithm in X-ray grating-based phase-contrast imaging

    Science.gov (United States)

    Horn, Florian; Bayer, Florian; Pelzer, Georg; Rieger, Jens; Ritter, André; Weber, Thomas; Zang, Andrea; Michel, Thilo; Anton, Gisela

    2014-03-01

    Grating-based X-ray phase-contrast imaging is a promising imaging modality to increase soft tissue contrast in comparison to conventional attenuation-based radiography. Complementary and otherwise inaccessible information is provided by the dark-field image, which shows the sub-pixel size granularity of the measured object. This could especially turn out to be useful in mammography, where tumourous tissue is connected with the presence of supertiny microcalcifications. In addition to the well-established image reconstruction process, an analysis method was introduced by Modregger, 1 which is based on deconvolution of the underlying scattering distribution within a single pixel revealing information about the sample. Subsequently, the different contrast modalities can be calculated with the scattering distribution. The method already proved to deliver additional information in the higher moments of the scattering distribution and possibly reaches better image quality with respect to an increased contrast-to-noise ratio. Several measurements were carried out using melamine foams as phantoms. We analysed the dependency of the deconvolution-based method with respect to the dark-field image on different parameters such as dose, number of iterations of the iterative deconvolution-algorithm and dark-field signal. A disagreement was found in the reconstructed dark-field values between the FFT method and the iterative method. Usage of the resulting characteristics might be helpful in future applications.

  6. Analysis and accurate reconstruction of incomplete data in X-ray differential phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo; Chen, Liyuan

    2014-01-01

    X-ray differential phase-contrast computed tomography (DPC-CT) is a powerful physical and biochemical analysis tool. In practical applications, there are often challenges for DPC-CT due to insufficient data caused by few-view, bad or missing detector channels, or limited scanning angular range. They occur quite frequently because of experimental constraints from imaging hardware, scanning geometry, and the exposure dose delivered to living specimens. In this work, we analyze the influence of incomplete data on DPC-CT image reconstruction. Then, a reconstruction method is developed and investigated for incomplete data DPC-CT. It is based on an algebraic iteration reconstruction technique, which minimizes the image total variation and permits accurate tomographic imaging with less data. This work comprises a numerical study of the method and its experimental verification using a dataset measured at the W2 beamline of the storage ring DORIS III equipped with a Talbot-Lau interferometer. The numerical and experimental results demonstrate that the presented method can handle incomplete data. It will be of interest for a wide range of DPC-CT applications in medicine, biology, and nondestructive testing.

  7. Hemodynamic alterations measured with phase-contrast MRI in a giant cerebral aneurysm treated with a flow-diverting stent

    Directory of Open Access Journals (Sweden)

    Matthew Ethan MacDonald, PhD

    2015-01-01

    Full Text Available Many risk factors have been proposed in the development of the cerebral aneurysms. Hemodynamics including blood velocity, volume flow rate (VFR, and intravascular pressure are thought to be prognostic indicators of aneurysm development. We hypothesize that treatment of cerebral aneurysm using a flow-diverting stent will bring these hemodynamic parameters closer to those observed on the contralateral side. In the current study, a patient with a giant cerebral aneurysm was studied pre- and postoperatively using phase contrast MRI (PC-MRI to measure the hemodynamic changes resulting from the deployment of a flow-diverting stent. PC-MRI was used to calculate intravascular pressure, which was compared to more invasive endovascular catheter-derived measurements. After stent placement, the measured VFRs in vessels of the treated hemisphere approached those measured on the contralateral side, and flow symmetry changed from a laterality index of -0.153 to 0.116 in the middle cerebral artery. Pressure estimates derived from the PC-MRI velocity data had an average difference of 6.1% as compared to invasive catheter transducer measurements. PC-MRI can measure the hemodynamic parameters with the same accuracy as invasive methods pre- and postoperatively.

  8. Visualization of microvasculature and thrombi by X-ray phase-contrast computed tomography in hepatocellular carcinoma.

    Science.gov (United States)

    Jian, Jianbo; Yang, Hao; Zhao, Xinyan; Xuan, Ruijiao; Zhang, Yujie; Li, Dongyue; Hu, Chunhong

    2016-03-01

    Visualization of the microvascular network and thrombi in the microvasculature is a key step to evaluating the development of tumor growth and metastasis, and influences treatment selection. X-ray phase-contrast computed tomography (PCCT) is a new imaging technique that can detect minute changes of density and reveal soft tissues discrimination at micrometer-scale resolution. In this study, six human resected hepatocellular carcinoma (HCC) tissues were investigated with PCCT. A histological stain was added to estimate the accuracy of PCCT. The results showed that the fine structures of the microvasculature (measuring 30-100 µm) and thrombi in tiny blood vessels were displayed clearly on imaging the HCC tissues by PCCT. Moreover, density distributions of the thrombi were obtained, which could be reliably used to distinguish malignant from benign thrombi in HCC. In conclusion, PCCT can clearly show the three-dimensional subtle structures of HCC that cannot be detected by conventional absorption-based computed tomography and provides a new method for the imageology of HCC. PMID:26917149

  9. Three-dimensional phase-contrast X-ray microtomography with scanning-imaging X-ray microscope optics.

    Science.gov (United States)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-09-01

    A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning-imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown.

  10. High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading.

    Science.gov (United States)

    Hudspeth, M; Claus, B; Dubelman, S; Black, J; Mondal, A; Parab, N; Funnell, C; Hai, F; Qi, M L; Fezzaa, K; Luo, S N; Chen, W

    2013-02-01

    The successful process of amalgamating both the time-resolved imaging capabilities present at the Advanced Photon Source beamline 32ID-B and the proficiency of high-rate loading offered by the split Hopkinson or Kolsky compression/tension bar apparatus is discussed and verification of system effectiveness is expressed via dynamic experiments on various material systems. Single particle sand interaction along with glass cracking during dynamic compression, and fiber-epoxy interfacial failure, ligament-bone debonding, and single-crystal silicon fragmentation due to dynamic tension, were imaged with 0.5 μs temporal resolution and μm-level spatial resolution. Synchrotron x-ray phase contrast imaging of said material systems being loaded with the Kolsky bar apparatus demonstratively depicts the effectiveness of the novel union between these two powerful techniques, thereby allowing for in situ analysis of the interior of the material system during high-rate loading for a variety of applications. PMID:23464246

  11. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2015-06-25

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

  12. 3D images of paper obtained by phase-contrast X-ray microtomography: image quality and binarisation

    International Nuclear Information System (INIS)

    A series of paper samples was investigated using high-resolution phase-contrast microtomography at the beamline ID 22 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. It was shown that X-ray microtomography is a non-destructive method suitable for high resolution depicting real 3D-paper structures. The method detects highly localised changes in the refractive index of the sample, such as fibre-pore interfaces. The resulting tomograms represented an outlined image of the fibre structure with an image resolution of 1 μm. Analyses were performed in dry state, but in addition some were done in wet state. The raw data obtained were transformed into 3D images. The reconstructed slices were in general of rather good quality, even if both noise and ring-like artifacts were observed. These required special filtering efforts before a segmented binary volume could be obtained for further use of the data. This approach was made up of semi-automatic routines to convert the structure into a binary format. The resulting binary volumes can be used for further characterisation of the 3D-paper structure

  13. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. PMID:24037521

  14. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Adam [National Security Technologies, LLC; Carlson, Carl [National Security Technologies, LLC; Young, Jason [National Security Technologies, LLC; Curtis, Alden [National Security Technologies, LLC; Jensen, Brian [Los Alamos National Laboratory; Ramos, Kyle [Los Alamos National Laboratory; Yeager, John [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Fezza, Kamel [Argonne National Laboratory

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  15. Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X-ray Phase Contrast Tomography.

    Science.gov (United States)

    Sun, Fu; Zielke, Lukas; Markötter, Henning; Hilger, André; Zhou, Dong; Moroni, Riko; Zengerle, Roland; Thiele, Simon; Banhart, John; Manke, Ingo

    2016-08-23

    Due to its low redox potential and high theoretical specific capacity, Li metal has drawn worldwide research attention because of its potential use in next-generation battery technologies such as Li-S and Li-O2. Unfortunately, uncontrollable growth of Li microstructures (LmSs, e.g., dendrites, fibers) during electrochemical Li stripping/plating has prevented their practical commercialization. Despite various strategies proposed to mitigate LmS nucleation and/or block its growth, a fundamental understanding of the underlying evolution mechanisms remains elusive. Herein, synchrotron in-line phase contrast X-ray tomography was employed to investigate the morphological evolution of electrochemically deposited/dissolved LmSs nondestructively. We present a 3D characterization of electrochemically stripped Li electrodes with regard to electrochemically plated LmSs. We clarify fundamentally the origin of the porous lithium interface growing into Li electrodes. Moreover, cleavage of the separator caused by growing LmS was experimentally observed and visualized in 3D. Our systematic investigation provides fundamental insights into LmS evolution and enables us to understand the evolution mechanisms in Li electrodes more profoundly. PMID:27463258

  16. Phase contrast imaging X-ray computed tomography: quantitative characterization of human patellar cartilage matrix with topological and geometrical features

    Science.gov (United States)

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Diemoz, Paul C.; Wismüller, Axel

    2014-03-01

    Current assessment of cartilage is primarily based on identification of indirect markers such as joint space narrowing and increased subchondral bone density on x-ray images. In this context, phase contrast CT imaging (PCI-CT) has recently emerged as a novel imaging technique that allows a direct examination of chondrocyte patterns and their correlation to osteoarthritis through visualization of cartilage soft tissue. This study investigates the use of topological and geometrical approaches for characterizing chondrocyte patterns in the radial zone of the knee cartilage matrix in the presence and absence of osteoarthritic damage. For this purpose, topological features derived from Minkowski Functionals and geometric features derived from the Scaling Index Method (SIM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of healthy and osteoarthritic specimens of human patellar cartilage. The extracted features were then used in a machine learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with high-dimensional geometrical feature vectors derived from SIM (0.95 ± 0.06) which outperformed all Minkowski Functionals (p analysis of chondrocyte patterns in human patellar cartilage matrix involving SIM-derived geometrical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  17. Application of X-ray phase contrast micro-tomography to the identification of traditional Chinese medicines

    International Nuclear Information System (INIS)

    Nondestructive and in situ investigation to the characteristic microstructures are important to the identification of traditional Chinese medicines (TCMs), especially for precious specimens and samples with oil contains. X-ray phase contrast micro-tomography (XPCMT) could be a practical solution for this kind of investigation. Fructus Foeniculi, a fruit kind of TCMs, is selected as the test sample. Experimental results show that the characteristic microstructures of Fructus Foeniculi, including vittae, vascular bundles, embryo, endosperm and the mesocarp reticulate cells around the vittae can be clearly distinguished and the integrated dissepiments microstructure in the vittae was observed successfully. Especially, for the first time, with virtual slice technique, it can investigate the liquid contains inside the TCMs. The results show that the vittae filled with volatile oil in the oil chamber were observed with this nondestructive and in situ 3-dimensional imaging technique. Furthermore, taking the advantage of micro-computed tomography, we can obtain the characteristic microstructures' quantitative information of the volume in liquid state. The volume of the oil chambers and the volatile oil, which are contained inside the vittae, was quantitatively analyzed. Accordingly, it can calculate the volume ratio of the volatile oil easily and accurately. As a result, we could conclude that XPCMT could be a useful tool for the nondestructive identification and quantitative analysis to TCMs

  18. Application of X-ray phase contrast micro-tomography to the identification of traditional Chinese medicines

    Science.gov (United States)

    Ye, L. L.; Xue, Y. L.; Ni, L. H.; Tan, H.; Wang, Y. D.; Xiao, T. Q.

    2013-07-01

    Nondestructive and in situ investigation to the characteristic microstructures are important to the identification of traditional Chinese medicines (TCMs), especially for precious specimens and samples with oil contains. X-ray phase contrast micro-tomography (XPCMT) could be a practical solution for this kind of investigation. Fructus Foeniculi, a fruit kind of TCMs, is selected as the test sample. Experimental results show that the characteristic microstructures of Fructus Foeniculi, including vittae, vascular bundles, embryo, endosperm and the mesocarp reticulate cells around the vittae can be clearly distinguished and the integrated dissepiments microstructure in the vittae was observed successfully. Especially, for the first time, with virtual slice technique, it can investigate the liquid contains inside the TCMs. The results show that the vittae filled with volatile oil in the oil chamber were observed with this nondestructive and in situ 3-dimensional imaging technique. Furthermore, taking the advantage of micro-computed tomography, we can obtain the characteristic microstructures' quantitative information of the volume in liquid state. The volume of the oil chambers and the volatile oil, which are contained inside the vittae, was quantitatively analyzed. Accordingly, it can calculate the volume ratio of the volatile oil easily and accurately. As a result, we could conclude that XPCMT could be a useful tool for the nondestructive identification and quantitative analysis to TCMs.

  19. Phase contrast imaging of the breast. Basic principles and steps towards clinical implementation; Phasenkontrastbildgebung der Brust. Grundlagen und Schritte zur klinischen Implementierbarkeit

    Energy Technology Data Exchange (ETDEWEB)

    Grandl, S.; Sztrokay-Gaul, A.; Auweter, S.D.; Hellerhoff, K. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany)

    2014-03-15

    Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. Mammography is the only imaging technique approved for nationwide breast cancer screening. Digital full field mammography has improved mammographic image quality. Nevertheless, mammography has a low positive predictive value and a low sensitivity especially in mammographically dense breasts. One of the major limitations is the inherently low contrast between healthy breast parenchyma and breast cancer. Phase contrast imaging is based on the phase shift that occurs when X-rays encounter a change in refractive index between different materials. The improved soft tissue contrast makes the technology particularly promising for breast diagnostics. The studies presented here suggest that phase contrast imaging provides additional diagnostic information both using phase contrast mammography and phase contrast computed tomography (CT). This paper provides an overview of the basic principles of the phase contrast imaging and describes recent developments towards in vivo and ex vivo phase contrast imaging of the breast. (orig.) [German] Brustkrebs ist weltweit die haeufigste Tumorerkrankung und die haeufigste Krebstodesursache der Frau. Die Mammographie ist die einzige zugelassene bildgebende Methode zur Brustkrebsfrueherkennung im Rahmen flaechendeckender Screeningprogramme. Trotz Verbesserung der Bildqualitaet und der Befundungsperformance durch die Einfuehrung der digitalen Vollfeldmammographie sind der positiv-praediktive Wert und die Sensitivitaet der Mammographie insbesondere bei mammographisch dichtem Druesenkoerper eingeschraenkt. Dies ist u. a. auf die geringen Dichteunterschiede zwischen gesundem Brustdruesengewebe und intramammaeren Malignomen zurueckzufuehren. Die Phasenkontrastbildgebung macht sich die Phasenverschiebung von Roentgenstrahlen zunutze, die an Materialgrenzen mit unterschiedlichen Brechungsindizes entsteht. Die Technik bietet einen potenziell

  20. X射线相衬成像法在线表征冷冻靶技术%Characterization of cryogenic targets using X-ray phase contrast imaging

    Institute of Scientific and Technical Information of China (English)

    刘元琼; 黎军; 王凯; 林伟; 马坤全; 雷海乐; 谢端

    2013-01-01

    阐述了冷冻靶类球面物体X射线相衬成像机理;Tracepro软件模拟研究证明了X射线相衬成像法能用于冷冻靶燃料层参数的表征;研制了在线表征冷冻靶的X射线相衬成像实验装置,利用该装置开展了二乙烯基苯泡沫球壳及实际氘氘冷冻靶的X射线相衬成像实验研究,获得了玻璃微球内氘氘冷冻层X射线相衬图像,成像分辨力达1.5μm;利用X射线相衬成像法可同时表征烧蚀球壳及冷冻燃料层,为惯性约束聚变实验提供冷冻靶参数.%A brief review of X-ray phase contrast imaging theory for spherical objects is given. Using Tracepro, simulated X-ray phase-contrast images of SiO2/DD cryogenic capsules are produced. The ability of phase contrast enhanced X-ray imaging for characterization of cryogenic fuel layers inside ablator shells has been proven with the simulation result. X-ray phase contrast imaging equipment has been established for characterization of cryogenic targets, with which imaging experiments for low density divinyl benzene foam shells and SiO2/DD cryogenic capsules have been carried out, and phase contrast images of cryogenic DD fuel layers in SiO2 capsules are obtained, with a resolution up to 1. 5 p.m. Ablator and cryogenic fuel layers can be simultaneously characterized by X-ray phase contrast imaging.