Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate
Energy Technology Data Exchange (ETDEWEB)
Vieira, Igor F.; Lima, Fernando R.A.; Gomes, Marcelo S., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Vieira, Jose W.; Pacheco, Ludimila M. [Instituto Federal de Educacao, Ciencia e Tecnologia (IFPE), Recife, PE (Brazil); Chaves, Rosa M. [Instituto de Radium e Supervoltagem Ivo Roesler, Recife, PE (Brazil)
2011-07-01
Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)
Energy Technology Data Exchange (ETDEWEB)
Chow, J [Princess Margaret Cancer Center, Toronto, ON (Canada)
2015-06-15
Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of compute node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.
Energy Technology Data Exchange (ETDEWEB)
Chan, Mark K.H. [Tuen Mun Hospital, Department of Clinical Oncology, Hong Kong (S.A.R) (China); Werner, Rene [The University Medical Center Hamburg-Eppendorf, Department of Computational Neuroscience, Hamburg (Germany); Ayadi, Miriam [Leon Berard Cancer Center, Department of Radiation Oncology, Lyon (France); Blanck, Oliver [University Clinic of Schleswig-Holstein, Department of Radiation Oncology, Luebeck (Germany); CyberKnife Center Northern Germany, Guestrow (Germany)
2014-09-20
To investigate the adequacy of three-dimensional (3D) Monte Carlo (MC) optimization (3DMCO) and the potential of four-dimensional (4D) dose renormalization (4DMC{sub renorm}) and optimization (4DMCO) for CyberKnife (Accuray Inc., Sunnyvale, CA) radiotherapy planning in lung cancer. For 20 lung tumors, 3DMCO and 4DMCO plans were generated with planning target volume (PTV{sub 5} {sub mm}) = gross tumor volume (GTV) plus 5 mm, assuming 3 mm for tracking errors (PTV{sub 3} {sub mm}) and 2 mm for residual organ deformations. Three fractions of 60 Gy were prescribed to ≥ 95 % of the PTV{sub 5} {sub mm}. Each 3DMCO plan was recalculated by 4D MC dose calculation (4DMC{sub recal}) to assess the dosimetric impact of organ deformations. The 4DMC{sub recal} plans were renormalized (4DMC{sub renorm}) to 95 % dose coverage of the PTV{sub 5} {sub mm} for comparisons with the 4DMCO plans. A 3DMCO plan was considered adequate if the 4DMC{sub recal} plan showed ≥ 95 % of the PTV{sub 3} {sub mm} receiving 60 Gy and doses to other organs at risk (OARs) were below the limits. In seven lesions, 3DMCO was inadequate, providing < 95 % dose coverage to the PTV{sub 3} {sub mm}. Comparison of 4DMC{sub recal} and 3DMCO plans showed that organ deformations resulted in lower OAR doses. Renormalizing the 4DMC{sub recal} plans could produce OAR doses higher than the tolerances in some 4DMC{sub renorm} plans. Dose conformity of the 4DMC{sub renorm} plans was inferior to that of the 3DMCO and 4DMCO plans. The 4DMCO plans did not always achieve OAR dose reductions compared to 3DMCO and 4DMC{sub renorm} plans. This study indicates that 3DMCO with 2 mm margins for organ deformations may be inadequate for Cyberknife-based lung stereotactic body radiotherapy (SBRT). Renormalizing the 4DMC{sub recal} plans could produce degraded dose conformity and increased OAR doses; 4DMCO can resolve this problem. (orig.) [German] Untersucht wurde die Angemessenheit einer dreidimensionalen (3-D) Monte-Carlo
2010-01-01
The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinic...
Iba, Yukito
2000-01-01
``Extended Ensemble Monte Carlo''is a generic term that indicates a set of algorithms which are now popular in a variety of fields in physics and statistical information processing. Exchange Monte Carlo (Metropolis-Coupled Chain, Parallel Tempering), Simulated Tempering (Expanded Ensemble Monte Carlo), and Multicanonical Monte Carlo (Adaptive Umbrella Sampling) are typical members of this family. Here we give a cross-disciplinary survey of these algorithms with special emphasis on the great f...
Bardenet, R.
2012-01-01
ISBN:978-2-7598-1032-1; International audience; Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC) methods. We give intuition on the theoretic...
McGurk, Ross; Seco, Joao; Riboldi, Marco; Wolfgang, John; Segars, Paul; Paganetti, Harald
2010-03-01
The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinical scenarios were designed: diaphragm peak-to-peak amplitude of 1 cm and 3 cm, and two lesion sizes—2 cm and 4 cm diameter placed in the lower lobe of the right lung. Lung density was changed for each phase using a conservation of mass calculation. Further, a new heterogeneous lung model was implemented and tested. Each lesion had an internal target volume (ITV) subsequently expanded by 15 mm isotropically to give the planning target volume (PTV). The PTV was prescribed to receive 72 Gy in 40 fractions. The MLC leaf sequence defined by the planning system for each patient was exported and used as input into the MC system. MC simulations using the dose planning method (DPM) code together with deformable image registration based on the NCAT deformation field were used to find a composite dose distribution for each phantom. These composite distributions were subsequently analyzed using information from the dose volume histograms (DVH). Lesion motion amplitude has the largest effect on the dose distribution. Tumor size was found to have a smaller effect and can be mitigated by ensuring the planning constraints are optimized for the tumor size. The use of a dynamic or heterogeneous lung density model over a respiratory cycle does not appear to be an important factor with a <= 0.6% change in the mean dose received by the ITV, PTV and right lung. The heterogeneous model increases the realism of the NCAT phantom and may provide more accurate simulations in radiation therapy
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
Energy Technology Data Exchange (ETDEWEB)
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described.
Quantum Monte Carlo simulation
Wang, Yazhen
2011-01-01
Contemporary scientific studies often rely on the understanding of complex quantum systems via computer simulation. This paper initiates the statistical study of quantum simulation and proposes a Monte Carlo method for estimating analytically intractable quantities. We derive the bias and variance for the proposed Monte Carlo quantum simulation estimator and establish the asymptotic theory for the estimator. The theory is used to design a computational scheme for minimizing the mean square er...
Monte Carlo transition probabilities
Lucy, L. B.
2001-01-01
Transition probabilities governing the interaction of energy packets and matter are derived that allow Monte Carlo NLTE transfer codes to be constructed without simplifying the treatment of line formation. These probabilities are such that the Monte Carlo calculation asymptotically recovers the local emissivity of a gas in statistical equilibrium. Numerical experiments with one-point statistical equilibrium problems for Fe II and Hydrogen confirm this asymptotic behaviour. In addition, the re...
Hrivnacova, I; Berejnov, V V; Brun, R; Carminati, F; Fassò, A; Futo, E; Gheata, A; Caballero, I G; Morsch, Andreas
2003-01-01
The concept of Virtual Monte Carlo (VMC) has been developed by the ALICE Software Project to allow different Monte Carlo simulation programs to run without changing the user code, such as the geometry definition, the detector response simulation or input and output formats. Recently, the VMC classes have been integrated into the ROOT framework, and the other relevant packages have been separated from the AliRoot framework and can be used individually by any other HEP project. The general concept of the VMC and its set of base classes provided in ROOT will be presented. Existing implementations for Geant3, Geant4 and FLUKA and simple examples of usage will be described.
Monte Carlo and nonlinearities
Dauchet, Jérémi; Blanco, Stéphane; Caliot, Cyril; Charon, Julien; Coustet, Christophe; Hafi, Mouna El; Eymet, Vincent; Farges, Olivier; Forest, Vincent; Fournier, Richard; Galtier, Mathieu; Gautrais, Jacques; Khuong, Anaïs; Pelissier, Lionel; Piaud, Benjamin; Roger, Maxime; Terrée, Guillaume; Weitz, Sebastian
2016-01-01
The Monte Carlo method is widely used to numerically predict systems behaviour. However, its powerful incremental design assumes a strong premise which has severely limited application so far: the estimation process must combine linearly over dimensions. Here we show that this premise can be alleviated by projecting nonlinearities on a polynomial basis and increasing the configuration-space dimension. Considering phytoplankton growth in light-limited environments, radiative transfer in planetary atmospheres, electromagnetic scattering by particles and concentrated-solar-power-plant productions, we prove the real world usability of this advance on four test-cases that were so far regarded as impracticable by Monte Carlo approaches. We also illustrate an outstanding feature of our method when applied to sharp problems with interacting particles: handling rare events is now straightforward. Overall, our extension preserves the features that made the method popular: addressing nonlinearities does not compromise o...
Energy Technology Data Exchange (ETDEWEB)
Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
Energy Technology Data Exchange (ETDEWEB)
Marcus, Ryan C. [Los Alamos National Laboratory
2012-07-25
MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.
Monte Carlo methods for electromagnetics
Sadiku, Matthew NO
2009-01-01
Until now, novices had to painstakingly dig through the literature to discover how to use Monte Carlo techniques for solving electromagnetic problems. Written by one of the foremost researchers in the field, Monte Carlo Methods for Electromagnetics provides a solid understanding of these methods and their applications in electromagnetic computation. Including much of his own work, the author brings together essential information from several different publications.Using a simple, clear writing style, the author begins with a historical background and review of electromagnetic theory. After addressing probability and statistics, he introduces the finite difference method as well as the fixed and floating random walk Monte Carlo methods. The text then applies the Exodus method to Laplace's and Poisson's equations and presents Monte Carlo techniques for handing Neumann problems. It also deals with whole field computation using the Markov chain, applies Monte Carlo methods to time-varying diffusion problems, and ...
Metropolis Methods for Quantum Monte Carlo Simulations
Ceperley, D. M.
2003-01-01
Since its first description fifty years ago, the Metropolis Monte Carlo method has been used in a variety of different ways for the simulation of continuum quantum many-body systems. This paper will consider some of the generalizations of the Metropolis algorithm employed in quantum Monte Carlo: Variational Monte Carlo, dynamical methods for projector monte carlo ({\\it i.e.} diffusion Monte Carlo with rejection), multilevel sampling in path integral Monte Carlo, the sampling of permutations, ...
Monte Carlo integration on GPU
Kanzaki, J.
2010-01-01
We use a graphics processing unit (GPU) for fast computations of Monte Carlo integrations. Two widely used Monte Carlo integration programs, VEGAS and BASES, are parallelized on GPU. By using $W^{+}$ plus multi-gluon production processes at LHC, we test integrated cross sections and execution time for programs in FORTRAN and C on CPU and those on GPU. Integrated results agree with each other within statistical errors. Execution time of programs on GPU run about 50 times faster than those in C...
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros
2016-08-29
In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . âˆž>h0>h1â‹¯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. Â© 2016 Elsevier B.V.
Equilibrium Statistics: Monte Carlo Methods
Kröger, Martin
Monte Carlo methods use random numbers, or ‘random’ sequences, to sample from a known shape of a distribution, or to extract distribution by other means. and, in the context of this book, to (i) generate representative equilibrated samples prior being subjected to external fields, or (ii) evaluate high-dimensional integrals. Recipes for both topics, and some more general methods, are summarized in this chapter. It is important to realize, that Monte Carlo should be as artificial as possible to be efficient and elegant. Advanced Monte Carlo ‘moves’, required to optimize the speed of algorithms for a particular problem at hand, are outside the scope of this brief introduction. One particular modern example is the wavelet-accelerated MC sampling of polymer chains [406].
Monte Carlo Hamiltonian: Linear Potentials
Institute of Scientific and Technical Information of China (English)
LUO Xiang-Qian; LIU Jin-Jiang; HUANG Chun-Qing; JIANG Jun-Qin; Helmut KROGER
2002-01-01
We further study the validity of the Monte Carlo Hamiltonian method. The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach, is its capability to study the excited states. Weconsider two quantum mechanical models: a symmetric one V(x) = |x|/2; and an asymmetric one V(x) = ∞, forx ＜ 0 and V(x) = x, for x ≥ 0. The results for the spectrum, wave functions and thermodynamical observables are inagreement with the analytical or Runge-Kutta calculations.
Proton Upset Monte Carlo Simulation
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
Honda, Masazumi; Nishimura, Jun; Tsuchiya, Asato
2011-01-01
We test the AdS/CFT correspondence by calculating Wilson loops in N = 4 super Yang-Mills theory on R*S^3 in the planar limit. Our method is based on a novel large-N reduction, which reduces the problem to Monte Carlo calculations in the plane-wave matrix model or the BMN matrix model, which is a 1d gauge theory with 16 supercharges. By using the gauge-fixed momentumspace simulation, we obtain results respecting 16 supersymmetries. We report on the Monte Carlo results for the BPS circular Wilson loop, which reproduce the exact result up to strong coupling. As a future prospect, we calculate a track-shapedWilson loop from the gravity side, which shows that a clear test of the AdS/CFT for the non-BPS case is also feasible.
Monte Carlo Particle Lists: MCPL
Kittelmann, Thomas; Knudsen, Erik B; Willendrup, Peter; Cai, Xiao Xiao; Kanaki, Kalliopi
2016-01-01
A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular simulation packages.
Applications of Monte Carlo Methods in Calculus.
Gordon, Sheldon P.; Gordon, Florence S.
1990-01-01
Discusses the application of probabilistic ideas, especially Monte Carlo simulation, to calculus. Describes some applications using the Monte Carlo method: Riemann sums; maximizing and minimizing a function; mean value theorems; and testing conjectures. (YP)
Density matrix quantum Monte Carlo
Blunt, N S; Spencer, J S; Foulkes, W M C
2013-01-01
This paper describes a quantum Monte Carlo method capable of sampling the full density matrix of a many-particle system, thus granting access to arbitrary reduced density matrices and allowing expectation values of complicated non-local operators to be evaluated easily. The direct sampling of the density matrix also raises the possibility of calculating previously inaccessible entanglement measures. The algorithm closely resembles the recently introduced full configuration interaction quantum Monte Carlo method, but works all the way from infinite to zero temperature. We explain the theory underlying the method, describe the algorithm, and introduce an importance-sampling procedure to improve the stochastic efficiency. To demonstrate the potential of our approach, the energy and staggered magnetization of the isotropic antiferromagnetic Heisenberg model on small lattices and the concurrence of one-dimensional spin rings are compared to exact or well-established results. Finally, the nature of the sign problem...
Efficient kinetic Monte Carlo simulation
Schulze, Tim P.
2008-02-01
This paper concerns kinetic Monte Carlo (KMC) algorithms that have a single-event execution time independent of the system size. Two methods are presented—one that combines the use of inverted-list data structures with rejection Monte Carlo and a second that combines inverted lists with the Marsaglia-Norman-Cannon algorithm. The resulting algorithms apply to models with rates that are determined by the local environment but are otherwise arbitrary, time-dependent and spatially heterogeneous. While especially useful for crystal growth simulation, the algorithms are presented from the point of view that KMC is the numerical task of simulating a single realization of a Markov process, allowing application to a broad range of areas where heterogeneous random walks are the dominate simulation cost.
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
Monte Carlo approach to turbulence
Energy Technology Data Exchange (ETDEWEB)
Dueben, P.; Homeier, D.; Muenster, G. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, K. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Mesterhazy, D. [Humboldt Univ., Berlin (Germany). Inst. fuer Physik
2009-11-15
The behavior of the one-dimensional random-force-driven Burgers equation is investigated in the path integral formalism on a discrete space-time lattice. We show that by means of Monte Carlo methods one may evaluate observables, such as structure functions, as ensemble averages over different field realizations. The regularization of shock solutions to the zero-viscosity limit (Hopf-equation) eventually leads to constraints on lattice parameters required for the stability of the simulations. Insight into the formation of localized structures (shocks) and their dynamics is obtained. (orig.)
Monte Carlo techniques in radiation therapy
Verhaegen, Frank
2013-01-01
Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...
Mean field simulation for Monte Carlo integration
Del Moral, Pierre
2013-01-01
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko
Approaching Chemical Accuracy with Quantum Monte Carlo
Petruzielo, Frank R.; Toulouse, Julien; Umrigar, C. J.
2012-01-01
International audience; A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreem...
1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO
Energy Technology Data Exchange (ETDEWEB)
T. EVANS; ET AL
2000-08-01
We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.
Monte Carlo Treatment Planning for Advanced Radiotherapy
DEFF Research Database (Denmark)
Cronholm, Rickard
and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...... previous algorithms since it uses delineations of structures in order to include and/or exclude certain media in various anatomical regions. This method has the potential to reduce anatomically irrelevant media assignment. In house MATLAB scripts translating the treatment plan parameters to Monte Carlo...
Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
Kleiss, R. H. P.; Lazopoulos, A.
2006-01-01
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account for the error improvement advertised by the Quasi-Monte Carlo method. We advocate the construction o...
An introduction to Monte Carlo methods
Walter, J. -C.; Barkema, G. T.
2015-01-01
Monte Carlo simulations are methods for simulating statistical systems. The aim is to generate a representative ensemble of configurations to access thermodynamical quantities without the need to solve the system analytically or to perform an exact enumeration. The main principles of Monte Carlo sim
Challenges of Monte Carlo Transport
Energy Technology Data Exchange (ETDEWEB)
Long, Alex Roberts [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-10
These are slides from a presentation for Parallel Summer School at Los Alamos National Laboratory. Solving discretized partial differential equations (PDEs) of interest can require a large number of computations. We can identify concurrency to allow parallel solution of discrete PDEs. Simulated particles histories can be used to solve the Boltzmann transport equation. Particle histories are independent in neutral particle transport, making them amenable to parallel computation. Physical parameters and method type determine the data dependencies of particle histories. Data requirements shape parallel algorithms for Monte Carlo. Then, Parallel Computational Physics and Parallel Monte Carlo are discussed and, finally, the results are given. The mesh passing method greatly simplifies the IMC implementation and allows simple load-balancing. Using MPI windows and passive, one-sided RMA further simplifies the implementation by removing target synchronization. The author is very interested in implementations of PGAS that may allow further optimization for one-sided, read-only memory access (e.g. Open SHMEM). The MPICH_RMA_OVER_DMAPP option and library is required to make one-sided messaging scale on Trinitite - Moonlight scales poorly. Interconnect specific libraries or functions are likely necessary to ensure performance. BRANSON has been used to directly compare the current standard method to a proposed method on idealized problems. The mesh passing algorithm performs well on problems that are designed to show the scalability of the particle passing method. BRANSON can now run load-imbalanced, dynamic problems. Potential avenues of improvement in the mesh passing algorithm will be implemented and explored. A suite of test problems that stress DD methods will elucidate a possible path forward for production codes.
Lattice gauge theories and Monte Carlo simulations
Rebbi, Claudio
1983-01-01
This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.
Fast quantum Monte Carlo on a GPU
Lutsyshyn, Y
2013-01-01
We present a scheme for the parallelization of quantum Monte Carlo on graphical processing units, focusing on bosonic systems and variational Monte Carlo. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent acceleration. Comparing with single core execution, GPU-accelerated code runs over x100 faster. The CUDA code is provided along with the package that is necessary to execute variational Monte Carlo for a system representing liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the latest Kepler architecture K20 GPU. Kepler-specific optimization is discussed.
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Monte Carlo approaches to light nuclei
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.
1990-01-01
Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.
11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
Nuyens, Dirk
2016-01-01
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Monte Carlo simulations for plasma physics
Energy Technology Data Exchange (ETDEWEB)
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
Improved Monte Carlo Renormalization Group Method
Gupta, R.; Wilson, K. G.; Umrigar, C.
1985-01-01
An extensive program to analyze critical systems using an Improved Monte Carlo Renormalization Group Method (IMCRG) being undertaken at LANL and Cornell is described. Here we first briefly review the method and then list some of the topics being investigated.
Simulation and the Monte Carlo method
Rubinstein, Reuven Y
2016-01-01
Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...
Smart detectors for Monte Carlo radiative transfer
Baes, Maarten
2008-01-01
Many optimization techniques have been invented to reduce the noise that is inherent in Monte Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo simulations do not take into account all the information contained in the impacting photon packages, there is still room to optimize this detection process and the corresponding estimate of the surface brightness distributions. We want to investigate how all the information contained in the distribution of impacting photon packages can be optimally used to decrease the noise in the surface brightness distributions and hence to increase the efficiency of Monte Carlo radiative transfer simulations. We demonstrate that the estimate of the surface brightness distribution in a Monte Carlo radiative transfer simulation is similar to the estimate of the density distribution in an SPH simulation. Based on this similarity, a recipe is constructed for smart detectors that take full advantage of the exact location of the impact of the photon pack...
Monte Carlo methods for particle transport
Haghighat, Alireza
2015-01-01
The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: * Introduces the particle importance equation and its use for variance reduction * Describes general and particle-transport-specific variance reduction techniques * Presents particle transport eigenvalue issues and methodologies to address these issues * Explores advanced formulations based on the author's research activities * Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide ...
Quantum Monte Carlo Calculations of Light Nuclei
Pieper, Steven C
2007-01-01
During the last 15 years, there has been much progress in defining the nuclear Hamiltonian and applying quantum Monte Carlo methods to the calculation of light nuclei. I describe both aspects of this work and some recent results.
Monte Carlo Hamiltonian:Inverse Potential
Institute of Scientific and Technical Information of China (English)
LUO Xiang-Qian; CHENG Xiao-Ni; Helmut KR(O)GER
2004-01-01
The Monte Carlo Hamiltonian method developed recently allows to investigate the ground state and low-lying excited states of a quantum system,using Monte Carlo(MC)algorithm with importance sampling.However,conventional MC algorithm has some difficulties when applied to inverse potentials.We propose to use effective potential and extrapolation method to solve the problem.We present examples from the hydrogen system.
The Feynman Path Goes Monte Carlo
Sauer, Tilman
2001-01-01
Path integral Monte Carlo (PIMC) simulations have become an important tool for the investigation of the statistical mechanics of quantum systems. I discuss some of the history of applying the Monte Carlo method to non-relativistic quantum systems in path-integral representation. The principle feasibility of the method was well established by the early eighties, a number of algorithmic improvements have been introduced in the last two decades.
Self-consistent kinetic lattice Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Horsfield, A.; Dunham, S.; Fujitani, Hideaki
1999-07-01
The authors present a brief description of a formalism for modeling point defect diffusion in crystalline systems using a Monte Carlo technique. The main approximations required to construct a practical scheme are briefly discussed, with special emphasis on the proper treatment of charged dopants and defects. This is followed by tight binding calculations of the diffusion barrier heights for charged vacancies. Finally, an application of the kinetic lattice Monte Carlo method to vacancy diffusion is presented.
Monte Carlo Algorithms for Linear Problems
DIMOV, Ivan
2000-01-01
MSC Subject Classification: 65C05, 65U05. Monte Carlo methods are a powerful tool in many fields of mathematics, physics and engineering. It is known, that these methods give statistical estimates for the functional of the solution by performing random sampling of a certain chance variable whose mathematical expectation is the desired functional. Monte Carlo methods are methods for solving problems using random variables. In the book [16] edited by Yu. A. Shreider one can find the followin...
Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
Kleiss, R H
2006-01-01
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account for the error improvement advertised by the Quasi-Monte Carlo method. We advocate the construction of an estimator of stochastic nature, based on the ensemble of pointsets with a particular discrepancy value. We investigate the consequences of this choice and give some first empirical results on the suggested estimators.
Approaching Chemical Accuracy with Quantum Monte Carlo
Petruzielo, F R; Umrigar, C J
2012-01-01
A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreement between diffusion Monte Carlo and experiment, reducing the mean absolute deviation to 2.1 kcal/mol. Moving beyond a single determinant Slater-Jastrow trial wavefunction, diffusion Monte Carlo with a small complete active space Slater-Jastrow trial wavefunction results in near chemical accuracy. In this case, the mean absolute deviation from experimental atomization energies is 1.2 kcal/mol. It is shown from calculations on systems containing phosphorus that the accuracy can be further improved by employing a larger active space.
Monte Carlo EM加速算法%Acceleration of Monte Carlo EM Algorithm
Institute of Scientific and Technical Information of China (English)
罗季
2008-01-01
EM算法是近年来常用的求后验众数的估计的一种数据增广算法,但由于求出其E步中积分的显示表达式有时很困难,甚至不可能,限制了其应用的广泛性.而Monte Carlo EM算法很好地解决了这个问题,将EM算法中E步的积分用Monte Carlo模拟来有效实现,使其适用性大大增强.但无论是EM算法,还是Monte Carlo EM算法,其收敛速度都是线性的,被缺损信息的倒数所控制,当缺损数据的比例很高时,收敛速度就非常缓慢.而Newton-Raphson算法在后验众数的附近具有二次收敛速率.本文提出Monte Carlo EM加速算法,将Monte Carlo EM算法与Newton-Raphson算法结合,既使得EM算法中的E步用Monte Carlo模拟得以实现,又证明了该算法在后验众数附近具有二次收敛速度.从而使其保留了Monte Carlo EM算法的优点,并改进了Monte Carlo EM算法的收敛速度.本文通过数值例子,将Monte Carlo EM加速算法的结果与EM算法、Monte Carlo EM算法的结果进行比较,进一步说明了Monte Carlo EM加速算法的优良性.
Quantum Monte Carlo with Variable Spins
Melton, Cody A; Mitas, Lubos
2016-01-01
We investigate the inclusion of variable spins in electronic structure quantum Monte Carlo, with a focus on diffusion Monte Carlo with Hamiltonians that include spin-orbit interactions. Following our previous introduction of fixed-phase spin-orbit diffusion Monte Carlo (FPSODMC), we thoroughly discuss the details of the method and elaborate upon its technicalities. We present a proof for an upper-bound property for complex nonlocal operators, which allows for the implementation of T-moves to ensure the variational property. We discuss the time step biases associated with our particular choice of spin representation. Applications of the method are also presented for atomic and molecular systems. We calculate the binding energies and geometry of the PbH and Sn$_2$ molecules, as well as the electron affinities of the 6$p$ row elements in close agreement with experiments.
Quantum speedup of Monte Carlo methods.
Montanaro, Ashley
2015-09-08
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
Adiabatic optimization versus diffusion Monte Carlo methods
Jarret, Michael; Jordan, Stephen P.; Lackey, Brad
2016-10-01
Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .
Random Numbers and Monte Carlo Methods
Scherer, Philipp O. J.
Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.
CosmoPMC: Cosmology Population Monte Carlo
Kilbinger, Martin; Cappe, Olivier; Cardoso, Jean-Francois; Fort, Gersende; Prunet, Simon; Robert, Christian P; Wraith, Darren
2011-01-01
We present the public release of the Bayesian sampling algorithm for cosmology, CosmoPMC (Cosmology Population Monte Carlo). CosmoPMC explores the parameter space of various cosmological probes, and also provides a robust estimate of the Bayesian evidence. CosmoPMC is based on an adaptive importance sampling method called Population Monte Carlo (PMC). Various cosmology likelihood modules are implemented, and new modules can be added easily. The importance-sampling algorithm is written in C, and fully parallelised using the Message Passing Interface (MPI). Due to very little overhead, the wall-clock time required for sampling scales approximately with the number of CPUs. The CosmoPMC package contains post-processing and plotting programs, and in addition a Monte-Carlo Markov chain (MCMC) algorithm. The sampling engine is implemented in the library pmclib, and can be used independently. The software is available for download at http://www.cosmopmc.info.
Shell model the Monte Carlo way
Energy Technology Data Exchange (ETDEWEB)
Ormand, W.E.
1995-03-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.
Monte Carlo strategies in scientific computing
Liu, Jun S
2008-01-01
This paperback edition is a reprint of the 2001 Springer edition This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians It can also be used as the textbook for a graduate-level course on Monte Carlo methods Many problems discussed in the alter chapters can be potential thesis topics for masters’ or PhD students in statistics or computer science departments Jun Liu is Professor of Statistics at Harvard University, with a courtesy Professor appointment at Harvard Biostatistics Department Professor Liu was the recipient of the 2002 COPSS Presidents' Award, the most prestigious one for sta...
Monte Carlo simulation of neutron scattering instruments
Energy Technology Data Exchange (ETDEWEB)
Seeger, P.A.
1995-12-31
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.
Monte carlo simulations of organic photovoltaics.
Groves, Chris; Greenham, Neil C
2014-01-01
Monte Carlo simulations are a valuable tool to model the generation, separation, and collection of charges in organic photovoltaics where charges move by hopping in a complex nanostructure and Coulomb interactions between charge carriers are important. We review the Monte Carlo techniques that have been applied to this problem, and describe the results of simulations of the various recombination processes that limit device performance. We show how these processes are influenced by the local physical and energetic structure of the material, providing information that is useful for design of efficient photovoltaic systems.
Monte Carlo dose distributions for radiosurgery
Energy Technology Data Exchange (ETDEWEB)
Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E. [Sevilla Univ. (Spain). Dept. Fisiologia Medica y Biofisica; Sanchez-Doblado, F. [Sevilla Univ. (Spain). Dept. Fisiologia Medica y Biofisica]|[Hospital Univ. Virgen Macarena, Sevilla (Spain). Servicio de Oncologia Radioterapica; Nunez, L. [Clinica Puerta de Hierro, Madrid (Spain). Servicio de Radiofisica; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L. [Hospital Univ. Virgen Macarena, Sevilla (Spain). Servicio de Oncologia Radioterapica; Sanchez-Nieto, B. [Royal Marsden NHS Trust (United Kingdom). Joint Dept. of Physics]|[Inst. of Cancer Research, Sutton, Surrey (United Kingdom)
2001-07-01
The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)
The Rational Hybrid Monte Carlo Algorithm
Clark, M A
2006-01-01
The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.
The Rational Hybrid Monte Carlo algorithm
Clark, Michael
2006-12-01
The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.
Monte Carlo Hamiltonian：Linear Potentials
Institute of Scientific and Technical Information of China (English)
LUOXiang－Qian; HelmutKROEGER; 等
2002-01-01
We further study the validity of the Monte Carlo Hamiltonian method .The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach,is its capability to study the excited states.We consider two quantum mechanical models:a symmetric one V(x)=/x/2;and an asymmetric one V(x)==∞,for x<0 and V(x)=2,for x≥0.The results for the spectrum,wave functions and thermodynamical observables are in agreement with the analytical or Runge-Kutta calculations.
Parallel Markov chain Monte Carlo simulations.
Ren, Ruichao; Orkoulas, G
2007-06-07
With strict detailed balance, parallel Monte Carlo simulation through domain decomposition cannot be validated with conventional Markov chain theory, which describes an intrinsically serial stochastic process. In this work, the parallel version of Markov chain theory and its role in accelerating Monte Carlo simulations via cluster computing is explored. It is shown that sequential updating is the key to improving efficiency in parallel simulations through domain decomposition. A parallel scheme is proposed to reduce interprocessor communication or synchronization, which slows down parallel simulation with increasing number of processors. Parallel simulation results for the two-dimensional lattice gas model show substantial reduction of simulation time for systems of moderate and large size.
Fast sequential Monte Carlo methods for counting and optimization
Rubinstein, Reuven Y; Vaisman, Radislav
2013-01-01
A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the
Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules
Lester, William A; Reynolds, PJ
1994-01-01
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-03-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.
Use of Monte Carlo Methods in brachytherapy; Uso del metodo de Monte Carlo en braquiterapia
Energy Technology Data Exchange (ETDEWEB)
Granero Cabanero, D.
2015-07-01
The Monte Carlo method has become a fundamental tool for brachytherapy dosimetry mainly because no difficulties associated with experimental dosimetry. In brachytherapy the main handicap of experimental dosimetry is the high dose gradient near the present sources making small uncertainties in the positioning of the detectors lead to large uncertainties in the dose. This presentation will review mainly the procedure for calculating dose distributions around a fountain using the Monte Carlo method showing the difficulties inherent in these calculations. In addition we will briefly review other applications of the method of Monte Carlo in brachytherapy dosimetry, as its use in advanced calculation algorithms, calculating barriers or obtaining dose applicators around. (Author)
Variance Reduction Techniques in Monte Carlo Methods
Kleijnen, Jack P.C.; Ridder, A.A.N.; Rubinstein, R.Y.
2010-01-01
Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the intr
Monte Carlo methods beyond detailed balance
Schram, Raoul D.; Barkema, Gerard T.
2015-01-01
Monte Carlo algorithms are nearly always based on the concept of detailed balance and ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We introduce a general method for designing non-detailed balance algorithms, starting from a conventional algorithm satisfying
A comparison of Monte Carlo generators
Golan, Tomasz
2014-01-01
A comparison of GENIE, NEUT, NUANCE, and NuWro Monte Carlo neutrino event generators is presented using a set of four observables: protons multiplicity, total visible energy, most energetic proton momentum, and $\\pi^+$ two-dimensional energy vs cosine distribution.
Scalable Domain Decomposed Monte Carlo Particle Transport
Energy Technology Data Exchange (ETDEWEB)
O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
Monte Carlo Simulation of Counting Experiments.
Ogden, Philip M.
A computer program to perform a Monte Carlo simulation of counting experiments was written. The program was based on a mathematical derivation which started with counts in a time interval. The time interval was subdivided to form a binomial distribution with no two counts in the same subinterval. Then the number of subintervals was extended to…
Monte Carlo radiation transport in external beam radiotherapy
Çeçen, Yiğit
2013-01-01
The use of Monte Carlo in radiation transport is an effective way to predict absorbed dose distributions. Monte Carlo modeling has contributed to a better understanding of photon and electron transport by radiotherapy physicists. The aim of this review is to introduce Monte Carlo as a powerful radiation transport tool. In this review, photon and electron transport algorithms for Monte Carlo techniques are investigated and a clinical linear accelerator model is studied for external beam radiot...
An enhanced Monte Carlo outlier detection method.
Zhang, Liangxiao; Li, Peiwu; Mao, Jin; Ma, Fei; Ding, Xiaoxia; Zhang, Qi
2015-09-30
Outlier detection is crucial in building a highly predictive model. In this study, we proposed an enhanced Monte Carlo outlier detection method by establishing cross-prediction models based on determinate normal samples and analyzing the distribution of prediction errors individually for dubious samples. One simulated and three real datasets were used to illustrate and validate the performance of our method, and the results indicated that this method outperformed Monte Carlo outlier detection in outlier diagnosis. After these outliers were removed, the value of validation by Kovats retention indices and the root mean square error of prediction decreased from 3.195 to 1.655, and the average cross-validation prediction error decreased from 2.0341 to 1.2780. This method helps establish a good model by eliminating outliers. © 2015 Wiley Periodicals, Inc.
Monte Carlo Simulation for Particle Detectors
Pia, Maria Grazia
2012-01-01
Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...
Multilevel Monte Carlo Approaches for Numerical Homogenization
Efendiev, Yalchin R.
2015-10-01
In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.
Monte Carlo study of real time dynamics
Alexandru, Andrei; Bedaque, Paulo F; Vartak, Sohan; Warrington, Neill C
2016-01-01
Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from highly oscillatory phase of the path integral. In this letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and in principle applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.
Hybrid Monte Carlo with Chaotic Mixing
Kadakia, Nirag
2016-01-01
We propose a hybrid Monte Carlo (HMC) technique applicable to high-dimensional multivariate normal distributions that effectively samples along chaotic trajectories. The method is predicated on the freedom of choice of the HMC momentum distribution, and due to its mixing properties, exhibits sample-to-sample autocorrelations that decay far faster than those in the traditional hybrid Monte Carlo algorithm. We test the methods on distributions of varying correlation structure, finding that the proposed technique produces superior covariance estimates, is less reliant on step-size tuning, and can even function with sparse or no momentum re-sampling. The method presented here is promising for more general distributions, such as those that arise in Bayesian learning of artificial neural networks and in the state and parameter estimation of dynamical systems.
Composite biasing in Monte Carlo radiative transfer
Baes, Maarten; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf
2016-01-01
Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the spe...
Handbook of Markov chain Monte Carlo
Brooks, Steve
2011-01-01
""Handbook of Markov Chain Monte Carlo"" brings together the major advances that have occurred in recent years while incorporating enough introductory material for new users of MCMC. Along with thorough coverage of the theoretical foundations and algorithmic and computational methodology, this comprehensive handbook includes substantial realistic case studies from a variety of disciplines. These case studies demonstrate the application of MCMC methods and serve as a series of templates for the construction, implementation, and choice of MCMC methodology.
Accelerated Monte Carlo by Embedded Cluster Dynamics
Brower, R. C.; Gross, N. A.; Moriarty, K. J. M.
1991-07-01
We present an overview of the new methods for embedding Ising spins in continuous fields to achieve accelerated cluster Monte Carlo algorithms. The methods of Brower and Tamayo and Wolff are summarized and variations are suggested for the O( N) models based on multiple embedded Z2 spin components and/or correlated projections. Topological features are discussed for the XY model and numerical simulations presented for d=2, d=3 and mean field theory lattices.
Inhomogeneous Monte Carlo simulations of dermoscopic spectroscopy
Gareau, Daniel S.; Li, Ting; Jacques, Steven; Krueger, James
2012-03-01
Clinical skin-lesion diagnosis uses dermoscopy: 10X epiluminescence microscopy. Skin appearance ranges from black to white with shades of blue, red, gray and orange. Color is an important diagnostic criteria for diseases including melanoma. Melanin and blood content and distribution impact the diffuse spectral remittance (300-1000nm). Skin layers: immersion medium, stratum corneum, spinous epidermis, basal epidermis and dermis as well as laterally asymmetric features (eg. melanocytic invasion) were modeled in an inhomogeneous Monte Carlo model.
An introduction to Monte Carlo methods
Walter, J.-C.; Barkema, G. T.
2015-01-01
Monte Carlo simulations are methods for simulating statistical systems. The aim is to generate a representative ensemble of configurations to access thermodynamical quantities without the need to solve the system analytically or to perform an exact enumeration. The main principles of Monte Carlo simulations are ergodicity and detailed balance. The Ising model is a lattice spin system with nearest neighbor interactions that is appropriate to illustrate different examples of Monte Carlo simulations. It displays a second order phase transition between disordered (high temperature) and ordered (low temperature) phases, leading to different strategies of simulations. The Metropolis algorithm and the Glauber dynamics are efficient at high temperature. Close to the critical temperature, where the spins display long range correlations, cluster algorithms are more efficient. We introduce the rejection free (or continuous time) algorithm and describe in details an interesting alternative representation of the Ising model using graphs instead of spins with the so-called Worm algorithm. We conclude with an important discussion of the dynamical effects such as thermalization and correlation time.
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
Status of Monte-Carlo Event Generators
Energy Technology Data Exchange (ETDEWEB)
Hoeche, Stefan; /SLAC
2011-08-11
Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.
Mosaic crystal algorithm for Monte Carlo simulations
Seeger, P A
2002-01-01
An algorithm is presented for calculating reflectivity, absorption, and scattering of mosaic crystals in Monte Carlo simulations of neutron instruments. The algorithm uses multi-step transport through the crystal with an exact solution of the Darwin equations at each step. It relies on the kinematical model for Bragg reflection (with parameters adjusted to reproduce experimental data). For computation of thermal effects (the Debye-Waller factor and coherent inelastic scattering), an expansion of the Debye integral as a rapidly converging series of exponential terms is also presented. Any crystal geometry and plane orientation may be treated. The algorithm has been incorporated into the neutron instrument simulation package NISP. (orig.)
Monte Carlo simulation for the transport beamline
Energy Technology Data Exchange (ETDEWEB)
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)
2013-07-26
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.
A note on simultaneous Monte Carlo tests
DEFF Research Database (Denmark)
Hahn, Ute
In this short note, Monte Carlo tests of goodness of fit for data of the form X(t), t ∈ I are considered, that reject the null hypothesis if X(t) leaves an acceptance region bounded by an upper and lower curve for some t in I. A construction of the acceptance region is proposed that complies to a...... to a given target level of rejection, and yields exact p-values. The construction is based on pointwise quantiles, estimated from simulated realizations of X(t) under the null hypothesis....
A Monte Carlo algorithm for degenerate plasmas
Energy Technology Data Exchange (ETDEWEB)
Turrell, A.E., E-mail: a.turrell09@imperial.ac.uk; Sherlock, M.; Rose, S.J.
2013-09-15
A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the Fermi–Dirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electron–ion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.
Archimedes, the Free Monte Carlo simulator
Sellier, Jean Michel D
2012-01-01
Archimedes is the GNU package for Monte Carlo simulations of electron transport in semiconductor devices. The first release appeared in 2004 and since then it has been improved with many new features like quantum corrections, magnetic fields, new materials, GUI, etc. This document represents the first attempt to have a complete manual. Many of the Physics models implemented are described and a detailed description is presented to make the user able to write his/her own input deck. Please, feel free to contact the author if you want to contribute to the project.
Cluster hybrid Monte Carlo simulation algorithms
Plascak, J. A.; Ferrenberg, Alan M.; Landau, D. P.
2002-06-01
We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.
Introduction to Cluster Monte Carlo Algorithms
Luijten, E.
This chapter provides an introduction to cluster Monte Carlo algorithms for classical statistical-mechanical systems. A brief review of the conventional Metropolis algorithm is given, followed by a detailed discussion of the lattice cluster algorithm developed by Swendsen and Wang and the single-cluster variant introduced by Wolff. For continuum systems, the geometric cluster algorithm of Dress and Krauth is described. It is shown how their geometric approach can be generalized to incorporate particle interactions beyond hardcore repulsions, thus forging a connection between the lattice and continuum approaches. Several illustrative examples are discussed.
Energy Technology Data Exchange (ETDEWEB)
Marcus, Ryan C. [Los Alamos National Laboratory
2012-07-24
Overview of this presentation is (1) Exascale computing - different technologies, getting there; (2) high-performance proof-of-concept MCMini - features and results; and (3) OpenCL toolkit - Oatmeal (OpenCL Automatic Memory Allocation Library) - purpose and features. Despite driver issues, OpenCL seems like a good, hardware agnostic tool. MCMini demonstrates the possibility for GPGPU-based Monte Carlo methods - it shows great scaling for HPC application and algorithmic equivalence. Oatmeal provides a flexible framework to aid in the development of scientific OpenCL codes.
State-of-the-art Monte Carlo 1988
Energy Technology Data Exchange (ETDEWEB)
Soran, P.D.
1988-06-28
Particle transport calculations in highly dimensional and physically complex geometries, such as detector calibration, radiation shielding, space reactors, and oil-well logging, generally require Monte Carlo transport techniques. Monte Carlo particle transport can be performed on a variety of computers ranging from APOLLOs to VAXs. Some of the hardware and software developments, which now permit Monte Carlo methods to be routinely used, are reviewed in this paper. The development of inexpensive, large, fast computer memory, coupled with fast central processing units, permits Monte Carlo calculations to be performed on workstations, minicomputers, and supercomputers. The Monte Carlo renaissance is further aided by innovations in computer architecture and software development. Advances in vectorization and parallelization architecture have resulted in the development of new algorithms which have greatly reduced processing times. Finally, the renewed interest in Monte Carlo has spawned new variance reduction techniques which are being implemented in large computer codes. 45 refs.
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
Alternative Monte Carlo Approach for General Global Illumination
Institute of Scientific and Technical Information of China (English)
徐庆; 李朋; 徐源; 孙济洲
2004-01-01
An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero variance importance sampling procedure. A new importance driven Monte Carlo global illumination algorithm in the framework of the new computing scheme was developed and implemented. Results, which were obtained by rendering test scenes, show that this new framework and the newly derived algorithm are effective and promising.
Multiple Monte Carlo Testing with Applications in Spatial Point Processes
DEFF Research Database (Denmark)
Mrkvička, Tomáš; Myllymäki, Mari; Hahn, Ute
with a function as the test statistic, 3) several Monte Carlo tests with functions as test statistics. The rank test has correct (global) type I error in each case and it is accompanied with a p-value and with a graphical interpretation which shows which subtest or which distances of the used test function......The rank envelope test (Myllym\\"aki et al., Global envelope tests for spatial processes, arXiv:1307.0239 [stat.ME]) is proposed as a solution to multiple testing problem for Monte Carlo tests. Three different situations are recognized: 1) a few univariate Monte Carlo tests, 2) a Monte Carlo test...
Discrete range clustering using Monte Carlo methods
Chatterji, G. B.; Sridhar, B.
1993-01-01
For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.
Information Geometry and Sequential Monte Carlo
Sim, Aaron; Stumpf, Michael P H
2012-01-01
This paper explores the application of methods from information geometry to the sequential Monte Carlo (SMC) sampler. In particular the Riemannian manifold Metropolis-adjusted Langevin algorithm (mMALA) is adapted for the transition kernels in SMC. Similar to its function in Markov chain Monte Carlo methods, the mMALA is a fully adaptable kernel which allows for efficient sampling of high-dimensional and highly correlated parameter spaces. We set up the theoretical framework for its use in SMC with a focus on the application to the problem of sequential Bayesian inference for dynamical systems as modelled by sets of ordinary differential equations. In addition, we argue that defining the sequence of distributions on geodesics optimises the effective sample sizes in the SMC run. We illustrate the application of the methodology by inferring the parameters of simulated Lotka-Volterra and Fitzhugh-Nagumo models. In particular we demonstrate that compared to employing a standard adaptive random walk kernel, the SM...
Quantum Monte Carlo Calculations of Neutron Matter
Carlson, J; Ravenhall, D G
2003-01-01
Uniform neutron matter is approximated by a cubic box containing a finite number of neutrons, with periodic boundary conditions. We report variational and Green's function Monte Carlo calculations of the ground state of fourteen neutrons in a periodic box using the Argonne $\\vep $ two-nucleon interaction at densities up to one and half times the nuclear matter density. The effects of the finite box size are estimated using variational wave functions together with cluster expansion and chain summation techniques. They are small at subnuclear densities. We discuss the expansion of the energy of low-density neutron gas in powers of its Fermi momentum. This expansion is strongly modified by the large nn scattering length, and does not begin with the Fermi-gas kinetic energy as assumed in both Skyrme and relativistic mean field theories. The leading term of neutron gas energy is ~ half the Fermi-gas kinetic energy. The quantum Monte Carlo results are also used to calibrate the accuracy of variational calculations ...
THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE
Energy Technology Data Exchange (ETDEWEB)
WATERS, LAURIE S. [Los Alamos National Laboratory; MCKINNEY, GREGG W. [Los Alamos National Laboratory; DURKEE, JOE W. [Los Alamos National Laboratory; FENSIN, MICHAEL L. [Los Alamos National Laboratory; JAMES, MICHAEL R. [Los Alamos National Laboratory; JOHNS, RUSSELL C. [Los Alamos National Laboratory; PELOWITZ, DENISE B. [Los Alamos National Laboratory
2007-01-10
MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.
Chemical application of diffusion quantum Monte Carlo
Reynolds, P. J.; Lester, W. A., Jr.
1983-10-01
The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. As an example the singlet-triplet splitting of the energy of the methylene molecule CH2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on our VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX is discussed. Since CH2 has only eight electrons, most of the loops in this application are fairly short. The longest inner loops run over the set of atomic basis functions. The CPU time dependence obtained versus the number of basis functions is discussed and compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures. Finally, preliminary work on restructuring the algorithm to compute the separate Monte Carlo realizations in parallel is discussed.
Quantum Monte Carlo Endstation for Petascale Computing
Energy Technology Data Exchange (ETDEWEB)
Lubos Mitas
2011-01-26
NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13
Commensurabilities between ETNOs: a Monte Carlo survey
Marcos, C de la Fuente
2016-01-01
Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nin...
Monte Carlo exploration of warped Higgsless models
Energy Technology Data Exchange (ETDEWEB)
Hewett, JoAnne L.; Lillie, Benjamin; Rizzo, Thomas Gerard [Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, CA, 94025 (United States)]. E-mail: rizzo@slac.stanford.edu
2004-10-01
We have performed a detailed Monte Carlo exploration of the parameter space for a warped Higgsless model of electroweak symmetry breaking in 5 dimensions. This model is based on the SU(2){sub L} x SU(2){sub R} x U(1){sub B-L} gauge group in an AdS{sub 5} bulk with arbitrary gauge kinetic terms on both the Planck and TeV branes. Constraints arising from precision electroweak measurements and collider data are found to be relatively easy to satisfy. We show, however, that the additional requirement of perturbative unitarity up to the cut-off, {approx_equal} 10 TeV, in W{sub L}{sup +}W{sub L}{sup -} elastic scattering in the absence of dangerous tachyons eliminates all models. If successful models of this class exist, they must be highly fine-tuned. (author)
Monte Carlo Exploration of Warped Higgsless Models
Hewett, J L; Rizzo, T G
2004-01-01
We have performed a detailed Monte Carlo exploration of the parameter space for a warped Higgsless model of electroweak symmetry breaking in 5 dimensions. This model is based on the $SU(2)_L\\times SU(2)_R\\times U(1)_{B-L}$ gauge group in an AdS$_5$ bulk with arbitrary gauge kinetic terms on both the Planck and TeV branes. Constraints arising from precision electroweak measurements and collider data are found to be relatively easy to satisfy. We show, however, that the additional requirement of perturbative unitarity up to the cut-off, $\\simeq 10$ TeV, in $W_L^+W_L^-$ elastic scattering in the absence of dangerous tachyons eliminates all models. If successful models of this class exist, they must be highly fine-tuned.
Experimental Monte Carlo Quantum Process Certification
Steffen, L; Fedorov, A; Baur, M; Wallraff, A
2012-01-01
Experimental implementations of quantum information processing have now reached a level of sophistication where quantum process tomography is impractical. The number of experimental settings as well as the computational cost of the data post-processing now translates to days of effort to characterize even experiments with as few as 8 qubits. Recently a more practical approach to determine the fidelity of an experimental quantum process has been proposed, where the experimental data is compared directly to an ideal process using Monte Carlo sampling. Here we present an experimental implementation of this scheme in a circuit quantum electrodynamics setup to determine the fidelity of two qubit gates, such as the cphase and the cnot gate, and three qubit gates, such as the Toffoli gate and two sequential cphase gates.
Variable length trajectory compressible hybrid Monte Carlo
Nishimura, Akihiko
2016-01-01
Hybrid Monte Carlo (HMC) generates samples from a prescribed probability distribution in a configuration space by simulating Hamiltonian dynamics, followed by the Metropolis (-Hastings) acceptance/rejection step. Compressible HMC (CHMC) generalizes HMC to a situation in which the dynamics is reversible but not necessarily Hamiltonian. This article presents a framework to further extend the algorithm. Within the existing framework, each trajectory of the dynamics must be integrated for the same amount of (random) time to generate a valid Metropolis proposal. Our generalized acceptance/rejection mechanism allows a more deliberate choice of the integration time for each trajectory. The proposed algorithm in particular enables an effective application of variable step size integrators to HMC-type sampling algorithms based on reversible dynamics. The potential of our framework is further demonstrated by another extension of HMC which reduces the wasted computations due to unstable numerical approximations and corr...
On nonlinear Markov chain Monte Carlo
Andrieu, Christophe; Doucet, Arnaud; Del Moral, Pierre; 10.3150/10-BEJ307
2011-01-01
Let $\\mathscr{P}(E)$ be the space of probability measures on a measurable space $(E,\\mathcal{E})$. In this paper we introduce a class of nonlinear Markov chain Monte Carlo (MCMC) methods for simulating from a probability measure $\\pi\\in\\mathscr{P}(E)$. Nonlinear Markov kernels (see [Feynman--Kac Formulae: Genealogical and Interacting Particle Systems with Applications (2004) Springer]) $K:\\mathscr{P}(E)\\times E\\rightarrow\\mathscr{P}(E)$ can be constructed to, in some sense, improve over MCMC methods. However, such nonlinear kernels cannot be simulated exactly, so approximations of the nonlinear kernels are constructed using auxiliary or potentially self-interacting chains. Several nonlinear kernels are presented and it is demonstrated that, under some conditions, the associated approximations exhibit a strong law of large numbers; our proof technique is via the Poisson equation and Foster--Lyapunov conditions. We investigate the performance of our approximations with some simulations.
Monte Carlo Implementation of Polarized Hadronization
Matevosyan, Hrayr H; Thomas, Anthony W
2016-01-01
We study the polarized quark hadronization in a Monte Carlo (MC) framework based on the recent extension of the quark-jet framework, where a self-consistent treatment of the quark polarization transfer in a sequential hadronization picture has been presented. Here, we first adopt this approach for MC simulations of hadronization process with finite number of produced hadrons, expressing the relevant probabilities in terms of the eight leading twist quark-to-quark transverse momentum dependent (TMD) splitting functions (SFs) for elementary $q \\to q'+h$ transition. We present explicit expressions for the unpolarized and Collins fragmentation functions (FFs) of unpolarized hadrons emitted at rank two. Further, we demonstrate that all the current spectator-type model calculations of the leading twist quark-to-quark TMD SFs violate the positivity constraints, and propose quark model based ansatz for these input functions that circumvents the problem. We validate our MC framework by explicitly proving the absence o...
Lunar Regolith Albedos Using Monte Carlos
Wilson, T. L.; Andersen, V.; Pinsky, L. S.
2003-01-01
The analysis of planetary regoliths for their backscatter albedos produced by cosmic rays (CRs) is important for space exploration and its potential contributions to science investigations in fundamental physics and astrophysics. Albedos affect all such experiments and the personnel that operate them. Groups have analyzed the production rates of various particles and elemental species by planetary surfaces when bombarded with Galactic CR fluxes, both theoretically and by means of various transport codes, some of which have emphasized neutrons. Here we report on the preliminary results of our current Monte Carlo investigation into the production of charged particles, neutrons, and neutrinos by the lunar surface using FLUKA. In contrast to previous work, the effects of charm are now included.
Gas discharges modeling by Monte Carlo technique
Directory of Open Access Journals (Sweden)
Savić Marija
2010-01-01
Full Text Available The basic assumption of the Townsend theory - that ions produce secondary electrons - is valid only in a very narrow range of the reduced electric field E/N. In accordance with the revised Townsend theory that was suggested by Phelps and Petrović, secondary electrons are produced in collisions of ions, fast neutrals, metastable atoms or photons with the cathode, or in gas phase ionizations by fast neutrals. In this paper we tried to build up a Monte Carlo code that can be used to calculate secondary electron yields for different types of particles. The obtained results are in good agreement with the analytical results of Phelps and. Petrović [Plasma Sourc. Sci. Technol. 8 (1999 R1].
Morse Monte Carlo Radiation Transport Code System
Energy Technology Data Exchange (ETDEWEB)
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)
Variational Monte Carlo study of pentaquark states
Energy Technology Data Exchange (ETDEWEB)
Mark W. Paris
2005-07-01
Accurate numerical solution of the five-body Schrodinger equation is effected via variational Monte Carlo. The spectrum is assumed to exhibit a narrow resonance with strangeness S=+1. A fully antisymmetrized and pair-correlated five-quark wave function is obtained for the assumed non-relativistic Hamiltonian which has spin, isospin, and color dependent pair interactions and many-body confining terms which are fixed by the non-exotic spectra. Gauge field dynamics are modeled via flux tube exchange factors. The energy determined for the ground states with J=1/2 and negative (positive) parity is 2.22 GeV (2.50 GeV). A lower energy negative parity state is consistent with recent lattice results. The short-range structure of the state is analyzed via its diquark content.
Monte Carlo simulation of neutron scattering instruments
Energy Technology Data Exchange (ETDEWEB)
Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.
1998-12-01
A code package consisting of the Monte Carlo Library MCLIB, the executing code MC{_}RUN, the web application MC{_}Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC{_}RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown.
Accurate barrier heights using diffusion Monte Carlo
Krongchon, Kittithat; Wagner, Lucas K
2016-01-01
Fixed node diffusion Monte Carlo (DMC) has been performed on a test set of forward and reverse barrier heights for 19 non-hydrogen-transfer reactions, and the nodal error has been assessed. The DMC results are robust to changes in the nodal surface, as assessed by using different mean-field techniques to generate single determinant wave functions. Using these single determinant nodal surfaces, DMC results in errors of 1.5(5) kcal/mol on barrier heights. Using the large data set of DMC energies, we attempted to find good descriptors of the fixed node error. It does not correlate with a number of descriptors including change in density, but does correlate with the gap between the highest occupied and lowest unoccupied orbital energies in the mean-field calculation.
Atomistic Monte Carlo simulation of lipid membranes
DEFF Research Database (Denmark)
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction......, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....
Geometric Monte Carlo and Black Janus Geometries
Bak, Dongsu; Kim, Kyung Kiu; Min, Hyunsoo; Song, Jeong-Pil
2016-01-01
We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.
Modeling neutron guides using Monte Carlo simulations
Wang, D Q; Crow, M L; Wang, X L; Lee, W T; Hubbard, C R
2002-01-01
Four neutron guide geometries, straight, converging, diverging and curved, were characterized using Monte Carlo ray-tracing simulations. The main areas of interest are the transmission of the guides at various neutron energies and the intrinsic time-of-flight (TOF) peak broadening. Use of a delta-function time pulse from a uniform Lambert neutron source allows one to quantitatively simulate the effect of guides' geometry on the TOF peak broadening. With a converging guide, the intensity and the beam divergence increases while the TOF peak width decreases compared with that of a straight guide. By contrast, use of a diverging guide decreases the intensity and the beam divergence, and broadens the width (in TOF) of the transmitted neutron pulse.
Reporting Monte Carlo Studies in Structural Equation Modeling
Boomsma, Anne
2013-01-01
In structural equation modeling, Monte Carlo simulations have been used increasingly over the last two decades, as an inventory from the journal Structural Equation Modeling illustrates. Reaching out to a broad audience, this article provides guidelines for reporting Monte Carlo studies in that fiel
Quantum Monte Carlo Simulations : Algorithms, Limitations and Applications
Raedt, H. De
1992-01-01
A survey is given of Quantum Monte Carlo methods currently used to simulate quantum lattice models. The formalisms employed to construct the simulation algorithms are sketched. The origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte Carlo approach is shown
Quantum Monte Carlo using a Stochastic Poisson Solver
Energy Technology Data Exchange (ETDEWEB)
Das, D; Martin, R M; Kalos, M H
2005-05-06
Quantum Monte Carlo (QMC) is an extremely powerful method to treat many-body systems. Usually quantum Monte Carlo has been applied in cases where the interaction potential has a simple analytic form, like the 1/r Coulomb potential. However, in a complicated environment as in a semiconductor heterostructure, the evaluation of the interaction itself becomes a non-trivial problem. Obtaining the potential from any grid-based finite-difference method, for every walker and every step is unfeasible. We demonstrate an alternative approach of solving the Poisson equation by a classical Monte Carlo within the overall quantum Monte Carlo scheme. We have developed a modified ''Walk On Spheres'' algorithm using Green's function techniques, which can efficiently account for the interaction energy of walker configurations, typical of quantum Monte Carlo algorithms. This stochastically obtained potential can be easily incorporated within popular quantum Monte Carlo techniques like variational Monte Carlo (VMC) or diffusion Monte Carlo (DMC). We demonstrate the validity of this method by studying a simple problem, the polarization of a helium atom in the electric field of an infinite capacitor.
Efficiency and accuracy of Monte Carlo (importance) sampling
Waarts, P.H.
2003-01-01
Monte Carlo Analysis is often regarded as the most simple and accurate reliability method. Be-sides it is the most transparent method. The only problem is the accuracy in correlation with the efficiency. Monte Carlo gets less efficient or less accurate when very low probabilities are to be computed
The Monte Carlo Method. Popular Lectures in Mathematics.
Sobol', I. M.
The Monte Carlo Method is a method of approximately solving mathematical and physical problems by the simulation of random quantities. The principal goal of this booklet is to suggest to specialists in all areas that they will encounter problems which can be solved by the Monte Carlo Method. Part I of the booklet discusses the simulation of random…
Forest canopy BRDF simulation using Monte Carlo method
Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.
2006-01-01
Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.
QWalk: A Quantum Monte Carlo Program for Electronic Structure
Wagner, Lucas K; Mitas, Lubos
2007-01-01
We describe QWalk, a new computational package capable of performing Quantum Monte Carlo electronic structure calculations for molecules and solids with many electrons. We describe the structure of the program and its implementation of Quantum Monte Carlo methods. It is open-source, licensed under the GPL, and available at the web site http://www.qwalk.org
QUANTUM MONTE-CARLO SIMULATIONS - ALGORITHMS, LIMITATIONS AND APPLICATIONS
DERAEDT, H
1992-01-01
A survey is given of Quantum Monte Carlo methods currently used to simulate quantum lattice models. The formalisms employed to construct the simulation algorithms are sketched. The origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte Carlo approach is shown
Recent Developments in Quantum Monte Carlo: Methods and Applications
Aspuru-Guzik, Alan; Austin, Brian; Domin, Dominik; Galek, Peter T. A.; Handy, Nicholas; Prasad, Rajendra; Salomon-Ferrer, Romelia; Umezawa, Naoto; Lester, William A.
2007-12-01
The quantum Monte Carlo method in the diffusion Monte Carlo form has become recognized for its capability of describing the electronic structure of atomic, molecular and condensed matter systems to high accuracy. This talk will briefly outline the method with emphasis on recent developments connected with trial function construction, linear scaling, and applications to selected systems.
Sensitivity of Monte Carlo simulations to input distributions
Energy Technology Data Exchange (ETDEWEB)
RamoRao, B. S.; Srikanta Mishra, S.; McNeish, J.; Andrews, R. W.
2001-07-01
The sensitivity of the results of a Monte Carlo simulation to the shapes and moments of the probability distributions of the input variables is studied. An economical computational scheme is presented as an alternative to the replicate Monte Carlo simulations and is explained with an illustrative example. (Author) 4 refs.
CERN Summer Student Report 2016 Monte Carlo Data Base Improvement
Caciulescu, Alexandru Razvan
2016-01-01
During my Summer Student project I worked on improving the Monte Carlo Data Base and MonALISA services for the ALICE Collaboration. The project included learning the infrastructure for tracking and monitoring of the Monte Carlo productions as well as developing a new RESTful API for seamless integration with the JIRA issue tracking framework.
Practical schemes for accurate forces in quantum Monte Carlo
Moroni, S.; Saccani, S.; Filippi, C.
2014-01-01
While the computation of interatomic forces has become a well-established practice within variational Monte Carlo (VMC), the use of the more accurate Fixed-Node Diffusion Monte Carlo (DMC) method is still largely limited to the computation of total energies on structures obtained at a lower level of
Monte Carlo modelling of TRIGA research reactor
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-10-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-07
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational
Accelerated GPU based SPECT Monte Carlo simulations
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency
Fission Matrix Capability for MCNP Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory
2012-09-05
In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a
Vectorized Monte Carlo methods for reactor lattice analysis
Brown, F. B.
1984-01-01
Some of the new computational methods and equivalent mathematical representations of physics models used in the MCV code, a vectorized continuous-enery Monte Carlo code for use on the CYBER-205 computer are discussed. While the principal application of MCV is the neutronics analysis of repeating reactor lattices, the new methods used in MCV should be generally useful for vectorizing Monte Carlo for other applications. For background, a brief overview of the vector processing features of the CYBER-205 is included, followed by a discussion of the fundamentals of Monte Carlo vectorization. The physics models used in the MCV vectorized Monte Carlo code are then summarized. The new methods used in scattering analysis are presented along with details of several key, highly specialized computational routines. Finally, speedups relative to CDC-7600 scalar Monte Carlo are discussed.
Quantum Monte Carlo methods algorithms for lattice models
Gubernatis, James; Werner, Philipp
2016-01-01
Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in ...
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
Directory of Open Access Journals (Sweden)
Samuel Livingstone
2014-06-01
Full Text Available Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. After this, geometric concepts in Markov chain Monte Carlo are introduced. A full derivation of the Langevin diffusion on a Riemannian manifold is given, together with a discussion of the appropriate Riemannian metric choice for different problems. A survey of applications is provided, and some open questions are discussed.
The Monte Carlo method the method of statistical trials
Shreider, YuA
1966-01-01
The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio
Monte Carlo simulations for heavy ion dosimetry
Energy Technology Data Exchange (ETDEWEB)
Geithner, O.
2006-07-26
Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
Monte Carlo models of dust coagulation
Zsom, Andras
2010-01-01
The thesis deals with the first stage of planet formation, namely dust coagulation from micron to millimeter sizes in circumstellar disks. For the first time, we collect and compile the recent laboratory experiments on dust aggregates into a collision model that can be implemented into dust coagulation models. We put this model into a Monte Carlo code that uses representative particles to simulate dust evolution. Simulations are performed using three different disk models in a local box (0D) located at 1 AU distance from the central star. We find that the dust evolution does not follow the previously assumed growth-fragmentation cycle, but growth is halted by bouncing before the fragmentation regime is reached. We call this the bouncing barrier which is an additional obstacle during the already complex formation process of planetesimals. The absence of the growth-fragmentation cycle and the halted growth has two important consequences for planet formation. 1) It is observed that disk atmospheres are dusty thr...
Monte Carlo simulations of Protein Adsorption
Sharma, Sumit; Kumar, Sanat K.; Belfort, Georges
2008-03-01
Amyloidogenic diseases, such as, Alzheimer's are caused by adsorption and aggregation of partially unfolded proteins. Adsorption of proteins is a concern in design of biomedical devices, such as dialysis membranes. Protein adsorption is often accompanied by conformational rearrangements in protein molecules. Such conformational rearrangements are thought to affect many properties of adsorbed protein molecules such as their adhesion strength to the surface, biological activity, and aggregation tendency. It has been experimentally shown that many naturally occurring proteins, upon adsorption to hydrophobic surfaces, undergo a helix to sheet or random coil secondary structural rearrangement. However, to better understand the equilibrium structural complexities of this phenomenon, we have performed Monte Carlo (MC) simulations of adsorption of a four helix bundle, modeled as a lattice protein, and studied the adsorption behavior and equilibrium protein conformations at different temperatures and degrees of surface hydrophobicity. To study the free energy and entropic effects on adsorption, Canonical ensemble MC simulations have been combined with Weighted Histogram Analysis Method(WHAM). Conformational transitions of proteins on surfaces will be discussed as a function of surface hydrophobicity and compared to analogous bulk transitions.
Commensurabilities between ETNOs: a Monte Carlo survey
de la Fuente Marcos, C.; de la Fuente Marcos, R.
2016-07-01
Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects may be trapped in the 5:3 and 3:1 mean motion resonances with a putative Planet Nine with semimajor axis ˜700 au.
Diffusion Monte Carlo in internal coordinates.
Petit, Andrew S; McCoy, Anne B
2013-08-15
An internal coordinate extension of diffusion Monte Carlo (DMC) is described as a first step toward a generalized reduced-dimensional DMC approach. The method places no constraints on the choice of internal coordinates other than the requirement that they all be independent. Using H(3)(+) and its isotopologues as model systems, the methodology is shown to be capable of successfully describing the ground state properties of molecules that undergo large amplitude, zero-point vibrational motions. Combining the approach developed here with the fixed-node approximation allows vibrationally excited states to be treated. Analysis of the ground state probability distribution is shown to provide important insights into the set of internal coordinates that are less strongly coupled and therefore more suitable for use as the nodal coordinates for the fixed-node DMC calculations. In particular, the curvilinear normal mode coordinates are found to provide reasonable nodal surfaces for the fundamentals of H(2)D(+) and D(2)H(+) despite both molecules being highly fluxional.
A continuation multilevel Monte Carlo algorithm
Collier, Nathan
2014-09-05
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error tolerance is satisfied. CMLMC assumes discretization hierarchies that are defined a priori for each level and are geometrically refined across levels. The actual choice of computational work across levels is based on parametric models for the average cost per sample and the corresponding variance and weak error. These parameters are calibrated using Bayesian estimation, taking particular notice of the deepest levels of the discretization hierarchy, where only few realizations are available to produce the estimates. The resulting CMLMC estimator exhibits a non-trivial splitting between bias and statistical contributions. We also show the asymptotic normality of the statistical error in the MLMC estimator and justify in this way our error estimate that allows prescribing both required accuracy and confidence in the final result. Numerical results substantiate the above results and illustrate the corresponding computational savings in examples that are described in terms of differential equations either driven by random measures or with random coefficients. © 2014, Springer Science+Business Media Dordrecht.
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
Monte Carlo simulations for focusing elliptical guides
Energy Technology Data Exchange (ETDEWEB)
Valicu, Roxana [FRM2 Garching, Muenchen (Germany); Boeni, Peter [E20, TU Muenchen (Germany)
2009-07-01
The aim of the Monte Carlo simulations using McStas Programme was to improve the focusing of the neutron beam existing at PGAA (FRM II) by prolongation of the existing elliptic guide (coated now with supermirrors with m=3) with a new part. First we have tried with an initial length of the additional guide of 7,5cm and coatings for the neutron guide of supermirrors with m=4,5 and 6. The gain (calculated by dividing the intensity in the focal point after adding the guide by the intensity at the focal point with the initial guide) obtained for this coatings indicated that a coating with m=5 would be appropriate for a first trial. The next step was to vary the length of the additional guide for this m value and therefore choosing the appropriate length for the maximal gain. With the m value and the length of the guide fixed we have introduced an aperture 1 cm before the focal point and we have varied the radius of this aperture in order to obtain a focused beam. We have observed a dramatic decrease in the size of the beam in the focal point after introducing this aperture. The simulation results, the gains obtained and the evolution of the beam size will be presented.
Monte Carlo Production Management at CMS
Boudoul, G.; Pol, A; Srimanobhas, P; Vlimant, J R; Franzoni, Giovanni
2015-01-01
The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events.During the runI of LHC (2010-2012), CMS has produced over 12 Billion simulated events,organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up).In order toaggregate the information needed for the configuration and prioritization of the events production,assure the book-keeping and of all the processing requests placed by the physics analysis groups,and to interface with the CMS production infrastructure,the web-based service Monte Carlo Management (McM) has been developed and put in production in 2012.McM is based on recent server infrastructure technology (CherryPy + java) and relies on a CouchDB database back-end.This contribution will coverthe one and half year of operational experience managing samples of simulated events for CMS,the evolution of its functionalitiesand the extension of its capabi...
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
Monte Carlo Simulation of River Meander Modelling
Posner, A. J.; Duan, J. G.
2010-12-01
This study first compares the first order analytical solutions for flow field by Ikeda et. al. (1981) and Johanesson and Parker (1989b). Ikeda et. al.’s (1981) linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g. cohesiveness, stratigraphy, vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations. Several measures are formulated in order to determine which of the resulting planform is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model. Quasi-2D Ikeda (1989) flow solution with Monte Carlo Simulation of Bank Erosion Coefficient.
Monte Carlo Simulations of the Photospheric Process
Santana, Rodolfo; Hernandez, Roberto A; Kumar, Pawan
2015-01-01
We present a Monte Carlo (MC) code we wrote to simulate the photospheric process and to study the photospheric spectrum above the peak energy. Our simulations were performed with a photon to electron ratio $N_{\\gamma}/N_{e} = 10^{5}$, as determined by observations of the GRB prompt emission. We searched an exhaustive parameter space to determine if the photospheric process can match the observed high-energy spectrum of the prompt emission. If we do not consider electron re-heating, we determined that the best conditions to produce the observed high-energy spectrum are low photon temperatures and high optical depths. However, for these simulations, the spectrum peaks at an energy below 300 keV by a factor $\\sim 10$. For the cases we consider with higher photon temperatures and lower optical depths, we demonstrate that additional energy in the electrons is required to produce a power-law spectrum above the peak-energy. By considering electron re-heating near the photosphere, the spectrum for these simulations h...
Finding Planet Nine: a Monte Carlo approach
Marcos, C de la Fuente
2016-01-01
Planet Nine is a hypothetical planet located well beyond Pluto that has been proposed in an attempt to explain the observed clustering in physical space of the perihelia of six extreme trans-Neptunian objects or ETNOs. The predicted approximate values of its orbital elements include a semimajor axis of 700 au, an eccentricity of 0.6, an inclination of 30 degrees, and an argument of perihelion of 150 degrees. Searching for this putative planet is already under way. Here, we use a Monte Carlo approach to create a synthetic population of Planet Nine orbits and study its visibility statistically in terms of various parameters and focusing on the aphelion configuration. Our analysis shows that, if Planet Nine exists and is at aphelion, it might be found projected against one out of four specific areas in the sky. Each area is linked to a particular value of the longitude of the ascending node and two of them are compatible with an apsidal antialignment scenario. In addition and after studying the current statistic...
Parallel Monte Carlo Simulation of Aerosol Dynamics
Directory of Open Access Journals (Sweden)
Kun Zhou
2014-02-01
Full Text Available A highly efficient Monte Carlo (MC algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process. Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI. The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles.
Measuring Berry curvature with quantum Monte Carlo
Kolodrubetz, Michael
2014-01-01
The Berry curvature and its descendant, the Berry phase, play an important role in quantum mechanics. They can be used to understand the Aharonov-Bohm effect, define topological Chern numbers, and generally to investigate the geometric properties of a quantum ground state manifold. While Berry curvature has been well-studied in the regimes of few-body physics and non-interacting particles, its use in the regime of strong interactions is hindered by the lack of numerical methods to solve it. In this paper we fill this gap by implementing a quantum Monte Carlo method to solve for the Berry curvature, based on interpreting Berry curvature as a leading correction to imaginary time ramps. We demonstrate our algorithm using the transverse-field Ising model in one and two dimensions, the latter of which is non-integrable. Despite the fact that the Berry curvature gives information about the phase of the wave function, we show that our algorithm has no sign or phase problem for standard sign-problem-free Hamiltonians...
Atomistic Monte Carlo Simulation of Lipid Membranes
Directory of Open Access Journals (Sweden)
Daniel Wüstner
2014-01-01
Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.
An Introduction to Multilevel Monte Carlo for Option Valuation
Higham, Desmond J
2015-01-01
Monte Carlo is a simple and flexible tool that is widely used in computational finance. In this context, it is common for the quantity of interest to be the expected value of a random variable defined via a stochastic differential equation. In 2008, Giles proposed a remarkable improvement to the approach of discretizing with a numerical method and applying standard Monte Carlo. His multilevel Monte Carlo method offers an order of speed up given by the inverse of epsilon, where epsilon is the required accuracy. So computations can run 100 times more quickly when two digits of accuracy are required. The multilevel philosophy has since been adopted by a range of researchers and a wealth of practically significant results has arisen, most of which have yet to make their way into the expository literature. In this work, we give a brief, accessible, introduction to multilevel Monte Carlo and summarize recent results applicable to the task of option evaluation.
Using Supervised Learning to Improve Monte Carlo Integral Estimation
Tracey, Brendan; Alonso, Juan J
2011-01-01
Monte Carlo (MC) techniques are often used to estimate integrals of a multivariate function using randomly generated samples of the function. In light of the increasing interest in uncertainty quantification and robust design applications in aerospace engineering, the calculation of expected values of such functions (e.g. performance measures) becomes important. However, MC techniques often suffer from high variance and slow convergence as the number of samples increases. In this paper we present Stacked Monte Carlo (StackMC), a new method for post-processing an existing set of MC samples to improve the associated integral estimate. StackMC is based on the supervised learning techniques of fitting functions and cross validation. It should reduce the variance of any type of Monte Carlo integral estimate (simple sampling, importance sampling, quasi-Monte Carlo, MCMC, etc.) without adding bias. We report on an extensive set of experiments confirming that the StackMC estimate of an integral is more accurate than ...
MODELING LEACHING OF VIRUSES BY THE MONTE CARLO METHOD
A predictive screening model was developed for fate and transport of viruses in the unsaturated zone. A database of input parameters allowed Monte Carlo analysis with the model. The resulting kernel densities of predicted attenuation during percolation indicated very ...
A MONTE-CARLO METHOD FOR ESTIMATING THE CORRELATION EXPONENT
MIKOSCH, T; WANG, QA
1995-01-01
We propose a Monte Carlo method for estimating the correlation exponent of a stationary ergodic sequence. The estimator can be considered as a bootstrap version of the classical Hill estimator. A simulation study shows that the method yields reasonable estimates.
Bayesian phylogeny analysis via stochastic approximation Monte Carlo
Cheon, Sooyoung
2009-11-01
Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.
Bayesian phylogeny analysis via stochastic approximation Monte Carlo.
Cheon, Sooyoung; Liang, Faming
2009-11-01
Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time.
Monte Carlo techniques for analyzing deep penetration problems
Energy Technology Data Exchange (ETDEWEB)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1985-01-01
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs.
EXTENDED MONTE CARLO LOCALIZATION ALGORITHM FOR MOBILE SENSOR NETWORKS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A real-world localization system for wireless sensor networks that adapts for mobility and irregular radio propagation model is considered.The traditional range-based techniques and recent range-free localization schemes are not welt competent for localization in mobile sensor networks,while the probabilistic approach of Bayesian filtering with particle-based density representations provides a comprehensive solution to such localization problem.Monte Carlo localization is a Bayesian filtering method that approximates the mobile node’S location by a set of weighted particles.In this paper,an enhanced Monte Carlo localization algorithm-Extended Monte Carlo Localization (Ext-MCL) is suitable for the practical wireless network environment where the radio propagation model is irregular.Simulation results show the proposal gets better localization accuracy and higher localizable node number than previously proposed Monte Carlo localization schemes not only for ideal radio model,but also for irregular one.
Monte Carlo simulations: Hidden errors from ``good'' random number generators
Ferrenberg, Alan M.; Landau, D. P.; Wong, Y. Joanna
1992-12-01
The Wolff algorithm is now accepted as the best cluster-flipping Monte Carlo algorithm for beating ``critical slowing down.'' We show how this method can yield incorrect answers due to subtle correlations in ``high quality'' random number generators.
On the Markov Chain Monte Carlo (MCMC) method
Indian Academy of Sciences (India)
Rajeeva L Karandikar
2006-04-01
Markov Chain Monte Carlo (MCMC) is a popular method used to generate samples from arbitrary distributions, which may be speciﬁed indirectly. In this article, we give an introduction to this method along with some examples.
Monte-Carlo simulation-based statistical modeling
Chen, John
2017-01-01
This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.
Accelerating Monte Carlo Renderers by Ray Histogram Fusion
Directory of Open Access Journals (Sweden)
Mauricio Delbracio
2015-03-01
Full Text Available This paper details the recently introduced Ray Histogram Fusion (RHF filter for accelerating Monte Carlo renderers [M. Delbracio et al., Boosting Monte Carlo Rendering by Ray Histogram Fusion, ACM Transactions on Graphics, 33 (2014]. In this filter, each pixel in the image is characterized by the colors of the rays that reach its surface. Pixels are compared using a statistical distance on the associated ray color distributions. Based on this distance, it decides whether two pixels can share their rays or not. The RHF filter is consistent: as the number of samples increases, more evidence is required to average two pixels. The algorithm provides a significant gain in PSNR, or equivalently accelerates the rendering process by using many fewer Monte Carlo samples without observable bias. Since the RHF filter depends only on the Monte Carlo samples color values, it can be naturally combined with all rendering effects.
Monte Carlo methods for light propagation in biological tissues
Vinckenbosch, Laura; Lacaux, Céline; Tindel, Samy; Thomassin, Magalie; Obara, Tiphaine
2016-01-01
Light propagation in turbid media is driven by the equation of radiative transfer. We give a formal probabilistic representation of its solution in the framework of biological tissues and we implement algorithms based on Monte Carlo methods in order to estimate the quantity of light that is received by a homogeneous tissue when emitted by an optic fiber. A variance reduction method is studied and implemented, as well as a Markov chain Monte Carlo method based on the Metropolis–Hastings algori...
de Finetti Priors using Markov chain Monte Carlo computations.
Bacallado, Sergio; Diaconis, Persi; Holmes, Susan
2015-07-01
Recent advances in Monte Carlo methods allow us to revisit work by de Finetti who suggested the use of approximate exchangeability in the analyses of contingency tables. This paper gives examples of computational implementations using Metropolis Hastings, Langevin and Hamiltonian Monte Carlo to compute posterior distributions for test statistics relevant for testing independence, reversible or three way models for discrete exponential families using polynomial priors and Gröbner bases.
Study of the Transition Flow Regime using Monte Carlo Methods
Hassan, H. A.
1999-01-01
This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.
Monte Carlo Simulation of Optical Properties of Wake Bubbles
Institute of Scientific and Technical Information of China (English)
CAO Jing; WANG Jiang-An; JIANG Xing-Zhou; SHI Sheng-Wei
2007-01-01
Based on Mie scattering theory and the theory of multiple light scattering, the light scattering properties of air bubbles in a wake are analysed by Monte Carlo simulation. The results show that backscattering is enhanced obviously due to the existence of bubbles, especially with the increase of bubble density, and that it is feasible to use the Monte Carlo method to study the properties of light scattering by air bubbles.
Successful combination of the stochastic linearization and Monte Carlo methods
Elishakoff, I.; Colombi, P.
1993-01-01
A combination of a stochastic linearization and Monte Carlo techniques is presented for the first time in literature. A system with separable nonlinear damping and nonlinear restoring force is considered. The proposed combination of the energy-wise linearization with the Monte Carlo method yields an error under 5 percent, which corresponds to the error reduction associated with the conventional stochastic linearization by a factor of 4.6.
Confidence and efficiency scaling in variational quantum Monte Carlo calculations
Delyon, F.; Bernu, B.; Holzmann, Markus
2017-02-01
Based on the central limit theorem, we discuss the problem of evaluation of the statistical error of Monte Carlo calculations using a time-discretized diffusion process. We present a robust and practical method to determine the effective variance of general observables and show how to verify the equilibrium hypothesis by the Kolmogorov-Smirnov test. We then derive scaling laws of the efficiency illustrated by variational Monte Carlo calculations on the two-dimensional electron gas.
Confidence and efficiency scaling in Variational Quantum Monte Carlo calculations
Delyon, François; Holzmann, Markus
2016-01-01
Based on the central limit theorem, we discuss the problem of evaluation of the statistical error of Monte Carlo calculations using a time discretized diffusion process. We present a robust and practical method to determine the effective variance of general observables and show how to verify the equilibrium hypothesis by the Kolmogorov-Smirnov test. We then derive scaling laws of the efficiency illustrated by Variational Monte Carlo calculations on the two dimensional electron gas.
Geometrical and Monte Carlo projectors in 3D PET reconstruction
Aguiar, Pablo; Rafecas López, Magdalena; Ortuno, Juan Enrique; Kontaxakis, George; Santos, Andrés; Pavía, Javier; Ros, Domènec
2010-01-01
Purpose: In the present work, the authors compare geometrical and Monte Carlo projectors in detail. The geometrical projectors considered were the conventional geometrical Siddon ray-tracer (S-RT) and the orthogonal distance-based ray-tracer (OD-RT), based on computing the orthogonal distance from the center of image voxel to the line-of-response. A comparison of these geometrical projectors was performed using different point spread function (PSF) models. The Monte Carlo-based method under c...
Radiative Equilibrium and Temperature Correction in Monte Carlo Radiation Transfer
Bjorkman, J. E.; Wood, Kenneth
2001-01-01
We describe a general radiative equilibrium and temperature correction procedure for use in Monte Carlo radiation transfer codes with sources of temperature-independent opacity, such as astrophysical dust. The technique utilizes the fact that Monte Carlo simulations track individual photon packets, so we may easily determine where their energy is absorbed. When a packet is absorbed, it heats a particular cell within the envelope, raising its temperature. To enforce radiative equilibrium, the ...
Chemical accuracy from quantum Monte Carlo for the Benzene Dimer
Azadi, Sam; Cohen, R. E
2015-01-01
We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and fin...
Event-chain Monte Carlo for classical continuous spin models
Michel, Manon; Mayer, Johannes; Krauth, Werner
2015-10-01
We apply the event-chain Monte Carlo algorithm to classical continuum spin models on a lattice and clarify the condition for its validity. In the two-dimensional XY model, it outperforms the local Monte Carlo algorithm by two orders of magnitude, although it remains slower than the Wolff cluster algorithm. In the three-dimensional XY spin glass model at low temperature, the event-chain algorithm is far superior to the other algorithms.
Public Infrastructure for Monte Carlo Simulation: publicMC@BATAN
Waskita, A A; Akbar, Z; Handoko, L T; 10.1063/1.3462759
2010-01-01
The first cluster-based public computing for Monte Carlo simulation in Indonesia is introduced. The system has been developed to enable public to perform Monte Carlo simulation on a parallel computer through an integrated and user friendly dynamic web interface. The beta version, so called publicMC@BATAN, has been released and implemented for internal users at the National Nuclear Energy Agency (BATAN). In this paper the concept and architecture of publicMC@BATAN are presented.
Monte Carlo methods and applications in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.
1990-01-01
Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.
Monte Carlo method for solving a parabolic problem
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.
Monte Carlo Volcano Seismic Moment Tensors
Waite, G. P.; Brill, K. A.; Lanza, F.
2015-12-01
Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.
Monte Carlo implementation of polarized hadronization
Matevosyan, Hrayr H.; Kotzinian, Aram; Thomas, Anthony W.
2017-01-01
We study the polarized quark hadronization in a Monte Carlo (MC) framework based on the recent extension of the quark-jet framework, where a self-consistent treatment of the quark polarization transfer in a sequential hadronization picture has been presented. Here, we first adopt this approach for MC simulations of the hadronization process with a finite number of produced hadrons, expressing the relevant probabilities in terms of the eight leading twist quark-to-quark transverse-momentum-dependent (TMD) splitting functions (SFs) for elementary q →q'+h transition. We present explicit expressions for the unpolarized and Collins fragmentation functions (FFs) of unpolarized hadrons emitted at rank 2. Further, we demonstrate that all the current spectator-type model calculations of the leading twist quark-to-quark TMD SFs violate the positivity constraints, and we propose a quark model based ansatz for these input functions that circumvents the problem. We validate our MC framework by explicitly proving the absence of unphysical azimuthal modulations of the computed polarized FFs, and by precisely reproducing the earlier derived explicit results for rank-2 pions. Finally, we present the full results for pion unpolarized and Collins FFs, as well as the corresponding analyzing powers from high statistics MC simulations with a large number of produced hadrons for two different model input elementary SFs. The results for both sets of input functions exhibit the same general features of an opposite signed Collins function for favored and unfavored channels at large z and, at the same time, demonstrate the flexibility of the quark-jet framework by producing significantly different dependences of the results at mid to low z for the two model inputs.
Quantum Monte Carlo with directed loops.
Syljuåsen, Olav F; Sandvik, Anders W
2002-10-01
We introduce the concept of directed loops in stochastic series expansion and path-integral quantum Monte Carlo methods. Using the detailed balance rules for directed loops, we show that it is possible to smoothly connect generally applicable simulation schemes (in which it is necessary to include backtracking processes in the loop construction) to more restricted loop algorithms that can be constructed only for a limited range of Hamiltonians (where backtracking can be avoided). The "algorithmic discontinuities" between general and special points (or regions) in parameter space can hence be eliminated. As a specific example, we consider the anisotropic S=1/2 Heisenberg antiferromagnet in an external magnetic field. We show that directed-loop simulations are very efficient for the full range of magnetic fields (zero to the saturation point) and anisotropies. In particular, for weak fields and anisotropies, the autocorrelations are significantly reduced relative to those of previous approaches. The back-tracking probability vanishes continuously as the isotropic Heisenberg point is approached. For the XY model, we show that back tracking can be avoided for all fields extending up to the saturation field. The method is hence particularly efficient in this case. We use directed-loop simulations to study the magnetization process in the two-dimensional Heisenberg model at very low temperatures. For LxL lattices with L up to 64, we utilize the step structure in the magnetization curve to extract gaps between different spin sectors. Finite-size scaling of the gaps gives an accurate estimate of the transverse susceptibility in the thermodynamic limit: chi( perpendicular )=0.0659+/-0.0002.
Monte Carlo simulation of large electron fields
Faddegon, Bruce A.; Perl, Joseph; Asai, Makoto
2008-03-01
Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different 'physics lists,' were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the six electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the build-up region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy.
kmos: A lattice kinetic Monte Carlo framework
Hoffmann, Max J.; Matera, Sebastian; Reuter, Karsten
2014-07-01
Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for microkinetic modeling in heterogeneous catalysis and other materials applications. Systems, where site-specificity of all elementary reactions allows a mapping onto a lattice of discrete active sites, can be addressed within the particularly efficient lattice kMC approach. To this end we describe the versatile kmos software package, which offers a most user-friendly implementation, execution, and evaluation of lattice kMC models of arbitrary complexity in one- to three-dimensional lattice systems, involving multiple active sites in periodic or aperiodic arrangements, as well as site-resolved pairwise and higher-order lateral interactions. Conceptually, kmos achieves a maximum runtime performance which is essentially independent of lattice size by generating code for the efficiency-determining local update of available events that is optimized for a defined kMC model. For this model definition and the control of all runtime and evaluation aspects kmos offers a high-level application programming interface. Usage proceeds interactively, via scripts, or a graphical user interface, which visualizes the model geometry, the lattice occupations and rates of selected elementary reactions, while allowing on-the-fly changes of simulation parameters. We demonstrate the performance and scaling of kmos with the application to kMC models for surface catalytic processes, where for given operation conditions (temperature and partial pressures of all reactants) central simulation outcomes are catalytic activity and selectivities, surface composition, and mechanistic insight into the occurrence of individual elementary processes in the reaction network.
Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments
Energy Technology Data Exchange (ETDEWEB)
Pevey, Ronald E.
2005-09-15
Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL.
A Survey on Multilevel Monte Carlo for European Options
Directory of Open Access Journals (Sweden)
Masoud Moharamnejad
2016-03-01
Full Text Available One of the most applicable and common methods for pricing options is the Monte Carlo simulation. Among the advantages of this method we can name ease of use, being suitable for different types of options including vanilla options and exotic options. On one hand, convergence rate of Monte Carlo's variance is , which has a slow convergence in responding problems, such that for achieving accuracy of ε for a d dimensional problem, computation complexity would be . Thus, various methods have been proposed in Monte Carlo framework to increase the convergence rate of variance as variance reduction methods. One of the recent methods was proposed by Gills in 2006, is the multilevel Monte Carlo method. This method besides reducing the computationcomplexity to while being used in Euler discretizing and to while being used in Milsteindiscretizing method, has the capacity to be combined with other variance reduction methods. In this article, multilevel Monte Carlo using Euler and Milsteindiscretizing methods is adopted for comparing computation complexity with standard Monte Carlo method in pricing European call options.
Perturbation Monte Carlo methods for tissue structure alterations.
Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Spanier, Jerome
2013-01-01
This paper describes an extension of the perturbation Monte Carlo method to model light transport when the phase function is arbitrarily perturbed. Current perturbation Monte Carlo methods allow perturbation of both the scattering and absorption coefficients, however, the phase function can not be varied. The more complex method we develop and test here is not limited in this way. We derive a rigorous perturbation Monte Carlo extension that can be applied to a large family of important biomedical light transport problems and demonstrate its greater computational efficiency compared with using conventional Monte Carlo simulations to produce forward transport problem solutions. The gains of the perturbation method occur because only a single baseline Monte Carlo simulation is needed to obtain forward solutions to other closely related problems whose input is described by perturbing one or more parameters from the input of the baseline problem. The new perturbation Monte Carlo methods are tested using tissue light scattering parameters relevant to epithelia where many tumors originate. The tissue model has parameters for the number density and average size of three classes of scatterers; whole nuclei, organelles such as lysosomes and mitochondria, and small particles such as ribosomes or large protein complexes. When these parameters or the wavelength is varied the scattering coefficient and the phase function vary. Perturbation calculations give accurate results over variations of ∼15-25% of the scattering parameters.
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications Group; Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Engineering Dept.
2016-11-29
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations
Reducing quasi-ergodicity in a double well potential by Tsallis Monte Carlo simulation
Iwamatsu, Masao; Okabe, Yutaka
2000-01-01
A new Monte Carlo scheme based on the system of Tsallis's generalized statistical mechanics is applied to a simple double well potential to calculate the canonical thermal average of potential energy. Although we observed serious quasi-ergodicity when using the standard Metropolis Monte Carlo algorithm, this problem is largely reduced by the use of the new Monte Carlo algorithm. Therefore the ergodicity is guaranteed even for short Monte Carlo steps if we use this new canonical Monte Carlo sc...
Finding organic vapors - a Monte Carlo approach
Vuollekoski, Henri; Boy, Michael; Kerminen, Veli-Matti; Kulmala, Markku
2010-05-01
drawbacks in accuracy, the inability to find diurnal variation and the lack of size resolution. Here, we aim to shed some light onto the problem by applying an ad hoc Monte Carlo algorithm to a well established aerosol dynamical model, the University of Helsinki Multicomponent Aerosol model (UHMA). By performing a side-by-side comparison with measurement data within the algorithm, this approach has the significant advantage of decreasing the amount of manual labor. But more importantly, by basing the comparison on particle number size distribution data - a quantity that can be quite reliably measured - the accuracy of the results is good.
Coherent Scattering Imaging Monte Carlo Simulation
Hassan, Laila Abdulgalil Rafik
Conventional mammography has poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter potentially provides more information because interference of coherently scattered radiation depends on the average intermolecular spacing, and can be used to characterize tissue types. However, typical coherent scatter analysis techniques are not compatible with rapid low dose screening techniques. Coherent scatter slot scan imaging is a novel imaging technique which provides new information with higher contrast. In this work a simulation of coherent scatter was performed for slot scan imaging to assess its performance and provide system optimization. In coherent scatter imaging, the coherent scatter is exploited using a conventional slot scan mammography system with anti-scatter grids tilted at the characteristic angle of cancerous tissues. A Monte Carlo simulation was used to simulate the coherent scatter imaging. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The contrast increased as the grid tilt angle increased beyond the characteristic angle for the modeled carcinoma. A grid tilt angle of 16 degrees yielded the highest contrast and signal to noise ratio (SNR). Also, contrast increased as the source voltage increased. Increasing grid ratio improved contrast at the expense of decreasing SNR. A grid ratio of 10:1 was sufficient to give a good contrast without reducing the intensity to a noise level. The optimal source to sample distance was determined to be such that the source should be located at the focal distance of the grid. A carcinoma lump of 0.5x0.5x0.5 cm3 in size was detectable which is reasonable considering the high noise due to the usage of relatively small number of incident photons for computational reasons. A further study is needed to study the effect of breast density and breast thickness
An Unbiased Hessian Representation for Monte Carlo PDFs
Carrazza, Stefano; Kassabov, Zahari; Latorre, Jose Ignacio; Rojo, Juan
2015-01-01
We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (CMC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available togethe...
An unbiased Hessian representation for Monte Carlo PDFs
Energy Technology Data Exchange (ETDEWEB)
Carrazza, Stefano; Forte, Stefano [Universita di Milano, TIF Lab, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano (Italy); Kassabov, Zahari [Universita di Milano, TIF Lab, Dipartimento di Fisica, Milan (Italy); Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino (Italy); Latorre, Jose Ignacio [Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia, Barcelona (Spain); Rojo, Juan [University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford (United Kingdom)
2015-08-15
We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set. (orig.)
Monte Carlo studies of model Langmuir monolayers.
Opps, S B; Yang, B; Gray, C G; Sullivan, D E
2001-04-01
This paper examines some of the basic properties of a model Langmuir monolayer, consisting of surfactant molecules deposited onto a water subphase. The surfactants are modeled as rigid rods composed of a head and tail segment of diameters sigma(hh) and sigma(tt), respectively. The tails consist of n(t) approximately 4-7 effective monomers representing methylene groups. These rigid rods interact via site-site Lennard-Jones potentials with different interaction parameters for the tail-tail, head-tail, and head-head interactions. In a previous paper, we studied the ground-state properties of this system using a Landau approach. In the present paper, Monte Carlo simulations were performed in the canonical ensemble to elucidate the finite-temperature behavior of this system. Simulation techniques, incorporating a system of dynamic filters, allow us to decrease CPU time with negligible statistical error. This paper focuses on several of the key parameters, such as density, head-tail diameter mismatch, and chain length, responsible for driving transitions from uniformly tilted to untilted phases and between different tilt-ordered phases. Upon varying the density of the system, with sigma(hh)=sigma(tt), we observe a transition from a tilted (NNN)-condensed phase to an untilted-liquid phase and, upon comparison with recent experiments with fatty acid-alcohol and fatty acid-ester mixtures [M. C. Shih, M. K. Durbin, A. Malik, P. Zschack, and P. Dutta, J. Chem. Phys. 101, 9132 (1994); E. Teer, C. M. Knobler, C. Lautz, S. Wurlitzer, J. Kildae, and T. M. Fischer, J. Chem. Phys. 106, 1913 (1997)], we identify this as the L'(2)/Ov-L1 phase boundary. By varying the head-tail diameter ratio, we observe a decrease in T(c) with increasing mismatch. However, as the chain length was increased we observed that the transition temperatures increased and differences in T(c) due to head-tail diameter mismatch were diminished. In most of the present research, the water was treated as a hard
Vectorizing and macrotasking Monte Carlo neutral particle algorithms
Energy Technology Data Exchange (ETDEWEB)
Heifetz, D.B.
1987-04-01
Monte Carlo algorithms for computing neutral particle transport in plasmas have been vectorized and macrotasked. The techniques used are directly applicable to Monte Carlo calculations of neutron and photon transport, and Monte Carlo integration schemes in general. A highly vectorized code was achieved by calculating test flight trajectories in loops over arrays of flight data, isolating the conditional branches to as few a number of loops as possible. A number of solutions are discussed to the problem of gaps appearing in the arrays due to completed flights, which impede vectorization. A simple and effective implementation of macrotasking is achieved by dividing the calculation of the test flight profile among several processors. A tree of random numbers is used to ensure reproducible results. The additional memory required for each task may preclude using a larger number of tasks. In future machines, the limit of macrotasking may be possible, with each test flight, and split test flight, being a separate task.
VARIATIONAL MONTE-CARLO APPROACH FOR ARTICULATED OBJECT TRACKING
Directory of Open Access Journals (Sweden)
Kartik Dwivedi
2013-12-01
Full Text Available In this paper, we describe a novel variational Monte Carlo approach for modeling and tracking body parts of articulated objects. An articulated object (human target is represented as a dynamic Markov network of the different constituent parts. The proposed approach combines local information of individual body parts and other spatial constraints influenced by neighboring parts. The movement of the relative parts of the articulated body is modeled with local information of displacements from the Markov network and the global information from other neighboring parts. We explore the effect of certain model parameters (including the number of parts tracked; number of Monte-Carlo cycles, etc. on system accuracy and show that ourvariational Monte Carlo approach achieves better efficiency and effectiveness compared to other methods on a number of real-time video datasets containing single targets.
Meaningful timescales from Monte Carlo simulations of molecular systems
Costa, Liborio I
2016-01-01
A new Markov Chain Monte Carlo method for simulating the dynamics of molecular systems with atomistic detail is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.
Sequential Monte Carlo on large binary sampling spaces
Schäfer, Christian
2011-01-01
A Monte Carlo algorithm is said to be adaptive if it automatically calibrates its current proposal distribution using past simulations. The choice of the parametric family that defines the set of proposal distributions is critical for a good performance. In this paper, we present such a parametric family for adaptive sampling on high-dimensional binary spaces. A practical motivation for this problem is variable selection in a linear regression context. We want to sample from a Bayesian posterior distribution on the model space using an appropriate version of Sequential Monte Carlo. Raw versions of Sequential Monte Carlo are easily implemented using binary vectors with independent components. For high-dimensional problems, however, these simple proposals do not yield satisfactory results. The key to an efficient adaptive algorithm are binary parametric families which take correlations into account, analogously to the multivariate normal distribution on continuous spaces. We provide a review of models for binar...
Introduction to the variational and diffusion Monte Carlo methods
Toulouse, Julien; Umrigar, C J
2015-01-01
We provide a pedagogical introduction to the two main variants of real-space quantum Monte Carlo methods for electronic-structure calculations: variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). Assuming no prior knowledge on the subject, we review in depth the Metropolis-Hastings algorithm used in VMC for sampling the square of an approximate wave function, discussing details important for applications to electronic systems. We also review in detail the more sophisticated DMC algorithm within the fixed-node approximation, introduced to avoid the infamous Fermionic sign problem, which allows one to sample a more accurate approximation to the ground-state wave function. Throughout this review, we discuss the statistical methods used for evaluating expectation values and statistical uncertainties. In particular, we show how to estimate nonlinear functions of expectation values and their statistical uncertainties.
Monte Carlo Methods for Tempo Tracking and Rhythm Quantization
Cemgil, A T; 10.1613/jair.1121
2011-01-01
We present a probabilistic generative model for timing deviations in expressive music performance. The structure of the proposed model is equivalent to a switching state space model. The switch variables correspond to discrete note locations as in a musical score. The continuous hidden variables denote the tempo. We formulate two well known music recognition problems, namely tempo tracking and automatic transcription (rhythm quantization) as filtering and maximum a posteriori (MAP) state estimation tasks. Exact computation of posterior features such as the MAP state is intractable in this model class, so we introduce Monte Carlo methods for integration and optimization. We compare Markov Chain Monte Carlo (MCMC) methods (such as Gibbs sampling, simulated annealing and iterative improvement) and sequential Monte Carlo methods (particle filters). Our simulation results suggest better results with sequential methods. The methods can be applied in both online and batch scenarios such as tempo tracking and transcr...
Efficiency of Monte Carlo sampling in chaotic systems.
Leitão, Jorge C; Lopes, J M Viana Parente; Altmann, Eduardo G
2014-11-01
In this paper we investigate how the complexity of chaotic phase spaces affect the efficiency of importance sampling Monte Carlo simulations. We focus on flat-histogram simulations of the distribution of finite-time Lyapunov exponent in a simple chaotic system and obtain analytically that the computational effort: (i) scales polynomially with the finite time, a tremendous improvement over the exponential scaling obtained in uniform sampling simulations; and (ii) the polynomial scaling is suboptimal, a phenomenon known as critical slowing down. We show that critical slowing down appears because of the limited possibilities to issue a local proposal in the Monte Carlo procedure when it is applied to chaotic systems. These results show how generic properties of chaotic systems limit the efficiency of Monte Carlo simulations.
Monte Carlo simulation of laser attenuation characteristics in fog
Wang, Hong-Xia; Sun, Chao; Zhu, You-zhang; Sun, Hong-hui; Li, Pan-shi
2011-06-01
Based on the Mie scattering theory and the gamma size distribution model, the scattering extinction parameter of spherical fog-drop is calculated. For the transmission attenuation of the laser in the fog, a Monte Carlo simulation model is established, and the impact of attenuation ratio on visibility and field angle is computed and analysed using the program developed by MATLAB language. The results of the Monte Carlo method in this paper are compared with the results of single scattering method. The results show that the influence of multiple scattering need to be considered when the visibility is low, and single scattering calculations have larger errors. The phenomenon of multiple scattering can be interpreted more better when the Monte Carlo is used to calculate the attenuation ratio of the laser transmitting in the fog.
Calibration and Monte Carlo modelling of neutron long counters
Tagziria, H
2000-01-01
The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...
The Monte Carlo method in quantum field theory
Morningstar, C
2007-01-01
This series of six lectures is an introduction to using the Monte Carlo method to carry out nonperturbative studies in quantum field theories. Path integrals in quantum field theory are reviewed, and their evaluation by the Monte Carlo method with Markov-chain based importance sampling is presented. Properties of Markov chains are discussed in detail and several proofs are presented, culminating in the fundamental limit theorem for irreducible Markov chains. The example of a real scalar field theory is used to illustrate the Metropolis-Hastings method and to demonstrate the effectiveness of an action-preserving (microcanonical) local updating algorithm in reducing autocorrelations. The goal of these lectures is to provide the beginner with the basic skills needed to start carrying out Monte Carlo studies in quantum field theories, as well as to present the underlying theoretical foundations of the method.
Properties of Reactive Oxygen Species by Quantum Monte Carlo
Zen, Andrea; Guidoni, Leonardo
2014-01-01
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of Chemistry, Biology and Atmospheric Science. Nevertheless, the electronic structure of such species is a challenge for ab-initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal ...
Optimised Iteration in Coupled Monte Carlo - Thermal-Hydraulics Calculations
Hoogenboom, J. Eduard; Dufek, Jan
2014-06-01
This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration method are also tested and it is concluded that the presented iteration method is near optimal.
TAKING THE NEXT STEP WITH INTELLIGENT MONTE CARLO
Energy Technology Data Exchange (ETDEWEB)
Booth, T.E.; Carlson, J.A. [and others
2000-10-01
For many scientific calculations, Monte Carlo is the only practical method available. Unfortunately, standard Monte Carlo methods converge slowly as the square root of the computer time. We have shown, both numerically and theoretically, that the convergence rate can be increased dramatically if the Monte Carlo algorithm is allowed to adapt based on what it has learned from previous samples. As the learning continues, computational efficiency increases, often geometrically fast. The particle transport work achieved geometric convergence for a two-region problem as well as for problems with rapidly changing nuclear data. The statistics work provided theoretical proof of geometic convergence for continuous transport problems and promising initial results for airborne migration of particles. The statistical physics work applied adaptive methods to a variety of physical problems including the three-dimensional Ising glass, quantum scattering, and eigenvalue problems.
Monte Carlo tests of the ELIPGRID-PC algorithm
Energy Technology Data Exchange (ETDEWEB)
Davidson, J.R.
1995-04-01
The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID computer code of Singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM{reg_sign} PC. However, no known independent validation of the ELIPGRID algorithm exists. This document describes a Monte Carlo simulation-based validation of a modified version of the ELIPGRID-PC code. The modified ELIPGRID-PC code is shown to match Monte Carlo-calculated hot-spot detection probabilities to within {plus_minus}0.5% for 319 out of 320 test cases. The one exception, a very thin elliptical hot spot located within a rectangular sampling grid, differed from the Monte Carlo-calculated probability by about 1%. These results provide confidence in the ability of the modified ELIPGRID-PC code to accurately predict hot-spot detection probabilities within an acceptable range of error.
Failure Probability Estimation of Wind Turbines by Enhanced Monte Carlo
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Naess, Arvid
2012-01-01
This paper discusses the estimation of the failure probability of wind turbines required by codes of practice for designing them. The Standard Monte Carlo (SMC) simulations may be used for this reason conceptually as an alternative to the popular Peaks-Over-Threshold (POT) method. However......, estimation of very low failure probabilities with SMC simulations leads to unacceptably high computational costs. In this study, an Enhanced Monte Carlo (EMC) method is proposed that overcomes this obstacle. The method has advantages over both POT and SMC in terms of its low computational cost and accuracy...... is controlled by the pitch controller. This provides a fair framework for comparison of the behavior and failure event of the wind turbine with emphasis on the effect of the pitch controller. The Enhanced Monte Carlo method is then applied to the model and the failure probabilities of the model are estimated...
Monte Carlo Simulation in Statistical Physics An Introduction
Binder, Kurt
2010-01-01
Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methods and gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. The fifth edition covers Classical as well as Quantum Monte Carlo methods. Furthermore a new chapter on the sampling of free-energy landscapes has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was awarded the Berni J. Alder CECAM Award for Computational Physics 2001 as well ...
Applicability of Quasi-Monte Carlo for lattice systems
Ammon, Andreas; Jansen, Karl; Leovey, Hernan; Griewank, Andreas; Müller-Preussker, Micheal
2013-01-01
This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like $N^{-1/2}$, where $N$ is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to $N^{-1}$, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.
Implementation of Monte Carlo Simulations for the Gamma Knife System
Energy Technology Data Exchange (ETDEWEB)
Xiong, W [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Huang, D [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Lee, L [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Feng, J [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Morris, K [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Calugaru, E [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Burman, C [Memorial Sloan-Kettering Cancer Center/Mercy Medical Center, 1000 N Village Ave., Rockville Centre, NY 11570 (United States); Li, J [Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 17111 (United States); Ma, C-M [Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 17111 (United States)
2007-06-15
Currently the Gamma Knife system is accompanied with a treatment planning system, Leksell GammaPlan (LGP) which is a standard, computer-based treatment planning system for Gamma Knife radiosurgery. In LGP, the dose calculation algorithm does not consider the scatter dose contributions and the inhomogeneity effect due to the skull and air cavities. To improve the dose calculation accuracy, Monte Carlo simulations have been implemented for the Gamma Knife planning system. In this work, the 201 Cobalt-60 sources in the Gamma Knife unit are considered to have the same activity. Each Cobalt-60 source is contained in a cylindric stainless steel capsule. The particle phase space information is stored in four beam data files, which are collected in the inner sides of the 4 treatment helmets, after the Cobalt beam passes through the stationary and helmet collimators. Patient geometries are rebuilt from patient CT data. Twenty two Patients are included in the Monte Carlo simulation for this study. The dose is calculated using Monte Carlo in both homogenous and inhomogeneous geometries with identical beam parameters. To investigate the attenuation effect of the skull bone the dose in a 16cm diameter spherical QA phantom is measured with and without a 1.5mm Lead-covering and also simulated using Monte Carlo. The dose ratios with and without the 1.5mm Lead-covering are 89.8% based on measurements and 89.2% according to Monte Carlo for a 18mm-collimator Helmet. For patient geometries, the Monte Carlo results show that although the relative isodose lines remain almost the same with and without inhomogeneity corrections, the difference in the absolute dose is clinically significant. The average inhomogeneity correction is (3.9 {+-} 0.90) % for the 22 patients investigated. These results suggest that the inhomogeneity effect should be considered in the dose calculation for Gamma Knife treatment planning.
A standard Event Class for Monte Carlo Generators
Institute of Scientific and Technical Information of China (English)
L.A.Gerren; M.Fischler
2001-01-01
StdHepC++[1]is a CLHEP[2] Monte Carlo event class library which provides a common interface to Monte Carlo Event Generators,This work is an extensive redesign of the StdHep Fortran interface to use the full power of object oriented design,A generated event maps naturally onto the Directed Acyclic Graph concept and we have used the HepMC classes to implement this.The full implementation allows the user to combine events to simulate beam pileup and access them transparently as though they were a single event.
Parallelization of Monte Carlo codes MVP/GMVP
Energy Technology Data Exchange (ETDEWEB)
Nagaya, Yasunobu; Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sasaki, Makoto
1998-03-01
General-purpose Monte Carlo codes MVP/GMVP are well-vectorized and thus enable us to perform high-speed Monte Carlo calculations. In order to achieve more speedups, we parallelized the codes on the different types of the parallel processing platforms. The platforms reported are a distributed-memory vector-parallel computer Fujitsu VPP500, a distributed-memory massively parallel computer Intel Paragon and a distributed-memory scalar-parallel computer Hitachi SR2201. As mentioned generally, ideal speedup could be obtained for large-scale problems but parallelization efficiency got worse as the batch size per a processing element (PE) was smaller. (author)
Parton distribution functions in Monte Carlo factorisation scheme
Jadach, S.; Płaczek, W.; Sapeta, S.; Siódmok, A.; Skrzypek, M.
2016-12-01
A next step in development of the KrkNLO method of including complete NLO QCD corrections to hard processes in a LO parton-shower Monte Carlo is presented. It consists of a generalisation of the method, previously used for the Drell-Yan process, to Higgs-boson production. This extension is accompanied with the complete description of parton distribution functions in a dedicated, Monte Carlo factorisation scheme, applicable to any process of production of one or more colour-neutral particles in hadron-hadron collisions.
PEPSI — a Monte Carlo generator for polarized leptoproduction
Mankiewicz, L.; Schäfer, A.; Veltri, M.
1992-09-01
We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.
Utilising Monte Carlo Simulation for the Valuation of Mining Concessions
Directory of Open Access Journals (Sweden)
Rosli Said
2005-12-01
Full Text Available Valuation involves the analyses of various input data to produce an estimated value. Since each input is itself often an estimate, there is an element of uncertainty in the input. This leads to uncertainty in the resultant output value. It is argued that a valuation must also convey information on the uncertainty, so as to be more meaningful and informative to the user. The Monte Carlo simulation technique can generate the information on uncertainty and is therefore potentially useful to valuation. This paper reports on the investigation that has been conducted to apply Monte Carlo simulation technique in mineral valuation, more specifically, in the valuation of a quarry concession.
Monte Carlo methods and models in finance and insurance
Korn, Ralf
2010-01-01
Offering a unique balance between applications and calculations, this book incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The book enables readers to find the right algorithm for a desired application and illustrates complicated methods and algorithms with simple applicat
Accuracy Analysis of Assembly Success Rate with Monte Carlo Simulations
Institute of Scientific and Technical Information of China (English)
仲昕; 杨汝清; 周兵
2003-01-01
Monte Carlo simulation was applied to Assembly Success Rate (ASR) analyses.ASR of two peg-in-hole robot assemblies was used as an example by taking component parts' sizes,manufacturing tolerances and robot repeatability into account.A statistic arithmetic expression was proposed and deduced in this paper,which offers an alternative method of estimating the accuracy of ASR,without having to repeat the simulations.This statistic method also helps to choose a suitable sample size,if error reduction is desired.Monte Carlo simulation results demonstrated the feasibility of the method.
THE APPLICATION OF MONTE CARLO SIMULATION FOR A DECISION PROBLEM
Directory of Open Access Journals (Sweden)
Çiğdem ALABAŞ
2001-01-01
Full Text Available The ultimate goal of the standard decision tree approach is to calculate the expected value of a selected performance measure. In the real-world situations, the decision problems become very complex as the uncertainty factors increase. In such cases, decision analysis using standard decision tree approach is not useful. One way of overcoming this difficulty is the Monte Carlo simulation. In this study, a Monte Carlo simulation model is developed for a complex problem and statistical analysis is performed to make the best decision.
Applications of quantum Monte Carlo methods in condensed systems
Kolorenc, Jindrich
2010-01-01
The quantum Monte Carlo methods represent a powerful and broadly applicable computational tool for finding very accurate solutions of the stationary Schroedinger equation for atoms, molecules, solids and a variety of model systems. The algorithms are intrinsically parallel and are able to take full advantage of the present-day high-performance computing systems. This review article concentrates on the fixed-node/fixed-phase diffusion Monte Carlo method with emphasis on its applications to electronic structure of solids and other extended many-particle systems.
Quasi-Monte Carlo methods for the Heston model
Jan Baldeaux; Dale Roberts
2012-01-01
In this paper, we discuss the application of quasi-Monte Carlo methods to the Heston model. We base our algorithms on the Broadie-Kaya algorithm, an exact simulation scheme for the Heston model. As the joint transition densities are not available in closed-form, the Linear Transformation method due to Imai and Tan, a popular and widely applicable method to improve the effectiveness of quasi-Monte Carlo methods, cannot be employed in the context of path-dependent options when the underlying pr...
Novel Quantum Monte Carlo Approaches for Quantum Liquids
Rubenstein, Brenda M.
Quantum Monte Carlo methods are a powerful suite of techniques for solving the quantum many-body problem. By using random numbers to stochastically sample quantum properties, QMC methods are capable of studying low-temperature quantum systems well beyond the reach of conventional deterministic techniques. QMC techniques have likewise been indispensible tools for augmenting our current knowledge of superfluidity and superconductivity. In this thesis, I present two new quantum Monte Carlo techniques, the Monte Carlo Power Method and Bose-Fermi Auxiliary-Field Quantum Monte Carlo, and apply previously developed Path Integral Monte Carlo methods to explore two new phases of quantum hard spheres and hydrogen. I lay the foundation for a subsequent description of my research by first reviewing the physics of quantum liquids in Chapter One and the mathematics behind Quantum Monte Carlo algorithms in Chapter Two. I then discuss the Monte Carlo Power Method, a stochastic way of computing the first several extremal eigenvalues of a matrix too memory-intensive to be stored and therefore diagonalized. As an illustration of the technique, I demonstrate how it can be used to determine the second eigenvalues of the transition matrices of several popular Monte Carlo algorithms. This information may be used to quantify how rapidly a Monte Carlo algorithm is converging to the equilibrium probability distribution it is sampling. I next present the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm. This algorithm generalizes the well-known Auxiliary-Field Quantum Monte Carlo algorithm for fermions to bosons and Bose-Fermi mixtures. Despite some shortcomings, the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm represents the first exact technique capable of studying Bose-Fermi mixtures of any size in any dimension. In Chapter Six, I describe a new Constant Stress Path Integral Monte Carlo algorithm for the study of quantum mechanical systems under high pressures. While
Monte Carlo simulation of electron slowing down in indium
Energy Technology Data Exchange (ETDEWEB)
Rouabah, Z.; Hannachi, M. [Materials and Electronic Systems Laboratory (LMSE), University of Bordj Bou Arreridj, Bordj Bou Arreridj (Algeria); Champion, C. [Université de Bordeaux 1, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux-Gradignan, (CENBG), Gradignan (France); Bouarissa, N., E-mail: n_bouarissa@yahoo.fr [Laboratory of Materials Physics and its Applications, University of M' sila, 28000 M' sila (Algeria)
2015-07-15
Highlights: • Electron scattering in indium targets. • Modeling of elastic cross-sections. • Monte Carlo simulation of low energy electrons. - Abstract: In the current study, we aim at simulating via a detailed Monte Carlo code, the electron penetration in a semi-infinite indium medium for incident energies ranging from 0.5 to 5 keV. Electron range, backscattering coefficients, mean penetration depths as well as stopping profiles are then reported. The results may be seen as the first predictions for low-energy electron penetration in indium target.
Kinetic Monte Carlo method applied to nucleic acid hairpin folding.
Sauerwine, Ben; Widom, Michael
2011-12-01
Kinetic Monte Carlo on coarse-grained systems, such as nucleic acid secondary structure, is advantageous for being able to access behavior at long time scales, even minutes or hours. Transition rates between coarse-grained states depend upon intermediate barriers, which are not directly simulated. We propose an Arrhenius rate model and an intermediate energy model that incorporates the effects of the barrier between simulated states without enlarging the state space itself. Applying our Arrhenius rate model to DNA hairpin folding, we demonstrate improved agreement with experiment compared to the usual kinetic Monte Carlo model. Further improvement results from including rigidity of single-stranded stacking.
Green's function monte carlo and the many-fermion problem
Kalos, M. H.
The application of Green's function Monte Carlo to many body problems is outlined. For boson problems, the method is well developed and practical. An "efficiency principle",importance sampling, can be used to reduce variance. Fermion problems are more difficult because spatially antisymmetric functions must be represented as a difference of two density functions. Naively treated, this leads to a rapid growth of Monte Carlo error. Methods for overcoming the difficulty are discussed. Satisfactory algorithms exist for few-body problems; for many-body problems more work is needed, but it is likely that adequate methods will soon be available.
Monte Carlo simulation of electrons in dense gases
Tattersall, Wade; Boyle, Greg; Cocks, Daniel; Buckman, Stephen; White, Ron
2014-10-01
We implement a Monte-Carlo simulation modelling the transport of electrons and positrons in dense gases and liquids, by using a dynamic structure factor that allows us to construct structure-modified effective cross sections. These account for the coherent effects caused by interactions with the relatively dense medium. The dynamic structure factor also allows us to model thermal gases in the same manner, without needing to directly sample the velocities of the neutral particles. We present the results of a series of Monte Carlo simulations that verify and apply this new technique, and make comparisons with macroscopic predictions and Boltzmann equation solutions. Financial support of the Australian Research Council.
Cosmological Markov Chain Monte Carlo simulation with Cmbeasy
Müller, C M
2004-01-01
We introduce a Markov Chain Monte Carlo simulation and data analysis package for the cosmological computation package Cmbeasy. We have taken special care in implementing an adaptive step algorithm for the Markov Chain Monte Carlo in order to improve convergence. Data analysis routines are provided which allow to test models of the Universe against up-to-date measurements of the Cosmic Microwave Background, Supernovae Ia and Large Scale Structure. The observational data is provided with the software for convenient usage. The package is publicly available as part of the Cmbeasy software at www.cmbeasy.org.
Stochastic simulation and Monte-Carlo methods; Simulation stochastique et methodes de Monte-Carlo
Energy Technology Data Exchange (ETDEWEB)
Graham, C. [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France); Ecole Polytechnique, 91 - Palaiseau (France); Talay, D. [Institut National de Recherche en Informatique et en Automatique (INRIA), 78 - Le Chesnay (France); Ecole Polytechnique, 91 - Palaiseau (France)
2011-07-01
This book presents some numerical probabilistic methods of simulation with their convergence speed. It combines mathematical precision and numerical developments, each proposed method belonging to a precise theoretical context developed in a rigorous and self-sufficient manner. After some recalls about the big numbers law and the basics of probabilistic simulation, the authors introduce the martingales and their main properties. Then, they develop a chapter on non-asymptotic estimations of Monte-Carlo method errors. This chapter gives a recall of the central limit theorem and precises its convergence speed. It introduces the Log-Sobolev and concentration inequalities, about which the study has greatly developed during the last years. This chapter ends with some variance reduction techniques. In order to demonstrate in a rigorous way the simulation results of stochastic processes, the authors introduce the basic notions of probabilities and of stochastic calculus, in particular the essential basics of Ito calculus, adapted to each numerical method proposed. They successively study the construction and important properties of the Poisson process, of the jump and deterministic Markov processes (linked to transport equations), and of the solutions of stochastic differential equations. Numerical methods are then developed and the convergence speed results of algorithms are rigorously demonstrated. In passing, the authors describe the probabilistic interpretation basics of the parabolic partial derivative equations. Non-trivial applications to real applied problems are also developed. (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Burkatzki, Mark Thomas
2008-07-01
The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transitionmetal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented. (orig.)
Time management for Monte-Carlo tree search in Go
Baier, Hendrik; Winands, Mark H M
2012-01-01
The dominant approach for programs playing the game of Go is nowadays Monte-Carlo Tree Search (MCTS). While MCTS allows for fine-grained time control, little has been published on time management for MCTS programs under tournament conditions. This paper investigates the effects that various time-man
Testing Dependent Correlations with Nonoverlapping Variables: A Monte Carlo Simulation
Silver, N. Clayton; Hittner, James B.; May, Kim
2004-01-01
The authors conducted a Monte Carlo simulation of 4 test statistics or comparing dependent correlations with no variables in common. Empirical Type 1 error rates and power estimates were determined for K. Pearson and L. N. G. Filon's (1898) z, O. J. Dunn and V. A. Clark's (1969) z, J. H. Steiger's (1980) original modification of Dunn and Clark's…
A Variational Monte Carlo Approach to Atomic Structure
Davis, Stephen L.
2007-01-01
The practicality and usefulness of variational Monte Carlo calculations to atomic structure are demonstrated. It is found to succeed in quantitatively illustrating electron shielding, effective nuclear charge, l-dependence of the orbital energies, and singlet-tripetenergy splitting and ionization energy trends in atomic structure theory.
Nanoporous gold formation by dealloying : A Metropolis Monte Carlo study
Zinchenko, O.; De Raedt, H. A.; Detsi, E.; Onck, P. R.; De Hosson, J. T. M.
2013-01-01
A Metropolis Monte Carlo study of the dealloying mechanism leading to the formation of nanoporous gold is presented. A simple lattice-gas model for gold, silver and acid particles, vacancies and products of chemical reactions is adopted. The influence of temperature, concentration and lattice defect
Auxiliary-field quantum Monte Carlo methods in nuclei
Alhassid, Y
2016-01-01
Auxiliary-field quantum Monte Carlo methods enable the calculation of thermal and ground state properties of correlated quantum many-body systems in model spaces that are many orders of magnitude larger than those that can be treated by conventional diagonalization methods. We review recent developments and applications of these methods in nuclei using the framework of the configuration-interaction shell model.
Bayesian Monte Carlo Method for Nuclear Data Evaluation
Energy Technology Data Exchange (ETDEWEB)
Koning, A.J., E-mail: koning@nrg.eu
2015-01-15
A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using TALYS. The result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by an experiment based weight.
Data libraries as a collaborative tool across Monte Carlo codes
Augelli, Mauro; Han, Mincheol; Hauf, Steffen; Kim, Chan-Hyeung; Kuster, Markus; Pia, Maria Grazia; Quintieri, Lina; Saracco, Paolo; Seo, Hee; Sudhakar, Manju; Eidenspointner, Georg; Zoglauer, Andreas
2010-01-01
The role of data libraries in Monte Carlo simulation is discussed. A number of data libraries currently in preparation are reviewed; their data are critically examined with respect to the state-of-the-art in the respective fields. Extensive tests with respect to experimental data have been performed for the validation of their content.
Effective quantum Monte Carlo algorithm for modeling strongly correlated systems
Kashurnikov, V. A.; Krasavin, A. V.
2007-01-01
A new effective Monte Carlo algorithm based on principles of continuous time is presented. It allows calculating, in an arbitrary discrete basis, thermodynamic quantities and linear response of mixed boson-fermion, spin-boson, and other strongly correlated systems which admit no analytic description
A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods
Bijmolt, T.H.A.; Wedel, M.
1996-01-01
We compare three alternative Maximum Likelihood Multidimensional Scaling methods for pairwise dissimilarity ratings, namely MULTISCALE, MAXSCAL, and PROSCAL in a Monte Carlo study.The three MLMDS methods recover the true con gurations very well.The recovery of the true dimensionality depends on the
Monte Carlo Simulation on Glueball Search at BESⅢ
Institute of Scientific and Technical Information of China (English)
QIN Hu; SHEN Xiao-Yan
2007-01-01
The J/ψ radiative decays are suggested as promising modes for glueball search. A full Monte Carlo simulation of J/ψ→γηη and γηη', based on the design of BESⅢ detector, is performed to study the sensitivity of searching for a possible tensor glueball at BESⅢ.
Quantum Monte Carlo simulation of topological phase transitions
Yamamoto, Arata; Kimura, Taro
2016-12-01
We study the electron-electron interaction effects on topological phase transitions by the ab initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
Monte Carlo Simulation Optimizing Design of Grid Ionization Chamber
Institute of Scientific and Technical Information of China (English)
ZHENG; Yu-lai; WANG; Qiang; YANG; Lu
2013-01-01
The grid ionization chamber detector is often used for measuring charged particles.Based on Monte Carlo simulation method,the energy loss distribution and electron ion pairs of alpha particle with different energy have been calculated to determine suitable filling gas in the ionization chamber filled with
Monte Carlo method for magnetic impurities in metals
Hirsch, J. E.; Fye, R. M.
1986-01-01
The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.
Improved Monte Carlo model for multiple scattering calculations
Institute of Scientific and Technical Information of China (English)
Weiwei Cai; Lin Ma
2012-01-01
The coupling between the Monte Carlo (MC) method and geometrical optics to improve accuracy is investigated.The results obtained show improved agreement with previous experimental data,demonstrating that the MC method,when coupled with simple geometrical optics,can simulate multiple scattering with enhanced fidelity.
Simulating Strongly Correlated Electron Systems with Hybrid Monte Carlo
Institute of Scientific and Technical Information of China (English)
LIU Chuan
2000-01-01
Using the path integral representation, the Hubbard and the periodic Anderson model on D-dimensional cubic lattice are transformed into field theories of fermions in D + 1 dimensions. These theories at half-filling possess a positive definite real symmetry fermion matrix and can be simulated using the hybrid Monte Carlo method.
Research of Monte Carlo Simulation in Commercial Bank Risk Management
Institute of Scientific and Technical Information of China (English)
BeimingXiao
2004-01-01
Simulation method is an important-tool in financial risk management. It can simulate financial variable or economic wriable and deal with non-linear or non-nominal issue. This paper analyzes the usage of "Monte Carlo" approach in commercial bank risk management.
Observations on variational and projector Monte Carlo methods.
Umrigar, C J
2015-10-28
Variational Monte Carlo and various projector Monte Carlo (PMC) methods are presented in a unified manner. Similarities and differences between the methods and choices made in designing the methods are discussed. Both methods where the Monte Carlo walk is performed in a discrete space and methods where it is performed in a continuous space are considered. It is pointed out that the usual prescription for importance sampling may not be advantageous depending on the particular quantum Monte Carlo method used and the observables of interest, so alternate prescriptions are presented. The nature of the sign problem is discussed for various versions of PMC methods. A prescription for an exact PMC method in real space, i.e., a method that does not make a fixed-node or similar approximation and does not have a finite basis error, is presented. This method is likely to be practical for systems with a small number of electrons. Approximate PMC methods that are applicable to larger systems and go beyond the fixed-node approximation are also discussed.
Monte-carlo calculations for some problems of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Novoselov, A. A., E-mail: novoselov@goa.bog.msu.ru; Pavlovsky, O. V.; Ulybyshev, M. V. [Moscow State University (Russian Federation)
2012-09-15
The Monte-Carlo technique for the calculations of functional integral in two one-dimensional quantum-mechanical problems had been applied. The energies of the bound states in some potential wells were obtained using this method. Also some peculiarities in the calculation of the kinetic energy in the ground state had been studied.
Play It Again: Teaching Statistics with Monte Carlo Simulation
Sigal, Matthew J.; Chalmers, R. Philip
2016-01-01
Monte Carlo simulations (MCSs) provide important information about statistical phenomena that would be impossible to assess otherwise. This article introduces MCS methods and their applications to research and statistical pedagogy using a novel software package for the R Project for Statistical Computing constructed to lessen the often steep…
An Overview of the Monte Carlo Methods, Codes, & Applications Group
Energy Technology Data Exchange (ETDEWEB)
Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-30
This report sketches the work of the Group to deliver first-principle Monte Carlo methods, production quality codes, and radiation transport-based computational and experimental assessments using the codes MCNP and MCATK for such applications as criticality safety, non-proliferation, nuclear energy, nuclear threat reduction and response, radiation detection and measurement, radiation health protection, and stockpile stewardship.
Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm
Gubernatis, James
2014-03-01
A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.
Quantum Monte Carlo simulation of topological phase transitions
Yamamoto, Arata
2016-01-01
We study the electron-electron interaction effects on topological phase transitions by the ab-initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
The Metropolis Monte Carlo Method in Statistical Physics
Landau, David P.
2003-11-01
A brief overview is given of some of the advances in statistical physics that have been made using the Metropolis Monte Carlo method. By complementing theory and experiment, these have increased our understanding of phase transitions and other phenomena in condensed matter systems. A brief description of a new method, commonly known as "Wang-Landau sampling," will also be presented.
SPANDY: a Monte Carlo program for gas target scattering geometry
Energy Technology Data Exchange (ETDEWEB)
Jarmie, N.; Jett, J.H.; Niethammer, A.C.
1977-02-01
A Monte Carlo computer program is presented that simulates a two-slit gas target scattering geometry. The program is useful in estimating effects due to finite geometry and multiple scattering in the target foil. Details of the program are presented and experience with a specific example is discussed.
Distributed and Adaptive Darting Monte Carlo through Regenerations
Ahn, S.; Chen, Y.; Welling, M.
2013-01-01
Darting Monte Carlo (DMC) is a MCMC procedure designed to effectively mix between multiple modes of a probability distribution. We propose an adaptive and distributed version of this method by using regenerations. This allows us to run multiple chains in parallel and adapt the shape of the jump regi
Nonequilibrium Candidate Monte Carlo Simulations with Configurational Freezing Schemes.
Giovannelli, Edoardo; Gellini, Cristina; Pietraperzia, Giangaetano; Cardini, Gianni; Chelli, Riccardo
2014-10-14
Nonequilibrium Candidate Monte Carlo simulation [Nilmeier et al., Proc. Natl. Acad. Sci. U.S.A. 2011, 108, E1009-E1018] is a tool devised to design Monte Carlo moves with high acceptance probabilities that connect uncorrelated configurations. Such moves are generated through nonequilibrium driven dynamics, producing candidate configurations accepted with a Monte Carlo-like criterion that preserves the equilibrium distribution. The probability of accepting a candidate configuration as the next sample in the Markov chain basically depends on the work performed on the system during the nonequilibrium trajectory and increases with decreasing such a work. It is thus strategically relevant to find ways of producing nonequilibrium moves with low work, namely moves where dissipation is as low as possible. This is the goal of our methodology, in which we combine Nonequilibrium Candidate Monte Carlo with Configurational Freezing schemes developed by Nicolini et al. (J. Chem. Theory Comput. 2011, 7, 582-593). The idea is to limit the configurational sampling to particles of a well-established region of the simulation sample, namely the region where dissipation occurs, while leaving fixed the other particles. This allows to make the system relaxation faster around the region perturbed by the finite-time switching move and hence to reduce the dissipated work, eventually enhancing the probability of accepting the generated move. Our combined approach enhances significantly configurational sampling, as shown by the case of a bistable dimer immersed in a dense fluid.
Quantum Monte Carlo diagonalization method as a variational calculation
Energy Technology Data Exchange (ETDEWEB)
Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio
1997-05-01
A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)
Criticality benchmarks validation of the Monte Carlo code TRIPOLI-2
Energy Technology Data Exchange (ETDEWEB)
Maubert, L. (Commissariat a l' Energie Atomique, Inst. de Protection et de Surete Nucleaire, Service d' Etudes de Criticite, 92 - Fontenay-aux-Roses (France)); Nouri, A. (Commissariat a l' Energie Atomique, Inst. de Protection et de Surete Nucleaire, Service d' Etudes de Criticite, 92 - Fontenay-aux-Roses (France)); Vergnaud, T. (Commissariat a l' Energie Atomique, Direction des Reacteurs Nucleaires, Service d' Etudes des Reacteurs et de Mathematique Appliquees, 91 - Gif-sur-Yvette (France))
1993-04-01
The three-dimensional energy pointwise Monte-Carlo code TRIPOLI-2 includes metallic spheres of uranium and plutonium, nitrate plutonium solutions, square and triangular pitch assemblies of uranium oxide. Results show good agreements between experiments and calculations, and avoid a part of the code and its ENDF-B4 library validation. (orig./DG)
Determining MTF of digital detector system with Monte Carlo simulation
Jeong, Eun Seon; Lee, Hyung Won; Nam, Sang Hee
2005-04-01
We have designed a detector based on a-Se(amorphous Selenium) and done simulation the detector with Monte Carlo method. We will apply the cascaded linear system theory to determine the MTF for whole detector system. For direct comparison with experiment, we have simulated 139um pixel pitch and used simulated X-ray tube spectrum.
Optimization of sequential decisions by least squares Monte Carlo method
DEFF Research Database (Denmark)
Nishijima, Kazuyoshi; Anders, Annett
change adaptation measures, and evacuation of people and assets in the face of an emerging natural hazard event. Focusing on the last example, an efficient solution scheme is proposed by Anders and Nishijima (2011). The proposed solution scheme takes basis in the least squares Monte Carlo method, which...
Direct Monte Carlo simulation of nanoscale mixed gas bearings
Directory of Open Access Journals (Sweden)
Kyaw Sett Myo
2015-06-01
Full Text Available The conception of sealed hard drives with helium gas mixture has been recently suggested over the current hard drives for achieving higher reliability and less position error. Therefore, it is important to understand the effects of different helium gas mixtures on the slider bearing characteristics in the head–disk interface. In this article, the helium/air and helium/argon gas mixtures are applied as the working fluids and their effects on the bearing characteristics are studied using the direct simulation Monte Carlo method. Based on direct simulation Monte Carlo simulations, the physical properties of these gas mixtures such as mean free path and dynamic viscosity are achieved and compared with those obtained from theoretical models. It is observed that both results are comparable. Using these gas mixture properties, the bearing pressure distributions are calculated under different fractions of helium with conventional molecular gas lubrication models. The outcomes reveal that the molecular gas lubrication results could have relatively good agreement with those of direct simulation Monte Carlo simulations, especially for pure air, helium, or argon gas cases. For gas mixtures, the bearing pressures predicted by molecular gas lubrication model are slightly larger than those from direct simulation Monte Carlo simulation.
CMS Monte Carlo production operations in a distributed computing environment
Mohapatra, A; Khomich, A; Lazaridis, C; Hernández, J M; Caballero, J; Hof, C; Kalinin, S; Flossdorf, A; Abbrescia, M; De Filippis, N; Donvito, G; Maggi, G; My, S; Pompili, A; Sarkar, S; Maes, J; Van Mulders, P; Villella, I; De Weirdt, S; Hammad, G; Wakefield, S; Guan, W; Lajas, J A S; Elmer, P; Evans, D; Fanfani, A; Bacchi, W; Codispoti, G; Van Lingen, F; Kavka, C; Eulisse, G
2008-01-01
Monte Carlo production for the CMS experiment is carried out in a distributed computing environment; the goal of producing 30M simulated events per month in the first half of 2007 has been reached. A brief overview of the production operations and statistics is presented.
Multi-microcomputer system for Monte-Carlo calculations
Berg, B; Krasemann, H
1981-01-01
The authors propose a microcomputer system that allows parallel processing for Monte Carlo calculations in lattice gauge theories, simulations of high energy physics experiments and many other fields of current interest. The master-n-slave multiprocessor system is based on the Motorola MC 6800 microprocessor. One attraction of this processor is that it allows up to 16 M Byte random access memory.
Exploring Mass Perception with Markov Chain Monte Carlo
Cohen, Andrew L.; Ross, Michael G.
2009-01-01
Several previous studies have examined the ability to judge the relative mass of objects in idealized collisions. With a newly developed technique of psychological Markov chain Monte Carlo sampling (A. N. Sanborn & T. L. Griffiths, 2008), this work explores participants; perceptions of different collision mass ratios. The results reveal…
Monte Carlo estimation of the conditional Rasch model
Akkermans, Wies M.W.
1994-01-01
In order to obtain conditional maximum likelihood estimates, the so-called conditioning estimates have to be calculated. In this paper a method is examined that does not calculate these constants exactly, but approximates them using Monte Carlo Markov Chains. As an example, the method is applied to
Monte Carlo estimation of the conditional Rasch model
Akkermans, W.
1998-01-01
In order to obtain conditional maximum likelihood estimates, the conditioning constants are needed. Geyer and Thompson (1992) proposed a Markov chain Monte Carlo method that can be used to approximate these constants when they are difficult to calculate exactly. In the present paper, their method is
Monte Carlo methods for multidimensional integration for European option pricing
Todorov, V.; Dimov, I. T.
2016-10-01
In this paper, we illustrate examples of highly accurate Monte Carlo and quasi-Monte Carlo methods for multiple integrals related to the evaluation of European style options. The idea is that the value of the option is formulated in terms of the expectation of some random variable; then the average of independent samples of this random variable is used to estimate the value of the option. First we obtain an integral representation for the value of the option using the risk neutral valuation formula. Then with an appropriations change of the constants we obtain a multidimensional integral over the unit hypercube of the corresponding dimensionality. Then we compare a specific type of lattice rules over one of the best low discrepancy sequence of Sobol for numerical integration. Quasi-Monte Carlo methods are compared with Adaptive and Crude Monte Carlo techniques for solving the problem. The four approaches are completely different thus it is a question of interest to know which one of them outperforms the other for evaluation multidimensional integrals in finance. Some of the advantages and disadvantages of the developed algorithms are discussed.
Monte Carlo simulation of magnetic nanostructured thin films
Institute of Scientific and Technical Information of China (English)
Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu
2004-01-01
@@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.
A separable shadow Hamiltonian hybrid Monte Carlo method.
Sweet, Christopher R; Hampton, Scott S; Skeel, Robert D; Izaguirre, Jesús A
2009-11-07
Hybrid Monte Carlo (HMC) is a rigorous sampling method that uses molecular dynamics (MD) as a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size. The shadow hybrid Monte Carlo (SHMC) was previously introduced to reduce this performance degradation by sampling instead from the shadow Hamiltonian defined for MD when using a symplectic integrator. SHMC's performance is limited by the need to generate momenta for the MD step from a nonseparable shadow Hamiltonian. We introduce the separable shadow Hamiltonian hybrid Monte Carlo (S2HMC) method based on a formulation of the leapfrog/Verlet integrator that corresponds to a separable shadow Hamiltonian, which allows efficient generation of momenta. S2HMC gives the acceptance rate of a fourth order integrator at the cost of a second-order integrator. Through numerical experiments we show that S2HMC consistently gives a speedup greater than two over HMC for systems with more than 4000 atoms for the same variance. By comparison, SHMC gave a maximum speedup of only 1.6 over HMC. S2HMC has the additional advantage of not requiring any user parameters beyond those of HMC. S2HMC is available in the program PROTOMOL 2.1. A Python version, adequate for didactic purposes, is also in MDL (http://mdlab.sourceforge.net/s2hmc).
Variational Monte Carlo calculations of few-body nuclei
Energy Technology Data Exchange (ETDEWEB)
Wiringa, R.B.
1986-01-01
The variational Monte Carlo method is described. Results for the binding energies, density distributions, momentum distributions, and static longitudinal structure functions of the /sup 3/H, /sup 3/He, and /sup 4/He ground states, and for the energies of the low-lying scattering states in /sup 4/He are presented. 25 refs., 3 figs.
Monte Carlo studies of nuclei and quantum liquid drops
Energy Technology Data Exchange (ETDEWEB)
Pandharipande, V.R.; Pieper, S.C.
1989-01-01
The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs.
Monte Carlo: in the beginning and some great expectations
Energy Technology Data Exchange (ETDEWEB)
Metropolis, N.
1985-01-01
The central theme will be on the historical setting and origins of the Monte Carlo Method. The scene was post-war Los Alamos Scientific Laboratory. There was an inevitability about the Monte Carlo Event: the ENIAC had recently enjoyed its meteoric rise (on a classified Los Alamos problem); Stan Ulam had returned to Los Alamos; John von Neumann was a frequent visitor. Techniques, algorithms, and applications developed rapidly at Los Alamos. Soon, the fascination of the Method reached wider horizons. The first paper was submitted for publication in the spring of 1949. In the summer of 1949, the first open conference was held at the University of California at Los Angeles. Of some interst perhaps is an account of Fermi's earlier, independent application in neutron moderation studies while at the University of Rome. The quantum leap expected with the advent of massively parallel processors will provide stimuli for very ambitious applications of the Monte Carlo Method in disciplines ranging from field theories to cosmology, including more realistic models in the neurosciences. A structure of multi-instruction sets for parallel processing is ideally suited for the Monte Carlo approach. One may even hope for a modest hardening of the soft sciences.
Monte Carlo simulation of quantum statistical lattice models
Raedt, Hans De; Lagendijk, Ad
1985-01-01
In this article we review recent developments in computational methods for quantum statistical lattice problems. We begin by giving the necessary mathematical basis, the generalized Trotter formula, and discuss the computational tools, exact summations and Monte Carlo simulation, that will be used t
On a full Monte Carlo approach to quantum mechanics
Sellier, J. M.; Dimov, I.
2016-12-01
The Monte Carlo approach to numerical problems has shown to be remarkably efficient in performing very large computational tasks since it is an embarrassingly parallel technique. Additionally, Monte Carlo methods are well known to keep performance and accuracy with the increase of dimensionality of a given problem, a rather counterintuitive peculiarity not shared by any known deterministic method. Motivated by these very peculiar and desirable computational features, in this work we depict a full Monte Carlo approach to the problem of simulating single- and many-body quantum systems by means of signed particles. In particular we introduce a stochastic technique, based on the strategy known as importance sampling, for the computation of the Wigner kernel which, so far, has represented the main bottleneck of this method (it is equivalent to the calculation of a multi-dimensional integral, a problem in which complexity is known to grow exponentially with the dimensions of the problem). The introduction of this stochastic technique for the kernel is twofold: firstly it reduces the complexity of a quantum many-body simulation from non-linear to linear, secondly it introduces an embarassingly parallel approach to this very demanding problem. To conclude, we perform concise but indicative numerical experiments which clearly illustrate how a full Monte Carlo approach to many-body quantum systems is not only possible but also advantageous. This paves the way towards practical time-dependent, first-principle simulations of relatively large quantum systems by means of affordable computational resources.
Development of ray tracing visualization program by Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Otani, Takayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Hasegawa, Yukihiro
1997-09-01
Ray tracing algorithm is a powerful method to synthesize three dimensional computer graphics. In conventional ray tracing algorithms, a view point is used as a starting point of ray tracing, from which the rays are tracked up to the light sources through center points of pixels on the view screen to calculate the intensities of the pixels. This manner, however, makes it difficult to define the configuration of light source as well as to strictly simulate the reflections of the rays. To resolve these problems, we have developed a new ray tracing means which traces rays from a light source, not from a view point, with use of Monte Carlo method which is widely applied in nuclear fields. Moreover, we adopt the variance reduction techniques to the program with use of the specialized machine (Monte-4) for particle transport Monte Carlo so that the computational time could be successfully reduced. (author)
Monte Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (Emc2.xls)
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Mont Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (emcee.xls).xml
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Monte Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (Emc2.xls).
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Mont Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (emcee.xls)
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Global Monte Carlo Simulation with High Order Polynomial Expansions
Energy Technology Data Exchange (ETDEWEB)
William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin
2007-12-13
The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as “local” piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi’s method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source
Multiple-time-stepping generalized hybrid Monte Carlo methods
Energy Technology Data Exchange (ETDEWEB)
Escribano, Bruno, E-mail: bescribano@bcamath.org [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); Akhmatskaya, Elena [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Reich, Sebastian [Universität Potsdam, Institut für Mathematik, D-14469 Potsdam (Germany); Azpiroz, Jon M. [Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, Donostia (Spain)
2015-01-01
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.
Energy Technology Data Exchange (ETDEWEB)
Both, J.P.; Lee, Y.K.; Mazzolo, A.; Peneliau, Y.; Petit, O.; Roesslinger, B. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), Service d' Etudes de Reacteurs et de Modelisation Avancee, 91 - Gif sur Yvette (France)
2003-07-01
Tripoli-4 is a three dimensional calculations code using the Monte Carlo method to simulate the transport of neutrons, photons, electrons and positrons. This code is used in four application fields: the protection studies, the criticality studies, the core studies and the instrumentation studies. Geometry, cross sections, description of sources, principle. (N.C.)
Goldman, Saul
1983-10-01
A method we call energy-scaled displacement Monte Carlo (ESDMC) whose purpose is to improve sampling efficiency and thereby speed up convergence rates in Monte Carlo calculations is presented. The method involves scaling the maximum displacement a particle may make on a trial move to the particle's configurational energy. The scaling is such that on the average, the most stable particles make the smallest moves and the most energetic particles the largest moves. The method is compared to Metropolis Monte Carlo (MMC) and Force Bias Monte Carlo of (FBMC) by applying all three methods to a dense Lennard-Jones fluid at two temperatures, and to hot ST2 water. The functions monitored as the Markov chains developed were, for the Lennard-Jones case: melting, radial distribution functions, internal energies, and heat capacities. For hot ST2 water, we monitored energies and heat capacities. The results suggest that ESDMC samples configuration space more efficiently than either MMC or FBMC in these systems for the biasing parameters used here. The benefit from using ESDMC seemed greatest for the Lennard-Jones systems.
Uniform distribution and quasi-Monte Carlo methods discrepancy, integration and applications
Kritzer, Peter; Pillichshammer, Friedrich; Winterhof, Arne
2014-01-01
The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology.
Fast orthogonal transforms for multi-level quasi-Monte Carlo integration
Irrgeher, Christian; Leobacher, Gunther
2015-01-01
We combine a generic method for finding fast orthogonal transforms for a given quasi-Monte Carlo integration problem with the multilevel Monte Carlo method. It is shown by example that this combined method can vastly improve the efficiency of quasi-Monte Carlo.
The impact of Monte Carlo simulation: a scientometric analysis of scholarly literature
Pia, Maria Grazia; Bell, Zane W; Dressendorfer, Paul V
2010-01-01
A scientometric analysis of Monte Carlo simulation and Monte Carlo codes has been performed over a set of representative scholarly journals related to radiation physics. The results of this study are reported and discussed. They document and quantitatively appraise the role of Monte Carlo methods and codes in scientific research and engineering applications.
Applying polynomial filtering to mass preconditioned Hybrid Monte Carlo
Haar, Taylor; Zanotti, James; Nakamura, Yoshifumi
2016-01-01
The use of mass preconditioning or Hasenbusch filtering in modern Hybrid Monte Carlo simulations is common. At light quark masses, multiple filters (three or more) are typically used to reduce the cost of generating dynamical gauge fields; however, the task of tuning a large number of Hasenbusch mass terms is non-trivial. The use of short polynomial approximations to the inverse has been shown to provide an effective UV filter for HMC simulations. In this work we investigate the application of polynomial filtering to the mass preconditioned Hybrid Monte Carlo algorithm as a means of introducing many time scales into the molecular dynamics integration with a simplified parameter tuning process. A generalized multi-scale integration scheme that permits arbitrary step- sizes and can be applied to Omelyan-style integrators is also introduced. We find that polynomial-filtered mass-preconditioning (PF-MP) performs as well as or better than standard mass preconditioning, with significantly less fine tuning required.
Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography
Energy Technology Data Exchange (ETDEWEB)
Amendt, P.; Estabrook, K.; Everett, M.; London, R.A.; Maitland, D.; Zimmerman, G.; Colston, B.; da Silva, L.; Sathyam, U.
2000-02-01
The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of spherical dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.
Bayesian Monte Carlo method for nuclear data evaluation
Energy Technology Data Exchange (ETDEWEB)
Koning, A.J. [Nuclear Research and Consultancy Group NRG, P.O. Box 25, ZG Petten (Netherlands)
2015-12-15
A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using the nuclear model code TALYS and the experimental nuclear reaction database EXFOR. The method is applied to all nuclides at the same time. First, the global predictive power of TALYS is numerically assessed, which enables to set the prior space of nuclear model solutions. Next, the method gradually zooms in on particular experimental data per nuclide, until for each specific target nuclide its existing experimental data can be used for weighted Monte Carlo sampling. To connect to the various different schools of uncertainty propagation in applied nuclear science, the result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by the EXFOR-based weight. (orig.)
Adaptive Monte Carlo on multivariate binary sampling spaces
Schäfer, Christian
2010-01-01
A Monte Carlo algorithm is said to be adaptive if it can adjust automatically its current proposal distribution, using past simulations. The choice of the parametric family that defines the set of proposal distributions is critical for a good performance. We treat the problem of constructing such parametric families for adaptive sampling on multivariate binary spaces. A practical motivation for this problem is variable selection in a linear regression context, where we need to either find the best model, with respect to some criterion, or to sample from a Bayesian posterior distribution on the model space. In terms of adaptive algorithms, we focus on the Cross-Entropy (CE) method for optimisation, and the Sequential Monte Carlo (SMC) methods for sampling. Raw versions of both SMC and CE algorithms are easily implemented using binary vectors with independent components. However, for high-dimensional model choice problems, these straightforward proposals do not yields satisfactory results. The key to advanced a...
Beyond the Born-Oppenheimer approximation with quantum Monte Carlo
Tubman, Norm M; Hammes-Schiffer, Sharon; Ceperley, David M
2014-01-01
In this work we develop tools that enable the study of non-adiabatic effects with variational and diffusion Monte Carlo methods. We introduce a highly accurate wave function ansatz for electron-ion systems that can involve a combination of both fixed and quantum ions. We explicitly calculate the ground state energies of H$_{2}$, LiH, H$_{2}$O and FHF$^{-}$ using fixed-node quantum Monte Carlo with wave function nodes that explicitly depend on the ion positions. The obtained energies implicitly include the effects arising from quantum nuclei and electron-nucleus coupling. We compare our results to the best theoretical and experimental results available and find excellent agreement.
Quantum Monte Carlo calculations with chiral effective field theory interactions.
Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A
2013-07-19
We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.
Bayesian Monte Carlo method for nuclear data evaluation
Koning, A. J.
2015-12-01
A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using the nuclear model code TALYS and the experimental nuclear reaction database EXFOR. The method is applied to all nuclides at the same time. First, the global predictive power of TALYS is numerically assessed, which enables to set the prior space of nuclear model solutions. Next, the method gradually zooms in on particular experimental data per nuclide, until for each specific target nuclide its existing experimental data can be used for weighted Monte Carlo sampling. To connect to the various different schools of uncertainty propagation in applied nuclear science, the result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by the EXFOR-based weight.
Sign problem and Monte Carlo calculations beyond Lefschetz thimbles
Alexandru, Andrei; Bedaque, Paulo F; Ridgway, Gregory W; Warrington, Neill C
2015-01-01
We point out that Monte Carlo simulations of theories with severe sign problems can be profitably performed over manifolds in complex space different from the one with fixed imaginary part of the action. We describe a family of such manifolds that interpolate between the tangent space at one critical point, where the sign problem is milder compared to the real plane but in some cases still severe, and the union of relevant thimbles, where the sign problem is mild but a multimodal distribution function complicates the Monte Carlo sampling. We exemplify this approach using a simple 0 + 1 dimensional fermion model previously used on sign problem studies and show that it can solve the model for some parameter values where a solution using Lefshetz thimbles was elusive.
Efficient Word Alignment with Markov Chain Monte Carlo
Directory of Open Access Journals (Sweden)
Östling Robert
2016-10-01
Full Text Available We present EFMARAL, a new system for efficient and accurate word alignment using a Bayesian model with Markov Chain Monte Carlo (MCMC inference. Through careful selection of data structures and model architecture we are able to surpass the fast_align system, commonly used for performance-critical word alignment, both in computational efficiency and alignment accuracy. Our evaluation shows that a phrase-based statistical machine translation (SMT system produces translations of higher quality when using word alignments from EFMARAL than from fast_align, and that translation quality is on par with what is obtained using GIZA++, a tool requiring orders of magnitude more processing time. More generally we hope to convince the reader that Monte Carlo sampling, rather than being viewed as a slow method of last resort, should actually be the method of choice for the SMT practitioner and others interested in word alignment.
Estimation of beryllium ground state energy by Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)
2015-05-15
Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.
Monte Carlo simulations of the Galileo energetic particle detector
Jun, I; Garrett, H B; McEntire, R W
2002-01-01
Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.
Application of Monte Carlo Simulations to Improve Basketball Shooting Strategy
Min, Byeong June
2016-01-01
The underlying physics of basketball shooting seems to be a straightforward example of the Newtonian mechanics that can easily be traced by numerical methods. However, a human basketball player does not make use of all the possible basketball trajectories. Instead, a basketball player will build up a database of successful shots and select the trajectory that has the greatest tolerance to small variations of the real world. We simulate the basketball player's shooting training as a Monte Carlo sequence to build optimal shooting strategies, such as the launch speed and angle of the basketball, and whether to take a direct shot or a bank shot, as a function of the player's court positions and height. The phase space volume that belongs to the successful launch velocities generated by Monte Carlo simulations are then used as the criterion to optimize a shooting strategy that incorporates not only mechanical, but human factors as well.
Monte Carlo Euler approximations of HJM term structure financial models
Björk, Tomas
2012-11-22
We present Monte Carlo-Euler methods for a weak approximation problem related to the Heath-Jarrow-Morton (HJM) term structure model, based on Itô stochastic differential equations in infinite dimensional spaces, and prove strong and weak error convergence estimates. The weak error estimates are based on stochastic flows and discrete dual backward problems, and they can be used to identify different error contributions arising from time and maturity discretization as well as the classical statistical error due to finite sampling. Explicit formulas for efficient computation of sharp error approximation are included. Due to the structure of the HJM models considered here, the computational effort devoted to the error estimates is low compared to the work to compute Monte Carlo solutions to the HJM model. Numerical examples with known exact solution are included in order to show the behavior of the estimates. © 2012 Springer Science+Business Media Dordrecht.
Monte Carlo methods for light propagation in biological tissues.
Vinckenbosch, Laura; Lacaux, Céline; Tindel, Samy; Thomassin, Magalie; Obara, Tiphaine
2015-11-01
Light propagation in turbid media is driven by the equation of radiative transfer. We give a formal probabilistic representation of its solution in the framework of biological tissues and we implement algorithms based on Monte Carlo methods in order to estimate the quantity of light that is received by a homogeneous tissue when emitted by an optic fiber. A variance reduction method is studied and implemented, as well as a Markov chain Monte Carlo method based on the Metropolis-Hastings algorithm. The resulting estimating methods are then compared to the so-called Wang-Prahl (or Wang) method. Finally, the formal representation allows to derive a non-linear optimization algorithm close to Levenberg-Marquardt that is used for the estimation of the scattering and absorption coefficients of the tissue from measurements.
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2014-01-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved ...
A Monte Carlo code for ion beam therapy
Anaïs Schaeffer
2012-01-01
Initially developed for applications in detector and accelerator physics, the modern Fluka Monte Carlo code is now used in many different areas of nuclear science. Over the last 25 years, the code has evolved to include new features, such as ion beam simulations. Given the growing use of these beams in cancer treatment, Fluka simulations are being used to design treatment plans in several hadron-therapy centres in Europe. Fluka calculates the dose distribution for a patient treated at CNAO with proton beams. The colour-bar displays the normalized dose values. Fluka is a Monte Carlo code that very accurately simulates electromagnetic and nuclear interactions in matter. In the 1990s, in collaboration with NASA, the code was developed to predict potential radiation hazards received by space crews during possible future trips to Mars. Over the years, it has become the standard tool to investigate beam-machine interactions, radiation damage and radioprotection issues in the CERN accelerator com...
Monte Carlo Methods for Bridging the Timescale Gap
Wilding, Nigel; Landau, David P.
We identify the origin, and elucidate the character of the extended time-scales that plague computer simulation studies of first and second order phase transitions. A brief survey is provided of a number of new and existing techniques that attempt to circumvent these problems. Attention is then focused on two novel methods with which we have particular experience: “Wang-Landau sampling” and Phase Switch Monte Carlo. Detailed case studies are made of the application of the Wang-Landau approach to calculate the density of states of the 2D Ising model and the Edwards-Anderson spin glass. The principles and operation of Phase Switch Monte Carlo are described and its utility in tackling ‘difficult’ first order phase transitions is illustrated via a case study of hard-sphere freezing. We conclude with a brief overview of promising new methods for the improvement of deterministic, spin dynamics simulations.
JEWEL - a Monte Carlo Model for Jet Quenching
Zapp, Korinna; Wiedemann, Urs Achim
2009-01-01
The Monte Carlo model JEWEL 1.0 (Jet Evolution With Energy Loss) simulates parton shower evolution in the presence of a dense QCD medium. In its current form medium interactions are modelled as elastic scattering based on perturbative matrix elements and a simple prescription for medium induced gluon radiation. The parton shower is interfaced with a hadronisation model. In the absence of medium effects JEWEL is shown to reproduce jet measurements at LEP. The collisional energy loss is consistent with analytic calculations, but with JEWEL we can go a step further and characterise also jet-induced modifications of the medium. Elastic and inelastic medium interactions are shown to lead to distinctive modifications of the jet fragmentation pattern, which should allow to experimentally distinguish between collisional and radiative energy loss mechanisms. In these proceedings the main JEWEL results are summarised and a Monte Carlo algorithm is outlined that allows to include the Landau-Pomerantschuk-Migdal effect i...
Research on GPU Acceleration for Monte Carlo Criticality Calculation
Xu, Qi; Yu, Ganglin; Wang, Kan
2014-06-01
The Monte Carlo neutron transport method can be naturally parallelized by multi-core architectures due to the dependency between particles during the simulation. The GPU+CPU heterogeneous parallel mode has become an increasingly popular way of parallelism in the field of scientific supercomputing. Thus, this work focuses on the GPU acceleration method for the Monte Carlo criticality simulation, as well as the computational efficiency that GPUs can bring. The "neutron transport step" is introduced to increase the GPU thread occupancy. In order to test the sensitivity of the MC code's complexity, a 1D one-group code and a 3D multi-group general purpose code are respectively transplanted to GPUs, and the acceleration effects are compared. The result of numerical experiments shows considerable acceleration effect of the "neutron transport step" strategy. However, the performance comparison between the 1D code and the 3D code indicates the poor scalability of MC codes on GPUs.
Minimising biases in full configuration interaction quantum Monte Carlo.
Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W
2015-03-14
We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step.
Subtle Monte Carlo Updates in Dense Molecular Systems
DEFF Research Database (Denmark)
Bottaro, Sandro; Boomsma, Wouter; Johansson, Kristoffer E.;
2012-01-01
Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce...... as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results...... a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule...
Monte Carlo Study of Real Time Dynamics on the Lattice
Alexandru, Andrei; Başar, Gökçe; Bedaque, Paulo F.; Vartak, Sohan; Warrington, Neill C.
2016-08-01
Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle, applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.
Fixed-Node Diffusion Monte Carlo of Lithium Systems
Rasch, Kevin
2015-01-01
We study lithium systems over a range of number of atoms, e.g., atomic anion, dimer, metallic cluster, and body-centered cubic crystal by the diffusion Monte Carlo method. The calculations include both core and valence electrons in order to avoid any possible impact by pseudo potentials. The focus of the study is the fixed-node errors, and for that purpose we test several orbital sets in order to provide the most accurate nodal hyper surfaces. We compare our results to other high accuracy calculations wherever available and to experimental results so as to quantify the the fixed-node errors. The results for these Li systems show that fixed-node quantum Monte Carlo achieves remarkably high accuracy total energies and recovers 97-99 % of the correlation energy.
Monte Carlo Simulations of Neutron Oil well Logging Tools
Azcurra, M
2002-01-01
Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented.The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively.The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation.The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B.Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation.In particular, the ratio C/O was analyzed as an indicator of oil saturation.Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition
A Monte Carlo Model of Light Propagation in Nontransparent Tissue
Institute of Scientific and Technical Information of China (English)
姚建铨; 朱水泉; 胡海峰; 王瑞康
2004-01-01
To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and how light propagates in bio-tissue is analyzed in virtue of mathematics and physics equations. The relations,in which light intensity of Class 1 and Class 2 light with different wavelengths changes with their permeation depth,and in which Class 1 light intensity (signal light intensity) changes with the probing depth, and in which angularly resolved diffuse reflectance and diffuse transmittance change with the exiting angle, are studied. The results show that Monte Carlo simulation results are consistent with the theory data.
Cluster Monte Carlo methods for the FePt Hamiltonian
Lyberatos, A.; Parker, G. J.
2016-02-01
Cluster Monte Carlo methods for the classical spin Hamiltonian of FePt with long range exchange interactions are presented. We use a combination of the Swendsen-Wang (or Wolff) and Metropolis algorithms that satisfies the detailed balance condition and ergodicity. The algorithms are tested by calculating the temperature dependence of the magnetization, susceptibility and heat capacity of L10-FePt nanoparticles in a range including the critical region. The cluster models yield numerical results in good agreement within statistical error with the standard single-spin flipping Monte Carlo method. The variation of the spin autocorrelation time with grain size is used to deduce the dynamic exponent of the algorithms. Our cluster models do not provide a more accurate estimate of the magnetic properties at equilibrium.
Kinetic Monte Carlo Studies of Hydrogen Abstraction from Graphite
Cuppen, H M
2008-01-01
We present Monte Carlo simulations on Eley-Rideal abstraction reactions of atomic hydrogen chemisorbed on graphite. The results are obtained via a hybrid approach where energy barriers derived from density functional theory calculations are used as input to Monte Carlo simulations. By comparing with experimental data, we discriminate between contributions from different Eley-Rideal mechanisms. A combination of two different mechanisms yields good quantitative and qualitative agreement between the experimentally derived and the simulated Eley-Rideal abstraction cross sections and surface configurations. These two mechanisms include a direct Eley-Rideal reaction with fast diffusing H atoms and a dimer mediated Eley-Rideal mechanism with increased cross section at low coverage. Such a dimer mediated Eley-Rideal mechanism has not previously been proposed and serves as an alternative explanation to the steering behavior often given as the cause of the coverage dependence observed in Eley-Rideal reaction cross sect...
Monte Carlo uncertainty analyses for integral beryllium experiments
Fischer, U; Tsige-Tamirat, H
2000-01-01
The novel Monte Carlo technique for calculating point detector sensitivities has been applied to two representative beryllium transmission experiments with the objective to investigate the sensitivity of important responses such as the neutron multiplication and to assess the related uncertainties due to the underlying cross-section data uncertainties. As an important result, it has been revealed that the neutron multiplication power of beryllium can be predicted with good accuracy using state-of-the-art nuclear data evaluations. Severe discrepancies do exist for the spectral neutron flux distribution that would transmit into significant uncertainties of the calculated neutron spectra and of the nuclear blanket performance in blanket design calculations. With regard to this, it is suggested to re-analyse the secondary energy and angle distribution data of beryllium by means of Monte Carlo based sensitivity and uncertainty calculations. Related code development work is underway.
A Monte Carlo algorithm for simulating fermions on Lefschetz thimbles
Alexandru, Andrei; Bedaque, Paulo
2016-01-01
A possible solution of the notorious sign problem preventing direct Monte Carlo calculations for systems with non-zero chemical potential is to deform the integration region in the complex plane to a Lefschetz thimble. We investigate this approach for a simple fermionic model. We introduce an easy to implement Monte Carlo algorithm to sample the dominant thimble. Our algorithm relies only on the integration of the gradient flow in the numerically stable direction, which gives it a distinct advantage over the other proposed algorithms. We demonstrate the stability and efficiency of the algorithm by applying it to an exactly solvable fermionic model and compare our results with the analytical ones. We report a very good agreement for a certain region in the parameter space where the dominant contribution comes from a single thimble, including a region where standard methods suffer from a severe sign problem. However, we find that there are also regions in the parameter space where the contribution from multiple...
Minimising biases in full configuration interaction quantum Monte Carlo
Vigor, W. A.; Spencer, J. S.; Bearpark, M. J.; Thom, A. J. W.
2015-03-01
We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step.
Visibility assessment : Monte Carlo characterization of temporal variability.
Energy Technology Data Exchange (ETDEWEB)
Laulainen, N.; Shannon, J.; Trexler, E. C., Jr.
1997-12-12
Current techniques for assessing the benefits of certain anthropogenic emission reductions are largely influenced by limitations in emissions data and atmospheric modeling capability and by the highly variant nature of meteorology. These data and modeling limitations are likely to continue for the foreseeable future, during which time important strategic decisions need to be made. Statistical atmospheric quality data and apportionment techniques are used in Monte-Carlo models to offset serious shortfalls in emissions, entrainment, topography, statistical meteorology data and atmospheric modeling. This paper describes the evolution of Department of Energy (DOE) Monte-Carlo based assessment models and the development of statistical inputs. A companion paper describes techniques which are used to develop the apportionment factors used in the assessment models.
Accelerated Monte Carlo simulations with restricted Boltzmann machines
Huang, Li; Wang, Lei
2017-01-01
Despite their exceptional flexibility and popularity, Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feed-forward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine to propose efficient Monte Carlo updates to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate an improved acceptance ratio and autocorrelation time near the phase transition point.
Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines
Huang, Li
2016-01-01
Despite their exceptional flexibility and popularity, the Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feedforward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine for efficient Monte Carlo updates and to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate improved acceptance ratio and autocorrelation time near the phase transition point.
Monte Carlo simulations to replace film dosimetry in IMRT verification
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assu...
An Introduction to Monte Carlo Simulation of Statistical physics Problem
Murthy, K. P. N.
2001-01-01
A brief introduction to the technique of Monte Carlo simulations in statistical physics is presented. The topics covered include statistical ensembles random and pseudo random numbers, random sampling techniques, importance sampling, Markov chain, Metropolis algorithm, continuous phase transition, statistical errors from correlated and uncorrelated data, finite size scaling, n-fold way, critical slowing down, blocking technique,percolation, cluster algorithms, cluster counting, histogram tech...
Monte Carlo physical dosimetry for small photon beams
Energy Technology Data Exchange (ETDEWEB)
Perucha, M.; Rincon, M.; Leal, A.; Carrasco, E. [Sevilla Univ. (Spain). Dept. Fisiologia Medica y Biofisica; Sanchez-Doblado, F. [Sevilla Univ. (Spain). Dept. Fisiologia Medica y Biofisica]|[Hospital Univ. Virgen Macarena, Sevilla (Spain). Servicio de Oncologia Radioterapica; Nunez, L. [Clinica Puerta de Hierro, Madrid (Spain). Servicio de Radiofisica; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L. [Hospital Univ. Virgen Macarena, Sevilla (Spain). Servicio de Oncologia Radioterapica
2001-07-01
Small field dosimetry is complicated due to the lack of electronic equilibrium and to the high steep dose gradients. This works compares PDD curves, profiles and output factors measured with conventional detectors (film, diode, TLD and ionisation chamber) and calculated with Monte Carlo. The 6 MV nominal energy from a Philips SL-18 linac has been simulated by using the OMEGA code. MC calculation reveals itself as a convenient method to validate OF and profiles in special conditions, such as small fields. (orig.)
Continuous Time Quantum Monte Carlo simulation of Kondo shuttling
Zhang, Peng; Assaad, Fakher; Jarrell, Mark
2010-03-01
The Kondo shuttling problem is investigated by using the Continuous Time Quantum Monte Carlo method in both the anti-adiabatic limit φTK and the intermediate regime φ˜TK, where φ is the phonon modulation frequency and TK is the Kondo temperature. We investigate the potential emergence of Kondo effect or Kondo breakdown as a function of the phonon modulation frequency and electron-phonon coupling. This research is supported by grant OISE-0952300.
On adaptive resampling strategies for sequential Monte Carlo methods
Del Moral, Pierre; Doucet, Arnaud; Jasra, Ajay
2012-01-01
Sequential Monte Carlo (SMC) methods are a class of techniques to sample approximately from any sequence of probability distributions using a combination of importance sampling and resampling steps. This paper is concerned with the convergence analysis of a class of SMC methods where the times at which resampling occurs are computed online using criteria such as the effective sample size. This is a popular approach amongst practitioners but there are very few convergence results available for...
Monte Carlo methods in continuous time for lattice Hamiltonians
Huffman, Emilie
2016-01-01
We solve a variety of sign problems for models in lattice field theory using the Hamiltonian formulation, including Yukawa models and simple lattice gauge theories. The solutions emerge naturally in continuous time and use the dual representation for the bosonic fields. These solutions allow us to construct quantum Monte Carlo methods for these problems. The methods could provide an alternative approach to understanding non-perturbative dynamics of some lattice field theories.
Monte Carlo simulation of photon migration path in turbid media
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A new method of Monte Carlo simulation is developed to simulate the photon migration path in a scattering medium after an ultrashort-pulse laser beam comes into the medium.The most probable trajectory of photons at an instant can be obtained with this method.How the photon migration paths are affected by the optical parameters of the scattering medium is analyzed.It is also concluded that the absorption coefficient has no effect on the most probable trajectory of photons.
Quantum Monte Carlo Study of Random Antiferromagnetic Heisenberg Chain
Todo, Synge; Kato, Kiyoshi; Takayama, Hajime
1998-01-01
Effects of randomness on the spin-1/2 and 1 antiferromagnetic Heisenberg chains are studied using the quantum Monte Carlo method with the continuous-time loop algorithm. We precisely calculated the uniform susceptibility, string order parameter, spatial and temporal correlation length, and the dynamical exponent, and obtained a phase diagram. The generalization of the continuous-time loop algorithm for the systems with higher-S spins is also presented.
Monte Carlo Simulation of Argon in Nano-Space
Institute of Scientific and Technical Information of China (English)
CHEN Min; YANG Chun; GUO Zeng-Yuan
2000-01-01
Monte Carlo simulations are performed to investigate the thermodynamic properties of argon confined in nano-scale cubes constructed of graphite walls. A remarkable depression of the system pressures is observed. The simulations reveal that the length-scale of the cube, the magnitude of the interaction between the fluid and the graphite wall and the density of the fluid exhibit reasonable effects on the thermodynamic property shifts of the luid.
Monte Carlo simulation of NSE at reactor and spallation sources
Energy Technology Data Exchange (ETDEWEB)
Zsigmond, G.; Wechsler, D.; Mezei, F. [Hahn-Meitner-Institut Berlin, Berlin (Germany)
2001-03-01
A MC (Monte Carlo) computation study of NSE (Neutron Spin Echo) has been performed by means of VITESS investigating the classic and TOF-NSE options at spallation sources. The use of white beams in TOF-NSE makes the flipper efficiency in function of the neutron wavelength an important issue. The emphasis was put on exact evaluation of flipper efficiencies for wide wavelength-band instruments. (author)
Probabilistic fire simulator - Monte Carlo simulation tool for fire scenarios
Energy Technology Data Exchange (ETDEWEB)
Hostikka, S.; Keski-Rahkonen, O. [VTT Building and Transport, Espoo (Finland)
2002-11-01
Risk analysis tool is developed for computing of the distributions of fire model output variables. The tool, called Probabilistic Fire Simulator, combines Monte Carlo simulation and CFAST two-zone fire model. In this work, it is used to calculate failure probability of redundant cables and fire detector activation times in a cable tunnel fire. Sensitivity of the output variables to the input variables is calculated in terms of the rank order correlations. (orig.)
CMS Monte Carlo production in the WLCG computing grid
Hernández, J M; Mohapatra, A; Filippis, N D; Weirdt, S D; Hof, C; Wakefield, S; Guan, W; Khomitch, A; Fanfani, A; Evans, D; Flossdorf, A; Maes, J; van Mulders, P; Villella, I; Pompili, A; My, S; Abbrescia, M; Maggi, G; Donvito, G; Caballero, J; Sanches, J A; Kavka, C; Van Lingen, F; Bacchi, W; Codispoti, G; Elmer, P; Eulisse, G; Lazaridis, C; Kalini, S; Sarkar, S; Hammad, G
2008-01-01
Monte Carlo production in CMS has received a major boost in performance and scale since the past CHEP06 conference. The production system has been re-engineered in order to incorporate the experience gained in running the previous system and to integrate production with the new CMS event data model, data management system and data processing framework. The system is interfaced to the two major computing Grids used by CMS, the LHC Computing Grid (LCG) and the Open Science Grid (OSG).
The CCFM Monte Carlo generator CASCADE 2.2.0
Jung, H; Deak, M; Grebenyuk, A; Hautmann, F; Hentschinski, M; Knutsson, A; Kraemer, M; Kutak, K; Lipatov, A; Zotov, N
2010-01-01
CASCADE is a full hadron level Monte Carlo event generator for ep, \\gamma p and p\\bar{p} and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and variables which completely specify the generated events.
Monte Carlo calculations for r-process nucleosynthesis
Energy Technology Data Exchange (ETDEWEB)
Mumpower, Matthew Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-11-12
A Monte Carlo framework is developed for exploring the impact of nuclear model uncertainties on the formation of the heavy elements. Mass measurements tightly constrain the macroscopic sector of FRDM2012. For r-process nucleosynthesis, it is necessary to understand the microscopic physics of the nuclear model employed. A combined approach of measurements and a deeper understanding of the microphysics is thus warranted to elucidate the site of the r-process.
Instantaneous GNSS attitude determination: A Monte Carlo sampling approach
Sun, Xiucong; Han, Chao; Chen, Pei
2017-04-01
A novel instantaneous GNSS ambiguity resolution approach which makes use of only single-frequency carrier phase measurements for ultra-short baseline attitude determination is proposed. The Monte Carlo sampling method is employed to obtain the probability density function of ambiguities from a quaternion-based GNSS-attitude model and the LAMBDA method strengthened with a screening mechanism is then utilized to fix the integer values. Experimental results show that 100% success rate could be achieved for ultra-short baselines.
Assessing Excel VBA Suitability for Monte Carlo Simulation
2015-01-01
Monte Carlo (MC) simulation includes a wide range of stochastic techniques used to quantitatively evaluate the behavior of complex systems or processes. Microsoft Excel spreadsheets with Visual Basic for Applications (VBA) software is, arguably, the most commonly employed general purpose tool for MC simulation. Despite the popularity of the Excel in many industries and educational institutions, it has been repeatedly criticized for its flaws and often described as questionable, if not complet...
Estimating return period of landslide triggering by Monte Carlo simulation
Peres, D. J.; Cancelliere, A.
2016-10-01
Assessment of landslide hazard is a crucial step for landslide mitigation planning. Estimation of the return period of slope instability represents a quantitative method to map landslide triggering hazard on a catchment. The most common approach to estimate return periods consists in coupling a triggering threshold equation, derived from an hydrological and slope stability process-based model, with a rainfall intensity-duration-frequency (IDF) curve. Such a traditional approach generally neglects the effect of rainfall intensity variability within events, as well as the variability of initial conditions, which depend on antecedent rainfall. We propose a Monte Carlo approach for estimating the return period of shallow landslide triggering which enables to account for both variabilities. Synthetic hourly rainfall-landslide data generated by Monte Carlo simulations are analysed to compute return periods as the mean interarrival time of a factor of safety less than one. Applications are first conducted to map landslide triggering hazard in the Loco catchment, located in highly landslide-prone area of the Peloritani Mountains, Sicily, Italy. Then a set of additional simulations are performed in order to evaluate the traditional IDF-based method by comparison with the Monte Carlo one. Results show that return period is affected significantly by variability of both rainfall intensity within events and of initial conditions, and that the traditional IDF-based approach may lead to an overestimation of the return period of landslide triggering, or, in other words, a non-conservative assessment of landslide hazard.
Valence-bond quantum Monte Carlo algorithms defined on trees.
Deschner, Andreas; Sørensen, Erik S
2014-09-01
We present a class of algorithms for performing valence-bond quantum Monte Carlo of quantum spin models. Valence-bond quantum Monte Carlo is a projective T=0 Monte Carlo method based on sampling of a set of operator strings that can be viewed as forming a treelike structure. The algorithms presented here utilize the notion of a worm that moves up and down this tree and changes the associated operator string. In quite general terms, we derive a set of equations whose solutions correspond to a whole class of algorithms. As specific examples of this class of algorithms, we focus on two cases. The bouncing worm algorithm, for which updates are always accepted by allowing the worm to bounce up and down the tree, and the driven worm algorithm, where a single parameter controls how far up the tree the worm reaches before turning around. The latter algorithm involves only a single bounce where the worm turns from going up the tree to going down. The presence of the control parameter necessitates the introduction of an acceptance probability for the update.
Monte Carlo methods for pricing ﬁnancial options
Indian Academy of Sciences (India)
N Bolia; S Juneja
2005-04-01
Pricing ﬁnancial options is amongst the most important and challenging problems in the modern ﬁnancial industry. Except in the simplest cases, the prices of options do not have a simple closed form solution and efﬁcient computational methods are needed to determine them. Monte Carlo methods have increasingly become a popular computational tool to price complex ﬁnancial options, especially when the underlying space of assets has a large dimensionality, as the performance of other numerical methods typically suffer from the ‘curse of dimensionality’. However, even Monte-Carlo techniques can be quite slow as the problem-size increases, motivating research in variance reduction techniques to increase the efﬁciency of the simulations. In this paper, we review some of the popular variance reduction techniques and their application to pricing options. We particularly focus on the recent Monte-Carlo techniques proposed to tackle the difﬁcult problem of pricing American options. These include: regression-based methods, random tree methods and stochastic mesh methods. Further, we show how importance sampling, a popular variance reduction technique, may be combined with these methods to enhance their effectiveness. We also brieﬂy review the evolving options market in India.
FAST CONVERGENT MONTE CARLO RECEIVER FOR OFDM SYSTEMS
Institute of Scientific and Technical Information of China (English)
Wu Lili; Liao Guisheng; Bao Zheng; Shang Yong
2005-01-01
The paper investigates the problem of the design of an optimal Orthogonal Frequency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is proposed. In the proposed method, the Markov Chain Monte Carlo (MCMC) methods are employed for the blind Bayesian detection without channel estimation. Meanwhile, with the exploitation of the characteristics of OFDM systems, two methods are employed to improve the convergence rate and enhance the efficiency of MCMC algorithms.One is the integration of the posterior distribution function with respect to the associated channel parameters, which is involved in the derivation of the objective distribution function; the other is the intra-symbol differential coding for the elimination of the bimodality problem resulting from the presence of unknown fading channels. Moreover, no matrix inversion is needed with the use of the orthogonality property of OFDM modulation and hence the computational load is significantly reduced. Computer simulation results show the effectiveness of the fast convergent Monte Carlo receiver.
Monte Carlo Simulation for Statistical Decay of Compound Nucleus
Directory of Open Access Journals (Sweden)
Chadwick M.B.
2012-02-01
Full Text Available We perform Monte Carlo simulations for neutron and γ-ray emissions from a compound nucleus based on the Hauser-Feshbach statistical theory. This Monte Carlo Hauser-Feshbach (MCHF method calculation, which gives us correlated information between emitted particles and γ-rays. It will be a powerful tool in many applications, as nuclear reactions can be probed in a more microscopic way. We have been developing the MCHF code, CGM, which solves the Hauser-Feshbach theory with the Monte Carlo method. The code includes all the standard models that used in a standard Hauser-Feshbach code, namely the particle transmission generator, the level density module, interface to the discrete level database, and so on. CGM can emit multiple neutrons, as long as the excitation energy of the compound nucleus is larger than the neutron separation energy. The γ-ray competition is always included at each compound decay stage, and the angular momentum and parity are conserved. Some calculations for a fission fragment 140Xe are shown as examples of the MCHF method, and the correlation between the neutron and γ-ray is discussed.
A semianalytic Monte Carlo code for modelling LIDAR measurements
Palazzi, Elisa; Kostadinov, Ivan; Petritoli, Andrea; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio
2007-10-01
LIDAR (LIght Detection and Ranging) is an optical active remote sensing technology with many applications in atmospheric physics. Modelling of LIDAR measurements appears useful approach for evaluating the effects of various environmental variables and scenarios as well as of different measurement geometries and instrumental characteristics. In this regard a Monte Carlo simulation model can provide a reliable answer to these important requirements. A semianalytic Monte Carlo code for modelling LIDAR measurements has been developed at ISAC-CNR. The backscattered laser signal detected by the LIDAR system is calculated in the code taking into account the contributions due to the main atmospheric molecular constituents and aerosol particles through processes of single and multiple scattering. The contributions by molecular absorption, ground and clouds reflection are evaluated too. The code can perform simulations of both monostatic and bistatic LIDAR systems. To enhance the efficiency of the Monte Carlo simulation, analytical estimates and expected value calculations are performed. Artificial devices (such as forced collision, local forced collision, splitting and russian roulette) are moreover foreseen by the code, which can enable the user to drastically reduce the variance of the calculation.
Monte Carlo Simulation as a Research Management Tool
Energy Technology Data Exchange (ETDEWEB)
Douglas, L. J.
1986-06-01
Monte Carlo simulation provides a research manager with a performance monitoring tool to supplement the standard schedule- and resource-based tools such as the Program Evaluation and Review Technique (PERT) and Critical Path Method (CPM). The value of the Monte Carlo simulation in a research environment is that it 1) provides a method for ranking competing processes, 2) couples technical improvements to the process economics, and 3) provides a mechanism to determine the value of research dollars. In this paper the Monte Carlo simulation approach is developed and applied to the evaluation of three competing processes for converting lignocellulosic biomass to ethanol. The technique is shown to be useful for ranking the processes and illustrating the importance of the timeframe of the analysis on the decision process. The results show that acid hydrolysis processes have higher potential for near-term application (2-5 years), while the enzymatic hydrolysis approach has an equal chance to be competitive in the long term (beyond 10 years).
A New Approach to Monte Carlo Simulations in Statistical Physics
Landau, David P.
2002-08-01
Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).
Geometric Templates for Improved Tracking Performance in Monte Carlo Codes
Nease, Brian R.; Millman, David L.; Griesheimer, David P.; Gill, Daniel F.
2014-06-01
One of the most fundamental parts of a Monte Carlo code is its geometry kernel. This kernel not only affects particle tracking (i.e., run-time performance), but also shapes how users will input models and collect results for later analyses. A new framework based on geometric templates is proposed that optimizes performance (in terms of tracking speed and memory usage) and simplifies user input for large scale models. While some aspects of this approach currently exist in different Monte Carlo codes, the optimization aspect has not been investigated or applied. If Monte Carlo codes are to be realistically used for full core analysis and design, this type of optimization will be necessary. This paper describes the new approach and the implementation of two template types in MC21: a repeated ellipse template and a box template. Several different models are tested to highlight the performance gains that can be achieved using these templates. Though the exact gains are naturally problem dependent, results show that runtime and memory usage can be significantly reduced when using templates, even as problems reach realistic model sizes.
Chemical accuracy from quantum Monte Carlo for the benzene dimer
Energy Technology Data Exchange (ETDEWEB)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Department of Earth Science and Thomas Young Centre, University College London, London WC1E 6BT (United Kingdom); Cohen, R. E. [London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom and Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015 (United States)
2015-09-14
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
Monte Carlo modelling of positron transport in real world applications
Marjanović, S.; Banković, A.; Šuvakov, M.; Petrović, Z. Lj
2014-05-01
Due to the unstable nature of positrons and their short lifetime, it is difficult to obtain high positron particle densities. This is why the Monte Carlo simulation technique, as a swarm method, is very suitable for modelling most of the current positron applications involving gaseous and liquid media. The ongoing work on the measurements of cross-sections for positron interactions with atoms and molecules and swarm calculations for positrons in gasses led to the establishment of good cross-section sets for positron interaction with gasses commonly used in real-world applications. Using the standard Monte Carlo technique and codes that can follow both low- (down to thermal energy) and high- (up to keV) energy particles, we are able to model different systems directly applicable to existing experimental setups and techniques. This paper reviews the results on modelling Surko-type positron buffer gas traps, application of the rotating wall technique and simulation of positron tracks in water vapor as a substitute for human tissue, and pinpoints the challenges in and advantages of applying Monte Carlo simulations to these systems.
Burrows, John
2013-04-01
An introduction to the use of the mathematical technique of Monte Carlo simulations to evaluate least squares regression calibration is described. Monte Carlo techniques involve the repeated sampling of data from a population that may be derived from real (experimental) data, but is more conveniently generated by a computer using a model of the analytical system and a randomization process to produce a large database. Datasets are selected from this population and fed into the calibration algorithms under test, thus providing a facile way of producing a sufficiently large number of assessments of the algorithm to enable a statically valid appraisal of the calibration process to be made. This communication provides a description of the technique that forms the basis of the results presented in Parts II and III of this series, which follow in this issue, and also highlights the issues arising from the use of small data populations in bioanalysis.
Monte Carlo Numerical Models for Nuclear Logging Applications
Directory of Open Access Journals (Sweden)
Fusheng Li
2012-06-01
Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models
Metrics for Diagnosing Undersampling in Monte Carlo Tally Estimates
Energy Technology Data Exchange (ETDEWEB)
Perfetti, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Div.; Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Div.
2015-01-01
This study explored the potential of using Markov chain convergence diagnostics to predict the prevalence and magnitude of biases due to undersampling in Monte Carlo eigenvalue and flux tally estimates. Five metrics were applied to two models of pressurized water reactor fuel assemblies and their potential for identifying undersampling biases was evaluated by comparing the calculated test metrics with known biases in the tallies. Three of the five undersampling metrics showed the potential to accurately predict the behavior of undersampling biases in the responses examined in this study.
Geometric frustration in gadolinium gallium garnet: a Monte Carlo study
Petrenko, Oleg A.; Paul, Don McK.
1999-06-01
We have studied the magnetic properties of the frustrated triangular antiferromagnet Gd3Ga5O12 (GGG) by means of classical Monte Carlo simulations. Low-temperature specific heat, magnetization, susceptibility, autocorrelation function and neutron scattering function have been calculated for several models including different types of magnetic interactions and with the presence of an external magnetic field. In order to reproduce the experimentally observed properties of GGG, the simulation model must include nearest neighbor exchange interactions and also dipolar forces. In zero field there is a tendency to form incommensurate short-range magnetic order around positions in reciprocal space where antiferromagnetic Bragg peaks appear in an applied magnetic field.
Dynamical Monte Carlo method for stochastic epidemic models
Aiello, O E
2002-01-01
A new approach to Dynamical Monte Carlo Methods is introduced to simulate markovian processes. We apply this approach to formulate and study an epidemic Generalized SIRS model. The results are in excellent agreement with the forth order Runge-Kutta method in a region of deterministic solution. Introducing local stochastic interactions, the Runge-Kutta method is not applicable, and we solve and check it self-consistently with a stochastic version of the Euler Method. The results are also analyzed under the herd-immunity concept.
Monte Carlo Simulation for the MAGIC-II System
Carmona, E; Moralejo, A; Vitale, V; Sobczynska, D; Haffke, M; Bigongiari, C; Otte, N; Cabras, G; De Maria, M; De Sabata, F
2007-01-01
Within the year 2007, MAGIC will be upgraded to a two telescope system at La Palma. Its main goal is to improve the sensitivity in the stereoscopic/coincident operational mode. At the same time it will lower the analysis threshold of the currently running single MAGIC telescope. Results from the Monte Carlo simulations of this system will be discussed. A comparison of the two telescope system with the performance of one single telescope will be shown in terms of sensitivity, angular resolution and energy resolution.
Monte-Carlo Tree Search for Simulated Car Racing
DEFF Research Database (Denmark)
Fischer, Jacob; Falsted, Nikolaj; Vielwerth, Mathias
2015-01-01
Monte Carlo Tree Search (MCTS) has recently seen considerable success in playing certain types of games, most of which are discrete, fully observable zero-sum games. Consequently there is currently considerable interest within the research community in investigating what other games this algorithm...... of the action space. This combination allows the controller to effectively search the tree of potential future states. Results show that it is indeed possible to implement a competent MCTS-based racing controller. The controller generalizes to most road tracks as long as a warm-up period is provided....
Non-Boltzmann Ensembles and Monte Carlo Simulations
Murthy, K. P. N.
2016-10-01
Boltzmann sampling based on Metropolis algorithm has been extensively used for simulating a canonical ensemble and for calculating macroscopic properties of a closed system at desired temperatures. An estimate of a mechanical property, like energy, of an equilibrium system, is made by averaging over a large number microstates generated by Boltzmann Monte Carlo methods. This is possible because we can assign a numerical value for energy to each microstate. However, a thermal property like entropy, is not easily accessible to these methods. The reason is simple. We can not assign a numerical value for entropy, to a microstate. Entropy is not a property associated with any single microstate. It is a collective property of all the microstates. Toward calculating entropy and other thermal properties, a non-Boltzmann Monte Carlo technique called Umbrella sampling was proposed some forty years ago. Umbrella sampling has since undergone several metamorphoses and we have now, multi-canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau algorithm etc. This class of methods generates non-Boltzmann ensembles which are un-physical. However, physical quantities can be calculated as follows. First un-weight a microstates of the entropic ensemble; then re-weight it to the desired physical ensemble. Carry out weighted average over the entropic ensemble to estimate physical quantities. In this talk I shall tell you of the most recent non- Boltzmann Monte Carlo method and show how to calculate free energy for a few systems. We first consider estimation of free energy as a function of energy at different temperatures to characterize phase transition in an hairpin DNA in the presence of an unzipping force. Next we consider free energy as a function of order parameter and to this end we estimate density of states g(E, M), as a function of both energy E, and order parameter M. This is carried out in two stages. We estimate g(E) in the first stage. Employing g
Validation of Phonon Physics in the CDMS Detector Monte Carlo
McCarthy, K A; Anderson, A J; Brandt, D; Brink, P L; Cabrera, B; Cherry, M; Silva, E Do Couto E; Cushman, P; Doughty, T; Figueroa-Feliciano, E; Kim, P; Mirabolfathi, N; Novak, L; Partridge, R; Pyle, M; Reisetter, A; Resch, R; Sadoulet, B; Serfass, B; Sundqvist, K M; Tomada, A
2011-01-01
The SuperCDMS collaboration is a dark matter search effort aimed at detecting the scattering of WIMP dark matter from nuclei in cryogenic germanium targets. The CDMS Detector Monte Carlo (CDMS-DMC) is a simulation tool aimed at achieving a deeper understanding of the performance of the SuperCDMS detectors and aiding the dark matter search analysis. We present results from validation of the phonon physics described in the CDMS-DMC and outline work towards utilizing it in future WIMP search analyses.
Monte Carlo simulation experiments on box-type radon dosimeter
Energy Technology Data Exchange (ETDEWEB)
Jamil, Khalid, E-mail: kjamil@comsats.edu.pk; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid
2014-11-11
Epidemiological studies show that inhalation of radon gas ({sup 222}Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the {sup 222}Rn concentrations (Bq/m{sup 3}) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η{sub int}) and alpha hit efficiency (η{sub hit}). The η{sub int} depends upon only on the dimensions of the dosimeter and η{sub hit} depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper
Probabilistic Assessments of the Plate Using Monte Carlo Simulation
Energy Technology Data Exchange (ETDEWEB)
Ismail, A E [Department of Mechanical Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400 Johor (Malaysia); Ariffin, A K; Abdullah, S; Ghazali, M J, E-mail: kamal@eng.ukm.my, E-mail: shahrum@eng.ukm.my, E-mail: maryam@eng.ukm.my, E-mail: emran@uthm.edu.my [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)
2011-02-15
This paper presents the probabilistic analysis of the plate with a hole using several multiaxial high cycle fatigue criteria (MHFC). Dang Van, Sines, Crossland criteria were used and von Mises criterion was also considered for comparison purpose. Parametric finite element model of the plate was developed and several important random variable parameters were selected and Latin Hypercube Sampling Monte-Carlo Simulation (LHS-MCS) was used for probabilistic analysis tool. It was found that, different structural reliability and sensitivity factors were obtained using different failure criteria. According to the results multiaxial fatigue criteria are the most significant criteria need to be considered in assessing all the structural behavior especially under complex loadings.
3D Monte Carlo radiation transfer modelling of photodynamic therapy
Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry
2015-06-01
The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.
On adaptive resampling strategies for sequential Monte Carlo methods
Del Moral, Pierre; Jasra, Ajay; 10.3150/10-BEJ335
2012-01-01
Sequential Monte Carlo (SMC) methods are a class of techniques to sample approximately from any sequence of probability distributions using a combination of importance sampling and resampling steps. This paper is concerned with the convergence analysis of a class of SMC methods where the times at which resampling occurs are computed online using criteria such as the effective sample size. This is a popular approach amongst practitioners but there are very few convergence results available for these methods. By combining semigroup techniques with an original coupling argument, we obtain functional central limit theorems and uniform exponential concentration estimates for these algorithms.
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)
2015-05-14
Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.
Implict Monte Carlo Radiation Transport Simulations of Four Test Problems
Energy Technology Data Exchange (ETDEWEB)
Gentile, N
2007-08-01
Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.
Monte Carlo simulation on backward steps of single kinesin molecule
Institute of Scientific and Technical Information of China (English)
Wang Hong; Zhang Yong; Dou Shuo-Xing; Wang Peng-Ye
2008-01-01
Kinesin is a stepping molecular motor travelling along the microtubule. It moves primarily in the plus end direction of the microtubule and occasionally in the minus-end, backward, direction. Recently, the backward steps of kinesin under different loads and temperatures start to attract interests, and the relations among them are revealed. This paper aims to theoretically understand these relations observed in experiments. After introducing a backward pathway into the previous model of the ATPase cycle of kinesin movement, the dependence of the backward movement on the load and the temperature is explored through Monte Carlo simulation. Our results agree well with previous experiments.
Monte Carlo simulation of AB-copolymers with saturating bonds
DEFF Research Database (Denmark)
Chertovich, A.C.; Ivanov, V.A.; Khokhlov, A.R.;
2003-01-01
Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A- and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending...... on the nature of a particular AB-sequence: statistical random sequence, diblock sequence and 'random-complementary' sequence (one-half of such an AB-sequence is random with Bernoulli statistics while the other half is complementary to the first one). The properties of random-complementary sequences are closer...
Discrete angle biasing in Monte Carlo radiation transport
Energy Technology Data Exchange (ETDEWEB)
Cramer, S.N.
1988-05-01
An angular biasing procedure is presented for use in Monte Carlo radiation transport with discretized scattering angle data. As in more general studies, the method is shown to reduce statistical weight fluctuations when it is combined with the exponential transformation. This discrete data application has a simple analytic form which is problem independent. The results from a sample problem illustrate the variance reduction and efficiency characteristics of the combined biasing procedures, and a large neutron and gamma ray integral experiment is also calculated. A proposal is given for the possible code generation of the biasing parameter p and the preferential direction /ovr/Omega///sub 0/ used in the combined biasing schemes.
Monte Carlo conformal treatment planning as an independent assessment
Energy Technology Data Exchange (ETDEWEB)
Rincon, M.; Leal, A.; Perucha, M.; Carrasco, E. [Sevilla Univ. (Spain). Dept. Fisiologia Medica y Biofisica; Sanchez-Doblado, F. [Sevilla Univ. (Spain). Dept. Fisiologia Medica y Biofisica]|[Hospital Univ. Virgen Macarena, Sevilla (Spain). Servicio de Oncologia Radioterapica; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L. [Hospital Univ. Virgen Macarena, Sevilla (Spain). Servicio de Oncologia Radioterapica; Medrano, J.C. [Clinica Puerta de Hierro, Madrid (Spain). Servicio de Radiofisica
2001-07-01
The wide range of possibilities available in Radiotherapy with conformal fields cannot be covered experimentally. For this reason, dosimetrical and planning procedures are based on approximate algorithms or systematic measurements. Dose distribution calculations based on Monte Carlo (MC) simulations can be used to check results. In this work, two examples of conformal field treatments are shown: A prostate carcinoma and an ocular lymphoma. The dose distributions obtained with a conventional Planning System and with MC have been compared. Some significant differences have been found. (orig.)
Eigenvalue analysis using a full-core Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Okafor, K.C.; Zino, J.F. (Westinghouse Savannah River Co., Aiken, SC (United States))
1992-01-01
The reactor physics codes used at the Savannah River Site (SRS) to predict reactor behavior have been continually benchmarked against experimental and operational data. A particular benchmark variable is the observed initial critical control rod position. Historically, there has been some difficulty predicting this position because of the difficulties inherent in using computer codes to model experimental or operational data. The Monte Carlo method is applied in this paper to study the initial critical control rod positions for the SRS K Reactor. A three-dimensional, full-core MCNP model of the reactor was developed for this analysis.
Simulaciones Monte Carlo de remanentes de supernova en galaxias espirales
García Carrasco, Víctor
2008-01-01
Actualmente sabemos que las explosiones de supernova son el principal aporte de energía y metales al medio interestelar (ISM) por lo que el estudio de sus remanentes nos debería permitir conocer mejor las características del ISM en el que se hallan, las cuales inuyen fuertemente en su evolución. Para contrastar los datos observacionales, aportados principalmente por Chandra y XMM-Newton, con la teoría vamos a construir un código Monte Carlo que simule un modelo de galaxia en el que se reprodu...
Monte Carlo estimation of the number of tatami tilings
Kimura, Kenji
2016-01-01
Motivated by the way Japanese tatami mats are placed on the floor, we consider domino tilings with a constraint and estimate the number of such tilings of plane regions. We map the system onto a monomer-dimer model with a novel local interaction on the dual lattice. We use a variant of the Hamiltonian replica exchange Monte Carlo method and the multi-parameter reweighting technique to study the model. The properties of the quantity are studied beyond exact enumeration and combinatorial method. The logarithm of the number of the tilings is linear in the boundary length of the region for all the regions studied.
Proceedings of the first symposium on Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-01-01
The first symposium on Monte Carlo simulation was held at Mitsubishi Research Institute, Otemachi, Tokyo, on 10th and 11st of September, 1998. This symposium was organized by Nuclear Code Research Committee at Japan Atomic Energy Research Institute. In the sessions, were presented orally 21 papers on code development, parallel calculation, reactor physics, burn-up, criticality, shielding safety, dose evaluation, nuclear fusion reactor, thermonuclear fusion plasma, nuclear transmutation, electromagnetic cascade, fuel cycle facility. Those presented papers are compiled in this proceedings. The 21 of the presented papers are indexed individually. (J.P.N.)
Monte-Carlo Simulation on Neutron Instruments at CARR
Institute of Scientific and Technical Information of China (English)
2001-01-01
The design of high resolution neutron powder diffractometer(HRPD) and two cold neutron guides(CNGs) to be built at China advanced research reactor(CARR) are studied by Monte-Carlo simulation technique.The HRPD instrument is desiged to have a minimum resolution of 0.2% and neutron fluence rate of greater than 106 cm-2 ·s-1 at sample position. The resolution curves, neutron fluence rate and effective neutron beam size at sample position are given. Differences in resolutions and intensity between the
Monte Carlo Simulation of Kinesin Movement with a Lattice Model
Institute of Scientific and Technical Information of China (English)
WANG Hong; DOU Shuo-Xing; WANG Peng-Ye
2005-01-01
@@ Kinesin is a processive double-headed molecular motor that moves along a microtubule by taking about 8nm steps. It generally hydrolyzes one ATP molecule for taking each forward step. The processive movement of the kinesin molecular motors is numerically simulated with a lattice model. The motors are considered as Brownian particles and the ATPase processes of both heads are taken into account. The Monte Carlo simulation results agree well with recent experimental observations, especially on the relation of velocity versus ATP and ADP concentrations.
Validation of the Monte Carlo code MCNP-DSP
Energy Technology Data Exchange (ETDEWEB)
Valentine, T.E.; Mihalczo, J.T. [Oak Ridge National Lab., TN (United States)
1996-09-12
Several calculations were performed to validate MCNP-DSP, which is a Monte Carlo code that calculates all the time and frequency analysis parameters associated with the {sup 252}Cf-source-driven time and frequency analysis method. The frequency analysis parameters are obtained in two ways: directly by Fourier transforming the detector responses and indirectly by taking the Fourier transform of the autocorrelation and cross-correlation functions. The direct and indirect Fourier processing methods were shown to produce the same frequency spectra and convergence, thus verifying the way to obtain the frequency analysis parameters from the time sequences of detector pulses. (Author).
TRIPOLI-3: a neutron/photon Monte Carlo transport code
Energy Technology Data Exchange (ETDEWEB)
Nimal, J.C.; Vergnaud, T. [Commissariat a l' Energie Atomique, Gif-sur-Yvette (France). Service d' Etudes de Reacteurs et de Mathematiques Appliquees
2001-07-01
The present version of TRIPOLI-3 solves the transport equation for coupled neutron and gamma ray problems in three dimensional geometries by using the Monte Carlo method. This code is devoted both to shielding and criticality problems. The most important feature for particle transport equation solving is the fine treatment of the physical phenomena and sophisticated biasing technics useful for deep penetrations. The code is used either for shielding design studies or for reference and benchmark to validate cross sections. Neutronic studies are essentially cell or small core calculations and criticality problems. TRIPOLI-3 has been used as reference method, for example, for resonance self shielding qualification. (orig.)
AVATAR -- Automatic variance reduction in Monte Carlo calculations
Energy Technology Data Exchange (ETDEWEB)
Van Riper, K.A.; Urbatsch, T.J.; Soran, P.D. [and others
1997-05-01
AVATAR{trademark} (Automatic Variance And Time of Analysis Reduction), accessed through the graphical user interface application, Justine{trademark}, is a superset of MCNP{trademark} that automatically invokes THREEDANT{trademark} for a three-dimensional deterministic adjoint calculation on a mesh independent of the Monte Carlo geometry, calculates weight windows, and runs MCNP. Computational efficiency increases by a factor of 2 to 5 for a three-detector oil well logging tool model. Human efficiency increases dramatically, since AVATAR eliminates the need for deep intuition and hours of tedious handwork.
Investigating Transmission Efficiency of Light Guide by Monte Carlo Simulation
Institute of Scientific and Technical Information of China (English)
LiChen; XiaoGuoqing; GuoZhongyan; ZhanWenlongt; SunZhiyu; WangMeng; ChenZhiqiang; MaoRuishi; BaiJie; HuZhengguo; ChenLixin
2003-01-01
A large area neutron detector to detect the energy of about 1 GeV neutron by time-of flight method will be installed at RIBLL II of CSR. To obtain good energy resolution, the time resolution of the detector is a crucial parameter. For this purpose, the transmission efficiency of the light guide to transport the photons from detec-tor unit to light sensitive detector has been investigated by Monte-Carlo simulation. Here, the simulations were done mainly with two types of the light guides, namely type A and type B as shown in Figs.1 and 2 respectively.
Studying the information content of TMDs using Monte Carlo generators
Energy Technology Data Exchange (ETDEWEB)
Avakian, H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Matevosyan, H. [The Univ. of Adelaide, Adelaide (Australia); Pasquini, B. [Univ. of Pavia, Pavia (Italy); Schweitzer, P. [Univ. of Connecticut, Storrs, CT (United States)
2015-02-05
Theoretical advances in studies of the nucleon structure have been spurred by recent measurements of spin and/or azimuthal asymmetries worldwide. One of the main challenges still remaining is the extraction of the parton distribution functions, generalized to describe transverse momentum and spatial distributions of partons from these observables with no or minimal model dependence. In this topical review we present the latest developments in the field with emphasis on requirements for Monte Carlo event generators, indispensable for studies of the complex 3D nucleon structure, and discuss examples of possible applications.
Computed radiography simulation using the Monte Carlo code MCNPX
Energy Technology Data Exchange (ETDEWEB)
Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)
2010-09-15
Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.
Strain in the mesoscale kinetic Monte Carlo model for sintering
DEFF Research Database (Denmark)
Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.;
2014-01-01
Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate...... anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column...
Communication: Variation after response in quantum Monte Carlo
Neuscamman, Eric
2016-08-01
We present a new method for modeling electronically excited states that overcomes a key failing of linear response theory by allowing the underlying ground state ansatz to relax in the presence of an excitation. The method is variational, has a cost similar to ground state variational Monte Carlo, and admits both open and periodic boundary conditions. We present preliminary numerical results showing that, when paired with the Jastrow antisymmetric geminal power ansatz, the variation-after-response formalism delivers accuracies for valence and charge transfer single excitations on par with equation of motion coupled cluster, while surpassing coupled cluster's accuracy for excitations with significant doubly excited character.
A generalized hard-sphere model for Monte Carlo simulation
Hassan, H. A.; Hash, David B.
1993-01-01
A new molecular model, called the generalized hard-sphere, or GHS model, is introduced. This model contains, as a special case, the variable hard-sphere model of Bird (1981) and is capable of reproducing all of the analytic viscosity coefficients available in the literature that are derived for a variety of interaction potentials incorporating attraction and repulsion. In addition, a new procedure for determining interaction potentials in a gas mixture is outlined. Expressions needed for implementing the new model in the direct simulation Monte Carlo methods are derived. This development makes it possible to employ interaction models that have the same level of complexity as used in Navier-Stokes calculations.
Cluster Monte Carlo simulations of the nematic-isotropic transition
Priezjev, N. V.; Pelcovits, Robert A.
2001-06-01
We report the results of simulations of the three-dimensional Lebwohl-Lasher model of the nematic-isotropic transition using a single cluster Monte Carlo algorithm. The algorithm, first introduced by Kunz and Zumbach to study two-dimensional nematics, is a modification of the Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system size. We thus obtain an upper estimate of the value of the transition temperature in the thermodynamic limit.
Bond-updating mechanism in cluster Monte Carlo calculations
Heringa, J. R.; Blöte, H. W. J.
1994-03-01
We study a cluster Monte Carlo method with an adjustable parameter: the number of energy levels of a demon mediating the exchange of bond energy with the heat bath. The efficiency of the algorithm in the case of the three-dimensional Ising model is studied as a function of the number of such levels. The optimum is found in the limit of an infinite number of levels, where the method reproduces the Wolff or the Swendsen-Wang algorithm. In this limit the size distribution of flipped clusters approximates a power law more closely than that for a finite number of energy levels.
A Monte Carlo study on multiple output stochastic frontiers
DEFF Research Database (Denmark)
Henningsen, Geraldine; Henningsen, Arne; Jensen, Uwe
2015-01-01
In the estimation of multiple output technologies in a primal approach, the mainquestion is how to handle the multiple outputs. Often, an output distance function is used,where the classical approach is to exploit its homogeneity property by selecting one outputquantity as the dependent variable...... as directional components asregressors. A number of studies have compared these specifications using real world dataand have found significant differences in the inefficiency estimates. However, in order to getto the bottom of these differences, we apply a Monte-Carlo simulation. We test the robustnessof both...
Monte Carlo based radial shield design of typical PWR reactor
Energy Technology Data Exchange (ETDEWEB)
Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.
2016-11-15
Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.
Monte Carlo simulation of a prototype photodetector used in radiotherapy
Kausch, C; Albers, D; Schmidt, R; Schreiber, B
2000-01-01
The imaging performance of prototype electronic portal imaging devices (EPID) has been investigated. Monte Carlo simulations have been applied to calculate the modulation transfer function (MTF( f )), the noise power spectrum (NPS( f )) and the detective quantum efficiency (DQE( f )) for different new type of EPIDs, which consist of a detector combination of metal or polyethylene (PE), a phosphor layer of Gd sub 2 O sub 2 S and a flat array of photodiodes. The simulated results agree well with measurements. Based on simulated results, possible optimization of these devices is discussed.
MCOR - Monte Carlo depletion code for reference LWR calculations
Energy Technology Data Exchange (ETDEWEB)
Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)
2011-04-15
Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally
Application of Monte Carlo methods in tomotherapy and radiation biophysics
Hsiao, Ya-Yun
Helical tomotherapy is an attractive treatment for cancer therapy because highly conformal dose distributions can be achieved while the on-board megavoltage CT provides simultaneous images for accurate patient positioning. The convolution/superposition (C/S) dose calculation methods typically used for Tomotherapy treatment planning may overestimate skin (superficial) doses by 3-13%. Although more accurate than C/S methods, Monte Carlo (MC) simulations are too slow for routine clinical treatment planning. However, the computational requirements of MC can be reduced by developing a source model for the parts of the accelerator that do not change from patient to patient. This source model then becomes the starting point for additional simulations of the penetration of radiation through patient. In the first section of this dissertation, a source model for a helical tomotherapy is constructed by condensing information from MC simulations into series of analytical formulas. The MC calculated percentage depth dose and beam profiles computed using the source model agree within 2% of measurements for a wide range of field sizes, which suggests that the proposed source model provides an adequate representation of the tomotherapy head for dose calculations. Monte Carlo methods are a versatile technique for simulating many physical, chemical and biological processes. In the second major of this thesis, a new methodology is developed to simulate of the induction of DNA damage by low-energy photons. First, the PENELOPE Monte Carlo radiation transport code is used to estimate the spectrum of initial electrons produced by photons. The initial spectrum of electrons are then combined with DNA damage yields for monoenergetic electrons from the fast Monte Carlo damage simulation (MCDS) developed earlier by Semenenko and Stewart (Purdue University). Single- and double-strand break yields predicted by the proposed methodology are in good agreement (1%) with the results of published
MCNP{trademark} Monte Carlo: A precis of MCNP
Energy Technology Data Exchange (ETDEWEB)
Adams, K.J.
1996-06-01
MCNP{trademark} is a general purpose three-dimensional time-dependent neutron, photon, and electron transport code. It is highly portable and user-oriented, and backed by stringent software quality assurance practices and extensive experimental benchmarks. The cross section database is based upon the best evaluations available. MCNP incorporates state-of-the-art analog and adaptive Monte Carlo techniques. The code is documented in a 600 page manual which is augmented by numerous Los Alamos technical reports which detail various aspects of the code. MCNP represents over a megahour of development and refinement over the past 50 years and an ongoing commitment to excellence.
Truncation Effects in Monte Carlo Renormalization Group Improved Lattice Actions
Takaishi, T; Forcrand, Ph. de
1998-01-01
We study truncation effects in the SU(3) gauge actions obtained by the Monte Carlo renormalization group method. By measuring the heavy quark potential we find that the truncation effects in the actions coarsen the lattice by 40-50 % from the original blocked lattice. On the other hand, we find that rotational symmetry of the heavy quark potentials is well recovered on such coarse lattices, which may indicate that rotational symmetry breaking terms are easily cancelled out by adding a short distance operator. We also discuss the possibility of reducing truncation effects.
Monte Carlo Shell Model for ab initio nuclear structure
Directory of Open Access Journals (Sweden)
Abe T.
2014-03-01
Full Text Available We report on our recent application of the Monte Carlo Shell Model to no-core calculations. At the initial stage of the application, we have performed benchmark calculations in the p-shell region. Results are compared with those in the Full Configuration Interaction and No-Core Full Configuration methods. These are found to be consistent with each other within quoted uncertainties when they could be quantified. The preliminary results in Nshell = 5 reveal the onset of systematic convergence pattern.
Novel Extrapolation Method in the Monte Carlo Shell Model
Shimizu, Noritaka; Mizusaki, Takahiro; Otsuka, Takaharu; Abe, Takashi; Honma, Michio
2010-01-01
We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model in order to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full $pf$-shell calculation of $^{56}$Ni, and the applicability of the method to a system beyond current limit of exact diagonalization is shown for the $pf$+$g_{9/2}$-shell calculation of $^{64}$Ge.
Monte Carlo simulation experiments on box-type radon dosimeter
Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid
2014-11-01
Epidemiological studies show that inhalation of radon gas (222Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222Rn concentrations (Bq/m3) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter's dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (ηint) and alpha hit efficiency (ηhit). The ηint depends upon only on the dimensions of the dosimeter and ηhit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon concentration from the
Monte Carlo simulation of charge mediated magnetoelectricity in multiferroic bilayers
Energy Technology Data Exchange (ETDEWEB)
Ortiz-Álvarez, H.H. [Universidad de Caldas, Manizales (Colombia); Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Bedoya-Hincapié, C.M. [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Universidad Santo Tomás, Bogotá (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia)
2014-12-01
Simulations of a bilayer ferroelectric/ferromagnetic multiferroic system were carried out, based on the Monte Carlo method and Metropolis dynamics. A generic model was implemented with a Janssen-like Hamiltonian, taking into account magnetoelectric interactions due to charge accumulation at the interface. Two different magnetic exchange constants were considered for accumulation and depletion states. Several screening lengths were also included. Simulations exhibit considerable magnetoelectric effects not only at low temperature, but also at temperature near to the transition point of the ferromagnetic layer. The results match experimental observations for this kind of structure and mechanism.
More about Zener drag studies with Monte Carlo simulations
Di Prinzio, Carlos L.; Druetta, Esteban; Nasello, Olga Beatriz
2013-03-01
Grain growth (GG) processes in the presence of second-phase and stationary particles have been widely studied but the results found are inconsistent. We present new GG simulations in two- and three-dimensional (2D and 3D) polycrystalline samples with second phase stationary particles, using the Monte Carlo technique. Simulations using values of particle concentration greater than 15% and particle radii different from 1 or 3 are performed, thus covering a range of particle radii and concentrations not previously studied. It is shown that only the results for 3D samples follow Zener's law.
Gauge Potts model with generalized action: A Monte Carlo analysis
Energy Technology Data Exchange (ETDEWEB)
Fanchiotti, H.; Canal, C.A.G.; Sciutto, S.J.
1985-08-15
Results of a Monte Carlo calculation on the q-state gauge Potts model in d dimensions with a generalized action involving planar 1 x 1, plaquette, and 2 x 1, fenetre, loop interactions are reported. For d = 3 and q = 2, first- and second-order phase transitions are detected. The phase diagram for q = 3 presents only first-order phase transitions. For d = 2, a comparison with analytical results is made. Here also, the behavior of the numerical simulation in the vicinity of a second-order transition is analyzed.
Monte Carlo simulations of the stability of delta-Pu
DEFF Research Database (Denmark)
Landa, A.; Soderlind, P.; Ruban, Andrei
2003-01-01
The transition temperature (T-c) for delta-Pu has been calculated for the first time. A Monte Carlo method is employed for this purpose and the effective cluster interactions are obtained from first-principles calculations incorporated with the Connolly-Williams and generalized perturbation methods....... It is found that at T-c similar to 548 K, delta-Pu undergoes transformation from a disordered magnetic state to a structure with an anti ferromagnetic spin alignment that is mechanically unstable with respect to tetragonal distortion. The calculated transition temperature is in good agreement...
Optical Monte Carlo modeling of a true portwine stain anatomy
Barton, Jennifer K.; Pfefer, T. Joshua; Welch, Ashley J.; Smithies, Derek J.; Nelson, Jerry; van Gemert, Martin J.
1998-04-01
A unique Monte Carlo program capable of accommodating an arbitrarily complex geometry was used to determine the energy deposition in a true port wine stain anatomy. Serial histologic sections taken from a biopsy of a dark red, laser therapy resistant stain were digitized and used to create the program input for simulation at wavelengths of 532 and 585 nm. At both wavelengths, the greatest energy deposition occurred in the superficial blood vessels, and subsequently decreased with depth as the laser beam was attenuated. However, more energy was deposited in the epidermis and superficial blood vessels at 532 nm than at 585 nm.
Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations
Fiorentini, G; Sarkar, S; Villante, F L
1998-01-01
We present a simple method for determining the (correlated) uncertainties of the light element abundances expected from big bang nucleosynthesis, which avoids the need for lengthy Monte Carlo simulations. Our approach helps to clarify the role of the different nuclear reactions contributing to a particular elemental abundance and makes it easy to implement energy-independent changes in the measured reaction rates. As an application, we demonstrate how this method simplifies the statistical estimation of the nucleon-to-photon ratio through comparison of the standard BBN predictions with the observationally inferred abundances.
Monte Carlo Frameworks Building Customisable High-performance C++ Applications
Duffy, Daniel J
2011-01-01
This is one of the first books that describe all the steps that are needed in order to analyze, design and implement Monte Carlo applications. It discusses the financial theory as well as the mathematical and numerical background that is needed to write flexible and efficient C++ code using state-of-the art design and system patterns, object-oriented and generic programming models in combination with standard libraries and tools. Includes a CD containing the source code for all examples. It is strongly advised that you experiment with the code by compiling it and extending it to suit your ne
Monte Carlo simulations of charge transport in heterogeneous organic semiconductors
Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta
2015-03-01
The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.
New electron multiple scattering distributions for Monte Carlo transport simulation
Energy Technology Data Exchange (ETDEWEB)
Chibani, Omar (Haut Commissariat a la Recherche (C.R.S.), 2 Boulevard Franz Fanon, Alger B.P. 1017, Alger-Gare (Algeria)); Patau, Jean Paul (Laboratoire de Biophysique et Biomathematiques, Faculte des Sciences Pharmaceutiques, Universite Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse cedex (France))
1994-10-01
New forms of electron (positron) multiple scattering distributions are proposed. The first is intended for use in the conditions of validity of the Moliere theory. The second distribution takes place when the electron path is so short that only few elastic collisions occur. These distributions are adjustable formulas. The introduction of some parameters allows impositions of the correct value of the first moment. Only positive and analytic functions were used in constructing the present expressions. This makes sampling procedures easier. Systematic tests are presented and some Monte Carlo simulations, as benchmarks, are carried out. ((orig.))
Automated Monte Carlo biasing for photon-generated electrons near surfaces.
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Crawford, Martin James; Kensek, Ronald Patrick
2009-09-01
This report describes efforts to automate the biasing of coupled electron-photon Monte Carlo particle transport calculations. The approach was based on weight-windows biasing. Weight-window settings were determined using adjoint-flux Monte Carlo calculations. A variety of algorithms were investigated for adaptivity of the Monte Carlo tallies. Tree data structures were used to investigate spatial partitioning. Functional-expansion tallies were used to investigate higher-order spatial representations.
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Directory of Open Access Journals (Sweden)
José Luiz Ferreira Martins
2011-09-01
Full Text Available O objetivo deste artigo é o de analisar a viabilidade da utilização do método de Monte Carlo para estimar a produtividade na soldagem de tubulações industriais de aço carbono com base em amostras pequenas. O estudo foi realizado através de uma análise de uma amostra de referência contendo dados de produtividade de 160 juntas soldadas pelo processo Eletrodo Revestido na REDUC (refinaria de Duque de Caxias, utilizando o software ControlTub 5.3. A partir desses dados foram retiradas de forma aleatória, amostras com, respectivamente, 10, 15 e 20 elementos e executadas simulações pelo método de Monte Carlo. Comparando-se os resultados da amostra com 160 elementos e os dados gerados por simulação se observa que bons resultados podem ser obtidos usando o método de Monte Carlo para estimativa da produtividade da soldagem. Por outro lado, na indústria da construção brasileira o valor da média de produtividade é normalmente usado como um indicador de produtividade e é baseado em dados históricos de outros projetos coletados e avaliados somente após a conclusão do projeto, o que é uma limitação. Este artigo apresenta uma ferramenta para avaliação da execução em tempo real, permitindo ajustes nas estimativas e monitoramento de produtividade durante o empreendimento. Da mesma forma, em licitações, orçamentos e estimativas de prazo, a utilização desta técnica permite a adoção de outras estimativas diferentes da produtividade média, que é comumente usada e como alternativa, se sugerem três critérios: produtividade otimista, média e pessimista.The aim of this article is to analyze the feasibility of using Monte Carlo method to estimate productivity in industrial pipes welding of carbon steel based on small samples. The study was carried out through an analysis of a reference sample containing productivity data of 160 welded joints by SMAW process in REDUC (Duque de Caxias Refinery, using ControlTub 5.3 software
The impact of advances in computer technology on particle transport Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Martin, W.R. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering; Rathkopf, J.A. [Lawrence Livermore National Lab., CA (United States); Brown, F.B. [Knolls Atomic Power Lab., Schenectady, NY (United States)
1992-01-21
Advances in computer technology, including hardware, architectural, and software advances, have led to dramatic gains in computer performance over the past decade. We summarize these performance trends and discuss the extent to which particle transport Monte Carlo codes have been able to take advantage of these performance gains. We consider MIMD, SIMD, and parallel distributed computer configurations for particle transport Monte Carlo applications. Some specific experience with vectorization and parallelization of production Monte Carlo codes is included. The topic of parallel random number generation is discussed in some detail. Finally, some software issues that hinder the implementation of Monte Carlo methods on parallel processors are addressed.
Energy Technology Data Exchange (ETDEWEB)
Baeza, J. A.; Ureba, A.; Jimenez-Ortega, E.; Pereira-Barbeiro, A. R.; Leal, A.
2013-07-01
A new platform for the full Monte Carlo planning and an independent experimental evaluation that it can be integrated into clinical practice. The tool has proved its usefulness and efficiency and now forms part of the flow of work of our research group, the tool used for the generation of results, which are to be suitably revised and are being published. This software is an effort of integration of numerous algorithms of image processing, along with planning optimization algorithms, allowing the process of MCTP planning from a single interface. In addition, becomes a flexible and accurate tool for the evaluation of experimental dosimetric data for the quality control of actual treatments. (Author)
Infinite Variance in Fermion Quantum Monte Carlo Calculations
Shi, Hao
2015-01-01
For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties, without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, lattice QCD calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied upon to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple sub-areas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations turn out to have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calc...
Monte Carlo study of Siemens PRIMUS photoneutron production
Pena, J.; Franco, L.; Gómez, F.; Iglesias, A.; Pardo, J.; Pombar, M.
2005-12-01
Neutron production in radiotherapy facilities has been studied from the early days of modern linacs. Detailed studies are now possible using photoneutron capabilities of general-purpose Monte Carlo codes at energies of interest in medical physics. The present work studies the effects of modelling different accelerator head and room geometries on the neutron fluence and spectra predicted via Monte Carlo. The results from the simulation of a 15 MV Siemens PRIMUS linac show an 80% increase in the fluence scored at the isocentre when, besides modelling the components neccessary for electron/photon simulations, other massive accelerator head components are included. Neutron fluence dependence on inner treatment room volume is analysed showing that thermal neutrons have a 'gaseous' behaviour and then a 1/V dependence. Neutron fluence maps for three energy ranges, fast (E > 0.1 MeV), epithermal (1 eV < E < 0.1 MeV) and thermal (E < 1 eV), are also presented and the influence of the head components on them is discussed.
A pure-sampling quantum Monte Carlo algorithm.
Ospadov, Egor; Rothstein, Stuart M
2015-01-14
The objective of pure-sampling quantum Monte Carlo is to calculate physical properties that are independent of the importance sampling function being employed in the calculation, save for the mismatch of its nodal hypersurface with that of the exact wave function. To achieve this objective, we report a pure-sampling algorithm that combines features of forward walking methods of pure-sampling and reptation quantum Monte Carlo (RQMC). The new algorithm accurately samples properties from the mixed and pure distributions simultaneously in runs performed at a single set of time-steps, over which extrapolation to zero time-step is performed. In a detailed comparison, we found RQMC to be less efficient. It requires different sets of time-steps to accurately determine the energy and other properties, such as the dipole moment. We implement our algorithm by systematically increasing an algorithmic parameter until the properties converge to statistically equivalent values. As a proof in principle, we calculated the fixed-node energy, static α polarizability, and other one-electron expectation values for the ground-states of LiH and water molecules. These quantities are free from importance sampling bias, population control bias, time-step bias, extrapolation-model bias, and the finite-field approximation. We found excellent agreement with the accepted values for the energy and a variety of other properties for those systems.
On the time scale associated with Monte Carlo simulations.
Bal, Kristof M; Neyts, Erik C
2014-11-28
Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
On the time scale associated with Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Bal, Kristof M., E-mail: kristof.bal@uantwerpen.be; Neyts, Erik C. [Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium)
2014-11-28
Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
Monte Carlo study of electron transport in monolayer silicene
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2016-11-01
Electron mobility and diffusion coefficients in monolayer silicene are calculated by Monte Carlo simulations using simplified band structure with linear energy bands. Results demonstrate reasonable agreement with the full-band Monte Carlo method in low applied electric field conditions. Negative differential resistivity is observed and an explanation of the origin of this effect is proposed. Electron mobility and diffusion coefficients are studied in low applied electric field conditions. We demonstrate that a comparison of these parameter values can provide a good check that the calculation is correct. Low-field mobility in silicene exhibits {T}-3 temperature dependence for nondegenerate electron gas conditions and {T}-1 for higher electron concentrations, when degenerate conditions are imposed. It is demonstrated that to explain the relation between mobility and temperature in nondegenerate electron gas the linearity of the band structure has to be taken into account. It is also found that electron-electron scattering only slightly modifies low-field electron mobility in degenerate electron gas conditions.
Evolutionary Sequential Monte Carlo Samplers for Change-Point Models
Directory of Open Access Journals (Sweden)
Arnaud Dufays
2016-03-01
Full Text Available Sequential Monte Carlo (SMC methods are widely used for non-linear filtering purposes. However, the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC methods. Not only do SMC algorithms draw posterior distributions of static or dynamic parameters but additionally they provide an estimate of the marginal likelihood. The tempered and time (TNT algorithm, developed in this paper, combines (off-line tempered SMC inference with on-line SMC inference for drawing realizations from many sequential posterior distributions without experiencing a particle degeneracy problem. Furthermore, it introduces a new MCMC rejuvenation step that is generic, automated and well-suited for multi-modal distributions. As this update relies on the wide heuristic optimization literature, numerous extensions are readily available. The algorithm is notably appropriate for estimating change-point models. As an example, we compare several change-point GARCH models through their marginal log-likelihoods over time.
Infinite variance in fermion quantum Monte Carlo calculations
Shi, Hao; Zhang, Shiwei
2016-03-01
For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.
Monte Carlo simulation for simultaneous particle coagulation and deposition
Institute of Scientific and Technical Information of China (English)
ZHAO; Haibo; ZHENG; Chuguang
2006-01-01
The process of dynamic evolution in dispersed systems due to simultaneous particle coagulation and deposition is described mathematically by general dynamic equation (GDE). Monte Carlo (MC) method is an important approach of numerical solutions of GDE. However, constant-volume MC method exhibits the contradictory of low computation cost and high computation precision owing to the fluctuation of the number of simulation particles; constant-number MC method can hardly be applied to engineering application and general scientific quantitative analysis due to the continual contraction or expansion of computation domain. In addition, the two MC methods depend closely on the "subsystem" hypothesis, which constraints their expansibility and the scope of application. A new multi-Monte Carlo (MMC) method is promoted to take account of GDE for simultaneous particle coagulation and deposition. MMC method introduces the concept of "weighted fictitious particle" and is based on the "time-driven" technique. Furthermore MMC method maintains synchronously the computational domain and the total number of fictitious particles, which results in the latent expansibility of simulation for boundary condition, the space evolution of particle size distribution and even particle dynamics. The simulation results of MMC method for two special cases in which analytical solutions exist agree with analytical solutions well, which proves that MMC method has high and stable computational precision and low computation cost because of the constant and limited number of fictitious particles. Lastly the source of numerical error and the relative error of MMC method are analyzed, respectively.
Monte Carlo Criticality Methods and Analysis Capabilities in SCALE
Energy Technology Data Exchange (ETDEWEB)
Goluoglu, Sedat [ORNL; Petrie Jr, Lester M [ORNL; Dunn, Michael E [ORNL; Hollenbach, Daniel F [ORNL; Rearden, Bradley T [ORNL
2011-01-01
This paper describes the Monte Carlo codes KENO V.a and KENO-VI in SCALE that are primarily used to calculate multiplication factors and flux distributions of fissile systems. Both codes allow explicit geometric representation of the target systems and are used internationally for safety analyses involving fissile materials. KENO V.a has limiting geometric rules such as no intersections and no rotations. These limitations make KENO V.a execute very efficiently and run very fast. On the other hand, KENO-VI allows very complex geometric modeling. Both KENO codes can utilize either continuous-energy or multigroup cross-section data and have been thoroughly verified and validated with ENDF libraries through ENDF/B-VII.0, which has been first distributed with SCALE 6. Development of the Monte Carlo solution technique and solution methodology as applied in both KENO codes is explained in this paper. Available options and proper application of the options and techniques are also discussed. Finally, performance of the codes is demonstrated using published benchmark problems.
Monte Carlo model for electron degradation in methane
Bhardwaj, Anil
2015-01-01
We present a Monte Carlo model for degradation of 1-10,000 eV electrons in an atmosphere of methane. The electron impact cross sections for CH4 are compiled and analytical representations of these cross sections are used as input to the model.model.Yield spectra, which provides information about the number of inelastic events that have taken place in each energy bin, is used to calculate the yield (or population) of various inelastic processes. The numerical yield spectra, obtained from the Monte Carlo simulations, is represented analytically, thus generating the Analytical Yield Spectra (AYS). AYS is employed to obtain the mean energy per ion pair and efficiencies of various inelastic processes.Mean energy per ion pair for neutral CH4 is found to be 26 (27.8) eV at 10 (0.1) keV. Efficiency calculation showed that ionization is the dominant process at energies >50 eV, for which more than 50% of the incident electron energy is used. Above 25 eV, dissociation has an efficiency of 27%. Below 10 eV, vibrational e...
Proton therapy Monte Carlo SRNA-VOX code
Directory of Open Access Journals (Sweden)
Ilić Radovan D.
2012-01-01
Full Text Available The most powerful feature of the Monte Carlo method is the possibility of simulating all individual particle interactions in three dimensions and performing numerical experiments with a preset error. These facts were the motivation behind the development of a general-purpose Monte Carlo SRNA program for proton transport simulation in technical systems described by standard geometrical forms (plane, sphere, cone, cylinder, cube. Some of the possible applications of the SRNA program are: (a a general code for proton transport modeling, (b design of accelerator-driven systems, (c simulation of proton scattering and degrading shapes and composition, (d research on proton detectors; and (e radiation protection at accelerator installations. This wide range of possible applications of the program demands the development of various versions of SRNA-VOX codes for proton transport modeling in voxelized geometries and has, finally, resulted in the ISTAR package for the calculation of deposited energy distribution in patients on the basis of CT data in radiotherapy. All of the said codes are capable of using 3-D proton sources with an arbitrary energy spectrum in an interval of 100 keV to 250 MeV.
Utilizing Monte Carlo Simulations to Optimize Institutional Empiric Antipseudomonal Therapy
Directory of Open Access Journals (Sweden)
Sarah J. Tennant
2015-12-01
Full Text Available Pseudomonas aeruginosa is a common pathogen implicated in nosocomial infections with increasing resistance to a limited arsenal of antibiotics. Monte Carlo simulation provides antimicrobial stewardship teams with an additional tool to guide empiric therapy. We modeled empiric therapies with antipseudomonal β-lactam antibiotic regimens to determine which were most likely to achieve probability of target attainment (PTA of ≥90%. Microbiological data for P. aeruginosa was reviewed for 2012. Antibiotics modeled for intermittent and prolonged infusion were aztreonam, cefepime, meropenem, and piperacillin/tazobactam. Using minimum inhibitory concentrations (MICs from institution-specific isolates, and pharmacokinetic and pharmacodynamic parameters from previously published studies, a 10,000-subject Monte Carlo simulation was performed for each regimen to determine PTA. MICs from 272 isolates were included in this analysis. No intermittent infusion regimens achieved PTA ≥90%. Prolonged infusions of cefepime 2000 mg Q8 h, meropenem 1000 mg Q8 h, and meropenem 2000 mg Q8 h demonstrated PTA of 93%, 92%, and 100%, respectively. Prolonged infusions of piperacillin/tazobactam 4.5 g Q6 h and aztreonam 2 g Q8 h failed to achieved PTA ≥90% but demonstrated PTA of 81% and 73%, respectively. Standard doses of β-lactam antibiotics as intermittent infusion did not achieve 90% PTA against P. aeruginosa isolated at our institution; however, some prolonged infusions were able to achieve these targets.
Monte Carlo tests for the distribution of recycled pulsars
Wang, Jing
2011-01-01
Based on the work by Wang et al. (A&A 528, A88 in 2011), we make Monte Carlo test for the distribution and evolution of magnetic field and spin period for the recycled pulsars in accreting systems. Using Monte Carlo method, we test the initial distribution (including initially normal and Gaussian distribution) of magnetic field and spin period for the recycled pulsars. A wide ranges for the initial conditions, i.e. initial magnetic field $B_0 = 10^{10.5-14} G$, initial spin period $P_0 = 0.5-100 s$, accretion rate $\\dot{M} = 10^{16-18} g/s$ and evolution time $t = 10^{7-9} yr$, are considered. We find that initially Gaussian distribution matches the observations very well. The minimums of magnetic field ($B \\sim 10^{8-9} G$) and spin period ($P \\sim 1-20 ms$) are independent of the initial distributions. Magnetic field and spin period decrease with the increasing accretion mass, and both of them reach the minimums when accreting about $0.1 - 0.2 M_{\\odot}$.
Xenon instability study of large core Monte Carlo calculations
Energy Technology Data Exchange (ETDEWEB)
Bogdanova, E.V. [National Research Nuclear University ' MEPHi' , Moscow (Russian Federation); Gorodkov, S.S.
2016-09-15
One of the goals of neutronic calculations of large cores may be self-consistent distribution of equilibrium xenon through the reactor core. In deterministic calculations such self consistency is relatively simply achieved with the help of additional outer iterations by xenon, which can increase several times solution run time. But in stochastic calculation of large cores such increase is utterly undesirable, since even without these outer iterations it demands modeling of billion of histories, which in case of complicated large core may take about a day of 100 processors work. In addition the unavoidable statistical uncertainty here plays role of transient process, which excites xenon oscillations. In this work the rise of such oscillations and the way of their overcoming with the help of hybrid stochastic/deterministic calculation is studied. It is proposed to make at first single static Monte Carlo calculation of given core and to receive multi-group mesh cell characteristics for future use in operative code. This one will evaluate xenon distribution through the core, which will be equilibrium for deterministic solution and substantially close to equilibrium Monte Carlo solution, paid with enormous computing cost.
Subtle Monte Carlo Updates in Dense Molecular Systems.
Bottaro, Sandro; Boomsma, Wouter; E Johansson, Kristoffer; Andreetta, Christian; Hamelryck, Thomas; Ferkinghoff-Borg, Jesper
2012-02-14
Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2015-12-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.
Lifting—A nonreversible Markov chain Monte Carlo algorithm
Vucelja, Marija
2016-12-01
Markov chain Monte Carlo algorithms are invaluable tools for exploring stationary properties of physical systems, especially in situations where direct sampling is unfeasible. Common implementations of Monte Carlo algorithms employ reversible Markov chains. Reversible chains obey detailed balance and thus ensure that the system will eventually relax to equilibrium, though detailed balance is not necessary for convergence to equilibrium. We review nonreversible Markov chains, which violate detailed balance and yet still relax to a given target stationary distribution. In particular cases, nonreversible Markov chains are substantially better at sampling than the conventional reversible Markov chains with up to a square root improvement in the convergence time to the steady state. One kind of nonreversible Markov chain is constructed from the reversible ones by enlarging the state space and by modifying and adding extra transition rates to create non-reversible moves. Because of the augmentation of the state space, such chains are often referred to as lifted Markov Chains. We illustrate the use of lifted Markov chains for efficient sampling on several examples. The examples include sampling on a ring, sampling on a torus, the Ising model on a complete graph, and the one-dimensional Ising model. We also provide a pseudocode implementation, review related work, and discuss the applicability of such methods.
Hu, Shuming; Mitas, Lubos
2012-02-01
Thorium dioxide solid is a unique optical and heat-resistant actinide material with large gap and cohesion. It is a diamagnet, unlike a number of other similar actinide oxides. We investigate the electronic structure of ThO2 using Density Functional Theory (DFT) and quantum Monte Carlo (QMC) methods. We adopt Stuttgart RLC and RSC effective core potentials (pseudopotentials) for the Th atom. In the DFT calculations, some of the properties are verified in all-electron calculations using the FLAPW techniques. Using the fixed-node diffusion Monte Carlo we calculate the ground state and several excited states from which we estimate the cohesion and the band gap. Simulation cells of several sizes are used to estimate/reduce the finite size effects. We compare the QMC results with recent DFT calculations with several types of functionals which include hybrids such as PBE0 and HSE. Insights from QMC calculations give us understanding of the correlations beyond the DFT approaches and pave the way for accurate electronic structure calculations of other actinide materials.
Stratified source-sampling techniques for Monte Carlo eigenvalue analysis.
Energy Technology Data Exchange (ETDEWEB)
Mohamed, A.
1998-07-10
In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo ''Eigenvalue of the World'' problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. In this paper, stratified source-sampling techniques are generalized and applied to three different Eigenvalue of the World configurations which take into account real-world statistical noise sources not included in the model problem, but which differ in the amount of neutronic coupling among the constituents of each configuration. It is concluded that, in Monte Carlo eigenvalue analysis of loosely-coupled arrays, the use of stratified source-sampling reduces the probability of encountering an anomalous result over that if conventional source-sampling methods are used. However, this gain in reliability is substantially less than that observed in the model-problem results.
Infinite variance in fermion quantum Monte Carlo calculations.
Shi, Hao; Zhang, Shiwei
2016-03-01
For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.
Monte Carlo simulation of zinc protoporphyrin fluorescence in the retina
Chen, Xiaoyan; Lane, Stephen
2010-02-01
We have used Monte Carlo simulation of autofluorescence in the retina to determine that noninvasive detection of nutritional iron deficiency is possible. Nutritional iron deficiency (which leads to iron deficiency anemia) affects more than 2 billion people worldwide, and there is an urgent need for a simple, noninvasive diagnostic test. Zinc protoporphyrin (ZPP) is a fluorescent compound that accumulates in red blood cells and is used as a biomarker for nutritional iron deficiency. We developed a computational model of the eye, using parameters that were identified either by literature search, or by direct experimental measurement to test the possibility of detecting ZPP non-invasively in retina. By incorporating fluorescence into Steven Jacques' original code for multi-layered tissue, we performed Monte Carlo simulation of fluorescence in the retina and determined that if the beam is not focused on a blood vessel in a neural retina layer or if part of light is hitting the vessel, ZPP fluorescence will be 10-200 times higher than background lipofuscin fluorescence coming from the retinal pigment epithelium (RPE) layer directly below. In addition we found that if the light can be focused entirely onto a blood vessel in the neural retina layer, the fluorescence signal comes only from ZPP. The fluorescence from layers below in this second situation does not contribute to the signal. Therefore, the possibility that a device could potentially be built and detect ZPP fluorescence in retina looks very promising.
Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo
Martinez, Josue G.
2010-06-01
The authors consider the analysis of hierarchical longitudinal functional data based upon a functional principal components approach. In contrast to standard frequentist approaches to selecting the number of principal components, the authors do model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order to overcome this, the authors show how to apply Stochastic Approximation Monte Carlo (SAMC) to this problem, a method that has the potential to explore the entire space and does not become trapped in local extrema. The combination of reversible jump methods and SAMC in hierarchical longitudinal functional data is simplified by a polar coordinate representation of the principal components. The approach is easy to implement and does well in simulated data in determining the distribution of the number of principal components, and in terms of its frequentist estimation properties. Empirical applications are also presented.
Energy Technology Data Exchange (ETDEWEB)
Liang, Jingang; Wang, Kan; Qiu, Yishu [Dept. of Engineering Physics, LiuQing Building, Tsinghua University, Beijing (China); Chai, Xiao Ming; Qiang, Sheng Long [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu (China)
2016-06-15
Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.
Energy Technology Data Exchange (ETDEWEB)
Richet, Y
2006-12-15
Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)
Energy Technology Data Exchange (ETDEWEB)
Martinez Ovalle, S. A.; Olaya Davila, H.; Reyes Caballero, F.
2013-07-01
The main objective of this work is to verify through Monte Carlo, the dimensions most appropriate in the shielding of an installation designed for Industrial radiography with a Co-60 Irradiator. (Author)
Monte Carlo MP2 on Many Graphical Processing Units.
Doran, Alexander E; Hirata, So
2016-10-11
In the Monte Carlo second-order many-body perturbation (MC-MP2) method, the long sum-of-product matrix expression of the MP2 energy, whose literal evaluation may be poorly scalable, is recast into a single high-dimensional integral of functions of electron pair coordinates, which is evaluated by the scalable method of Monte Carlo integration. The sampling efficiency is further accelerated by the redundant-walker algorithm, which allows a maximal reuse of electron pairs. Here, a multitude of graphical processing units (GPUs) offers a uniquely ideal platform to expose multilevel parallelism: fine-grain data-parallelism for the redundant-walker algorithm in which millions of threads compute and share orbital amplitudes on each GPU; coarse-grain instruction-parallelism for near-independent Monte Carlo integrations on many GPUs with few and infrequent interprocessor communications. While the efficiency boost by the redundant-walker algorithm on central processing units (CPUs) grows linearly with the number of electron pairs and tends to saturate when the latter exceeds the number of orbitals, on a GPU it grows quadratically before it increases linearly and then eventually saturates at a much larger number of pairs. This is because the orbital constructions are nearly perfectly parallelized on a GPU and thus completed in a near-constant time regardless of the number of pairs. In consequence, an MC-MP2/cc-pVDZ calculation of a benzene dimer is 2700 times faster on 256 GPUs (using 2048 electron pairs) than on two CPUs, each with 8 cores (which can use only up to 256 pairs effectively). We also numerically determine that the cost to achieve a given relative statistical uncertainty in an MC-MP2 energy increases as O(n(3)) or better with system size n, which may be compared with the O(n(5)) scaling of the conventional implementation of deterministic MP2. We thus establish the scalability of MC-MP2 with both system and computer sizes.
The macro response Monte Carlo method for electron transport
Energy Technology Data Exchange (ETDEWEB)
Svatos, M M
1998-09-01
The main goal of this thesis was to prove the feasibility of basing electron depth dose calculations in a phantom on first-principles single scatter physics, in an amount of time that is equal to or better than current electron Monte Carlo methods. The Macro Response Monte Carlo (MRMC) method achieves run times that are on the order of conventional electron transport methods such as condensed history, with the potential to be much faster. This is possible because MRMC is a Local-to-Global method, meaning the problem is broken down into two separate transport calculations. The first stage is a local, in this case, single scatter calculation, which generates probability distribution functions (PDFs) to describe the electron's energy, position and trajectory after leaving the local geometry, a small sphere or "kugel" A number of local kugel calculations were run for calcium and carbon, creating a library of kugel data sets over a range of incident energies (0.25 MeV - 8 MeV) and sizes (0.025 cm to 0.1 cm in radius). The second transport stage is a global calculation, where steps that conform to the size of the kugels in the library are taken through the global geometry. For each step, the appropriate PDFs from the MRMC library are sampled to determine the electron's new energy, position and trajectory. The electron is immediately advanced to the end of the step and then chooses another kugel to sample, which continues until transport is completed. The MRMC global stepping code was benchmarked as a series of subroutines inside of the Peregrine Monte Carlo code. It was compared to Peregrine's class II condensed history electron transport package, EGS4, and MCNP for depth dose in simple phantoms having density inhomogeneities. Since the kugels completed in the library were of relatively small size, the zoning of the phantoms was scaled down from a clinical size, so that the energy deposition algorithms for spreading dose across 5-10 zones per kugel could
Benchmarking of Proton Transport in Super Monte Carlo Simulation Program
Wang, Yongfeng; Li, Gui; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Wu, Yican
2014-06-01
The Monte Carlo (MC) method has been traditionally applied in nuclear design and analysis due to its capability of dealing with complicated geometries and multi-dimensional physics problems as well as obtaining accurate results. The Super Monte Carlo Simulation Program (SuperMC) is developed by FDS Team in China for fusion, fission, and other nuclear applications. The simulations of radiation transport, isotope burn-up, material activation, radiation dose, and biology damage could be performed using SuperMC. Complicated geometries and the whole physical process of various types of particles in broad energy scale can be well handled. Bi-directional automatic conversion between general CAD models and full-formed input files of SuperMC is supported by MCAM, which is a CAD/image-based automatic modeling program for neutronics and radiation transport simulation. Mixed visualization of dynamical 3D dataset and geometry model is supported by RVIS, which is a nuclear radiation virtual simulation and assessment system. Continuous-energy cross section data from hybrid evaluated nuclear data library HENDL are utilized to support simulation. Neutronic fixed source and critical design parameters calculates for reactors of complex geometry and material distribution based on the transport of neutron and photon have been achieved in our former version of SuperMC. Recently, the proton transport has also been intergrated in SuperMC in the energy region up to 10 GeV. The physical processes considered for proton transport include electromagnetic processes and hadronic processes. The electromagnetic processes include ionization, multiple scattering, bremsstrahlung, and pair production processes. Public evaluated data from HENDL are used in some electromagnetic processes. In hadronic physics, the Bertini intra-nuclear cascade model with exitons, preequilibrium model, nucleus explosion model, fission model, and evaporation model are incorporated to treat the intermediate energy nuclear
Energy Technology Data Exchange (ETDEWEB)
Mendonca, Dalila; Neves, Lucio P.; Perini, Ana P., E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (INFIS/UFU), Uberlandia, MG (Brazil). Instituto de Fisica; Santos, William S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
A special pencil type ionization chamber, developed at the Instituto de Pesquisas Energeticas e Nucleares, was characterized by means of Monte Carlo simulation to determine the influence of its components on its response. The main differences between this ionization chamber and commercial ionization chambers are related to its configuration and constituent materials. The simulations were made employing the MCNP-4C Monte Carlo code. The highest influence was obtained for the body of PMMA: 7.0%. (author)
New Monte Carlo method for the self-avoiding walk
Berretti, Alberto; Sokal, Alan D.
1985-08-01
We introduce a new Monte Carlo algorithm for the self-avoiding walk (SAW), and show that it is particularly efficient in the critical region (long chains). We also introduce new and more efficient statistical techniques. We employ these methods to extract numerical estimates for the critical parameters of the SAW on the square lattice. We find μ=2.63820 ± 0.00004 ± 0.00030 γ=1.352 ± 0.006 ± 0.025 νv=0.7590 ± 0.0062 ± 0.0042 where the first error bar represents systematic error due to corrections to scaling (subjective 95% confidence limits) and the second bar represents statistical error (classical 95% confidence limits). These results are based on SAWs of average length ≈ 166, using 340 hours CPU time on a CDC Cyber 170-730. We compare our results to previous work and indicate some directions for future research.
Monte Carlo simulation of electrical corona discharge in air
Energy Technology Data Exchange (ETDEWEB)
Settaouti, A.; Settaouti, L. [Electrotechnic Department, University of Sciences and Technology, P.O. Box 1505, El-M' naouar, Oran (Algeria)
2011-01-15
Electrical discharges play a key role in technologies; there are many industrial applications where the corona discharge is used. Air as insulator is probably the best compromise solution for many applications. All of this reflects on the great importance of the evaluation of the corona performance characteristics. Numerical simulation of the corona discharge helps to better understand the involved phenomena and optimize the corona devices. This paper is aimed at calculating the corona discharge in negative point-plane air gaps. To describe the non-equilibrium behavior of the electronic avalanches and to simulate the development of corona discharge the method of Monte Carlo has been used. This model provides the spatial-temporal local field and particles charged densities variations as well as the ionization front velocity. (author)
Spatial distribution sampling and Monte Carlo simulation of radioactive isotopes
Krainer, Alexander Michael
2015-01-01
This work focuses on the implementation of a program for random sampling of uniformly spatially distributed isotopes for Monte Carlo particle simulations and in specific FLUKA. With FLUKA it is possible to calculate the radio nuclide production in high energy fields. The decay of these nuclide, and therefore the resulting radiation field, however can only be simulated in the same geometry. This works gives the tool to simulate the decay of the produced nuclide in other geometries. With that the radiation field from an irradiated object can be simulated in arbitrary environments. The sampling of isotope mixtures was tested by simulating a 50/50 mixture of $Cs^{137}$ and $Co^{60}$. These isotopes are both well known and provide therefore a first reliable benchmark in that respect. The sampling of uniformly distributed coordinates was tested using the histogram test for various spatial distributions. The advantages and disadvantages of the program compared to standard methods are demonstrated in the real life ca...
Quantitative Monte Carlo-based holmium-166 SPECT reconstruction
Energy Technology Data Exchange (ETDEWEB)
Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Viergever, Max A. [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)
2013-11-15
Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80
Quantum Monte Carlo calculations of two neutrons in finite volume
Klos, P; Tews, I; Gandolfi, S; Gezerlis, A; Hammer, H -W; Hoferichter, M; Schwenk, A
2016-01-01
Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field theory interactions. We compare the results against exact diagonalizations and present a detailed analysis of the finite-volume effects, whose understanding is crucial for determining observables from the calculated energies. Using the L\\"uscher formula, we extract the low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes.
An Efficient Approach to Ab Initio Monte Carlo Simulation
Leiding, Jeff
2013-01-01
We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...
Monte Carlo simulations for design of the KFUPM PGNAA facility
Naqvi, A A; Maslehuddin, M; Kidwai, S
2003-01-01
Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement samp...
SPAMCART: a code for smoothed particle Monte Carlo radiative transfer
Lomax, O.; Whitworth, A. P.
2016-10-01
We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, i.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.
Stationarity and source convergence in monte carlo criticality calculation.
Energy Technology Data Exchange (ETDEWEB)
Ueki, T. (Taro); Brown, F. B. (Forrest B.)
2002-01-01
In Monte Carlo (MC) criticality calculations, source error propagation through the stationary cycles and source convergcnce in the settling (inactive) cycles are both dominated by the dominance ratio (DR) of fission kernels, Le., the ratio of the second largest to largest eigenvalues. For symmetric two fissile component systems with DR close to unity, the extinction of fission source sites can occur in one of the components even when the initial source is symmetric and the number of histories per cycle is larger than one thousand. When such a system is made slightly asymmetric, the neutron effective multiplication factor (kern) at the inactive cycles does not reflect the convergence to stationary source distribution. To overcome this problem, relative entropy (Kullback Leibler distance) is applied to a slightly asymmetric two fissile component problem with a dominance ratio of 0.9925. Numerical results show that relative entropy is effective as a posterior diagnostic tool.
Multidiscontinuity algorithm for world-line Monte Carlo simulations.
Kato, Yasuyuki
2013-01-01
We introduce a multidiscontinuity algorithm for the efficient global update of world-line configurations in Monte Carlo simulations of interacting quantum systems. This algorithm is a generalization of the two-discontinuity algorithms introduced in Refs. [N. Prokof'ev, B. Svistunov, and I. Tupitsyn, Phys. Lett. A 238, 253 (1998)] and [O. F. Syljuåsen and A. W. Sandvik, Phys. Rev. E 66, 046701 (2002)]. This generalization is particularly effective for studying Bose-Einstein condensates (BECs) of composite particles. In particular, we demonstrate the utility of the generalized algorithm by simulating a Hamiltonian for an S=1 antiferromagnet with strong uniaxial single-ion anisotropy. The multidiscontinuity algorithm not only solves the freezing problem that arises in this limit, but also allows the efficient computing of the off-diagonal correlator that characterizes a BEC of composite particles.
Monte Carlo study of Dirac semimetals phase diagram
Braguta, V. V.; Katsnelson, M. I.; Kotov, A. Yu.; Nikolaev, A. A.
2016-11-01
In this paper the phase diagram of Dirac semimetals is studied within a lattice Monte Carlo simulation. In particular, we concentrate on the dynamical chiral symmetry breaking which results in a semimetal-insulator transition. Using numerical simulation, we determine the values of the critical coupling constant of the semimetal-insulator transition for different values of the anisotropy of the Fermi velocity. This measurement allows us to draw a tentative phase diagram for Dirac semimetals. It turns out that within the Dirac model with Coulomb interaction both Na3Bi and Cd3As2 , known experimentally to be Dirac semimetals, would lie deep in the insulating region of the phase diagram. This result probably shows a decisive role of screening of the interelectron interaction in real materials, similar to the situation in graphene.
A Monte Carlo Simulation Framework for Testing Cosmological Models
Directory of Open Access Journals (Sweden)
Heymann Y.
2014-10-01
Full Text Available We tested alternative cosmologies using Monte Carlo simulations based on the sam- pling method of the zCosmos galactic survey. The survey encompasses a collection of observable galaxies with respective redshifts that have been obtained for a given spec- troscopic area of the sky. Using a cosmological model, we can convert the redshifts into light-travel times and, by slicing the survey into small redshift buckets, compute a curve of galactic density over time. Because foreground galaxies obstruct the images of more distant galaxies, we simulated the theoretical galactic density curve using an average galactic radius. By comparing the galactic density curves of the simulations with that of the survey, we could assess the cosmologies. We applied the test to the expanding-universe cosmology of de Sitter and to a dichotomous cosmology.
Calibration of the Top-Quark Monte-Carlo Mass
Kieseler, Jan; Moch, Sven-Olaf
2015-01-01
We present a method to establish experimentally the relation between the top-quark mass $m_t^{MC}$ as implemented in Monte-Carlo generators and the Lagrangian mass parameter $m_t$ in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of $m_t^{MC}$ and an observable sensitive to $m_t$, which does not rely on any prior assumptions about the relation between $m_t$ and $m_t^{MC}$. The measured observable is independent of $m_t^{MC}$ and can be used subsequently for a determination of $m_t$. The analysis strategy is illustrated with examples for the extraction of $m_t$ from inclusive and differential cross sections for hadro-production of top-quarks.
Monte Carlo Simulation of Magnetization Behaviour of Co Nanowires
Institute of Scientific and Technical Information of China (English)
ZHONG Ke-Hua; HUANG Zhi-Gao; FENG Qian; JIANG Li-Qin; YANG Yan-Min; CHEN Zhi-Gao
2006-01-01
Based on the Monte Carlo method, we simulate the magnetization curves with various magnetic field orientations for various single Co nanowires at room temperature. The simulated switching field as a function of angle θ between the field and the wire axis is consistent well with the experimental data. Correspondingly, the coercivity as a function of angle θ is presented, which together with the switching field plays an important role on explaining the magnetic reversal mechanism. It is found that the angular dependence of coercivity depends on the diameter of nanowires, and the coercivity and switching field versus θ deviate markedly from the prediction from the classical uniform rotation mode in the chain-of-sphere model. Furthermore, the magnetic reversal configurations display that magnetization reversal in the wires with small diameters is a nucleation-propagation process, and it is similar to the curling spread process in the larger wires.
Synchronous parallel kinetic Monte Carlo Diffusion in Heterogeneous Systems
Energy Technology Data Exchange (ETDEWEB)
Martinez Saez, Enrique [Los Alamos National Laboratory; Hetherly, Jeffery [Los Alamos National Laboratory; Caro, Jose A [Los Alamos National Laboratory
2010-12-06
A new hybrid Molecular Dynamics-kinetic Monte Carlo algorithm has been developed in order to study the basic mechanisms taking place in diffusion in concentrated alloys under the action of chemical and stress fields. Parallel implementation of the k-MC part based on a recently developed synchronous algorithm [1. Compo Phys. 227 (2008) 3804-3823] resorting on the introduction of a set of null events aiming at synchronizing the time for the different subdomains, added to the parallel efficiency of MD, provides the computer power required to evaluate jump rates 'on the flight', incorporating in this way the actual driving force emerging from chemical potential gradients, and the actual environment-dependent jump rates. The time gain has been analyzed and the parallel performance reported. The algorithm is tested on simple diffusion problems to verify its accuracy.
Microscopic imaging through turbid media Monte Carlo modeling and applications
Gu, Min; Deng, Xiaoyuan
2015-01-01
This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the unscattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in biophotonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.
Implementation of SANC EW corrections in WINHAC Monte Carlo generator
Bardin, D; Jadach, S; Kalinovskaya, L; Placzek, W
2009-01-01
In this paper we describe a check of the implementation of SANC system generated modules into the framework of WINHAC Monte Carlo event generator. At this stage of work we limit ourselves to inclusion of complete one-loop electroweak corrections. We perform a tuned comparison of the results derived with the aid of two codes: 1) the standard SANC integrator with a modified treatment of ISR QED corrections; 2) the modified WINHAC, upgraded with the SANC electroweak modules and downgraded to the O(alpha) QED corrections. The aim of this comparison is to prove the correctness of implementation of SANC EW modules into WINHAC. This is achieved through the presented tuned comparison.
Treatment planning in radiosurgery: parallel Monte Carlo simulation software
Energy Technology Data Exchange (ETDEWEB)
Scielzo, G. [Galliera Hospitals, Genova (Italy). Dept. of Hospital Physics; Grillo Ruggieri, F. [Galliera Hospitals, Genova (Italy) Dept. for Radiation Therapy; Modesti, M.; Felici, R. [Electronic Data System, Rome (Italy); Surridge, M. [University of South Hampton (United Kingdom). Parallel Apllication Centre
1995-12-01
The main objective of this research was to evaluate the possibility of direct Monte Carlo simulation for accurate dosimetry with short computation time. We made us of: graphics workstation, linear accelerator, water, PMMA and anthropomorphic phantoms, for validation purposes; ionometric, film and thermo-luminescent techniques, for dosimetry; treatment planning system for comparison. Benchmarking results suggest that short computing times can be obtained with use of the parallel version of EGS4 that was developed. Parallelism was obtained assigning simulation incident photons to separate processors, and the development of a parallel random number generator was necessary. Validation consisted in: phantom irradiation, comparison of predicted and measured values good agreement in PDD and dose profiles. Experiments on anthropomorphic phantoms (with inhomogeneities) were carried out, and these values are being compared with results obtained with the conventional treatment planning system.
Particle acceleration at shocks - A Monte Carlo method
Kirk, J. G.; Schneider, P.
1987-01-01
A Monte Carlo method is presented for the problem of acceleration of test particles at relativistic shocks. The particles are assumed to diffuse in pitch angle as a result of scattering off magnetic irregularities frozen into the fluid. Several tests are performed using the analytic results available for both relativistic and nonrelativistic shock speeds. The acceleration at relativistic shocks under the influence of radiation losses is investigated, including the effects of a momentum dependence in the diffusion coefficient. The results demonstrate the usefulness of the technique in those situations in which the diffusion approximation cannot be employed, such as when relativistic bulk motion is considered, when particles are permitted to escape at the boundaries, and when the effects of the finite length of the particle mean free path are important.
Monte Carlo Registration and Its Application with Autonomous Robots
Directory of Open Access Journals (Sweden)
Christian Rink
2016-01-01
Full Text Available This work focuses on Monte Carlo registration methods and their application with autonomous robots. A streaming and an offline variant are developed, both based on a particle filter. The streaming registration is performed in real-time during data acquisition with a laser striper allowing for on-the-fly pose estimation. Thus, the acquired data can be instantly utilized, for example, for object modeling or robot manipulation, and the laser scan can be aborted after convergence. Curvature features are calculated online and the estimated poses are optimized in the particle weighting step. For sampling the pose particles, uniform, normal, and Bingham distributions are compared. The methods are evaluated with a high-precision laser striper attached to an industrial robot and with a noisy Time-of-Flight camera attached to service robots. The shown applications range from robot assisted teleoperation, over autonomous object modeling, to mobile robot localization.
Improved version of the PHOBOS Glauber Monte Carlo
Loizides, C; Steinberg, P
2014-01-01
Glauber models are used to calculate geometric quantities in the initial state of heavy ion collisions, such as impact parameter, number of participating nucleons and initial eccentricity. Experimental heavy-ion collaboration, in particular at RHIC and LHC, use Glauber Model calculations for various geometric observables. In this document, we describe the assumptions inherent to the approach, and provide an updated implementation (v2) of the Monte Carlo based Glauber Model calculation, which originally was used by the PHOBOS collaboration. The main improvement w.r.t. the earlier version (arXiv:0805.4411) are the inclusion of tritium, Helium-3, and Uranium, as well as the treatment of deformed nuclei and Glauber-Gribov fluctuations of the proton in p+A collisions. A users' guide (updated to reflect changes in v2) is provided for running various calculations.
Criticality accident detector coverage analysis using the Monte Carlo Method
Energy Technology Data Exchange (ETDEWEB)
Zino, J.F.; Okafor, K.C.
1993-12-31
As a result of the need for a more accurate computational methodology, the Los Alamos developed Monte Carlo code MCNP is used to show the implementation of a more advanced and accurate methodology in criticality accident detector analysis. This paper will detail the application of MCNP for the analysis of the areas of coverage of a criticality accident alarm detector located inside a concrete storage vault at the Savannah River Site. The paper will discuss; (1) the generation of fixed-source representations of various criticality fission sources (for spherical geometries); (2) the normalization of these sources to the ``minimum criticality of concern`` as defined by ANS 8.3; (3) the optimization process used to determine which source produces the lowest total detector response for a given set of conditions; and (4) the use of this minimum source for the analysis of the areas of coverage of the criticality accident alarm detector.
Monte Carlo simulations of nanoscale focused neon ion beam sputtering.
Timilsina, Rajendra; Rack, Philip D
2013-12-13
A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.
Monte Carlo simulations of ABC stacked kagome lattice films
Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.
2016-05-01
Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.
Academic Training: Monte Carlo generators for the LHC
Françoise Benz
2005-01-01
2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Monte Carlo generators for the LHC T. SJOSTRAND / CERN-PH, Lund Univ. SE Event generators today are indispensable as tools for the modelling of complex physics processes, that jointly lead to the production of hundreds of particles per event at LHC energies. Generators are used to set detector requirements, to formulate analysis strategies, or to calculate acceptance corrections. These lectures describe the physics that goes into the construction of an event generator, such as hard processes, initial- and final-state radiation, multiple interactions and beam remnants, hadronization and decays, and how these pieces come together. The current main generators are introduced, and are used to illustrate uncertainties in the physics modelling. Some trends for the future are outlined. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch
Monte Carlo Simulation Tool Installation and Operation Guide
Energy Technology Data Exchange (ETDEWEB)
Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.
2013-09-02
This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.
Optimized nested Markov chain Monte Carlo sampling: theory
Energy Technology Data Exchange (ETDEWEB)
Coe, Joshua D [Los Alamos National Laboratory; Shaw, M Sam [Los Alamos National Laboratory; Sewell, Thomas D [U. MISSOURI
2009-01-01
Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.
Geometrical form factor calculation using Monte Carlo integration for lidar
Mao, Feiyue; Gong, Wei; Li, Jun
2012-06-01
We proposed a geometrical form factor (GFF) calculation using Monte Carlo integration (GFF-MC) for lidar that is practical and can be applied to any laser intensity distribution. Theoretical results have been calculated with our method based on the functions of measured, uniform and Gaussian laser intensity distribution. Two experimental GFF traces on clear days are obtained to verify the validity of the theoretical results. The results indicated that the measured distribution function outperformed the Gaussian and uniform functions. That means that the deviation of the measured laser intensity distribution from an ideal one can be too large to neglect. In addition, the theoretical GFF of the uniform distribution had a larger error than that of the Gaussian distribution. Furthermore, the effects of the inclination angle of the laser beam and the central obstruction of the support structure of the second mirror of the telescope are discussed in this study.
A Monte Carlo Method for Calculating Initiation Probability
Energy Technology Data Exchange (ETDEWEB)
Greenman, G M; Procassini, R J; Clouse, C J
2007-03-05
A Monte Carlo method for calculating the probability of initiating a self-sustaining neutron chain reaction has been developed. In contrast to deterministic codes which solve a non-linear, adjoint form of the Boltzmann equation to calculate initiation probability, this new method solves the forward (standard) form of the equation using a modified source calculation technique. Results from this new method are compared with results obtained from several deterministic codes for a suite of historical test problems. The level of agreement between these code predictions is quite good, considering the use of different numerical techniques and nuclear data. A set of modifications to the historical test problems has also been developed which reduces the impact of neutron source ambiguities on the calculated probabilities.
Monte Carlo Modeling of Crystal Channeling at High Energies
Schoofs, Philippe; Cerutti, Francesco
Charged particles entering a crystal close to some preferred direction can be trapped in the electromagnetic potential well existing between consecutive planes or strings of atoms. This channeling effect can be used to extract beam particles if the crystal is bent beforehand. Crystal channeling is becoming a reliable and efficient technique for collimating beams and removing halo particles. At CERN, the installation of silicon crystals in the LHC is under scrutiny by the UA9 collaboration with the goal of investigating if they are a viable option for the collimation system upgrade. This thesis describes a new Monte Carlo model of planar channeling which has been developed from scratch in order to be implemented in the FLUKA code simulating particle transport and interactions. Crystal channels are described through the concept of continuous potential taking into account thermal motion of the lattice atoms and using Moliere screening function. The energy of the particle transverse motion determines whether or n...
Monte Carlo studies of matrix theory correlation functions.
Hanada, Masanori; Nishimura, Jun; Sekino, Yasuhiro; Yoneya, Tamiaki
2010-04-16
We study correlation functions in (0+1)-dimensional maximally supersymmetric U(N) gauge theory, which represents the low-energy effective theory of D0-branes. In the large-N limit, the gauge-gravity duality predicts power-law behaviors in the infrared region for the two-point correlation functions of operators corresponding to supergravity modes. We evaluate such correlation functions on the gauge theory side by the Monte Carlo method. Clear power-law behaviors are observed at N=3, and the predicted exponents are confirmed consistently. Our results suggest that the agreement extends to the M-theory regime, where the supergravity analysis in 10 dimensions may not be justified a priori.
Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine
Sgouros, George
2003-01-01
This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...
Monte Carlo simulations of systems with complex energy landscapes
Wüst, T.; Landau, D. P.; Gervais, C.; Xu, Y.
2009-04-01
Non-traditional Monte Carlo simulations are a powerful approach to the study of systems with complex energy landscapes. After reviewing several of these specialized algorithms we shall describe the behavior of typical systems including spin glasses, lattice proteins, and models for "real" proteins. In the Edwards-Anderson spin glass it is now possible to produce probability distributions in the canonical ensemble and thermodynamic results of high numerical quality. In the hydrophobic-polar (HP) lattice protein model Wang-Landau sampling with an improved move set (pull-moves) produces results of very high quality. These can be compared with the results of other methods of statistical physics. A more realistic membrane protein model for Glycophorin A is also examined. Wang-Landau sampling allows the study of the dimerization process including an elucidation of the nature of the process.
Quantum Monte Carlo Calculations of Nucleon-Nucleus Scattering
Wiringa, R. B.; Nollett, Kenneth M.; Pieper, Steven C.; Brida, I.
2009-10-01
We report recent quantum Monte Carlo (variational and Green's function) calculations of elastic nucleon-nucleus scattering. We are adding the cases of proton-^4He, neutron-^3H and proton-^3He scattering to a previous GFMC study of neutron-^4He scattering [1]. To do this requires generalizing our methods to include long-range Coulomb forces and to treat coupled channels. The two four-body cases can be compared to other accurate four-body calculational methods such as the AGS equations and hyperspherical harmonic expansions. We will present results for the Argonne v18 interaction alone and with Urbana and Illinois three-nucleon potentials. [4pt] [1] K.M. Nollett, S. C. Pieper, R.B. Wiringa, J. Carlson, and G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007)
Hybrid Monte Carlo with Fat Link Fermion Actions
Kamleh, W; Williams, A G; Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.
2004-01-01
The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as FLIC fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarisation is often performed using an iterative maximisation of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing techniques or fat link actions...
Hybrid Monte Carlo algorithm with fat link fermion actions
Kamleh, Waseem; Williams, Anthony G; 10.1103/PhysRevD.70.014502
2004-01-01
The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as flat link irrelevant clover (FLIC) fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarization is often performed using an iterative maximization of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing ...
Continuous-time quantum Monte Carlo using worm sampling
Gunacker, P.; Wallerberger, M.; Gull, E.; Hausoel, A.; Sangiovanni, G.; Held, K.
2015-10-01
We present a worm sampling method for calculating one- and two-particle Green's functions using continuous-time quantum Monte Carlo simulations in the hybridization expansion (CT-HYB). Instead of measuring Green's functions by removing hybridization lines from partition function configurations, as in conventional CT-HYB, the worm algorithm directly samples the Green's function. We show that worm sampling is necessary to obtain general two-particle Green's functions which are not of density-density type and that it improves the sampling efficiency when approaching the atomic limit. Such two-particle Green's functions are needed to compute off-diagonal elements of susceptibilities and occur in diagrammatic extensions of the dynamical mean-field theory and in efficient estimators for the single-particle self-energy.
Bold diagrammatic Monte Carlo method applied to fermionized frustrated spins.
Kulagin, S A; Prokof'ev, N; Starykh, O A; Svistunov, B; Varney, C N
2013-02-15
We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing--cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.
Monte Carlo simulation of the hysteresis phenomena on ferromagnetic nanotubes.
Salazar-Enríquez, C D; Restrepo, J; Restrepo-Parra, E
2012-06-01
In this work the hysteretic properties of single wall ferromagnetic nanotubes were studied. Hysteresis loops were computed on the basis of a classical Heisenberg model involving nearest neighbor interactions and using a Monte Carlo method implemented with a single spin movement Metropolis dynamics. Nanotubes with square and hexagonal unit cells were studied varying their diameter, temperature and magneto-crystalline anisotropy. Effects of the diameter were found stronger in the square unit cell magnetic nanotubes (SMNTs) than in the hexagonal unit cell magnetic nanotubes (HMNTs). The ferromagnetic behavior was observed in SMNTs at higher temperature than in HMNTs. Moreover in both cases, SMNTs and HMNTs, the magneto-crystalline anisotropy in the longitudinal direction showed a linear correspondence with the coercive field.
Measuring Renyi entanglement entropy in quantum Monte Carlo simulations.
Hastings, Matthew B; González, Iván; Kallin, Ann B; Melko, Roger G
2010-04-16
We develop a quantum Monte Carlo procedure, in the valence bond basis, to measure the Renyi entanglement entropy of a many-body ground state as the expectation value of a unitary Swap operator acting on two copies of the system. An improved estimator involving the ratio of Swap operators for different subregions enables convergence of the entropy in a simulation time polynomial in the system size. We demonstrate convergence of the Renyi entropy to exact results for a Heisenberg chain. Finally, we calculate the scaling of the Renyi entropy in the two-dimensional Heisenberg model and confirm that the Néel ground state obeys the expected area law for systems up to linear size L=32.
Monte Carlo Simulation of Diamond Deposition at Low Temperature
Institute of Scientific and Technical Information of China (English)
董丽芳; 张玉红
2001-01-01
Diamond deposition at low temperatures is investigated and the relationship between substrate temperature for diamond growth and the energy of the carbonaceous species is given. The electron energy distribution and velocity distribution during the electron assisted chemical vapour deposition have been obtained by using Monte Carlo simulation. The main results obtained are as follows. (1) The substrate temperature for diamond growth will be lower than 800 C when the carbonaceous species on the substrate have mobility energy. For example, if the energy of the carbonaceous species is 0. 75 eV, the substrate temperature will be 380℃-600℃. (2) The greatnumber of atomic H on the substrate is of importance to the growth of diamond films.
High-Pressure Hydrogen Sulfide by Diffusion Quantum Monte Carlo
Azadi, Sam
2016-01-01
We use the diffusion quantum Monte Carlo to revisit the enthalpy-pressure phase diagram of the various products from the different proposed decompositions of H$_2$S at pressures above 150~GPa. Our results entails a revision of the ground-state enthalpy-pressure phase diagram. Specifically, we find that the C2/c HS$_2$ structure is persistent up to 440~GPa before undergoing a phase transition into the C2/m phase. Contrary to density functional theory, our calculations suggest that the C2/m phase of HS is more stable than the I4$_1$/amd HS structure over the whole pressure range from 150 to 400 GPa. Moreover, we predict that the Im-3m phase is the most likely candidate for H$_3$S, which is consistent with recent experimental x-ray diffraction measurements.
Markov Chain Monte-Carlo Models of Starburst Clusters
Melnick, Jorge
2015-01-01
There are a number of stochastic effects that must be considered when comparing models to observations of starburst clusters: the IMF is never fully populated; the stars can never be strictly coeval; stars rotate and their photometric properties depend on orientation; a significant fraction of massive stars are in interacting binaries; and the extinction varies from star to star. The probability distributions of each of these effects are not a priori known, but must be extracted from the observations. Markov Chain Monte-Carlo methods appear to provide the best statistical approach. Here I present an example of stochastic age effects upon the upper mass limit of the IMF of the Arches cluster as derived from near-IR photometry.
Optical monitoring of rheumatoid arthritis: Monte Carlo generated reconstruction kernels
Minet, O.; Beuthan, J.; Hielscher, A. H.; Zabarylo, U.
2008-06-01
Optical imaging in biomedicine is governed by the light absorption and scattering interaction on microscopic and macroscopic constituents in the medium. Therefore, light scattering characteristics of human tissue correlate with the stage of some diseases. In the near infrared range the scattering event with the coefficient approximately two orders of magnitude greater than absorption plays a dominant role. When measuring the optical parameters variations were discovered that correlate with the rheumatoid arthritis of a small joint. The potential of an experimental setup for transillumination the finger joint with a laser diode and the pattern of the stray light detection are demonstrated. The scattering caused by skin contains no useful information and it can be removed by a deconvolution technique to enhance the diagnostic value of this non-invasive optical method. Monte Carlo simulations ensure both the construction of the corresponding point spread function and both the theoretical verification of the stray light picture in rather complex geometry.
Kinetic Monte Carlo simulation of the classical nucleation process
Filipponi, A.; Giammatteo, P.
2016-12-01
We implemented a kinetic Monte Carlo computer simulation of the nucleation process in the framework of the coarse grained scenario of the Classical Nucleation Theory (CNT). The computational approach is efficient for a wide range of temperatures and sample sizes and provides a reliable simulation of the stochastic process. The results for the nucleation rate are in agreement with the CNT predictions based on the stationary solution of the set of differential equations for the continuous variables representing the average population distribution of nuclei size. Time dependent nucleation behavior can also be simulated with results in agreement with previous approaches. The method, here established for the case in which the excess free-energy of a crystalline nucleus is a smooth-function of the size, can be particularly useful when more complex descriptions are required.
A Monte Carlo implementation of the BDMPS-Z formalism
Energy Technology Data Exchange (ETDEWEB)
Wiedemann, Urs Achim [CERN PH-TH Department, CH-1211 Geneva (Switzerland); Zapp, Korinna Christine [Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE (United Kingdom); Stachel, Johanna [Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany)
2011-04-01
We present preliminary results of a Monte Carlo algorithm that provides a faithful representation of the BDMPS-Z formalism for highly energetic partons interacting in dense QCD matter. In the incoherent limit, the evolution is governed by the probabilities for elastic and inelastic scattering of the highly energetic parton with target constituents in the dense QCD matter. A dynamically evolving formation time encodes coherence effects in such a way that a probabilistic implementation of the BDMPS-Z formalism is obtained. Since the scattering probabilities of the proposed algorithm depend on the total elastic and inelastic cross sections presented by target constituents, they will be sensitive to the IR and UV regulators of these cross sections. In this proceedings article, we highlight only one important feature of the algorithm, namely that the physical output is insensitive to these regulators. A complete description of the algorithm will be given in an upcoming publication.
Single temperature for Monte Carlo optimization on complex landscapes
Tolkunov, Denis
2012-01-01
We propose a new strategy for Monte Carlo (MC) optimization on rugged multidimensional landscapes. The strategy is based on querying the statistical properties of the landscape in order to find the temperature at which the mean first passage time across the current region of the landscape is minimized. Thus, in contrast to other algorithms such as simulated annealing (SA), we explicitly match the temperature schedule to the statistics of landscape irregularities. In cases where this statistics is approximately the same over the entire landscape, or where non-local moves couple distant parts of the landscape, single-temperature MC will outperform any other MC algorithm with the same move set. We also find that in strongly anisotropic Coulomb spin glass and traveling salesman problems, the only relevant statistics (which we use to assign a single MC temperature) is that of irregularities in low-energy funnels. Our results may explain why protein folding in nature is efficient at room temperatures.
Monte Carlo simulations of landmine detection using neutron backscattering imaging
Energy Technology Data Exchange (ETDEWEB)
Datema, Cor P. E-mail: c.datema@iri.tudelft.nl; Bom, Victor R.; Eijk, Carel W.E. van
2003-11-01
Neutron backscattering is a technique that has successfully been applied to the detection of non-metallic landmines. Most of the effort in this field has concentrated on single detectors that are scanned across the soil. Here, two new approaches are presented in which a two-dimensional image of the hydrogen distribution in the soil is made. The first method uses an array of position-sensitive {sup 3}He-tubes that is placed in close proximity of the soil. The second method is based on coded aperture imaging. Here, thermal neutrons from the soil are projected onto a detector which is typically placed one to several meters above the soil. Both methods use a pulsed D/D neutron source. The Monte Carlo simulation package GEANT 4 was used to investigate the performance of both imaging systems.
Residual entropy of ice III from Monte Carlo simulation.
Kolafa, Jiří
2016-03-28
We calculated the residual entropy of ice III as a function of the occupation probabilities of hydrogen positions α and β assuming equal energies of all configurations. To do this, a discrete ice model with Bjerrum defect energy penalty and harmonic terms to constrain the occupation probabilities was simulated by the Metropolis Monte Carlo method for a range of temperatures and sizes followed by thermodynamic integration and extrapolation to N = ∞. Similarly as for other ices, the residual entropies are slightly higher than the mean-field (no-loop) approximation. However, the corrections caused by fluctuation of energies of ice samples calculated using molecular models of water are too large for accurate determination of the chemical potential and phase equilibria.
Reversible jump Markov chain Monte Carlo for deconvolution.
Kang, Dongwoo; Verotta, Davide
2007-06-01
To solve the problem of estimating an unknown input function to a linear time invariant system we propose an adaptive non-parametric method based on reversible jump Markov chain Monte Carlo (RJMCMC). We use piecewise polynomial functions (splines) to represent the input function. The RJMCMC algorithm allows the exploration of a large space of competing models, in our case the collection of splines corresponding to alternative positions of breakpoints, and it is based on the specification of transition probabilities between the models. RJMCMC determines: the number and the position of the breakpoints, and the coefficients determining the shape of the spline, as well as the corresponding posterior distribution of breakpoints, number of breakpoints, coefficients and arbitrary statistics of interest associated with the estimation problem. Simulation studies show that the RJMCMC method can obtain accurate reconstructions of complex input functions, and obtains better results compared with standard non-parametric deconvolution methods. Applications to real data are also reported.
Markov chain Monte Carlo simulation for Bayesian Hidden Markov Models
Chan, Lay Guat; Ibrahim, Adriana Irawati Nur Binti
2016-10-01
A hidden Markov model (HMM) is a mixture model which has a Markov chain with finite states as its mixing distribution. HMMs have been applied to a variety of fields, such as speech and face recognitions. The main purpose of this study is to investigate the Bayesian approach to HMMs. Using this approach, we can simulate from the parameters' posterior distribution using some Markov chain Monte Carlo (MCMC) sampling methods. HMMs seem to be useful, but there are some limitations. Therefore, by using the Mixture of Dirichlet processes Hidden Markov Model (MDPHMM) based on Yau et. al (2011), we hope to overcome these limitations. We shall conduct a simulation study using MCMC methods to investigate the performance of this model.
Monte Carlo PENRADIO software for dose calculation in medical imaging
Adrien, Camille; Lòpez Noriega, Mercedes; Bonniaud, Guillaume; Bordy, Jean-Marc; Le Loirec, Cindy; Poumarede, Bénédicte
2014-06-01
The increase on the collective radiation dose due to the large number of medical imaging exams has led the medical physics community to deeply consider the amount of dose delivered and its associated risks in these exams. For this purpose we have developed a Monte Carlo tool, PENRADIO, based on a modified version of PENELOPE code 2006 release, to obtain an accurate individualized radiation dose in conventional and interventional radiography and in computed tomography (CT). This tool has been validated showing excellent agreement between the measured and simulated organ doses in the case of a hip conventional radiography and a coronography. We expect the same accuracy in further results for other localizations and CT examinations.
Monte Carlo simulations of ABC stacked kagome lattice films.
Yerzhakov, H V; Plumer, M L; Whitehead, J P
2016-05-18
Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.
Monte Carlo estimation of the number of tatami tilings
Kimura, Kenji; Higuchi, Saburo
2016-04-01
Motivated by the way Japanese tatami mats are placed on the floor, we consider domino tilings with a constraint and estimate the number of such tilings of plane regions. We map the system onto a monomer-dimer model with a novel local interaction on the dual lattice. We make use of a variant of the Hamiltonian replica exchange Monte Carlo method where data for ferromagnetic and anti-ferromagnetic models are combined to make a single family of histograms. The properties of the density of states is studied beyond exact enumeration and combinatorial methods. The logarithm of the number of the tilings is linear in the boundary length of the region for all the regions studied.