WorldWideScience

Sample records for 4d guide-point modelling

  1. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  2. Predicting lower mantle heterogeneity from 4-D Earth models

    Science.gov (United States)

    Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.

    2016-04-01

    basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).

  3. When chaos meets hyperchaos: 4D Rössler model

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, Roberto, E-mail: rbarrio@unizar.es [Departamento de Matemática Aplicada and IUMA, University of Zaragoza, E-50009 Zaragoza (Spain); Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza (Spain); Angeles Martínez, M., E-mail: gelimc@unizar.es [Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza (Spain); Serrano, Sergio, E-mail: sserrano@unizar.es [Departamento de Matemática Aplicada and IUMA, University of Zaragoza, E-50009 Zaragoza (Spain); Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza (Spain); Wilczak, Daniel, E-mail: wilczak@ii.uj.edu.pl [Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków (Poland)

    2015-10-09

    Chaotic behavior is a common feature of nonlinear dynamics, as well as hyperchaos in high-dimensional systems. In numerical simulations of these systems it is quite difficult to distinguish one from another behavior in some situations, as the results are frequently quite “noisy”. We show that in such systems a global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. This fact provides a mechanism for these noisy results. The coexistence of chaos and hyperchaos is proved via Computer-Assisted Proofs techniques. - Highlights: • The coexistence of chaos and hyperchaos in the 4D Rössler system is proved via Computer-Assisted Proofs techniques. • A global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. • The long transient behaviors make difficult in numerical simulations to distinguish chaos from hyperchaos in some situations.

  4. When chaos meets hyperchaos: 4D Rössler model

    International Nuclear Information System (INIS)

    Chaotic behavior is a common feature of nonlinear dynamics, as well as hyperchaos in high-dimensional systems. In numerical simulations of these systems it is quite difficult to distinguish one from another behavior in some situations, as the results are frequently quite “noisy”. We show that in such systems a global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. This fact provides a mechanism for these noisy results. The coexistence of chaos and hyperchaos is proved via Computer-Assisted Proofs techniques. - Highlights: • The coexistence of chaos and hyperchaos in the 4D Rössler system is proved via Computer-Assisted Proofs techniques. • A global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. • The long transient behaviors make difficult in numerical simulations to distinguish chaos from hyperchaos in some situations

  5. 4D Shape-Preserving Modelling of Bone Growth

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt; Nielsen, Mads; Kreiborg, Sven

    1998-01-01

    subdivide the growth analysis into growth simulation, growth modelling, and finally the growth analysis. In this paper, we present results of growth simulation of the mandible from 3 scannings of the same patient in the age of 9 months, 21 months, and 7 years. We also present the first growth models and...

  6. From 3D TQFTs to 4D models with defects

    CERN Document Server

    Delcamp, Clement

    2016-01-01

    (2+1) dimensional topological quantum field theories with defect excitations are by now quite well understood, while many questions are still open for (3+1) dimensional TQFTs. Here we propose a strategy to lift states and operators of a (2+1) dimensional TQFT to states and operators of a (3+1) dimensional theory with defects. The main technical tool are Heegard splittings, which allow to encode the topology of a three--dimensional manifold with line defects into a two--dimensional Heegard surface. We apply this idea to the example of BF theory which describes locally flat connections. This shows in particular how the curvature excitation generating surface operators of the (3+1) dimensional theory can be obtained from closed ribbon operators of the (2+1) dimensional BF theory. We hope that this technique allows the construction and study of more general models based on unitary fusion categories.

  7. Challenges of 4D(ata Model for Electronic Government

    Directory of Open Access Journals (Sweden)

    Bogdan GHILIC-MICU

    2015-01-01

    Full Text Available Social evolution pyramid, built on the foundation of the ‘90s capitalist society, lead to the emergence of the informational society – years 1990 to 2005 – and knowledge society – years 2005 to 2020. The literature starts using a new concept, a new form of association – artificial intelligence society – foreseen to be established in the next time frame. All these developments of human society and translations or leaps (most of the times apparently timeless were, are and will be possible only due to the advancing information and communications technologies. The leap to Democracy 3.0, based on information and communication technologies prompts to a radical change in the majority of the classical concepts targeting society structure and the way it is guided and controlled. Thus, concepts become electronic concepts (or e-concepts through the use of new technologies. E-concepts keep the essence of the classical principles of liberty and democracy, adding a major aspect of the new way of communication and spreading ideas between people. The main problem is to quantify, analyze and foresee the way technological changes will influence not only the economic system, but also the daily life of the individual and the society. Unfortunately (or maybe fortunately, depending on the point of view, all these evolutions and technological and social developments are as many challenges for the governments of the world. In this paper we will highlight only four of the challenges facing the governments, grouped in a structured model with the following specific concepts: Big Data, Social Data, Linked Data and Mobile Data. This is an emerging paradigm of the information and communication technology supporting national and global eGovernment projects.

  8. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    Science.gov (United States)

    Martin, Tamara P.; Hortigon-Vinagre, Maria P.; Findlay, Jane E.; Elliott, Christina; Currie, Susan; Baillie, George S.

    2014-01-01

    Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D) complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling. PMID:25426411

  9. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    Directory of Open Access Journals (Sweden)

    Tamara P. Martin

    2014-01-01

    Full Text Available Phosphorylated heat shock protein 20 (HSP20 is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling.

  10. Allowing for model error in strong constraint 4D-Var

    Science.gov (United States)

    Howes, Katherine; Lawless, Amos; Fowler, Alison

    2016-04-01

    Four dimensional variational data assimilation (4D-Var) can be used to obtain the best estimate of the initial conditions of an environmental forecasting model, namely the analysis. In practice, when the forecasting model contains errors, the analysis from the 4D-Var algorithm will be degraded to allow for errors later in the forecast window. This work focusses on improving the analysis at the initial time by allowing for the fact that the model contains error, within the context of strong constraint 4D-Var. The 4D-Var method developed acknowledges the presence of random error in the model at each time step by replacing the observation error covariance matrix with an error covariance matrix that includes both observation error and model error statistics. It is shown that this new matrix represents the correct error statistics of the innovations in the presence of model error. A method for estimating this matrix using innovation statistics, without requiring prior knowledge of the model error statistics, is presented. The method is demonstrated numerically using a non-linear chaotic system with erroneous parameter values. We show that that the new method works to reduce the analysis error covariance when compared with a standard strong constraint 4D-Var scheme. We discuss the fact that an improved analysis will not necessarily provide a better forecast.

  11. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    Science.gov (United States)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  12. Model-driven physiological assessment of the mitral valve from 4D TEE

    Science.gov (United States)

    Voigt, Ingmar; Ionasec, Razvan Ioan; Georgescu, Bogdan; Houle, Helene; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2009-02-01

    Disorders of the mitral valve are second most frequent, cumulating 14 percent of total number of deaths caused by Valvular Heart Disease each year in the United States and require elaborate clinical management. Visual and quantitative evaluation of the valve is an important step in the clinical workflow according to experts as knowledge about mitral morphology and dynamics is crucial for interventional planning. Traditionally this involves examination and metric analysis of 2D images comprising potential errors being intrinsic to the method. Recent commercial solutions are limited to specific anatomic components, pathologies and a single phase of cardiac 4D acquisitions only. This paper introduces a novel approach for morphological and functional quantification of the mitral valve based on a 4D model estimated from ultrasound data. A physiological model of the mitral valve, covering the complete anatomy and eventual shape variations, is generated utilizing parametric spline surfaces constrained by topological and geometrical prior knowledge. The 4D model's parameters are estimated for each patient using the latest discriminative learning and incremental searching techniques. Precise evaluation of the anatomy using model-based dynamic measurements and advanced visualization are enabled through the proposed approach in a reliable, repeatable and reproducible manner. The efficiency and accuracy of the method is demonstrated through experiments and an initial validation based on clinical research results. To the best of our knowledge this is the first time such a patient specific 4D mitral valve model is proposed, covering all of the relevant anatomies and enabling to model the common pathologies at once.

  13. 4D/RCS: a reference model architecture for intelligent unmanned ground vehicles

    Science.gov (United States)

    Albus, James S.

    2002-07-01

    4D/RCS consists of a multi-layered multi-resolutional hierarchy of computational nodes each containing elements of sensory processing (SP), world modeling (WM), value judgment (VJ), and behavior generation (BG). At the lower levels, these elements generate goal-seeking reactive behavior. At higher levels, they enable goal-defining deliberative behavior. At low levels, range in space and time is short and resolution is high. At high levels, distance and time are long and resolution is low. This enables high-precision fast-action response over short intervals of time and space at low levels, while long-range plans and abstract concepts are being formulated over broad regions of time and space at high levels. 4D/RCS closes feedback loops at every level. SP processes focus attention (i.e., window regions of space or time), group (i.e., segment regions into entities), compute entity attributes, estimate entity state, and assign entities to classes at every level. WM processes maintain a rich and dynamic database of knowledge about the world in the form of images, maps, entities, events, and relationships at every level. Other WM processes use that knowledge to generate estimates and predictions that support perception, reasoning, and planning at every level. 4D/RCS was developed for the Army Research Laboratory Demo III program. To date, only the lower levels of the 4D/RCS architecture have been fully implemented, but the results have been extremely positive. It seems clear that the theoretical basis of 4D/RCS is sound and the architecture is capable of being extended to support much higher levels of performance.

  14. Planning lung radiotherapy using 4D CT data and a motion model

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, R; McQuaid, D; Evans, P M; Webb, S [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); McClelland, J; Hawkes, D [Centre of Medical Image Computing at University College London, Gower Street, London WC1E 6BT (United Kingdom); Brock, J [Academic Radiotherapy Unit, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Landau, D [Oncology Department, Guy' s and St. Thomas' NHS Trust, London (United Kingdom)], E-mail: steve.webb@icr.ac.uk

    2008-10-21

    This work is a feasibility study to use a four-dimensional computed tomography (4D CT) dataset generated by a continuous motion model for treatment planning in lung radiotherapy. The model-based 4D CT data were derived from multiple breathing cycles. Four patients were included in this retrospective study. Treatment plans were optimized at end-exhale for each patient and the effect of respiratory motion on the dose delivery investigated. The accuracy of the delivered dose as determined by the number of intermediate respiratory phases used for the calculation was considered. The time-averaged geometry of the anatomy representing the mid-ventilation phase of the breathing cycle was generated using the motion model and a treatment plan was optimized for this phase for one patient. With respiratory motion included, the mid-ventilation plan achieved better target coverage than the plan optimized at end-exhale when standard margins were used to expand the clinical target volume (CTV) to planning target volume (PTV). Using a margin to account for set-up uncertainty only, resulted in poorer target coverage and healthy tissue sparing. For this patient cohort, the results suggest that conventional three-dimensional treatment planning was sufficient to maintain target coverage despite respiratory motion. The motion model has proved a useful tool in 4D treatment planning.

  15. Application of adaptive kinetic modelling for bias propagation reduction in direct 4D image reconstruction

    Science.gov (United States)

    Kotasidis, F. A.; Matthews, J. C.; Reader, A. J.; Angelis, G. I.; Zaidi, H.

    2014-10-01

    Parametric imaging in thoracic and abdominal PET can provide additional parameters more relevant to the pathophysiology of the system under study. However, dynamic data in the body are noisy due to the limiting counting statistics leading to suboptimal kinetic parameter estimates. Direct 4D image reconstruction algorithms can potentially improve kinetic parameter precision and accuracy in dynamic PET body imaging. However, construction of a common kinetic model is not always feasible and in contrast to post-reconstruction kinetic analysis, errors in poorly modelled regions may spatially propagate to regions which are well modelled. To reduce error propagation from erroneous model fits, we implement and evaluate a new approach to direct parameter estimation by incorporating a recently proposed kinetic modelling strategy within a direct 4D image reconstruction framework. The algorithm uses a secondary more general model to allow a less constrained model fit in regions where the kinetic model does not accurately describe the underlying kinetics. A portion of the residuals then is adaptively included back into the image whilst preserving the primary model characteristics in other well modelled regions using a penalty term that trades off the models. Using fully 4D simulations based on dynamic [15O]H2O datasets, we demonstrate reduction in propagation-related bias for all kinetic parameters. Under noisy conditions, reductions in bias due to propagation are obtained at the cost of increased noise, which in turn results in increased bias and variance of the kinetic parameters. This trade-off reflects the challenge of separating the residuals arising from poor kinetic modelling fits from the residuals arising purely from noise. Nonetheless, the overall root mean square error is reduced in most regions and parameters. Using the adaptive 4D image reconstruction improved model fits can be obtained in poorly modelled regions, leading to reduced errors potentially propagating

  16. A SHAPE-NAVIGATED IMAGE DEFORMATION MODEL FOR 4D LUNG RESPIRATORY MOTION ESTIMATION

    OpenAIRE

    Liu, Xiaoxiao; Saboo, Rohit R.; Pizer, Stephen M.; Mageras, Gig S.

    2009-01-01

    Intensity modulated radiation therapy (IMRT) for cancers in the lung remains challenging due to the complicated respiratory dynamics. We propose a shape-navigated dense image deformation model to estimate the patient-specific breathing motion using 4D respiratory correlated CT (RCCT) images. The idea is to use the shape change of the lungs, the major motion feature in the thorax image, as a surrogate to predict the corresponding dense image deformation from training.

  17. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    Science.gov (United States)

    Fung, George S. K.; Segars, W. Paul; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2011-09-01

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be

  18. Semantic World Modelling and Data Management in a 4d Forest Simulation and Information System

    Science.gov (United States)

    Roßmann, J.; Hoppen, M.; Bücken, A.

    2013-08-01

    Various types of 3D simulation applications benefit from realistic forest models. They range from flight simulators for entertainment to harvester simulators for training and tree growth simulations for research and planning. Our 4D forest simulation and information system integrates the necessary methods for data extraction, modelling and management. Using modern methods of semantic world modelling, tree data can efficiently be extracted from remote sensing data. The derived forest models contain position, height, crown volume, type and diameter of each tree. This data is modelled using GML-based data models to assure compatibility and exchangeability. A flexible approach for database synchronization is used to manage the data and provide caching, persistence, a central communication hub for change distribution, and a versioning mechanism. Combining various simulation techniques and data versioning, the 4D forest simulation and information system can provide applications with "both directions" of the fourth dimension. Our paper outlines the current state, new developments, and integration of tree extraction, data modelling, and data management. It also shows several applications realized with the system.

  19. Selective 4D modelling framework for spatial-temporal land information management system

    Science.gov (United States)

    Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos

    2015-06-01

    This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.

  20. Difermion condensates in vacuum in 2-4D four-fermion interaction models

    CERN Document Server

    Bang-Rong, Zhou

    2007-01-01

    Theoretical analysis of interplay between the condensates $$ and $$ in vacuum is generally made by relativistic effective potentials in the mean field approximation in 2D, 3D and 4D models with two flavor and $N_c$ color massless fermions. It is found that in ground states of these models, interplay between the two condensates mainly depend on the ratio $G_S/H_S$ for 2D and 4D case or $G_S/H_P$ for 3D case, where $G_S$, $H_S$ and $H_P$ are respectively the coupling constants in a scalar $(\\bar{q}q)$, a scalar $(qq)$ and a pseudoscalar $(qq)$ channel. In ground states of all the models, only pure $$ condensates could exist if $G_S/H_S$ or $G_S/H_P$ is bigger than the critical value $2/N_c$, the ratio of the color numbers of the fermions entering into the condensates $$ and $$. As $G_S/H_S$ or $G_S/H_P$ decreases to the region below $2/N_c$, differences of the models will manifest themselves. Depending on different models, and also on $N_c$ in 3D model, one will have or have no the coexistence phase of the two ...

  1. Treating chemical diversity in QSAR analysis: modeling diverse HIV-1 integrase inhibitors using 4D fingerprints.

    Science.gov (United States)

    Iyer, Manisha; Hopfinger, A J

    2007-01-01

    A set of 213 compounds across 12 structurally diverse classes of HIV-1 integrase inhibitors was used to develop and evaluate a combined clustering and QSAR modeling methodology to construct significant, reliable, and robust models for structurally diverse data sets. The trial-descriptor pool for both clustering- and QSAR-model building consisted of 4D fingerprints and classic QSAR descriptors. Clustering was carried out using a combination of the partitioning around medoids method and divisive hierarchical clustering. QSAR models were constructed for members of each cluster by linear-regression fitting and model optimization using the genetic function approximation. The 12 structurally diverse classes of integrase inhbitors were partitioned into five clusters from which corresponding QSAR models, overwhelmingly composed of 4D fingerprint descriptors, were constructed. Analysis of the five QSAR models suggests that three models correspond to structurally diverse inhibitors that likely bind at a common site on integrase characterized by a common inhibitor hydrogen-bond donor, but involving somewhat different alignments and/or poses for the inhibitors of each of the three clusters. The particular alignments for the inhibitors of each of the three QSAR models involve specific distributions of nonpolar groups over the inhibitors. The two other clusters, one for coumarins and the other for depsides and depsidones, lead to QSAR models with less-defined pharmacophores, likely representing an inhibitor binding to a site(s) different from that of the other nine classes of inhibitors. Overall, the clustering and QSAR methodology employed in this study suggests that it can meaningfully partition structurally diverse compounds expressing a common endpoint in such a manner that leads to statistically significant and pharmacologically insightful composite QSAR models. PMID:17661457

  2. Construction Process Simulation and Safety Analysis Based on Building Information Model and 4D Technology

    Institute of Scientific and Technical Information of China (English)

    HU Zhenzhong; ZHANG Jianping; DENG Ziyin

    2008-01-01

    Time-dependent structure analysis theory has been proved to be more accurate and reliable com-pared to commonly used methods during construction. However, so far applications are limited to partial pe-riod and part of the structure because of immeasurable artificial intervention. Based on the building informa-tion model (BIM) and four-dimensional (4D) technology, this paper proposes an improves structure analysis method, which can generate structural geometry, resistance model, and loading conditions automatically by a close interlink of the schedule information, architectural model, and material properties. The method was applied to a safety analysis during a continuous and dynamic simulation of the entire construction process.The results show that the organic combination of the BIM, 4D technology, construction simulation, and safety analysis of time-dependent structures is feasible and practical. This research also lays a foundation for further researches on building lifecycle management by combining architectural design, structure analy-sis, and construction management.

  3. Incremental 4D-VAR assimilation scheme based on Lorenz model

    Institute of Scientific and Technical Information of China (English)

    WANG Xidong; XU Dongfeng; XU Xiaohua

    2008-01-01

    Four-dimensional variational(4D-VAR) data assimilation method is a perfect data assimilation solution in theory, but the compu- tational issue is quite difficult in operational implementation. The incremental 4D-VAR assimilation scheme is set up in order to re- duce the computational cost. It is shown that the accuracy of the observations, the length of the assimilation window and the choice of the first guess have an important influence on the assimilation outcome through the contrast experiment. Compared with the standard 4D-VAR assimilation scheme, the incremental 4D-VAR assimilation scheme shows its advantage in the computation speed through an assimilation experiment.

  4. 4D modeling and estimation of respiratory motion for radiation therapy

    CERN Document Server

    Lorenz, Cristian

    2013-01-01

    Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient’s body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the br...

  5. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    Science.gov (United States)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  6. Strategies for 4-D Regional Modeling of Water Vapour Using GPS

    Institute of Scientific and Technical Information of China (English)

    S. H. Skone; S.M. Shrestha

    2003-01-01

    Global Positioning System (GPS) signals experience ranging errors due to propagation through the neutral atmosphere. These range delays consist of a hydrostatic component, dependent on air pressure and temperature, and a wet delay dependent on water vapour pressure and temperature.Range delays arising from the hydrostatic component can be computed with accuracies of a few millimeters using existing models, provided that surface barometric or meteorological data are available. By using a regional network of GPS reference stations, it is possible to recover estimates of the Slant Wet Delay to all satellites in view. Observations of the Slant Wet Delay (SWD) can be used to model the vertical and horizontal structure of water vapour over a local area. These techniques are based on a tomographic approach using the SWD as input observables, where 4-D models of the wet refractivity may be derived. This method allows improved resolution of water vapour estimates for precise positioning applications and assimilation into Numerical Weather Predictions (NWP). In this paper we present strategies for real-time modeling of wet refractivity, with simulations and preliminary results of data processing for a regional GPS network in Southern California.

  7. 4D modeling of salt-sediment interactions during diapir evolution

    Energy Technology Data Exchange (ETDEWEB)

    Callot, J.P.; Rondon, D.; Letouzey, J. [IFP, Rueil Malmaison (France); Krajewski, P. [Gaz de France-PEG, Lingen (Germany); Rigollet, C. [Gaz de France, St. Denis la Plaine (France)

    2007-09-13

    We performed sand/silicon models imaged with X-ray tomography and reconstructed by 3D geomodelling for the study of (1) the interaction between host rock and salt diapir during diapir growth, and (2) the evolution of intra salt brittle rocks during diapir ascent. X-ray tomography is a non destructive imaging technique which allows us to follow the 4D evolution of the analogue model. Salt is modelled by Newtonian silicone putty and the internal rock layer, as well as the sedimentary host rock, by a granular Mohr-Coulomb material, generally coryndon. The analogue models are then compared to natural examples, the evolution of which is obtained through 3D restoration of the structures. (1) A 4D evolutionary scenario for a salt diapir development was originally proposed by Trusheim (1960) and discussed later on by Vendeville (1999) among others (Ge et al., 1997; Zirngast et al., 1996). This scenario is reproduced through analogue models to test the relative importance of (1) extensional tectonics, (2) sediment progradations, and (3) source layer depletion and rim-syncline touchdown, in the evolution of a diapir. The comparison of our results with the restored natural analogue shows that the main parameter remains (1) the rim-syncline touchdown and (2) the unloading of the diapir due to erosion. The latter accounts for a drop in strength necessary to allow for the flank rotation and down building of the diapir. Extensional stresses and sediment progradations will also amplify the halokinesis. (2) Salt diapirs from the Middle East or in Southern Permian Basin petroleum province show exotic blocks at outcrop and in salt mines, known as 'stringers' in subsurface data, usually composed of anhydrite, dolomite, marls or carbonates. These stringers, which constitute major structures inside the salt diapir, can reach a few km in size and originate from pre-existing brittle rock layers embedded in the salt layer. Stringers of the Ara carbonate within the Precambrian

  8. 4D maximum a posteriori reconstruction in dynamic SPECT using a compartmental model-based prior

    International Nuclear Information System (INIS)

    A 4D ordered-subsets maximum a posteriori (OSMAP) algorithm for dynamic SPECT is described which uses a temporal prior that constrains each voxel's behaviour in time to conform to a compartmental model. No a priori limitations on kinetic parameters are applied; rather, the parameter estimates evolve as the algorithm iterates to a solution. The estimated parameters and time-activity curves are used within the reconstruction algorithm to model changes in the activity distribution as the camera rotates, avoiding artefacts due to inconsistencies of data between projection views. This potentially allows for fewer, longer-duration scans to be used and may have implications for noise reduction. The algorithm was evaluated qualitatively using dynamic 99mTc-teboroxime SPECT scans in two patients, and quantitatively using a series of simulated phantom experiments. The OSMAP algorithm resulted in images with better myocardial uniformity and definition, gave time-activity curves with reduced noise variations, and provided wash-in parameter estimates with better accuracy and lower statistical uncertainty than those obtained from conventional ordered-subsets expectation-maximization (OSEM) processing followed by compartmental modelling. The new algorithm effectively removed the bias in k21 estimates due to inconsistent projections for sampling schedules as slow as 60 s per timeframe, but no improvement in wash-out parameter estimates was observed in this work. The proposed dynamic OSMAP algorithm provides a flexible framework which may benefit a variety of dynamic tomographic imaging applications. (author)

  9. Pachner moves in a 4d Riemannian holomorphic Spin Foam model

    CERN Document Server

    Banburski, Andrzej; Freidel, Laurent; Hnybida, Jeff

    2014-01-01

    In this work we study a Spin Foam model for 4d Riemannian gravity, and propose a new way of imposing the simplicity constraints that uses the recently developed holomorphic representation. Using the power of the holomorphic integration techniques, and with the introduction of two new tools: the homogeneity map and the loop identity, for the first time we give the analytic expressions for the behaviour of the Spin Foam amplitudes under 4-dimensional Pachner moves. It turns out that this behaviour is controlled by an insertion of nonlocal mixing operators. In the case of the 5-1 move, the expression governing the change of the amplitude can be interpreted as a vertex renormalisation equation. We find a natural truncation scheme that allows us to get an invariance up to an overall factor for the 4-2 and 5-1 moves, but not for the 3-3 move. The study of the divergences shows that there is a range of parameter space for which the 4-2 move is finite while the 5-1 move diverges. This opens up the possibility to reco...

  10. 4D computerized ionospheric tomography by using GPS measurements and IRI-Plas model

    Science.gov (United States)

    Tuna, Hakan; Arikan, Feza; Arikan, Orhan

    2016-07-01

    approaches onto the obtained results. Combining Kalman methods with the proposed 3D CIT technique creates a robust 4D ionospheric electron density estimation model, and has the advantage of decreasing the computational cost of the proposed method. Results applied on both calm and storm days of the ionosphere show that, new technique produces more robust solutions especially when the number of GPS receiver stations in the region is small. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  11. Efficient estimation of time-mean states of ocean models using 4D-Var and implicit time-stepping

    NARCIS (Netherlands)

    Terwisscha van Scheltinga, A.D.; Dijkstra, H.A.

    2007-01-01

    We propose an efficient method for estimating a time-mean state of an ocean model subject to given observations using implicit time-stepping. The new method uses (i) an implicit implementation of the 4D-Var method to fit the model trajectory to the observations, and (ii) a preprocessor which applies

  12. Application of adaptive kinetic modelling for bias propagation reduction in direct 4D image reconstruction

    NARCIS (Netherlands)

    Kotasidis, F. A.; Matthews, J. C.; Reader, A. J.; Angelis, G. I.; Zaidi, H.

    2014-01-01

    Parametric imaging in thoracic and abdominal PET can provide additional parameters more relevant to the pathophysiology of the system under study. However, dynamic data in the body are noisy due to the limiting counting statistics leading to suboptimal kinetic parameter estimates. Direct 4D image re

  13. A method to update fault transmissibility multipliers in the flow simulation model directly from 4D seismic

    Science.gov (United States)

    Benguigui, Amran; Yin, Zhen; MacBeth, Colin

    2014-04-01

    We propose a new approach to update fault seal estimates in fluid flow simulation models by direct use of 4D seismic amplitudes calibrated by a well geological constraint. The method is suited to compartmentalized reservoirs and based on metrics created from differences in the 4D seismic signature on either side of major faults. The effectiveness of the approach is demonstrated by application to data from the fault controlled Heidrun field in the Norwegian Sea. The results of this application appear favourable and show that our method can detect variations of fault permeability along the major controlling faults in the field. Updates of the field simulation model with the 4D seismic-derived transmissibilities are observed to decrease the mismatch between the predicted and historical field production data in the majority of wells in our sector of interest.

  14. MODELING METHOD OF 4D INFORMATION MODEL FOR COOPERATIVE DESIGN OF MECHANICAL PRODUCTS

    Institute of Scientific and Technical Information of China (English)

    TAN Ying; YIN Guofu; HU Ruifei; FANG Hui

    2007-01-01

    The continuous developing features in the design of mechanical product and based on 3D entity model is aimed at, and the extension of the 4-dimensional model with the process of designing, the knowledge described model on the level of semantic understanding and summarizing the designing process and the way of discovering knowledge from multi-information model are studied. On the basis of designing the broad sensed collaborative system, through discussion of the relationship between the implicit knowledge of the users and the designing knowledge as well as commanding all the designing links, taking advantage of the way of concluding and deducting in the concept of the designers, the synthetic knowledge unit formed in the dynamic process from the conception design to the last design is schemed out, and the knowledge discovered principle in the dynamic designing process of the mechanical products and the key technology in its implementation under the milieu of network is brought forward.

  15. Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Igor F.; Lima, Fernando R.A.; Gomes, Marcelo S., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Vieira, Jose W.; Pacheco, Ludimila M. [Instituto Federal de Educacao, Ciencia e Tecnologia (IFPE), Recife, PE (Brazil); Chaves, Rosa M. [Instituto de Radium e Supervoltagem Ivo Roesler, Recife, PE (Brazil)

    2011-07-01

    Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)

  16. Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate

    International Nuclear Information System (INIS)

    Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)

  17. 4D Tumorigenesis Model for Quantitating Coalescence, Directed Cell Motility and Chemotaxis, Identifying Unique Cell Behaviors, and Testing Anticancer Drugs.

    Science.gov (United States)

    Kuhl, Spencer; Voss, Edward; Scherer, Amanda; Lusche, Daniel F; Wessels, Deborah; Soll, David R

    2016-01-01

    A 4D high-resolution computer-assisted reconstruction and motion analysis system has been developed and applied to the long-term (14-30 days) analysis of cancer cells migrating and aggregating within a 3D matrix. 4D tumorigenesis models more closely approximate the tumor microenvironment than 2D substrates and, therefore, are improved tools for elucidating the interactions within the tumor microenvironment that promote growth and metastasis. The model we describe here can be used to analyze the growth of tumor cells, aggregate coalescence, directed cell motility and chemotaxis, matrix degradation, the effects of anticancer drugs, and the behavior of immune and endothelial cells mixed with cancer cells. The information given in this chapter is also intended to acquaint the reader with computer-assisted methods and algorithms that can be used for high-resolution 3D reconstruction and quantitative motion analysis. PMID:27271907

  18. Employing conformational analysis in the molecular modeling of agrochemicals: insights on QSAR parameters of 2,4-D

    Directory of Open Access Journals (Sweden)

    Matheus Puggina de Freitas

    2013-12-01

    Full Text Available A common practice to compute ligand conformations of compounds with various degrees of freedom to be used in molecular modeling (QSAR and docking studies is to perform a conformational distribution based on repeated random sampling, such as Monte-Carlo methods. Further calculations are often required. This short review describes some methods used for conformational analysis and the implications of using selected conformations in QSAR. A case study is developed for 2,4-dichlorophenoxyacetic acid (2,4-D, a widely used herbicide which binds to TIR1 ubiquitin ligase enzyme. The use of such an approach and semi-empirical calculations did not achieve all possible minima for 2,4-D. In addition, the conformations and respective energies obtained by the semi-empirical AM1 method do not match the calculated trends obtained by a high level DFT method. Similar findings were obtained for the carboxylate anion, which is the bioactive form. Finally, the crystal bioactive structure of 2,4-D was not found as a minimum when using Monte-Carlo/AM1 and is similarly populated with another conformer in implicit water solution according to optimization at the B3LYP/aug-cc-pVDZ level. Therefore, quantitative structure-activity relationship (QSAR methods based on three dimensional chemical structures are not fundamental to provide predictive models for 2,4-D congeners as TIR1 ubiquitin ligase ligands, since they do not necessarily reflect the bioactive conformation of this molecule. This probably extends to other systems.

  19. EnKF and 4D-Var data assimilation with chemical transport model BASCOE (version 05.06)

    Science.gov (United States)

    Skachko, Sergey; Ménard, Richard; Errera, Quentin; Christophe, Yves; Chabrillat, Simon

    2016-08-01

    We compare two optimized chemical data assimilation systems, one based on the ensemble Kalman filter (EnKF) and the other based on four-dimensional variational (4D-Var) data assimilation, using a comprehensive stratospheric chemistry transport model (CTM). This work is an extension of the Belgian Assimilation System for Chemical ObsErvations (BASCOE), initially designed to work with a 4D-Var data assimilation. A strict comparison of both methods in the case of chemical tracer transport was done in a previous study and indicated that both methods provide essentially similar results. In the present work, we assimilate observations of ozone, HCl, HNO3, H2O and N2O from EOS Aura-MLS data into the BASCOE CTM with a full description of stratospheric chemistry. Two new issues related to the use of the full chemistry model with EnKF are taken into account. One issue is a large number of error variance parameters that need to be optimized. We estimate an observation error variance parameter as a function of pressure level for each observed species using the Desroziers method. For comparison purposes, we apply the same estimate procedure in the 4D-Var data assimilation, where both scale factors of the background and observation error covariance matrices are estimated using the Desroziers method. However, in EnKF the background error covariance is modelled using the full chemistry model and a model error term which is tuned using an adjustable parameter. We found that it is adequate to have the same value of this parameter based on the chemical tracer formulation that is applied for all observed species. This is an indication that the main source of model error in chemical transport model is due to the transport. The second issue in EnKF with comprehensive atmospheric chemistry models is the noise in the cross-covariance between species that occurs when species are weakly chemically related at the same location. These errors need to be filtered out in addition to a

  20. 4D-Var data assimilation system for a coupled physical biological model

    Indian Academy of Sciences (India)

    J M Lellouche; M Ouberdous; W Eifler

    2000-12-01

    A 3-compartment model of phytoplankton growth dynamics has been coupled with a primitive-equation circulation model to better understand and quantify physical and biological processes in the Adriatic Sea. This paper presents the development and application of a data assimilation procedure based on optimal control theory. The aim of the procedure is to identify a set of model coefficient values that ensures the best fit between data and model results by minimizing a function that measures model and data discrepancies. In this sense, twin experiments have been successfully implemented in order to have a better estimation of biological model parameters and biological initial conditions.

  1. Massless ground state for a compact $SU(2)$ matrix model in 4D

    CERN Document Server

    Boulton, L; Restuccia, A

    2015-01-01

    We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU(2) matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.

  2. Massless ground state for a compact SU (2) matrix model in 4D

    Science.gov (United States)

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2015-09-01

    We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU (2) matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.

  3. Elasticity/saturation relationships using flow simulation from an outcrop analogue for 4D seismic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Kirstetter, O.; Corbett, P.; Somerville, J.; MacBeth, C. [Heriot-Watt Institute of Petroleum Engineering, Edinburgh (United Kingdom)

    2006-07-01

    Three production scenarios have been simulated for three displacement mechanisms using three lithofacies models built at two scales (fine and coarse) from a 2D outcrop analogue. Analysis of the flow simulation results and the associated seismic modelling investigate the dependence of the time-lapse response on the lithofacies model and the vertical grid block size. Elastic attribute quantification from coarse-grid models requires a decision on the type of fluid saturation distribution (uniform or patchy) within the coarse-grid blocks. Here, empirical relations for scaling up the fluid bulk modulus are developed which, when inserted into standard Gassmann calculations, permit calibration of the response for the coarse-grid block model from the finer-scale model. At the coarse scale, fluid saturation changes during water injection and pressure depletion can be represented adequately by these relations but, for gas injection, it appears necessary to refer back to the fine-scale models. For the case of gas injection they cannot be generalized readily for each different lithofacies model and are thus observed to be outcrop dependent. (author)

  4. CELL TRACKING USING PARTICLE FILTERS WITH IMPLICIT CONVEX SHAPE MODEL IN 4D CONFOCAL MICROSCOPY IMAGES

    Science.gov (United States)

    Ramesh, Nisha; Tasdizen, Tolga

    2016-01-01

    Bayesian frameworks are commonly used in tracking algorithms. An important example is the particle filter, where a stochastic motion model describes the evolution of the state, and the observation model relates the noisy measurements to the state. Particle filters have been used to track the lineage of cells. Propagating the shape model of the cell through the particle filter is beneficial for tracking. We approximate arbitrary shapes of cells with a novel implicit convex function. The importance sampling step of the particle filter is defined using the cost associated with fitting our implicit convex shape model to the observations. Our technique is capable of tracking the lineage of cells for nonmitotic stages. We validate our algorithm by tracking the lineage of retinal and lens cells in zebrafish embryos. PMID:27403085

  5. Massless ground state for a compact SU(2 matrix model in 4D

    Directory of Open Access Journals (Sweden)

    Lyonell Boulton

    2015-09-01

    Full Text Available We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU(2 matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.

  6. Emergent 4D gravity on covariant quantum spaces in the IKKT model

    OpenAIRE

    Steinacker, Harold C.

    2016-01-01

    We study perturbations of the 4-dimensional fuzzy sphere as a background in the IKKT or IIB matrix model. The linearized 4-dimensional Einstein equations are shown to arise from the classical matrix model action, without adding an Einstein-Hilbert term. The excitation modes with lowest spin are identified as gauge fields, metric and connection fields. In addition to the usual gravitational waves, there are also physical "torsion" wave excitations. The quantum structure of the geometry encodes...

  7. Testing the Ability of Numerical Model to Simulate Climate and Its Change With 4D-EOF Analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The four-dimensional empirical orthogonal function (4D-EOF), which in reality is a simple combination of three-dimensional EOF (3D-EOF) and extended EOF (EEOF), is put forward in this paper to test the ability of numerical model to simulate climate and its change. The 4D-EOF analysis is able to reveal not only the horizontal characteristic pattern of analyzed variable, and its corresponding annual and inter-annual variations, but also the vertical structural characteristics. The method suggested is then used to analyze the monthly mean 100-, 500-, 700-, and 1000-hPa geopotential height fields (4941 grids and grid spacing 60 km) and their anomaly fields in 1989-1998 simulated by the MM5V3 from the RMIP (Regional Climate Model Inter-comparison Project for East Asia)-Ⅱ, as well as their counterparts (used as the observed fields)from the NCEP/NCAR re-analysis dataset in the same period. The ability of MM5V3 in simulating East Asian climate and its change is tested by comparing the 4D-EOF analysis results of the simulated and observed datasets. The comparative analyzed results show that the horizontal pattern of the first eigenvector of the observed monthly mean geopotential height fields and its vertical equivalent barotropic feature were well simulated; the simulations of the first two eigenvectors of the observed monthly mean geopotential height anomaly fields were also successful for their horizontal abnormal distributions and significant equivalent barotropic features in the vertical were well reproduced; and furthermore, the observed characteristics,such as the variation with height, the annual and inter-annual variations of the monthly mean geopotential height/anomaly fields were also well reflected in the simulation. Therefore, the 4D-EOF is able to comprehensively test numerical model's ability of simulating the climate and its change, and the simulation ability of MM5V3 for the climate and its change in East Asia in the 1990s was satisfactory.

  8. Explosive Model Tarantula 4d/JWL++ Calibration of LX-17

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P C; Vitello, P A

    2008-09-30

    Tarantula is an explosive kinetic package intended to do detonation, shock initiation, failure, corner-turning with dead zones, gap tests and air gaps in reactive flow hydrocode models. The first, 2007-2008 version with monotonic Q is here run inside JWL++ with square zoning from 40 to 200 zones/cm on ambient LX-17. The model splits the rate behavior in every zone into sections set by the hydrocode pressure, P + Q. As the pressure rises, we pass through the no-reaction, initiation, ramp-up/failure and detonation sections sequentially. We find that the initiation and pure detonation rate constants are largely insensitive to zoning but that the ramp-up/failure rate constant is extremely sensitive. At no time does the model pass every test, but the pressure-based approach generally works. The best values for the ramp/failure region are listed here in Mb units.

  9. LHC physics of extra gauge bosons in the 4D Composite Higgs Model

    Directory of Open Access Journals (Sweden)

    Barducci D.

    2013-11-01

    Full Text Available We study the phenomenology of both the Neutral Current (NC and Charged Current (CC Drell-Yan (DY processes at the Large Hadron Collider (LHC within a 4 Dimensional realization of a Composite Higgs model with partial compositness by estimating the integrated and differential event rates and taking into account the possible impact of the extra fermions present in the spectrum. We show that, in certain regions of the parameters space, the multiple neutral resonances present in the model can be distinguishable and experimentally accessible in the invariant or transverse mass distributions.

  10. A topological-like model for gravity in 4D space-time

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Ivan; Neves, Bruno; Oporto, Zui; Piguet, Olivier [Universidade Federal de Vicosa-UFV, Departamento de Fisica, Vicosa, MG (Brazil)

    2016-04-15

    In this paper we consider a model for gravity in four-dimensional space-time originally proposed by Chamseddine, which may be derived by dimensional reduction and truncation from a five-dimensional Chern-Simons theory. Its topological origin makes it an interesting candidate for an easier quantization, e.g., in the loop quantization framework. The present paper is dedicated to a classical analysis of the model's properties. Cosmological solutions as well as wave solutions are found and compared with the corresponding solutions of Einstein's general relativity with cosmological constant. (orig.)

  11. Applying an animal model to quantify the uncertainties of an image-based 4D-CT algorithm

    International Nuclear Information System (INIS)

    The purpose of this paper is to use an animal model to quantify the spatial displacement uncertainties and test the fundamental assumptions of an image-based 4D-CT algorithm in vivo. Six female Landrace cross pigs were ventilated and imaged using a 64-slice CT scanner (GE Healthcare) operating in axial cine mode. The breathing amplitude pattern of the pigs was varied by periodically crimping the ventilator gas return tube during the image acquisition. The image data were used to determine the displacement uncertainties that result from matching CT images at the same respiratory phase using normalized cross correlation (NCC) as the matching criteria. Additionally, the ability to match the respiratory phase of a 4.0 cm subvolume of the thorax to a reference subvolume using only a single overlapping 2D slice from the two subvolumes was tested by varying the location of the overlapping matching image within the subvolume and examining the effect this had on the displacement relative to the reference volume. The displacement uncertainty resulting from matching two respiratory images using NCC ranged from 0.54 ± 0.10 mm per match to 0.32 ± 0.16 mm per match in the lung of the animal. The uncertainty was found to propagate in quadrature, increasing with number of NCC matches performed. In comparison, the minimum displacement achievable if two respiratory images were matched perfectly in phase ranged from 0.77 ± 0.06 to 0.93 ± 0.06 mm in the lung. The assumption that subvolumes from separate cine scan could be matched by matching a single overlapping 2D image between to subvolumes was validated. An in vivo animal model was developed to test an image-based 4D-CT algorithm. The uncertainties associated with using NCC to match the respiratory phase of two images were quantified and the assumption that a 4.0 cm 3D subvolume can by matched in respiratory phase by matching a single 2D image from the 3D subvolume was validated. The work in this paper shows the image-based 4D

  12. Applying an animal model to quantify the uncertainties of an image-based 4D-CT algorithm

    Science.gov (United States)

    Pierce, Greg; Wang, Kevin; Battista, Jerry; Lee, Ting-Yim

    2012-06-01

    The purpose of this paper is to use an animal model to quantify the spatial displacement uncertainties and test the fundamental assumptions of an image-based 4D-CT algorithm in vivo. Six female Landrace cross pigs were ventilated and imaged using a 64-slice CT scanner (GE Healthcare) operating in axial cine mode. The breathing amplitude pattern of the pigs was varied by periodically crimping the ventilator gas return tube during the image acquisition. The image data were used to determine the displacement uncertainties that result from matching CT images at the same respiratory phase using normalized cross correlation (NCC) as the matching criteria. Additionally, the ability to match the respiratory phase of a 4.0 cm subvolume of the thorax to a reference subvolume using only a single overlapping 2D slice from the two subvolumes was tested by varying the location of the overlapping matching image within the subvolume and examining the effect this had on the displacement relative to the reference volume. The displacement uncertainty resulting from matching two respiratory images using NCC ranged from 0.54 ± 0.10 mm per match to 0.32 ± 0.16 mm per match in the lung of the animal. The uncertainty was found to propagate in quadrature, increasing with number of NCC matches performed. In comparison, the minimum displacement achievable if two respiratory images were matched perfectly in phase ranged from 0.77 ± 0.06 to 0.93 ± 0.06 mm in the lung. The assumption that subvolumes from separate cine scan could be matched by matching a single overlapping 2D image between to subvolumes was validated. An in vivo animal model was developed to test an image-based 4D-CT algorithm. The uncertainties associated with using NCC to match the respiratory phase of two images were quantified and the assumption that a 4.0 cm 3D subvolume can by matched in respiratory phase by matching a single 2D image from the 3D subvolume was validated. The work in this paper shows the image-based 4D

  13. How oblique extension and structural inheritance control rift segment linkage: Insights from 4D analogue models

    Science.gov (United States)

    Zwaan, Frank; Schreurs, Guido

    2016-04-01

    INTRODUCTION During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. A previous study of ours (Zwaan et al., in prep) investigated the influence of dextral oblique extension and rift offset on rift interaction. Here we elaborate upon our previous work by using analogue models to assess the added effects of 1) sinistral oblique extension as observed along the East African Rift and 2) the geometry of linked and non-linked inherited structures. METHODS Our set-up involves a base of foam and plexiglass that forces distributed extension in the overlying model materials: a sand layer for the brittle upper crust and a viscous sand/silicone mixture for ductile lower crust. A mobile base plate allows lateral motion for oblique extension. We create inherited structures, along which rift segments develop, with right-stepping offset lines of silicone (seeds) on top of the basal viscous layer. These seeds can be connected by an additional weak seed that represents a secondary inherited structural grain (model series 1) or disconnected and laterally discontinuous (over/underlap, model series 2). Selected models are run in an X-ray computer topographer (CT) to reveal the 3D evolution of internal structures with time that can be quantified with particle image velocitmetry (PIV) techniques. RESULTS Models in both series show that rift segments initially form along the main seeds and then generally propagate approximately perpendicular to the extension direction: with orthogonal extension they propagate in a parallel fashion, dextral oblique extension causes them to grow towards each other and connect, while with sinistral oblique extension they grow away from each other. However, sinistral oblique extension can also promote rift linkage through an oblique- or strike-slip zone oriented almost parallel to

  14. Emergent 4D gravity on covariant quantum spaces in the IKKT model

    CERN Document Server

    Steinacker, Harold C

    2016-01-01

    We study perturbations of the 4-dimensional fuzzy sphere as a background in the IKKT or IIB matrix model. The linearized 4-dimensional Einstein equations are shown to arise from the classical matrix model action, without adding an Einstein-Hilbert term. The excitation modes with lowest spin are identified as gauge fields, metric and connection fields. In addition to the usual gravitational waves, there are also physical "torsion" wave excitations. The quantum structure of the geometry encodes a twisted bundle of self-dual 2-forms, which leads to a covariant 4-dimensional noncommutative geometry. The formalism of string states is used to compute one-loop corrections to the effective action. This leads to a mass term for the gravitons which is significant for $S^4$, but argued to be small in the Minkowski case.

  15. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    Energy Technology Data Exchange (ETDEWEB)

    Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  16. 4D Floodplain representation in hydrologic flood forecasting using WRFHydro modeling framework

    Science.gov (United States)

    Gangodagamage, C.; Li, Z.; Adams, T.; Ito, T.; Maitaria, K.; Islam, M.; Dhondia, J.

    2015-12-01

    Floods claim more lives and damage more property than any other category of natural disaster in the Continental U.S. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007, 2011) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels with the fourth dimension, time. We use modeled flows from WRFHydro and demarcate the right and left lateral boundaries of inundation dynamically. This approach dynamically integrates with high resolution models (e.g., hourly and ~ 1 km spatial resolution) that are developed from recent advancements in high computational power with ground based measurements (e.g., Fluxnet), lateral inundation vectors (direction and spatial extent) derived from multi-temporal remote sensing data (e.g., LiDAR, WorldView 2, Landsat, ASTER, MODIS), and improved representations of the physical processes through multi-parameterizations. Our

  17. Dynamical dimensional reduction in toy models of 4D causal quantum gravity

    CERN Document Server

    Giasemidis, Georgios; Zohren, Stefan

    2012-01-01

    In recent years several approaches to quantum gravity have found evidence for a scale dependent spectral dimension of space-time varying from four at large scales to two at small scales of order of the Planck length. The first evidence came from numerical results of four-dimensional causal dynamical triangulations (CDT) [Ambj{\\o}rn et al., Phys. Rev. Lett. 95 (2005) 171]. Since then little progress has been made in analytically understanding the numerical results coming from the CDT approach and showing that they remain valid when taking the continuum limit. In this letter we propose a new toy model of "radially reduced" four-dimensional CDT in which we can take the continuum limit analytically and obtain a scale dependent spectral dimension varying from four to two with scale. Furthermore, the functional behaviour of the spectral dimension is exactly of the form which was conjectured on the basis of the numerical results.

  18. Timing and petroleum sources for the Lower Cretaceous Mannville Group oil sands of northern Alberta based on 4-D modeling

    Science.gov (United States)

    Higley, D.K.; Lewan, M.D.; Roberts, L.N.R.; Henry, M.

    2009-01-01

    The Lower Cretaceous Mannville Group oil sands of northern Alberta have an estimated 270.3 billion m3 (BCM) (1700 billion bbl) of in-place heavy oil and tar. Our study area includes oil sand accumulations and downdip areas that partially extend into the deformation zone in western Alberta. The oil sands are composed of highly biodegraded oil and tar, collectively referred to as bitumen, whose source remains controversial. This is addressed in our study with a four-dimensional (4-D) petroleum system model. The modeled primary trap for generated and migrated oil is subtle structures. A probable seal for the oil sands was a gradual updip removal of the lighter hydrocarbon fractions as migrated oil was progressively biodegraded. This is hypothetical because the modeling software did not include seals resulting from the biodegradation of oil. Although the 4-D model shows that source rocks ranging from the Devonian-Mississippian Exshaw Formation to the Lower Cretaceous Mannville Group coals and Ostracode-zone-contributed oil to Mannville Group reservoirs, source rocks in the Jurassic Fernie Group (Gordondale Member and Poker Chip A shale) were the initial and major contributors. Kinetics associated with the type IIS kerogen in Fernie Group source rocks resulted in the early generation and expulsion of oil, as early as 85 Ma and prior to the generation from the type II kerogen of deeper and older source rocks. The modeled 50% peak transformation to oil was reached about 75 Ma for the Gordondale Member and Poker Chip A shale near the west margin of the study area, and prior to onset about 65 Ma from other source rocks. This early petroleum generation from the Fernie Group source rocks resulted in large volumes of generated oil, and prior to the Laramide uplift and onset of erosion (???58 Ma), which curtailed oil generation from all source rocks. Oil generation from all source rocks ended by 40 Ma. Although the modeled study area did not include possible western

  19. Are Results of 4-D Ultrasound Angiography Examinations Dependent on the Doppler Technology Applied? Comparison of Results Obtained from an In Vivo Model.

    Science.gov (United States)

    Kudla, Marek J; Los, Andrzej; Alcazar, Juan Luis

    2016-02-01

    We aimed to evaluate the agreement of results obtained by 4-D spatio-temporal image correlation (STIC) angiography with two options of Doppler technology (power Doppler [PD] and high-definition flow [HDF]) from an ovary as an in vivo model. Thirty-eight ovaries were recorded by trans-vaginal ultrasound examination in the first part of the menstrual cycle. Two STIC sequences (4-D HDF and 4-D PD) were stored. Volumetric pulsatility index, volumetric resistance index and volumetric systolic/diastolic index for each of these sequences were calculated, and their mean values were compared and correlated. Agreement between 4-D HDF and 4-D PD was assessed using the intra-class correlation coefficient. Intra-class correlation coefficients for all three indices were high, but 95% confidence intervals and limits of agreement were wide. We conclude that both 4-D power Doppler and 4-D high-definition flow may be used for calculating volumetric pulsatility index, volumetric resistance index and volumetric systolic/diastolic index from a STIC sequence, at least in ovaries used as an in vivo model. However, values obtained by both methods cannot be used interchangeably.

  20. Four Dimensional (4-D BioChemInfoPhysics Models of Cardiac Cellular and Sub-Cellular Vibrations (Oscillations

    Directory of Open Access Journals (Sweden)

    Chang-Hua Zou

    2009-01-01

    Full Text Available Problem statement: Cardiovascular Diseases (CVD continued to be the leading cause of death. Failure or abnormal cardiac cellular or sub-cellular vibrations (oscillations could lead failure or abnormal heart beats that could cause CVD. Understanding the mechanisms of the vibrations (oscillations could help to prevent or to treat the diseases. Scientists have studied the mechanisms for more than 100 years. To our knowledge, the mechanisms are still unclear today. In this investigation, based on published data or results, conservation laws of the momentum as well as the energy, in views of biology, biochemistry, informatics and physics (BioChemInfoPhysics, we proposed our models of cardiac cellular and sub-cellular vibrations (oscillations of biological components, such as free ions in Biological Fluids (BF, Biological Membranes (BM, Ca++H+ (Ca++ and Na+K+ ATPases, Na+Ca++ exchangers (NCX, Ca++ carriers and myosin heads. Approach: Our models were described with 4-D (x, y, z, t or r, ?, z, t momentum transfer equations in mathematical physics. Results: The momentum transfer equations were solved with free and forced, damped, un-damped and over-damped, vibrations (oscillations. The biological components could be modeled as resonators or vibrators (oscillators, such as liquid plasmas, membranes, active springs, passive springs and active swings. Conclusion: We systematically provided new insights of automation (ignition and maintain, transportation, propagation and orientation of the cardiac cellular and sub-cellular vibrations (oscillations and resonances, with our BioChemInfoPhysics models of 4-D momentum transfer equations. Our modeling results implied: Auto-rhythmic cells (Sinoatrial Node Cells (SANC, Atrioventricular Node Cells (AVNC, Purkinje fibers, non-Auto-rhythmic ventricular myocytes and their Sarcoplasmic Reticulums (SR work as Biological Liquid Plasma Resonators (BLPR. The resonators were

  1. Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model

    Directory of Open Access Journals (Sweden)

    S. Skachko

    2014-01-01

    Full Text Available The Ensemble Kalman filter (EnKF assimilation method is applied to the tracer transport using the same stratospheric transport model as in the 4D-Var assimilation system BASCOE. This EnKF version of BASCOE was built primarily to avoid the large costs associated with the maintenance of an adjoint model. The EnKF developed in BASCOE accounts for two adjustable parameters: a parameter α controlling the model error term and a parameter r controlling the observational error. The EnKF system is shown to be markedly sensitive to these two parameters, which are adjusted based on the monitoring of a χ2-test measuring the misfit between the control variable and the observations. The performance of the EnKF and 4D-Var versions was estimated through the assimilation of Aura-MLS ozone observations during an 8 month period which includes the formation of the 2008 Antarctic ozone hole. To ensure a proper comparison, despite the fundamental differences between the two assimilation methods, both systems use identical and carefully calibrated input error statistics. We provide the detailed procedure for these calibrations, and compare the two sets of analyses with a focus on the lower and middle stratosphere where the ozone lifetime is much larger than the observational update frequency. Based on the Observation-minus-Forecast statistics, we show that the analyses provided by the two systems are markedly similar, with biases smaller than 5% and standard deviation errors smaller than 10% in most of the stratosphere. Since the biases are markedly similar, they have most probably the same causes: these can be deficiencies in the model and in the observation dataset, but not in the assimilation algorithm nor in the error calibration. The remarkably similar performance also shows that in the context of stratospheric transport, the choice of the assimilation method can be based on application-dependent factors, such as CPU cost or the ability to generate an ensemble

  2. M5-branes on S^2 x M_4: Nahm's Equations and 4d Topological Sigma-models

    CERN Document Server

    Assel, Benjamin; Wong, Jin-Mann

    2016-01-01

    We study the 6d N=(0,2) superconformal field theory, which describes multiple M5-branes, on the product space S^2 x M_4, and suggest a correspondence between a 2d N=(0,2) half-twisted gauge theory on S^2 and a topological sigma-model on the four-manifold M_4. To set up this correspondence, we determine in this paper the dimensional reduction of the 6d N=(0,2) theory on a two-sphere and derive that the four-dimensional theory is a sigma-model into the moduli space of solutions to Nahm's equations, or equivalently the moduli space of k-centered SU(2) monopoles, where k is the number of M5-branes. We proceed in three steps: we reduce the 6d abelian theory to a 5d Super-Yang-Mills theory on I x M_4, with I an interval, then non-abelianize the 5d theory and finally reduce this to 4d. In the special case, when M_4 is a Hyper-Kahler manifold, we show that the dimensional reduction gives rise to a topological sigma-model based on tri-holomorphic maps. Deriving the theory on a general M_4 requires knowledge of the met...

  3. Modelling of 4D seismic data for the monitoring of the steam chamber growth during SAGD process

    Energy Technology Data Exchange (ETDEWEB)

    Lerat, O.; Adjemian, F.; Auvinet, A.; Baroni, A.; Bemer, E.; Eschard, R.; Etienne, G.; Renard, G.; Servant, G. [IFP, Lyon (France); Michel, L.; Rodriguez, S.; Aubin, F. [CGG Veritas, Calgary, AB (Canada); Euzen, T. [IFP Technologies Canada Inc., Calgary, AB (Canada)

    2009-07-01

    Reservoir heterogeneities influence the performance of heavy-oil production by the steam-assisted gravity drainage (SAGD) process. This paper reported on a study that evaluated the impact of reservoir heterogeneities on the steam chamber growth in a heavy oil field of the Canadian Athabasca McMurray Formation. The study involved three steps: (1) the construction of an initial static model, (2) the simulation of the thermal production of heavy oil with two coupled fluid-flow and geomechanical models, and (3) the production of synthetic seismic maps at different steps of steam injection. Two periods of SAGD production were studied in detail, notably the early times of steam injection and later on when the steam chamber developed laterally and vertically towards the top of the reservoir. The objective was to improve the interpretation of 4D seismic data in steam-assisted production at an early stage by understanding how the steam would be distributed along the injection well in the first few weeks or months of steam injection. The study was based on a fully integrated approach that involved geology, geophysics, reservoir and geomechanics. The study revealed that for long periods of production, the reservoir-scale heterogeneities can impact the production by a limitation of the steam chamber growth upwards. However, paths and drains in the upper part of the reservoir could allow the steam to propagate in low-pay areas or in thief zones. 11 refs., 18 figs.

  4. Forward modeling of 4D seismic response to the CO2 injection at the Ketzin pilot site with the reflectivity method

    Science.gov (United States)

    Ivanova, Alexandra; Ivandic, Monika; Kempka, Thomas; Gil, Magdalena; Bergmann, Peter; Lüth, Stefan

    2014-05-01

    When CO2 replaces brine as a free gas it is well known to affect the elastic properties of porous media considerably. 3D seismic time-lapse surveys (4D seismics) have proven to be a suitable technique for monitoring of injected CO2. Forward modeling of a 4D seismic response to the CO2 fluid substitution in a storage reservoir is an important step in such studies. In order to track the migration of CO2 at the Ketzin pilot site (Germany), 3D time-lapse seismic data were acquired by means of a baseline (pre-injection) survey in 2005 and the monitor surveys in 2009 and 2012. Results of 4D seismic forward modeling with the reflectivity method suggest that effects of the injected CO2 on the 4D seismic data at the Ketzin pilot site are significant regarding both seismic amplitudes and time delays. They prove the corresponding observations in the real 4D seismic data at the Ketzin pilot site. However reservoir heterogeneity and seismic resolution, as well as random and coherent seismic noise are negative factors to be considered while the interpretation. In spite of these negative factors, results of 4D seismic forward modeling with the reflectivity method support the conclusion that the injected CO2 can be monitored at the Ketzin pilot site both qualitatively and quantitatively.

  5. M5-branes on S 2 × M 4: Nahm's equations and 4d topological sigma-models

    Science.gov (United States)

    Assel, Benjamin; Schäfer-Nameki, Sakura; Wong, Jin-Mann

    2016-09-01

    We study the 6d N = (0 , 2) superconformal field theory, which describes multiple M5-branes, on the product space S 2 × M 4, and suggest a correspondence between a 2d N = (0 , 2) half-twisted gauge theory on S 2 and a topological sigma-model on the four-manifold M 4. To set up this correspondence, we determine in this paper the dimensional reduction of the 6d N = (0 , 2) theory on a two-sphere and derive that the four-dimensional theory is a sigma-model into the moduli space of solutions to Nahm's equations, or equivalently the moduli space of k-centered SU(2) monopoles, where k is the number of M5-branes. We proceed in three steps: we reduce the 6d abelian theory to a 5d Super-Yang-Mills theory on I × M 4, with I an interval, then non-abelianize the 5d theory and finally reduce this to 4d. In the special case, when M 4 is a Hyper-Kähler manifold, we show that the dimensional reduction gives rise to a topological sigma-model based on tri-holomorphic maps. Deriving the theory on a general M 4 requires knowledge of the metric of the target space. For k = 2 the target space is the Atiyah-Hitchin manifold and we twist the theory to obtain a topological sigma-model, which has both scalar fields and self-dual two-forms.

  6. Improving the robustness of interventional 4D ultrasound segmentation through the use of personalized prior shape models

    Science.gov (United States)

    Barbosa, Daniel; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.

    2015-03-01

    While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.

  7. SU-E-J-26: A Novel Technique for Markerless Self-Sorted 4D-CBCT Using Patient Motion Modeling: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L; Zhang, Y; Harris, W; Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop an automatic markerless 4D-CBCT projection sorting technique by using a patient respiratory motion model extracted from the planning 4D-CT images. Methods: Each phase of onboard 4D-CBCT is considered as a deformation of one phase of the prior planning 4D-CT. The deformation field map (DFM) is represented as a linear combination of three major deformation patterns extracted from the planning 4D-CT using principle component analysis (PCA). The coefficients of the PCA deformation patterns are solved by matching the digitally reconstructed radiograph (DRR) of the deformed volume to the onboard projection acquired. The PCA coefficients are solved for each single projection, and are used for phase sorting. Projections at the peaks of the Z direction coefficient are sorted as phase 1 and other projections are assigned into 10 phase bins by dividing phases equally between peaks. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the proposed technique. Three scenarios were simulated, with different tumor motion amplitude (3cm to 2cm), tumor spatial shift (8mm SI), and tumor body motion phase shift (2 phases) from prior to on-board images. Projections were simulated over 180 degree scan-angle for the 4D-XCAT. The percentage of accurately binned projections across entire dataset was calculated to represent the phase sorting accuracy. Results: With a changed tumor motion amplitude from 3cm to 2cm, markerless phase sorting accuracy was 100%. With a tumor phase shift of 2 phases w.r.t. body motion, the phase sorting accuracy was 100%. With a tumor spatial shift of 8mm in SI direction, phase sorting accuracy was 86.1%. Conclusion: The XCAT phantom simulation results demonstrated that it is feasible to use prior knowledge and motion modeling technique to achieve markerless 4D-CBCT phase sorting. National Institutes of Health Grant No. R01-CA184173 Varian Medical System.

  8. SU-E-J-26: A Novel Technique for Markerless Self-Sorted 4D-CBCT Using Patient Motion Modeling: A Feasibility Study

    International Nuclear Information System (INIS)

    Purpose: To develop an automatic markerless 4D-CBCT projection sorting technique by using a patient respiratory motion model extracted from the planning 4D-CT images. Methods: Each phase of onboard 4D-CBCT is considered as a deformation of one phase of the prior planning 4D-CT. The deformation field map (DFM) is represented as a linear combination of three major deformation patterns extracted from the planning 4D-CT using principle component analysis (PCA). The coefficients of the PCA deformation patterns are solved by matching the digitally reconstructed radiograph (DRR) of the deformed volume to the onboard projection acquired. The PCA coefficients are solved for each single projection, and are used for phase sorting. Projections at the peaks of the Z direction coefficient are sorted as phase 1 and other projections are assigned into 10 phase bins by dividing phases equally between peaks. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the proposed technique. Three scenarios were simulated, with different tumor motion amplitude (3cm to 2cm), tumor spatial shift (8mm SI), and tumor body motion phase shift (2 phases) from prior to on-board images. Projections were simulated over 180 degree scan-angle for the 4D-XCAT. The percentage of accurately binned projections across entire dataset was calculated to represent the phase sorting accuracy. Results: With a changed tumor motion amplitude from 3cm to 2cm, markerless phase sorting accuracy was 100%. With a tumor phase shift of 2 phases w.r.t. body motion, the phase sorting accuracy was 100%. With a tumor spatial shift of 8mm in SI direction, phase sorting accuracy was 86.1%. Conclusion: The XCAT phantom simulation results demonstrated that it is feasible to use prior knowledge and motion modeling technique to achieve markerless 4D-CBCT phase sorting. National Institutes of Health Grant No. R01-CA184173 Varian Medical System

  9. Sport for Development (S4D) as "Core University Business"? Modelling University Participation in Sport-Based Social Development

    Science.gov (United States)

    Rosso, Edoardo G. F.; McGrath, Richard; Immink, Maarten A.; May, Esther

    2016-01-01

    Among the recognised strengths of the "Sport for Development" (S4D) framework there is the capacity of sport to contribute to positive community networks, education and community participation. However, its relevance to tertiary education institutions is often under-appreciated. In this framework, the Football United® program was…

  10. Cardiac C-arm CT: 4D non-model based heart motion estimation and its application

    Science.gov (United States)

    Prümmer, M.; Fahrig, R.; Wigström, L.; Boese, J.; Lauritsch, G.; Strobel, N.; Hornegger, J.

    2007-03-01

    The combination of real-time fluoroscopy and 3D cardiac imaging on the same C-arm system is a promising technique that might improve therapy planning, guiding, and monitoring in the interventional suite. In principal, to reconstruct a 3D image of the beating heart at a particular cardiac phase, a complete set of X-ray projection data representing that phase is required. One approximate approach is the retrospectively ECG-gated FDK reconstruction (RG-FDK). From the acquired data set of N s multiple C-arm sweeps, those projection images which are acquired closest in time to the desired cardiac phase are retrospectively selected. However, this approach uses only 1/ N s of the obtained data. Our goal is to utilize data from other cardiac phases as well. In order to minimize blurring and motion artifacts, cardiac motion has to be compensated for, which can be achieved using a temporally dependent spatial 3D warping of the filtered-backprojections. In this work we investigate the computation of the 4D heart motion based on prior reconstructions of several cardiac phases using RG-FDK. A 4D motion estimation framework is presented using standard fast non-rigid registration. A smooth 4D motion vector field (MVF) represents the relative deformation compared to a reference cardiac phase. A 4D deformation regridding by adaptive supersampling allows selecting any reference phase independently of the set of phases used in the RG-FDK for a motion corrected reconstruction. Initial promising results from in vivo experiments are shown. The subjects individual 4D cardiac MVF could be computed from only three RG-FDK image volumes. In addition, all acquired projection data were motion corrected and subsequently used for image reconstruction to improve the signal-to-noise ratio compared to RG-FDK.

  11. Modelling and Simulation of 4D GeoPET Measurements with COMSOL Multiphysics 4.2a

    Science.gov (United States)

    Schikora, J.; Kulenkampff, J.; Gründig, M.; Lippmann-Pipke, J.

    2012-04-01

    Our GeoPET-method allows the 4D monitoring of (reactive) transport processes in geological material on laboratory scale (Gründig et al., 2007; Kulenkampff et al., 2008; Richter et al., 2005) by quantitative imaging of tracer concentrations. Recently we have conducted a long-term 22Na+ in-diffusion experiment in an Opalinus clay drill core over a period of 7 months. We modelled this experiment with COMSOL Multiphysics ® 4.2a (3D convection-diffusion equation, PDE mode, PARDISO solver) for reproducing the observed spatiotemporal concentration distribution data with the following underlying equation for this anisotropic diffusion and adsorption: ɛdci= \\upsidedownBigTriangle (D ·\\upsidedownBigTriangle c )- ρdq- dt e i dt - ɛ [-] porosity, ci[mol/m3] 22Na+concentration, De [m2/s] tensor of the effective diffusion constant for 22Na+ in Opalinus clay, ρ [kg/m3] bulk density and dq/dt sink term for considering the sorption. By importing GeoPET images from various time steps and applying the Optimization Module (least square fit applying the Levenberg-Marquardt algorithm) to these images we efficiently determined best fit values e.g. of the diffusion tensor. Combined with the parameter sweep operation the sensitivity analysis is performed in parallel and covers the range of literature values for porosity and Kd values for 22Na+sorption on Opalinus clay. The experimental data could be reproduced quite well, but the obtained parameter values for diffusion parallel and normal to the bedding are slightly larger than reported in Gimmi and Kosakowski (2011). This is coherent with our observations of an emerging gas bubble in the central borehole tracer reservoir: Soil moisture tension in the partly unsaturated clay must have significantly influenced the transport regime by an additional advective component. We suggest COMSOL Multiphysics ® is a powerful tool for the inverse modelling of timedependent, multidimensional experimental data as obtained by GeoPET.

  12. 4-D Photoacoustic Tomography

    Science.gov (United States)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  13. Including the adjoint model of the moist physics in the 4D-Var in NASA's GEOS-5 Global Circulation Model

    Science.gov (United States)

    Holdaway, D. R.; Errico, R.

    2011-12-01

    Inherent in the minimization process in the 4D-Var data assimilation system is the need for the model's adjoint. It is straightforward to obtain the exact adjoint by linearizing the code in a line by line sense; however it only provides an accurate overall representation of the physical processes if the model behaviour is linear. Moist processes in the atmosphere, and thus the models that represent them, are intrinsically highly non-linear and can contain discrete switches. The adjoint that is required in the data assimilation system needs to provide an accurate representation of the physical behaviour for perturbation sizes of the order of the analysis error, so an exact adjoint of the moist physics model is likely to be inaccurate. Instead a non-exact adjoint model, which is accurate for large enough perturbations, must be developed. The constraint on the development is that the simplified adjoint be consistent with the actual trajectory of the model. Previous attempts to include the moist physics in the 4D-Var have emphasized the need for redevelopment of the actual moist scheme to a simpler version. These schemes are designed to be linear in the limit of realistic perturbation size but also capture the essence of the physical behaviour, making the adjoint version of the scheme suitable for use in the 4D-Var. A downside to this approach is that it can result in an over simplification of the physics and represent a larger departure from the true model trajectory than necessary. The adjoint is just the transpose of the tangent linear model, which is the differential of the model operator. This differential of the operator can be constructed from Jacobian matrices. Examining the structures of the Jacobians as perturbations of varying size are added to the state vector can help determine whether the adjoint model - be it of actual or simplified physics - will be suitable for use in the assimilation algorithm. If Jacobian structures change considerably when the

  14. CINEMA 4D The Artist's Project Sourcebook

    CERN Document Server

    McQuilkin, Kent

    2011-01-01

    Cinema 4D is a fully integrated 3D modeling, animation, and rendering package used extensively in the film, television, science, architecture, engineering and other industries. Generally ranked as the 3rd most widely-used 3Dapplication Cinema 4D is widely praised for its stability, speed and ease of use. Recent film and broadcast productions that have used Cinema 4D include Open Season, Monster House, Superman Returns, Polar Express, Monday Night Football. This third edition of Cinema 4D is updated to address the latest release of the application as well as its critically acclaimed MoGr

  15. Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model

    OpenAIRE

    Smith, Polly J.; Alison M. Fowler; Amos S. Lawless

    2015-01-01

    Operational forecasting centres are currently developing data assimilation systems for coupled atmosphere–ocean models. Strongly coupled assimilation, in which a single assimilation system is applied to a coupled model, presents significant technical and scientific challenges. Hence weakly coupled assimilation systems are being developed as a first step, in which the coupled model is used to compare the current state estimate with observations, but corrections to the atmosphere and ocean init...

  16. Common Behaviors of Spinor-Type Instantons in 2D Thirring and 4D Gursey Fermionic Models

    Directory of Open Access Journals (Sweden)

    Fatma Aydogmus

    2014-01-01

    Full Text Available We investigate two examples of conformal invariant pure spinor fermionic models, which admit particle-like solutions of the classical field equations. For different dimensions and quantum spinor numbers, the vector field visualizations of the models are constructed to provide a better understanding of the spinor-type instanton dynamics in phase space. The hierarchical cluster analysis method investigations of the models are also presented. Finally, the autocorrelation and power spectrum graphs of models are constructed and frequencies of motions are defined.

  17. Matrix models, 4D black holes and topological strings on non-compact Calabi-Yau manifolds

    Science.gov (United States)

    Danielsson, Ulf H.; Olsson, Martin E.; Vonk, Marcel

    2004-11-01

    We study the relation between c = 1 matrix models at self-dual radii and topological strings on non-compact Calabi-Yau manifolds. Particularly the special case of the deformed matrix model is investigated in detail. Using recent results on the equivalence of the partition function of topological strings and that of four dimensional BPS black holes, we are able to calculate the entropy of the black holes, using matrix models. In particular, we show how to deal with the divergences that arise as a result of the non-compactness of the Calabi-Yau. The main result is that the entropy of the black hole at zero temperature coincides with the canonical free energy of the matrix model, up to a proportionality constant given by the self-dual temperature of the matrix model.

  18. NiftyFit: a Software Package for Multi-parametric Model-Fitting of 4D Magnetic Resonance Imaging Data.

    Science.gov (United States)

    Melbourne, Andrew; Toussaint, Nicolas; Owen, David; Simpson, Ivor; Anthopoulos, Thanasis; De Vita, Enrico; Atkinson, David; Ourselin, Sebastien

    2016-07-01

    Multi-modal, multi-parametric Magnetic Resonance (MR) Imaging is becoming an increasingly sophisticated tool for neuroimaging. The relationships between parameters estimated from different individual MR modalities have the potential to transform our understanding of brain function, structure, development and disease. This article describes a new software package for such multi-contrast Magnetic Resonance Imaging that provides a unified model-fitting framework. We describe model-fitting functionality for Arterial Spin Labeled MRI, T1 Relaxometry, T2 relaxometry and Diffusion Weighted imaging, providing command line documentation to generate the figures in the manuscript. Software and data (using the nifti file format) used in this article are simultaneously provided for download. We also present some extended applications of the joint model fitting framework applied to diffusion weighted imaging and T2 relaxometry, in order to both improve parameter estimation in these models and generate new parameters that link different MR modalities. NiftyFit is intended as a clear and open-source educational release so that the user may adapt and develop their own functionality as they require. PMID:26972806

  19. Examining the Evolution of the Peninsula Segment of the San Andreas Fault, Northern California, Using a 4-D Geologic Model

    Science.gov (United States)

    Horsman, E.; Graymer, R. W.; McLaughlin, R. J.; Jachens, R. C.; Scheirer, D. S.

    2008-12-01

    Retrodeformation of a three-dimensional geologic model allows us to explore the tectonic evolution of the Peninsula segment of the San Andreas Fault and adjacent rock bodies in the San Francisco Bay area. By using geological constraints to quantitatively retrodeform specific surfaces (e.g. unfolding paleohorizontal horizons, removing fault slip), we evaluate the geometric evolution of rock bodies and faults in the study volume and effectively create a four-dimensional model of the geology. The three-dimensional map is divided into fault-bounded blocks and subdivided into lithologic units. Surface geologic mapping provides the foundation for the model. Structural analysis and well data allow extrapolation to a few kilometers depth. Geometries of active faults are inferred from double-difference relocated earthquake hypocenters. Gravity and magnetic data provide constraints on the geometries of low density Cenozoic deposits on denser basement, highly magnetic marker units, and adjacent faults. Existing seismic refraction profiles constrain the geometries of rock bodies with different seismic velocities. Together these datasets and others allow us to construct a model of first-order geologic features in the upper ~15 km of the crust. Major features in the model include the active San Andreas Fault surface; the Pilarcitos Fault, an abandoned strand of the San Andreas; an active NE-vergent fold and thrust belt located E of the San Andreas Fault; regional relief on the basement surface; and several Cenozoic syntectonic basins. Retrodeformation of these features requires constraints from all available datasets (structure, geochronology, paleontology, etc.). Construction of the three-dimensional model and retrodeformation scenarios are non-unique, but significant insights follow from restricting the range of possible geologic histories. For example, we use the model to investigate how the crust responded to migration of the principal slip surface from the Pilarcitos Fault

  20. Digital elevation models in 10 minute time steps - a status report on 4D monitoring of an active erosional scar

    Science.gov (United States)

    Kaiser, Andreas; Neugirg, Fabian; Hass, Erik; Jose, Steffen; Haas, Florian; Schmidt, Jürgen

    2016-04-01

    In erosional research a variety of processes are well understood and have been mimicked under laboratory conditions. In complex natural systems such as Alpine environments a multitude of influencing factors tend to superimpose single processes in a mixed signal which impedes a reliable interpretation. These mixed signals can already be captured by geoscientific research approaches such as sediment collectors, erosion pins or remote sensing surveys. Nevertheless, they fail to distinguish between single processes and their individual impact on slope morphology. Throughout the last two years a highly active slope of unsorted glacial deposits in the northern Alps has been monitored by repeated terrestrial laser scans roughly every three months. Resulting high resolution digital elevation models of difference were produced to identify possible seasonal patterns. By reproducing the TLS results with a physically based erosion model (EROSION 3D) ran with in situ input data from rainfall simulations and a climate station a better understanding of individual mechanism could be achieved. However, the already elaborate combination of soil science and close range remote sensing could not answer all questions concerning the slopes behaviour, especially not for freeze and thaw cycles and the winter period. Therefore, an array of three fully automatic synchronised cameras was setup to generate continuous 3D surface models. Among the main challenges faced for the system were the energy supply and durability, perspectives of the cameras to avoid shadowing and to guarantee sufficient overlap, a certain robustness to withstand rough alpine weather conditions, the scaling of each 3D model by tracked ground control points and the automatic data handling. First results show individual processes sculpting the slope's morphology but further work is required to improve automatic point cloud creation and change monitoring.

  1. Estimating Amazonian methane emissions through 4D-Var inverse modelling with satellite observations from GOSAT and IASI

    Science.gov (United States)

    Wilson, C. J.; Chipperfield, M.; Gloor, M.; McNorton, J.; Miller, J. B.; Gatti, L. V.; Siddans, R.; Bloom, A. A.; Basso, L. S.; Boesch, H.; Parker, R.; Monks, S. A.

    2015-12-01

    Methane (CH4) is emitted from a range of anthropogenic and natural sources, and since the industrial revolution its mean atmospheric concentration has climbed dramatically. CH4 produces a relatively high radiative forcing effect upon the Earth's climate, and its atmospheric lifetime of approximately 10 years makes it an appealing target for the mitigation of climate change. However, the spatial and temporal variation of CH4 emissions are not well understood, though in recent years a number of top-down and bottom-up studies have attempted to construct improved emission budgets. However, some top-down studies suffer from poor observational coverage near the Amazon basin, particularly in the planetary boundary layer. Since emissions from this region, coming mainly from wetland and burning sources, are thought to be relatively high, additional observations in this region would greatly help to constrain the geographical distribution of the global CH4 emission budget. To this end, regular flask measurements of CH4 and other trace gases have been taken during flights over four Amazonian sites since 2010, as part of the AMAZONICA project. The GOSAT has been used to retrieve global column-average CH4 concentrations since mid-2009, whilst IASI, on-board Metop-A, has also been measuring atmospheric CH4 concentrations since its launch in 2006. We present an assessment of Amazonian methane emissions for 2010 and 2011 using the TOMCAT Chemical Transport Model and the new variational inverse model, INVICAT. These models are used to attribute methane variations at each Amazon site to a source type and region, to assess the ability of our current CH4 flux estimates to reproduce these observations and to produce improved posterior emission estimates through assimilation of atmospheric observations. This study represents the first use of the INVICAT scheme to constrain emissions of any atmospheric trace gas. Whilst there is generally good agreement between the model and the

  2. On "New Massive" 4D Gravity

    CERN Document Server

    Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K

    2012-01-01

    We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a "dual" graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D "new massive gravity", we call this 4D model (linearized) "new massive dual gravity". We analyse its massless limit, and discuss similarities to the Eddington-Schroedinger model.

  3. A 4D Analogue Modeling Study Assessing the Effects of Transtension and Inherited Structures on Rift Interaction

    Science.gov (United States)

    Zwaan, F.; Schreurs, G.; Naliboff, J.; Buiter, S. J.

    2015-12-01

    The interaction of individual rift segments determines the evolution of a rift system and subsequent continental break-up. Inherited heterogeneities control where initial rifts will form and since these are often not properly aligned, rift segments form separately and need to interact. Another important factor affecting rift-segment interaction is the obliquity of plate divergence (transtension), which also promotes eventual continent break-up (Brune et al., 2012). Both analogue and numerical techniques have been used to model rift interaction (e.g. Acocella et al., 1999; Allken et al., 2012) but transtension has never been applied. Here we present a first-order analogue study that elaborates upon earlier studies by assessing the effects of (1) transtension, (2) rift offset and (3) presence and geometry of inherited weak zones that link rift segments. An improved analogue set-up allows more freedom in inherited structure geometry and model analysis with X-Ray Computer Tomography (CT) techniques reveals internal structures with time (Fig. 2 and 3). Our experiments yield the following conclusions: Increasing the degree of transtension (decreasing angle α in Fig. 1) controls general rift structures: from wide rifts in orthogonal divergence settings to narrower rifts with oblique internal structures under transtensional conditions to narrow strike-slip dominated systems towards the strike-slip domain; Rift linkage through transfer zones (hard linkage) is generally promoted by 1) decreasing rift offset and 2) increasing the degree of transtension. However, initial rift linkage might involve relay ramps (soft linkage) due to the interplay of divergence direction and rift offset; Inherited rift-linking weak zones have little effect on rift interaction unless they are oriented ca. perpendicular to the divergence direction; Since the orthogonal divergence models resemble natural examples (Fig. 3), our transtension models might predict what structures can be expected in

  4. Demonstrating the Model Nature of the High-Temperature Superconductor HgBa2CuO4+d

    Energy Technology Data Exchange (ETDEWEB)

    Barisic, Neven; Li, Yuan; Zhao, Xudong; Cho, Yong-Chan; Chabot-Couture, Guillaume; Yu, Guichuan; Greven, Martin; /SLAC, SSRL /Boskovic Inst., Zagreb /Stanford U., Phys. Dept. /Jilin U. /Stanford U., Appl. Phys. Dept.

    2008-09-30

    The compound HgBa{sub 2}CuO{sub 4+{delta}} (Hg1201) exhibits a simple tetragonal crystal structure and the highest superconducting transition temperature (T{sub c}) among all single Cu-O layer cuprates, with T{sub c} = 97 K (onset) at optimal doping. Due to a lack of sizable single crystals, experimental work on this very attractive system has been significantly limited. Thanks to a recent breakthrough in crystal growth, such crystals have now become available. Here, we demonstrate that it is possible to identify suitable heat treatment conditions to systematically and uniformly tune the hole concentration of Hg1201 crystals over a wide range, from very underdoped (T{sub c} = 47 K, hole concentration p {approx} 0.08) to overdoped (T{sub c} = 64 K, p {approx} 0.22). We then present quantitative magnetic susceptibility and DC charge transport results that reveal the very high-quality nature of the studied crystals. Using XPS on cleaved samples, we furthermore demonstrate that it is possible to obtain large surfaces of good quality. These characterization measurements demonstrate that Hg1201 should be viewed as a model high-temperature superconductor, and they provide the foundation for extensive future experimental work.

  5. 4D volcano gravimetry

    Science.gov (United States)

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  6. Direct 4D PET MLEM reconstruction of parametric images using the simplified reference tissue model with the basis function method for [11C]raclopride

    International Nuclear Information System (INIS)

    This work assesses the one-step late maximum likelihood expectation maximization (OSL-MLEM) 4D PET reconstruction algorithm for direct estimation of parametric images from raw PET data when using the simplified reference tissue model with the basis function method (SRTM-BFM) for the kinetic analysis. To date, the OSL-MLEM method has been evaluated using kinetic models based on two-tissue compartments with an irreversible component. We extend the evaluation of this method for two-tissue compartments with a reversible component, using SRTM-BFM on simulated 3D + time data sets (with use of [11C]raclopride time-activity curves from real data) and on real data sets acquired with the high resolution research tomograph. The performance of the proposed method is evaluated by comparing voxel-level binding potential (BPND) estimates with those obtained from conventional post-reconstruction kinetic parameter estimation. For the commonly chosen number of iterations used in practice, our results show that for the 3D + time simulation, the direct method delivers results with lower %RMSE at the normal count level (decreases of 9–10 percentage points, corresponding to a 38–44% reduction), and also at low count levels (decreases of 17–21 percentage points, corresponding to a 26–36% reduction). As for the real 3D data set, the results obtained follow a similar trend, with the direct reconstruction method offering a 21% decrease in %CV compared to the post reconstruction method at low count levels. Thus, based on the results presented herein, using the SRTM-BFM kinetic model in conjunction with the OSL-MLEM direct 4D PET MLEM reconstruction method offers an improvement in performance when compared to conventional post reconstruction methods. (paper)

  7. 4D volcano gravimetry

    OpenAIRE

    Battaglia, Mauricio; Gottsmann, Joachim; Carbone, Daniele; Fernández Torres, José

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and t...

  8. 4D volcano gravimetry

    OpenAIRE

    Battaglia, M.; University of Rome “La Sapienza,” Department of Earth Sciences, Rome, Italy; Gottsmann, J.; Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, United Kingdom; Carbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Fernández, J.; Instituto de Astronomía y Geodesia

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between g...

  9. Feasibility of quantitative lung perfusion by 4D CT imaging by a new dynamic-scanning protocol in an animal model

    Science.gov (United States)

    Wang, Yang; Goldin, Jonathan G.; Abtin, Fereidoun G.; Brown, Matt; McNitt-Gray, Mike

    2008-03-01

    The purpose of this study is to test a new dynamic Perfusion-CT imaging protocol in an animal model and investigate the feasibility of quantifying perfusion of lung parenchyma to perform functional analysis from 4D CT image data. A novel perfusion-CT protocol was designed with 25 scanning time points: the first at baseline and 24 scans after a bolus injection of contrast material. Post-contrast CT scanning images were acquired with a high sampling rate before the first blood recirculation and then a relatively low sampling rate until 10 minutes after administrating contrast agent. Lower radiation techniques were used to keep the radiation dose to an acceptable level. 2 Yorkshire swine with pulmonary emboli underwent this perfusion- CT protocol at suspended end inspiration. The software tools were designed to measure the quantitative perfusion parameters (perfusion, permeability, relative blood volume, blood flow, wash-in & wash-out enhancement) of voxel or interesting area of lung. The perfusion values were calculated for further lung functional analysis and presented visually as contrast enhancement maps for the volume being examined. The results show increased CT temporal sampling rate provides the feasibility of quantifying lung function and evaluating the pulmonary emboli. Differences between areas with known perfusion defects and those without perfusion defects were observed. In conclusion, the techniques to calculate the lung perfusion on animal model have potential application in human lung functional analysis such as evaluation of functional effects of pulmonary embolism. With further study, these techniques might be applicable in human lung parenchyma characterization and possibly for lung nodule characterization.

  10. Shadow-driven 4D haptic visualization.

    Science.gov (United States)

    Zhang, Hui; Hanson, Andrew

    2007-01-01

    Just as we can work with two-dimensional floor plans to communicate 3D architectural design, we can exploit reduced-dimension shadows to manipulate the higher-dimensional objects generating the shadows. In particular, by taking advantage of physically reactive 3D shadow-space controllers, we can transform the task of interacting with 4D objects to a new level of physical reality. We begin with a teaching tool that uses 2D knot diagrams to manipulate the geometry of 3D mathematical knots via their projections; our unique 2D haptic interface allows the user to become familiar with sketching, editing, exploration, and manipulation of 3D knots rendered as projected imageson a 2D shadow space. By combining graphics and collision-sensing haptics, we can enhance the 2D shadow-driven editing protocol to successfully leverage 2D pen-and-paper or blackboard skills. Building on the reduced-dimension 2D editing tool for manipulating 3D shapes, we develop the natural analogy to produce a reduced-dimension 3D tool for manipulating 4D shapes. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the experience accessible to human beings. As far as we are aware, this paper reports the first interactive system with force-feedback that provides "4D haptic visualization" permitting the user to model and interact with 4D cloth-like objects.

  11. CHY formulae in 4d

    CERN Document Server

    Zhang, Yong

    2016-01-01

    In this paper, we develop a rather general way to reduce integrands with polarisation involved in the Cachazo-He-Yuan formulae, such as the reduced Pfaffian and its compactification, as well as the new object for F3 amplitude. We prove that the reduced Pfaffian vanishes unless on a certain set of solutions. It leads us to build up the 4d CHY formulae using spinors, which strains off many useless solutions. The supersymmetrization is straightforward and may provide a hint to understanding ambitwistor string in 4d.

  12. Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments

    Science.gov (United States)

    Alonso-Henar, Jorge; Schreurs, Guido; Martinez-Díaz, José Jesús; Álvarez-Gómez, José Antonio; Villamor, Pilar

    2015-01-01

    The El Salvador Fault Zone (ESFZ) is an active, approximately 150 km long and 20 km wide, segmented, dextral strike-slip fault zone within the Central American Volcanic Arc striking N100°E. Although several studies have investigated the surface expression of the ESFZ, little is known about its structure at depth and its kinematic evolution. Structural field data and mapping suggest a phase of extension, at some stage during the evolution of the ESFZ. This phase would explain dip-slip movements on structures that are currently associated with the active, dominantly strike slip and that do not fit with the current tectonic regime. Field observations suggest trenchward migration of the arc. Such an extension and trenchward migration of the volcanic arc could be related to slab rollback of the Cocos plate beneath the Chortis Block during the Miocene/Pliocene. We carried out 4-D analog model experiments to test whether an early phase of extension is required to form the present-day fault pattern in the ESFZ. Our experiments suggest that a two-phase tectonic evolution best explains the ESFZ: an early pure extensional phase linked to a segmented volcanic arc is necessary to form the main structures. This extensional phase is followed by a strike-slip dominated regime, which results in intersegment areas with local transtension and segments with almost pure strike-slip motion. The results of our experiments combined with field data along the Central American Volcanic Arc indicate that the slab rollback intensity beneath the Chortis Block is greater in Nicaragua and decreases westward to Guatemala.

  13. Instant Cinema 4D starter

    CERN Document Server

    Kaminar, Aaron

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks.This book is written in a friendly, practical style with lots of screenshots and help that will ensure you grow in confidence chapter by chapter.This book is recommended for artists that have experience in other 3D software packages, and who want to learn Cinema 4D. That being said, dedicated readers without experience in other 3D software should not be discouraged from reading this book to learn the basics of Cinema 4D as their first 3D package.

  14. HII galaxies in 4D

    CERN Document Server

    Telles, Eduardo

    2014-01-01

    HII galaxies are clumpy and their gas kinematics can be mapped to show the global turbulent motions and the effect of massive star evolution. The distribution of their physical conditions is homogeneous and oxygen abundance is uniform. The presence of nebular HeII 4868 line seems to be higher in a low abundance galaxy, implying a harder ionization power probably due to stars in low metallicity. Innovative methods of data cube analysis, namely PCA tomography (nicknamed 4D), seem promising in revealing additional information not detected with the standard methods. I review some of our own recent work on the 3D spectroscopy of HII galaxies.

  15. 4D image reconstruction for emission tomography

    International Nuclear Information System (INIS)

    An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D

  16. Interactive animation of 4D performance capture.

    Science.gov (United States)

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance.

  17. Advances in 4D Radiation Therapy for Managing Respiration: Part II – 4D Treatment Planning

    Science.gov (United States)

    Rosu, Mihaela; Hugo, Geoffrey D.

    2014-01-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle – an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems. PMID:22796324

  18. E4D_RT

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-22

    Time-lapse ERT imaging for monitoring both natural and engineered subsurface processes has advanced rapidly over the past 15-20 years. However, imaging results generally required a significant amount of manual and computational effort, and therefore were not available while the process was occurring. Although the value of real-time imaging was recognized, several obstacles prevented it's implementation. E4D_RT addresses these obstacles by 1) providing specialized algorithms that negate the need for user intervention, thereby automating the time-lapse data processing steps, 2) linking field data collection systems with parallel supercomputing systems via wireless data transfer link, and 3) addressing the computational burdens by utilizing distributed memory supercomputing resources, thereby enabling rapid data processing and imaging results.

  19. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    Directory of Open Access Journals (Sweden)

    Raj K Panta

    2012-01-01

    Conclusions: An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research.

  20. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    OpenAIRE

    Hugo, Geoffrey D.; Rosu, Mihaela

    2012-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are descri...

  1. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    OpenAIRE

    Panta, Raj K.; Paul Segars; Fang-Fang Yin; Jing Cai

    2012-01-01

    Aims: To establish a framework to implement the 4D integrated extended cardiac torso (XCAT) digital phantom for 4D radiotherapy (RT) research. Materials and Methods: A computer program was developed to facilitate the characterization and implementation of the 4D XCAT phantom. The program can (1) generate 4D XCAT images with customized parameter files; (2) review 4D XCAT images; (3) generate composite images from 4D XCAT images; (4) track motion of selected region-of-interested (ROI); (5) c...

  2. Active origami by 4D printing

    International Nuclear Information System (INIS)

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand. (paper)

  3. Active origami by 4D printing

    Science.gov (United States)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  4. Quantification of left ventricular volumes and ejection fraction from gated {sup 99m}Tc-MIBI SPECT: validation of an elastic surface model approach in comparison to cardiac magnetic resonance imaging, 4D-MSPECT and QGS

    Energy Technology Data Exchange (ETDEWEB)

    Stegger, Lars; Kies, Peter; Schober, Otmar; Schaefers, Michael [University Hospital, Westfaelische Wilhelms-University Muenster, Department of Nuclear Medicine, Muenster (Germany); Lipke, Claudia S.A.; Nowak, Bernd; Buell, Udalrich; Schaefer, Wolfgang M. [University Hospital,Aachen University of Technology, Department of Nuclear Medicine, Aachen (Germany)

    2007-06-15

    The segmentation algorithm ESM based on an elastic surface model was validated for the assessment of left ventricular volumes and ejection fraction from ECG-gated myocardial perfusion SPECT. Additionally, it was compared with the commercially available quantification packages 4D-MSPECT and QGS. Cardiac MRI was used as the reference method. SPECT and MRI were performed on 70 consecutive patients with suspected or proven coronary artery disease. End-diastolic (EDV) and end-systolic (ESV) volumes and left ventricular ejection fraction (LVEF) were derived from SPECT studies by using the segmentation algorithms ESM, 4D-MSPECT and QGS and from cardiac MRI. ESM-derived values for EDV and ESV correlated well with those from cardiac MRI (correlation coefficients R = 0.90 and R = 0.95, respectively), as did the measurements for LVEF (R = 0.86). Both EDV and ESV were slightly overestimated for larger ventricles but not for smaller ventricles; LVEF was slightly overestimated irrespective of ventricle size. The above correlation coefficients are comparable to those for the 4D-MSPECT and QGS segmentation algorithms. However, results obtained with the three segmentation algorithms are not interchangeable. The ESM algorithm can be used to assess EDV, ESV and LVEF from gated perfusion SPECT images. Overall, the performance was similar to that of 4D-MSPECT and QGS when compared with cardiac MRI. Results obtained with the three tested segmentation methods are not interchangeable, so that the same algorithm should be used for follow-up studies and control subjects. (orig.)

  5. 4-D-Var or ensemble Kalman filter?

    Science.gov (United States)

    Kalnay, Eugenia; Li, Hong; Miyoshi, Takemasa; Yang, Shu-Chih; Ballabrera-Poy, Joaquim

    2007-10-01

    We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter (EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4-D-Var, variance inflation in EnKF, and the effect of model errors and reduced observation coverage. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4-D-Var. For infrequent observations, when ensemble perturbations grow non-linearly and become non-Gaussian, 4-D-Var attains lower errors than EnKF. If the model is imperfect, the 4-D-Var with long windows requires weak constraint. Similar results are obtained with a quasi-geostrophic channel model. EnKF experiments made with the primitive equations SPEEDY model provide comparisons with 3-D-Var and guidance on model error and `observation localization'. Results obtained using operational models and both simulated and real observations indicate that currently EnKF is becoming competitive with 4-D-Var, and that the experience acquired with each of these methods can be used to improve the other. A table summarizes the pros and cons of the two methods.

  6. The 4D Composite Higgs

    CERN Document Server

    De Curtis, Stefania; Tesi, Andrea

    2012-01-01

    We propose a four dimensional description of Composite Higgs Models which represents a complete framework for the physics of the Higgs as a pseudo-Nambu-Goldstone boson. Our setup captures all the relevant features of 5D models and more in general of composite Higgs models with partial compositeness. We focus on the minimal scenario where we include a single multiplet of resonances of the composite sector, as these will be the only degrees of freedom which might be accessible at the LHC. This turns out to be sufficient to compute the effective potential and derive phenomenological consequences of the theory. Moreover our simplified approach is well adapted to simulate these models at the LHC. We also consider the impact of non-minimal terms in the effective lagrangian which do not descend from a 5D theory and could be of phenomenological relevance, for example contributing to the S-parameter.

  7. Web based hybrid volumetric visualisation of urban GIS data. Integration of 4D Temperature and Wind Fields with LoD-2 CityGML models

    Science.gov (United States)

    Congote, J.; Moreno, A.; Kabongo, L.; Pérez, J.-L.; San-José, R.; Ruiz, O.

    2012-10-01

    City models visualisation, buildings, structures and volumetric information, is an important task in Computer Graphics and Urban Planning. The different formats and data sources involved in the visualisation make the development of applications a big challenge. We present a homogeneous web visualisation framework using X3DOM and MEDX3DOM for the visualisation of these urban objects. We present an integration of different declarative data sources, enabling the utilization of advanced visualisation algorithms to render the models. It has been tested with a city model composed of buildings from the Madrid University Campus, some volumetric datasets coming from Air Quality Models and 2D layers wind datasets. Results show that the visualisation of all the urban models can be performed in real time on the Web. An HTML5 web interface is presented to the users, enabling real time modifications of visualisation parameters.

  8. 4-D OCT in Developmental Cardiology

    Science.gov (United States)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  9. 4D-Var or Ensemble Kalman Filter

    Science.gov (United States)

    Kalnay, E.; Li, H.; Yang, S.; Miyoshi, T.; Ballabrera, J.

    2007-05-01

    We consider the relative advantages of two advanced data assimilation systems, 4D-Var and ensemble Kalman filter (EnKF), currently in use or considered for operational implementation. We explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4D-Var, the variance inflation in EnKF, and the effect of model errors and reduced observation coverage in both systems. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4D-Var, and for infrequent observations, when ensemble perturbations grow nonlinearly and become non-Gaussian, 4D-Var attains lower errors than EnKF. Results obtained with variations of EnKF using operational models and both simulated and real observations are reviewed. A table summarizes the pros and cons of the two methods.

  10. 4D Lung Reconstruction with Phase Optimization

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Paulsen, Rasmus; Brink, Carsten;

    2009-01-01

    This paper investigates and demonstrates a 4D lung CT reconstruction/registration method which results in a complete volumetric model of the lung that deforms according to a respiratory motion field. The motion field is estimated iteratively between all available slice samples and a reference vol...... than using an optimization which does not correct for phase errors. Knowing how the lung and any tumors located within the lung deforms is relevant in planning the treatment of lung cancer....... volume which is updated on the fly. The method is two part and the second part of the method aims to correct wrong phase information by employing another iterative optimizer. This two part iterative optimization allows for complete reconstruction at any phase and it will be demonstrated that it is better...

  11. Drell-Yan production of multi Z'-bosons at the LHC within Non-Universal ED and 4D Composite Higgs Models

    CERN Document Server

    Accomando, Elena; De Curtis, Stefania; Fiaschi, Juri; Moretti, Stefano; Shepherd-Themistocleous, Claire H

    2016-01-01

    The Drell-Yan di-lepton production at hadron colliders is by far the preferred channel to search for new heavy spin-1 particles. Traditionally, such searches have exploited the Narrow Width Approximation (NWA) for the signal, thereby neglecting the effect of the interference between the additional Z'-bosons and the Standard Model Z and {\\gamma}. Recently, it has been established that both finite width and interference effects can be dealt with in experimental searches while still retaining the model independent approach ensured by the NWA. This assessment has been made for the case of popular single Z'-boson models currently probed at the CERN Large Hadron Collider (LHC). In this paper, we test the scope of the CERN machine in relation to the above issues for some benchmark multi Z'-boson models. In particular, we consider Non-Universal Extra Dimensional (NUED) scenarios and the 4-Dimensional Composite Higgs Model (4DCHM), both predicting a multi-Z' peaking structure. We conclude that in a variety of cases, s...

  12. Drell-Yan production of multi Z '-bosons at the LHC within Non-Universal ED and 4D Composite Higgs Models

    Science.gov (United States)

    Accomando, Elena; Barducci, Daniele; De Curtis, Stefania; Fiaschi, Juri; Moretti, Stefano; Shepherd-Themistocleous, C. H.

    2016-07-01

    The Drell-Yan di-lepton production at hadron colliders is by far the preferred channel to search for new heavy spin-1 particles. Traditionally, such searches have exploited the Narrow Width Approximation (NWA) for the signal, thereby neglecting the effect of the interference between the additional Z '-bosons and the Standard Model Z and γ. Recently, it has been established that both finite width and interference effects can be dealt with in experimental searches while still retaining the model independent approach ensured by the NWA. This assessment has been made for the case of popular single Z '-boson models currently probed at the CERN Large Hadron Collider (LHC). In this paper, we test the scope of the CERN machine in relation to the above issues for some benchmark multi Z '-boson models. In particular, we consider Non-Universal Extra Dimensional (NUED) scenarios and the 4-Dimensional Composite Higgs Model (4DCHM), both predicting a multi- Z ' peaking structure. We conclude that in a variety of cases, specifically those in which the leptonic decays modes of one or more of the heavy neutral gauge bosons are suppressed and/or significant interference effects exist between these or with the background, especially present when their decay widths are significant, traditional search approaches based on the assumption of rather narrow and isolated objects might require suitable modifications to extract the underlying dynamics.

  13. Symmetry Restoring Phase Transitions at High Density in a 4D Nambu-Jona-Lasinio Model with a Single Order Parameter

    Institute of Scientific and Technical Information of China (English)

    ZHOUBang-Rong

    2003-01-01

    High density phase transitions in a 4-dimensional Nambu-dona-Lasinio model containing a single symmetry breaking order parameter coming from the fermion-antifermion condensates are researched and expounded by means of both the gap equation and the effective potential approach. The phase transitions are proven to be second-order at a high temperature T; however at T = 0 they are first- or second-order, depending on whether A/m(0), the ratio of the momentum cutoff A in the fermion-loop integrals to the dynamical fermion mass m(0) at zero temperature, is lessthan 3.387 or not. The former condition cannot be satisfied in some models. The discussions further show complete effectiveness of the critical analysis based on the gap equation for second order phase transitions including determination of the condition of their occurrence.

  14. Symmetry Restoring Phase Transitions at High Density in a 4D Nambu-Jona-Lasinio Model with a Single Order Parameter

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bang-Rong

    2003-01-01

    High density phase transitions in a 4-dimensional Nambu-Jona-Lasinio model containing a single symmetry breaking order parameter coming from the fermion-antifermion condensates are researched and expounded by means of both the gap equation and the effective potential approach. The phase transitions are proven to be second-order at a high temperature T; however at T = 0 they are first- or second-order, depending on whether A/m(0), the ratio of the momentum cutoff A in the fermion-loop integrals to the dynamicalfermion mass m(0) at zero temperature, is less than 3.387 or not. The former condition cannot be satisfied in some models. The discussions further show complete effectiveness of the critical analysis based on the gap equation for second order phase transitions including determination of the condition of their occurrence.

  15. Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model

    Directory of Open Access Journals (Sweden)

    Swanger Sharon A

    2011-10-01

    Full Text Available Abstract Uncovering the mechanisms that regulate dendritic spine morphology has been limited, in part, by the lack of efficient and unbiased methods for analyzing spines. Here, we describe an automated 3D spine morphometry method and its application to spine remodeling in live neurons and spine abnormalities in a disease model. We anticipate that this approach will advance studies of synapse structure and function in brain development, plasticity, and disease.

  16. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    Science.gov (United States)

    Hugo, Geoffrey D.; Rosu, Mihaela

    2014-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described. PMID:22784929

  17. Evaluation of modelling of the TRUE-1 radially converging and dipole tests with conservative tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4C and 4D

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-05-01

    The `Aespoe task force on modelling of groundwater flow and transport of solutes` is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4C and 4D is evaluated, which comprised predictive modelling of the radially converging tracer tests and dipole tracer tests performed within the TRUE-1 tests using non-sorbing tracers. The tests were performed between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). These tests are to a great extent preparatory steps for the subsequent tests with sorbing radioactive tracers. In Tasks 4E and 4F of the Aespoe Modelling Task Force predictive modelling of the sorbing tracer tests is performed. Eight modelling teams representing seven organisations have performed predictive modelling using different modelling approaches and models. The modelling groups were initially given data from the site characterisation and data on the experimental set-up of the tracer tests. Based on this information model predictions were performed of drawdown, tracer mass recovery and tracer breakthrough. The performed predictions shows that the concept of Feature A as a singular well-connected feature with limited connectivity to its surroundings is quite adequate for predictions of drawdown in boreholes and conservative tracer breakthrough. Reasonable estimates were obtained using relatively simple models. However, more elaborate models with calibration or conditioning of transmissivities and transport apertures are required for more accurate predictions. The general flow and transport processes are well understood, but the methodology to derive the

  18. The Link between ICT4D and Modernization Theory

    Directory of Open Access Journals (Sweden)

    Marlene Kunst

    2015-01-01

    Full Text Available For some decades western institutions have shared an enormous enthusiasm for Information and Communication Technologies for Development (ICT4D. Nevertheless, despite the field’s ever-increasing importance, research on it remains fragmented and lacks a theoretical foundation. By establishing a link between ICT4D and Modernization theory as one of the major development models, this paper aims to add some theoretical reflections to the body of existing research. Initially, a literature review of the most significant authors of Modernization theory serves as a theoretical base. Subsequently, empirical findings are systematized and embedded in the theoretical framework. The leading question is, whether ICT4D is connected to Modernization theory’s main lines of thought, both in theory and in the field. Modernization theory was chosen as a reference point, as even though it has frequently been marked as outdated, some argue that ICT4D has brought about its revival: Led by a technocratic mindset, actors in the field have indeed assumed ICTs to be context-free tools, which is one of the reasons why ICT4D has so far not been an unmitigated success. As there is a lack of systematic research on ICT4D, this paper is explorative in nature. It is certainly beyond the author’s scope to make any definite statements on how development cooperation has hitherto handled ICT4D, as the field is too complex. Instead, light will be shed on some trends that can be identified in the field of ICT4D to date.

  19. The 4-D approach to visual control of autonomous systems

    Science.gov (United States)

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.

  20. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.

    Science.gov (United States)

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.

  1. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ying-Hua Yang

    Full Text Available Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.

  2. 4-D XRD for strain in many grains using triangulation

    OpenAIRE

    Bale, Hrishikesh A.; Hanan, Jay C.; Tamura, Nobumichi

    2006-01-01

    Determination of the strains in a polycrystalline material using 4-D XRD reveals sub-grain and grain-to-grain behavior as a function of stress. Here 4-D XRD involves an experimental procedure using polychromatic micro-beam X-radiation (micro-Laue) to characterize polycrystalline materials in spatial location as well as with increasing stress. The in-situ tensile loading experiment measured strain in a model aluminum-sapphire metal matrix composite using the Advanced Light Source, Beam-li...

  3. Inelastic electron scattering investigation of the complete 4d shell

    International Nuclear Information System (INIS)

    In order to test for collective behavior in the filled 4d shell of single atoms with Z approx. = 54, inelastic electron scattering experiments were performed on thin films of antimony, tellurium and barium fluoride using 300 keV electrons. The Te measurements at low momentum transfers are in absolute agreement with photoabsorption results. For Te, a high concentration of oscillator strength is found in the broad maximum which dominates the 4d excitation spectrum. With the aid of a background subtraction, the energy centroid of this feature is located. In a comparison with simple models, the measured energy shift in the 4d continuum as a function of momentum transfer favors a single particle rather than collective description

  4. Representing Participation in ICT4D Projects

    DEFF Research Database (Denmark)

    Singh, J. P.; Flyverbom, Mikkel

    2016-01-01

    How do the discourses of participation inform deployment of information and communication technologies for development (ICT4D)? Discourses here mean narratives that assign roles to actors, and specify causes and outcomes for events. Based on the theory and practice of international development we...... identify two dimensions to participation and ICT4D: whether participation 1) is hierarchical/top-down or agent-driven/bottom-up, and 2) involves conflict or cooperation. Based on these dimensions we articulate four ideal types of discourse that permeate ICT and development efforts: stakeholder......-based discourses that emphasize consensus, networked efforts among actors collaborating in network arrangements, mobilization discourses that account for contestation over meanings of participation, and oppositional discourses from ׳grassroots׳ actors that also include conflict. We conclude that ICT4D efforts...

  5. Global 4-D trajectory optimization for spacecraft

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Global 4-D trajectory(x,y,z,t)is optimized for a spacecraft,which is launched from the Earth to fly around the Sun,just as star-drift of 1437 asteroids in the solar system.The spacecraft trajectory is controlled by low thrust.The performance index of optimal trajectory is to maximize the rendezvous times with the intermediate asteroids,and also maximize the final mass.This paper provides a combined algorithm of global 4-D trajectory optimization.The algorithm is composed of dynamic programming and two-point-boundary algorithm based on optimal control theory.The best 4-D trajectory is obtained:the spacecraft flies passing 55 asteroids,and rendezvous with(following or passing again)asteroids for 454 days,and finally rendezvous with the asteroid 2005SN25 on the day 60521(MJD),the final mass of the spacecraft is 836.53 kg.

  6. The scientific value of 4D visualizations

    Science.gov (United States)

    Minster, J.; Olsen, K.; Day, S.; Moore, R.; Jordan, T. H.; Maechling, P.; Chourasia, A.

    2006-12-01

    Significant scientific insights derive from viewing measured, or calculated three-dimensional, time-dependent -- that is four-dimensional-- fields. This issue cuts across all disciplines of Earth Sciences. Addressing it calls for close collaborations between "domain" scientists and "IT" visualization specialists. Techniques to display such 4D fields in a intuitive way are a major challenge, especially when the relevant variables to be displayed are not scalars but tensors. This talk will illustrate some attempts to deal with this challenge, using seismic wave fields as specific objects to display. We will highlight how 4D displays can help address very difficult issues of significant scientific import.

  7. Cinema 4D R13 Cookbook

    CERN Document Server

    Szabo, Michael

    2012-01-01

    This book contains short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity. This book is for anyone who wants to quickly get up to speed with Cinema 4D to create 3D projects that run laps around simple

  8. 4D, N = 1 Supersymmetry Genomics (I)

    CERN Document Server

    Gates, S J; MacGregor, B; Parker, J; Polo-Sherk, R; Rodgers, V G J; Wassink, L

    2009-01-01

    Presented in this paper the nature of the supersymmetrical representation theory behind 4D, N = 1 theories, as described by component fields, is investigated using the tools of Adinkras and Garden Algebras. A survey of familiar matter multiplets using these techniques reveals they are described by two fundamental valise Adinkras that are given the names of the cis-Valise (c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, N = 1 component descriptions of supermultiplets are associated with two integers - the numbers of c-V and t-V Adinkras that occur in the representation.

  9. Can Pions "Smell" 4D, N = 1 Supersymmetry?

    CERN Document Server

    Gates, S J

    1997-01-01

    We show how the usual chiral perturbation theory description of phenomenological pion physics admits an interpretation as a low-energy string-like model associated with QCD. By naive and straightforward generalization within the context of a new class of supersymmetrical models, it is shown that this string-like structure admits a 4D, N = 1 supersymmetrical extension. The presence of a WZNW term in the model implies modifications of certain higher order processes involving the ordinary SU(3) pion octet.

  10. Can Pions ``Smell'' 4D, N = 1 Supersymmetry?

    OpenAIRE

    Gates, Jr., S. James

    1997-01-01

    We show how the usual chiral perturbation theory description of phenomenological pion physics admits an interpretation as a low-energy string-like model associated with QCD. By naive and straightforward generalization within the context of a new class of supersymmetrical models, it is shown that this string-like structure admits a 4D, N = 1 supersymmetrical extension. The presence of a WZNW term in the model implies modifications of certain higher order processes involving the ordinary SU(3) ...

  11. 4D, N=1 Supergravity Genomics

    CERN Document Server

    Chappell, Isaac; Linch, William D; Parker, James; Randall, Stephen; Ridgway, Alexander; Stiffler, Kory

    2012-01-01

    The off-shell representation theory of 4D, $\\mathcal{N}=1$ supermultiplets can be categorized in terms of distinct irreducible graphical representations called adinkras. Recent evidence has emerged pointing to the existence of three such fundamental adinkras associated with distinct equivalence classes of a Coxeter group. A partial description of these adinkras is given in terms of two types, termed cis-and trans-adinkras (the latter being a degenerate doublet) in analogy to enantiomers in chemistry. Through a new and simple procedure that uses adinkras, we find the irreducible off-shell adinkra representations of 4D, $\\mathcal{N}=1$ supergravity, in the old-minimal, non-minimal, and conformal formulations. We categorize these representations in terms of their supersymmetry `enantiomer' numbers: the number of cis-($n_c$) and trans-($n_t$) adinkras in the representation.

  12. From Femtochemistry to 4D Microscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To celebrate the 10th anniversary of the Nobel Prize for Femtochemistry,the field is overviewed with several classic examples and the new extension to Femtobiology. The revolutionary breakthrough in 4D electron microscopy is briefly introduced here and a new age to structural dynamics is rising on the horizon,an exciting time and a great opportunity for China and for the world.

  13. SU-E-CAMPUS-I-05: Internal Dosimetric Calculations for Several Imaging Radiopharmaceuticals in Preclinical Studies and Quantitative Assessment of the Mouse Size Impact On Them. Realistic Monte Carlo Simulations Based On the 4D-MOBY Model

    Energy Technology Data Exchange (ETDEWEB)

    Kostou, T; Papadimitroulas, P; Kagadis, GC [University of Patras, Rion, Ahaia (Greece); Loudos, G [Technical Educational Institute of Athens, Aigaleo, Attiki (Greece)

    2014-06-15

    Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PET studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known

  14. Cinema 4D R14 cookbook

    CERN Document Server

    Russell, Simon

    2013-01-01

    This book is written in a Cookbook style with short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity.This book is for professional artists working in architecture, design, production, or games and wan

  15. 4D, N = 1 Supersymmetry Genomics (II)

    CERN Document Server

    Gates, S James; Hallett, Jared; Parker, James; Rodgers, Vincent G J; Stiffler, Kory

    2011-01-01

    We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, N = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of $n_c$-cis and $n_t$-trans representations. Analyzing the real scalar and complex linear superfield multiplets, these "chemical enantiomer" numbers are found to be $n_c$ = $n_t$ = 1 and $n_c$ = 1, $n_t$ = 2, respectively.

  16. 基于时空连续约束的4D脑图像分割模型%4D Brain Image Segmentation Model Based on Spatio-Temporal Information Continuity

    Institute of Scientific and Technical Information of China (English)

    詹天明; 肖亮; 张军; 韦志辉

    2013-01-01

    纵向分析脑解剖结构的变化可以预测脑组织的生长或萎缩状态,为临床治疗和科学研究提供必要的依据。但由于成像设备或模式不同以及成像时间间隔较长,3D的分割方法得到的结果无法体现脑组织在时间维上缓慢变化的特征。针对这一问题,提出一种基于时空约束的4D脑图像水平集分割模型。该模型包含了由全局以及局部信息组成的数据拟合项、空间平滑项以及时间平滑项。其中数据拟合项体现了各个时间点的图像灰度信息,空间和时间平滑项则能保证分割结果在时空维上体现其缓慢变化的特性。实验结果表明本文方法既能保证准确的分割结果又能保证空间维以及时间维上的连续性。%Longitudinal analysis of brain anatomical change can predict the growth or atrophy of human brain and provide a necessary foundation for clinical medicine application and research .However ,due to different imaging machine or model and a long time interval of each image in different time point ,the 3D image segmentation method can not provide adequate longitudinal stability of brain tissue variation .In this paper ,we propose a 4D brain image level set segmentation model based on spatio-temporal informa-tion continuity .This model contain three terms :data term created by global and local information ,spatial and temporal smooth term respectively .The data term reflects the intensity information of the image in each time point .The spatial and temporal term can keep the segmentation results smooth variation in these two dimensions .The experiments demonstrate that the proposed method can obtain a temporally consistent and spatially adaptive longitudinal brain image segmentation results .

  17. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    Science.gov (United States)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I; Morcrette, J. J.; Solomon, F.; Szopa, S.; Dulac, F; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-01-01

    aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003-2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology.We extend the 2003-2009 reconstruction to the past up to 1979 using the 2003-2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  18. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    Energy Technology Data Exchange (ETDEWEB)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. -J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, Steven J.; Horowitz, L.; Lamarque, J.-F.; Lee, Y. H.; Naik, Vaishali; Nagashima, T.; Shindell, Drew; Skeie, R. B.

    2013-05-17

    showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003–2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology.We extend the 2003–2009 reconstruction to the past up to 1979 using the 2003–2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosolclimate studies.

  19. A 4-D climatology (1979-2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    Science.gov (United States)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-05-01

    aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003-2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology. We extend the 2003-2009 reconstruction to the past up to 1979 using the 2003-2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  20. A 4-D climatology (1979–2009 of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    Directory of Open Access Journals (Sweden)

    P. Nabat

    2013-05-01

    dust aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003–2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology. We extend the 2003–2009 reconstruction to the past up to 1979 using the 2003–2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  1. A 4-D climatology (1979–2009 of the monthly aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    Directory of Open Access Journals (Sweden)

    P. Nabat

    2012-11-01

    boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003–2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology. We extend the 2003–2009 reconstruction to the past up to 1979 using the 2003–2009 average and applying the decreasing trend in sulfate aerosols from the LMDz-OR-INCA model, based on the recent emission reconstruction proposed by Lamarque et al. (2010. Finally optical properties of the different aerosol types in this region are proposed from the literature so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  2. A sinogram warping strategy for pre-reconstruction 4D PET optimization.

    Science.gov (United States)

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Kurz, Christopher; Parodi, Katia; Baroni, Guido

    2016-03-01

    A novel strategy for 4D PET optimization in the sinogram domain is proposed, aiming at motion model application before image reconstruction ("sinogram warping" strategy). Compared to state-of-the-art 4D-MLEM reconstruction, the proposed strategy is able to optimize the image SNR, avoiding iterative direct and inverse warping procedures, which are typical of the 4D-MLEM algorithm. A full-count statistics sinogram of the motion-compensated 4D PET reference phase is generated by warping the sinograms corresponding to the different PET phases. This is achieved relying on a motion model expressed in the sinogram domain. The strategy was tested on the anthropomorphic 4D PET-CT NCAT phantom in comparison with the 4D-MLEM algorithm, with particular reference to robustness to PET-CT co-registrations artefacts. The MLEM reconstruction of the warped sinogram according to the proposed strategy exhibited better accuracy (up to +40.90 % with respect to the ideal value), whereas images reconstructed according to the 4D-MLEM reconstruction resulted in less noisy (down to -26.90 % with respect to the ideal value) but more blurred. The sinogram warping strategy demonstrates advantages with respect to 4D-MLEM algorithm. These advantages are paid back by introducing approximation of the deformation field, and further efforts are required to mitigate the impact of such an approximation in clinical 4D PET reconstruction.

  3. 基于改进的4D模型的可视化施工管理系统%Visual Construction Management System Based on Improved 4D Model

    Institute of Scientific and Technical Information of China (English)

    张苏

    2009-01-01

    在对当前的可视化理念和4D(4Dimension,简称4D)模型的学习和研究后,提出了一个改进的4D模型.该模型以工程结构分解(Work Breakdown Structure,WBS)为核心,分解出不同层次的施工对象,以进度计划为主线,将进度计划和施工对象连接来反应施工过程的动态变化,实现施工过程的可视化模拟和管理.

  4. Soft Route to 4D Tomography

    Science.gov (United States)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  5. 4D-Flow validation, numerical and experimental framework

    Science.gov (United States)

    Sansom, Kurt; Liu, Haining; Canton, Gador; Aliseda, Alberto; Yuan, Chun

    2015-11-01

    This work presents a group of assessment metrics of new 4D MRI flow sequences, an imaging modality that allows for visualization of three-dimensional pulsatile flow in the cardiovascular anatomy through time-resolved three-dimensional blood velocity measurements from cardiac-cycle synchronized MRI acquisition. This is a promising tool for clinical assessment but lacks a robust validation framework. First, 4D-MRI flow in a subject's stenotic carotid bifurcation is compared with a patient-specific CFD model using two different boundary condition methods. Second, Particle Image Velocimetry in a patient-specific phantom is used as a benchmark to compare the 4D-MRI in vivo measurements and CFD simulations under the same conditions. Comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, Lagrangian particle residence time, will be discussed, with justification for their biomechanics relevance and the insights they can provide on the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new sequence to provide a quantitative assessment. A parametric analysis on the carotid bifurcation pulsatile flow conditions will be presented and an accuracy assessment provided.

  6. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    Science.gov (United States)

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population. PMID:26521189

  7. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    Science.gov (United States)

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population.

  8. Neuroimmune semaphorin 4D is necessary for optimal lung allergic inflammation.

    Science.gov (United States)

    Shanks, K; Nkyimbeng-Takwi, E H; Smith, E; Lipsky, M M; DeTolla, L J; Scott, D W; Keegan, A D; Chapoval, S P

    2013-12-01

    Neuroimmune semaphorin 4D (Sema4D) was found to be expressed and function in the nervous and immune systems. In the immune system, Sema4D is constitutively expressed on T cells and regulates T cell priming. In addition, it displays a stimulatory function on macrophages, DC, NK cells, and neutrophils. As all these cells are deeply involved in asthma pathology, we hypothesized that Sema4D plays a critical non-redundant regulatory role in allergic airway response. To test our hypothesis, we exposed Sema4D(-/-) and WT mice to OVA injections and challenges in the well-defined mouse model of OVA-induced experimental asthma. We observed a significant decrease in eosinophilic airway infiltration in allergen-treated Sema4D(-/-) mice relative to WT mice. This reduced allergic inflammatory response was associated with decreased BAL IL-5, IL-13, TGFβ1, IL-6, and IL-17A levels. In addition, T cell proliferation in OVA₃₂₃₋₃₃₉-restimulated Sema4D(-/-) cell cultures was downregulated. We also found increased Treg numbers in spleens of Sema4D(-/-) mice. However, airway hyperreactivity (AHR) to methacholine challenges was not affected by Sema4D deficiency in either acute or chronic experimental disease setting. Surprisingly, lung DC number and activation were not affected by Sema4D deficiency. These data provide a new insight into Sema4D biology and define Sema4D as an important regulator of Th2-driven lung pathophysiology and as a potential target for a combinatory disease immunotherapy. PMID:23911404

  9. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    Science.gov (United States)

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  10. 4D DATA FUSION TECHNIQUE IN URBAN WATERLOG-DRAINING DECISION SUPPORT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper studies urban waterlog-draining decision support system based on the 4D data fusion technique.4D data includes DEM,DOQ,DLG and DRG.It supplies entire databases for waterlog forecast and analysis together with non-spatial fundamental database.Data composition and reasoning are two key steps of 4D data fusion.Finally,this paper gives a real case: Ezhou Waterlog-Draining Decision Support System (EWDSS) with two application models,i.e.,DEM application model,water generating and draining model.

  11. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Gu, Xuejun [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8808 (United States)

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  12. Four-dimensional MAP-RBI-EM image reconstruction method with a 4D motion prior for 4D gated myocardial perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek-Soo; Tsui, Benjamin M.W. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Radiology; Gullberg, Grant T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2011-07-01

    We evaluated and proposed here a 4D maximum a posteriori rescaled-block iterative (MAP-RBI)-EM image reconstruction method with a motion prior to improve the accuracy of 4D gated myocardial perfusion (GMP) SPECT images. We hypothesized that a 4D motion prior which resembles the global motion of the true 4D motion of the heart will improve the accuracy of the reconstructed images with regional myocardial motion defect. Normal heart model in the 4D XCAT (eXtended CArdiac-Torso) phantom is used as the prior in the 4D MAP-RBI-EM algorithm where a Gaussian-shaped distribution is used as the derivative of potential function (DPF) that determines the smoothing strength and range of the prior in the algorithm. The mean and width of the DPF equal to the expected difference between the reconstructed image and the motion prior, and smoothing range, respectively. To evaluate the algorithm, we used simulated projection data from a typical clinical {sup 99m}Tc Sestamibi GMP SPECT study using the 4D XCAT phantom. The noise-free projection data were generated using an analytical projector that included the effects of attenuation, collimator-detector response and scatter (ADS) and Poisson noise was added to generated noisy projection data. The projection datasets were reconstructed using the modified 4D MAP-RBI-EM with various iterations, prior weights, and sigma values as well as with ADS correction. The results showed that the 4D reconstructed image estimates looked more like the motion prior with sharper edges as the weight of prior increased. It also demonstrated that edge preservation of the myocardium in the GMP SPECT images could be controlled by a proper motion prior. The Gaussian-shaped DPF allowed stronger and weaker smoothing force for smaller and larger difference of neighboring voxel values, respectively, depending on its parameter values. We concluded the 4D MAP-RBI-EM algorithm with the general motion prior can be used to provide 4D GMP SPECT images with improved

  13. Estimation of reservoir fluid volumes through 4-D seismic analysis on Gullfaks

    Energy Technology Data Exchange (ETDEWEB)

    Veire, H.S.; Reymond, S.B.; Signer, C.; Tenneboe, P.O.; Soenneland, L.; Schlumberger, Geco-Prakla

    1998-12-31

    4-D seismic has the potential to monitor hydrocarbon movement in reservoirs during production, and could thereby supplement the predictions of reservoir parameters offered by the reservoir simulator. However 4-D seismic is often more band limited than the vertical resolution required in the reservoir model. As a consequence the seismic data holds a composite response from reservoir parameter changes during production so that the inversion becomes non-unique. A procedure where data from the reservoir model are integrated with seismic data will be presented. The potential of such a procedure is demonstrated through a case study from a recent 4-D survey over the Gullfaks field. 2 figs.

  14. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    Science.gov (United States)

    Wang, Jing; Gu, Xuejun

    2014-03-01

    Image reconstruction and motion model estimation in four dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4DCBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR). The proposed SMEIR algorithm consists of two alternating steps: 1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and 2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction (SART) technique coupled with total variation minimization. During the forward- and back-projection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.

  15. Scattering vector mesons in D4-D8 holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Boschi-Filho, Henrique; Braga, Nelson; Ballon Bayona, C.A.; Torres, Marcus A.C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2009-07-01

    Full text. Sakai and Sugimoto authored one of the most successful string top-down models in describing real QCD, the D4-D8 brane model of holographic QCD. This model succeeds in exhibiting chiral symmetry breaking and confinement.A drawback of this model is that all massive hadrons have their masses set by the Kaluza-Klein compactification scale and we would have to work at energy scales below 1 GeV in order to describe a four dimensional physics. Still, they were able to find pion form factors and pion in agreement with experiment at scale of 1 GeV and above. They also calculate pion quadratic square radius in check with experiment, from a formula that depends on the entire Kaluza-Klein tower of excited pion states. Their model also realizes vector meson dominance (VMD) in electromagnetic interaction as proposed by Sakurai in the sixties. 5D gauge fields from flavor symmetry provides a zoo of mesons (scalar, pseudo-scalar, vector and pseudo-vector) and instanton configurations of such fields are interpreted as baryon fields. Inspired by the results of pion form factors and pion quadratic radius predicted in close agreement with experiment, we further calculate vector and axial vector mesons {psi}(z) wave functions, form factors, we discuss about its Q{sup -2} power behavior at large virtuosity (Q{sup 2}), and we check necessary relations between coupling constants and masses (superconvergence) that grants such power behavior of form factors. We compare our results with what is found in bottom-up hard wall and soft wall models and discuss the problems of the D4-D8 model. (author)

  16. Development operators on 4D moving object databases

    Institute of Scientific and Technical Information of China (English)

    JUN Sung-woo; LEE Yang-koo; KIM Sang-ho; CHI Jeong-hee; RYU Keun-ho

    2004-01-01

    In this paper we propose four-dimensional (4D) operators, which can be used to deal with sequential changes of topological relationships between 4D moving objects and we call them 4D development operators. In contrast to the existing operators, we can apply the operators to real applications on 4D moving objects. We also propose a new approach to define them. The approach is based on a dimension-separated method, which considers x-y coordinates and z coordinates separately. In order to show the applicability of our operators, we show the algorithms for the proposed operators and development graph between 4D moving objects.

  17. Sex-differential genetic effect of phosphodiesterase 4D (PDE4D on carotid atherosclerosis

    Directory of Open Access Journals (Sweden)

    Guo Yuh-Cherng

    2010-06-01

    Full Text Available Abstract Background The phosphodiesterase 4D (PDE4D gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis. Methods Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men. Genotype distribution was compared among the high-risk (plaque index ≥ 4, low-risk (index = 1-3, and reference (index = 0 groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect. Results In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034 for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008. For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032 for a thicker IMT at the common carotid artery compared with the (AA + AT genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025 but not in women (p = 0

  18. BPS black holes in gauged N = 4, D = 4 supergravity

    International Nuclear Information System (INIS)

    We find solutions of the bosonic sector of gauged N = 4, D = 4 SU(2) x SU(2) supergravity, which represent dilaton black holes with toroidal or spherical event horizons. The axion is consistently truncated, and the gauge group is broken to U(1) x U(1). The spherical black holes carry two electric and two magnetic abelian charges, whereas the toroidal holes have vanishing magnetic charges. The space-time metrics are warped products, and the manifolds turn out to be globally hyperbolic, in contrast to standard gauged supergravity ground states. It is shown that in the toroidal case, there are solutions preserving one quarter or one half of the supersymmetries, while for spherical topologies all supersymmetries are broken. In general, the toroidal BPS states represent naked singularities, but there is also a supersymmetric black hole with vanishing Hawking temperature. The ((1)/(2)) supersymmetric case arises for vanishing charges and mass, and represents the known domain wall solution of the Freedman-Schwarz model. It provides the background in which the black holes live. Finally, we use Chamseddine's and Volkov's Kaluza-Klein interpretation of gauged N = 4, D = 4 SU(2) x SU(2) supergravity to lift our solutions to ten and eleven dimensions and to consider them as solutions to the leading order equations of motion of the string/M-theory effective action

  19. Theory of multiplet structure in 4d core photoabsorption spectra of CeO2

    International Nuclear Information System (INIS)

    Detailed analysis of 4d core x-ray photoabsorption spectra (4d-XAS) in CeO2 is made with the impurity Anderson model by incorporating the solid-state effect of hybridization between 4f and valence-band states into the atomic calculation of multiplet structures. The hybridization effect plays an essential role in the multiplet structure observed in the prethreshold region of 4d-XAS. The effect of the finite width of the valence band, as well as that of the core-hole potential, is discussed. The multiplet structures in α- and γ-Ce are also calculated for the sake of comparison

  20. Chaos synchronization between two different 4D hyperchaotic Chen systems

    Institute of Scientific and Technical Information of China (English)

    Liu Yang-Zheng; Jiang Chang-Sheng; Lin Chang-Sheng; Jiang Yao-Mei

    2007-01-01

    This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws.A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system,furthermore,an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed.With nonlinear feedback control method,chaos synchronization between two different 4D hyperchaotic Chen systems is achieved.Based on the stability theory,the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived,the range of feedback gains is determined.Numerical simulations are shown to verify the theoretical results.

  1. Evaluation of Thermodynamic Parameters of 2, 4-Dichlorophenoxyacetic Acid (2, 4-D Adsorption

    Directory of Open Access Journals (Sweden)

    A. S. Ghatbandhe

    2013-01-01

    Full Text Available Thermodynamic parameters of 2, 4-Dichlorophenoxyacetic acid (2, 4-D adsorption were evaluated by studying the adsorption equilibrium and kinetics of 2, 4-D at different temperatures. Uptake capacity of activated carbon increases with temperature. Langmuir isotherm models were applied to experimental data of 2, 4-D adsorption. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity , Langmuir constant and adsorption rate constant were evaluated at different temperatures for activated carbon adsorption. The activation energy of adsorption ( was determined using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of adsorption (, , and were evaluated. The obtained values of thermodynamic parameters show that the adsorption of 2, 4-D is an endothermic process.

  2. Pros and cons for C4d as a biomarker

    OpenAIRE

    Cohen, Danielle; Colvin, Robert B.; Mohamed R. Daha; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E.; Sis, Banu; ZHAO, Ming-Hui; Bruijn, Jan A.; Bajema, Ingeborg M.

    2012-01-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations...

  3. Pros and cons for C4d as a biomarker.

    Science.gov (United States)

    Cohen, Danielle; Colvin, Robert B; Daha, Mohamed R; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E; Sis, Banu; Zhao, Ming-Hui; Bruijn, Jan A; Bajema, Ingeborg M

    2012-04-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations C4d is present in the majority of grafts but this seems to point at 'graft accommodation' rather than antibody-mediated rejection. C4d is now increasingly recognized as a potential biomarker in other fields where antibodies can cause tissue damage, such as systemic autoimmune diseases and pregnancy. In all these fields, C4d holds promise to detect patients at risk for the consequences of antibody-mediated disease. Moreover, the emergence of new therapeutics that block complement activation makes C4d a marker with potential to identify patients who may possibly benefit from these drugs. This review provides an overview of the past, present, and future perspectives of C4d as a biomarker, focusing on its use in solid organ transplantation and discussing its possible new roles in autoimmunity and pregnancy. PMID:22297669

  4. Myocardial motion and function assessment using 4D images

    Science.gov (United States)

    Shi, Peng-Cheng; Robinson, Glynn P.; Duncan, James S.

    1994-09-01

    This paper describes efforts aimed at more objectively and accurately quantifying the local, regional and global function of the left ventricle (LV) of the heart from 4D image data. Using our shape-based image analysis methods, point-wise myocardial motion vector fields between successive image frames through the entire cardiac cycle will be computed. Quantitative LV motion, thickening, and strain measurements will then be established from the point correspondence maps. In the paper, we will also briefly describe an in vivo experimental model which uses implanted imaging-opaque markers to validate the results of our image analysis methods. Finally, initial experimental results using image sequences from two different modalities will be presented.

  5. 4D GPR Experiments--Towards the Virtual Lysimeter

    Science.gov (United States)

    Grasmueck, M.; Viggiano, D. A.; Day-Lewis, F. D.; Drasdis, J. B.; Kruse, S. E.; Or, D.

    2006-05-01

    In-situ monitoring of infiltration, water flow and retention in the vadose zone currently rely primarily on invasive methods, which irreversibly disturb original soil structure and alter its hydrologic behavior in the vicinity of the measurement. For example, use of lysimeters requires extraction and repacking of soil samples, and time- domain reflectometry (TDR) requires insertion of probes into the soil profile. This study investigates the use of repeated high-density 3D ground penetrating radar surveys (also known as 4D GPR) as a non-invasive alternative for detailed visualization and quantification of water flow in the vadose zone. Evaluation of the 4D GPR method was based on a series of controlled point-source water injection experiments into undisturbed beach sand deposits at Crandon Park in Miami, Florida. The goal of the GPR surveys was to image the shape and evolution of a wet-bulb as it propagates from the injection points (~0.5 m) towards the water table at 2.2 m depth. The experimental design was guided by predictive modeling using Hydrus 2D and finite-difference GPR waveform codes. Input parameters for the modeling were derived from hydrologic and electromagnetic characterization of representative sand samples. Guided by modeling results, we injected 30 to 40 liters of tap water through plastic-cased boreholes with slotted bottom sections (0.1 m) located 0.4 to 0.6 m below the surface. During and after injection, an area of 25 m2 was surveyed every 20 minutes using 250 and 500 MHz antennas with a grid spacing of 0.05 x 0.025 m. A total of 20 3D GPR surveys were completed over 3 infiltration sites. To confirm wet-bulb shapes measured by GPR, we injected 2 liters of "brilliant blue" dye (~100 mg/l) along with a saline water tracer towards the end of one experiment. After completion of GPR scanning, a trench was excavated to examine the distribution of the saltwater and dye using TDR and visual inspection, respectively. Preliminary analysis of the 4D GPR

  6. Drug Discovery against Psoriasis: Identification of a New Potent FMS-like Tyrosine Kinase 3 (FLT3) Inhibitor, 1-(4-((1H-Pyrazolo[3,4-d]pyrimidin-4-yl)oxy)-3-fluorophenyl)-3-(5-(tert-butyl)isoxazol-3-yl)urea, That Showed Potent Activity in a Psoriatic Animal Model.

    Science.gov (United States)

    Li, Guo-Bo; Ma, Shuang; Yang, Ling-Ling; Ji, Sen; Fang, Zhen; Zhang, Guo; Wang, Li-Jiao; Zhong, Jie-Min; Xiong, Yu; Wang, Jiang-Hong; Huang, Shen-Zhen; Li, Lin-Li; Xiang, Rong; Niu, Dawen; Chen, Ying-Chun; Yang, Sheng-Yong

    2016-09-22

    Psoriasis is a chronic T-cell-mediated autoimmune disease, and FMS-like tyrosine kinase 3 (FLT3) has been considered as a potential molecular target for the treatment of psoriasis. In this investigation, structural optimization was performed on a lead compound, 1-(4-(1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)phenyl)-3-(4-chloro-3-(trifluoromethyl)phenyl)urea (1), which showed a moderate inhibitory activity againt FLT3. A series of pyrazolo[3,4-d]pyrimidine derivatives were synthesized, and structure-activity relationship analysis led to the discovery of a number of potent FLT3 inhibitors. One of the most active compounds, 1-(4-(1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-3-fluorophenyl)-3-(5-tert-butylisoxazol-3-yl)urea (18b), was then chosen for in-depth antipsoriasis studies because this compound displayed the highest potency in a preliminary antipsoriasis test. Compound 18b exhibited significant antipsoriatic effects in the K14-VEGF transgenic mouse model of psoriasis, and no recurrence was found 15 days later after the last administration. Detailed mechanisms of action of compound 18b were also investigated. Collectively, compound 18b could be a potential drug candidate for psoriasis treatment.

  7. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.

    Science.gov (United States)

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2015-06-01

    A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials.

  8. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Science.gov (United States)

    2010-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  9. Motion management with phase-adapted 4D-optimization

    OpenAIRE

    Nohadani, Omid; Seco, Joao; Bortfeld, Thomas

    2010-01-01

    Cancer treatment with ionizing radiation is often compromised by organ motion, in particular for lung cases. Motion uncertainties can significantly degrade an otherwise optimized treatment plan. We present a spatiotemporal optimization method, which takes into account all phases of breathing via the corresponding 4D-CTs and provides a 4D-optimal plan that can be delivered throughout all breathing phases. Monte Carlo dose calculations are employed to warrant for highest dosimetric accuracy, as...

  10. C4d staining as immunohistochemical marker in inflammatory myopathies.

    Science.gov (United States)

    Pytel, Peter

    2014-10-01

    The diagnosis of an inflammatory myopathy is often established based on basic histologic studies. Additional immunohistochemical studies are sometimes required to support the diagnosis and the classification of inflammatory myopathies. Staining for major histocompatibility complex 1 (MHC1) often shows increased sarcolemmal labeling in inflammatory myopathies. Endomysial capillary staining C5b-9 (membrane attack complex) is a feature that is reported as frequently associated with dermatomyositis. Immunohistochemical staining for C4d is widely used for various applications including the assessment of antibody-mediated rejection after solid organ transplantation. In the context of dermatomyositis, C4d staining has been described in skin biopsies but not in muscle biopsies. A total of 32 muscle biopsy specimens were examined. The hematoxylin and eosin-stained slides were reviewed, and immunohistochemical studies for MHC1, C5b-9, and C4d were conducted. The staining observed for C5b-9 and C4d was compared. Overall, the staining pattern for C4d mirrored the one observed for C5b-9 in the examined muscle biopsy specimens. There was high and statistically significant (P<0.0001) correlation between the staining seen with these 2 antibodies. Both antibodies labeled the cytoplasm of degenerating necrotic myofibers. In addition, both antibodies showed distinct endomysial capillary labeling in a subset of dermatomyositis. Areas with perifascicular atrophy often exhibited the most prominent vascular labeling for C4d and C5b-9. In conclusion, C4d and C5b-9 show similar expression patterns in muscle biopsies of patients with inflammatory myopathies and both highlight the presence of vascular labeling associated with dermatomyositis. C4d antibodies are widely used and may offer an alternative for C5b-9 staining.

  11. Reduced-order 4D-Var: a preconditioner for the Incremental 4D-Var data assimilation method

    CERN Document Server

    Robert, Céline; Verron, Jacques

    2006-01-01

    This study demonstrates how the incremental 4D-Var data assimilation method can be applied efficiently preconditione d in an application to an oceanographic problem. The approach consists in performing a few iterations of the reduced-order 4D-Var prior to the incremental 4D-Var in the full space in order to achieve faster convergence. An application performed in the tropical Pacific Ocean, with assimilation of TAO temperature data, shows the method to be both feasible and efficient. It allows the global cost of the assimilation to be reduced by a factor of 2 without affecting the quality of the solution.

  12. Substitutional 4d and 5d impurities in graphene.

    Science.gov (United States)

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities. PMID:27439363

  13. 4D Dynamic RNP Annual Interim Report-Year 1

    Science.gov (United States)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Chung, William W.; Salvano, Daniel; Klooster, Joel; Hochwarth, Joachim K.

    2010-01-01

    experiment using the Airspace and Traffic Operations Simulation (ATOS) system to validate the 4D Dynamic RNP construct. This Annual Interim Report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results obtained during the first year of this research effort to expand the RNP concept to 4 dimensions relative to a dynamic frame of reference. A comprehensive assessment of the state-of-the-art international implementation of current RNP was completed and presented in the Contractor Report RNP State-of-the-Art Assessment, Version 4, 17 December 2008 . The team defined in detail two 4DT operations, Airborne Precision Spacing and Self-Separation, that are ideally suited to be supported by 4D Dynamic RNP and developed their respective conceptual frameworks, Required Interval Management Performance (RIMP) Version 1.1, 13 April 2009 and Required Self Separation Performance (RSSP) Version 1.1, 13 April 2009 . Finally, the team started the development of a mathematical model and simulation tool for RIMP and RSSP scheduled to be delivered during the second year of this research effort.

  14. ADSORPTION OF 2,4-D ON MODIFIED HYPERCROSSLINKED POLYSTYRENE (NDA-99) AND XAD-4 RESIN

    Institute of Scientific and Technical Information of China (English)

    Yu-ping Qiu; Jin-long Chen; Ai-min Li; Quan-xing Zhang; Min-sheng Huang

    2005-01-01

    The adsorption behavior of pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution has been investigated using a hypercrosslinked polystyrene adsorbent (NDA-99) modified by dimethylamine group as well as a nonionic macroporous adsorbent (XAD-4). The Langmuir and Freundlich isotherm models were employed to fit the experimental data to describe adsorption mechanism. It shows that NDA-99 resin exhibits an adsorption affinity for 2,4-D higher than XAD-4 resin owing to its exceptional micropore structure and the amine group of the hypercrosslinked matrix.Further studies indicate that the hydrogen bonding interaction and the stronger π-π conjugation play a significant role in the course of the adsorption of 2,4-D on NDA-99 resin, which is in agreement with the IR spectroscopic results and the AE values of HOMO (the highest occupied molecular orbit) of adsorbent and LUMO (the lowest unoccupied molecular orbit) of adsorbate calculated from the MINDO/3 model.

  15. 4D ANIMATION RECONSTRUCTION FROM MULTI-CAMERA COORDINATES TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    J. P. Jhan

    2016-06-01

    Full Text Available Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australis© coded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.

  16. ICT4D 2016: New Priorities for ICT4D Policy, Practice and WSIS in a Post-2015 World

    OpenAIRE

    Heeks, R.

    2014-01-01

    In 2016, the Millennium Development Goals will be replaced by the post-2015 development agenda (PTDA). The foundational content is in place for this new agenda, which will be the single most-important force shaping the future of international development and, hence, the single most-important force shaping the future of information-and-communication-technology-for-development (ICT4D). In planning prospective ICT4D priorities, we should therefore pay close attention to the PTDA.This paper und...

  17. Experimenting with the GMAO 4D Data Assimilation

    Science.gov (United States)

    Todling, R.; El Akkraoui, A.; Errico, R. M.; Guo, J.; Kim, J.; Kliest, D.; Parrish, D. F.; Suarez, M.; Trayanov, A.; Tremolet, Yannick; Whitaker, J.

    2012-01-01

    The Global Modeling and Assimilation Office (GMAO) has been working to promote its prototype four-dimensional variational (4DVAR) system to a version that can be exercised at operationally desirable configurations. Beyond a general circulation model (GeM) and an analysis system, traditional 4DV AR requires availability of tangent linear (TL) and adjoint (AD) models of the corresponding GeM. The GMAO prototype 4DVAR uses the finite-volume-based GEOS GeM and the Grid-point Statistical Interpolation (GSI) system for the first two, and TL and AD models derived ITom an early version of the finite-volume hydrodynamics that is scientifically equivalent to the present GEOS nonlinear GeM but computationally rather outdated. Specifically, the TL and AD models hydrodynamics uses a simple (I-dimensional) latitudinal MPI domain decomposition, which has consequent low scalability and prevents the prototype 4DV AR ITom being used in realistic applications. In the near future, GMAO will be upgrading its operational GEOS GCM (and assimilation system) to use a cubed-sphere-based hydrodynamics. This versions of the dynamics scales to thousands of processes and has led to a decision to re-derive the TL and AD models for this more modern dynamics, thus taking advantage of a two-dimensional MPI decomposition and improved scalability properties. With the aid of the Transformation of Algorithms in FORTRAN (l'AF) automatic adjoint generation tool and some hand-coding, a version of the cubed-sphere-based TL and AD models, with a simplified vertical diffusion scheme, is now available, enabling multiple configurations of standard implementations of 4DV AR in GEOS. Concurrent to this development, collaboration with the National Centers for Environmental Prediction (NCEP) and the Earth System Research Laboratory (ESRL) has allowed GMAO to implement a hybrid-ensemble capability within the GEOS data assimilation system. Both 3Dand 4D-ensemble capabilities are presently available thus allowing

  18. Four-dimensional (4D) tracking of high-temperature microparticles

    Science.gov (United States)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  19. 4d N=1 from 6d (1,0)

    CERN Document Server

    Razamat, Shlomo S; Zafrir, Gabi

    2016-01-01

    We study the geometry of 4d N=1 SCFT's arising from compactification of 6d (1,0) SCFT's on a Riemann surface. We show that the conformal manifold of the resulting theory is characterized, in addition to moduli of complex structure of the Riemann surface, by the choice of a connection for a vector bundle on the surface arising from flavor symmetries in 6d. We exemplify this by considering the case of 4d N=1 SCFT's arising from M5 branes probing Z_k singularity compactified on a Riemann surface. In particular, we study in detail the four dimensional theories arising in the case of two M5 branes on Z_2 singularity. We compute the conformal anomalies and indices of such theories in 4d and find that they are consistent with expectations based on anomaly and the moduli structure derived from the 6 dimensional perspective.

  20. 4D measurement system for automatic location of anatomical structures

    Science.gov (United States)

    Witkowski, Marcin; Sitnik, Robert; Kujawińska, Małgorzata; Rapp, Walter; Kowalski, Marcin; Haex, Bart; Mooshake, Sven

    2006-04-01

    Orthopedics and neurosciences are fields of medicine where the analysis of objective movement parameters is extremely important for clinical diagnosis. Moreover, as there are significant differences between static and dynamic parameters, there is a strong need of analyzing the anatomical structures under functional conditions. In clinical gait analysis the benefits of kinematical methods are undoubted. In this paper we present a 4D (3D + time) measurement system capable of automatic location of selected anatomical structures by locating and tracing the structures' position and orientation in time. The presented system is designed to help a general practitioner in diagnosing selected lower limbs' dysfunctions (e.g. knee injuries) and also determine if a patient should be directed for further examination (e.g. x-ray or MRI). The measurement system components are hardware and software. For the hardware part we adapt the laser triangulation method. In this way we can evaluate functional and dynamic movements in a contact-free, non-invasive way, without the use of potentially harmful radiation. Furthermore, opposite to marker-based video-tracking systems, no preparation time is required. The software part consists of a data acquisition module, an image processing and point clouds (point cloud, set of points described by coordinates (x, y, z)) calculation module, a preliminary processing module, a feature-searching module and an external biomechanical module. The paper briefly presents the modules mentioned above with the focus on the feature-searching module. Also we present some measurement and analysis results. These include: parameters maps, landmarks trajectories in time sequence and animation of a simplified model of lower limbs.

  1. 基于服务创新四维度模型的乡村旅游创新模式研究——以北京乡村旅游为例%The Innovative Modes of Rural Tourism Based on 4D Service Innovation Model

    Institute of Scientific and Technical Information of China (English)

    马亮; 颜亭玉

    2013-01-01

    以北京乡村旅游为例,指出乡村旅游当前存在创新乏力、效益低下等一系列问题.结合对服务创新四维度模型理论的研究,分析创新发展的瓶颈,并从各个角度分析乡村旅游创新模式,对未来乡村旅游产业的创新发展提供借鉴意义.%By taking Beijing rural tourism for example,a series of problems including lack of innovation and low efficiency were pointed out.Combined with 4D service innovation model theory,the bottleneck of innovation was analyzed,and the innovative modes of rural tourism was established,in order to provide a reference for the future rural tourism industry's innovation and development.

  2. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    Science.gov (United States)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  3. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    Science.gov (United States)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10–40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  4. Assimilation of DMSP/SSUSI UV data into IDA4D

    Science.gov (United States)

    Gelinas, L. J.; Bust, G. S.; Brinkman, D. G.; Straus, P. R.; Swartz, R. L.

    2014-12-01

    Ionospheric Data Assimilation Four-Dimensional (IDA4D) is a continuous-time, three-dimensional imaging algorithm that can produce 4D electron density specifications for various science investigations [e.g., Bust et al., 2007]. IDA4D is based on three-dimensional variational (3DVAR) data assimilation [Daley and Barker, 2001]. The algorithm combines various data sources and their associated error covariances with a background model (in this case the IRI) and its covariances to produce an ionospheric specification with formal uncertainties. IDA4D employs a Gauss- Markov Kalman filter technique similar to that used by operational assimilation models. The model can ingest a broad spectrum of data types that are either linearly or non-linearly related to electron density, including ground-based TEC, space-based TEC as measured by GPS occultation sensors and UV emissions associated with nightside recombination of O+. IDA4D has been undergoing testing at The Aerospace Corporation to determine its performance with respect to combinations of input data sets under different conditions (solar minimum, solar maximum, geomagnetic activity). The results presented here summarize the performance of IDA4D when UV data is ingested, both with and without additional TEC measurements. The UV data used in the study summarized here are 135.6 nm emissions measured the SSUSI instruments on F16 and F18 DMSP. We discuss the process by which UV data is ingested into IDA4D, including data binning, error estimation and correction of 135.6 nm contamination from mutual neutralization of O+ and O-. Model performance is then assessed using comparisons to various ground truth data, including ISR data, Jason VTEC, CNOF/S in-situ plasma density and ionosonde-derived NmF2 values. The results of this study show that UV data improves model performance, particularly when TEC data coverage is sparse. Bust, G. S., G. Crowley, T. W. Garner, T. L. Gaussiran II, R. W. Meggs, C. N. Mitchell, P. S. J. Spencer, P

  5. 4D flow mri post-processing strategies for neuropathologies

    Science.gov (United States)

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  6. 4D MR imaging using robust internal respiratory signal

    Science.gov (United States)

    Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam

    2016-05-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.

  7. Integration of Radio—Frequency Identification and 4D CAD in Construction Management

    Institute of Scientific and Technical Information of China (English)

    HU Wenfa

    2008-01-01

    In order to increase the productivity of construction industry,emerging technologies have been constantly introduced and applied in this traditional industry by pilot researchers.This paper provides an in-tegrated model of radio-frequency identification (RFID) and four-dimensional Computer-Aided Design (4D CAD) in construction management.RFID involves the use of tags that collect data and transmit data.RFID can collect data by radio waves instead of light waves.RFID technology is surpassing barcode technology where light waves are easily blocked and barcode labels are easy to fall off or become unreadable due to dust,dirt,or other contaminants.4D CAD which involves 3D construction models and construction sched-ules presents visualized construction process.Integration of RFID and 4D CAD in this paper built a dynamic constmction management and control system which would reduce the time of capturing data on site and control quality of construction materials efficiently.Pilot test result shows that a construction manager can easily understand how and what a complicated construction project will be accomplished.Although further analysis is necessary,RFID and 4D CAD show promises of being a beneficial technology in construction management.

  8. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Guo, X [University of Texas at Dallas, Richardson, TX (United States)

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  9. Compressive Loads on the Lumbar Spine During Lifting: 4D WATBAK versus Inverse Dynamics Calculations

    Directory of Open Access Journals (Sweden)

    M. H. Cole

    2005-01-01

    Full Text Available Numerous two- and three-dimensional biomechanical models exist for the purpose of assessing the stresses placed on the lumbar spine during the performance of a manual material handling task. More recently, researchers have utilised their knowledge to develop specific computer-based models that can be applied in an occupational setting; an example of which is 4D WATBAK. The model used by 4D WATBAK bases its predications on static calculations and it is assumed that these static loads reasonably depict the actual dynamic loads acting on the lumbar spine. Consequently, it was the purpose of this research to assess the agreement between the static predictions made by 4D WATBAK and those from a comparable dynamic model. Six individuals were asked to perform a series of five lifting tasks, which ranged from lifting 2.5 kg to 22.5 kg and were designed to replicate the lifting component of the Work Capacity Assessment Test used within Australia. A single perpendicularly placed video camera was used to film each performance in the sagittal plane. The resultant two-dimensional kinematic data were input into the 4D WATBAK software and a dynamic biomechanical model to quantify the compression forces acting at the L4/L5 intervertebral joint. Results of this study indicated that as the mass of the load increased from 2.5 kg to 22.5 kg, the static compression forces calculated by 4D WATBAK became increasingly less than those calculated using the dynamic model (mean difference ranged from 22.0% for 2.5 kg to 42.9% for 22.5 kg. This study suggested that, for research purposes, a validated three-dimensional dynamic model should be employed when a task becomes complex and when a more accurate indication of spinal compression or shear force is required. Additionally, although it is clear that 4D WATBAK is particularly suited to industrial applications, it is suggested that the limitations of such modelling tools be carefully considered when task-risk and employee

  10. Expression of Sema4D in patients with cerebral infarction and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    朱琳

    2012-01-01

    Objective To explore the expression and clinical significance of Semaphorin4D (Sema4D) mRNA in peripheral blood lymphocyte,Sema4D on platelet surface, soluble Sema4D (sSema4D) in plasma in patients with cerebral infarction. Methods Taking 299 patients with cerebral infarction

  11. Impact of incorporating visual biofeedback in 4D MRI.

    Science.gov (United States)

    To, David T; Kim, Joshua P; Price, Ryan G; Chetty, Indrin J; Glide-Hurst, Carri K

    2016-01-01

    Precise radiation therapy (RT) for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast in 4D CT. 4D MRI offers improved con-trast although long scan times and irregular breathing patterns can be limiting. To address this, visual biofeedback (VBF) was introduced into 4D MRI. Ten volunteers were consented to an IRB-approved protocol. Prospective respiratory-triggered, T2-weighted, coronal 4D MRIs were acquired on an open 1.0T MR-SIM. VBF was integrated using an MR-compatible interactive breath-hold control system. Subjects visually monitored their breathing patterns to stay within predetermined tolerances. 4D MRIs were acquired with and without VBF for 2- and 8-phase acquisitions. Normalized respiratory waveforms were evaluated for scan time, duty cycle (programmed/acquisition time), breathing period, and breathing regularity (end-inhale coefficient of variation, EI-COV). Three reviewers performed image quality assessment to compare artifacts with and without VBF. Respiration-induced liver motion was calculated via centroid difference analysis of end-exhale (EE) and EI liver contours. Incorporating VBF reduced 2-phase acquisition time (4.7 ± 1.0 and 5.4 ± 1.5 min with and without VBF, respectively) while reducing EI-COV by 43.8% ± 16.6%. For 8-phase acquisitions, VBF reduced acquisition time by 1.9 ± 1.6 min and EI-COVs by 38.8% ± 25.7% despite breathing rate remaining similar (11.1 ± 3.8 breaths/min with vs. 10.5 ± 2.9 without). Using VBF yielded higher duty cycles than unguided free breathing (34.4% ± 5.8% vs. 28.1% ± 6.6%, respectively). Image grading showed that out of 40 paired evaluations, 20 cases had equivalent and 17 had improved image quality scores with VBF, particularly for mid-exhale and EI. Increased liver excursion was observed with VBF, where superior-inferior, anterior-posterior, and left-right EE-EI displacements were 14.1± 5.8, 4.9 ± 2.1, and 1.5 ± 1.0 mm, respectively, with VBF compared to 11.9

  12. Brain tissue segmentation in 4D CT using voxel classification

    Science.gov (United States)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  13. Construction Management Utilizing 4D CAD and Operations Simulation Methodologies

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianping; ZHANG Yang; HU Zhenzhong; LU Ming

    2008-01-01

    The paper presents applications of simplified discrete-event simulation (SDESA), and 4D-GCPSU,to the National Stadium of the Beijing 2008 Olympics. Taking into account influential factors, e.g., resource, spatial condition, and the randomness of the construction process, the installation process of the steel- structure was simulated and optimized by using genetic algorithm (GA) optimization methodology. The op- erations simulation shortened the installation duration by 39 days (about 16% of the original total duration),guided the manufacturers to plan the construction processes, and provided specific suggestions on the en-try time of the installation components, resulting in resource allocation optimization, resource saving, and construction efficiency improvement. Combining with the optimized schedule, the 4D visualization environ- ment can discover time-space conflicts timely, and may assist project managers to reschedule the construc-tion activities in tune with the site layout and resource allocation.

  14. Topological wave functions and the 4D-5D lift

    CERN Document Server

    Gao, Peng

    2008-01-01

    We revisit the holomorphic anomaly equations satisfied by the topological string amplitude from the perspective of the 4D-5D lift, in the context of ``magic'' N=2 supergravity theories. In particular, we interpret the Gopakumar-Vafa relation between 5D black hole degeneracies and the topological string amplitude as the result of a canonical transformation from 4D to 5D charges. Moreover we use the known Bekenstein-Hawking entropy of 5D black holes to constrain the asymptotic behavior of the topological wave function at finite topological coupling but large K\\"ahler classes. In the process, some subtleties in the relation between 5D black hole degeneracies and the topological string amplitude are uncovered, but not resolved. Finally we extend these considerations to the putative one-parameter generalization of the topological string amplitude, and identify the canonical transformation as a Weyl reflection inside the 3D duality group.

  15. 4D Art: corpos reais e virtuais, uma realidade aumentada

    Directory of Open Access Journals (Sweden)

    Michel Lemieux

    2016-05-01

    Full Text Available A companhia canadense 4D Art fascina o olhar do público e interroga seus sentidos de realidade e presença pela interação cênica dos movimentos de corpos reais e virtuais. Para compreender os processos de criação da cena multimídia de 4D Art, apresenta-se uma entrevista exclusiva realizada com os diretores artísticos Michel Lemieux e Victor Pilon. As motivações artísticas do jogo real e virtual, os procedimentos empregados na criação das figuras virtuais e os desafios enfrentados pelos atores aparecem nas palavras dos criadores.

  16. 4D embryonic cardiography using gated optical coherence tomography

    Science.gov (United States)

    Jenkins, M. W.; Rothenberg, F.; Roy, D.; Nikolski, V. P.; Hu, Z.; Watanabe, M.; Wilson, D. L.; Efimov, I. R.; Rollins, A. M.

    2006-01-01

    Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 μm), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.

  17. A brief review of the 2d/4d correspondences

    CERN Document Server

    Tachikawa, Yuji

    2016-01-01

    An elementary introduction to the 2d/4d correspondences is given. After quickly reviewing the 2d q-deformed Yang-Mills theory and the Liouville theory, we will introduce 4d theories obtained by coupling trifundamentals to SU(2) gauge fields. We will then see concretely that the supersymmetric partition function of these theories on S^3 x S^1 and on S^4 is given respectively by the q-deformed Yang-Mills theory and the Liouville theory. After giving a short discussion on how this correspondence may be understood from the viewpoint of the 6d N=(2,0) theory, we conclude the review by enumerating future directions. Most of the technical points will be referred to more detailed review articles.

  18. Constrain static target kinetic iterative image reconstruction for 4D cardiac CT imaging

    Science.gov (United States)

    Alessio, Adam M.; La Riviere, Patrick J.

    2011-03-01

    Iterative image reconstruction offers improved signal to noise properties for CT imaging. A primary challenge with iterative methods is the substantial computation time. This computation time is even more prohibitive in 4D imaging applications, such as cardiac gated or dynamic acquisition sequences. In this work, we propose only updating the time-varying elements of a 4D image sequence while constraining the static elements to be fixed or slowly varying in time. We test the method with simulations of 4D acquisitions based on measured cardiac patient data from a) a retrospective cardiac-gated CT acquisition and b) a dynamic perfusion CT acquisition. We target the kinetic elements with one of two methods: 1) position a circular ROI on the heart, assuming area outside ROI is essentially static throughout imaging time; and 2) select varying elements from the coefficient of variation image formed from fast analytic reconstruction of all time frames. Targeted kinetic elements are updated with each iteration, while static elements remain fixed at initial image values formed from the reconstruction of data from all time frames. Results confirm that the computation time is proportional to the number of targeted elements; our simulations suggest that 3 times reductions in reconstruction time. The images reconstructed with the proposed method have matched mean square error with full 4D reconstruction. The proposed method is amenable to most optimization algorithms and offers the potential for significant computation improvements, which could be traded off for more sophisticated system models or penalty terms.

  19. Potential of 4d-VAR for exigent forecasting of severe weather

    CERN Document Server

    Hoffman, Ross N; Nehrkorn, Thomas

    2011-01-01

    Severe storms, tropical cyclones, and associated tornadoes, floods, lightning, and microbursts threaten life and property. Reliable, precise, and accurate alerts of these phenomena can trigger defensive actions and preparations. However, these crucial weather phenomena are difficult to forecast. The objective of this paper is to demonstrate the potential of 4d-VAR (four dimensional variational data assimilation) for exigent forecasting (XF) of severe storm precursors and to thereby characterize the probability of a worst-case scenario. 4d-VAR is designed to adjust the initial conditions (IC) of a numerical weather prediction model consistent with the uncertainty of the prior estimate of the IC while at the same time minimizing the misfit to available observations. For XF the same approach is taken but instead of fitting observations, a measure of damage or loss or an equivalent proxy is maximized or minimized. To accomplish this will require development of a specialized cost function for 4d-VAR. When 4d-VAR s...

  20. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Williams, Cameron H.; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve

  1. Multivariable analysis of 2,4-d herbicide photocatalytic degradation

    OpenAIRE

    LÓPEZ-VÁSQUEZ, ANDRÉS F.; JOSÉ A. COLINA-MÁRQUEZ; Machuca-Martínez, Fiderman

    2011-01-01

    The 2,4-D herbicide degradation of TiO2 suspensions in tap water was evaluated under artificial irradiation conditions. The response surface methodology (RSM) was applied to evaluate the effect of variables such as: catalyst concentration, herbicide concentration, pH, and the volumetric flow on the photocatalytic reaction in two kinds of photoreactors: flat plate and tubular reactor. The response variable was the pesticide mineralization expressed as the total organic carbon (TOC) removal per...

  2. Fuzzy-4D/RCS for Unmanned Aerial Vehicles

    OpenAIRE

    Olivares Mendez, Miguel Angel; Campoy, Pascual; Mondragon, Ivan F.; Martinez, Carol

    2010-01-01

    Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and hierarchy levels of the architecture, and the adaptation of this architecture for Unmanned Aerial Vehicles (UAVs). This advance provides an improvement in the functionality of the system based on the uses of the Miguel Olivares’ Fuzzy Software for the definition of the FLCs and its...

  3. ROER4D Sub-project 1 - India OER review

    OpenAIRE

    Dhanarajan, Gajaraj; Arinto, Patricia

    2014-01-01

    The ROER4D project endeavours to cover at least three regions in the Global South, namely, South America, Sub-Saharan Africa, and South and South East Asia. However, background information on OER projects, policies and research and information on infrastructural, legal, socio-cultural and/or economic factors that might influence the adoption of OER in post-secondary education in these regions is incomplete despite the work of current projects. The project will provide background information o...

  4. APPLICAZIONI 3D/4D GLOBALI: OLTRE TUTTE LE BARRIERE

    OpenAIRE

    Deiana, Andrea

    2011-01-01

    Le soluzioni SkylineGlobe by Skyline Software Systems, Inc. si propongono come un ambiente utile all’integrazione di dati e sistemi provenienti da diverse piattaforme di ambito territoriale per l’acquisizione, la creazione, l’annotazione, la pubblicazione, l’erogazione, la visualizzazione, l’interrogazione e l’analisi di geodatasets in un ambiente 3D/4D di facile utilizzo, distribuzione e condivisione.

  5. Autoadaptive phase-correlated (AAPC) reconstruction for 4D CBCT

    OpenAIRE

    Bergner, Frank; Berkus, Timo; Oelhafen, Markus; Kunz, Patrik; Pan, Tinsu; Kachelrieß, Marc

    2009-01-01

    Purpose: Kilovoltage cone-beam computed tomography (CBCT) is widely used in image-guided radiation therapy for exact patient positioning prior to the treatment. However, producing time series of volumetric images (4D CBCT) of moving anatomical structures remains challenging. The presented work introduces a novel method, combining high temporal resolution inside anatomical regions with strong motion and image quality improvement in regions with little motion.

  6. High-temperature asymptotics of the 4d superconformal index

    CERN Document Server

    Ardehali, Arash Arabi

    2016-01-01

    The superconformal index of a typical Lagrangian 4d SCFT is given by a special function known as an elliptic hypergeometric integral (EHI). The high-temperature limit of the index corresponds to the hyperbolic limit of the EHI. The hyperbolic limit of certain special EHIs has been analyzed by Eric Rains around 2006; extending Rains's techniques, we discover a surprisingly rich structure in the high-temperature limit of a (rather large) class of EHIs that arise as the superconformal index of unitary Lagrangian 4d SCFTs with non-chiral matter content. Our result has implications for $\\mathcal{N}=1$ dualities, the AdS/CFT correspondence, and supersymmetric gauge dynamics on $R^3\\times S^1$. We also investigate the high-temperature asymptotics of the large-N limit of the superconformal index of a class of holographic 4d SCFTs (described by toric quiver gauge theories with SU(N) nodes). We show that from this study a rather general solution to the problem of holographic Weyl anomaly in AdS$_5$/CFT$_4$ at the suble...

  7. Analytical methods for 2,4-D (Dichlorophenoxyacetic acid) determination

    International Nuclear Information System (INIS)

    The 2,4-D herbicide is one of the main pesticides for controlling the bad grass in crops such as the water undergrowth. In Mexico the allowed bound of this pesticide is 0.05 mg/l in water of 2,4-D so it is required to have methods trusts and exacts, which can used in order to detected low concentration of it. In this work we show some for the conventional techniques and for establishing the 2,4-D concentrations. The UV-Vis spectrometer and liquids chromatography due that they are the most common used nowadays. Beside, we introduce a now developed technique, which is based on the neutronic activation analysis. Though use of the UV-Vis spectrometer technique it was possible target the concentrations interval between 1 and 200 mg/l. In the liquids chromatography interval was between 0.1 and 0.9, and by the neutronic activation analysis the interval was between 0.01 and 200 mg/l. (Author)

  8. Tolerância do milheto (Pennisetum americanum ao 2, 4-D Pennisetum americanum tolerance to 2,4-D

    Directory of Open Access Journals (Sweden)

    L.P. Pacheco

    2007-03-01

    Full Text Available Objetivou-se com este trabalho avaliar os efeitos do 2,4-D sobre o crescimento das plantas, a produção de massa seca e verde e a produtividade de grãos do milheto. O experimento foi realizado no período de março a junho de 2006, em Rio Verde-GO, em um Latossolo Vermelho eutroférrico. O milheto (cultivar ADR 500 foi semeado manualmente em área cultivada sob sistema de plantio direto, em espaçamento de 0,45 m, distribuindo-se 12 sementes por metro. Utilizou-se o delineamento de blocos casualizados, em esquema fatorial 4 x 4, sendo avaliadas quatro doses de 2,4-D (0, 335, 670 e 1.005 g ha-1 aplicadas em quatro épocas [10 dias após a emergência das plantas de milheto (DAE (3 folhas; 20 DAE (5 a 6 folhas expandidas; 30 DAE (início de emissão da inflorescência; e 40 DAE (florescimento pleno]. Para evitar a interferência das plantas daninhas na cultura, esta foi capinada manualmente, sempre que necessário. Não se observou nenhum sinal de intoxicação das plantas de milheto pelo 2,4-D aos 15 dias após a aplicação, independentemente da dose ou época de aplicação do herbicida. Todavia, as maiores doses de 2,4-D, em qualquer época de aplicação, provocaram menor acúmulo de massa verde e seca das plantas de milheto, quando se avaliaram os resultados no ponto de rolagem da cultura. O 2,4-D, independentemente da dose utilizada ou época de aplicação, não influenciou a produtividade de grãos do milheto.This study was carried out to evaluate herbicide 2,4-D effects on plant growth, production of dry and green matter and grain productivity. The experiment was carried out from March to June 2006, in Rio Verde,GO in soil classified as Eutroferric Red Latosol. Pennisetum americanum (cultivar ADR 500 was manually sowed in area under no-till system. A space of 0.45 m was used, with 12 seeds being sown per meter. The experiment was arranged in a randomized block design, in a 4 x 4 factorial scheme, with four 2,4-D rates (0. 335, 670 and

  9. 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil.

    Science.gov (United States)

    Gonod, Laure Vieublé; Martin-Laurent, Fabrice; Chenu, Claire

    2006-12-01

    The key role of telluric microorganisms in pesticide degradation is well recognized but the possible relationships between the biodiversity of soil microbial communities and their functions still remain poorly documented. If microorganisms influence the fate of pesticides, pesticide application may reciprocally affect soil microorganisms. The objective of our work was to estimate the impact of 2,4-D application on the genetic structure of bacterial communities and the 2,4-D-degrading genetic potential in relation to 2,4-D mineralization. Experiments combined isotope measurements with molecular analyses. The impact of 2,4-D on soil bacterial populations was followed with ribosomal intergenic spacer analysis. The 2,4-D degrading genetic potential was estimated by real-time PCR targeted on tfdA sequences coding an enzyme specifically involved in 2,4-D mineralization. The genetic structure of bacterial communities was significantly modified in response to 2,4-D application, but only during the intense phase of 2,4-D biodegradation. This effect disappeared 7 days after the treatment. The 2,4-D degrading genetic potential increased rapidly following 2,4-D application. There was a concomitant increase between the tfdA copy number and the 14C microbial biomass. The maximum of tfdA sequences corresponded to the maximum rate of 2,4-D mineralization. In this soil, 2,4-D degrading microbial communities seem preferentially to use the tfd pathway to degrade 2,4-D. PMID:17117994

  10. Data assimilation (4D-VAR) to forecast flood in shallow-waters with sediment erosion

    Science.gov (United States)

    Bélanger, Eric; Vincent, Alain

    2005-01-01

    In this paper, the four-dimensional variational data assimilation technique (4D-VAR) is presented as a tool to forecast floods. Our study is limited to purely hydrological flows and supposes that the weather, here a big rain, has been already forecasted by meteorological services. The technique consists in minimizing, in the sense of Lagrange, the cost function: a measure of the difference between calculated data and available observations, here the water level. This is done under constraints that are the equations of the physical model. In our case, we modified the shallow-water equations to include a simplified sediment transport model. The steepest descent algorithm is then used to find the minimum. This is made possible because we can compute analytically the gradient of the cost function by using the adjoint equations of the model. As an application of the 4D-VAR technique, the overflowing of the Chicoutimi River at the Chute-Garneau dam, during the 1996 flood, is investigated. It is found that the 4D-VAR method reduces the error in the water height forecast even when the erosion model is not activated. In terms of Lyapunov exponents, we estimate the predictability horizon of such an event to be about half-an-hour after a big rain. However, this limit of predictability can be increased by using more observations or by using a finer computational grid.

  11. 4D numerical observer for lesion detection in respiratory-gated PET

    Energy Technology Data Exchange (ETDEWEB)

    Lorsakul, Auranuch [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Biomedical Engineering, Columbia University, New York, New York 10027 (United States); Li, Quanzheng; Ouyang, Jinsong; El Fakhri, Georges, E-mail: elfakhri@pet.mgh.harvard.edu [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Trott, Cathryn M. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia and ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), Redfem, NSW 2016 (Australia); Hoog, Christopher; Petibon, Yoann [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Laine, Andrew F. [Department of Biomedical Engineering, Columbia University, New York, New York 10027 (United States)

    2014-10-15

    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic {sup 18}F-fluorodeoxyglucose activity distributions were simulated using a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using GEANT4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was

  12. Numerical evidence for a phase transition in 4d spin foam quantum gravity

    OpenAIRE

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-01-01

    Building on recent advances in defining Wilsonian RG flows, and in particular the notion of scales, for background-independent theories, we present a first investigation of the renormalization of the 4d spin foam path integral for quantum gravity, both analytically and numerically. Focussing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different obser...

  13. 5D maximally supersymmetric Yang-Mills in 4D superspace. Applications

    Energy Technology Data Exchange (ETDEWEB)

    McGarrie, Moritz

    2013-03-15

    We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.

  14. Efeitos do 2,4-D, em laranjeira baianinha Effects of 2,4-D on the baianinha orange

    Directory of Open Access Journals (Sweden)

    Ody Rodriguez

    1960-01-01

    Full Text Available Com o objetivo de conhecer a reação da laranjeira Baianinha à aplicação de 2,4-D, principalmente com relação à queda de frutas, executamos um experimento de pulverização de plantas com solução deste hormônio sintético, na Estação Experimental de Limeira, zona de maior densidade citrícola do Estado de São Paulo. Tôdas as concentrações do ácido, usadas no experimento, causaram modificações nos caracteres normais da laranjeira (Citrus sinensis Osb. As fôlhas, flôres e frutas sofreram modificações mais ou menos acentuadas, de acordo com a concentração do produto, os resultados permitindo contra-indicar pulverizações com 2,4-D nas condições apresentadas; mostram também, que as modificações atribuídas ao hormônio só se produziram durante a safra em que se fizeram os tratamentos. São apresentados dados das produções, do aumento de pêso das frutas e de queda das mesmas e das fôlhas, bem como ilustrações das principais modificações ocorridas nas frutas. A aplicação do 2,4-D causou decréscimo linear do número de frutas, proporcional as dosagens do hormônio. Como conseqüência houve aumento do seu pêso médio. Êste fato pode ser de utilidade para outras variedades cítricas, quando houver interesse no aumento de tamanho das frutas.The reaction of the Baianinha orange (Citrus sinensis Osb., a Brazilian hud sport of the Washington Navel, to applications of 2,4-D was studied at the Limeira Agr. Exp. Sta., São Paulo. All concentrations of this hormonial herbicide used in the tests induced some modifications of the normal characteristics of the plants when compared with the controls. The leaves, flowers, and fruits were the plant parts most affected by the treatments. Some of the morphological changes induced on the fruits tend to confirm the view that the Baia orange originated as a mutation from the Seleta variety. Data obtained on the yield, weight per fruit, and fruit drop indicate that application

  15. ULTRASSONOGRAFIA GESTACIONAL 3D/4D EM PEQUENOS ANIMAIS

    Directory of Open Access Journals (Sweden)

    Guilherme Fazan Rossi

    2015-06-01

    Full Text Available Esta revisión tiene como objetivo describir el uso actual de la ecografía tridimensional (3D/4D en obstetricia veterinários del pequeños animales. La ecografía tridimensional surgió en la década de 1950 y comenzó a tener una aplicación más amplia en las áreas de obstetricia y ginecología a principios de 1980. Esta técnica facilita 3D estudio volumétrico de ultrasonidos de órganos y las estructuras y permitir tercera plano de la imagen (plano coronal permite el cálculo volumétrico con mayor precisión, especialmente aquellos cuerpos de forma irregular. El método 4D se utiliza para evaluar las estructuras y funciones a través de la imagen de correlación espacio-temporal. Aun siendo una técnica disponible para más de 30 años en la medicina humana, en los estudios de veterinaria son necesarios para demostrar reciente y la especificidad y la sensibilidad de la técnica en la rutina de ultrasonido obstétrico de animales pequeños. A presente revisão tem por objetivo descrever as atuais utilizações da ultrassonografia tridimensional (US 3D/4D em obstetrícia veterinária de pequenos animais. A ultrassonografia tridimensional surgiu na década de 1950 e começou a ter maior aplicabilidade nas áreas de obstetrícia e ginecologia no início dos anos 1980. Essa técnica ultrassonográfica 3D facilita o estudo volumétrico de órgãos e estruturas e por permitir um terceiro plano da imagem (plano coronal possibilita o cálculo volumétrico mais precisamente, principalmente aqueles órgãos com formato irregular. A modalidade 4D é utilizada na avaliação de estruturas e funções via correlação imagem espaçotemporal. Mesmo sendo uma técnica disponível há mais de 30 anos em medicina humana, na veterinária os estudos são recentes e necessários para demonstrar a especificidade e sensibilidade da técnica ultrassonográfica na rotina da obstetrícia de pequenos animais. This review aims to describe the current use of three

  16. Phase and amplitude binning for 4D-CT imaging

    Science.gov (United States)

    Abdelnour, A. F.; Nehmeh, S. A.; Pan, T.; Humm, J. L.; Vernon, P.; Schöder, H.; Rosenzweig, K. E.; Mageras, G. S.; Yorke, E.; Larson, S. M.; Erdi, Y. E.

    2007-07-01

    We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2π rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error μe ± σe in PB ranged from 18% ± 20% to 30% ± 35%, while in AB the error ranged from 11% ± 14% to 20% ± 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.

  17. Phase and amplitude binning for 4D-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abdelnour, A F [US Patent and Trademark Office, Alexandria, VA (United States); Nehmeh, S A [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Pan, T [M.D. Anderson Cancer Center, Houston, TX (United States); Humm, J L [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Vernon, P [GE Healthcare Technologies, Waukesha, WI (United States); Schoeder, H [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rosenzweig, K E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Mageras, G S [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Larson, S M [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Erdi, Y E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2007-07-21

    We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2{pi} rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error {mu}{sub e} {+-} {sigma}{sub e} in PB ranged from 18% {+-} 20% to 30% {+-} 35%, while in AB the error ranged from 11% {+-} 14% to 20% {+-} 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.

  18. 4D seismic data acquisition method during coal mining

    International Nuclear Information System (INIS)

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions. (paper)

  19. Non-spherical particle generation from 4D optofluidic fabrication.

    Science.gov (United States)

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles. PMID:27092661

  20. A 4D treatment planning tool for the evaluation of motion effects on lung cancer treatments

    International Nuclear Information System (INIS)

    In this study, a 4D treatment planning tool using an analytical model accounting for breathing motion is investigated to evaluate the motion effect on delivered dose for lung cancer treatments with three-dimensional conformal radiotherapy (3DCRT). The Monte Carlo EGS4/MCDOSE user code is used in the treatment planning dose calculation, and the patient CT data are converted into respective patient geometry files for Monte Carlo dose calculation. The model interpolates CT images at different phases of the breathing cycle from patient CT scans taken at end inspiration and end expiration phases and the chest wall position. Correlation between the voxels in a reference CT dataset and the voxels in the interpolated CT datasets at any breathing phases is established so that the dose to a voxel can be accumulated through the entire breathing cycle. Simulated lung tumors at different locations are used to demonstrate our model in 3DCRT for lung cancer treatments. We demonstrated the use of a 4D treatment planning tool in evaluating the breathing motion effect on delivered dose for different planning margins. Further studies are being conducted to use this tool to study the lung motion effect through large-scale analysis and to implement this useful tool for treatment planning dose calculation and plan evaluation for 4D radiotherapy

  1. Magnetic Mass in 4D AdS Gravity

    CERN Document Server

    Araneda, Rene; Miskovic, Olivera; Olea, Rodrigo

    2016-01-01

    We provide a fully-covariant expression for the diffeomorphic charge in 4D anti-de Sitter gravity, when the Gauss-Bonnet and Pontryagin terms are added to the action. The couplings of these topological invariants are such that the Weyl tensor and its dual appear in the on-shell variation of the action, and such that the action is stationary for asymptotic (anti) self-dual solutions in the Weyl tensor. In analogy with Euclidean electromagnetism, whenever the self-duality condition is global, both the action and the total charge are identically vanishing. Therefore, for such configurations the magnetic mass equals the Ashtekhar-Magnon-Das definition.

  2. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets.

    Science.gov (United States)

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y; Du, Shengwang; Loy, M M T

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel ('non-diffracting') light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  3. 4d N=2 SCFT from Complete Intersection Singularity

    CERN Document Server

    Wang, Yifan; Yau, Stephen S -T; Yau, Shing-Tung

    2016-01-01

    Detailed studies of four dimensional N=2 superconformal field theories (SCFT) defined by isolated complete intersection singularities are performed: we compute the Coulomb branch spectrum, Seiberg-Witten solutions and central charges. Most of our theories have exactly marginal deformations and we identify the weakly coupled gauge theory descriptions for many of them, which involve (affine) D and E shaped quiver gauge theories and theories formed from Argyres-Douglas matters. These investigations provide strong evidence for the singularity approach in classifying 4d N=2 SCFTs.

  4. Actively triggered 4d cone-beam CT acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  5. 4D micro-CT using fast prospective gating

    Science.gov (United States)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  6. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, S; Castillo, R; Castillo, E; Pan, T; Ibbott, G; Balter, P; Hobbs, B; Dai, J; Guerrero, T [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phase sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase

  7. Accurate recovery of 4D left ventricular deformations using volumetric B-splines incorporating phase based displacement estimates

    Science.gov (United States)

    Chen, Jian; Tustison, Nicholas J.; Amini, Amir A.

    2006-03-01

    In this paper, an improved framework for estimation of 3-D left-ventricular deformations from tagged MRI is presented. Contiguous short- and long-axis tagged MR images are collected and are used within a 4-D B-Spline based deformable model to determine 4-D displacements and strains. An initial 4-D B-spline model fitted to sparse tag line data is first constructed by minimizing a 4-D Chamfer distance potential-based energy function for aligning isoparametric planes of the model with tag line locations; subsequently, dense virtual tag lines based on 2-D phase-based displacement estimates and the initial model are created. A final 4-D B-spline model with increased knots is fitted to the virtual tag lines. From the final model, we can extract accurate 3-D myocardial deformation fields and corresponding strain maps which are local measures of non-rigid deformation. Lagrangian strains in simulated data are derived which show improvement over our previous work. The method is also applied to 3-D tagged MRI data collected in a canine.

  8. Positive Energy Conditions in 4D Conformal Field Theory

    CERN Document Server

    Farnsworth, Kara; Prilepina, Valentina

    2015-01-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality $\\langle T^{00} \\rangle \\ge -C/L^4$, where $L$ is the size of the smearing region, and $C$ is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the "conformal collider" constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarka...

  9. Positive Energy Conditions in 4D Conformal Field Theory

    Science.gov (United States)

    Farnsworth, Kara; Luty, Markus; Prilepina, Valentina

    2016-03-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality avgT00 >= - C /L4 , where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the ``conformal collider'' constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.

  10. Cancer Incidence of 2,4-D Production Workers

    Directory of Open Access Journals (Sweden)

    Marcia Lee

    2011-09-01

    Full Text Available Despite showing no evidence of carcinogenicity in laboratory animals, the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D has been associated with non-Hodgkin lymphoma (NHL in some human epidemiology studies, albeit inconsistently. We matched an existing cohort of 2,4-D manufacturing employees with cancer registries in three US states resulting in 244 cancers compared to 276 expected cases. The Standardized Incidence Ratio (SIR for the 14 NHL cases was 1.36 (95% Confidence Interval (CI 0.74–2.29. Risk estimates were higher in the upper cumulative exposure and duration subgroups, yet not statistically significant. There were no clear patterns of NHL risk with period of hire and histology subtypes. Statistically significant results were observed for prostate cancer (SIR = 0.74, 95% CI 0.57–0.94, and “other respiratory” cancers (SIR = 3.79, 95% CI 1.22–8.84; 4 of 5 cases were mesotheliomas. Overall, we observed fewer cancer cases than expected, and a non statistically significant increase in the number of NHL cases.

  11. 4-D XRD for strain in many grains using triangulation

    Energy Technology Data Exchange (ETDEWEB)

    Bale, Hrishikesh A.; Hanan, Jay C.; Tamura, Nobumichi

    2006-12-31

    Determination of the strains in a polycrystalline materialusing 4-D XRD reveals sub-grain and grain-to-grain behavior as a functionof stress. Here 4-D XRD involves an experimental procedure usingpolychromatic micro-beam X-radiation (micro-Laue) to characterizepolycrystalline materials in spatial location as well as with increasingstress. The in-situ tensile loading experiment measured strain in a modelaluminum-sapphire metal matrix composite using the Advanced Light Source,Beam-line 7.3.3. Micro-Laue resolves individual grains in thepolycrystalline matrix. Results obtained from a list of grains sorted bycrystallographic orientation depict the strain states within and amongindividual grains. Locating the grain positions in the planeperpendicular to the incident beam is trivial. However, determining theexact location of grains within a 3-D space is challenging. Determiningthe depth of the grains within the matrix (along the beam direction)involved a triangulation method tracing individual rays that producespots on the CCD back to the point of origin. Triangulation wasexperimentally implemented by simulating a 3-D detector capturingmultiple diffraction images while increasing the camera to sampledistance. Hence by observing the intersection of rays from multiple spotsbelonging to the corresponding grain, depth is calculated. Depthresolution is a function of the number of images collected, grain to beamsize ratio, and the pixel resolution of the CCD. The 4DXRD methodprovides grain morphologies, strain behavior of each grain, andinteractions of the matrix grains with each other and the centrallylocated single crystal fiber.

  12. Longitudinal relaxation of ND4D2PO4 type antiferroelectrics. Piezoelectric resonance and sound attenuation

    Directory of Open Access Journals (Sweden)

    R.R. Levitskii

    2009-01-01

    Full Text Available Within the framework of the modified proton model with taking into account the interaction with the shear strain ε6, a dynamic dielectric response of ND4D2PO4 type antiferroelectrics is considered. Dynamics of the piezoelectric strain is taken into account. Experimentally observed phenomena of crystal clamping by high frequency electric field, piezoelectric resonance and microwave dispersion are described. Ultrasound velocity and attenuation are calculated. Character of behaviour of attenuation in the paraelectric phase and the existence of a cut-off frequency in the frequency dependence of attenuation are predicted. At the proper choice of the parameters, a good quantitative description of experimental data for longitudinal static dielectric, piezoelectric and elastic characteristics and sound velocity for ND4D2PO4 and NH4H2PO4 is obtained in the paraelectric phase.

  13. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    Science.gov (United States)

    Wang, Mengjiao; Sharp, Gregory C.; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-01

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  14. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    International Nuclear Information System (INIS)

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes. (paper)

  15. Scientific Subsurface data for EPOS - integration of 3D and 4D data services

    Science.gov (United States)

    Kerschke, Dorit; Hammitzsch, Martin; Wächter, Joachim

    2016-04-01

    The provision of efficient and easy access to scientific subsurface data sets obtained from field studies and scientific observatories or by geological 3D/4D-modeling is an important contribution to modern research infrastructures as they can facilitate the integrated analysis and evaluation as well as the exchange of scientific data. Within the project EPOS - European Plate Observing System, access to 3D and 4D data sets will be provided by 'WP15 - Geological information and modeling' and include structural geology models as well as numerical models, e.g., temperature, aquifers, and velocity. This also includes validated raw data, e.g., seismic profiles, from which the models where derived. All these datasets are of high quality and of unique scientific value as the process of modeling is time and cost intensive. However, these models are currently not easily accessible for the wider scientific community, much less to the public. For the provision of these data sets a data management platform based on common and standardized data models, protocols, and encodings as well as on a predominant use of Free and Open Source Software (FOSS) has been devised. The interoperability for disciplinary and domain applications thus highly depends on the adoption of generally agreed technologies and standards (OGC, ISO…) originating from Spatial Data Infrastructure related efforts (e.g., INSPIRE). However, since not many standards for 3D and 4D geological data exists, this work also includes new approaches for project data management, interfaces for tools used by the researchers, and interfaces for the sharing and reusing of data.

  16. Second to fourth digit ratio (2D:4D and concentrations of circulating sex hormones in adulthood

    Directory of Open Access Journals (Sweden)

    Morris Howard A

    2011-04-01

    Full Text Available Abstract Background The second to fourth digit ratio (2D:4D is used as a marker of prenatal sex hormone exposure. The objective of this study was to examine whether circulating concentrations of sex hormones and SHBG measured in adulthood was associated with 2D:4D. Methods This analysis was based on a random sample from the Melbourne Collaborative Cohort Study. The sample consisted of of 1036 men and 620 post-menopausal women aged between 39 and 70 at the time of blood draw. Concentrations of circulating sex hormones were measured from plasma collected at baseline (1990-1994, while digit length was measured from hand photocopies taken during a recent follow-up (2003-2009. The outcome measures were circulating concentrations of testosterone, oestradiol, dehydroepiandrosterone sulphate, androstenedione, Sex Hormone Binding Globulin, androstenediol glucoronide for men only and oestrone sulphate for women only. Free testosterone and oestradiol were estimated using standard formulae derived empirically. Predicted geometric mean hormone concentrations (for tertiles of 2D:4D and conditional correlation coefficients (for continuous 2D:4D were obtained using mixed effects linear regression models. Results No strong associations were observed between 2D:4D measures and circulating concentrations of hormones for men or women. For males, right 2D:4D was weakly inversely associated with circulating testosterone (predicted geometric mean testosterone was 15.9 and 15.0 nmol/L for the lowest and highest tertiles of male right 2D:4D respectively (P-trend = 0.04. There was a similar weak association between male right 2D:4D and the ratio of testosterone to oestradiol. These associations were not evident in analyses of continuous 2D:4D. Conclusions There were no strong associations between any adult circulating concentration of sex hormone or SHGB and 2D:4D. These results contribute to the growing body of evidence indicating that 2D:4D is unrelated to adult sex

  17. 4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan

    International Nuclear Information System (INIS)

    the amplitude). Similar relative offsets were found at the diaphragm. We have devised a method to use amplitude binned 4D-CT to construct motion model and generate a mid-position planning CT for radiotherapy treatment purposes. We have decimated the systematic offset of this mid-position model with a motion model derived from P-4D-CT. We found that the A-4D-CT led to a decrease of local artefacts and that this decrease was correlated to the irregularity of the external respiration signal. (paper)

  18. 4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan.

    Science.gov (United States)

    Kruis, Matthijs F; van de Kamer, Jeroen B; Belderbos, José S A; Sonke, Jan-Jakob; van Herk, Marcel

    2014-09-21

    ). Similar relative offsets were found at the diaphragm. We have devised a method to use amplitude binned 4D-CT to construct motion model and generate a mid-position planning CT for radiotherapy treatment purposes. We have decimated the systematic offset of this mid-position model with a motion model derived from P-4D-CT. We found that the A-4D-CT led to a decrease of local artefacts and that this decrease was correlated to the irregularity of the external respiration signal.

  19. Seeing the unseen-bioturbation in 4D

    DEFF Research Database (Denmark)

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane;

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and...... behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images...... provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive...

  20. Contextualised ICT4D: a Bottom-Up Approach

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Sutinen, Erkki

    2010-01-01

    . In a certain way, this agenda can be understood as a topdown approach which transfers technology in a hierarchical way to actual users. Complementary to the traditional approach, a bottom-up approach starts by identifying communities that are ready to participate in a process to use technology to transform......The term ICT4D refers to the opportunities of Information and Communication Technology (ICT) as an agent of development. Much of the research in the field is based on evaluating the feasibility of existing technologies, mostly of Western or Asian origin, in the context of developing countries...... their own strengths to new levels by designing appropriate technologies with experts of technology and design. The bottomup approach requires a new kind of ICT education at the undergraduate level. An example of the development of a contextualized IT degree program at Tumaini University in Tanzania shows...

  1. Parallel Wavefront Analysis for a 4D Interferometer

    Science.gov (United States)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  2. 4D ultrasound and 3D MRI registration of beating heart

    International Nuclear Information System (INIS)

    To realize intra-cardiac surgery without cardio-pulmonary bypass, a medical imaging technique with both high image quality and data acquisition rate that is fast enough to follow heart beat movements is required. In this research, we proposed a method that utilized the image quality of MRI and the speed of ultrasound. We developed a 4D image reconstruction method using image registration of 3D MRI and 4D ultrasound images. The registration method consists of rigid registration between 3D MRI and 3D ultrasound with the same heart beat phase, and non-rigid registration between 3D ultrasound images from different heart beat phases. Non-rigid registration was performed with B-spline based registration using variable spring model. In phantom experiment using balloon phantom, registration accuracy was less than 2 mm for total heart volume variation range of 10%. We applied our registration method on 3D MRI and 4D ultrasound images of a volunteer's beating heart data and confirmed through visual observation that heart beat pattern was well reproduced. (orig.)

  3. Fully 3D PET image reconstruction with a 4D sinogram blurring kernel

    Energy Technology Data Exchange (ETDEWEB)

    Tohme, Michel S.; Qi, Jinyi [California Univ., Davis, CA (United States). Dept. of Biomedical Engineering; Zhou, Jian

    2011-07-01

    Accurately modeling PET system response is essential for high-resolution image reconstruction. Traditionally, sinogram blurring effects are modeled as a 2D blur in each sinogram plane. Such 2D blurring kernel is insufficient for fully 3D PET data, which has four dimensions. In this paper, we implement a fully 3D PET image reconstruction using a 4D sinogram blurring kernel estimated from point source scans and perform phantom experiments to evaluate the improvements in image quality over methods with existing 2D blurring kernels. The results show that the proposed reconstruction method can achieve better spatial resolution and contrast recovery than existing methods. (orig.)

  4. Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development

    Directory of Open Access Journals (Sweden)

    Lyons Deirdre C

    2012-09-01

    Full Text Available Abstract Background Animals with a spiral cleavage program, such as mollusks and annelids, make up the majority of the superphylum Lophotrochozoa. The great diversity of larval and adult body plans in this group emerges from this highly conserved developmental program. The 4d micromere is one of the most conserved aspects of spiralian development. Unlike the preceding pattern of spiral divisions, cleavages within the 4d teloblastic sublineages are bilateral, representing a critical transition towards constructing the bilaterian body plan. These cells give rise to the visceral mesoderm in virtually all spiralians examined and in many species they also contribute to the endodermal intestine. Hence, the 4d lineage is an ideal one for studying the evolution and diversification of the bipotential endomesodermal germ layer in protostomes at the level of individual cells. Little is known of how division patterns are controlled or how mesodermal and endodermal sublineages diverge in spiralians. Detailed modern fate maps for 4d exist in only a few species of clitellate annelids, specifically in glossiphoniid leeches and the sludge worm Tubifex. We investigated the 4d lineage in the gastropod Crepidula fornicata, an established model system for spiralian biology, and in a closely related direct-developing species, C. convexa. Results High-resolution cell lineage tracing techniques were used to study the 4d lineage of C. fornicata and C. convexa. We present a new nomenclature to name the progeny of 4d, and report the fate map for the sublineages up through the birth of the first five pairs of teloblast daughter cells (when 28 cells are present in the 4d sublineage, and describe each clone’s behavior during gastrulation and later stages as these undergo differentiation. We identify the precise origin of the intestine, two cells of the larval kidney complex, the larval retractor muscles and the presumptive germ cells, among others. Other tissues that arise

  5. Respiratory triggered 4D cone-beam computed tomography: A novel method to reduce imaging dose

    Science.gov (United States)

    Cooper, Benjamin J.; O’Brien, Ricky T.; Balik, Salim; Hugo, Geoffrey D.; Keall, Paul J.

    2013-01-01

    Purpose: A novel method called respiratory triggered 4D cone-beam computed tomography (RT 4D CBCT) is described whereby imaging dose can be reduced without degrading image quality. RT 4D CBCT utilizes a respiratory signal to trigger projections such that only a single projection is assigned to a given respiratory bin for each breathing cycle. In contrast, commercial 4D CBCT does not actively use the respiratory signal to minimize image dose. Methods: To compare RT 4D CBCT with conventional 4D CBCT, 3600 CBCT projections of a thorax phantom were gathered and reconstructed to generate a ground truth CBCT dataset. Simulation pairs of conventional 4D CBCT acquisitions and RT 4D CBCT acquisitions were developed assuming a sinusoidal respiratory signal which governs the selection of projections from the pool of 3600 original projections. The RT 4D CBCT acquisition triggers a single projection when the respiratory signal enters a desired acquisition bin; the conventional acquisition does not use a respiratory trigger and projections are acquired at a constant frequency. Acquisition parameters studied were breathing period, acquisition time, and imager frequency. The performance of RT 4D CBCT using phase based and displacement based sorting was also studied. Image quality was quantified by calculating difference images of the test dataset from the ground truth dataset. Imaging dose was calculated by counting projections. Results: Using phase based sorting RT 4D CBCT results in 47% less imaging dose on average compared to conventional 4D CBCT. Image quality differences were less than 4% at worst. Using displacement based sorting RT 4D CBCT results in 57% less imaging dose on average, than conventional 4D CBCT methods; however, image quality was 26% worse with RT 4D CBCT. Conclusions: Simulation studies have shown that RT 4D CBCT reduces imaging dose while maintaining comparable image quality for phase based 4D CBCT; image quality is degraded for displacement based RT 4D

  6. Cardy Formula for 4d SUSY Theories and Localization

    CERN Document Server

    Di Pietro, Lorenzo

    2016-01-01

    We study 4d $\\mathcal{N}=1$ supersymmetric theories on a compact Euclidean manifold of the form $S^1 \\times\\mathcal{M}_3$. Partition functions of gauge theories on this background can be computed using localization, and explicit formulas have been derived for different choices of the compact manifold $\\mathcal{M}_3$. Taking the limit of shrinking $S^1$, we present a general formula for the limit of the localization integrand, derived by simple effective theory considerations, generalizing the result of arXiv:1512.03376. The limit is given in terms of an effective potential for the holonomies around the $S^1$, whose minima determine the asymptotic behavior of the partition function. If the potential is minimized in the origin, where it vanishes, the partition function has a Cardy-like behavior fixed by $\\mathrm{Tr}(R)$, while a nontrivial minimum gives a shift in the coefficient. In all the examples that we consider, the origin is a minimum iff $\\mathrm{Tr}(R) \\leq 0$.

  7. Temporally coherent 4D video segmentation for teleconferencing

    Science.gov (United States)

    Ehmann, Jana; Guleryuz, Onur G.

    2013-09-01

    We develop an algorithm for 4-D (RGB+Depth) video segmentation targeting immersive teleconferencing ap- plications on emerging mobile devices. Our algorithm extracts users from their environments and places them onto virtual backgrounds similar to green-screening. The virtual backgrounds increase immersion and interac- tivity, relieving the users of the system from distractions caused by disparate environments. Commodity depth sensors, while providing useful information for segmentation, result in noisy depth maps with a large number of missing depth values. By combining depth and RGB information, our work signi¯cantly improves the other- wise very coarse segmentation. Further imposing temporal coherence yields compositions where the foregrounds seamlessly blend with the virtual backgrounds with minimal °icker and other artifacts. We achieve said improve- ments by correcting the missing information in depth maps before fast RGB-based segmentation, which operates in conjunction with temporal coherence. Simulation results indicate the e±cacy of the proposed system in video conferencing scenarios.

  8. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    Science.gov (United States)

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-08-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.

  9. Multimaterial 4D Printing with Tailorable Shape Memory Polymers.

    Science.gov (United States)

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K; Fang, Nicholas X; Dunn, Martin L

    2016-08-08

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.

  10. Effortless assignment with 4D covariance sequential correlation maps.

    Science.gov (United States)

    Harden, Bradley J; Mishra, Subrata H; Frueh, Dominique P

    2015-11-01

    Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase.

  11. Multimaterial 4D Printing with Tailorable Shape Memory Polymers.

    Science.gov (United States)

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K; Fang, Nicholas X; Dunn, Martin L

    2016-01-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417

  12. SEVIRI 4D-var assimilation analysing the April 2010 Eyjafjallajökull ash dispersion

    Science.gov (United States)

    Lange, Anne Caroline; Elbern, Hendrik

    2016-04-01

    We present first results of four dimensional variational (4D-var) data assimilation analysis applying SEVIRI observations to the Eulerian regional chemistry and aerosol transport model EURAD-IM (European Air Pollution Dispersion - Inverse Model). Optimising atmospheric dispersion models in terms of volcanic ash transport predictions by observations is especially essential for the aviation industry and associated interests. Remote sensing satellite observations are instrumental for ash detection and monitoring. We choose volcanic ash column retrievals of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) because as infrared instrument on the geostationary satellite Meteosat Second Generation it delivers measurements with high temporal resolution during day and night. The retrieval method relies on the reverse absorption effect. In the framework of the national initiative ESKP (Earth System Knowledge Platform) and the European ACTRIS-2 (Aerosol, Clouds, and Trace gases Research InfraStructure) project, we developed new modules (forward and adjoint) within the EURAD-IM, which are able to process SEVIRI ash column data as observational input to the 4D-var system. The focus of the 4D-var analysis is on initial value optimisation of the volcanic ash clouds that were emitted during the explosive Eyjafjallajökull eruption in April 2010. This eruption caused high public interest because of air traffic closures and it was particularly well observed from many different observation systems all over Europe. Considering multiple observation periods simultaneously in one assimilation window generates a continuous trajectory in the phase space and ensures that past observations are considered within their uncertainties. Results are validated mainly by lidar (LIght Detection And Ranging) observations, both ground and satellite based.

  13. 2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis

    Science.gov (United States)

    Eyer, Luděk; Vain, Thomas; Pařízková, Barbora; Oklestkova, Jana; Barbez, Elke; Kozubíková, Hana; Pospíšil, Tomáš; Wierzbicka, Roksana; Kleine-Vehn, Jürgen; Fránek, Milan; Strnad, Miroslav; Robert, Stéphanie

    2016-01-01

    The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development. PMID:27434212

  14. Control of glyphosate resistant hairy fleabane (Conyza bonariensis) with dicamba and 2,4-D Controle de buva (Conyza bonariensis) resistente ao glyphosate com dicamba e 2,4-D

    OpenAIRE

    D.J. Soares; Oliveira, W. S.; R.F. López-Ovejero; P.J. Christoffoleti

    2012-01-01

    Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis). The objective of this research was to model the efficacy, through dose-response curves, of glyphosa...

  15. 3D tomographic reconstruction of coronary arteries using a precomputed 4D motion field

    International Nuclear Information System (INIS)

    In this paper, we present a new method to perform 3D tomographic reconstruction of coronary arteries from cone-beam rotational x-ray angiography acquisitions. We take advantage of the precomputation of the coronary artery motion, modelled as a parametric 4D motion field. Contrary to data gating or data triggering approaches, we homogeneously use all available frames, independently of the cardiac phase. In addition, we artificially subtract angiograms from their background structures. Our method significantly improves the reconstruction, by removing both motion and background artefacts. We have successfully tested it on the datasets from a synthetic phantom and 10 patients

  16. Natural and Induced Fracture Diagnostics from 4-D VSP Low Permeability Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Willis; Daniel R. Burns; M. Nafi Toksoz

    2008-09-30

    Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

  17. SU-E-J-148: Tools for Development of 4D Proton CT

    International Nuclear Information System (INIS)

    Purpose: To develop tools for performing 4D proton computed tomography (CT). Methods: A suitable patient with a tumor in the right lower lobe was selected from a set of 4D CT scans. The volumetric CT images formed the basis for calculating the parameters of a breathing model that allows reconstruction of a static reference CT and CT images in each breathing phase. The images were imported into the TOPAS Monte Carlo simulation platform for simulating an experimental proton CT scan with 45 projections spaced by 4 degree intervals. Each projection acquired data for 2 seconds followed by a gantry rotation for 2 seconds without acquisition. The scan covered 180 degrees with individual protons passing through a 9-cm slab of the patient’s lung covering the moving tumor. An initial proton energy sufficient for penetrating the patient from all directions was determined. Performing the proton CT simulation, TOPAS provided output of the proton energy and coordinates registered in two planes before and after the patient, respectively. The set of projection data was then used with an iterative reconstruction algorithm to generate a volumetric proton CT image set of the static reference image and the image obtained under breathing motion, respectively. Results: An initial proton energy of 230 MeV was found to be sufficient, while for an initial energy of 200 MeV a substantial number of protons did not penetrate the patient. The reconstruction of the static reference image set provided sufficient detail for treatment planning. Conclusion: We have developed tools to perform studies of proton CT in the presence of lung motion based on the TOPAS simulation toolkit. This will allow to optimize 4D reconstruction algorithms by synchronizing the acquired proton CT data with a breathing signal and utilizing a breathing model obtained prior to the proton CT scan. This research has been supported by the National Institute Of Biomedical Imaging And Bioengineering of the National

  18. SU-E-J-148: Tools for Development of 4D Proton CT

    Energy Technology Data Exchange (ETDEWEB)

    Dou, T [University of California, Los Angeles, Los Angeles, CA (United States); Ramos-Mendez, J [University of California San Francisco, San Francisco, CA (United States); Piersimoni, P [Loma Linda University, Loma Linda, CA (United States); Giacometti, V [Center for Medical Radiation Physics, University of Wollongong, Sydney, NSW (Australia); Penfold, S [University of Adelaide, Adelaide, SA (Australia); Censor, Y [University of Haifa, Haifa (Israel); Faddegon, B [UC San Francisco, San Francisco, CA (United States); Low, D [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States); Schulte, R [Loma Linda Univ. Medical Ctr., Loma Linda, CA (United States)

    2015-06-15

    Purpose: To develop tools for performing 4D proton computed tomography (CT). Methods: A suitable patient with a tumor in the right lower lobe was selected from a set of 4D CT scans. The volumetric CT images formed the basis for calculating the parameters of a breathing model that allows reconstruction of a static reference CT and CT images in each breathing phase. The images were imported into the TOPAS Monte Carlo simulation platform for simulating an experimental proton CT scan with 45 projections spaced by 4 degree intervals. Each projection acquired data for 2 seconds followed by a gantry rotation for 2 seconds without acquisition. The scan covered 180 degrees with individual protons passing through a 9-cm slab of the patient’s lung covering the moving tumor. An initial proton energy sufficient for penetrating the patient from all directions was determined. Performing the proton CT simulation, TOPAS provided output of the proton energy and coordinates registered in two planes before and after the patient, respectively. The set of projection data was then used with an iterative reconstruction algorithm to generate a volumetric proton CT image set of the static reference image and the image obtained under breathing motion, respectively. Results: An initial proton energy of 230 MeV was found to be sufficient, while for an initial energy of 200 MeV a substantial number of protons did not penetrate the patient. The reconstruction of the static reference image set provided sufficient detail for treatment planning. Conclusion: We have developed tools to perform studies of proton CT in the presence of lung motion based on the TOPAS simulation toolkit. This will allow to optimize 4D reconstruction algorithms by synchronizing the acquired proton CT data with a breathing signal and utilizing a breathing model obtained prior to the proton CT scan. This research has been supported by the National Institute Of Biomedical Imaging And Bioengineering of the National

  19. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b)...

  20. Lung 4D-IMRT treatment planning: An evaluation of three methods applied to four-dimensional data sets

    International Nuclear Information System (INIS)

    Purpose: To compare 4D-dose distributions for IMRT planning on three data sets: a single 4D-CT phase, a 4D-CT phase with a density override to the tumor motion envelope (TME) volume, and the average intensity projection (AIP). Methods: Eight planning cases were considered. IMRT inverse planning optimization was performed on each of the three data set types, for each case considered. The plans were then applied to all ten phases of the associated 4D-CT data set. The dose to the GTV in each breathing phase was compared to the TME dose from the optimized dose distribution, as well as the GTV dose determined from a model-based deformable registration algorithm. Results: IMRT optimization on a single 3D data set resulted in a greater equivalent uniform dose (EUD) to the GTV when applied to a 4D-CT data set than the EUD for the TME in the optimized plan. The difference was up to 5.5 Gy in one case. For all cases and planning techniques considered, a maximum difference of 0.3 Gy in the NTDmean to the healthy lung throughout the breathing cycle was found. Conclusions: For tumors located in the periphery of the lung, optimization on the AIP image resulted in a more uniform GTV dose throughout the breathing cycle. Averages in GTV EUD and healthy lung NTDmean taken over all the breathing phases were found to be in agreement with the dose effect parameters obtained from model-based deformable registration algorithms. All planning methods yielded GTV EUD values that were larger than the prescribed dose when the full 4D data set was considered

  1. A set of 4D pediatric XCAT reference phantoms for multimodality research

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Hannah, E-mail: Hannah.norris@duke.edu; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Minhas, Anum; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-03-15

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  2. Application of unified array calculus to connect 4-D spacetime sensing with string theory and relativity

    Science.gov (United States)

    Rauhala, U. A.

    2013-12-01

    Array algebra of photogrammetry and geodesy unified multi-linear matrix and tensor operators in an expansion of Gaussian adjustment calculus to general matrix inverses and solutions of inverse problems to find all, or some optimal, parametric solutions that satisfy the available observables. By-products in expanding array and tensor calculus to handle redundant observables resulted in general theories of estimation in mathematical statistics and fast transform technology of signal processing. Their applications in gravity modeling and system automation of multi-ray digital image and terrain matching evolved into fast multi-nonlinear differential and integral array calculus. Work since 1980's also uncovered closed-form inverse Taylor and least squares Newton-Raphson-Gauss perturbation solutions of nonlinear systems of equations. Fast nonlinear integral matching of array wavelets enabled an expansion of the bundle adjustment to 4-D stereo imaging and range sensing where real-time stereo sequence and waveform phase matching enabled data-to-info conversion and compression on-board advanced sensors. The resulting unified array calculus of spacetime sensing is applicable in virtually any math and engineering science, including recent work in spacetime physics. The paper focuses on geometric spacetime reconstruction from its image projections inspired by unified relativity and string theories. The collinear imaging equations of active object space shutter of special relativity are expanded to 4-D Lorentz transform. However, regular passive imaging and shutter inside the sensor expands the law of special relativity by a quantum geometric explanation of 4-D photogrammetry. The collinear imaging equations provide common sense explanations to the 10 (and 26) dimensional hyperspace concepts of a purely geometric string theory. The 11-D geometric M-theory is interpreted as a bundle adjustment of spacetime images using 2-D or 5-D membrane observables of image, string and

  3. Estrogen-dependent proteolytic cleavage of semaphorin 4D and plexin-B1 enhances semaphorin 4D-induced apoptosis during postnatal vaginal remodeling in pubescent mice.

    Directory of Open Access Journals (Sweden)

    Takuji Ito

    Full Text Available Around the fifth week after birth, the vaginal cavity in female mouse pups opens to the overlaying skin. This postnatal tissue remodeling of the genital tract occurs during puberty, and it largely depends upon hormonally induced apoptosis that mainly occurs in the epithelium at the lower part of the mouse vaginal cavity. Previously, we showed that most BALB/c mice lacking the class IV Semaphorin (Sema4D develop imperforate vagina and hydrometrocolpos; therefore, we reasoned that the absence of Sema4D-induced apoptosis in vaginal epithelial cells may cause the imperforate vagina. Sema4D signals via the Plexin-B1 receptor; nevertheless detailed mechanisms mediating this hormonally triggered apoptosis are not fully documented. To investigate the estrogen-dependent control of Sema4D signaling during the apoptosis responsible for mouse vaginal opening, we examined structural and functional modulation of Sema4D, Plexin-B1, and signaling molecules by analyzing both wild-type and Sema4D-/- mice with or without ovariectomy. Both the release of soluble Sema4D and the conversion of Plexin-B1 by proteolytic processing in vaginal tissue peaked 5 weeks after birth of wild-type BALB/c mice at the time of vaginal opening. Estrogen supplementation of ovariectomized wild-type mice revealed that both the release of soluble Sema4D and the conversion of Plexin-B1 into an active form were estrogen-dependent and concordant with apoptosis. Estrogen supplementation of ovariectomized Sema4D-/- mice did not induce massive vaginal apoptosis in 5-week-old mice; therefore, Sema4D may be an essential apoptosis-inducing ligand that acts downstream of estrogen action in vaginal epithelium during this postnatal tissue remodeling. Analysis of ovariectomized mice also indicated that Sema4D contributed to estrogen-dependent dephosphorylation of Akt and ERK at the time of vaginal opening. Based on our results, we propose that apoptosis in vaginal epithelium during postnatal vaginal

  4. A reduced-order strategy for 4D-Var data assimilation

    CERN Document Server

    Robert, Céline; Blayo, Eric; Verron, Jacques; Blum, Jacques; Dimet, François-Xavier Le

    2005-01-01

    This paper presents a reduced-order approach for four-dimensional variational data assimilation, based on a prior EO F analysis of a model trajectory. This method implies two main advantages: a natural model-based definition of a mul tivariate background error covariance matrix $\\textbf{B}_r$, and an important decrease of the computational burden o f the method, due to the drastic reduction of the dimension of the control space. % An illustration of the feasibility and the effectiveness of this method is given in the academic framework of twin experiments for a model of the equatorial Pacific ocean. It is shown that the multivariate aspect of $\\textbf{B}_r$ brings additional information which substantially improves the identification procedure. Moreover the computational cost can be decreased by one order of magnitude with regard to the full-space 4D-Var method.

  5. Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils.

    OpenAIRE

    Ka, J O; Holben, W E; Tiedje, J M

    1994-01-01

    Forty-seven numerically dominant 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria were isolated at different times from 1989 through 1992 from eight agricultural plots (3.6 by 9.1 m) which were either not treated with 2,4-D or treated with 2,4-D at three different concentrations. Isolates were obtained from the most dilute positive most-probable-number tubes inoculated with soil samples from the different plots on seven sampling dates over the 3-year period. The isolates were compare...

  6. Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences

    Science.gov (United States)

    Forkert, Nils Daniel; Säring, Dennis; Fiehler, Jens; Illies, Till; Möller, Dietmar; Handels, Heinz

    2009-02-01

    In this paper we present a method for the dynamic visualization of cerebral blood flow. Spatio-temporal 4D magnetic resonance angiography (MRA) image datasets and 3D MRA datasets with high spatial resolution were acquired for the analysis of arteriovenous malformations (AVMs). One of the main tasks is the combination of the information of the 3D and 4D MRA image sequences. Initially, in the 3D MRA dataset the vessel system is segmented and a 3D surface model is generated. Then, temporal intensity curves are analyzed voxelwise in the 4D MRA image sequences. A curve fitting of the temporal intensity curves to a patient individual reference curve is used to extract the bolus arrival times in the 4D MRA sequences. After non-linear registration of both MRA datasets the extracted hemodynamic information is transferred to the surface model where the time points of inflow can be visualized color coded dynamically over time. The dynamic visualizations computed using the curve fitting method for the estimation of the bolus arrival times were rated superior compared to those computed using conventional approaches for bolus arrival time estimation. In summary the procedure suggested allows a dynamic visualization of the individual hemodynamic situation and better understanding during the visual evaluation of cerebral vascular diseases.

  7. 4D micro-CT-based perfusion imaging in small animals

    Science.gov (United States)

    Badea, C. T.; Johnston, S. M.; Lin, M.; Hedlund, L. W.; Johnson, G. A.

    2009-02-01

    Quantitative in-vivo imaging of lung perfusion in rodents can provide critical information for preclinical studies. However, the combined challenges of high temporal and spatial resolution have made routine quantitative perfusion imaging difficult in rodents. We have recently developed a dual tube/detector micro-CT scanner that is well suited to capture first-pass kinetics of a bolus of contrast agent used to compute perfusion information. Our approach is based on the paradigm that the same time density curves can be reproduced in a number of consecutive, small (i.e. 50μL) injections of iodinated contrast agent at a series of different angles. This reproducibility is ensured by the high-level integration of the imaging components of our system, with a micro-injector, a mechanical ventilator, and monitoring applications. Sampling is controlled through a biological pulse sequence implemented in LabVIEW. Image reconstruction is based on a simultaneous algebraic reconstruction technique implemented on a GPU. The capabilities of 4D micro-CT imaging are demonstrated in studies on lung perfusion in rats. We report 4D micro-CT imaging in the rat lung with a heartbeat temporal resolution of 140 ms and reconstructed voxels of 88 μm. The approach can be readily extended to a wide range of important preclinical models, such as tumor perfusion and angiogenesis, and renal function.

  8. Multiyear climate prediction with initialization based on 4D-Var data assimilation

    Science.gov (United States)

    Mochizuki, Takashi; Masuda, Shuhei; Ishikawa, Yoichi; Awaji, Toshiyuki

    2016-04-01

    An initialization relevant to interannual-to-decadal climate prediction has usually used a simple restoring approach for oceanic variables. Here we demonstrate the potential use of four-dimensional variational (4D-Var) data assimilation on the leading edge of initialization approach particularly in multiyear (5 year long) climate prediction. We perform full-field initialization rather than anomaly initialization and assimilate the atmosphere states together with the ocean states to an atmosphere-ocean coupled climate model. In particular, it is noteworthy that ensembles of multiyear hindcasts using our assimilation results as initial conditions exhibit an improved skill in hindcasting the multiyear changes of the upper ocean heat content (OHC) over the central North Pacific. The 4D-Var approach enables us to directly assimilate a time trajectory of slow changes of the Aleutian Low that are compatible with the sea surface height and the OHC. Consequently, we can estimate a coupled climate state suitable for hindcasting dynamical changes over the extratropical North Pacific as observed.

  9. Overview of 4D Printing Technology%四维打印技术概述

    Institute of Scientific and Technical Information of China (English)

    邵文; 邢明浩

    2014-01-01

    4D printing is a technology which adding one-dimensional time element on the basis of 3 D printing. People can set models and time by software, thus modified materials shape in set time. Relative to the 3D printing, 4D printing is more intel igent, because the materials could be assembly by itself, which has the advantages of economic, efficient and direct.%四维打印技术是在三维打印技术的基础上增加一维时间元素,人们可以通过软件设定模型和时间,变形材料会在设定的时间内折叠为所需的形状。相对于三维打印技术,四维打印技术更加“智能”,物料可自行组装,具有经济、高效、直接的优点。文章对这项新技术的相关名词、技术要点以及应用前景进行了简要介绍。

  10. On free 4D Abelian 2-form and anomalous 2D Abelian 1-form gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Kumar, R. [Banaras Hindu University, Physics Department, Centre of Advanced Studies, Varanasi (India); Malik, R.P. [Banaras Hindu University, Physics Department, Centre of Advanced Studies, Varanasi (India); Banaras Hindu University, DST Centre for Interdisciplinary Mathematical Sciences, Faculty of Science, Varanasi (India)

    2010-01-15

    We demonstrate a few striking similarities and some glaring differences between (i) the free four- (3+1)-dimensional (4D) Abelian 2-form gauge theory, and (ii) the anomalous two- (1+1)-dimensional (2D) Abelian 1-form gauge theory, within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism. We demonstrate that the Lagrangian densities of the above two theories transform in a similar fashion under a set of symmetry transformations even though they are endowed with a drastically different variety of constraint structures. With the help of our understanding of the 4D Abelian 2-form gauge theory, we prove that the gauge-invariant version of the anomalous 2D Abelian 1-form gauge theory is a new field-theoretic model for the Hodge theory where all the de Rham cohomological operators of differential geometry find their physical realizations in the language of proper symmetry transformations. The corresponding conserved charges obey an algebra that is reminiscent of the algebra of the cohomological operators. We briefly comment on the consistency of the 2D anomalous 1-form gauge theory in the language of restrictions on the harmonic state of the (anti-) BRST and (anti-) co-BRST invariant version of the above 2D theory. (orig.)

  11. $\\theta$ dependence of 4D $SU(N)$ gauge theories in the large-$N$ limit

    CERN Document Server

    Bonati, Claudio; Rossi, Paolo; Vicari, Ettore

    2016-01-01

    We study the large-$N$ scaling behavior of the $\\theta$ dependence of the ground-state energy density $E(\\theta)$ of four-dimensional (4D) $SU(N)$ gauge theories and two-dimensional (2D) $CP^{N-1}$ models, where $\\theta$ is the parameter associated with the Lagrangian topological term. We consider its $\\theta$ expansion around $\\theta=0$, $E(\\theta)-E(0) = {1\\over 2}\\chi \\,\\theta^2 ( 1 + b_2 \\theta^2 + b_4\\theta^4 +\\cdots)$ where $\\chi$ is the topological susceptibility and $b_{2n}$ are dimensionless coefficients. We focus on the first few coefficients $b_{2n}$, which parametrize the deviation from a simple Gaussian distribution of the topological charge at $\\theta=0$. We present a numerical analysis of Monte Carlo simulations of 4D $SU(N)$ lattice gauge theories for $N=3,\\,4,\\,6$ in the presence of an imaginary $\\theta$ term. The results provide a robust evidence of the large-$N$ behavior predicted by standard large-$N$ scaling arguments, i.e. $b_{2n}= O(N^{-2n})$. In particular, we obtain $b_2=\\bar{b}_2/N^2...

  12. Digit ratio (2Dratio4D differences between 20 strains of inbred mice.

    Directory of Open Access Journals (Sweden)

    Reginia H Y Yan

    Full Text Available The second to fourth digit ratio (2Dratio4D is sexually differentiated in a variety of species, including humans, rats, birds, and lizards. In humans, this ratio tends to be lower in males than in females. Lower digit ratios are believed to indicate increased prenatal testosterone exposure, and are associated with more masculinized behavior across a range of traits. The story seems more complicated in laboratory mice. We have previously shown that there is no sex difference in the digit ratios of inbred mice, but found behavioral evidence to suggest that higher 2Dratio4D is associated with more masculinized behaviors. Work examining intrauterine position effects show that neighbouring males raise pup digit ratio, suggesting again that higher digit ratios are associated with increased developmental androgens. Other work has suggested that masculinization is associated with lower digit ratios in lab mice. Here, we examine the fore- and hindlimb digit ratios of 20 inbred mouse strains. We find large inter-strain differences, but no sexual dimorphism. Digit ratios also did not correlate with mice behavioral traits. This result calls into question the use of this trait as a broadly applicable indicator for prenatal androgen exposure. We suggest that the inbred mice model presents an opportunity for researchers to investigate the genetic, and gene-environmental influence on the development of digit ratios.

  13. Overview of 4D Printing Technology%四维打印技术概述

    Institute of Scientific and Technical Information of China (English)

    邵文; 邢明浩

    2014-01-01

    四维打印技术是在三维打印技术的基础上增加一维时间元素,人们可以通过软件设定模型和时间,变形材料会在设定的时间内折叠为所需的形状。相对于三维打印技术,四维打印技术更加“智能”,物料可自行组装,具有经济、高效、直接的优点。文章对这项新技术的相关名词、技术要点以及应用前景进行了简要介绍。%4D printing is a technology which adding one-dimensional time element on the basis of 3 D printing. People can set models and time by software, thus modified materials shape in set time. Relative to the 3D printing, 4D printing is more intel igent, because the materials could be assembly by itself, which has the advantages of economic, efficient and direct.

  14. Induced higher-derivative massive gravity on a 2-brane in 4D Minkowski space

    International Nuclear Information System (INIS)

    In this paper we revisit the problem of localizing gravity in a 2-brane embedded in a 4D Minkowski space to address induction of high derivative massive gravity. We explore the structure of propagators to find well-behaved higher-derivative massive gravity induced on the brane. Exploring a special case in the generalized mass term of the graviton propagator we find a model of consistent higher order gravity with an additional unitary massive spin-2 particle and two massless particles: one spin-0 particle and one spin-1 particle. The condition for the absence of tachyons is satisfied for both ‘right’ and ‘wrong’ signs of the Einstein–Hilbert term on the 2-brane. We also find the Pauli–Fierz mass term added to the new massive gravity in three dimensions and recover the low-dimensional DGP model

  15. Numerical evidence for a phase transition in 4d spin foam quantum gravity

    CERN Document Server

    Bahr, Benjamin

    2016-01-01

    Building on recent advances in defining Wilsonian RG flows, and in particular the notion of scales, for background-independent theories, we present a first investigation of the renormalization of the 4d spin foam path integral for quantum gravity, both analytically and numerically. Focussing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow for the definition a continuum limit of the quantum gravity theory.

  16. 4D Design and Simulation Technologies and Process Design Patterns to Support Lean Construction Methods

    Institute of Scientific and Technical Information of China (English)

    Manfred Breit; Manfred Vogel; Fritz H(a)ubi; Fabian M(a)rki; Micheal Raps

    2008-01-01

    The objective of this ongoing joint research program is to determine how 3D/4D modeling, simula- tion and visualization of Products (buildings), Organizations and Processes (POP) can support lean con- struction. Initial findings suggest that Process Design Pattern may have the potential to intuitively support ICT based lean construction. We initiated a "Process Archeology" in order to reveal the requirements for tools that can support the planning, simulation and control of lean construction methods. First findings show that existing tools provide only limited support and therefore, we started to develop new methodologies and technologies to overcome these shortcomings. Through the introduction of Process Design Patterns, we in- tent to establish process thinking in the interdisciplinary POP design. Optimized construction processes may be synthesized with semi-automatic methods by applying Process Design Pattems on building structures. By providing process templates that integrate problem solution and expert knowledge, Process Design Pat- tems may have the potential to ensure high quality process models.

  17. 3&4D Geomodeling Applied to Mineral Resources Exploration - A New Tool for Targeting Deposits.

    Science.gov (United States)

    Royer, Jean-Jacques; Mejia, Pablo; Caumon, Guillaume; Collon-Drouaillet, Pauline

    2013-04-01

    3 & 4D geomodeling, a computer method for reconstituting the past deformation history of geological formations, has been used in oil and gas exploration for more than a decade for reconstituting fluid migration. It begins nowadays to be applied for exploring with new eyes old mature mining fields and new prospects. We describe shortly the 3&4D geomodeling basic notions, concepts, and methodology when applied to mineral resources assessment and modeling ore deposits, pointing out the advantages, recommendations and limitations, together with new challenges they rise. Several 3D GeoModels of mining explorations selected across Europe will be presented as illustrative case studies which have been achieved during the EU FP7 ProMine research project. It includes: (i) the Cu-Au porphyry deposits in the Hellenic Belt (Greece); (ii) the VMS in the Iberian Pyrite Belt including the Neves Corvo deposit (Portugal) and (iii) the sediment-hosted polymetallic Cu-Ag (Au, PGE) Kupferschiefer ore deposit in the Foresudetic Belt (Poland). In each case full 3D models using surfaces and regular grid (Sgrid) were built from all dataset available from exploration and exploitation including geological primary maps, 2D seismic cross-sections, and boreholes. The level of knowledge may differ from one site to another however those 3D resulting models were used to pilot additional field and exploration works. In the case of the Kupferschiefer, a sequential restoration-decompaction (4D geomodeling) from the Upper Permian to Cenozoic was conducted in the Lubin- Sieroszowice district of Poland. The results help in better understanding the various superimposed mineralization events which occurred through time in this copper deposit. A hydro-fracturing index was then calculated from the estimated overpressures during a Late Cretaceous-Early Paleocene up-lifting, and seems to correlate with the copper content distribution in the ore-series. These results are in agreement with an Early Paleocene

  18. Acquiring 4D thoracic CT scans using a multislice helical method

    International Nuclear Information System (INIS)

    Respiratory motion degrades anatomic position reproducibility during imaging, necessitates larger margins during radiotherapy planning and causes errors during radiation delivery. Computed tomography (CT) scans acquired synchronously with the respiratory signal can be used to reconstruct 4D CT scans, which can be employed for 4D treatment planning to explicitly account for respiratory motion. The aim of this research was to develop, test and clinically implement a method to acquire 4D thoracic CT scans using a multislice helical method. A commercial position-monitoring system used for respiratory-gated radiotherapy was interfaced with a third generation multislice scanner. 4D cardiac reconstruction methods were modified to allow 4D thoracic CT acquisition. The technique was tested on a phantom under different conditions: stationary, periodic motion and non-periodic motion. 4D CT was also implemented for a lung cancer patient with audio-visual breathing coaching. For all cases, 4D CT images were successfully acquired from eight discrete breathing phases, however, some limitations of the system in terms of respiration reproducibility and breathing period relative to scanner settings were evident. Lung mass for the 4D CT patient scan was reproducible to within 2.1% over the eight phases, though the lung volume changed by 20% between end inspiration and end expiration (870 cm3). 4D CT can be used for 4D radiotherapy, respiration-gated radiotherapy, 'slow' CT acquisition and tumour motion studies

  19. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Yong, E-mail: yong.yue@cshs.org; Yang, Wensha; McKenzie, Elizabeth; Tuli, Richard; Wallace, Robert; Fraass, Benedick [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048 (United States); Fan, Zhaoyang; Pang, Jianing [Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048 (United States); Deng, Zixin; Li, Debiao [Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048 and Department of Bioengineering, University of California, Los Angeles, California 90095 (United States)

    2015-10-15

    Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by using SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm{sup 3}. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm{sup 3}) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target

  20. Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines.

    Directory of Open Access Journals (Sweden)

    Chi Wan Lim

    Full Text Available We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial-temporal model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities.

  1. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    Science.gov (United States)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based

  2. 2D:4D digit ratio predicts delay of gratification in preschoolers.

    Directory of Open Access Journals (Sweden)

    Sergio Da Silva

    Full Text Available We replicate the Stanford marshmallow experiment with a sample of 141 preschoolers and find a correlation between lack of self-control and 2D:4D digit ratio. Children with low 2D:4D digit ratio are less likely to delay gratification. Low 2D:4D digit ratio may indicate high fetal testosterone. If this hypothesis is true, our finding means high fetal testosterone children are less likely to delay gratification.

  3. Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers

    OpenAIRE

    Lin, De-Chen; Xu, Liang; Ding, Ling-Wen; Sharma, Arjun; Liu, Li-Zhen; Yang, Henry; Tan, Patrick; Vadgama, Jay; Karlan, Beth Y.; Lester, Jenny; Urban, Nicole; Schummer, Michèl; Doan, Ngan; Said, Jonathan W.; Sun, Hongmao

    2013-01-01

    Discovery of cancer genes through interrogation of genomic dosage is one of the major approaches in cancer research. In this study, we report that phosphodiesterase subtype 4D (PDE4D) gene was homozygously deleted in 198 cases of 5,569 primary solid tumors (3.56%), with most being internal microdeletions. Unexpectedly, the microdeletions did not result in loss of their gene products. Screening PDE4D expression in 11 different types of primary tumor samples (n = 165) with immunohistochemistry ...

  4. Gaan we 3D printen of 4D?

    NARCIS (Netherlands)

    T. Forouzanfar

    2014-01-01

    Een veelbelovende methode, het zogeheten additive manufacturing, ook wel 3D printing genoemd, maakt het tegenwoordig mogelijk een driedimensionaal model te vervaardigen op basis van tweedimensionale beeldvorming met computertomografie (ct) en/of magnetic resonance imaging (mri). 3D printing kan onde

  5. Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    GUO Rong-Wei

    2011-01-01

    We investigate the synchronization and anti-synchronization of the new 4D chaotic system and propose a same adaptive controller in the form which not only synchronizes, but also anti-synchronizes two identical new 4D chaotic systems. Numerical simulations verify the correctness and the effectiveness of the proposed theoretical results.%@@ We investigate the synchronization and anti-synchronization of the new 4D chaotic system and propose a same adaptive controller in the form which not only synchronizes, but also anti-synchronizes two identical new 4D chaotic systems.Numerical simulations verify the correctness and the effectiveness of the proposed theoretical results.

  6. Neuroimmune semaphorin 4D is necessary for optimal lung allergic inflammation

    OpenAIRE

    Shanks, K; Nkyimbeng-Takwi, EH; Smith, E.; Lipsky, MM; DeTolla, LJ; Scott, DW; Keegan, AD; Chapoval, SP

    2013-01-01

    Neuroimmune semaphorin 4D (Sema4D) was found to be expressed and function in the nervous and immune systems. In the immune system, Sema4D is constitutively expressed on T cells and regulates T cell priming. In addition, it displays a stimulatory function on macrophages, DC, NK cells, and neutrophils. As all these cells are deeply involved in asthma pathology, we hypothesized that Sema4D plays a critical non-redundant regulatory role in allergic airway response. To test our hypothesis, we expo...

  7. Genetic Analysis and Fine Mapping of a Novel Semidominant Dwarfing Gene LB4D in Rice

    Institute of Scientific and Technical Information of China (English)

    Fei Liang; Xiaoyun Xin; Zejun Hu; Jiandi Xu; Gang Wei; Xiaoyin Qian; Jinshui Yang; Haohua He; Xiaojin Luo

    2011-01-01

    tA dwarf mutant, designated LB4D, was obtained among the progeny of backcrosses to a wild rice introgression line. Genetic analysis of LB4D indicated that the dwarf phenotype was controlled by a single semidominant dwarfing gene, which was named LB4D. The mutants were categorized as dn-type dwarf mutants according to the pattern of internode reduction. In addition, gibberellin (GA) response tests showed that LB4D plants were neither deficient nor insensitive to GA. This study found that tiller formation by LB4D plants was decreased by 40% compared with the wild type, in contrast to other dominant dwarf mutants that have been identified, indicating that a different dwarfing mechanism might be involved in the LB4D dominant mutant. The reduction of plant height in F1 plants ranged from 27.9% to 38.1% in different genetic backgrounds, showing that LB4D exerted a stronger dominant dwarfing effect.Using large F2 and F3 populations derived from a cross between heterozygous LB4D and the japonica cultivar Nipponbare, the LB4D gene was localized to a 46 kb region between the markers Indel 4 and Indel G on the short arm of chromosome 11, and four predicted genes were identified as candidates in the target region.

  8. Excitation of the 4d shell in Sb, Te, and BaF/sub 2/ with inelastic electron scattering: Collective or single particle

    Energy Technology Data Exchange (ETDEWEB)

    Franck, C.; Schnatterly, S.E.

    1982-06-01

    Simple models suggest that the momentum-transfer (q) dependence of inelastic electron scattering is sensitive to the difference between collective and single-particle behavior in atomic dynamics. We measured the energy centroid of the 4d continuum peak for 04d shells: Sb, Te, and BaF/sub 2/, and we find that a single-particle description is favored.

  9. SU-E-T-385: 4D Radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Fourkal, E; Hossain, M; Veltchev, I; Ma, C; Meyer, J; Horwitz, E [Fox Chase Cancer Center, Philadelphia, PA (United States); Nahum, A [Clatterbridge Centre for Oncology, Bebington (United Kingdom)

    2014-06-01

    Purpose: The linear-quadratic model is the most prevalent model for planning dose fractionation in radiation therapy in the low dose per fraction regimens. However for high-dose fractions, used in SRS/SBRT/HDR treatments the LQ model does not yield accurate predictions, due to neglecting the reduction in the number of sublethal lesions as a result of their conversion to lethal lesions with subsequent irradiation. Proper accounting for this reduction in the number of sublethally damaged lesions leads to the dependence of the survival fraction on the temporal structure of the dose. The main objective of this work is to show that the functional dependence of the dose rate on time in each voxel is an important additional factor that can significantly influence the TCP. Methods: Two SBRT lung plans have been used to calculate the TCPs for the same patient. One plan is a 3D conformal plan and the other is an IMRT plan. Both plans are normalized so that 99.5% of PTV volume receives the same prescription dose of 50 Gy in 5 fractions. The dose rate in each individual voxel is calculated as a function of treatment time and subsequently used in the calculation of TCP. Results: The calculated TCPs show that shorter delivery times lead to greater TCP, despite all delivery times being short compared to the repair half-time for sublethal lesions. Furthermore, calculated TCP(IMRT) =0.308 for the IMRT plan is smaller than TCP(3D) =0.425 for 3D conformal, even though it shows greater tumor hot spots and equal PTV coverage. The calculated TCPs are considerably lower compared to those based on the LQ model for which TCP=1 for both plans. Conclusion: The functional dependence of the voxel-by-voxel dose rate on time may be an important factor in predicting the treatment outcome and cannot be neglected in radiobiological modeling.

  10. 4D in vivo imaging of subpleural lung parenchyma by swept source optical coherence tomography

    Science.gov (United States)

    Meissner, S.; Tabuchi, A.; Mertens, M.; Homann, H.; Walther, J.; Kuebler, W. M.; Koch, E.

    2009-07-01

    In this feasibility study we present a method for 4D imaging of healthy and injured subpleural lung tissue in a mouse model. We used triggered swept source optical coherence tomography with an A-scan frequency of 20 kHz to image murine subpleural alveoli during the ventilation cycle. The data acquisition was gated to the pulmonary airway pressure to take one B-scan in each ventilation cycle for different pressure levels. The acquired B-scans were combined offline to one C-scan for each pressure level. Due to the high acquisition rate of the used optical coherence tomography system, we are also able to perform OCT Doppler imaging of the alveolar arterioles. We demonstrated that OCT is a useful tool to investigate the alveolar dynamics in spatial dimensions and to analyze the alveolar blood flow by using Doppler OCT.

  11. Quasars in the 4D Eigenvector 1 Context: a stroll down memory lane

    Directory of Open Access Journals (Sweden)

    Jack W. Sulentic

    2015-10-01

    Full Text Available Recently some pessimism has been expressed about our lack of progress in understanding quasars over more than fifty year since their discovery. It is worthwhile to look back at some of the progress that has been made – but still lies under the radar – perhaps because few people are working on optical/UV spectroscopy in this field. Great advances in understanding quasar phenomenology have emerged using eigenvector techniques. The 4D eigenvector 1 context provides a surrogate H-R Diagram for quasars with a source main sequence driven by Eddington ratio convolved with line-of-sight orientation. Appreciating the striking differences between quasars at opposite ends of the main sequence (so-called population A and B sources opens the door towards a unified model of quasar physics, geometry and kinematics. We present a review of some of the progress that has been made over the past 15 years, and point out unsolved issues.

  12. Bulk amplitude and degree of divergence in 4d spin foams

    CERN Document Server

    Chen, Lin-Qing

    2016-01-01

    We study the 4-d holomorphic Spin Foam amplitude on arbitrary connected 2-complexes and degrees of divergence. With recently developed tools and truncation scheme, we derive a formula for a certain class of graphs, which allows us to write down the value of bulk amplitudes simply based on graph properties. We then generalize the result to arbitrary connected 2-complexes and extract a simple expression for the degree of divergence only in terms of combinatorial properties and topological invariants. The distinct behaviors of the model in different regions of parameter space signal phase transitions. In the regime which is of physical interest for recovering diffeomorphsim symmetry in the continuum limit, the most divergent configurations are melonic graphs. We end with a discussion of physical implications.

  13. Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code

    Science.gov (United States)

    Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.

    2006-10-01

    Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.

  14. Effects of the 2,4-D herbicide on gills epithelia and liver of the fish Poecilia vivipara

    Directory of Open Access Journals (Sweden)

    Ana F. Vigário

    2014-06-01

    Full Text Available The 2,4-dichlorophenoxyacetic acid, usually named 2,4-D is one of the most widely used herbicides in the world. Acute toxicity of 2,4-D herbicide was investigated through its effects on guppies (Poecilia vivipara Bloch et Schneider 1801. Fish were exposed to the herbicide at concentrations of 10, 20 and 40µl per liter of water for 24 hours to determine its effects on gills and liver epithelia. The estimated LC50 was 34.64µl of 2,4-D per liter of water. Histochemical analyses and Feulgen's reaction were conducted to detect glycoconjugates and DNA, respectively, in gills and liver epithelia. Histochemistry revealed qualitative variations of glycoconjugates present on mucous cells and granules. The four types of mucous cells contained neutral granules, acids, or both. Increasing amounts of syalomucins were observed from the control group to the group exposed to the highest concentration of 2,4-D, suggesting increased mucous viscosity and the formation of plaques that could inhibit gas exchange and osmoregulation. Lamellar fusion observed in the group exposed to 40µl of 2,4-D suggests a defense mechanism. Hepatocytes showed vacuolization in the 10 and 20µl/L groups. The 40 µl/L group showed normal hepatocytes as well as changed ones, many Ito cells, micronuclei, and nuclear swelling. These effects may be associated with toxicity or adaptative processes to cellular stress. The data from this study indicates the importance of assessing similar risks to aquatic species and suggests that Poecilia vivipara is an adequate biological model for analysis of environmental contamination.

  15. Self-expanding/shrinking structures by 4D printing

    Science.gov (United States)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2016-10-01

    The aim of this paper is to create adaptive structures capable of self-expanding and self-shrinking by means of four-dimensional printing technology. An actuator unit is designed and fabricated directly by printing fibers of shape memory polymers (SMPs) in flexible beams with different arrangements. Experiments are conducted to determine thermo-mechanical material properties of the fabricated part revealing that the printing process introduced a strong anisotropy into the printed parts. The feasibility of the actuator unit with self-expanding and self-shrinking features is demonstrated experimentally. A phenomenological constitutive model together with analytical closed-form solutions are developed to replicate thermo-mechanical behaviors of SMPs. Governing equations of equilibrium are developed for printed structures based on the non-linear Green-Lagrange strain tensor and solved implementing a finite element method along with an iterative incremental Newton-Raphson scheme. The material-structural model is then applied to digitally design and print SMP adaptive lattices in planar and tubular shapes comprising a periodic arrangement of SMP actuator units that expand and then recover their original shape automatically. Numerical and experimental results reveal that the proposed planar lattice as meta-materials can be employed for plane actuators with self-expanding/shrinking features or as structural switches providing two different dynamic characteristics. It is also shown that the proposed tubular lattice with a self-expanding/shrinking mechanism can serve as tubular stents and grippers for bio-medical or piping applications.

  16. Rotating black holes in 4d gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Gnecchi, Alessandra [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Hristov, Kiril [Dipartimento di Fisica, Università di Milano-Bicocca, and INFN, sezione di Milano-Bicocca,Piazza della Scienza 3, 20126 Milano (Italy); Klemm, Dietmar [Dipartimento di Fisica, Università di Milano, and INFN, sezione di Milano,Via Celoria 16, 20133 Milano (Italy); Toldo, Chiara [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Vaughan, Owen [Department of Mathematics and Center for Mathematical Physics, University of Hamburg,Bundesstrasse 55, 20146 Hamburg (Germany)

    2014-01-23

    We present new results towards the construction of the most general black hole solutions in four-dimensional Fayet-Iliopoulos gauged supergravities. In these theories black holes can be asymptotically AdS and have arbitrary mass, angular momentum, electric and magnetic charges and NUT charge. Furthermore, a wide range of horizon topologies is allowed (compact and noncompact) and the complex scalar fields have a nontrivial radial and angular profile. We construct a large class of solutions in the simplest single scalar model with prepotential F=−iX{sup 0}X{sup 1} and discuss their thermodynamics. Moreover, various approaches and calculational tools for facing this problem with more general prepotentials are presented.

  17. Real-Space Visualization of Energy Loss and Carrier Diffusion in a Semiconductor Nanowire Array Using 4D Electron Microscopy.

    Science.gov (United States)

    Bose, Riya; Sun, Jingya; Khan, Jafar I; Shaheen, Basamat S; Adhikari, Aniruddha; Ng, Tien Khee; Burlakov, Victor M; Parida, Manas R; Priante, Davide; Goriely, Alain; Ooi, Boon S; Bakr, Osman M; Mohammed, Omar F

    2016-07-01

    A breakthrough in the development of 4D scanning ultrafast electron microscopy is described for real-time and space imaging of secondary electron energy loss and carrier diffusion on the surface of an array of nanowires as a model system, providing access to a territory that is beyond the reach of either static electron imaging or any time-resolved laser spectroscopy. PMID:27111855

  18. Fast Reservoir Characterization and Development of a Field Case Study with Real Production and 4D Seismic Data

    OpenAIRE

    Rwechungura, Richard

    2012-01-01

    The primary goal of this PhD is to provide methods for continuous and fast optimization and updating of reservoir simulation models (i.e. history matching and associated forecast) based on production data, 4D seismic data and other available data. To accomplish this goal the following strategies have been employed:Comparison and Combination: Combining the use of time-lapse seismic data and production data for history matching and parameter estimation, and then comparing and combining differen...

  19. Estimate of Low/Mid-Latitude Conductances, Electric Potential and Neutral Winds using IDA4D and EMPIRE

    Science.gov (United States)

    Bust, G. S.; Makela, J. J.; Harding, B. J.; Heelis, R. A.; Bishop, R. L.

    2015-12-01

    In this talk we will focus on the current ability of the ionosphere-thermosphere data assimilative models, Ionospheric Data Assimilation Four Dimensional (IDA4D) and Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE), to estimate low and mid latitude ionosphere-thermosphere (IT) state variables at altitudes of 200 km and less. In particular we focus on the estimation of Pederson and Hall conductances, equatorial electric potential, and neutral winds. We will characterize the current state of IDA4D and EMPIRE in terms of data available to be assimilated and geophysical conditions. We will discuss the accuracy expected for given conditions, current limitations, and to what degree data assimilative models can be used to advance our understanding of the low/mid latitude physics at 200 km and below. We will use three case study events to help elucidate the current capabilities of IDA4D and EMPIRE: The March, 2013 storm, the March 2015 storm, and the March 2014 time period, which was relatively quiet. In additional to the normal data sets ingested by IDA4D and EMPIRE we intend to ingest observation from the C/NOFS satellite including radio occultations, in-situ measurements of plasma density and ion drifts. We will also ingest other measurements related to electric fields from coherent scatter radars and magnetometers when available. Finally, we will ingest neutral wind measurements from FPI's. We will conclude with a discussion of the future of IT data assimilation algorithms, the advantages of coupling to first principle models, and what future satellite missions such as ICON, GOLD and COSMIC 2 will contribute to improved IT data assimilation estimates.

  20. Challenges of radiotherapy: Report on the 4D treatment planning workshop 2013

    NARCIS (Netherlands)

    Knopf, Antje; Nill, Simeon; Yohannes, Indra; Graeff, Christian; Dowdell, Stephen; Kurz, Christopher; Sonke, Jan-Jakob; Biegun, Aleksandra K.; Lang, Stephanie; McCelland, Jamie; Champion, Benjamin; Fast, Martin; Wölfelschneider, Jens; Gianoli, Chiara; Rucinscki, Antoni; Baroni, Guido; Richter, Christian; van de Water, Steven; Grassberger, Clemens; Weber, Damien; Poulsen, Per; Shimizu, Shinichi; Bert, Christoph

    2014-01-01

    This report, compiled by experts on the treatment of mobile targets with advanced radiotherapy, summarizes the main conclusions and innovations achieved during the 4D treatment planning workshop 2013. This annual workshop focuses on research aiming to advance 4D radiotherapy treatments, including al

  1. 2D : 4D in Men Is Related to Aggressive Dominance but Not to Sociable Dominance

    NARCIS (Netherlands)

    van der Meij, Leander; Almela, Mercedes; Buunk, Abraham P.; Dubbs, Shelli; Salvador, Alicia

    2012-01-01

    It has been shown that a smaller ratio between the length of the second and fourth digit (2D:4D) is an indicator of the exposure to prenatal testosterone (T). This study measured the 2D:4D of men and assessed dominance as a personality trait to investigate indirectly if the exposure to prenatal T is

  2. Digit ratio (2D:4D and handgrip strength in Hani ethnicity.

    Directory of Open Access Journals (Sweden)

    Dapeng Zhao

    Full Text Available INTRODUCTION: The ratio of the length of the second finger to the fourth finger (2D:4D in humans is considered as a putative marker of prenatal exposure to testosterone, and has been progressively adopted as one useful tool to evaluate the effect of prenatal hormones in some traits such as physical ability. Handgrip strength is one authentic measure of physical ability and is generally used on the anthropological research within an evolutionary viewpoint. METHODS: Here we present the first evidence on 2D:4D and handgrip strength on adult participants of Hani ethnicity and explore the relationship between digit ratio (2D:4D and handgrip strength. We examined 2D:4D and handgrip strength of 80 males and 60 females at Bubeng village, in the Yunnan province of China. RESULTS: The mean 2D:4D in females was higher than that in males for each hand. Females showed significantly higher 2D:4D than males in the right hand rather than in the left hand. Males displayed significantly higher handgrip strength than females for both hands. Handgrip strength decreased with age for both sexes. A significant negative correlation between 2D:4D and handgrip strength was found in the right hand of males. CONCLUSION: The relationship between 2D:4D and handgrip strength may be attributed to evolutionary drive of sexual selection operating on fetal programming.

  3. Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast.

    Science.gov (United States)

    Cabrito, Tânia R; Teixeira, Miguel C; Duarte, Alexandra A; Duque, Paula; Sá-Correia, Isabel

    2009-10-01

    The understanding of the molecular mechanisms underlying acquired herbicide resistance is crucial in dealing with the emergence of resistant weeds. Saccharomyces cerevisiae has been used as a model system to gain insights into the mechanisms underlying resistance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The TPO1 gene, encoding a multidrug resistance (MDR) plasma membrane transporter of the major facilitator superfamily (MFS), was previously found to confer resistance to 2,4-D in yeast and to be transcriptionally activated in response to the herbicide. In this work, we demonstrate that Tpo1p is required to reduce the intracellular concentration of 2,4-D. ScTpo1p homologs encoding putative plasma membrane MFS transporters from the plant model Arabidopsis thaliana were analyzed for a possible role in 2,4-D resistance. At5g13750 was chosen for further analysis, as its transcript levels were found to increase in 2,4-D stressed plants. The functional heterologous expression of this plant open reading frame in yeast was found to confer increased resistance to the herbicide in Deltatpo1 and wild-type cells, through the reduction of the intracellular concentration of 2,4-D. Heterologous expression of At5g13750 in yeast also leads to increased resistance to indole-3-acetic acid (IAA), Al(3+) and Tl(3+). At5g13750 is the first plant putative MFS transporter to be suggested as possibly involved in MDR.

  4. 4D-Listmode-PET-CT and 4D-CT for optimizing PTV margins in gastric lymphoma. Determination of intra- and interfractional gastric motion

    Energy Technology Data Exchange (ETDEWEB)

    Reinartz, Gabriele; Haverkamp, Uwe; Wullenkord, Ramona; Lehrich, Philipp; Kriz, Jan; Eich, Hans Theodor [University Hospital Muenster, Department of Radiation Oncology, Muenster (Germany); Buether, Florian [University of Muenster, European Institute for Molecular Imaging (EIMI), Muenster (Germany); Schaefers, Klaus [University of Muenster, European Institute for Molecular Imaging (EIMI), Muenster (Germany); DFG EXC 1003, Cluster of Excellence ' Cells in Motion' , Muenster (Germany); Schaefers, Michael [University of Muenster, European Institute for Molecular Imaging (EIMI), Muenster (Germany); University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); DFG EXC 1003, Cluster of Excellence ' Cells in Motion' , Muenster (Germany)

    2016-05-15

    New imaging protocols for radiotherapy in localized gastric lymphoma were evaluated to optimize planning target volume (PTV) margin and determine intra-/interfractional variation of the stomach. Imaging of 6 patients was explored prospectively. Intensity-modulated radiotherapy (IMRT) planning was based on 4D/3D imaging of computed tomography (CT) and positron-emission tomography (PET)-CT. Static and motion gross tumor volume (sGTV and mGTV, respectively) were distinguished by defining GTV (empty stomach), clinical target volume (CTV = GTV + 5 mm margin), PTV (GTV + 10/15/20/25 mm margins) plus paraaortic lymph nodes and proximal duodenum. Overlap of 4D-Listmode-PET-based mCTV with 3D-CT-based PTV (increasing margins) and V95/D95 of mCTV were evaluated. Gastric shifts were determined using online cone-beam CT. Dose contribution to organs at risk was assessed. The 4D data demonstrate considerable intra-/interfractional variation of the stomach, especially along the vertical axis. Conventional 3D-CT planning utilizing advancing PTV margins of 10/15/20/25 mm resulted in rising dose coverage of mCTV (4D-Listmode-PET-Summation-CT) and rising D95 and V95 of mCTV. A PTV margin of 15 mm was adequate in 3 of 6 patients, a PTV margin of 20 mm was adequate in 4 of 6 patients, and a PTV margin of 25 mm was adequate in 5 of 6 patients. IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma. (orig.) [German] Zur Optimierung des Sicherheitsabstandes beim Planungszielvolumen (PTV) und zur Erfassung der intra-/interfraktionellen Variation des Magens wurden neue Protokolle fuer die Bildverarbeitung in der Radiotherapie lokalisierter Magenlymphome evaluiert. Die Bildgebung von 6 Patienten wurde prospektiv untersucht. Die Planung der intensitaetsmodulierten Strahlentherapie (IMRT) basierte auf 4D-/3D-Bildgebung von Computertomographie (CT) und Positronenemissionstomographie

  5. Clear evidence of a continuum theory of 4D Euclidean simplicial quantum gravity

    Science.gov (United States)

    Egawa, H. S.; Horata, S.; Yukawa, T.

    2002-03-01

    Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields ( NX) and gauge fields ( NA) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent γ (4) is estimated. Furthermore, we compare our numerical results with Background-Metric-Indepenent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity.

  6. Clear Evidence of a Continuum Theory of 4D Euclidean Simplicial Quantum Gravity

    CERN Document Server

    Egawa, H S; Yukawa, T

    2002-01-01

    Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N_X) and gauge fields (N_A) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent gamma^{(4)} is estimated. Furthermore, we compare our numerical results with Background-Metric-Independent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity.

  7. The Influence of Facial Characteristics on the Relation between Male 2D:4D and Dominance.

    Directory of Open Access Journals (Sweden)

    Jan Ryckmans

    Full Text Available Although relations between 2D:4D and dominance rank in both baboons and rhesus macaques have been observed, evidence in humans is mixed. Whereas behavioral patterns in humans have been discovered that are consistent with these animal findings, the evidence for a relation between dominance and 2D:4D is weak or inconsistent. The present study provides experimental evidence that male 2D:4D is related to dominance after (fictitious male-male interaction when the other man has a dominant, but not a submissive or neutral face. This finding provides evidence that the relationship between 2D:4D and dominance emerges in particular, predictable situations and that merely dominant facial characteristics of another person are enough to activate supposed relationships between 2D:4D and dominance.

  8. Neo-Gramscian Approach and Geopolitics of ICT4D Agenda

    Directory of Open Access Journals (Sweden)

    Tokunbo Ojo

    2016-06-01

    Full Text Available For the last two decades, the notion of Information Communication Technologies for Development (ICT4D has had significant traction in both praxis and scholarly work of international development. While it has dystopia and utopia dimensions, ICT4D came out of particular history and intellectual climates. The historical and political contexts that shaped the ICT4D agenda deserve examination. Grounded within the canon of neo-Gramscian perspectives, this paper discusses the geopolitical construct of the ICT4D agenda and the agenda-building roles of international institutions in the process. In situating the ICT4D agenda in the geopolitical context, this paper highlights the institutional discursive structure and embedded geometries of power relations in the global communication and international development agenda.

  9. Theoretical study on decay of the 4d core-excited states of Cs Ⅲ

    Institute of Scientific and Technical Information of China (English)

    Ding Xiao-Bin; Dong Chen-Zhong; Stephan Fritzsche

    2008-01-01

    In a recent XUV photoabsorption spectrum of Cs Ⅲ ions by Cummings and O'Sullivan [2001 J. Phys. B 34 199], rather large linewidths were found for the 4d 95s25p6 - 4d 105s25p5 transition which are quite in disagreement with corresponding quasi-relativistic multiconfiguration Hartree-Fock (MCHF) calculation. In the present work, a detailed multiconfiguration Dirac-Fock study has been carried out to explore this discrepancy. Owing to the detailed consid- eration of electron correlation effects, some 'forbidden' Auger decay channels, such as 4d 105s25p35d and 4d105s05p6, would become 'open'. As a result, remarkable improvement of the linewidths has been obtained in our calculation. Furthermore, the theoretical Auger spectrum of the 4d 95s25p6 core-excited states of Cs Ⅲ ions is given in the present work.

  10. TU-C-BRD-01: Image Guided SBRT I: Multi-Modality 4D Imaging

    International Nuclear Information System (INIS)

    Motion management is one of the critical technical challenges for radiation therapy. 4D imaging has been rapidly adopted as essential tool to assess organ motion associated with respiratory breathing. A variety of 4D imaging techniques have been developed and are currently under development based on different imaging modalities such as CT, MRI, PET, and CBCT. Each modality provides specific and complementary information about organ and tumor respiratory motion. Effective use of each different technique or combined use of different techniques can introduce a comprehensive management of tumor motion. Specifically, these techniques have afforded tremendous opportunities to better define and delineate tumor volumes, more accurately perform patient positioning, and effectively apply highly conformal therapy techniques such as IMRT and SBRT. Successful implementation requires good understanding of not only each technique, including unique features, limitations, artifacts, imaging acquisition and process, but also how to systematically apply the information obtained from different imaging modalities using proper tools such as deformable image registration. Furthermore, it is important to understand the differences in the effects of breathing variation between different imaging modalities. A comprehensive motion management strategy using multi-modality 4D imaging has shown promise in improving patient care, but at the same time faces significant challenges. This session will focuses on the current status and advances in imaging respiration-induced organ motion with different imaging modalities: 4D-CT, 4D-MRI, 4D-PET, and 4D-CBCT/DTS. Learning Objectives: Understand the need and role of multimodality 4D imaging in radiation therapy. Understand the underlying physics behind each 4D imaging technique. Recognize the advantages and limitations of each 4D imaging technique

  11. Calculated electronic properties of ordered alloys a handbook : the element and their 3d/3d and 4d/4d alloys

    CERN Document Server

    Moruzzi, VL

    1995-01-01

    This is a handbook of calculated electronic properties of elements and of 3d/3d and 4d/4d ordered alloys. The book derives the ground-state or equilibrium properties of the metallic elements in both bcc and fcc structures, and of existing and nonexisting ordered binary transition-metal alloys in CsCl, CuAu, and Cu 3 Au structures by the analysis of binding curves, or total energy vs. volume curves, calculated from first-principles augmented-spherical-wave methods. The calculated properties, energy bands along symmetry lines in the respective Brillouin zones, and the total and I-decomposed dens

  12. Ab initio investigations of magnetic properties of ultrathin transition-metal films on 4d substrates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zubi, Ali

    2010-12-22

    -transition metals (Tc, Ru, Rh, to Pd) are presented. The magnetic state of Fe changes gradually from noncollinear 120 Neel state for Fe films on Tc, and Ru, to the double-row-wise antiferromagnetic state on Rh, to the ferromagnetic one on Pd and Ag. The noncollinear state is a result of antiferromagnetic intersite exchange interactions in combination with the triangular lattice provided by the hexagonal surface termination of the (111) surfaces. A similar systematic trend is observed for a Co monolayer on these substrate, but shifted towards ferromagnetism equivalent to one element in the periodic table. Also the magnetic properties of Co chains on stepped Rh(111) surfaces is investigated. It is shown that the easy axis of the magnetization changes from out-of-plane in case of a Co monolayer to in-plane for the atomic chain. The Heisenberg model was extended by a Stoner-like term to include the induced magnetization of the 4d substrate. The results are based on the density functional theory in the vector-spin-density formulation employing the spin-polarized local density and generalized gradient approximation. The self-consistent relativistic total energy and force calculations have been carried out with the full-potential linearized augmented plane wave (FLAPW) method in the film geometry. The concept of total-energy calculations with incommensurable spin-spirals of wave vectors along the high-symmetry lines in the two-dimensional Brillouin zone was applied to search for the magnetic ground states. (orig.)

  13. QSAR study of some pyrazolo[3,4-d]pyrimidine derivatives as the c-Src inhibitors

    Science.gov (United States)

    Shukla, Bindesh Kumar; Yadava, Umesh

    2016-05-01

    Two dimensional quantitative structure activity relationship (QSAR) studies have been carried out on a series of 42 pyrazolo[3,4-d]pyrimidine derivatives to find out the structural requirements for the inhibition of c-SRC phosphorilation. The best predictions were obtained using Heuristic and Best MLR methods from the model where 33 compounds were considered in the training set and the remaining 9 in the test set. Both Best MLR and Heuristic methods indicate that squared correlation coefficient for training and test sets are very close to observed biological activities which designate the good correlation between the experimental and predicted activity. The results that are obtained from 2D-QSAR studies may provide useful insights into the roles of various substitution patterns on the pyrazolo[3,4-d]pyrimidine core and may also help to design more potent compounds.

  14. An historical analysis of the California Current circulation using ROMS 4D-Var: System configuration and diagnostics

    Science.gov (United States)

    Neveu, Emilie; Moore, Andrew M.; Edwards, Christopher A.; Fiechter, Jérôme; Drake, Patrick; Crawford, William J.; Jacox, Michael G.; Nuss, Emma

    2016-03-01

    The Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation tool has been used to compute two sequences of circulation analyses for the U.S. west coast. One sequence of analyses spans the period 1980-2010 and is subject to surface forcing derived from relatively low resolution atmospheric products from the Cross-Calibrated Multi-Platform wind product (CCMP) and the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis project. The second sequence spans the shorter period 1999-2012 and is subject to forcing derived from a high resolution product from the Naval Research Laboratory Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS). The two analysis periods are divided into eight day windows, and all available satellite observations of sea surface temperature and sea surface height, as well as in situhydrographic profiles are assimilated into ROMS using 4D-Var. The performance of the system is monitored in terms of the cost function and the statistics of the innovations, and the impact of data assimilated on the circulation is assessed by comparing the posterior circulation estimates with the prior circulation and the circulation from a run of the model without data assimilation, with particular emphasis on eddy kinetic energy. This is part I of a two part series, and the circulation variability of the 4D-Var analyses will be documented in part II.

  15. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  16. Content Of 2,4-D-14C Herbicide Residue In Water And Soil Of Irrigated Rice Field System

    International Nuclear Information System (INIS)

    The investigation of 2,4-D exp.-14C herbicide residue in water and soil of irrigated rice field system was carried out. Rice plant and weeds (Monochoria vaginalis Burn. F. Presl) were planted in 101 buckets using two kinds of soil condition, I.e. normal soil and 30 % above normal compact soil. After one week planting, the plants were sprayed with 1 u Ci of 2,4-D exp.-14C and 0,4 mg non labeled 2,4-D. The herbicide residue content was determined 0, 2, 4, 8 and 10 weeks after spraying with 2,4-D herbicide. The analysis was done using Combustion Biological Oxidizer merk Harvey ox-400, and counted with Liquid Scintillation Counter merk Beckman model LS-1801. The results indicates that the herbicide contents in water and soil decrease from the first spraying with herbicide until harvest herbicide Residue content in water after harvest was 0.87 x 10 exp.-6 ppm for soil normal condition, and 0.59 x 10 exp.-6 pm for the soil 30 % up normal condition, while herbicide content in soil was 1.54 x 10 exp.-6 ppm for soil normal condition and 1.48 x 10 exp.-6 ppm for soil 30 % up normal. 2,4-D herbicide residue content in rice after harvest was 0.27 x 10 exp.-6 ppm for normal soil condition and 0.25 x 10 exp.-6 ppm for the soil 30 % up normal. 2,4-D herbicide residue content in roots and leaves of weeds after harvest were respectively 0.29 x 10 exp.-6 ppm and 0.18 x 10 exp.-6 for normal soil condition, while for 30 % up normal soil were 0.25 x 10 exp.-5 ppm and 0.63 x 10 exp.-7 ppm. This result indicates that there is no effect pollution to surrounding area, because the herbicide content is still bellow the allowed detection limit, 0.05 ppm

  17. Measurement of bubble velocity using Capacitively Coupled Contactless Conductivity Detection (C4D) technique

    Institute of Scientific and Technical Information of China (English)

    Baoliang Wang; Ying Zhou; Haifeng Ji; Zhiyao Huang; Haiqing Li

    2013-01-01

    The feasibility of applying Capacitively Coupled Contactless Conductivity Detection (C4D) technique to measurement of bubble velocity in gas-liquid two-phase flow in millimeter-scale pipe is investigated.And,a new method,which combines the C4D technique and the principle of cross-correlation velocity measurement,is proposed for the measurement of bubble velocity.This research includes two parts.First,based on the principle of C4D,a new five-electrode C4D sensor is developed.Then,with two conductivity signals obtained by the C4D sensor,the velocity measurement of bubble is implemented according to the principle of cross-correlation.The research results indicate that the C4D technique is highly effective and anticipates a broad potential in the field of two-phase flow.Experimental results show that the fiveelectrode C4D sensor is suitable for measuring the velocity of single bubbles with a relative error of less than 5%.

  18. Bacterial degradation of phenoxy herbicide mixtures 2,4-D and MCPP

    Energy Technology Data Exchange (ETDEWEB)

    Kyeheon Oh; Tuovinen, O.H. (Ohio State Univ., Columbus (United States))

    1991-08-01

    The phenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2-methyl-4-chlorophenoxy)propionic acid (MCPP) have auxin-like growth regulating properties and are extensively used for the control of broad-leaf angiosperm weeds. The microbiological degradation of 2,4-D by pure and mixed cultures has been examined in a number of studies. The authors have previously evaluated the concurrent microbiological degradation of 2,4-D and MCPP in stirred tank reactors. For the present paper, they examined the utilization of the two substrates by three mixed cultures that had a previous history of growth with the respective single phenoxy herbicide.

  19. Estimating the 4D Respiratory Lung Motion by Spatiotemporal Registration and Building Super-Resolution Image

    OpenAIRE

    2011-01-01

    The estimation of lung motion in 4D-CT with respect to the respiratory phase becomes more and more important for radiation therapy of lung cancer. However, modern CT scanner can only scan a limited region of body at each couch table position. Thus, motion artifacts due to the patient’s free breathing during scan are often observable in 4D-CT, which could undermine the procedure of correspondence detection in the registration. Another challenge of motion estimation in 4D-CT is how to keep the ...

  20. UPORABA MODULA MOGRAPH V CINEMI 4D ZA UVODNO ŠPICO FILMA

    OpenAIRE

    Svetec, Kimi

    2016-01-01

    Cilj diplomske naloge je preučiti modul Cinema4D Mograph ter prikazati primere in postopke uporabe le-tega z uporabo najuporabnejših Mograph učinkov v animaciji za uvodno špico filma. Cinema 4D omogoča modeliranje poljubnih objektov v 3D ter poljubno animiranje gibanja teh objektov. Pri ustvarjanju animiranih videov je tako Cinema 4D pripomoček, ki nam omogoči ustvarjanje mnogih kombiniranih učinkov ter omogoča vključitev poljubne glasbe in poljubnih slik. S pomočjo programa Audacity smo že...

  1. Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.

    Science.gov (United States)

    Souza, F L; Llanos, J; Sáez, C; Lanza, M R V; Rodrigo, M A; Cañizares, P

    2016-04-15

    In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time.

  2. Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.

    Science.gov (United States)

    Souza, F L; Llanos, J; Sáez, C; Lanza, M R V; Rodrigo, M A; Cañizares, P

    2016-04-15

    In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time. PMID:26861224

  3. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    2015-04-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136 in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

  4. Relation between the 4d superconformal index and the S^3 partition function

    CERN Document Server

    Imamura, Yosuke

    2011-01-01

    A relation between the 4d superconformal index and the S^3 partition function is studied with focus on the 4d and 3d actions used in localization. In the case of vanishing Chern-Simons levels and round S^3 we explicitly show that the 3d action is obtained from the 4d action by dimensional reduction up to terms which do not affect the exact results. By combining this fact and a recent proposal concerning a squashing of S^3 and SU(2) Wilson line, we obtain a formula which gives the partition function depending on the Weyl weight of chiral multiplets, real mass parameters, FI parameters, and a squashing parameter as a limit of the index of a parent 4d theory.

  5. MILP-Based 4D Trajectory Planning for Tactical Trajectory Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to develop specialized algorithms and software decision-aiding tools for four-dimensional (4D) vehicle-centric, tactical trajectory...

  6. Low 2D:4D values are associated with video game addiction.

    Science.gov (United States)

    Kornhuber, Johannes; Zenses, Eva-Maria; Lenz, Bernd; Stoessel, Christina; Bouna-Pyrrou, Polyxeni; Rehbein, Florian; Kliem, Sören; Mößle, Thomas

    2013-01-01

    Androgen-dependent signaling regulates the growth of the fingers on the human hand during embryogenesis. A higher androgen load results in lower 2D:4D (second digit to fourth digit) ratio values. Prenatal androgen exposure also impacts brain development. 2D:4D values are usually lower in males and are viewed as a proxy of male brain organization. Here, we quantified video gaming behavior in young males. We found lower mean 2D:4D values in subjects who were classified according to the CSAS-II as having at-risk/addicted behavior (n = 27) compared with individuals with unproblematic video gaming behavior (n = 27). Thus, prenatal androgen exposure and a hyper-male brain organization, as represented by low 2D:4D values, are associated with problematic video gaming behavior. These results may be used to improve the diagnosis, prediction, and prevention of video game addiction.

  7. Low 2D:4D values are associated with video game addiction.

    Directory of Open Access Journals (Sweden)

    Johannes Kornhuber

    Full Text Available Androgen-dependent signaling regulates the growth of the fingers on the human hand during embryogenesis. A higher androgen load results in lower 2D:4D (second digit to fourth digit ratio values. Prenatal androgen exposure also impacts brain development. 2D:4D values are usually lower in males and are viewed as a proxy of male brain organization. Here, we quantified video gaming behavior in young males. We found lower mean 2D:4D values in subjects who were classified according to the CSAS-II as having at-risk/addicted behavior (n = 27 compared with individuals with unproblematic video gaming behavior (n = 27. Thus, prenatal androgen exposure and a hyper-male brain organization, as represented by low 2D:4D values, are associated with problematic video gaming behavior. These results may be used to improve the diagnosis, prediction, and prevention of video game addiction.

  8. Residues of 2, 4-D in air samples from Saskatchewan: 1966-1975.

    Science.gov (United States)

    Grover, R; Kerr, L A; Wallace, K; Yoshida, K; Maybank, J

    1976-01-01

    Residues of 2,4-D (2,4-dichlorophenoxyacetic acid) in air samples from several sampling sites in central and southern Saskatchewan during the spraying seasons in the 1966-68 and 1970-75 periods were determined by gas-liquid chromatographic techniques. Initially, individual esters of 2,4-D were characterized by retention times and confirmed further by co-injection and dual column procedures. Since 1973, however, only total 2,4-D acid levels in air samples have been determined after esterification to the methyl ester and confirmed by gc/ms techniques whenever possible. Up to 50% of the daily samples collected during the spraying season at any of the locations and during any given year contained 2,4-D, with butyl esters being found most frequently. The daily 24-hr mean atmospheric concentrations of 2,4-D ranged from 0.01 to 1.22 mug/m3, 0.01 to 13.50 mug/m3, and 0.05 to 0.59 mug/m3 for the iso-propyl, mixed butyl and iso-octyl esters, respectively. Even when the samples were analysed for the total 2,4-D content, i.e. from 1973 onwards, the maximum level of the total acid reached only 23.14 mug/m3. In any given year and at any of the sampling sites, about 30% of the samples contained less than 0.01 mug/m3 of 2,4-D. In another 40% of the samples, the levels of 2,4-D ranged from 0.01 to 0.099 mug/m3. Only about 30% of the samples contained 2,4-D concentrations higher than 0.1 mug/m3, with only 10% or less exceeding 1 mug/m3. None of the samples, obtained with the high volume particulate sampler, showed any detectable levels of 2,4-D, indicating little or no transport of 2,4-D adsorbed on dust particles or as crystals of amine salts. PMID:1002953

  9. Control of bone resorption by semaphorin 4D is dependent on ovarian function.

    Directory of Open Access Journals (Sweden)

    Romain Dacquin

    Full Text Available Osteoporosis is one of the most common bone pathologies, which are characterized by a decrease in bone mass. It is well established that bone mass, which results from a balanced bone formation and bone resorption, is regulated by many hormonal, environmental and genetic factors. Here we report that the immune semaphorin 4D (Sema4D is a novel factor controlling bone resorption. Sema4D-deficient primary osteoclasts showed impaired spreading, adhesion, migration and resorption due to altered ß3 integrin sub-unit downstream signaling. In apparent accordance with these in vitro results, Sema4D deletion in sexually mature female mice led to a high bone mass phenotype due to defective bone resorption by osteoclasts. Mutant males, however, displayed normal bone mass and the female osteopetrotic phenotype was only detected at the onset of sexual maturity, indicating that, in vivo, this intrinsic osteoclast defect might be overcome in these mice. Using bone marrow cross transplantation, we confirmed that Sema4D controls bone resorption through an indirect mechanism. In addition, we show that Sema4D -/- mice were less fertile than their WT littermates. A decrease in Gnrh1 hypothalamic expression and a reduced number of ovarian follicles can explain this attenuated fertility. Interestingly, ovariectomy abrogated the bone resorption phenotype in Sema4D -/- mice, providing the evidence that the observed high bone mass phenotype is strictly dependent on ovarian function. Altogether, this study reveals that, in vivo, Sema4D is an indirect regulator of bone resorption, which acts via its effect on reproductive function.

  10. 4D CT and lung cancer surgical resectability: a technical innovation

    International Nuclear Information System (INIS)

    A 74-year-old man presents with a left upper lobe lung adenocarcinoma, which demonstrated a wide base intimately with the aortic arch. We utilised 4D CT technique with a wide field of view CT unit to preoperatively determine likely surgical resectability. We propose that 4D CT may be of use in further investigating lung cancer with likely invasion of adjacent structures.

  11. Monitoring of SAGD Process: Seismic Interpretation of Ray+Born Synthetic 4D Data

    OpenAIRE

    Joseph C; Etienne G.; Forgues E.; Lerat O.; Baroni A.; Renard G.; Bathellier E.

    2012-01-01

    The objective of this study is to evaluate which production information can be deduced from a 4D seismic survey during the Steam-Assisted Gravity Drainage (SAGD) recovery process. Superimposed on reservoir heterogeneities of geological origin, many factors interact during thermal production of heavy oil and bitumen reservoirs, which complicate the interpretation of 4D seismic data: changes in oil viscosity, in fluid saturations, in pore pressure and so on. This study is based on the real Han...

  12. Low digit ratio 2D:4D in alcohol dependent patients.

    Science.gov (United States)

    Kornhuber, Johannes; Erhard, Gabriele; Lenz, Bernd; Kraus, Thomas; Sperling, Wolfgang; Bayerlein, Kristina; Biermann, Teresa; Stoessel, Christina

    2011-01-01

    The ratio of the lengths of the second and fourth finger (2D∶4D) has been described as reflecting the degree of prenatal androgen exposure in humans. 2D∶4D is smaller for males than females and is associated with traits such as left-handedness, physical aggression, attention-deficit-hyperactivity disorder and a genetic polymorphism of the androgen receptor. All of these traits are known to be correlated to the vulnerability for alcohol dependency. We therefore hypothesized low 2D∶4D in patients with alcohol dependency. In the present study on 131 patients suffering from alcohol dependency and 185 healthy volunteers, we found that alcohol dependent patients had smaller 2D∶4D ratios compared to controls with preserved sexual dimorphism but with reduced right-left differences. The detection of alcohol dependency based on 2D∶4D ratios was most accurate using the right hand of males (ROC-analysis: AUC 0.725, sensitivity 0.667, specificity 0.723). These findings provide novel insights into the role of prenatal androgen exposure in the development of alcohol dependency and for the use of 2D∶4D as a possible trait marker in identifying patients with alcohol dependency. PMID:21547078

  13. Low digit ratio 2D:4D in alcohol dependent patients.

    Directory of Open Access Journals (Sweden)

    Johannes Kornhuber

    Full Text Available The ratio of the lengths of the second and fourth finger (2D∶4D has been described as reflecting the degree of prenatal androgen exposure in humans. 2D∶4D is smaller for males than females and is associated with traits such as left-handedness, physical aggression, attention-deficit-hyperactivity disorder and a genetic polymorphism of the androgen receptor. All of these traits are known to be correlated to the vulnerability for alcohol dependency. We therefore hypothesized low 2D∶4D in patients with alcohol dependency. In the present study on 131 patients suffering from alcohol dependency and 185 healthy volunteers, we found that alcohol dependent patients had smaller 2D∶4D ratios compared to controls with preserved sexual dimorphism but with reduced right-left differences. The detection of alcohol dependency based on 2D∶4D ratios was most accurate using the right hand of males (ROC-analysis: AUC 0.725, sensitivity 0.667, specificity 0.723. These findings provide novel insights into the role of prenatal androgen exposure in the development of alcohol dependency and for the use of 2D∶4D as a possible trait marker in identifying patients with alcohol dependency.

  14. 4-D Cloud Water Content Fields Derived from Operational Satellite Data

    Science.gov (United States)

    Smith, William L., Jr.; Minnis, Patrick

    2010-01-01

    In order to improve operational safety and efficiency, the transportation industry, including aviation, has an urgent need for accurate diagnoses and predictions of clouds and associated weather conditions. Adverse weather accounts for 70% of all air traffic delays within the U.S. National Airspace System. The Federal Aviation Administration has determined that as much as two thirds of weather-related delays are potentially avoidable with better weather information and roughly 20% of all aviation accidents are weather related. Thus, it is recognized that an important factor in meeting the goals of the Next Generation Transportation System (NexGen) vision is the improved integration of weather information. The concept of a 4-D weather cube is being developed to address that need by integrating observed and forecasted weather information into a shared 4-D database, providing an integrated and nationally consistent weather picture for a variety of users and to support operational decision support systems. Weather analyses and forecasts derived using Numerical Weather Prediction (NWP) models are a critical tool that forecasters rely on for guidance and also an important element in current and future decision support systems. For example, the Rapid Update Cycle (RUC) and the recently implemented Rapid Refresh (RR) Weather Research and Forecast (WRF) models provide high frequency forecasts and are key elements of the FAA Aviation Weather Research Program. Because clouds play a crucial role in the dynamics and thermodynamics of the atmosphere, they must be adequately accounted for in NWP models. The RUC, for example, cycles at full resolution five cloud microphysical species (cloud water, cloud ice, rain, snow, and graupel) and has the capability of updating these fields from observations. In order to improve the models initial state and subsequent forecasts, cloud top altitude (or temperature, T(sub c)) derived from operational satellite data, surface observations of

  15. Control of glyphosate resistant hairy fleabane (Conyza bonariensis with dicamba and 2,4-D Controle de buva (Conyza bonariensis resistente ao glyphosate com dicamba e 2,4-D

    Directory of Open Access Journals (Sweden)

    D.J. Soares

    2012-06-01

    Full Text Available Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis. The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosatedicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 g a.i. ha-1 for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a.e. ha-1. The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a.e. ha-1. Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a.e. ha-1 rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.Os herbicidas mimetizadores de auxinas como dicamba e 2,4-D são alternativas para o controle de buva resistente ao glyphosate. Com a possível futura liberação comercial de culturas resistentes ao dicamba e 2,4-D, a aplicação destes herbicidas reguladores de crescimento será uma provável alternativa de controle de buva resistente ao glyphosate. O objetivo desta pesquisa foi modelar por meio de curvas de dose-resposta a efic

  16. Evaluation of 2,4-D removal via activated carbon from pomegranate husk/polymer composite hydrogel: Optimization of process parameters through face centered composite design

    Energy Technology Data Exchange (ETDEWEB)

    Taktak, Fulya; Ilbay, Zeynep [Usak Univ, Usak (Turkmenistan); Sahin, Selin [Istanbul University, Istanbul (Turkmenistan)

    2015-09-15

    A new type of polymer composite hydrogel was prepared by introducing activated carbons from pomegranate husk into poly ((2-dimethylamino) ethyl methacrylate) network. The removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution was studied with respect to pH of the media, initial 2,4-D concentration and activated carbon content into the polymeric network. Face centered composite design (FCCD) through response surface methodology (RSM) was used for designing the experiments as well as for studying the effects of the process parameters. A quadratic model and a two factor interaction design model were developed for the removal of 2,4-D and adsorption capacity, respectively. The optimum pH of the pesticide solution, activated carbon content into the polymeric network and initial concentration of 2,4-D were found as 3, 2.5 wt% and 100mg/L. 63.245% and 68.805 (mg/g) for the removal of 2,4-D and adsorption capacity were obtained by using Simplex optimization method. Furthermore, the surface characteristics of the adsorbent prepared under optimized conditions were examined by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR).

  17. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction.

    Science.gov (United States)

    Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R B; Bent, Julian; Withers, Philip J; Lee, Peter D

    2016-01-01

    X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902

  18. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction.

    Science.gov (United States)

    Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R B; Bent, Julian; Withers, Philip J; Lee, Peter D

    2016-01-01

    X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding.

  19. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Directory of Open Access Journals (Sweden)

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  20. Diagonal-free 3D/4D HN,HN-TROSY-NOESY-TROSY.

    Science.gov (United States)

    Diercks, Tammo; Truffault, Vincent; Coles, Murray; Millet, Oscar

    2010-02-24

    Structural biology by NMR spectroscopy relies on measuring interproton distances via NOE cross-signals in nuclear Overhauser effect spectroscopy (NOESY) spectra. In proteins, the subset of H(N)-H'(N) NOE contacts is most important for deriving initial structural models and for spectral assignment by "NOE walking". Here we present a fully optimized NMR experiment for measuring these pivotal contacts: diagonal-free 3D/4D HN,HN-TROSY-NOESY-TROSY. It combines all of the critical requirements for extracting the optimal H(N)-H'(N) distance information: the highest resolution by consistent transverse relaxation-optimized spectroscopy (TROSY) evolution, the largest spectral dispersion in two (15)N dimensions, and maximal coverage and purity through specific suppression of the intense diagonal signals that are the main source of overlap, artifacts, and bias in any NOESY spectrum. Most notably, diagonal suppression here comes without compromising the NOE cross-signal intensities. This optimized experiment appears to be ideal for a broad range of structural studies, particularly on large deuterated, partially unfolded, helical, and membrane proteins.

  1. Analytical methods for 2,4-D (Dichlorophenoxyacetic acid) determination; Metodos analiticos para la determinacion del 2,4-D (Acido diclorofenoxiacetico)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez G, M.S.M

    1999-06-01

    The 2,4-D herbicide is one of the main pesticides for controlling the bad grass in crops such as the water undergrowth. In Mexico the allowed bound of this pesticide is 0.05 mg/l in water of 2,4-D so it is required to have methods trusts and exacts, which can used in order to detected low concentration of it. In this work we show some for the conventional techniques and for establishing the 2,4-D concentrations. The UV-Vis spectrometer and liquids chromatography due that they are the most common used nowadays. Beside, we introduce a now developed technique, which is based on the neutronic activation analysis. Though use of the UV-Vis spectrometer technique it was possible target the concentrations interval between 1 and 200 mg/l. In the liquids chromatography interval was between 0.1 and 0.9, and by the neutronic activation analysis the interval was between 0.01 and 200 mg/l. (Author)

  2. Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenic cells of carrot

    Science.gov (United States)

    Smith, D. L.; Krikorian, A. D.

    1990-01-01

    A mixed culture comprised of both embryonic globules and nonembryogenic callus was derived from seedling hypocotyls of Daucus carota cv. Scarlet Nantes on 2,4-D- containing medium using well-established methods. Then the mixed cultures were transferred to, and serially subcultured on, a hormone-free medium near pH 4. The medium contained 1 mM NH4+ as the sole nitrogen source. When cultured in this way, embryonic globules were able to multiply without development into later embryo stages. Nonembryogenic callus did not survive. Continuous culture of embryonic globules on this low pH hormone-free medium yielded cultures consisting entirely of preglobular stage proembryos (PGSPs). PGSP cultures have been maintained as such with continuous multiplication for nearly 2 years without loss of embryogenic potential. These hormone-free-maintained PGSPs continue their development to later embryo stages when cultured on the same hormone-free medium buffered at pH 5.8. We show that hormone-free medium near pH 4 can replace 2,4-D in its ability to sustain multiplication of 2,4-D-initiated embryogenic cells of carrot at an acceptable growth rate without their development into later embryo stages. This procedure provides selective conditions that do not permit the growth of non-embryogenic cells while providing an adequate environment for embryogenic cell proliferation and should prove invaluable in studying habituation.

  3. Photo-Fenton degradation of the herbicide 2,4-D in aqueous medium at pH conditions close to neutrality.

    Science.gov (United States)

    Conte, Leandro O; Schenone, Agustina V; Alfano, Orlando M

    2016-04-01

    A theoretical and experimental study of the photo-Fenton degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in water is presented. A kinetic model derived from a reaction sequence is proposed using the ferrioxalate complex as iron source for conditions of pH = 5. The kinetic model was employed to predict the concentrations of 2,4-D, 2,4-dichlorophenol (2,4-DCP), hydrogen peroxide (HP) and oxalate (Ox) in a flat plate laboratory reactor irradiated with a solar simulator. Two types of incident irradiation levels were tested by different combinations of attenuation filters. The effects of the oxalate/Fe(+3) molar ratio (Ox/Fe), the reaction temperature (T) and the 2,4-D/HP molar ratio (R) on the photo-Fenton process were also investigated. For low radiation level and operating conditions of R = 50 and T = 50 °C, a 2,4-D conversion of 95.6% was obtained after 180 min. Moreover, the 2,4-D conversion was almost 100% in only 120 min when the system was operated under the same operating conditions and high radiation level. From the proposed model and the experimental data, the corresponding kinetic parameters were estimated applying a nonlinear regression method. A good agreement between the kinetic model and experimental data, for a wide range of simulated solar operating conditions, was observed. For 2,4-D, 2,4-DCP, HP and Ox concentrations, the calculated RMSE were 1.21 × 10(-2), 5.45 × 10(-3), 2.86 × 10(-1) and 2.65 × 10(-2) mM, respectively. PMID:26800432

  4. Constrained adaptive bias correction for satellite radiances assimilation in the ECMWF 4D-Var

    Science.gov (United States)

    Han, Wei; Bormann, Niels

    2016-04-01

    Satellite radiance observations are typically affected by biases that arise from uncertainties in the absolute calibration, the radiative transfer modeling, or other aspects. These biases have to be removed for the successful assimilation of the data in NWP systems. Two key problems have been identified in bias correction: Firstly, bias corrections can drift towards unrealistic values in regions where there is strong model error and relatively few "anchor" observations, ie, observations that have little systematic error and therefore allow the separation between model and observation bias. Examples where this has been particularly problematic are channels sensitive to ozone or stratospheric temperature. Secondly, there is undesired interaction between the quality control and bias correction for observations where bias-corrected observation departures are used for quality control and where these departures show skewed distributions (e.g., in case of cloud detection). In the study, we investigated potential solutions to these problems by providing further constraints using potential available information, such as constraints on the size of the bias correction and innovative bias correction metrics using uncertainty estimation from calibration and radiative transfer. This has been studied in the full ECMWF global 4D-Var system, using data from microwave sounders which are sensitive to stratospheric temperature. The resulting enhanced bias corrections was assessed in the context of other assimilated observations (in particular radiosondes and GPS radio occultation measurements), and through comparisons of MLS temperature retrieval data in stratosphere and mesosphere. The constrained adaptive bias correction of AMSU-A stratospheric sounding channels reduces the biases in stratosphere and improves the medium range forecasts in both stratosphere and troposphere.

  5. Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71

    Directory of Open Access Journals (Sweden)

    Lizhen Han

    2015-06-01

    Full Text Available An indigenous bacterial strain capable of utilizing 2,4-dichlorophenoxyacetic acid as the sole carbon and energy source was isolated from a soil used for grown wheat with a long-term history of herbicide use in Beijing, China. The strain BJ71 was identified as Cupriavidus campinensis based on its 16S rRNA sequence analysis and morphological, physiological, and biochemical characteristics. The degradation characteristics of strain BJ71 were evaluated. The optimal conditions for 2,4-D degradation were as follows: pH 7.0, 30 °C, 3% (v/v inoculum size, and an initial 2,4-D concentration of 350 mg L−1. Up to 99.57% of the 2,4-D was degraded under optimal conditions after 6 days of incubation. Strain BJ71 was also able to degrade quizalofop and fluroxypyr. This is the first report of a 2,4-D-degrader containing tfdA gene that can utilize these two herbicides. In a biodegradation experiment, 87.13% and 42.53% of 2,4-D (initial concentration, 350 mg kg−1 was degraded in non-sterile and sterilized soil inoculated with BJ71, respectively, after 14 days. The 2,4-D degradation was more rapid in a soil microcosm including BJ71 than in a soil microcosm without BJ71. These results indicate that strain BJ71 is a potential candidate for the bioremediation of soil contaminated with the herbicide 2,4-D.

  6. Capillary Deposition of Complement C4d and C3d in Chinese Renal Allograft Biopsies

    Directory of Open Access Journals (Sweden)

    Rong Lv

    2015-01-01

    Full Text Available Background. C3d is a product of both the classic and the alternative complement cascades; however, few studies have addressed the role of C3d in renal biopsies and its relationship with long-term graft survival rate is not very clear. Methods. 94 patients with biopsy-proven acute rejection episodes were included in the study. We investigated the associations between histological findings, clinical examinations, and outcome. Results. The overall prevalence for C4dPTC and C3dPTC was 42.6% and 29.8%. There was a significant association between C3dPTC and C4dPTC (P<0.001. C3dPTC and C4dPTC were related with histological types (P=0.024 and P<0.001, resp.. The long-term survival rate for C4dPTC positive transplants was lower than that of C4dPTC negative transplants, but it was not statistic significant in our study (P=0.150. The survival rate of C3dPTC positive group was much lower than the negative group (P=0.014. Patients with double positives for C4dPTC and C3dPTC exhibited the lowest survival rate significantly different from those of the C3dPTC only and C4dPTC only groups (P=0.01 and P=0.0037. Conclusions. This longitudinal cohort study has demonstrated that C3d deposition in the PTC was closely related to renal dysfunction and pathological changes.

  7. Evolution calculations of fuel for a GFR using MCNPX-C90 and Tripoli-4-D; Calculos de evolucion de combustible para un GFR usando MCNPX-C90 y TRIPOLI-4-D

    Energy Technology Data Exchange (ETDEWEB)

    Reyes R, R.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Brun, E.; Dumonteil, E.; Malvagi, F., E-mail: emeric.brun@cea.fr [Commissariat a l' Energie Atomique et aux Energies Alternative, Service d' Etude des Reacteurs et de Mathematiques Appliquees, Saclay, DEN/DM2S/SERMA/LTSD, Bat 470, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    Burnt calculations were realized for a fuel model based on the technology of the Gas-cooled Fast Reactor, GFR. The fuel design is based on bars. The code MCNPX-CINDER90 and the CSADA method for the burnt calculations were used. Models of homogeneous and heterogeneous fuel assembly were studied; for the burnt calculations of the fuel homogeneous model was considered the tracking of three series (Tiers) of evolution of the fission products. The Tier 1 tracks a reduced group of fission products, the Tier 2 tracks to the arrangement of fission products that are contained in the library of cross sections XSDIR of MCNPX; and the Tier 3 tracks 1325 fission products. The results were compared with those obtained with Tripoli-4-D in function of the calculation methods: 1) Explicit Euler, as method of first order; and 2) CSADA, as method of second order. According to the results was observed that the infinite multiplication factor varies in function of the fission products quantity that are tracked. The calculation time used by MCNPX-C90 with the series Tier 3 is more than double than the used by Tripoli-4-D, therefore this last code has advantage over MCNPX-C90 in the case of neutrons analysis of fast reactors. (Author)

  8. Identification of novel mutations confirms PDE4D as a major gene causing acrodysostosis.

    Science.gov (United States)

    Lynch, Danielle C; Dyment, David A; Huang, Lijia; Nikkel, Sarah M; Lacombe, Didier; Campeau, Philippe M; Lee, Brendan; Bacino, Carlos A; Michaud, Jacques L; Bernier, Francois P; Parboosingh, Jillian S; Innes, A Micheil

    2013-01-01

    Acrodysostosis is characterized by nasal hypoplasia, peripheral dysostosis, variable short stature, and intellectual impairment. Recently, mutations in PRKAR1A were reported in patients with acrodysostosis and hormone resistance. Subsequently, mutations in a phosphodiesterase gene (PDE4D) were identified in seven sporadic cases. We sequenced PDE4D in seven acrodysostosis patients from five families. Missense mutations were identified in all cases. Families showed de novo inheritance except one family with three affected children whose father was subsequently found to have subtle features of acrodysostosis. There were no recurrent mutations. Short stature and endocrine resistance are rare in this series; however, cognitive involvement and obesity were frequent. This last finding is relevant given PDE4D is insulin responsive and potentially involved in lipolysis. PDE4D encodes a cyclic AMP regulator and places PDE4D-related acrodysostosis within the same family of diseases as pseudohypoparathyroidism, pseudopseudohypoparathyroidism, PRKAR1A-related acrodysostosis and brachydactyly-mental retardation syndrome; all characterized by cognitive impairment and short distal extremities.

  9. 4D Scattering Amplitudes and Asymptotic Symmetries from 2D CFT

    CERN Document Server

    Cheung, Clifford; Sundrum, Raman

    2016-01-01

    We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors o...

  10. Using 2D: 4D digit ratios to determine motor skills in children.

    Science.gov (United States)

    Wang, Y; Wang, H-L; Li, Y-H; Zhu, F-L; Li, S-J; Ni, H

    2016-03-01

    In past few decades, there has an outburst of research surrounding second to fourth finger digit ratio (2D:4D) and its relation to prenatal sex steroids including both testosterone and estrogen. In utero, testosterone and estrogen are responsible for the differences in digit ratio between the genders. Recent research has tried to extend past the influence of steroids and look at the potential effect of digit ratios on fine and gross motor skills in children. We compiled the current understanding of the connection between sex hormones and the development of the 2D:4D ratio as well as the effect the ratio has on motor skills. There seems to be a significant positive correlation between 2D:4D digit ratio and precision of fine motor skill. In addition, there is a negative correlation between 2D:4D ratio and speed of fine motor activity. In this review, we will outline the use of 2D:4D ratio as a biomarker for prenatal sex steroids and through that, a proxy marker for fine and gross motor skills. PMID:27010133

  11. Validation of the 4D NCAT simulation tools for use in high-resolution x-ray CT research

    Science.gov (United States)

    Segars, W. P.; Mahesh, Mahadevappa; Beck, T.; Frey, E. C.; Tsui, B. M. W.

    2005-04-01

    We validate the computer-based simulation tools developed in our laboratory for use in high-resolution CT research. The 4D NURBS-based cardiac-torso (NCAT) phantom was developed to provide a realistic and flexible model of the human anatomy and physiology. Unlike current phantoms in CT, the 4D NCAT has the advantage, due to its design, that its organ shapes can be changed to realistically model anatomical variations and patient motion. To efficiently simulate high-resolution CT images, we developed a unique analytic projection algorithm (including scatter and quantum noise) to accurately calculate projections directly from the surface definition of the phantom given parameters defining the CT scanner and geometry. The projection data are reconstructed into CT images using algorithms developed in our laboratory. The 4D NCAT phantom contains a level of detail that is close to impossible to produce in a physical test object. We, therefore, validate our CT simulation tools and methods through a series of direct comparisons with data obtained experimentally using existing, simple physical phantoms at different doses and using different x-ray energy spectra. In each case, the first-order simulations were found to produce comparable results (<12%). We reason that since the simulations produced equivalent results using simple test objects, they should be able to do the same in more anatomically realistic conditions. We conclude that, with the ability to provide realistic simulated CT image data close to that from actual patients, the simulation tools developed in this work will have applications in a broad range of CT imaging research.

  12. Attosecond delay of xenon 4 d photoionization at the giant resonance and Cooper minimum

    Science.gov (United States)

    Magrakvelidze, Maia; Madjet, Mohamed El-Amine; Chakraborty, Himadri S.

    2016-07-01

    A Kohn-Sham time-dependent local-density-functional scheme is utilized to predict attosecond time delays of xenon 4 d photoionization that involves the 4 d giant dipole resonance and Cooper minimum. The fundamental effect of electron correlations to uniquely determine the delay at both regions is demonstrated. In particular, for the giant dipole resonance, the delay underpins strong collective effect, emulating the recent prediction at C60 giant plasmon resonance [T. Barillot et al., Phys. Rev. A 91, 033413 (2015), 10.1103/PhysRevA.91.033413]. For the Cooper minimum, a qualitative similarity with a photorecombination experiment near argon 3 p minimum [S. B. Schoun et al., Phys. Rev. Lett. 112, 153001 (2014), 10.1103/PhysRevLett.112.153001] is found. The result should encourage attosecond measurements of Xe 4 d photoemission.

  13. Alur Kerja Tahap Produksi Karakter Animasi Serial 3D Menggunakan Perangkat Lunak Maxon Cinema 4D

    Directory of Open Access Journals (Sweden)

    Ardiyan

    2011-03-01

    Full Text Available 3D Animation serial for television needs have been showed in the national television program, especially fantasy theme and educational program for children. There are so many and sequential needs which tricked by instant and high-quality production so the work flow in creating 3D animation serial are facilitating the producers. The article will explain specifically how the software of Maxon Cinema 4D in process production in 3D animation serial. The article will also clarify and focus on how the work flow of Maxon Cinema 4D software in processing production and post-production stages. The writer does research including audio visual tutorial, end-result comparison and rendering time between some software, self-observation of work flow in creating 3D animation serial using Maxon Cinema 4D software and digital literature study (e-book.

  14. Preoperative localization of hyperfunctioning parathyroid glands with 4D-CT

    DEFF Research Database (Denmark)

    Lundstroem, Anke Katrin; Trolle, Waldemar; Soerensen, Christian Hjort;

    2016-01-01

    the diagnostic value of four-dimensional computed tomography (4D-CT) as a preoperative imaging tool in relation to the localization of pathologic parathyroid glands in patients with pHPT and negative sestamibi scans. This study included 43 consecutive patients with pHPT referred for parathyroidectomy...... at the Department of Head and Neck Surgery of Copenhagen University Hospital Rigshospitalet in 2011 and 2012. All patients had a 4D-CT performed prior to parathyroidectomy. CT localization of the suspected adenoma was correlated to the actual surgical findings and subsequent histological diagnosis was also...... available as references for the accuracy of this imaging tool. Hyperfunctioning parathyroid glands were found in 40 patients. 4D-CT identified 32 solitary hyperfunctioning parathyroid glands located on the correct side of the neck (PPV 76 %) and 21 located within the correct quadrant (PPV 49 %). Unilateral...

  15. Live 4D optical coherence tomography for early embryonic mouse cardiac phenotyping

    Science.gov (United States)

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.

    2016-03-01

    Studying embryonic mouse development is important for our understanding of normal human embryogenesis and the underlying causes of congenital defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development using optical coherence tomography (OCT). We have previously developed imaging approaches that combine static embryo culture, OCT imaging and advanced image processing to visualize the whole live mouse embryos and obtain 4D (3D+time) cardiodynamic datasets with cellular resolution. Here, we present the study of using 4D OCT for dynamic imaging of early embryonic heart in live mouse embryos to assess mutant cardiac phenotypes during development, including a cardiac looping defect. Our results indicate that the live 4D OCT imaging approach is an efficient phenotyping tool that can reveal structural and functional cardiac defects at very early stages. Further studies integrating live embryonic cardiodynamic phenotyping with molecular and genetic approaches in mouse mutants will help to elucidate the underlying signaling defects.

  16. Development of software tools for 4-D visualization and quantitative analysis of PHITS simulation results

    International Nuclear Information System (INIS)

    A suite of software tools has been developed to facilitate the development of apparatus using a radiation transport simulation code PHITS by enabling 4D visualization (3D space and time) and quantitative analysis of so-called dieaway plots. To deliver useable tools as soon as possible, the existing software was utilized as much as possible; ParaView will be used for the 4D visualization of the results, whereas the analyses of dieaway plots will be done with ROOT toolkit with a tool named “diana”. To enable 4D visualization using ParaView, a group of tools (angel2vtk, DispDCAS1, CamPos) has been developed for the conversion of the data format to the one which can be read from ParaView and to ease the visualization. (author)

  17. Lipiodol versus diaphragm in 4D-CBCT-guided stereotactic radiotherapy of hepatocellular carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mark K.H.; Lee, Venus; Chiang, C.L.; Lee, Francis A.S.; Law, Gilbert; Wong, Frank C.S.; Tung, Stewart Y.; Luk, Hollis [TuenMun Hospital, Department of Clinical Oncology, TuenMun, Hong Kong (China); Sin, N.Y.; Siu, K.L. [TuenMun Hospital, Department of Diagnostic Radiology, TuenMun, Hong Kong (China); Blanck, Oliver [University Clinic Schleswig-Holstein, Department of Radiation Oncology, Saphir Radiosurgery Center, Kiel (Germany)

    2016-02-15

    The purpose of this work was to investigate the potential of lipiodol as a direct tumor surrogate alternative to the diaphragm surrogate on four-dimensional cone-beam computed tomography (4D-CBCT) image guidance for stereotactic radiotherapy of hepatocellular carcinomas. A total of 29 hepatocellular carcinomas (HCC) patients treated by stereotactic radiotherapy following transarterial chemoembolization (TACE) with homogeneous or partial defective lipiodol retention were included. In all, 4-7 pretreatment 4D-CBCT scans were selected for each patient. For each scan, either lipiodol or the diaphragm was used for 4D registration. Resulting lipiodol/diaphragm motion ranges and position errors relative to the reconstructed midventilation images were analyzed to obtain the motion variations, and group mean (ΔM), systematic (Σ), and random (σ) errors of the treatment setup. Of the lipiodolized tumors, 55 % qualified for direct localization on the 4D-CBCT. Significant correlations of lipiodol and diaphragm positions were found in the left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions. ΔM and σ obtained with lipiodol and diaphragm were similar, agreed to within 0.5 mm in the LR and AP, and 0.3 mm in the CC directions, and Σ differed by 1.4 (LR), 1.1 (CC), and 0.6 (AP) mm. Variations of diaphragm motion range > 5 mm were not observed with lipiodol and in one patient with diaphragm. The margin required for the tumor prediction error using the diaphragm surrogate was 6.7 (LR), 11.7 (CC), and 4.1 (AP) mm. Image-guidance combining lipiodol with 4D-CBCT enabled accurate localization of HCC and thus margin reduction. A major limitation was the degraded lipiodol contrast on 4D-CBCT. (orig.) [German] Ziel dieser Studie war es, das Potential von Lipiodol als direktes Tumorsurrogat alternativ zum Zwerchfellsurrogat fuer die vierdimensionale Cone-beam-Computertomographie (4D-CBCT) in der stereotaktischen Strahlentherapie von hepatozellulaeren Karzinomen (HCC

  18. Soccer players awarded one or more red cards exhibit lower 2D:4D ratios.

    Science.gov (United States)

    Mailhos, Alvaro; Buunk, Abraham P; Del Arca, Denise; Tutte, Verónica

    2016-09-01

    Anatomical, cognitive and behavioral sex differences are widely recognized in many species. It has been proposed that some of these differences might result from the organizing effects of prenatal sex steroids. In humans, males usually exhibit higher levels of physical aggression and prowess. In this study, we analyze the relationship between second-to-fourth digit (2D:4D) ratios-a proxy for prenatal androgen levels-and foul play and sporting performance in a sample of junior soccer players from a professional Uruguayan soccer club. Our results show that the most aggressive players (i.e., those awarded one or more red cards) have a more masculine finger pattern (lower 2D:4D ratio), while no relationship could be found between sporting performance and 2D:4D ratios. The results are discussed in the context of previous findings. Aggr. Behav. 42:417-426, 2016. © 2015 Wiley Periodicals, Inc. PMID:26699684

  19. Digit ratio (2D:4D) and gender inequalities across nations.

    Science.gov (United States)

    Manning, John T; Fink, Bernhard; Trivers, Robert

    2014-01-01

    Gender inequality varies across nations, where such inequality is defined as the disproportionate representation of one sex over the other in desirable social, economic, and biological roles (typically male over female). Thus in Norway, 40% of parliamentarians are women, in the USA 17%, and in Saudi Arabia 0%. Some of this variation is associated with economic prosperity but there is evidence that this cause and effect can go in either direction. Here we show that within a population the average ratio of index (2D) to ring (4D) finger lengths (2D:4D)-a proxy measure of the relative degree to which offspring is exposed in utero to testosterone versus estrogen-is correlated with measures of gender inequality between nations. We compared male and female 2D:4D ratios to female parliamentary representation, labor force participation, female education level, maternal mortality rates, and juvenile pregnancy rates per nation in a sample of 29 countries. We found those nations who showed higher than expected female fetal exposure to testosterone (low 2D:4D) and lower than expected male exposure to fetal testosterone (high 2D:4D) had higher rates of female parliamentary representation, and higher female labor force participation. In short, the more similar the two sexes were in 2D:4D, the more equal were the two sexes in parliamentary and labor force participation. The other variables were not as strongly correlated. We suggest that higher than expected fetal testosterone in females and lower fetal testosterone in males may lead to high female representation in the national labor force and in parliament. PMID:25300052

  20. The Fractional Statistics of Generalized Haldane Wave Function in 4D Quantum Hall Effect

    Institute of Scientific and Technical Information of China (English)

    XU Fei; WANG Ke-Lin; WAN Shao-Long; CHEN Qing

    2003-01-01

    Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we usenon-Abelian Berry phase to analyze the statistics of this membrane wave function. Our results show that the membranewave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensional spacethan 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.

  1. Chern-Simons Actions and Their Gaugings in 4D, N=1 Superspace

    CERN Document Server

    Becker, Katrin; Linch, William D; Robbins, Daniel

    2016-01-01

    We gauge the abelian hierarchy of tensor fields in 4D by a Lie algebra. The resulting non-abelian tensor hierarchy can be interpreted via an equivariant chain complex. We lift this structure to N=1 superspace by constructing superfield analogs for the tensor fields, along with covariant superfield strengths. Next we construct Chern-Simons actions, for both the bosonic and N=1 cases, and note that the condition of gauge invariance can be presented cohomologically. Finally, we provide an explicit realization of these structures by dimensional reduction, for example by reducing the three-form of eleven-dimensional supergravity into a superspace with manifest 4D, N=1 supersymmetry.

  2. 4d/5d Correspondence for the Black Hole Potential and its Critical Points

    CERN Document Server

    Ceresole, A; Marrani, A

    2007-01-01

    We express the d=4, N=2 black hole effective potential for cubic holomorphic F functions and generic dyonic charges in terms of d=5 real special geometry data. The 4d critical points are computed from the 5d ones, and their relation is elucidated. For symmetric spaces, we identify the BPS and non-BPS classes of attractors and the respective entropies. These are related by simple formulae, interpolating between four and five dimensions, depending on the volume modulus and on the 4d magnetic (or electric) charges, and holding true also for generic field configurations and for non-symmetric cubic geometries.

  3. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, Michalis, E-mail: maristophanous@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States); Berbeco, Ross I.; Killoran, Joseph H. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States); Yap, Jeffrey T. [Department of Radiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Sher, David J.; Allen, Aaron M.; Larson, Elysia; Chen, Aileen B. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States)

    2012-01-01

    Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined. Methods and Materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [{sup 18}F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated. Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3). Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

  4. Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI

    OpenAIRE

    van der Geest, Rob J; Garg, Pankaj

    2016-01-01

    Purpose of the Review Time-resolved 3D velocity-encoded MR imaging with velocity encoding in three directions (4D Flow) has emerged as a novel MR acquisition technique providing detailed information on flow in the cardiovascular system. In contrast to other clinically available imaging techniques such as echo-Doppler, 4D Flow MRI provides the 3D Flow velocity field within a volumetric region of interest over the cardiac cycle. This work reviews the most recent advances in the development and ...

  5. Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives

    OpenAIRE

    Asma Agrebi; Fatma Allouche; Hamadi Fetoui; Fakher Chabchoub

    2014-01-01

    Several new pyrazolopyrimidine compounds were achieved from aminocyanopyarazole 1. The starting material 1 was initially coupled with orthoester at refluxed with various primary amines, ammonia, hydrazines and hydroxylamine to furnish a series of pyrazolo[3,4-d]pyrimidines. The reaction of imidate 2a-b with hydrazide derivatives led to the formation of pyrazolo[3,4-d][1,2,4]triazolo[4,3-c]pyrimidines. Some of the synthesized compounds 3a and 4c were evaluated for the...

  6. The Fractional Statistics of Generalized Haldane Wave Function in 4D Quantum Hall Effect

    Institute of Scientific and Technical Information of China (English)

    WANGKe-Lin; WANShao-Long; CHENQing; XUFei

    2003-01-01

    Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we use non-Abelian Berry phase to anaJyze the statistics of this membrane wave function. Our results show that the membrane wave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensiona space than 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.

  7. 4D offline PET-based treatment verification in ion beam therapy. Experimental and clinical evaluation

    International Nuclear Information System (INIS)

    consideration, particularly for patients exhibiting motion amplitudes of above 1cm and a sufficiently large number of detected true coincidences during their post-irradiation PET scan. Despite the application of an optimised PET image reconstruction scheme, as retrieved from a dedicated phantom imaging study in the scope of this work, the small number of counts and the resulting high level of image noise were identified as a major limiting factor for the detection of motion-induced dose inhomogeneities within the patient. Moreover, the biological washout modelling of the irradiation-induced isotopes proved to be not sufficiently accurate and thereby impede a quantitative analysis of measured and simulated data under consideration of target motion. In future, improvements are particularly foreseen through dedicated noise-robust time-resolved (4D) image reconstruction algorithms, an improved tracking of the organ motion, e.g., by ultrasound (US) imaging, as implemented for the first time in 4D PET imaging in the scope of this work, as well as by patient-specific washout models.

  8. 4D offline PET-based treatment verification in ion beam therapy. Experimental and clinical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Christopher

    2014-06-12

    consideration, particularly for patients exhibiting motion amplitudes of above 1cm and a sufficiently large number of detected true coincidences during their post-irradiation PET scan. Despite the application of an optimised PET image reconstruction scheme, as retrieved from a dedicated phantom imaging study in the scope of this work, the small number of counts and the resulting high level of image noise were identified as a major limiting factor for the detection of motion-induced dose inhomogeneities within the patient. Moreover, the biological washout modelling of the irradiation-induced isotopes proved to be not sufficiently accurate and thereby impede a quantitative analysis of measured and simulated data under consideration of target motion. In future, improvements are particularly foreseen through dedicated noise-robust time-resolved (4D) image reconstruction algorithms, an improved tracking of the organ motion, e.g., by ultrasound (US) imaging, as implemented for the first time in 4D PET imaging in the scope of this work, as well as by patient-specific washout models.

  9. SU-D-17A-01: Geometric and Dosimetric Evaluation of a 4D-CBCT Reconstruction Technique Using Prior Knowledge

    International Nuclear Information System (INIS)

    Purpose: To evaluate a 4D-CBCT reconstruction technique both geometrically and dosimetrically Methods: A prior-knowledge guided 4DC-BCT reconstruction method named the motion-modeling and free-form deformation (MM-FD) has been developed. MM-FD views each phase of the 4D-CBCT as a deformation of a prior CT volume. The deformation field is first solved by principal component analysis based motion modeling, followed by constrained free-form deformation.The 4D digital extended-cardiac- torso (XCAT) phantom was used for comprehensive evaluation. Based on a simulated 4D planning CT of a lung patient, 8 different scenarios were simulated to cover the typical on-board anatomical and respiratory variations: (1) synchronized and (2) unsynchronized motion amplitude change for body and tumor; tumor (3) shrinkage and (4) expansion; tumor average position shift in (5) superior-inferior (SI) direction, (6) anterior-posterior (AP) direction and (7) SI, AP and lateral directions altogether; and (8) tumor phase shift relative to the respiratory cycle of the body. Orthogonal-view 30° projections were simulated based on the eight patient scenarios to reconstruct on-board 4D-CBCTs. For geometric evaluation, the volume-percentage-difference (VPD) was calculated to assess the volumetric differences between the reconstructed and the ground-truth tumor.For dosimetric evaluation, a gated treatment plan was designed for the prior 4D-CT. The dose distributions were calculated on the reconstructed 4D-CBCTs and the ground-truth images for comparison. The MM-FD technique was compared with MM-only and FD-only techniques. Results: The average (±s.d.) VPD values of reconstructed tumors for MM-only, FDonly and MM-FD methods were 59.16%(± 26.66%), 75.98%(± 27.21%) and 5.22%(± 2.12%), respectively. The average min/max/mean dose (normalized to prescription) of the reconstructed tumors by MM-only, FD-only, MM-FD methods and ground-truth tumors were 78.0%/122.2%/108.2%, 13%/117.7%/86%, 58

  10. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    Science.gov (United States)

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  11. Four-dimensional computed tomography (4D CT). Concepts and preliminary development

    International Nuclear Information System (INIS)

    Four-dimensional computed tomography (4D CT) is a dynamic volume imaging system of moving organs with an image quality comparable to that of conventional CT. 4D CT will be realized by several technical breakthroughs for dynamic cone-beam CT: a large-area two-dimensional (2D) detector; high-speed data transfer system; reconstruction algorithms; ultra-high-speed reconstruction computer; and high-speed, continuously rotating gantry. Among these, development of the 2D detector is one of the main tasks because it should have as wide a dynamic range and as high a data acquisition speed (view rate) as present CT detectors. We are now developing a 4D CT scanner together with the key components. It will take one volume image in 0.5 sec with a 3D matrix of 512 x 512 x 512. This paper describes the concepts and designs of the 4D CT system, as well as preliminary development of the 2D detector. (author)

  12. 10D to 4D Euclidean Supergravity over a Calabi-Yau three-fold

    CERN Document Server

    Sabra, Wafic

    2015-01-01

    We dimensionally reduce the bosonic sector of 10D Euclidean type IIA supergravity over a Calabi-Yau three-fold. The resulting theory describes the bosonic sector of 4D, N = 2 Euclidean supergravity coupled to vector- and hyper-multiplets.

  13. Evaluation of Elekta SymmetryTM 4D IGRT system by using moving lung phantom

    CERN Document Server

    Shin, Hun-Joo; Kay, Chul Seung; Seo, Jae-Hyuk; Lee, Gi-Woong; Kang, Ki-Mun; Jang, Hong Seok; Kang, Young-nam

    2015-01-01

    Purpose: 4D CBCT is a beneficial tool for the treatment of movable tumors, because it can help us to understand where the tumors are actually located and have a precise treatment plan. However, there is a limitation that general CBCT images cannot perfectly help the sophisticated registration. On the other hand, SymmetryTM 4D IGRT system of Elekta can offer the 4D CBCT registration option. In this study, we intend to evaluate the usefulness of SymmetryTM. Method and Materials: Planning CT images of the CIRS moving lung phantom were acquired from 4D MDCT. And they are sorted as 10 phases from 0% phase to 90% phase. The thickness of CT images was 1 mm. Acquired MDCT images were transferred to the contouring software and a virtual target was generated. An one arc VMAT plan was performed by using the treatment planning system on the virtual target. Finally, the movement of the phantom was verified through XVI SymmetryTM system. Results: The physical movement of CIRS moving lung phantom was +/- 10.0 mm in superior...

  14. 77 FR 23135 - 2,4-D; Order Denying NRDC's Petition To Revoke Tolerances

    Science.gov (United States)

    2012-04-18

    ... endocrine system'' and the second tier involves testing ``to determine whether the substance causes adverse... whether a substance is ``capable of interacting with'' the endocrine system, and is ``not sufficient to... October 21, 2009 for 67 chemicals including 2,4-D. (74 FR 54422, 54425). With regard to endocrine...

  15. ON THE SINGULARITIES OF SOLUTIONS TO 4-D SEMILINEAR DISPERSIVE WAVE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Ning Xu; Huicheng Yin

    2005-01-01

    In this note, we are concerned with the global singularity structures of weak solutions to 4 - D semilinear dispersive wave equations whose initial data are chosen to be singular at a single point. Combining Strichartz's inequality with the commutator argument techniques, we show that the weak solutions stay globally conormal if the Cauchy data are conormal.

  16. Enhancing 4D PC-MRI in an aortic phantom considering numerical simulations

    Science.gov (United States)

    Kratzke, Jonas; Schoch, Nicolai; Weis, Christian; Müller-Eschner, Matthias; Speidel, Stefanie; Farag, Mina; Beller, Carsten J.; Heuveline, Vincent

    2015-03-01

    To date, cardiovascular surgery enables the treatment of a wide range of aortic pathologies. One of the current challenges in this field is given by the detection of high-risk patients for adverse aortic events, who should be treated electively. Reliable diagnostic parameters, which indicate the urge of treatment, have to be determined. Functional imaging by means of 4D phase contrast-magnetic resonance imaging (PC-MRI) enables the time-resolved measurement of blood flow velocity in 3D. Applied to aortic phantoms, three dimensional blood flow properties and their relation to adverse dynamics can be investigated in vitro. Emerging "in silico" methods of numerical simulation can supplement these measurements in computing additional information on crucial parameters. We propose a framework that complements 4D PC-MRI imaging by means of numerical simulation based on the Finite Element Method (FEM). The framework is developed on the basis of a prototypic aortic phantom and validated by 4D PC-MRI measurements of the phantom. Based on physical principles of biomechanics, the derived simulation depicts aortic blood flow properties and characteristics. The framework might help identifying factors that induce aortic pathologies such as aortic dilatation or aortic dissection. Alarming thresholds of parameters such as wall shear stress distribution can be evaluated. The combined techniques of 4D PC-MRI and numerical simulation can be used as complementary tools for risk-stratification of aortic pathology.

  17. The 2D:4D digit ratio as biomarker for substance abuse

    NARCIS (Netherlands)

    Fernstrand, A.M.; Van Den Borne, L.; Lensvelt, L.M.H.; Ribbert, L.L.A.; De With, A.C.; Goede, L.X.Y.; Garssen, J.; Verster, J.C.

    2015-01-01

    Purpose: The second (2D, index finger) to fourth (4D, ring finger) digit ratio is a biomarker for prenatal testosterone and estrogen exposure. It has been hypothesized that the developmental origins of health and behavior are modulated by the presence or absence of prenatal sex hormones. Several stu

  18. Synthesis of novel pyrazolo[3,4-d]pyrimidinone derivatives as cytotoxic inhibitors

    Directory of Open Access Journals (Sweden)

    Ameur Rahmouni

    2014-02-01

    Full Text Available Various α-fonctionalized iminoethers 2 were easily prepared from ethyl 5-amino-3-substituted-1-phenyl-1H-pyrazole-4-carboxylate 1. The reaction of iminoethers 2 with ammonia afforded 3-substitued-1-phenyl-1H-pyrazolo[3,4-d] pyrimidin-4(5H-ones 3 which were also synthesized by the addition of formamide to ethyl 5-amino-3-substituted-1-phenyl-1H-pyrazole-4-carboxylate 1. The 5-amino-3-substitued-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H-ones 4 were obtained from hydrazonolysis of iminoethers 2. Otherwise, the condensation of these intermediates 2 with a series of some primary amines and hydroxylamine led respectively, to the corresponding 3,5-disubstitued-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H-ones 5 and the 3-substitued-5-hydroxy-1-phenyl-1H-pyrazolo[3,4-d] pyrimidin-4-(5H-ones 6. The synthesized compounds 1-6 were completely characterized by 1H NMR, 13C NMR, IR and HRMS. Some synthesized compounds were evaluated for their cytotoxic effect using the Human cervical adenocarcinoma Hela cell line.

  19. Systematic Structure in the K-Edge Photoabsorption Spectra of the 4d Transition Metals: Theory

    DEFF Research Database (Denmark)

    Muller, J. E.; Jepsen, O.; Andersen, Ole Krogh;

    1978-01-01

    The K-edge photoabsorption spectra of the 4d metals calculated by the linear augmented-plane-wave method yield good agreement with the measured data. The prominent systematic features of the spectra, most easily discussed in terms of the l=1 projected density of final states, are simply related...

  20. 2D : 4D Is Negatively Associated to Aggressive Dominance in Men: A Response to Voracek

    NARCIS (Netherlands)

    van der Meij, Leander; Almela, Mercedes; Buunk, Abraham P.; Dubbs, Shelli; Salvador, Alicia

    2013-01-01

    We do not agree with the interpretation and evaluation of our article by Voracek. We feel that our results and our interpretation of the results are supported by our data analyses and do add to the current understanding of the relationship between 2D:4D and personality. We feel confident we can addr

  1. Combined C4d and CD3 immunostaining predicts immunoglobulin (Ig)A nephropathy progression

    NARCIS (Netherlands)

    Faria, B.; Henriques, C.; Matos, A. C.; Daha, M. R.; Pestana, M.; Seelen, M.

    2015-01-01

    A number of molecules have been shown recently to be involved in the pathogenesis and progression of immunoglobulin (Ig)A nephropathy (IgAN). Among these, we have selected C4d (complement lectin pathway involvement), CD3 (T cell marker, traducing interstitial inflammation), transglutaminase 2 (TGase

  2. Impact of 4D image quality on the accuracy of target definition

    DEFF Research Database (Denmark)

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas;

    2016-01-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three diff...

  3. Cytotoxicity of poly(96L/4D-lactide) : the influence of degradation and sterilization

    NARCIS (Netherlands)

    Cordewener, FW; Joziasse, CAP; Schmitz, JP; Bos, RRM; Rozema, FR; Pennings, AJ

    2000-01-01

    The cytotoxicity of poly(96L/4D-lactide) (PLA96), and of its accumulated degradation products, was investigated following different sterilization methods and pre-determined heat-accelerated degradation intervals. PLA96 samples sterilized by either steam, ethylene oxide, or gamma irradiation were lef

  4. Evaluation of the Elekta Symmetry ™ 4D IGRT system by using a moving lung phantom

    Science.gov (United States)

    Shin, Hun-Joo; Kim, Shin-Wook; Kay, Chul Seung; Seo, Jae-Hyuk; Lee, Gi-Woong; Kang, Ki-Mun; Jang, Hong Seok; Kang, Young-nam

    2015-07-01

    Purpose: 4D cone-beam computed tomography (CBCT) is a beneficial tool for the treatment of movable tumors because it can help us to understand where the tumors are actually located and it has a precise treatment plan. However, general CBCT images have a limitation in that they cannot perfectly perform a sophisticated registration. On the other hand, the Symmetry TM 4D image-guided radiation therapy (IGRT) system of Elekta offers a 4D CBCT registration option. In this study, we evaluated the usefulness of Symmetry TM . Method and Materials: Planning CT images of the CIRS moving lung phantom were acquired 4D multi-detector CT (MDCT), and the images were sorted as 10 phases from 0% phase to 90% phase. The thickness of the CT images was 1 mm. Acquired MDCT images were transferred to the contouring software, and a virtual target was generated. A one-arc volumetric-modulated arc therapy (VMAT) plan was performed by using the treatment planning system on the virtual target. Finally, the movement of the phantom was verified by using the XVI Symmetry TM system. Results: The physical movement of the CIRS moving lung phantom was ±10.0 mm in the superiorinferior direction, ±1.0 mm in the lateral direction, and ±2.5 mm in the anterior-posterior direction. The movement of the phantom was measured from the 4D MDCT registration as ±10.2 mm in the superior-inferior direction, ±0.9 mm in the lateral direction, and ±2.45 mm in the anterior-posterior direction. The movement of the phantom was measured from the SymmetryTM registration as ±10.1 mm in the superior-inferior direction, ±0.9 mm in the lateral direction, and ±2.4 mm in the anterior-posterior direction. Conclusion: We confirmed that 4D CBCT is a beneficial tool for the treatment of movable tumors, and that the 4D registration of SymmetryTM can increase the precision of the registration when a movable tumor is the target of radiation treatment.

  5. VMAT QA: Measurement-guided 4D dose reconstruction on a patient

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E.; Opp, Daniel; Robinson, Joshua; Wolf, Theresa K.; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Live Oak Technologies LLC, Kirkwood, Missouri 63122 (United States); Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2012-07-15

    Purpose: To develop and validate a volume-modulated arc therapy (VMAT) quality assurance (QA) tool that takes as input a time-resolved, low-density ({approx}10 mm) cylindrical surface dose map from a commercial helical diode array, and outputs a high density, volumetric, time-resolved dose matrix on an arbitrary patient dataset. This first validation study is limited to a homogeneous 'patient.'Methods: A VMAT treatment is delivered to a diode array phantom (ARCCHECK, Sun Nuclear Corp., Melbourne, FL). 3DVH software (Sun Nuclear) derives the high-density volumetric dose using measurement-guided dose reconstruction (MGDR). MGDR cylindrical phantom results are then used to perturb the three-dimensional (3D) treatment planning dose on the patient dataset, producing a semiempirical volumetric dose grid. Four-dimensional (4D) dose reconstruction on the patient is also possible by morphing individual sub-beam doses instead of the composite. For conventional (3D) dose comparison two methods were developed, using the four plans (Multi-Target, C-shape, Mock Prostate, and Head and Neck), including their structures and objectives, from the AAPM TG-119 report. First, 3DVH and treatment planning system (TPS) cumulative point doses were compared to ion chamber in a cube water-equivalent phantom ('patient'). The shape of the phantom is different from the ARCCHECK and furthermore the targets were placed asymmetrically. Second, coronal and sagittal absolute film dose distributions in the cube were compared with 3DVH and TPS. For time-resolved (4D) comparisons, three tests were performed. First, volumetric dose differences were calculated between the 3D MGDR and cumulative time-resolved patient (4D MGDR) dose at the end of delivery, where they ideally should be identical. Second, time-resolved (10 Hz sampling rate) ion chamber doses were compared to cumulative point dose vs time curves from 4D MGDR. Finally, accelerator output was varied to assess the linearity of

  6. Clinical and pathological correlations of C4d immunostaining and its infl uence on the outcome of kidney transplant recipients

    Directory of Open Access Journals (Sweden)

    Virna Nowotny Carpio

    2011-09-01

    Full Text Available INTRODUCTION: C4d is a marker of antibody-mediated rejection (ABMR in kidney allografts, although cellular rejection also have C4d deposits. OBJECTIVE: To correlate C4d expression with clinico-pathological parameters and graft outcomes at three years. METHODS: One hundred forty six renal transplantation recipients with graft biopsies by indication were included. C4d staining was performed by paraffin-immunohistochemistry. Graft function and survival were measured, and predictive variables of the outcome were determined by multivariate Cox regression. RESULTS: C4d staining was detected in 48 (31% biopsies, of which 23 (14.7% had diffuse and 25 (16% focal distribution. Pre-transplantation panel reactive antibodies (%PRA class I and II were significantly higher in C4d positive patients as compared to those C4d negative. Both glomerulitis and pericapillaritis were associated to C4d (p = 0.002 and p < 0.001, respectively. The presence of C4d in biopsies diagnosed as no rejection (NR, acute cellular rejection (ACR or interstitial fibrosis/ tubular atrophy (IF/TA did not impact graft function or survival. Compared to NR, ACR and IF/TA C4d-, patients with ABMR C4d+ had the worst graft survival over 3 years (p = 0.034, but there was no difference between ABMR versus NR, ACR and IF/TA that were C4d positive (p = 0.10. In Cox regression, graft function at biopsy and high %PRA levels were predictors of graft loss. CONCLUSIONS: This study confirmed that C4d staining in kidney graft biopsies is a clinically useful marker of ABMR, with well defined clinical and pathological correlations. The impact of C4d deposition in other histologic diagnoses deserves further investigation.

  7. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    International Nuclear Information System (INIS)

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  8. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    Science.gov (United States)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  9. Exploring the functional diversity of the supraglacial environment: Microbial degradation of the pesticide 2,4-D on the Greenland Ice Sheet

    Science.gov (United States)

    Stibal, M.; Bælum, J.; Holben, W. E.; Jacobsen, C. S.

    2012-12-01

    The surface of the Greenland ice sheet (GrIS) harbours a diverse community of heterotrophic microorganisms. Organic compounds of anthropogenic origin, including pesticides, are deposited on the GrIS; however, the fate of these compounds in the ice is currently unknown. In this study we determine the potential of the microbial community from the surface of the GrIS to mineralise the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). It is one of the most easily degraded compounds among the phenoxyacetic acid pesticides, and the ability to mineralise 2,4-D has been found to be widespread in microbial communities around the globe. Functional genes involved in the degradation pathway have also been characterised. Thus, 2,4-D represents a very suitable model compound to use in order to gain an insight into pollutant degradation dynamics in the rapidly changing Arctic region. We collected surface ice cores on the GrIS and incubated them for up to 529 days in microcosms simulating in situ conditions. We measured mineralisation of side-chain- and ring-labelled 14C-2,4-D in the samples and performed quantitative PCR targeting the tfdA gene, encoding an enzyme catalysing the first step in the degradation pathway of 2,4-D, in the DNA extracted from the ice after the experiments. We show that the microbial community on the surface of the GrIS is of low diversity, but contains microbes capable of degrading 2,4-D. The low diversity of the community and the similarity of the detected clones to those from other icy environment clones suggest that the bacterial community on the GrIS is selected from a pool of propagules deposited on the surface of the ice sheet, based on the level of adaptation to the conditions in the surface ice. The 2,4-D degraders are likely present in very low numbers, and they can mineralise 2,4-D at a rate of up to 1 nmol per m2 per day, equivalent to ~26 ng C m-2 d-1. We contend that the surface of the GrIS should not be considered to be a mere reservoir of

  10. A 4D IMRT planning method using deformable image registration to improve normal tissue sparing with contemporary delivery techniques

    Directory of Open Access Journals (Sweden)

    Li Yupeng

    2011-07-01

    Full Text Available Abstract We propose a planning method to design true 4-dimensional (4D intensity-modulated radiotherapy (IMRT plans, called the t4Dplan method, in which the planning target volume (PTV of the individual phases of the 4D computed tomography (CT and the conventional PTV receive non-uniform doses but the cumulative dose to the PTV of each phase, computed using deformable image registration (DIR, are uniform. The non-uniform dose prescription for the conventional PTV was obtained by solving linear equations that required motion-convolved 4D dose to be uniform to the PTV for the end-exhalation phase (PTV50 and by constraining maximum inhomogeneity to 20%. A plug-in code to the treatment planning system was developed to perform the IMRT optimization based on this non-uniform PTV dose prescription. The 4D dose was obtained by summing the mapped doses from individual phases of the 4D CT using DIR. This 4D dose distribution was compared with that of the internal target volume (ITV method. The robustness of the 4D plans over the course of radiotherapy was evaluated by computing the 4D dose distributions on repeat 4D CT datasets. Three patients with lung tumors were selected to demonstrate the advantages of the t4Dplan method compared with the commonly used ITV method. The 4D dose distribution using the t4Dplan method resulted in greater normal tissue sparing (such as lung, stomach, liver and heart than did plans designed using the ITV method. The dose volume histograms of cumulative 4D doses to the PTV50, clinical target volume, lung, spinal cord, liver, and heart on the 4D repeat CTs for the two patients were similar to those for the 4D dose at the time of original planning.

  11. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    Science.gov (United States)

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten

  12. Impact of temporal probability in 4D dose calculation for lung tumors.

    Science.gov (United States)

    Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi

    2015-11-08

    The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can

  13. SU-E-J-187: Individually Optimized Contrast-Enhancement 4D-CT for Pancreatic Adenocarcinoma in Radiotherapy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xue, M; Patel, K; Regine, W; Lane, B; D' Souza, W; Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States); Klahr, P [Philips Healthcare, Cleveland, OH (United States)

    2014-06-01

    Purpose: To study the feasibility of individually optimized contrastenhancement (CE) 4D-CT for pancreatic adenocarcinoma (PDA) in radiotherapy simulation. To evaluate the image quality and contrast enhancement of tumor in the CE 4D-CT, compared to the clinical standard of CE 3D-CT and 4D-CT. Methods: In this IRB-approved study, each of the 7 PDA patients enrolled underwent 3 CT scans: a free-breathing 3D-CT with contrast (CE 3D-CT) followed by a 4D-CT without contrast (4D-CT) in the first study session, and a 4D-CT with individually synchronized contrast injection (CE 4D-CT) in the second study session. In CE 4D-CT, the time of full contrast injection was determined based on the time of peak enhancement for the test injection, injection rate, table speed, and longitudinal location and span of the pancreatic region. Physicians contoured both the tumor (T) and the normal pancreatic parenchyma (P) on the three CTs (end-of-exhalation for 4D-CT). The contrast between the tumor and normal pancreatic tissue was computed as the difference of the mean enhancement level of three 1 cm3 regions of interests in T and P, respectively. Wilcoxon rank sum test was used to statistically compare the scores and contrasts. Results: In qualitative evaluations, both CE 3D-CT and CE 4D-CT scored significantly better than 4D-CT (4.0 and 3.6 vs. 2.6). There was no significant difference between CE 3D-CT and CE 4D-CT. In quantitative evaluations, the contrasts between the tumor and the normal pancreatic parenchyma were 0.6±23.4, −2.1±8.0, and −19.6±28.8 HU, in CE 3D-CT, 4D-CT, and CE 4D-CT, respectively. Although not statistically significant, CE 4D-CT achieved better contrast enhancement between the tumor and the normal pancreatic parenchyma than both CE 3D-CT and 4DCT. Conclusion: CE 4D-CT achieved equivalent image quality and better contrast enhancement between tumor and normal pancreatic parenchyma than the clinical standard of CE 3D-CT and 4D-CT. This study was supported in part

  14. Thoracic tumor volume delineation in 4D-PET/CT by low dose interpolated CT for attenuation correction.

    Directory of Open Access Journals (Sweden)

    Tzung-Chi Huang

    Full Text Available PURPOSE: 4D-PET/CT imaging is an excellent solution for reducing the breathing-induced effects in both CT and PET images. In 4D-PET/CT, 4D-CT images are selected to match those of 4D-PET phase by phase and the corresponding phases are used for attenuation correction in 4D-PET. However, the high radiation dose that patients acquire while undergoing 4D-CT imaging for diagnostic purposes remains a concern. This study aims to assess low-dose interpolated CT (ICT for PET attenuation correction (PETICT in thoracic tumor volume delineation. METHODS AND MATERIALS: Twelve thoracic cancer patients (10 esophageal and 2 lung cancer cases were recruited. All patients underwent 4D-PET/CT scans. The optical flow method based on image intensity gradient was applied to calculate the motion displacement in three dimensions for each voxel on two original extreme CT phases in the respiratory cycle, end-inspiration and end-expiration. The interpolated CTs were generated from two phases of the original 4D-CT using motion displacement. RESULTS: Tumor motion due to respiration was estimated in the anterior-posterior dimension, the lateral dimension and the superior-inferior dimension by the optical flow method. The PETICT and ICT (4D-PET ICT/ICT matched each other spatially in all the phases. The distortion of tumor shape and size resulting from respiratory motion artifacts were not observed in 4D-PETICT. The tumor volume measured by 4D-PET ICT/ICT correlated to the tumor volume measured by 4D-PET/CT (p = 0.98. CONCLUSIONS: 4D-PETICT consistently represented the interpretation of FDG uptake as effectively as 4D-PET. 4D-PET ICT/ICT is a low-dose alternative to 4D-CT and significantly improves the interpretation of PET and CT images, while solving the respiratory motion problem as effectively as 4D-PET/CT.

  15. Vertical D4-D2-D0 bound states on K3 fibrations and modularity

    DEFF Research Database (Denmark)

    Bouchard, Vincent; Creutzig, Thomas; Diaconescu, Duiliu-Emanuel;

    2016-01-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string the...... theory. This leads to a new construction of vector valued modular forms which exhibits some of the features of a generalized Hecke transform.......An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string...

  16. X-ray tomographic intervention guidance: Towards real-time 4D imaging

    CERN Document Server

    Bartling, Sönke

    2016-01-01

    Implementation of real-time, continuous, and three-dimensional imaging (4D intervention guidance) would be a quantum leap for minimally-invasive medicine. It allows guidance during interventions by assessing the spatial position of instruments continuously in respect to their surroundings. Recent research showed that it is feasible using X-ray and novel tomographic reconstruction approaches. Radiation dose stays within reasonable limits. This article provides abstractions and background information together with an outlook on these prospects. There are explanations of how situational awareness during interventions is generated today and how they will be in future. The differences between fluoroscopically and CT-guided interventions are eluted to within the context of these developments. The exploration of uncharted terrain between these current methods is worth pursuing. Necessary image quality of 4D intervention guidance varies relevantly from that of standard computed tomography. Means to analyze the risk-b...

  17. The epigenome, 4D nucleome and next-generation neuropsychiatric pharmacogenomics.

    Science.gov (United States)

    Higgins, Gerald A; Allyn-Feuer, Ari; Handelman, Samuel; Sadee, Wolfgang; Athey, Brian D

    2015-01-01

    The 4D nucleome has the potential to render challenges in neuropsychiatric pharmacogenomics more tractable. The epigenome roadmap consortium has demonstrated the critical role that noncoding regions of the human genome play in determination of human phenotype. Chromosome conformation capture methods have revealed the 4D organization of the nucleus, bringing interactions between distant regulatory elements into close spatial proximity in a periodic manner. These functional interactions have the potential to elucidate mechanisms of CNS drug response and side effects that previously have been unrecognized. This perspective assesses recent advances likely to reveal novel pharmacodynamic regulatory pathways in human brain, charting a future new avenue of pharmacogenomics research, using the spatial and temporal architecture of the human epigenome as its foundation.

  18. AN PROFICIENT LS BASED SWITCHED PREDICTOR FOR LOSSLESS CONFINING OF 4-D MEDICAL

    Directory of Open Access Journals (Sweden)

    UTSAV THAKAR

    2013-02-01

    Full Text Available Techniques for medical imaging like fMRI, CT, MRI produces large amount of digital data. This paper proposes a context based LS based predictors for lossless compression of such 4-D images. Redundancy inthe form of smoothness and uniform human anatomical structures as well as periodic motion of this structures and presence of high correlation in temporal domain of these 4-D medical image sequences has been exploited. Slope is defined as one of the criteria which predict the level of activity. Based on the estimated slope the current pixel is categorized into one of the seven classification bins. Optimal predictors are assigned to each bin and classification of bin boundaries and estimation of optimal predictors is doneoffline. The proposed method is computationally very simple as it does not require motion estimation which, in general, is a computationally complex process.

  19. M4D: a powerful tool for structured programming at assembly level for MODCOMP computers

    International Nuclear Information System (INIS)

    Structured programming techniques offer numerous benefits for software designers and form the basis of the current high level languages. However, these techniques are generally not available to assembly programmers. The M4D package was therefore developed for a large project to enable the use of structured programming constructs such as DO.WHILE-ENDDO and IF-ORIF-ORIF...-ELSE-ENDIF in the assembly code for MODCOMP computers. Programs can thus be produced that have clear semantics and are considerably easier to read than normal assembly code, resulting in reduced program development and testing effort, and in improved long-term maintainability of the code. This paper describes the M4D structured programming tool as implemented for MODCOMP'S MAX III and MAX IV assemblers, and illustrates the use of the facility with a number of examples

  20. Vertical D4-D2-D0 bound states on K3 fibrations and modularity

    CERN Document Server

    Bouchard, Vincent; Diaconescu, Duiliu-Emanuel; Doran, Charles; Quigley, Callum; Sheshmani, Artan

    2016-01-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string theory. This leads to a new construction of vector valued modular forms which exhibits some of the features of a generalized Hecke transform.

  1. N=4, d=3 Born-Infeld theory in component approach

    CERN Document Server

    Kozyrev, Nikolay

    2016-01-01

    Using the formalism of nonlinear realizations we construct the component on-shell action of the N=4,d=3 Born-Infeld theory, which is the action of N=2, d=3 vector supermultiplet, fixed by invariance with respect to the additional spontaneously broken N=2, d=3 supersymmetry. Our construction shows that dealing with the systems with partial breaking of supersymmetry with vector fields in the multiplet, it is preferrable to use their formulation in terms of fermionic superfields only.

  2. Callogenesis in leaves of Kalanchoe pinnata Lam. by 2,4-D and BA action

    Directory of Open Access Journals (Sweden)

    M.R.A. Santos

    2014-01-01

    Full Text Available The Kalanchoe pinnata Lam. is a bush species of the Crassulaceae that is distinguished by its important medicinal properties. Its leaves are used as cataplasm to treat headaches and wounds. There is evidence for a hypotensive and anti-inflammatory effect. Techniques of plant tissue culture have been applied to plant species that produce substances likely to be explored in pharmacology, cell suspension being the main technique. At the industrial level, this method utilizes bioreactors in order to produce secondary metabolites on a large scale. The objective of this study was to evaluate the effects of in vitro combinations of 2,4-dichlorophenoxiacetic acid (2,4-D and benzylaminopurine (BA on callus induction in leaf explants of K. pinnata. Leaf fragments were inoculated in MS medium supplemented with 3.0% sucrose, 0.8% agar and factorial combinations of 2,4-D (0.00, 4.52, 9.06, 18.12 µM and BA (0.00, 4.44, 8.88, 17.76 µM. The cultures were kept in the darkness at 24±2ºC for 50 days. The percentage of callus induction and the area of explants covered by callus cells were evaluated. In the absence of growth regulators, callus induction did not occur, with necrosis of all explants. The highest percentage of callus induction was 100%, obtained with the combination of 9.06 µM 2,4-D and 8.88 µM BA, but the calluses covered only 25% of the leaf area. The most efficient combination was 4.52 µM 2,4-D and 8.88 µM BA, resulting in 91% callus induction with 50 to 100% of the explants being covered by callus cells.

  3. Hyperspectral lidar in non-destructive 4D monitoring of climate variables

    Science.gov (United States)

    Kaasalainen, S.; Hakala, T.; Nevalainen, O.; Puttonen, E.; Anttila, K.

    2014-09-01

    The first applications of a prototype 8-channel full waveform active hyperspectral lidar (HSL) show a possibility to determine various target 3D characteristics with remote observations. The results open up a prospect for four-dimensional (4D - a three dimensional target representation with time as a fourth dimension) monitoring of important climate variables, such as those related to tree physiology or snow pollution.

  4. Non-Abelian Electric-Magnetic Duality with Supersymmetry in 4D and 10D

    CERN Document Server

    Nishino, Hitoshi

    2015-01-01

    We present electric-magnetic (Hodge) duality formulation for non-Abelian gauge groups with N=1 supersymmetry in 3+1 (4D) dimensions. Our system consists of three multiplets: (i) A super-Yang-Mills vector multiplet (YMVM) $(A_\\mu{}^I, \\lambda^I)$, (ii) a dual vector multiplet (DVM) $(B_\\mu{}^I, \\chi^I)$, and (iii) an unphysical tensor multiplet (TM) $(C_{\\mu\

  5. Robust segmentation of 4D cardiac MRI-tagged images via spatio-temporal propagation

    Science.gov (United States)

    Qian, Zhen; Huang, Xiaolei; Metaxas, Dimitris N.; Axel, Leon

    2005-04-01

    In this paper we present a robust method for segmenting and tracking cardiac contours and tags in 4D cardiac MRI tagged images via spatio-temporal propagation. Our method is based on two main techniques: the Metamorphs Segmentation for robust boundary estimation, and the tunable Gabor filter bank for tagging lines enhancement, removal and myocardium tracking. We have developed a prototype system based on the integration of these two techniques, and achieved efficient, robust segmentation and tracking with minimal human interaction.

  6. Digit ratio (2D:4D is associated with breast cancer

    Directory of Open Access Journals (Sweden)

    Patrícia Helena Costa Mendes

    2016-07-01

    Full Text Available Purpose: Digit ratio (2D:4D has been considered as a proxy biomarker for prenatal hormonal exposure and may represent an individual’s predisposition to breast cancer. The purpose of the present study is to investigate whether there is a link between digit ratio and breast cancer in a Brazilian population.Methods: Digital measurements of the lengths of the index and ring fingers of both hands were obtained from women with breast cancer (n = 100 and age-matched controls (n = 100 using a digital Vernier calliper. Mean digit ratios of right hands, left hands, and right minus left hand 2D:4D (DR-L were compared between both groups. Data were analysed by the Student's t-test for unpaired samples, Mann-Whitney test, and Spearman`s correlation with a significance level of 5%.Results: The patients with breast cancer presented significantly higher right and left 2D:4D (both p < 0.001 and higher DR-L (p = 0.032 than controls. Among breast cancer cases, there was a significantly negative correlation between left 2D:4D and age diagnosed with breast cancer (p = 0.018.Conclusion: Digit ratio offers a valid retrospective biomarker of action of prenatal hormones and might be associated with breast cancer risk and age at onset of breast cancer. It suggests that higher exposure or sensitivity to prenatal oestrogen might be associated with a higher risk of breast cancer and with earlier onset of the disease.

  7. 4D Nanoscale Diffraction Observed by Convergent-Beam Ultrafast Electron Microscopy

    OpenAIRE

    Yurtsever, Aycan; Zewail, Ahmed H.

    2009-01-01

    Diffraction with focused electron probes is among the most powerful tools for the study of time-averaged nanoscale structures in condensed matter. Here, we report four-dimensional (4D) nanoscale diffraction, probing specific site dynamics with 10 orders of magnitude improvement in time resolution, in convergent-beam ultrafast electron microscopy (CB-UEM). As an application, we measured the change of diffraction intensities in laser-heated crystalline silicon as a function of time and fluence....

  8. 4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers

    Science.gov (United States)

    Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Todorich, Bozho; Shieh, Christine; Kuo, Anthony; Toth, Cynthia; Izatt, Joseph A.

    2016-03-01

    Ophthalmic surgeons manipulate micron-scale tissues using stereopsis through an operating microscope and instrument shadowing for depth perception. While ophthalmic microsurgery has benefitted from rapid advances in instrumentation and techniques, the basic principles of the stereo operating microscope have not changed since the 1930's. Optical Coherence Tomography (OCT) has revolutionized ophthalmic imaging and is now the gold standard for preoperative and postoperative evaluation of most retinal and many corneal procedures. We and others have developed initial microscope-integrated OCT (MIOCT) systems for concurrent OCT and operating microscope imaging, but these are limited to 2D real-time imaging and require offline post-processing for 3D rendering and visualization. Our previously presented 4D MIOCT system can record and display the 3D surgical field stereoscopically through the microscope oculars using a dual-channel heads-up display (HUD) at up to 10 micron-scale volumes per second. In this work, we show that 4D MIOCT guidance improves the accuracy of depth-based microsurgical maneuvers (with statistical significance) in mock surgery trials in a wet lab environment. Additionally, 4D MIOCT was successfully performed in 38/45 (84%) posterior and 14/14 (100%) anterior eye human surgeries, and revealed previously unrecognized lesions that were invisible through the operating microscope. These lesions, such as residual and potentially damaging retinal deformation during pathologic membrane peeling, were visualized in real-time by the surgeon. Our integrated system provides an enhanced 4D surgical visualization platform that can improve current ophthalmic surgical practice and may help develop and refine future microsurgical techniques.

  9. Unintended effects of the herbicides 2,4-D and dicamba on lady beetles.

    Science.gov (United States)

    Freydier, Laurène; Lundgren, Jonathan G

    2016-08-01

    Weed resistance to glyphosate and development of new GM crops tolerant to 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba is expected to lead to increased use of these herbicides in cropland. The lady beetle, Coleomegilla maculata is an important beneficial insect in cropland that is commonly used as an indicator species in safety evaluations of pesticides. Here, we examined the lethal and non-lethal effects of 2,4-D and dicamba active ingredients and commercial formulations to this lady beetle species, and tested for synergistic effects of the herbicides. Second instars of lady beetles were exposed to an experimental treatment, and their mortality, development, weight, sex ratio, fecundity, and mobility was evaluated. Using similar methods, a dose-response study was conducted on 2,4-D with and without dicamba. The commercial formulation of 2,4-D was highly lethal to lady beetle larvae; the LC90 of this herbicide was 13 % of the label rate. In this case, the "inactive" ingredients were a key driver of the toxicity. Dicamba active ingredient significantly increased lady beetle mortality and reduced their body weight. The commercial formulations of both herbicides reduced the proportion of males in the lady beetle population. The herbicides when used together did not act synergistically in their toxicity toward lady beetles versus when the chemistries were used independently. Our work shows that herbicide formulations can cause both lethal and sublethal effects on non-target, beneficial insects, and these effects are sometimes driven by the "inactive" ingredients. The field-level implications of shifts in weed management practices on insect management programs should receive further attention. PMID:27282375

  10. A Proposal On Culling & Filtering A Coxeter Group For 4D, N = 1 Spacetime SUSY Representations

    CERN Document Server

    Gates, D E A

    2016-01-01

    We review the mathematical tools required to cull and filter representations of the Coxeter Group $BC_4$ into providing bases for the construction of minimal off-shell representations of the 4D, $ {\\cal N}$ = 1 spacetime supersymmetry algebra. Of necessity this includes a description of the mathematical mechanism by which four dimensional Lorentz symmetry appears as an emergent symmetry in the context of one dimensional adinkras with four colors described by the Coxeter Group $BC_4$.

  11. Computational biomechanics and experimental validation of vessel deformation based on 4D-CT imaging of the porcine aorta

    Science.gov (United States)

    Hazer, Dilana; Finol, Ender A.; Kostrzewa, Michael; Kopaigorenko, Maria; Richter, Götz-M.; Dillmann, Rüdiger

    2009-02-01

    Cardiovascular disease results from pathological biomechanical conditions and fatigue of the vessel wall. Image-based computational modeling provides a physical and realistic insight into the patient-specific biomechanics and enables accurate predictive simulations of development, growth and failure of cardiovascular disease. An experimental validation is necessary for the evaluation and the clinical implementation of such computational models. In the present study, we have implemented dynamic Computed-Tomography (4D-CT) imaging and catheter-based in vivo measured pressures to numerically simulate and experimentally evaluate the biomechanics of the porcine aorta. The computations are based on the Finite Element Method (FEM) and simulate the arterial wall response to the transient pressure-based boundary condition. They are evaluated by comparing the numerically predicted wall deformation and that calculated from the acquired 4D-CT data. The dynamic motion of the vessel is quantified by means of the hydraulic diameter, analyzing sequences at 5% increments over the cardiac cycle. Our results show that accurate biomechanical modeling is possible using FEM-based simulations. The RMS error of the computed hydraulic diameter at five cross-sections of the aorta was 0.188, 0.252, 0.280, 0.237 and 0.204 mm, which is equivalent to 1.7%, 2.3%, 2.7%, 2.3% and 2.0%, respectively, when expressed as a function of the time-averaged hydraulic diameter measured from the CT images. The present investigation is a first attempt to simulate and validate vessel deformation based on realistic morphological data and boundary conditions. An experimentally validated system would help in evaluating individual therapies and optimal treatment strategies in the field of minimally invasive endovascular surgery.

  12. Global structure of regular tori in a generic 4D symplectic map

    Science.gov (United States)

    Lange, S.; Richter, M.; Onken, F.; Bäcker, A.; Ketzmerick, R.

    2014-06-01

    For the case of generic 4d symplectic maps with a mixed phase space, we investigate the global organization of regular tori. For this, we compute elliptic 1-tori of two coupled standard maps and display them in a 3d phase-space slice. This visualizes how all regular 2-tori are organized around a skeleton of elliptic 1-tori in the 4d phase space. The 1-tori occur in two types of one-parameter families: (α) Lyapunov families emanating from elliptic-elliptic periodic orbits, which are observed to exist even far away from them and beyond major resonance gaps, and (β) families originating from rank-1 resonances. At resonance gaps of both types of families either (i) periodic orbits exist, similar to the Poincaré-Birkhoff theorem for 2d maps, or (ii) the family may form large bends. In combination, these results allow for describing the hierarchical structure of regular tori in the 4d phase space analogously to the islands-around-islands hierarchy in 2d maps.

  13. The New 4D-En-Var Regional Deterministic Prediction System at the Canadian Meteorological Center

    Science.gov (United States)

    Caron, Jean-François; Milewski, Thomas; Reszka, Mateusz; Fillion, Luc; Buehner, Mark; St-James, Judy; Pellerin, Simon

    2014-05-01

    The regional deterministic prediction system (RDPS) at the Canadian Meteorological Center will be replaced in the near future by the 4D-En-Var scheme, in which the background error covariances are a combination of climatological covariances and flow-dependent covariances derived from an ensemble-Kalman-filter global prediction system. The new approach is computationally less expensive than 4D-Var (currently operational) and has shown to be a promising technique in the context of global data assimilation. The RDPS uses a limited-area domain covering all of North America and a horizontal grid spacing of 10 km. Here we discuss the final stages of the development of this scheme, shortly before introduction into operations. Specifically, we show a comparison of the forecasting skill between the operational system and the new 4D-En-Var scheme, as well as the impact of several improvements related to the treatment of observations and the addition of new observation sources such as ground-based GPS.

  14. A Concise and Comprehensive Description of Shoulder Pathology and Procedures: The 4D Code System

    Directory of Open Access Journals (Sweden)

    Laurent Lafosse

    2012-01-01

    Full Text Available Background. We introduce a novel description system of shoulder pathoanatomy. Its goal is to provide a comprehensive three-dimensional picture, with an additional component of time; thus, we call it the 4D code. Methods. Each line of the code starts with right versus left and a time designation. The pillar components are recorded regardless of pathology; they include subscapularis, long head of biceps tendon, supraspinatus, infraspinatus, and teres minor. Secondary elements can be added if there is observed pathology, including acromioclavicular joint, glenohumeral joint, labrum, tear configuration, location and extent of partial cuff tear, calcific tendonitis, fatty infiltration, and neuropathy. Results. We provide two illustrative examples of patients which show the ease and effectiveness of the 4D code. With a few simple lines, significant amount of information about patients’ pathology, surgery, and recovery can be easily conveyed. Discussion. We utilize existing validated classification systems for parts of the shoulder and provide a frame work to build a comprehensive picture. The alphanumeric code provides a simple language that is universally understood. The 4D code is concise yet complete. It seeks to improve efficiency and accuracy of the communication, documentation, and visualization of shoulder pathology within individual practices and between providers.

  15. Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test.

    Science.gov (United States)

    Ateeq, Bushra; Abul Farah, M; Niamat Ali, M; Ahmad, Waseem

    2002-02-15

    The meristematic mitotic cells of Allium cepa is an efficient cytogenetic material for chromosome aberration assay on environmental pollutants. For assessing genotoxicity of pentachlorophenol (PCP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide (butachlor), 50% effective concentration (EC(50)), c-mitosis, stickiness, chromosome breaks and mitotic index (MI) were used as endpoints of genotoxicity. EC(50) values for PCP and butachlor are 0.73 and 5.13 ppm, respectively. 2,4-D evidently induced morphological changes at higher concentrations. Some changes like crochet hooks, c-tumours and broken roots were unique to 2,4-D at 5-20 ppm. No such abnormalities were found in PCP and butachlor treated groups, however, root deteriorated and degenerated at higher concentrations (butachlor it was recorded 71.6%, which is near to the control value. All chemicals induced chromosome aberrations at statistically significant level. The highest chromosome aberration frequency (11.90%) was recorded in PCP at 3 ppm. Large number of c-mitotic anaphases indicated that butachlor acts as potent spindle inhibitor, whereas, breaks, bridges, stickiness and laggards were most frequently found in PCP showing that it is a potent clastogen.

  16. Sema4d is required for the development of the hindbrain boundary and skeletal muscle in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zeng, Zhen; Wei, Juncheng; Jiang, Lijun; Ma, Quanfu; Wu, Mingfu; Huang, Xiaoyuan; Ye, Shuangmei; Li, Ye; Ma, Ding [Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Gao, Qinglei, E-mail: qlgao@tjh.tjmu.edu.cn [Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2013-04-05

    Highlights: ► Sema4d was expressed at all developmental stages of zebrafish. ► Knockdown of sema4d in embryos resulted in defects in the hindbrain and the trunk structure. ► Knockdown of sema4d in embryos upregulated the expression of three hindbrain rhombomere markers. ► Knockdown of sema4d in embryos increased the expression of myogenic regulatory factors. ► Knockdown of sema4d in embryos resulted in an obvious increase of cell apoptosis. -- Abstract: Semaphorin4d (SEMA4D), also known as CD100, an oligodendrocyte secreted R-Ras GTPase-activating protein (GAP), affecting axonal growth is involved in a range of processes including cell adhesion, motility, angiogenesis, immune responses and tumour progression. However, its actual physiological mechanisms and its role in development remain unclear. This study has focused on the role of sema4d in the development and expression patterns in zebrafish embryos and the effect of its suppression on development using sema4d-specific antisense morpholino-oligonucleotides. In this study the knockdown of sema4d, expressed at all developmental stages, lead to defects in the hindbrain and trunk structure of zebrafish embryos. In addition, these phenotypes appeared to be associated with the abnormal expression of three hindbrain rhombomere boundary markers, wnt1, epha4a and foxb1.2, and two myogenic regulatory factors, myod and myog. Further, a notable increase of cell apoptosis appeared in the sema4d knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that sema4d plays an important role in the development of the hindbrain and skeletal muscle.

  17. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    Science.gov (United States)

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.

    2012-12-01

    NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function

  18. 4D seismic reservoir characterization, integrated with geo-mechanical modelling

    NARCIS (Netherlands)

    Angelov, P. V.

    2009-01-01

    Hydrocarbon production induces time-lapse changes in the seismic attributes (travel time and amplitude) both at the level of the producing reservoir and in the surrounding rock. The detected time-lapse changes in the seismic are induced from the changes in the petrophysical properties of the rock, i

  19. Building Spatiotemporal Anatomical Models using Joint 4-D Segmentation, Registration, and Subject-Specific Atlas Estimation

    OpenAIRE

    Prastawa, Marcel; Awate, Suyash P.; Gerig, Guido

    2012-01-01

    Longitudinal analysis of anatomical changes is a vital component in many personalized-medicine applications for predicting disease onset, determining growth/atrophy patterns, evaluating disease progression, and monitoring recovery. Estimating anatomical changes in longitudinal studies, especially through magnetic resonance (MR) images, is challenging because of temporal variability in shape (e.g. from growth/atrophy) and appearance (e.g. due to imaging parameters and tissue properties affecti...

  20. Radiotherapy of tumors under respiratory motion. Estimation of the motional velocity field and dose accumulation based on 4D image data

    International Nuclear Information System (INIS)

    belong to the most precise methods currently available. In clinical practice, however, there exists the problem that many medical facilities are not equipped with 4D imaging devices. Further, 4D images still offer only a snapshot of the patient-specific motion range and potential motion variability may limit the conclusions that can be drawn from them. To address these aspects, in the next part of the thesis - based on the optimized methods for motion field estimation in 4D CT image data and further including statistical motion information and models, respectively - model-based approaches for motion field estimation and prediction are developed. First, a novel approach for statistical modeling of lung motion in a patient collective is presented, and methods for adapting the model for prediction of patient-specific motion patterns are provided. The latter allow, for instance, the estimation of respiratory lung and lung tumor motion for radiation therapy treatment planning, if no temporally resolved image sequences are available for the patient; this use case is demonstrated. Further, techniques of multivariate statistics are applied to account for variations of motion patterns by integrating additional information provided by motion indicators used in 4D radiation therapy (e.g. abdominal belts or spirometer measurements) for a patient-specific, situation-related adaption of the motion fields computed using 4D images and the methods for motion field estimation described before. In the last part of the thesis, the developed methods are finally applied for assessing and analyzing the dosimetric impact of respiratory motion during radiation therapy of lung tumors. Both 3D conformal radiotherapy and intensity modulated radiotherapy are modeled as treatment modalities. In the case of intensity modulated radiotherapy, short delivery times for single radiation fields lead to the risk that the corresponding dose contributions are not only subject to a motion-induced dose blurring

  1. Association between a variation in the phosphodiesterase 4D gene and bone mineral density

    Directory of Open Access Journals (Sweden)

    Sambrook Philip N

    2005-03-01

    Full Text Available Abstract Background Fragility fractures caused by osteoporosis are a major cause of morbidity and mortality in aging populations. Bone mineral density (BMD is a useful surrogate marker for risk of fracture and is a highly heritable trait. The genetic variants underlying this genetic contribution are largely unknown. Methods We performed a large-scale association study investigating more than 25,000 single nucleotide polymorphisms (SNPs located within 16,000 genes. Allele frequencies were estimated in contrasting DNA pools from white females selected for low (2, n = 319 and high (> 1.11 g/cm2, n = 321 BMD at the lumbar spine. Significant findings were verified in two additional sample collections. Results Based on allele frequency differences between DNA pools and subsequent individual genotyping, one of the candidate loci indicated was the phosphodiesterase 4D (PDE4D gene region on chromosome 5q12. We subsequently tested the marker SNP, rs1498608, in a second sample of 138 white females with low (2 and 138 females with high (>1.04 g/cm2 lumbar spine BMD. Odds ratios were 1.5 (P = 0.035 in the original sample and 2.1 (P = 0.018 in the replication sample. Association fine mapping with 80 SNPs located within 50 kilobases of the marker SNP identified a 20 kilobase region of association containing exon 6 of PDE4D. In a second, family-based replication sample with a preponderance of females with low BMD, rs1498608 showed an opposite relationship with BMD at different sites (p = 0.00044-0.09. We also replicated the previously reported association of the Ser37Ala polymorphism in BMP2, known to interact biologically with PDE4D, with BMD. Conclusion This study indicates that variants in the gene encoding PDE4D account for some of the genetic contribution to bone mineral density variation in humans. The contrasting results from different samples indicate that the effect may be context-dependent. PDE4 inhibitors have been shown to increase bone mass in

  2. Carbaryl, 2,4-D, and Triclopyr adsorption in thatch-soil ecosystems.

    Science.gov (United States)

    Raturi, S; Islam, K R; Caroll, M J; Hill, R L

    2005-01-01

    Thatch development in intensively managed turf sites may cause environmental concerns for greater sorption or leaching of applied chemicals in terrestrial ecosystems. To determine the adsorption potential of Carbaryl (1-Napthyl N-methylcarbamate), 2,4-D (2,4-dichloro-phenoxyacetic acid), and Triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) in turf ecosystems, composite thatch and underlying soil samples from three-and six-year-old stands of cool-season Southshore creeping bentgrass (Agrostis palustris Huds.) and warm-season Meyer zoysiagrass (Zoysia japonica Steud.) were collected. The samples were processed and analyzed for total organic carbon (COrg); extractable (CExt), humic (CHA) and fulvic acid (CFA); anthrone reactive nonhumic carbon (ARC) fractions; and CHA and CFA associated iron (Fe) contents. Pesticide adsorption capacity (Kf) and intensity (1/n), organic carbon partition coefficient (KOC) and Gibbs free energy change (deltaG) were calculated for thatch materials and the underlying soils using a modified batch/flow technique. Both bentgrass (BT) and zoysiagrass thatch (ZT) contained a greater concentration of CExt, CFA, CHA, and ARC than the respective soils (BS and ZS). The CExt, CFA, CHA, and ARC concentration was higher in BT compared with ZT. The BT contained a greater concentration of bound Fe in both CFA and CHA fractions than in BS, whereas ZT had more bound Fe in CHA fraction than in ZS. On average, the BT had a greater concentration of bound Fe in CExt, CFA, and CHA fractions than in the ZT. Among the pesticides, Carbaryl had higher Kf and 1/n values than 2,4-D and Triclopyr for both thatch and soil. Although the KOC and deltaG values of Carbaryl were higher in both BT and ZT than in the underlying soils, the KOC and deltaG values of 2,4-D were significantly higher in BS and ZS than in the overlying thatch materials. The 2,4-D and Triclopyr had higher leaching indices (LI) than Carbaryl for both BT and ZT materials than the respective soils

  3. 4D micro-CT for cardiac and perfusion applications with view under sampling

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Cristian T; Johnston, Samuel M; Qi Yi; Johnson, G Allan, E-mail: Cristian.Badea@duke.edu [Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710 (United States)

    2011-06-07

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  4. 4d → 4f resonance in photoabsorption of cerium ion Ce3+ and endohedral cerium in fullerene complex {\\rm{Ce}}@{{{\\rm{C}}}_{82}}^{+}

    Science.gov (United States)

    Schrange-Kashenock, G.

    2016-09-01

    The theoretical investigation of the single-photoionization spectra in the 4d-resonance region (120-150 eV) for the ionic cerium Ce3+ and cerium in the endohedral complex {{Ce}}@{{{{C}}}82}+ (in practice, {{{Ce}}}3+@{{{{C}}}82}2-) is presented. The fullerene cage is modeled by ab initio spherical jellium shell with an accurate account for the real distribution of carbon electron density. The oscillator strengths are calculated within the multiconfiguration Dirac-Fock (MCDF) approach for phototransitions from the outermost shells of the ion Ce3+ with and without the influence of the potential generated by a fullerene cage. It is shown that the integrated oscillator strengths have the main contribution from the Ce3+ 4d → 4f (ten possible from the phototransitions {}2F{7/2,5/2}\\to {}2D{3/2,5/2},{}2F{5/2,7/2},{}2G{5/2,7/2}) resonance photoexcitations. The corresponding precise MCDF values for the oscillator strengths and the transition energies are presented for the first time. It is demonstrated that the resonance {f}4d\\to 4f oscillator strengths are slightly affected by the presence of the cage potential, despite the fact that the spectral levels structure is changed when the effect of this potential is included. The Auger 4d -1 decay from the cerium free ion Ce3+ and the encapsulated endohedral ion Ce3+@ are considered within the two-step model and the corresponding Lorentzian profiles are presented. This model clearly reveals the correspondence of the complex resonance profile in the Ce3+ photoabsorption to the fine structure of ion energy levels. The smoothing of the resonance profile in the photoabsorption of the endohedral system {{Ce}}@{{{{C}}}82}+ compared with the free ion Ce3+ is attributed to increasing the linewidths of the Auger transitions. This increase is estimated from the relevant experiment (Müller et al 2008 Phys. Rev. Lett. 101 133001) to be strong; as at least three times the value for an isolated ion. The presence of the confining fullerene

  5. 4d → 4f resonance in photoabsorption of cerium ion Ce3+ and endohedral cerium in fullerene complex {\\rm{Ce}}@{{{\\rm{C}}}_{82}}^{+}

    Science.gov (United States)

    Schrange-Kashenock, G.

    2016-09-01

    The theoretical investigation of the single-photoionization spectra in the 4d-resonance region (120–150 eV) for the ionic cerium Ce3+ and cerium in the endohedral complex {{Ce}}@{{{{C}}}82}+ (in practice, {{{Ce}}}3+@{{{{C}}}82}2-) is presented. The fullerene cage is modeled by ab initio spherical jellium shell with an accurate account for the real distribution of carbon electron density. The oscillator strengths are calculated within the multiconfiguration Dirac–Fock (MCDF) approach for phototransitions from the outermost shells of the ion Ce3+ with and without the influence of the potential generated by a fullerene cage. It is shown that the integrated oscillator strengths have the main contribution from the Ce3+ 4d → 4f (ten possible from the phototransitions {}2F{7/2,5/2}\\to {}2D{3/2,5/2},{}2F{5/2,7/2},{}2G{5/2,7/2}) resonance photoexcitations. The corresponding precise MCDF values for the oscillator strengths and the transition energies are presented for the first time. It is demonstrated that the resonance {f}4d\\to 4f oscillator strengths are slightly affected by the presence of the cage potential, despite the fact that the spectral levels structure is changed when the effect of this potential is included. The Auger 4d ‑1 decay from the cerium free ion Ce3+ and the encapsulated endohedral ion Ce3+@ are considered within the two-step model and the corresponding Lorentzian profiles are presented. This model clearly reveals the correspondence of the complex resonance profile in the Ce3+ photoabsorption to the fine structure of ion energy levels. The smoothing of the resonance profile in the photoabsorption of the endohedral system {{Ce}}@{{{{C}}}82}+ compared with the free ion Ce3+ is attributed to increasing the linewidths of the Auger transitions. This increase is estimated from the relevant experiment (Müller et al 2008 Phys. Rev. Lett. 101 133001) to be strong; as at least three times the value for an isolated ion. The presence of the confining

  6. The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Peter W.A. [Toronto Western Hospital, UHN, Division of Neuroradiology, Department of Medical Imaging, Toronto, Ontario (Canada); Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Taeshineetanakul, Patamintita; Terbrugge, Karel G.; Krings, Timo [Toronto Western Hospital, UHN, Division of Neuroradiology, Department of Medical Imaging, Toronto, Ontario (Canada); Schenk, Barry; Brouwer, Patrick A. [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands)

    2012-02-15

    We aimed to evaluate the use of time-resolved whole-head CT angiography (4D-CTA) in patients with an untreated arteriovenous malformation of the brain (bAVM), as demonstrated by catheter angiography (DSA). Seventeen patients with a DSA-proven bAVM were enrolled. These were subjected to 4D-CTA imaging using a 320 detector row CT scanner. Using a standardized scoring sheet, all studies were analyzed by a panel of three readers. This panel was blind to the DSA results at the time of reading the 4D-CTA. 4D-CTA detected all bAVMs. With regard to the Spetzler-Martin grade, 4D-CTA disagreed with DSA in only one case, where deep venous drainage was missed. Further discrepancies between 4D-CTA and DSA analyses included underestimation of the nidus size in small lesions (four cases), misinterpretation of a feeding vessel (one case), misinterpretation of indirect feeding through pial collaterals (three cases) and oversight of mild arterial enlargement (two cases). 4D-CTA correctly distinguished low-flow from high-flow lesions and detected dural/transosseous feeding (one case), venous narrowing (one case) and venous pouches (nine cases). In this series, 4D-CTA was able to detect all bAVMs. Although some angioarchitectural details were missed or misinterpreted when compared to DSA, 4D-CTA evaluation was sufficiently accurate to diagnose the shunt and classify it. Moreover, 4D-CTA adds cross-sectional imaging and perfusion maps, helpful in treatment planning. 4D-CTA appears to be a valuable new adjunct in the non-invasive diagnostic work-up of bAVMs and their follow-up when managed conservatively. (orig.)

  7. A novel fast helical 4D-CT acquisition technique to generate low-noise sorting artifact-free images at user-selected breathing phases

    OpenAIRE

    Thomas, D.; Lamb, J.; White, B.; Jani, S.; Gaudio, S.; P. Lee; Ruan, D; McNitt-Gray, M; Low, D

    2014-01-01

    Purpose To develop a novel 4-dimensional computed tomography (4D-CT) technique that exploits standard fast helical acquisition, a simultaneous breathing surrogate measurement, deformable image registration, and a breathing motion model to remove sorting artifacts. Methods and Materials Ten patients were imaged under free-breathing conditions 25 successive times in alternating directions with a 64-slice CT scanner using a low-dose fast helical protocol. An abdominal bellows was used as a breat...

  8. Evaluation of intrinsic respiratory signal determination methods for 4D CBCT adapted for mice

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rachael; Pan, Tinsu, E-mail: tpan@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030 (United States); Rubinstein, Ashley; Court, Laurence [The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030 and Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Ahmad, Moiz [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-01-15

    Purpose: 4D CT imaging in mice is important in a variety of areas including studies of lung function and tumor motion. A necessary step in 4D imaging is obtaining a respiratory signal, which can be done through an external system or intrinsically through the projection images. A number of methods have been developed that can successfully determine the respiratory signal from cone-beam projection images of humans, however only a few have been utilized in a preclinical setting and most of these rely on step-and-shoot style imaging. The purpose of this work is to assess and make adaptions of several successful methods developed for humans for an image-guided preclinical radiation therapy system. Methods: Respiratory signals were determined from the projection images of free-breathing mice scanned on the X-RAD system using four methods: the so-called Amsterdam shroud method, a method based on the phase of the Fourier transform, a pixel intensity method, and a center of mass method. The Amsterdam shroud method was modified so the sharp inspiration peaks associated with anesthetized mouse breathing could be detected. Respiratory signals were used to sort projections into phase bins and 4D images were reconstructed. Error and standard deviation in the assignment of phase bins for the four methods compared to a manual method considered to be ground truth were calculated for a range of region of interest (ROI) sizes. Qualitative comparisons were additionally made between the 4D images obtained using each of the methods and the manual method. Results: 4D images were successfully created for all mice with each of the respiratory signal extraction methods. Only minimal qualitative differences were noted between each of the methods and the manual method. The average error (and standard deviation) in phase bin assignment was 0.24 ± 0.08 (0.49 ± 0.11) phase bins for the Fourier transform method, 0.09 ± 0.03 (0.31 ± 0.08) phase bins for the modified Amsterdam shroud method, 0

  9. 4D Flow of the Whole Heart and Great Vessels at 3T Using Real Time Self Respiratory Gating

    DEFF Research Database (Denmark)

    Uribe, Sergio Andres; Beerbaum, Philipp; Rasmusson, Allan;

    2008-01-01

    We present an extension of a self-respiratory technique to acquire 4D flow data. Self-navigation is obtained from k-space center profiles and the breathing signal is used in real time to gate the scan. The method allows us to acquire an isotropic non-angulated volume, 4D flow encoded, of the whol...

  10. 4D Flow of the Whole Heart and Great Vessels Using a Real Time Self Respiratory Gating Technique

    DEFF Research Database (Denmark)

    Uribe, Sergio; Beerbaum, Philipp; Sørensen, Thomas Sangild;

    To evaluate the feasibility of a 4D-flow sequence of the whole heart and great vessel to retrospectively quantify blood flow within the entire heart. 4D-flow has been introduced as a means of acquiring anatomical and three-directional velocity information for all pixels within a 3D volume over di...

  11. Digit Ratio (2D:4D: A biomarker for prenatal sex steroids and adult sex steroids in challenge situations

    Directory of Open Access Journals (Sweden)

    John eManning

    2014-01-01

    Full Text Available Digit ratio (2D:4D, which denotes the relative length of the 2nd and 4th digits, is considered to be a biomarker of the balance between foetal testosterone and oestrogen in a narrow window of early ontogeny. Evidence from this assertion is derived from direct and indirect measures of prenatal hormonal exposure (in experimental animals, via amniotic fluid samples and in the study of sex-typical traits in relation to 2D:4D. In contrast, the relationships between 2D:4D and levels of sex steroids in adults are less clear, as many correlational studies of 2D:4D and adult sex steroids have concluded that there is little in the way of associations. Here we suggest that in order to understand the link between 2D:4D and sex hormones one must consider both foetal organising and adult activating effects of testosterone and oestrogen. In particular, we hypothesise that 2D:4D correlates with early organising effects on the endocrine system that moderate activating effects in adulthood. We argue that this can be especially observed through an elevated propensity in adults to produce testosterone in challenging conditions such as aggressive and sexual encounters. We discuss this refinement of the 2D:4D paradigm in relation to the links between 2D:4D and sports performance, and aggression.

  12. Fluorine-18-labeled [Nle4,D-Phe7]-α-MSH, an α-melanocyte stimulating hormone analogue

    International Nuclear Information System (INIS)

    The α-melanocyte stimulating hormone (α-MSH) analogue [N1e4,D-Phe7]-α-MSH was labeled with 18F using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) in >80% radiochemical yield. The IC50 values of [N1e4,D-Phe7]-α-MSH and para-fluorobenzoyl-[N1e4,D-Phe7]-α-MSH ([N1e4,D-Phe7,Lys11-(18F)PFB]-α-MSH) for inhibiting the binding of meta-[131I]iodobenzoyl-[N1e4,D-Phe7]-α-MSH ([N1e4,D-Phe7,Lys11-(131I)MIB]-α-MSH) to B16-F1 murine melanoma cells were 89 ± 9 pM and 112 ± 22 pM, respectively, suggesting that addition of 4-fluorobenzoate did not compromise α-MSH receptor binding affinity. Binding of [N1e4,D-Phe7,Lys11-(18F)PFB]-α-MSH was influenced by the specific activity of the preparation (400-1000 Ci/mmol). The normal tissue clearance of [N1e4,D-Phe7,Lys11-(18F)PFB]-α-MSH in mice was quite rapid, with little evidence for defluorination

  13. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    Energy Technology Data Exchange (ETDEWEB)

    Neal, B; Chen, Q [University of Virginia, Charlottesville, VA (United States)

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.

  14. Motion-aware temporal regularization for improved 4D cone-beam computed tomography

    Science.gov (United States)

    Mory, Cyril; Janssens, Guillaume; Rit, Simon

    2016-09-01

    Four-dimensional cone-beam computed tomography (4D-CBCT) of the free-breathing thorax is a valuable tool in image-guided radiation therapy of the thorax and the upper abdomen. It allows the determination of the position of a tumor throughout the breathing cycle, while only its mean position can be extracted from three-dimensional CBCT. The classical approaches are not fully satisfactory: respiration-correlated methods allow one to accurately locate high-contrast structures in any frame, but contain strong streak artifacts unless the acquisition is significantly slowed down. Motion-compensated methods can yield streak-free, but static, reconstructions. This work proposes a 4D-CBCT method that can be seen as a trade-off between respiration-correlated and motion-compensated reconstruction. It builds upon the existing reconstruction using spatial and temporal regularization (ROOSTER) and is called motion-aware ROOSTER (MA-ROOSTER). It performs temporal regularization along curved trajectories, following the motion estimated on a prior 4D CT scan. MA-ROOSTER does not involve motion-compensated forward and back projections: the input motion is used only during temporal regularization. MA-ROOSTER is compared to ROOSTER, motion-compensated Feldkamp–Davis–Kress (MC-FDK), and two respiration-correlated methods, on CBCT acquisitions of one physical phantom and two patients. It yields streak-free reconstructions, visually similar to MC-FDK, and robust information on tumor location throughout the breathing cycle. MA-ROOSTER also allows a variation of the lung tissue density during the breathing cycle, similar to that of planning CT, which is required for quantitative post-processing.

  15. Breathing adapted radiotherapy: a 4D gating software for lung cancer

    International Nuclear Information System (INIS)

    Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose. Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT. Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case. The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT

  16. TH-E-17A-04: Geometric Validation of K-Space Self-Gated 4D-MRI Vs. 4D-CT Using A Respiratory Motion Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Y; Fan, Z; Yang, W; Pang, J; McKenzie, E; Deng, Z; Tuli, R; Sandler, H; Li, D; Fraass, B [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2014-06-15

    Purpose: 4D-CT is often limited by motion artifacts, low temporal resolution, and poor phase-based target definition. We recently developed a novel k-space self-gated 4D-MRI technique with high spatial and temporal resolution. The goal here is to geometrically validate 4D-MRI using a MRI-CT compatible respiratory motion phantom and comparison to 4D-CT. Methods: 4D-MRI was acquired using 3T spoiled gradient echo-based 3D projection sequences. Respiratory phases were resolved using self-gated k-space lines as the motion surrogate. Images were reconstructed into 10 temporal bins with 1.56×1.56×1.56mm3. A MRI-CT compatible phantom was designed with a 23mm diameter ball target filled with highconcentration gadolinium(Gd) gel embedded in a 35×40×63mm3 plastic box stabilized with low-concentration Gd gel. The whole phantom was driven by an air pump. Human respiratory motion was mimicked using the controller from a commercial dynamic phantom (RSD). Four breathing settings (rates/depths: 10s/20mm, 6s/15mm, 4s/10mm, 3s/7mm) were scanned with 4D-MRI and 4D-CT (slice thickness 1.25mm). Motion ground-truth was obtained from input signals and real-time video recordings. Reconstructed images were imported into Eclipse(Varian) for target contouring. Volumes and target positions were compared with ground-truth. Initial human study was investigated on a liver patient. Results: 4D-MRI and 4D-CT scans for the different breathing cycles were reconstructed with 10 phases. Target volume in each phase was measured for both 4D-CT and 4D-MRI. Volume percentage difference for the 6.37ml target ranged from 6.67±5.33 to 11.63±5.57 for 4D-CT and from 1.47±0.52 to 2.12±1.60 for 4D-MRI. The Mann-Whitney U-test shows the 4D-MRI is significantly superior to 4D-CT (p=0.021) for phase-based target definition. Centroid motion error ranges were 1.35–1.25mm (4D-CT), and 0.31–0.12mm (4D-MRI). Conclusion: The k-space self-gated 4D-MRI we recently developed can accurately determine phase

  17. Design for manufacturability from 1D to 4D for 90-22 nm technology nodes

    CERN Document Server

    Balasinski, Artur

    2013-01-01

    This book explains integrated circuit design for manufacturability (DfM) at the product level (packaging, applications) and applies engineering DfM principles to the latest standards of product development at 22 nm technology nodes.  It is a valuable guide for layout designers, packaging engineers and quality engineers, covering DfM development from 1D to 4D, involving IC design flow setup, best practices, links to manufacturing and product definition, for process technologies down to 22 nm node, and product families including memories, logic, system-on-chip and system-in-package.

  18. Edge States in 4D and their 3D Groups and Fields

    OpenAIRE

    Balachandran, A. P.; Bimonte, G.; Teotonio-Sobrinho, P.

    1993-01-01

    It is known that the Lagrangian for the edge states of a Chern-Simons theory describes a coadjoint orbit of a Kac-Moody (KM) group with its associated Kirillov symplectic form and group representation. It can also be obtained from a chiral sector of a nonchiral field theory. We study the edge states of the abelian $BF$ system in four dimensions (4d) and show the following results in almost exact analogy: 1) The Lagrangian for these states is associated with a certain 2d generalization of the ...

  19. 4D retrospective lineage tracing using SPIM for zebrafish organogenesis studies.

    Science.gov (United States)

    Swoger, Jim; Muzzopappa, Mariana; López-Schier, Hernán; Sharpe, James

    2011-01-01

    A study demonstrating an imaging framework that permits the determination of cell lineages during organogenesis of the posterior lateral line in zebrafish is presented. The combination of Selective Plane Illumination Microscopy and specific fluorescent markers allows retrospective tracking of hair cell progenitors, and hence the derivation of their lineages within the primodium. It is shown that, because of its superior signal-to-noise ratio and lower photo-damaged properties, SPIM can provide significantly higher-quality images than Spinning Disk Confocal technology. This allows accurate 4D lineage tracing for the hair cells over tens of hours of primordium migration and neuromast development.

  20. Frontiers of 4d- and 5d-transition metal oxides

    CERN Document Server

    Cao, Gang

    2013-01-01

    This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides.New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ s

  1. Digit ratio (2D:4D) is associated with breast cancer

    OpenAIRE

    Patrícia Helena Costa Mendes; Ana Carolina de Campos Gomes; Priscila Bernadina Miranda Soares; Eduardo Gonçalves; Clayton Paraíso Macedo; Marise Fagundes Silveira; Daniella Reis Barbosa Martelli; Lívia Máris Ribeiro Paranaíba; Hercílio Martelli-Júnior

    2016-01-01

    Purpose: Digit ratio (2D:4D) has been considered as a proxy biomarker for prenatal hormonal exposure and may represent an individual’s predisposition to breast cancer. The purpose of the present study is to investigate whether there is a link between digit ratio and breast cancer in a Brazilian population.Methods: Digital measurements of the lengths of the index and ring fingers of both hands were obtained from women with breast cancer (n = 100) and age-matched controls (n = 100) using a digi...

  2. TOPO-EUROPE: Studying Continental Topography and Deep Earth - Surface Processes in 4D

    Science.gov (United States)

    Cloetingh, S.; Topo-Europe Science Community, The

    2009-04-01

    Topography influences various aspects of society, not only in terms of the slow process of landscape evolution but also through climate (e.g. mountain building). Topographic evolution (changes in land, water and sea level) can seriously affect human life, as well as terrestrial geo-ecosystems. When fresh water or sea-water levels rise, or when land subsides, the risk of flooding increases. This directly affects local geo- ecosystems and human settlements. On the other hand, declining water levels and uplift may lead to a higher risk of erosion and even desertification. Similar examples could be given for groundwater, early life and climate change. Studying these aspects in an integrated way is essential to forward solid Earth Sciences in response to the needs of society (see http://www.yearofplanetearth.org/). To quantify topography evolution in space and time, understanding of the coupled deep Earth and surface processes is a requisite. The TOPO-EUROPE initiative of the International Lithophere Program (ILP) addresses the 4-D topography of the orogens and intra-plate regions of Europe through a multidisciplinary approach linking geology, geophysics, geodesy and geotechnology. TOPO-EUROPE integrates monitoring, imaging, reconstruction and modelling of the interplay between processes controlling continental topography and related natural hazards. Until now, research on neotectonics and related topography development of orogens and intra-plate regions has received little attention. TOPO-EUROPE initiates a number of novel studies on the quantification of rates of vertical motions, related tectonically controlled river evolution and land subsidence in carefully selected natural laboratories in Europe. From orogen through platform to continental margin, these natural laboratories include the Alps/Carpathians-Pannonian Basin System, the West and Central European Platform, the Apennines-Tyrrhenian-Maghrebian and the Aegean-Anatolian regions, the Iberian Peninsula and the

  3. Effects of 2,4-D and DCP on the DHT-induced androgenic action in human prostate cancer cells.

    Science.gov (United States)

    Kim, Hyun-Jung; Park, Young In; Dong, Mi-Sook

    2005-11-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) and its metabolite 2,4-dichlorophenol (DCP) are used extensively in agriculture as herbicides, and are suspected of potential endocrine disruptor activity. In a previous study, we showed that these compounds exhibited synergistic androgenic effects by co-treatment with testosterone in the Hershberger assay. To elucidate the mechanisms of the synergistic effects of these compounds on the androgenicity of testosterone, the androgenic action of 2,4-D and DCP was characterized using a mammalian detection system in prostate cancer cell lines. In in vitro assay systems, while 2,4-D or DCP alone did not show androgenic activity, 2,4-D or DCP with 5alpha-dihydroxytestosterone (DHT) exhibited synergistic androgenic activities. Co-treatment of 10 nM 2,4-D or DCP with 10 nM DHT was shown to stimulate the cell proliferation by 1.6-fold, compared to 10 nM DHT alone. In addition, in transient transfection assays, androgen-induced transactivation was also increased to a maximum of 32-fold or 1.28-fold by co-treatment of 2,4-D or DCP with DHT, respectively. However, 2,4-D and DCP exerted no effects on either mRNA or protein levels of AR. In a competitive AR binding assay, 2,4-D and DCP inhibited androgen binding to AR, up to 50% at concentrations of approximately 0.5 microM for both compounds. The nuclear translocation of green fluorescent protein-AR fusion protein in the presence of DHT was promoted as the result of the addition of 2,4-D and DCP. Collectively, these results that 2,4-D and DCP enhanced DHT-induced AR transcriptional activity might be attributable, at least in part, to the promotion of AR nuclear translocation.

  4. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    Science.gov (United States)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  5. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    Science.gov (United States)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo

    2015-12-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  6. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    International Nuclear Information System (INIS)

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  7. Structural determination and electronic properties of the 4d perovskite SrPdO3

    Science.gov (United States)

    He, Jiangang; Franchini, Cesare

    2014-01-01

    The structure and ground state electronic structure of the recently synthesized SrPdO3 perovskite [A. Galal et al. J. Power Sources 195, 3806 (2010), 10.1016/j.jpowsour.2009.12.091] have been studied by means of screened hybrid functional and the GW approximation with the inclusion of electron-hole interaction within the test-charge/test-charge scheme. By conducting a structural search based on lattice dynamics and group theoretical method we identify the orthorhombic phase with Pnma space group as the most stable crystal structure. The phase transition from the ideal cubic perovskite structure to the Pnma one is explained in terms of the simultaneous stabilization of the antiferrodistortive phonon modes R4+ and M3+. Our results indicate that SrPdO3 exhibits an insulating ground state, substantiated by a GW0 gap of about 1.1 eV. Spin polarized calculations suggest that SrPdO3 adopts a low spin state (t2g↑↓↑↓↑↓eg0), and is expected to exhibit spin excitations and spin state crossovers at finite temperature, analogous to the case of 3d isoelectronic LaCoO3. This would provide another playground for the study of spin state transitions in 4d oxides and an opportunity to design multifunctional materials based on the 4d Pnma building block.

  8. Direction Finding Using Multiple Sum and Difference Patterns in 4D Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Quanjiang Zhu

    2014-01-01

    Full Text Available Traditional monopulse systems used for direction finding usually face the contradiction between high angle precision and wide angle-searching field, and a compromise has to be made. In this paper, the time modulation technique in four-dimensional (4D antenna array is introduced into the conventional phase-comparison monopulse to form a novel direction-finding system, in which both high angle resolution and wide field-of-view are realized. The full 4D array is divided into two subarrays and the differential evolution (DE algorithm is used to optimize the time sequence of each subarray to generate multibeams at the center frequency and low sidebands. Then the multibeams of the two subarrays are phase-compared with each other and multiple pairs of sum-difference beams are formed at different sidebands and point to different spatial angles. The proposed direction-finding system covers a large field-of-view of up to ±60° and simultaneously maintains the advantages of monopulse systems, such as high angle precision and low computation complexity. Theoretical analysis and experimental results validate the effectiveness of the proposed system.

  9. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    Science.gov (United States)

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  10. 4D-MR flow analysis in patients after repair for tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, J.; Markl, M.; Jung, B.; Langer, M. [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Grohmann, J.; Stiller, B.; Arnold, R. [University Hospital Freiburg, Department of Congenital Heart Disease and Pediatric Cardiology, Freiburg (Germany)

    2011-08-15

    Comprehensive analysis of haemodynamics by 3D flow visualisation and retrospective flow quantification in patients after repair of tetralogy of Fallot (TOF). Time-resolved flow-sensitive 4D MRI (spatial resolution {proportional_to} 2.5 mm, temporal resolution = 38.4 ms) was acquired in ten patients after repair of TOF and in four healthy controls. Data analysis included the evaluation of haemodynamics in the aorta, the pulmonary trunk (TP) and left (lPA) and right (rPA) pulmonary arteries by 3D blood flow visualisation using particle traces, and quantitative measurements of flow velocity. 3D visualisation of whole heart haemodynamics provided a comprehensive overview on flow pattern changes in TOF patients, mainly alterations in flow velocity, retrograde flow and pathological vortices. There was consistently higher blood flow in the rPA of the patients (rPA/lPA flow ratio: 2.6 {+-} 2.5 vs. 1.1 {+-} 0.1 in controls). Systolic peak velocity in the TP was higher in patients (1.9 m/s {+-} 0.7 m/s) than controls (0.9 m/s {+-} 0.1 m/s). 4D flow-sensitive MRI permits the comprehensive evaluation of blood flow characteristics in patients after repair of TOF. Altered flow patterns for different surgical techniques in the small patient cohort may indicate its value for patient monitoring and potentially identifying optimal surgical strategies. (orig.)

  11. Nilpotent Symmetries of the 4D Abelian 2-Form Gauge Theory: Augmented Superfield Formalism

    CERN Document Server

    Srinivas, N; Malik, R P

    2015-01-01

    We derive the continuous nilpotent symmetries of the four (3 + 1)-dimensional (4D) Abelian 2-form gauge theory by exploiting the geometrical superfield formalism where the (dual-)horizontality conditions are not used anywhere. These nilpotent symmetries are the Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-)co-BRST transformations which turn up beautifully due to the (anti-)BRST and (anti-)co-BRST invariant restrictions on the (anti-)chiral superfields that are defined on the (4, 1)-dimensional (anti-)chiral super-submanifolds of the general (4, 2)-dimensional supermanifold on which our ordinary 4D theory is generalized. The latter supermanifold is characterized by the superspace coordinate Z^M = (x^\\mu, \\theta, \\bar\\theta) where x^\\mu (\\mu = 0, 1, 2, 3) are the bosonic coordinates and a pair of Grassmannian variables \\theta and \\bar\\theta obey the standard relationships: \\theta^2 = \\bar\\theta^2 = 0, \\theta\\bar\\theta + \\bar\\theta\\theta = 0. We provide the geometrical interpretation for the nilpotency ...

  12. Inhibitory concentrations of 2,4D and its possible intermediates in sulfate reducing biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cruz, Ulises [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico); Celis, Lourdes B. [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216 San Luis Potosi, S.L.P. (Mexico); Poggi, Hector [Department of Biotechnology and Bioengineering, CINVESTAV, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 D.F. (Mexico); Meraz, Monica, E-mail: meraz@xanum.uam.mx [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico)

    2010-07-15

    Different concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4D) and its possible intermediates such as 2,4-dichlorophenol (2,4DCP), 4-chlorophenol (4CP), 2-chlorophenol (2CP) and phenol, were assayed to evaluate the inhibitory effect on sulfate and ethanol utilization in a sulfate reducing biofilm. Increasing concentrations of the chlorophenolic compounds showed an adverse effect on sulfate reduction rate and ethanol conversion to acetate, being the intermediate 2,4DCP most toxic than the herbicide. The monochlorophenol 4CP (600 ppm) caused the complete cessation of sulfate reduction and ethanol conversion. The ratio of the electron acceptor to the electron donor utilized as well as the sulfate utilization volumetric rates, diminished when chlorophenols and phenol concentrations were increased, pointing out to the inhibition of the respiratory process and electrons transfer. The difference found in the IC{sub 50} values obtained was due to the chemical structure complexity of the phenolic compounds, the number of chlorine atoms as much as the chlorine atom position in the phenol ring. The IC{sub 50} values (ppm) indicated that the acute inhibition on the biofilm was caused by 2,4DCP (17.4) followed by 2,4D (29.0), 2CP (99.8), 4CP (108.0) and phenol (143.8).

  13. 4D segmentation of brain MR images with constrained cortical thickness variation.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Segmentation of brain MR images plays an important role in longitudinal investigation of developmental, aging, disease progression changes in the cerebral cortex. However, most existing brain segmentation methods consider multiple time-point images individually and thus cannot achieve longitudinal consistency. For example, cortical thickness measured from the segmented image will contain unnecessary temporal variations, which will affect the time related change pattern and eventually reduce the statistical power of analysis. In this paper, we propose a 4D segmentation framework for the adult brain MR images with the constraint of cortical thickness variations. Specifically, we utilize local intensity information to address the intensity inhomogeneity, spatial cortical thickness constraint to maintain the cortical thickness being within a reasonable range, and temporal cortical thickness variation constraint in neighboring time-points to suppress the artificial variations. The proposed method has been tested on BLSA dataset and ADNI dataset with promising results. Both qualitative and quantitative experimental results demonstrate the advantage of the proposed method, in comparison to other state-of-the-art 4D segmentation methods.

  14. Data for Development: the D4D Challenge on Mobile Phone Data

    CERN Document Server

    Blondel, Vincent D; Chan, Connie; Clerot, Fabrice; Deville, Pierre; Huens, Etienne; Morlot, Frédéric; Smoreda, Zbigniew; Ziemlicki, Cezary

    2012-01-01

    The Orange "Data for Development" (D4D) challenge is an open data challenge on anonymous call patterns of Orange's mobile phone users in Ivory Coast. The goal of the challenge is to help address society development questions in novel ways by contributing to the socio-economic development and well-being of the Ivory Coast population. Participants to the challenge are given access to four mobile phone datasets and the purpose of this paper is to describe the four datasets. The website http://www.d4d.orange.com contains more information about the participation rules. The datasets are based on anonymized Call Detail Records (CDR) of phone calls and SMS exchanges between five million of Orange's customers in Ivory Coast between December 1, 2011 and April 28, 2012. The datasets are: (a) antenna-to-antenna traffic on an hourly basis, (b) individual trajectories for 50,000 customers for two week time windows with antenna location information, (3) individual trajectories for 50,000 customers over the entire observatio...

  15. Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture

    CERN Document Server

    Burgess, C P; Williams, M

    2015-01-01

    We complete here a three-part study (see also arXiv:1506.08095 and 1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantiza...

  16. Inverse 4D conformal planning for lung SBRT using particle swarm optimization

    Science.gov (United States)

    Modiri, A.; Gu, X.; Hagan, A.; Bland, R.; Iyengar, P.; Timmerman, R.; Sawant, A.

    2016-08-01

    A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%-41% for D max esophagus, 31%-68% for D max spinal cord and 7%-32% for V 13 lung.

  17. Tracking the motion trajectories of junction structures in 4D CT images of the lung

    Science.gov (United States)

    Xiong, Guanglei; Chen, Chuangzhen; Chen, Jianzhou; Xie, Yaoqin; Xing, Lei

    2012-08-01

    Respiratory motion poses a major challenge in lung radiotherapy. Based on 4D CT images, a variety of intensity-based deformable registration techniques have been proposed to study the pulmonary motion. However, the accuracy achievable with these approaches can be sub-optimal because the deformation is defined globally in space. Therefore, the accuracy of the alignment of local structures may be compromised. In this work, we propose a novel method to detect a large collection of natural junction structures in the lung and use them as the reliable markers to track the lung motion. Specifically, detection of the junction centers and sizes is achieved by analysis of local shape profiles on one segmented image. To track the temporal trajectory of a junction, the image intensities within a small region of interest surrounding the center are selected as its signature. Under the assumption of the cyclic motion, we describe the trajectory by a closed B-spline curve and search for the control points by maximizing a metric of combined correlation coefficients. Local extrema are suppressed by improving the initial conditions using random walks from pair-wise optimizations. Several descriptors are introduced to analyze the motion trajectories. Our method was applied to 13 real 4D CT images. More than 700 junctions in each case are detected with an average positive predictive value of greater than 90%. The average tracking error between automated and manual tracking is sub-voxel and smaller than the published results using the same set of data.

  18. 2D:4D asymmetry and gender differences in academic performance.

    Directory of Open Access Journals (Sweden)

    John V C Nye

    Full Text Available Exposure to prenatal androgens affects both future behavior and life choices. However, there is still relatively limited evidence on its effects on academic performance. Moreover, the predicted effect of exposure to prenatal testosterone (T-which is inversely correlated with the relative length of the second to fourth finger lengths (2D:4D-would seem to have ambiguous effects on academic achievement since traits like aggressiveness or risk-taking are not uniformly positive for success in school. We provide the first evidence of a non-linear, quadratic, relationship between 2D:4D and academic achievement using samples from Moscow and Manila. We also find that there is a gender differentiated link between various measures of academic achievement and measured digit ratios. These effects are different depending on the field of study, choice of achievement measure, and use of the right hand or left digit ratios. The results seem to be asymmetric between Moscow and Manila where the right (left hand generates inverted-U (U-shaped curves in Moscow while the pattern for hands reverses in Manila. Drawing from unusually large and detailed samples of university students in two countries not studied in the digit literature, our work is the first to have a large cross country comparison that includes two groups with very different ethnic compositions.

  19. Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    Asma Agrebi

    2014-05-01

    Full Text Available Several new pyrazolopyrimidine compounds were achieved from aminocyanopyarazole 1. The starting material 1 was initially coupled with orthoester at refluxed with various primary amines, ammonia, hydrazines and hydroxylamine to furnish a series of pyrazolo[3,4-d]pyrimidines. The reaction of imidate 2a-b with hydrazide derivatives led to the formation of pyrazolo[3,4-d][1,2,4]triazolo[4,3-c]pyrimidines. Some of the synthesized compounds 3a and 4c were evaluated for their anti-inflammatory, antipyretic and nociceptive activities. We start by studing the toxicity of these two molecules by measuring the corresponding DL50. The DL50 of 3a and 4c are estimated to 1333.2mg / kg and 1593.5mg / kg respectively. Pharmacological evaluation showed that compounds 3a and 4c at doses (5.5-22.2 mg / Kg, i.p exhibited anti-inflammatory activities compared to Ibuprofen (150 mg / Kg, i.p, used as a refer ence drug. Further, our study showed that the injection of derived pyrazolopyrimidines on hyperthermic animal leads to a decrease in temperature after 1 hours of treatment compared to paracetamol used as reference. In addition, the injection of derived pyrazolopyrimidines at different doses contains a potent nociceptive activity. This effect is dose-dependent compared to aspirin.

  20. 4D micro-CT for cardiac and perfusion applications with view under sampling

    Science.gov (United States)

    Badea, Cristian T.; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan

    2011-06-01

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  1. SU-E-J-06: A Feasibility Study On Clinical Implementation of 4D-CBCT in Lung Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y; Stanford, J; Duggar, W [University of Mississippi Med. Center, Jackson, MS (United States); Ruan, C [Brigham and Women' s Hospital / Harvard Medical School, Boston, MA (United States); Rajaguru, P [Univ. Mississippi Medical Center, UMC Cancer Center, Jackson, MS (United States); He, R [University of Mississippi Med. Center, Ridgeland, MS (United States); Yang, C [University of Mississippi Medical Center, Jackson, MS (United States)

    2014-06-01

    Purpose: Four-dimensional cone-beam CT (4D-CBCT) is a novel imaging technique to setup patients with pulmonary lesions in radiation therapy. This paper is to perform a feasibility study on the implementation of 4D-CBCT as image guidance for (1) SBRT and (2) Low Modulation (Low-Mod) IMRT in lung cancer treatment. Methods: Image artifacts and observers variability are evaluated by analyzing the 4D-CT QA phantom and patient 4D image data. There are two 4D-CBCT image artifacts: (1) Spatial artifact caused by the patient irregular breathing pattern will generate blurring and anatomy gap/overlap; (2) Cone beam scattering and hardening artifact will affect the image spatial and contrast resolution. The couch shift varies between 1mm to 3mm from different observers during the 4D-CBCT registration. Breath training is highly recommended to improve the respiratory regularity during CT simulation and treatment, especially for SBRT. Elekta XVI 4.5 Symmetry protocol is adopted in the patient 4DCBCT scanning and intensity-based registration. Physician adjustments on the auto-registration are involved prior to the treatment. Physician peer review on 4D-CBCT image acquisition and registration is also recommended to reduce the inter-observer variability. The average 4D-CT in reference volume coordinates is exported to MIM Vista 5.6.2 to manually fuse to the planning CT for further evaluation. Results: (1) SBRT: 4DCBCT is performed in dry-run and in each treatment fraction. Image registration and couch shift are reviewed by another physician on the 1st fraction before the treatment starts. (2) Low-Mod IMRT: 4D-CBCT is performed and peer reviewed on weekly basis. Conclusion: 4D-CBCT in SBRT dry-run can discover the ITV discrepancies caused by the low quality 4D-CT simulation. 4D-CBCT during SBRT and Low-Mod IMRT treatment provides physicians more confidence to target lung tumor and capability to evaluate inter-fractional ITV changes. More advanced 4D-CBCT scan protocol and

  2. 4-D segmentation and normalization of 3He MR images for intrasubject assessment of ventilated lung volumes

    Science.gov (United States)

    Contrella, Benjamin; Tustison, Nicholas J.; Altes, Talissa A.; Avants, Brian B.; Mugler, John P., III; de Lange, Eduard E.

    2012-03-01

    Although 3He MRI permits compelling visualization of the pulmonary air spaces, quantitation of absolute ventilation is difficult due to confounds such as field inhomogeneity and relative intensity differences between image acquisition; the latter complicating longitudinal investigations of ventilation variation with respiratory alterations. To address these potential difficulties, we present a 4-D segmentation and normalization approach for intra-subject quantitative analysis of lung hyperpolarized 3He MRI. After normalization, which combines bias correction and relative intensity scaling between longitudinal data, partitioning of the lung volume time series is performed by iterating between modeling of the combined intensity histogram as a Gaussian mixture model and modulating the spatial heterogeneity tissue class assignments through Markov random field modeling. Evaluation of the algorithm was retrospectively applied to a cohort of 10 asthmatics between 19-25 years old in which spirometry and 3He MR ventilation images were acquired both before and after respiratory exacerbation by a bronchoconstricting agent (methacholine). Acquisition was repeated under the same conditions from 7 to 467 days (mean +/- standard deviation: 185 +/- 37.2) later. Several techniques were evaluated for matching intensities between the pre and post-methacholine images with the 95th percentile value histogram matching demonstrating superior correlations with spirometry measures. Subsequent analysis evaluated segmentation parameters for assessing ventilation change in this cohort. Current findings also support previous research that areas of poor ventilation in response to bronchoconstriction are relatively consistent over time.

  3. Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2015-03-01

    Full Text Available A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary differential equation with n ⩾ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first order ordinary differential equations with n ⩾ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel hyperjerk system are obtained as L1 = 0.1448, L2 = 0.0328, L3 = 0 and L4 = −1.1294. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as DKY= 3.1573. Next, an adaptive backstepping controller is designed to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve global hyperchaos synchronization of the identical novel hyperjerk systems with three unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using SPICE is presented in detail to confirm the feasibility of the theoretical hyperjerk model.

  4. A 3-form gauge potential in 5D in connection with a possible dark sector of 4D-electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cocuroci, D.; Helayel-Neto, J.A.; Ospedal, L.P.R. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Neves, M.J. [Universidade Federal Rural do Rio de Janeiro (Brazil)

    2015-07-15

    We here propose a 5-dimensional Abelian gauge model based on the mixing between a U(1) potential and an Abelian 3-form field by means of a topological mass term. An extended covariant derivative is introduced to minimally couple a Dirac field to the U(1) potential, while this same covariant derivative non-minimally couples the 3-form field to the charged fermion. A number of properties are discussed in 5D; in particular, the appearance of a topological fermionic current. A 4-dimensional reduced version of the model is investigated and, in addition to the U(1) electric- and magnetic-sort of fields, there emerges an extra set of electric- and magnetic-like fields which contribute a negative pressure and may be identified as a possible fraction of dark energy. The role of the topological fermionic current is also contemplated upon dimensional reduction from 5D to 4D. Other issues we present in 4 space-time dimensions are the emergence of a pseudo-scalar massive particle, an extra massive neutral gauge boson, which we interpret as a kind of paraphoton, and the calculation of spin- and velocity-dependent interparticle potentials associated to the exchange of the intermediate bosonic fields of the model. (orig.)

  5. Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye; Jurss, Jonah W.; Concepcion, Javier J.; Meyer, Thomas J.; Soldatov, Alexander; Pushkar, Yulia (UNC); (Purdue); (SFU-Russia); (Lund)

    2015-09-17

    L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru{sub 2}{sup III}O(H{sub 2}O){sub 2}(bpy){sub 4}]{sup 4+} water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex show considerably different splitting of the Ru L{sub 2,3} absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L{sub 2,3}-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L{sub 2,3}-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.

  6. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Abel L Carcagno

    Full Text Available BACKGROUND: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE: The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell

  7. A systematic review of the role of C4d in the diagnosis of acute antibody-mediated rejection.

    Science.gov (United States)

    Sapir-Pichhadze, Ruth; Curran, Simon P; John, Rohan; Tricco, Andrea C; Uleryk, Elizabeth; Laupacis, Andreas; Tinckam, Kathryn; Sis, Banu; Beyene, Joseph; Logan, Alexander G; Kim, S Joseph

    2015-01-01

    In this study, we conducted a systematic review of the literature to re-evaluate the role of C4d in the diagnosis of acute antibody-mediated rejection of kidney allografts. Electronic databases were searched until September 2013. Eligible studies allowed derivation of diagnostic tables for the performance of C4d by immunofluorescence or immunohistochemistry with comparison to histopathological features of acute antibody-mediated rejection and/or donor-specific antibody (DSA) assays. Of 3492 unique abstracts, 29 studies encompassing 3485 indication and 868 surveillance biopsies were identified. Assessment of C4d by immunofluorescence and immunohistochemistry exhibited slight to moderate agreement with glomerulitis, peritubular capillaritis, solid-phase DSA assays, DSA with glomerulitis, and DSA with peritubular capillaritis. The sensitivity and specificity of C4d varied as a function of C4d and comparator test thresholds. Prognostically, the presence of C4d was associated with inferior allograft survival compared with DSA or histopathology alone. Thus, our findings support the presence of complement-dependent and -independent phenotypes of acute antibody-mediated rejection. Whether the presence of C4d in combination with histopathology or DSA should be considered for the diagnosis of acute antibody-mediated rejection warrants further study. PMID:24827778

  8. Galectin-3, Renal Function, and Clinical Outcomes: Results from the LURIC and 4D Studies.

    Science.gov (United States)

    Drechsler, Christiane; Delgado, Graciela; Wanner, Christoph; Blouin, Katja; Pilz, Stefan; Tomaschitz, Andreas; Kleber, Marcus E; Dressel, Alexander; Willmes, Christoph; Krane, Vera; Krämer, Bernhard K; März, Winfried; Ritz, Eberhard; van Gilst, Wiek H; van der Harst, Pim; de Boer, Rudolf A

    2015-09-01

    Galectin-3 has been linked to incident renal disease, experimental renal fibrosis, and nephropathy. However, the association among galectin-3, renal function, and adverse outcomes has not been described. We studied this association in two large cohorts of patients over a broad range of renal function. We measured galectin-3 concentrations in baseline samples from the German Diabetes mellitus Dialysis (4D) study (1168 dialysis patients with type 2 diabetes mellitus) and the Ludwigshafen Risk and Cardiovascular Health (LURIC) study (2579 patients with coronary angiograms). Patients were stratified into three groups: eGFR of ≥90 ml/min per 1.73 m(2), 60-89 ml/min per 1.73 m(2), and <60 ml/min per 1.73 m(2). We correlated galectin-3 concentrations with demographic, clinical, and biochemical parameters. The association of galectin-3 with clinical end points was assessed by Cox proportional hazards regression within 10 years (LURIC) or 4 years (4D) of follow-up. Mean±SD galectin-3 concentrations were 12.8±4.0 ng/ml (eGFR≥90 ml/min per 1.73 m(2)), 15.6±5.4 ng/ml (eGFR 60-89 ml/min per 1.73 m(2)), 23.1±9.9 ng/ml (eGFR<60 ml/min per 1.73 m(2)), and 54.1±19.6 ng/ml (dialysis patients of the 4D study). Galectin-3 concentration was significantly associated with clinical end points in participants with impaired kidney function, but not in participants with normal kidney function. Per SD increase in log-transformed galectin-3 concentration, the risks of all-cause mortality, cardiovascular mortality, and fatal infection increased significantly. In dialysis patients, galectin-3 was associated with the combined end point of cardiovascular events. In conclusion, galectin-3 concentrations increased with progressive renal impairment and independently associated with cardiovascular end points, infections, and all-cause death in patients with impaired renal function. PMID:25568176

  9. Linac-integrated 4D cone beam CT: first experimental results

    Science.gov (United States)

    Dietrich, Lars; Jetter, Siri; Tücking, Thomas; Nill, Simeon; Oelfke, Uwe

    2006-06-01

    A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patient's abdominal region with a

  10. Leaching of 2,4-D from a soil in the presence of β-cyclodextrin: Laboratory columns experiments

    OpenAIRE

    Morillo González, Esmeralda; Pérez-Martínez, José Ignacio; Ginés, J.M.

    2001-01-01

    This study reports on the effect of the presence of β-cyclodextrin (β-CD) on the adsorption and mobility of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) through soil columns. The previous application of β-CD to the soil produced a retarded leaching of 2,4-D through the soil column, due probably to herbicide adsorption on the soil through β-CD adsorbed. However, the application of β-CD solution to the soil column where 2,4-D had been previously adsorbed, led to the complete desorption ...

  11. Bifurcations of families of 1D-tori in 4D symplectic maps

    Science.gov (United States)

    Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd

    2016-06-01

    The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.

  12. Bifurcations of families of 1D-tori in 4D symplectic maps.

    Science.gov (United States)

    Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd

    2016-06-01

    The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.

  13. Haptic Landmark Positioning and Automatic Landmark Transfer in 4D Lung CT Data

    Science.gov (United States)

    Färber, Matthias; Gawenda, Björn; Bohn, Christian-Arved; Handels, Heinz

    Manual landmark positioning in volumetric image data is a complex task and often results in erroneous landmark positions. The landmark positioning tool presented uses image curvature features to precompute suitable candidates for landmark positions on surface data of anatomical structures. A force-feedback I/O device is then used to haptically guide the user during the definition of the correct landmarks in the 3D data volume. Furthermore, existing landmarks in a time-point of a sequence of 3D volumes (4D data set) can iteratively be transferred to other time-points using a surface based registration technique. First results show significant time savings and small interobserver variability (IROV) compared to the IROV of manually defined landmark positions using orthogonal slices of the image data.

  14. Ansys Fluent versus Sim Vascular for 4-D patient-specific computational hemodynamics in renal arteries

    Science.gov (United States)

    Mumbaraddi, Avinash; Yu, Huidan (Whitney); Sawchuk, Alan; Dalsing, Michael

    2015-11-01

    The objective of this clinical-need driven research is to investigate the effect of renal artery stenosis (RAS) on the blood flow and wall shear stress in renal arteries through 4-D patient-specific computational hemodynamics (PSCH) and search for possible critical RASs that significantly alter the pressure gradient across the stenosis by manually varying the size of RAS from 50% to 95%. The identification of the critical RAS is important to understand the contribution of RAS to the overall renal resistance thus appropriate clinical therapy can be determined in order to reduce the hypertension. Clinical CT angiographic data together with Doppler Ultra sound images of an anonymous patient are used serving as the required inputs of the PSCH. To validate the PSCH, we use both Ansys Fluent and Sim Vascular and compare velocity, pressure, and wall-shear stress under identical conditions. Renal Imaging Technology Development Program (RITDP) Grant.

  15. Life and death before birth: 4D ultrasound and the shifting frontiers of the abortion debate.

    Science.gov (United States)

    Savell, Kristin

    2007-08-01

    The development of 4D ultrasound technology has democratised fetal imagery by offering direct visual access to realistic images of the fetus in utero. These images, which purport to show a responsive being capable of complex behaviour, have renewed debate about the personhood of the fetus and the adequacy of current abortion regulation. This article considers recent abortion law reform initiatives in the United Kingdom and the United States and observes two shifts in the frontiers of these debates. The first concerns a shift from viability to sentience as a criterion of legal significance. The second concerns a shift toward constructing abortion in terms of feticide as distinct from the termination of pregnancy. Both strategies seek to deploy morphological similarities between the sentient fetus and newborn baby as a basis for extending law's dominion over the fetus. PMID:17902493

  16. An Ensemble 4D Seismic History Matching Framework with Sparse Representation Based on Wavelet Multiresolution Analysis

    CERN Document Server

    Luo, Xiaodong; Jakobsen, Morten; Nævdal, Geir

    2016-01-01

    In this work we propose an ensemble 4D seismic history matching framework for reservoir characterization. Compared to similar existing frameworks in reservoir engineering community, the proposed one consists of some relatively new ingredients, in terms of the type of seismic data in choice, wavelet multiresolution analysis for the chosen seismic data and related data noise estimation, and the use of recently developed iterative ensemble history matching algorithms. Typical seismic data used for history matching, such as acoustic impedance, are inverted quantities, whereas extra uncertainties may arise during the inversion processes. In the proposed framework we avoid such intermediate inversion processes. In addition, we also adopt wavelet-based sparse representation to reduce data size. Concretely, we use intercept and gradient attributes derived from amplitude versus angle (AVA) data, apply multilevel discrete wavelet transforms (DWT) to attribute data, and estimate noise level of resulting wavelet coeffici...

  17. Central Charges and the Sign of Entanglement in 4D Conformal Field Theories.

    Science.gov (United States)

    Perlmutter, Eric; Rangamani, Mukund; Rota, Massimiliano

    2015-10-23

    We explore properties of the universal terms in the entanglement entropy and logarithmic negativity in 4D conformal field theories, aiming to clarify the ways in which they behave like the analogous entanglement measures in quantum mechanics. We show that, unlike entanglement entropy in finite-dimensional systems, the sign of the universal part of entanglement entropy is indeterminate. In particular, if and only if the central charges obey a>c, the entanglement across certain classes of entangling surfaces can become arbitrarily negative, depending on the geometry and topology of the surface. The negative contribution is proportional to the product of a-c and the genus of the surface. Similarly, we show that in a>c theories, the logarithmic negativity does not always exceed the entanglement entropy.

  18. 4D sequential actuation: combining ionoprinting and redox chemistry in hydrogels

    Science.gov (United States)

    Baker, Anna B.; Wass, Duncan F.; Trask, Richard S.

    2016-10-01

    The programmable sequential actuation of two-dimensional hydrogel membranes into three-dimensional folded architectures has been achieved by combining ionoprinting and redox chemistry; this methodology permits the programmed evolution of complex architectures triggered through localized out-of-plane deformations. In our study we describe a soft actuator which utilizes ionoprinting of iron and vanadium, with the selective reduction of iron through a mild reducing agent, to achieve chemically controlled sequential folding. Through the optimization of solvent polarity and ionoprinting variables (voltage, duration and anode composition), we have shown how the actuation pathways, rate-of-movement and magnitude of angular rotation can be controlled for the design of a 4D sequential actuator.

  19. Digit Ratio (2D:4D and cancer: What is known so far?

    Directory of Open Access Journals (Sweden)

    Renato Nicolás Hopp

    2014-02-01

    Full Text Available The ratio between the second and fourth digits is a proxy marker for prenatal exposure and sensitivity to sexual hormones, which can be genetically influenced. The influence of prenatal hormone exposure can reflect on adult life traits such as psychological traits, athletic performance and diseases such as cardiovascular. An important and newly explored field on digit ratio research is its correlation to different types of cancer, as a marker for prevalence and severity. In this review, the different types of cancer already correlated to digit ratios are discussed.----------------------------------------------Cite this article as: Hopp RN, Lima N, Filho J, Sena-Filho M, Samuel RO, Amaral JG, Jorge J. Digit Ratio (2D:4D and cancer: What is known so far? Int J Cancer Ther Oncol 2014; 2(1:020111.DOI: http://dx.doi.org/10.14319/ijcto.0201.11

  20. Advanced large airway CT imaging in children: evolution from axial to 4-D assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward Y. [Boston Children' s Hospital and Harvard Medical School, Departments of Radiology and Medicine, Boston, MA (United States); Zucker, Evan J. [Tufts Medical Center, Department of Radiology, Floating Hospital for Children, Boston, MA (United States); Restrepo, Ricardo [Miami Children' s Hospital, Department of Radiology, Miami, FL (United States); Daltro, Pedro [Clinica de DiagnOstico Por Imagem, Rio de Janeiro (Brazil); Boiselle, Phillip M. [Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2013-03-15

    Continuing advances in multidetector computed tomography (MDCT) technology are revolutionizing the non-invasive evaluation of congenital and acquired large airway disorders in children. For example, the faster scanning time and increased anatomical coverage that are afforded by MDCT are especially beneficial to children. MDCT also provides high-quality multiplanar 2-dimensional (2-D), internal and external volume-rendering 3-dimensional (3-D), and dynamic 4-dimensional (4-D) imaging. These advances have enabled CT to become the primary non-invasive imaging modality of choice for the diagnosis, treatment planning, and follow-up evaluation of various large airway disorders in infants and children. It is thus essential for radiologists to be familiar with safe and effective techniques for performing MDCT and to be able to recognize the characteristic imaging appearances of large airway disorders affecting children. (orig.)

  1. 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy.

    Science.gov (United States)

    Yurtsever, Aycan; Zewail, Ahmed H

    2009-10-30

    Diffraction with focused electron probes is among the most powerful tools for the study of time-averaged nanoscale structures in condensed matter. Here, we report four-dimensional (4D) nanoscale diffraction, probing specific site dynamics with 10 orders of magnitude improvement in time resolution, in convergent-beam ultrafast electron microscopy (CB-UEM). As an application, we measured the change of diffraction intensities in laser-heated crystalline silicon as a function of time and fluence. The structural dynamics (change in 7.3 +/- 3.5 picoseconds), the temperatures (up to 366 kelvin), and the amplitudes of atomic vibrations (up to 0.084 angstroms) are determined for atoms strictly localized within the confined probe area (10 to 300 nanometers in diameter). We anticipate a broad range of applications for CB-UEM and its variants, especially in the studies of single particles and heterogeneous structures. PMID:19900928

  2. Resolving 4-D Nature of Magnetism with Depolarization and Faraday Tomography: Japanese SKA Cosmic Magnetism Science

    CERN Document Server

    Akahori, Takuya; Ichaki, Kiyotomo; Ideguchi, Shinsuke; Kudoh, Takahiro; Kudoh, Yuki; Machida, Mami; Nakanishi, Hiroyuki; Ohno, Hiroshi; Ozawa, Takeaki; Takahashi, Keitaro; Takizawa, Motokazu

    2016-01-01

    Magnetic fields play essential roles in various astronomical objects. Radio astronomy has revealed that magnetic fields are ubiquitous in our Universe. However, the real origin and evolution of magnetic fields is poorly proven. In order to advance our knowledge of cosmic magnetism in coming decades, the Square Kilometre Array (SKA) should have supreme sensitivity than ever before, which provides numerous observation points in the cosmic space. Furthermore, the SKA should be designed to facilitate wideband polarimetry so as to allow us to examine sightline structures of magnetic fields by means of depolarization and Faraday Tomography. The SKA will be able to drive cosmic magnetism of the interstellar medium, the Milky Way, galaxies, AGN, galaxy clusters, and potentially the cosmic web which may preserve information of the primeval Universe. The Japan SKA Consortium (SKA-JP) Magnetism Science Working Group (SWG) proposes the project "Resolving 4-D Nature of Magnetism with Depolarization and Faraday Tomography"...

  3. Geovisualization Approaches for Spatio-temporal Crime Scene Analysis - Towards 4D Crime Mapping

    Science.gov (United States)

    Wolff, Markus; Asche, Hartmut

    This paper presents a set of methods and techniques for analysis and multidimensional visualisation of crime scenes in a German city. As a first step the approach implies spatio-temporal analysis of crime scenes. Against this background a GIS-based application is developed that facilitates discovering initial trends in spatio-temporal crime scene distributions even for a GIS untrained user. Based on these results further spatio-temporal analysis is conducted to detect variations of certain hotspots in space and time. In a next step these findings of crime scene analysis are integrated into a geovirtual environment. Behind this background the concept of the space-time cube is adopted to allow for visual analysis of repeat burglary victimisation. Since these procedures require incorporating temporal elements into virtual 3D environments, basic methods for 4D crime scene visualisation are outlined in this paper.

  4. A Mass-Conserving 4D XCAT Phantom for Dose Calculation and Accumulation

    CERN Document Server

    Williams, Christopher L; Seco, Joao; James, Sara St; Mak, Raymond H; Berbeco, Ross I; Lewis, John H

    2013-01-01

    The XCAT phantom is a realistic 4D digital torso phantom that is widely used in imaging and therapy research. However, lung mass is not conserved between respiratory phases of the phantom, making detailed dosimetric simulations and dose accumulation unphysical. A framework is developed to correct this issue by enforcing local mass conservation in the XCAT lung. Dose calculations are performed to assess the implications of neglecting mass conservation, and to demonstrate an application of the phantom to calculate the accumulated delivered dose in an irregularly breathing patient. Monte Carlo methods are used to simulate conventional and SBRT treatment delivery. The spatial distribution of the lung dose was qualitatively changed by the use of mass conservation; however the corresponding DVH did not change significantly. Comparison of the delivered dose with 4DCT-based predictions shows similar lung metric results, however dose differences of 10% can be seen in some spatial regions. Using this tool to simulate p...

  5. 6d → 5d → 4d reduction of BPS attractors in flat gauged supergravities

    Directory of Open Access Journals (Sweden)

    Kiril Hristov

    2015-08-01

    This is achieved starting from the BPS black string in 6d with an AdS3×S3 attractor and taking two different routes to arrive at a 1/2 BPS AdS2×S2 attractor of a non-BPS black hole in 4d N=2 flat gauged supergravity. The two inequivalent routes interchange the order of KK reduction on AdS3 and SS reduction on S3. We also find the commutator between the two operations after performing a duality transformation: on the level of the theory the result is the exchange of electric with magnetic gaugings; on the level of the solution we find a flip of the quartic invariant I4 to −I4.

  6. Self-tuning at large (distances): 4D description of runaway dilaton capture

    Science.gov (United States)

    Burgess, C. P.; Diener, Ross; Williams, M.

    2015-10-01

    We complete here a three-part study (see also arXiv:1506.08095 and arXiv:1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantization through the existence of a space-filling four-form potential that descends from the higher-dimensional Maxwell field. We find a scalar potential consistent with general constraints, like the runaway dictated by Weinberg's theorem. We show how scale-breaking brane interactions can give this potential minima for which the extra-dimensional size, ℓ, is exponentially large relative to underlying physics scales, r B , with ℓ 2 = r B 2 e - φ where - φ ≫ 1 can be arranged with a small hierarchy between fundamental parameters. We identify circumstances where the potential at the minimum can (but need not) be parametrically suppressed relative to the tensions of the branes, provide a preliminary discussion of the robustness of these results to quantum corrections, and discuss the relation between what we find and earlier papers in the SLED program.

  7. Simball Box for Laparoscopic Training With Advanced 4D Motion Analysis of Skills.

    Science.gov (United States)

    Hagelsteen, Kristine; Sevonius, Dan; Bergenfelz, Anders; Ekelund, Mikael

    2016-06-01

    Background Laparoscopic skills training and evaluation outside the operating room is important for all surgeons learning new skills. To study feasibility, a video box trainer tracking 4-dimensional (4D) metrics was evaluated as a laparoscopic training tool. Method Simball Box is a video box trainer with authentic surgical instruments and camera with video recording, equipped with 4D motion analysis registered through trocars using machine vision technology. Residents attending a 3-day laparoscopy course were evaluated performing a laparoscopic surgical knot at start, middle, and end. Metrics were obtained. Feedback data were presented in reference to expert/tutorial performance. Results Ten right-handed residents were included. Median time (range) to finish the task was 359 (253-418), 129 (95-166), and 95 (52-156) seconds; 655%, 236%, and 174% of tutorial performance, with significance pre-/midcourse (P distance in radians (range) was 150 (87-251), 65 (42-116), and 50 (33-136) with significance pre-/midcourse (P = .022) and pre-/postcourse (P = .0002). Right-handed average speed (cm/s) increased: 1.94 (1.11-2.27) pre-, 2.39 (1.56-2.83) mid-, 2.60 (1.67-3.19) postcourse with significance pre-/midcourse (P = .022) and pre-/postcourse (P = .002). Average acceleration (mm/s(2)) and motion smoothness (µm/s(3)) failed to show any difference. Conclusion For laparoscopic training and as a promising evaluation device, Simball Box obtained metrics mirroring progression well. PMID:26857834

  8. Validation of percutaneous puncture trajectory during renal access using 4D ultrasound reconstruction

    Science.gov (United States)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    An accurate percutaneous puncture is essential for disintegration and removal of renal stones. Although this procedure has proven to be safe, some organs surrounding the renal target might be accidentally perforated. This work describes a new intraoperative framework where tracked surgical tools are superimposed within 4D ultrasound imaging for security assessment of the percutaneous puncture trajectory (PPT). A PPT is first generated from the skin puncture site towards an anatomical target, using the information retrieved by electromagnetic motion tracking sensors coupled to surgical tools. Then, 2D ultrasound images acquired with a tracked probe are used to reconstruct a 4D ultrasound around the PPT under GPU processing. Volume hole-filling was performed in different processing time intervals by a tri-linear interpolation method. At spaced time intervals, the volume of the anatomical structures was segmented to ascertain if any vital structure is in between PPT and might compromise the surgical success. To enhance the volume visualization of the reconstructed structures, different render transfer functions were used. Results: Real-time US volume reconstruction and rendering with more than 25 frames/s was only possible when rendering only three orthogonal slice views. When using the whole reconstructed volume one achieved 8-15 frames/s. 3 frames/s were reached when one introduce the segmentation and detection if some structure intersected the PPT. The proposed framework creates a virtual and intuitive platform that can be used to identify and validate a PPT to safely and accurately perform the puncture in percutaneous nephrolithotomy.

  9. Joint CO2 state and flux estimation with the 4D-Var system EURAD-IM

    Science.gov (United States)

    Klimpt, Johannes; Elbern, Hendrik

    2016-04-01

    Atmospheric CO2 inversion studies seek to improve CO2 surface-atmosphere fluxes with the usage of adjoint transport models and CO2 concentration measurements. Terrestrial CO2 fluxes -anthropogenic emissions, photosynthesis, and respiration- bear large spatial and temporal variability and are highly uncertain. Additionally to the high uncertainty of the three CO2 fluxes itself, regional inversion studies suffer from uncertainty of the boundary layer height and atmospheric transport especially during night, leading to uncertainty of atmospheric CO2 mixing ratios during sunrise. This study assesses the potential of the 4-dimensional variational (4D-Var) method to estimate CO2 fluxes and atmospheric CO2 concentrations jointly at each grid cell on a regional scale. Identical twin experiments are executed with the nested EURopean Air pollution Dispersion-Inverse Model (EURAD-IM) with 5 km resolution in Central Europe with synthetic half hourly measurements from eleven concentration towers. The assimilation window is chosen to start from sunrise for 12 hours. We find that joint estimation of CO2 fluxes and initial states requires a more careful balance of the background error covariance matrices but enables a more detailed analysis of atmospheric CO2 and the surface-atmosphere fluxes.

  10. Toxicity of synthetic herbicides containing 2,4-D and MCPA moieties towards Pseudomonas putida mt-2 and its response at the level of membrane fatty acid composition.

    Science.gov (United States)

    Piotrowska, Aleksandra; Syguda, Anna; Chrzanowski, Łukasz; Heipieper, Hermann J

    2016-02-01

    One of the attempts to create more effective herbicidal compounds includes the use of ionic liquids. Herbicidal ionic liquids have more effective biological activity, they are less volatile, more thermally stable, and exhibit superior efficiency in comparison to typically employed herbicides, allowing the reduction of the herbicide dose applied per hectare. However, studies on the environmental toxicity of this group of compounds are very rarely available. Environmental toxicity is an important factor, showing the concentration of compounds that has negative effects on soil bacteria including those responsible for biodegradation processes. Therefore, potential toxicity of four herbicidal ionic liquids (HILs) precursors containing 2,4-D and MCPA moieties was tested with the well investigated model organism for toxicity and adaptation, Pseudomonas putida mt-2. Results were compared to those obtained for commercial 2,4-D and MCPA herbicides. Next to growth inhibition, given as EC50, changes in the isomerisation of cis to trans unsaturated fatty acids were applied as proxy for cellular stress adaptation to toxic substances. The results revealed that all investigated precursors of HILs showed lower toxicity compared to commercialized synthetic herbicides 2,4-D and MCPA. The collected data on toxicity of HILs together with their physico-chemical properties might be useful for assessing the potential risk of the environmental pollution as well as guidelines for setting the legislation for their future use. PMID:26347932

  11. Prostate biopsies guided by three-dimensional real-time (4-D) transrectal ultrasonography on a phantom: comparative study versus two-dimensional transrectal ultrasound-guided biopsies

    CERN Document Server

    Long, Jean-Alexandre; Moreau-Gaudry, Alexandre; Troccaz, Jocelyne; Rambeaud, Jean-Jacques; Descotes, Jean-Luc

    2007-01-01

    OBJECTIVE: This study evaluated the accuracy in localisation and distribution of real-time three-dimensional (4-D) ultrasound-guided biopsies on a prostate phantom. METHODS: A prostate phantom was created. A three-dimensional real-time ultrasound system with a 5.9MHz probe was used, making it possible to see several reconstructed orthogonal viewing planes in real time. Fourteen operators performed biopsies first under 2-D then 4-D transurethral ultrasound (TRUS) guidance (336 biopsies). The biopsy path was modelled using segmentation in a 3-D ultrasonographic volume. Special software was used to visualise the biopsy paths in a reference prostate and assess the sampled area. A comparative study was performed to examine the accuracy of the entry points and target of the needle. Distribution was assessed by measuring the volume sampled and a redundancy ratio of the sampled prostate. RESULTS: A significant increase in accuracy in hitting the target zone was identified using 4-D ultrasonography as compared to 2-D....

  12. A Case Simulation Analysis on Thermodynamical Mechanism of Supercell Storm Development Using 3-D Cloud Model and 4-D Variational Assimilation on Radar Data%基于雷达资料四维变分同化和三维云模式对一次超级单体风暴发展维持热动力机制的模拟分析

    Institute of Scientific