An $xp$ model on $AdS_2$ spacetime
Molina-Vilaplana, Javier
2013-01-01
In this paper we formulate the $xp$ model on the AdS$_2$ spacetime. We find that the spectrum of the Hamiltonian has positive and negative eigenvalues, equal in magnitude, given by a harmonic oscillator with a zero point energy parameterized by the AdS radius, measured in units of a fundamental length of the model. We also construct the generators of the isometry group SO(2,1) of the AdS$_2$ spacetime, and discuss the relation with conformal quantum mechanics.
Curvatronics with bilayer graphene in an effective $4D$ spacetime
Cariglia, M; Perali, A
2016-01-01
We show that in AB stacked bilayer graphene low energy excitations around the semimetallic points are described by massless, four dimensional Dirac fermions. There is an effective reconstruction of the 4 dimensional spacetime, including in particular the dimension perpendicular to the sheet, that arises dynamically from the physical graphene sheet and the interactions experienced by the carriers. The effective spacetime is the Eisenhart-Duval lift of the dynamics experienced by Galilei invariant L\\'evy-Leblond spin $\\frac{1}{2}$ particles near the Dirac points. We find that changing the intrinsic curvature of the bilayer sheet induces a change in the energy level of the electronic bands, switching from a conducting regime for negative curvature to an insulating one when curvature is positive. In particular, curving graphene bilayers allows opening or closing the energy gap between conduction and valence bands, a key effect for electronic devices. Thus using curvature as a tunable parameter opens the way for t...
An $xp$ model on $AdS_2$ spacetime
2012-01-01
In this paper we formulate the $xp$ model on the AdS$_2$ spacetime. We find that the spectrum of the Hamiltonian has positive and negative eigenvalues, whose absolute values are given by a harmonic oscillator spectrum, which in turn coincides with that of a massive Dirac fermion in AdS$_2$. We extend this result to generic $xp$ models which are shown to be equivalent to a massive Dirac fermion on spacetimes whose metric depend of the $xp$ Hamiltonian. Finally, we construct the generators of t...
Perturbative entanglement thermodynamics for AdS spacetime: Renormalization
Mishra, Rohit
2015-01-01
We study the effect of charged excitations in the AdS spacetime on the first law of entanglement thermodynamics. It is found that `boosted' AdS black holes give rise to a more general form of first law which includes chemical potential and charge density. To obtain this result we have to resort to a second order perturbative calculation of entanglement entropy for small size subsystems. At first order the form of entanglement law remains unchanged even in the presence of charged excitations. But the thermodynamic quantities have to be appropriately `renormalized' at the second order due to the corrections. We work in the perturbative regime where $T_{thermal}\\ll T_E$.
Rauhala, U. A.
2013-12-01
Array algebra of photogrammetry and geodesy unified multi-linear matrix and tensor operators in an expansion of Gaussian adjustment calculus to general matrix inverses and solutions of inverse problems to find all, or some optimal, parametric solutions that satisfy the available observables. By-products in expanding array and tensor calculus to handle redundant observables resulted in general theories of estimation in mathematical statistics and fast transform technology of signal processing. Their applications in gravity modeling and system automation of multi-ray digital image and terrain matching evolved into fast multi-nonlinear differential and integral array calculus. Work since 1980's also uncovered closed-form inverse Taylor and least squares Newton-Raphson-Gauss perturbation solutions of nonlinear systems of equations. Fast nonlinear integral matching of array wavelets enabled an expansion of the bundle adjustment to 4-D stereo imaging and range sensing where real-time stereo sequence and waveform phase matching enabled data-to-info conversion and compression on-board advanced sensors. The resulting unified array calculus of spacetime sensing is applicable in virtually any math and engineering science, including recent work in spacetime physics. The paper focuses on geometric spacetime reconstruction from its image projections inspired by unified relativity and string theories. The collinear imaging equations of active object space shutter of special relativity are expanded to 4-D Lorentz transform. However, regular passive imaging and shutter inside the sensor expands the law of special relativity by a quantum geometric explanation of 4-D photogrammetry. The collinear imaging equations provide common sense explanations to the 10 (and 26) dimensional hyperspace concepts of a purely geometric string theory. The 11-D geometric M-theory is interpreted as a bundle adjustment of spacetime images using 2-D or 5-D membrane observables of image, string and
Noncommutative Spacetime Realized in $AdS_{n+1}$ Space
Naka, S; Takanashi, T; Umezawa, E
2013-01-01
In $\\kappa$-Minkowski spacetime, the coordinates are Lie algebraic elements such that time and space coordinates do not commute, whereas space coordinates commute each other. The non-commutativity is proportional to a Planck-length-scale constant $\\kappa^{-1}$, which is a universal constant other than the light velocity under the $\\kappa$-Poincare transformation. In this sense, the spacetime has a structure called as "Doubly Special Relativity". Such a noncommutative structure is known to be realized by SO(1,4) generators in 4-dimensional de Sitter space. In this paper, we try to construct a nonommutative spacetime having commutative n-dimensional Minkowski spacetime based on $AdS_{n+1}$ space with SO(2,n) symmetry. We also study an invariant wave equation corresponding to the first Casimir invariant of this symmetry as a non-local field equation expected to yield finite loop amplitudes.
Interacting shells in AdS spacetime and chaos
Brito, Richard; Cardoso, Vitor; Rocha, Jorge V.
2016-07-01
We study the simplest two-body problem in asymptotically anti-de Sitter spacetime: two, infinitely thin, concentric spherical shells of matter. We include only gravitational interaction between the two shells, but we show that the dynamics of this system is highly nontrivial. We observe prompt collapse to a black hole, delayed collapse and even perpetual oscillatory motion, depending on the initial location of the shells (or their energy content). The system exhibits critical behavior, and we show strong hints that it is also chaotic.
Naka, S.; Toyoda, H.; Takanashi, T.; Umezawa, E.
2014-04-01
In kappa -Minkowski spacetime, the coordinates are Lie algebraic elements such that time and space coordinates do not commute, whereas space coordinates commute with each other. The noncommutativity is proportional to a Planck-length-scale constant kappa ^{-1}, which is a universal constant other than the velocity of light, under the kappa -Poincaré transformation. In this sense, the spacetime has a structure called "doubly special relativity." Such a noncommutative structure is known to be realized by SO(1,4) generators in 4-dimensional de Sitter space. In this paper, we try to construct a noncommutative spacetime having a commutative n-dimensional Minkowski spacetime based on AdS_{n+1} space with SO(2,n) symmetry. We also study an invariant wave equation corresponding to the first Casimir invariant of this symmetry as a nonlocal field equation expected to yield finite loop amplitudes.
Asymptotically AdS spacetimes with a timelike Kasner singularity
Energy Technology Data Exchange (ETDEWEB)
Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2016-07-21
Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.
Asymptotically AdS spacetimes with a timelike Kasner singularity
Ren, Jie
2016-07-01
Exact solutions to Einstein's equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution's appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.
Geometric properties of a 2 D spacetime arising in 4 D black hole physics
Casals, Marc; Nolan, Brien C.
2015-11-01
The Schwarzschild exterior space-time is conformally related to a direct product space-time, M2×S2 , where M2 is a 2 D space-time. This direct product structure arises naturally when considering the wave equation on the Schwarzschild background. Motivated by this, we establish some geometrical results relating to M2 that are useful for black hole physics. We prove that M2 has the rare property of being a causal domain. Consequently, Synge's world function and the Hadamard form for the Green function on this space-time are well defined globally. We calculate the world function and the van Vleck determinant on M2 numerically and point out how these results will be used to establish global properties of Green functions on the Schwarzschild black hole space-time.
Geometric properties of a 2-D space-time arising in 4-D black hole physics
Casals, Marc
2015-01-01
The Schwarzschild exterior space-time is conformally related to a direct product space-time, $\\mathcal{M}_2 \\times S_2$, where $\\mathcal{M}_2$ is a two-dimensional space-time. This direct product structure arises naturally when considering the wave equation on the Schwarzschild background. Motivated by this, we establish some geometrical results relating to $\\mathcal{M}_2$ that are useful for black hole physics. We prove that $\\mathcal{M}_2$ has the rare property of being a causal domain. Consequently, Synge's world function and the Hadamard form for the Green function on this space-time are well-defined globally. We calculate the world function and the van Vleck determinant on $\\mathcal{M}_2$ numerically and point out how these results will be used to establish global properties of Green functions on the Schwarzschild black hole space-time.
Stability of Charged Global AdS$_4$ Spacetimes
Arias, Raúl; Serantes, Alexandre
2016-01-01
We study linear and nonlinear stability of asymptotically AdS$_4$ solutions in Einstein-Maxwell-scalar theory. After summarizing the set of static solutions we first examine thermodynamical stability in the grand canonical ensemble and the phase transitions that occur among them. In the second part of the paper we focus on nonlinear stability in the microcanonical ensemble by evolving radial perturbations numerically. We find hints of an instability corner for vanishingly small perturbations of the same kind as the ones present in the uncharged case. Collapses are avoided, instead, if the charge and mass of the perturbations come to close the line of solitons. Finally we examine the soliton solutions. The linear spectrum of normal modes is not resonant and instability turns on at extrema of the mass curve. Linear stability extends to nonlinear stability up to some threshold for the amplitude of the perturbation. Beyond that, the soliton is destroyed and collapses to a hairy black hole. The relative width of t...
Interpolating from Bianchi Attractors to Lifshitz and AdS Spacetimes
Kachru, Shamit; Saha, Arpan; Samanta, Rickmoy; Trivedi, Sandip P
2013-01-01
We construct classes of smooth metrics which interpolate from Bianchi attractor geometries of Types II, III, VI and IX in the IR to Lifshitz or $AdS_2 \\times S^3$ geometries in the UV. While we do not obtain these metrics as solutions of Einstein gravity coupled to a simple matter field theory, we show that the matter sector stress-energy required to support these geometries (via the Einstein equations) does satisfy the weak, and therefore also the null, energy condition. Since Lifshitz or $AdS_2 \\times S^3$ geometries can in turn be connected to $AdS_5$ spacetime, our results show that there is no barrier, at least at the level of the energy conditions, for solutions to arise connecting these Bianchi attractor geometries to $AdS_5$ spacetime. The asymptotic $AdS_5$ spacetime has no non-normalizable metric deformation turned on, which suggests that furthermore, the Bianchi attractor geometries can be the IR geometries dual to field theories living in flat space, with the breaking of symmetries being either sp...
The Worldvolume Action of Kink Solitons in AdS Spacetime
Khoury, Justin; Stokes, James
2012-01-01
A formalism is presented for computing the higher-order corrections to the worldvolume action of co-dimension one solitons. By modifying its potential, an explicit "kink" solution of a real scalar field in AdS space-time is found. The formalism is then applied to explicitly compute the kink worldvolume action to quadratic order in its extrinsic and intrinsic curvatures. Two alternative methods are given for doing this. In addition to conformal Galileon interactions, we find a non-Galileon term which is never sub-dominant. This method can be extended to any conformally flat bulk space-time.
A topological-like model for gravity in 4D space-time
Energy Technology Data Exchange (ETDEWEB)
Morales, Ivan; Neves, Bruno; Oporto, Zui; Piguet, Olivier [Universidade Federal de Vicosa-UFV, Departamento de Fisica, Vicosa, MG (Brazil)
2016-04-15
In this paper we consider a model for gravity in four-dimensional space-time originally proposed by Chamseddine, which may be derived by dimensional reduction and truncation from a five-dimensional Chern-Simons theory. Its topological origin makes it an interesting candidate for an easier quantization, e.g., in the loop quantization framework. The present paper is dedicated to a classical analysis of the model's properties. Cosmological solutions as well as wave solutions are found and compared with the corresponding solutions of Einstein's general relativity with cosmological constant. (orig.)
Flowing along the edge: spinning up black holes in AdS spacetimes with test particles
Rocha, Jorge V
2014-01-01
We investigate the consequences of throwing point particles into odd-dimensional Myers-Perry black holes in asymptotically anti-de Sitter (AdS) backgrounds. We restrict our attention to the case in which the angular momenta of the background geometry are all equal. This process allows us to test the generalization of the weak cosmic censorship conjecture to asymptotically AdS spacetimes in higher dimensions. We find no evidence for overspinning in D = 5, 7, 9 and 11 dimensions. Instead, test particles carrying the maximum possible angular momentum that still fall into an extremal rotating black hole generate a flow along the curve of extremal solutions.
Geodesic Motions in AdS Soliton Background Space-time
Shi, Han-qing
2016-01-01
We study both massive and massless particle's geodesic motion in the background of general dimensional AdS-Sol space-time. We find that the massive particles oscillate along the radial direction, while massless particles experience one-time bouncing as they approach the "horizon" line of the soliton. Our results provide a direct way to understand the negative energy/masses leading to the AdS-Sol geometry. As a potential application, we extend the point particle to a 3-brane and fix the background as a 5+1 dimension AdS-Sol, thus obtain a very natural bouncing/cyclic cosmological model.
Gravitational collapse in 2+1 dimensional AdS spacetime
Pretorius, F; Pretorius, Frans; Choptuik, Matthew W.
2000-01-01
We present results of numerical simulations of the formation of black holes from the gravitational collapse of a massless, minimally-coupled scalar field in 2+1 dimensional, axially-symmetric, anti de-Sitter (AdS) spacetime. The geometry exterior to the event horizon approaches the BTZ solution, showing no evidence of scalar `hair'. To study the interior structure we implement a variant of black-hole excision, which we call singularity excision. We find that interior to the event horizon a strong, spacelike curvature singularity develops. We study the critical behavior at the threshold of black hole formation, and find a continuously self-similar solution and corresponding mass-scaling exponent of approximately 1.2. The critical solution is universal to within a phase that is related to the angle deficit of the spacetime.
Interpolating from Bianchi attractors to Lifshitz and AdS spacetimes
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit [SITP, Department of Physics and Theory Group, SLAC, Stanford University,Stanford, CA 94305 (United States); Kundu, Nilay [Tata Institute for Fundamental Research, Mumbai 400005 (India); Saha, Arpan [Indian Institute of Technology - Bombay,Powai, Mumbai (India); Samanta, Rickmoy; Trivedi, Sandip P. [Tata Institute for Fundamental Research, Mumbai 400005 (India)
2014-03-17
We construct classes of smooth metrics which interpolate from Bianchi attractor geometries of Types II, III, VI and IX in the IR to Lifshitz or AdS{sub 2}×S{sup 3} geometries in the UV. While we do not obtain these metrics as solutions of Einstein gravity coupled to a simple matter field theory, we show that the matter sector stress-energy required to support these geometries (via the Einstein equations) does satisfy the weak, and therefore also the null, energy condition. Since Lifshitz or AdS{sub 2}×S{sup 3} geometries can in turn be connected to AdS{sub 5} spacetime, our results show that there is no barrier, at least at the level of the energy conditions, for solutions to arise connecting these Bianchi attractor geometries to AdS{sub 5} spacetime. The asymptotic AdS{sub 5} spacetime has no non-normalizable metric deformation turned on, which suggests that furthermore, the Bianchi attractor geometries can be the IR geometries dual to field theories living in flat space, with the breaking of symmetries being either spontaneous or due to sources for other fields. Finally, we show that for a large class of flows which connect two Bianchi attractors, a C-function can be defined which is monotonically decreasing from the UV to the IR as long as the null energy condition is satisfied. However, except for special examples of Bianchi attractors (including AdS space), this function does not attain a finite and non-vanishing constant value at the end points.
Thermodynamics of (d+1)-dimensional NUT-charged AdS spacetimes
Energy Technology Data Exchange (ETDEWEB)
Clarkson, R. E-mail: rick@avatar.uwaterloo.ca; Fatibene, L. E-mail: fatibene@dm.unito.it; Mann, R.B. E-mail: mann@avatar.uwaterloo.ca
2003-03-03
We consider the thermodynamic properties of (d+1)-dimensional spacetimes with NUT charges. Such spacetimes are asymptotically locally anti-de Sitter (or flat), with non-trivial topology in their spatial sections, and can have fixed point sets of the Euclidean time symmetry that are either (d-1)-dimensional (called 'bolts') or of lower dimensionality (pure 'NUTs'). We compute the free energy, conserved mass, and entropy for 4, 6, 8 and 10 dimensions for each, using both Noether charge methods and the AdS/CFT-inspired counterterm approach. We then generalize these results to arbitrary dimensionality. We find in 4k+2 dimensions that there are no regions in parameter space in the pure NUT case for which the entropy and specific heat are both positive, and so all such spacetimes are thermodynamically unstable. For the pure NUT case in 4k dimensions a region of stability exists in parameter space that decreases in size with increasing dimensionality. All bolt cases have some region of parameter space for which thermodynamic stability can be realized.
Thermodynamics of $(d+1)$-dimensional NUT-charged AdS Spacetimes
Clarkson, R; Mann, R B
2003-01-01
We consider the thermodynamic properties of $(d+1)$-dimensional spacetimes with NUT charges. Such spacetimes are asymptotically locally anti de Sitter (or flat), with non-trivial topology in their spatial sections, and can have fixed point sets of the Euclidean time symmetry that are either $(d-1)$-dimensional (called "bolts") or of lower dimensionality (pure "NUTs"). We compute the free energy, conserved mass, and entropy for 4, 6, 8 and 10 dimensions for each, using both Noether charge methods and the AdS/CFT-inspired counterterm approach. We then generalize these results to arbitrary dimensionality. We find in $4k+2$ dimensions that there are no regions in parameter space in the pure NUT case for which the entropy and specific heat are both positive, and so all such spacetimes are thermodynamically unstable. For the pure NUT case in $4k$ dimensions a region of stability exists in parameter space that decreases in size with increasing dimensionality. All bolt cases have some region of parameter space for wh...
Determining an asymptotically AdS spacetime from data on its conformal boundary
Enciso, Alberto
2015-01-01
An important question lying at the core of the AdS/CFT correspondence in string theory is the holographic prescription problem for Einstein metrics, which asserts that one can slightly perturb the conformal geometry at infinity of the anti-de Sitter space and still obtain an asymptotically anti-de Sitter spacetime that satisfies the Einstein equations with a negative cosmological constant. This is a Lorentzian counterpart of the celebrated Graham-Lee theorem in Riemannian geometry. The purpose of this paper is to provide a precise statement of this result and to outline its proof.
Lemos, José P S; Minamitsuji, Masato
2015-01-01
A rotating thin shell in a (2+1)-dimensional asymptotically AdS spacetime is studied. The spacetime exterior to the shell is the rotating BTZ spacetime and the interior is the empty spacetime with a cosmological constant. Through the Einstein equation in (2+1)-dimensions and the corresponding junction conditions we calculate the dynamical relevant quantities, namely, the rest energy-density, the pressure, and the angular momentum flux density. We also analyze the matter in a frame where its energy-momentum tensor has a perfect fluid form. In addition, we show that Machian effects, such as the dragging of inertial frames, also occur in rotating (2+1)-dimensional spacetimes. The weak and the dominant energy condition for these shells are discussed.
Exact black hole formation in asymptotically (AdS and flat spacetimes
Directory of Open Access Journals (Sweden)
Xuefeng Zhang
2014-09-01
Full Text Available We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e−u/u0 with u0∼1/(α4M01/3, where M0 is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (AdS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (AdS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory.
Non-Abelian fields in AdS$_4$ spacetime: axially symmetric, composite configurations
Kichakova, Olga; Radu, Eugen; Shnir, Yasha
2014-01-01
We construct new finite energy regular solutions in Einstein-Yang-Mills-SU(2) theory. They are static, axially symmetric and approach at infinity the anti-de Sitter spacetime background. These configurations are characterized by a pair of integers $(m, n)$, where $m$ is related to the polar angle and $n$ to the azimuthal angle, being related to the known flat space monopole-antimonopole chains and vortex rings. Generically, they describe composite configurations with several individual components, possesing a nonzero magnetic charge, even in the absence of a Higgs field. Such Yang-Mills configurations exist already in the probe limit, the AdS geometry supplying the attractive force needed to balance the repulsive force of Yang-Mills gauge interactions. The gravitating solutions are constructed by numerically solving the elliptic Einstein-DeTurck--Yang-Mills equations. The variation of the gravitational coupling constant $\\alpha$ reveals the existence of two branches of gravitating solutions which bifurcate at...
Recovery of the Linearized 4D AdS and dS Schwarzschild Metric in the Karch-Randall Braneworld
2003-01-01
We present a linearized treatment of the Karch-Randall braneworld where an AdS_4 or dS_4 brane is embedded in AdS_5. We examine the quasi-zero graviton mode in detail and reproduce the graviton mass by elementary means for the AdS_5 case. We also determine the axially symmetric, static excitations of the vacuum and demonstrate that they reproduce the 4D AdS_4 and dS_4 Schwarzschild metrics on the brane.
Interpolating solution from AdS$_5$ to hyperscaling violating Lifshitz space-time
Dey, Parijat
2014-01-01
We construct two interpolating solutions in type II string theory which interpolate between an AdS$_5$ in the UV and a hyperscaling violating three (spatial) dimensional Lifshitz space-time in the IR. The first solution is non-supersymmetric and is obtained from a known intersecting non-supersymmetric D3-brane with chargeless D0-brane solution of type IIB string theory, by restricting some parameters characterizing the solution and going to a new coordinate. In the IR the dilaton is non-constant in general and the metric is three (spatial) dimensional hyperscaling violating Lifshitz with dynamical critical exponent $z=(3+3\\gamma)/(3-\\gamma)$ and hyperscaling violation exponent $\\theta = 12/(3-\\gamma)$, where $\\gamma$ is a real parameter and can take continuous values from $-1$ to $+1$. At the two extreme values, i.e., for $\\gamma = \\pm 1$, the dilaton is constant. The second solution is supersymmetric and is obtained from the known F-D2 bound state solution of type IIA string theory by zooming into a particul...
Static Einstein–Maxwell Magnetic Solitons and Black Holes in an Odd Dimensional AdS Spacetime
Directory of Open Access Journals (Sweden)
Jose Luis Blázquez-Salcedo
2016-12-01
Full Text Available We construct a new class of Einstein–Maxwell static solutions with a magnetic field in D-dimensions (with D ≥ 5 an odd number, approaching at infinity a globally Anti-de Sitter (AdS spacetime. In addition to the mass, the new solutions possess an extra-parameter associated with a non-zero magnitude of the magnetic potential at infinity. Some of the black holes possess a non-trivial zero-horizon size limit, which corresponds to a solitonic deformation of the AdS background.
Complex structures for an S-matrix of Klein-Gordon theory on AdS spacetimes
Dohse, Max
2015-01-01
While the standard construction of the S-matrix fails on Anti-de Sitter (AdS) spacetime, a generalized S-matrix makes sense, based on the hypercylinder geometry induced by the boundary of AdS. In contrast to quantum field theory in Minkowski spacetime, there is not yet a standard way to resolve the quantization ambiguities arising in its construction. These ambiguities are conveniently encoded in the choice of a complex structure. We explore in this paper the space of complex structures for real scalar Klein-Gordon theory based on a number of criteria. These are: invariance under AdS isometries, induction of a positive definite inner product, compatibility with the standard S-matrix picture and recovery of standard structures in Minkowski spacetime under a limit of vanishing curvature. While there is no complex structure that satisfies all demands, we emphasize two interesting candidates that satisfy most: In one case we have to give up part of the isometry invariance, in the other case the induced inner prod...
Thermodynamics of $(d+1)$-dimensional NUT-charged AdS Spacetimes
Clarkson, R.; Fatibene, L.; Mann, R. B.
2002-01-01
We consider the thermodynamic properties of $(d+1)$-dimensional spacetimes with NUT charges. Such spacetimes are asymptotically locally anti de Sitter (or flat), with non-trivial topology in their spatial sections, and can have fixed point sets of the Euclidean time symmetry that are either $(d-1)$-dimensional (called "bolts") or of lower dimensionality (pure "NUTs"). We compute the free energy, conserved mass, and entropy for 4, 6, 8 and 10 dimensions for each, using both Noether charge meth...
Anisotropic Drag Force from 4D Kerr-AdS Black Holes
Atmaja, Ardian Nata
2010-01-01
Using AdS/CFT we investigate the effect of angular-momentum-induced anisotropy on the instantaneous drag force of a heavy quark. The dual description is that of a string moving in the background of a Kerr-AdS black holes. The system exhibits the expected focussing of jets towards the impact parameter plane. We put forward that we can use the connection between this focussing behavior and the angular momentum induced pressure gradient to extrapolate the pressure gradient correction to the drag force that can be used for transverse elliptic flow in realistic RHIC. The result is recognizable as a relativisitic pressure gradient force.
Yaqin, Ainol
2016-01-01
We study static spacetime solutions of four dimensional gravitational model with nonminimal derivative coupling and a scalar potential turned on. By taking an ansatz, namely, the first derivative of the scalar field is proportional to square root of a metric function, we reduce the Einstein field equation and the scalar field equation of motions into a single highly nonlinear differential equation. We prove that there is no black hole solution in this setup. Finally, we give a simple model where the scalar potential is taken to be a hyperbolic function and then, obtain several analytic solutions of the model.
Geodesic motion in equal angular momenta Myers-Perry-AdS spacetimes
Delsate, Térence; Santarelli, Raphael
2015-01-01
We study the geodesic motion of massive and massless test particles in the background of equally spinning Myers-Perry-AdS black holes in five dimensions. By adopting a coordinate system that makes manifest the cohomogeneity-1 property of these spacetimes, the equations of motion simplify considerably. This allows us to easily separate the radial motion from the angular part and to obtain solutions for angular trajectories in a compact closed form. For the radial motion we focus our attention on spherical orbits. In particular, we determine the timelike innermost stable spherical orbits (ISSOs) for these asymptotically anti-de Sitter (AdS) spacetimes, as well as the location of null spherical orbits. We find that the ISSO dives below the ergosurface for black holes rotating close to extremality and merges with the event horizon exactly at extremality, in analogy with the four-dimensional Kerr case. For sufficiently massive black holes in AdS there exists a spin parameter range in which the background spacetime...
Phase Transition and Clapeyon Equation of Black Hole in Higher Dimensional AdS Spacetime
Zhao, Hui-Hua; Ma, Meng-Sen; Zhao, Ren
2014-01-01
By Maxwell equal area law we study the phase transition in higher dimensional Anti-de Sitter (AdS) Reissner-Nordstr\\"{o}m (RN) black hole and Kerr black hole in this paper. The coexisting region of the two phases involved in the phase transition is found and the coexisting curves are shown in $P-T$ figures. We also analytically investigate the parameters which affect the coexisting curves. To better compare with ordinary thermodynamic systems, the Clapeyon equation is derived for higher dimensional AdS black holes. This paper can help to deepen the understanding of the phase transition and phase structure of AdS black holes.
Two worlds collide: Interacting shells in AdS spacetime and chaos
Brito, Richard; Rocha, Jorge V
2016-01-01
We study the simplest two-body problem in asymptotically anti-de Sitter spacetime: two, infinitely-thin, concentric spherical shells of matter. We include only gravitational interaction between the two shells, but we show that the dynamics of this system is highly nontrivial. We observe prompt collapse to a black hole, delayed collapse and even perpetual oscillatory motion, depending on the initial location of the shells (or their energy content). The system exhibits critical behavior, and we show strong hints that it is also chaotic.
Exact Black Hole Formation in Asymptotically (A)dS and Flat Spacetimes
Zhang, Xuefeng
2014-01-01
We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supegravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on values of the cosmological constant parameter $\\Lambda$ in the potential. As the advanced time $u$ increases, the spacetime reaches equilibrium in an exponential fashion, i.e., $e^{-u/u_0}$ with $u_0\\sim1/(\\alpha^4 M_0)^{1/3}$, where $M_0$ is the mass of the final black hole and $\\alpha$ is the second parameter in the potential. Similar to Vaidya solution, at $u=0$, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution gives rise to an (A)dS generalization of Roberts solution, thereby making it relevant to cosmic censorship. Our results provide a new model for studying the formation of r...
Magnetic Field Effect on the Phase Transition in AdS Soliton Spacetime
Cai, Rong-Gen; Zhang, Hai-Qing; Zhang, Yun-Long
2011-01-01
We investigate the scalar perturbations in an AdS soliton background coupled to a Maxwell field via marginally stable modes. In the probe limit, we study the magnetic field effect on the holographic insulator/superconductor phase transition numerically and analytically. The condensate will be localized in a finite circular region for any finite constant magnetic field. Near the critical point, we find that there exists a simple relation among the critical chemical potential, magnetic field, the charge and mass of the scalar field. This relation indicates that the presence of the magnetic field causes the phase transition hard.
Boundary conditions for Maxwell fields in Kerr-AdS spacetimes
Wang, Mengjie
2016-05-01
Perturbative methods are useful to study the interaction between black holes and test fields. The equation for a perturbation itself, however, is not complete to study such a composed system if we do not assign physically relevant boundary conditions. Recently we have proposed a new type of boundary conditions for Maxwell fields in Kerr-anti-de Sitter (Kerr-AdS) spacetimes, from the viewpoint that the AdS boundary may be regarded as a perfectly reflecting mirror, in the sense that energy flux vanishes asymptotically. In this paper, we prove explicitly that a vanishing energy flux leads to a vanishing angular momentum flux. Thus, these boundary conditions may be dubbed as vanishing flux boundary conditions.
Giant Gravitons in AdS_3 x S^3 x T^4 Spacetime under Melvin Field Deformation
Huang, W H
2006-01-01
The giant graviton in the $AdS_3 \\times S^3 \\times T^4$ spacetime only exists when its angular momentum is a specific value and, moreover, it could have arbitrary size. In this paper we first apply the transformation of mixing azimuthal and internal coordinate or mixing time and internal coordinate to the 11D M-theory with a stack of M2-branes $\\bot$ M2-branes, then, through the mechanism of Kaluza-Klein reduction and a series of the T duality we obtain the corresponding background of a stack of D1-branes $\\bot$ D5-branes which, in the near-horizon limit, becomes the magnetic or electric Melvin field deformed $AdS_3 \\times S^3 \\times T^4$. We investigate the giant gravitons therein and show that some configurations whose angular momenta are within a finite region could have the fixed size and become more stable than the point-like graviton. We discuss the properties of how the electric/magnetic Melvin field will affect the size of the giant gravitons with the help of numerical analyses. We also see that the g...
Holographic description of Kerr-Bolt-AdS-dS spacetimes
Energy Technology Data Exchange (ETDEWEB)
Chen, B., E-mail: bchen01@pku.edu.c [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, and Center for High Energy Physics, Peking University, Beijing 100871 (China); Ghezelbash, A.M., E-mail: masoud.ghezelbash@usask.c [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Kamali, V., E-mail: vkamali1362@gmail.co [Department of Campus of Bijar, Kurdistan University, Bijar (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.i [Department of Campus of Bijar, Kurdistan University, Bijar (Iran, Islamic Republic of)
2011-07-01
We show that there exists a holographic 2D CFT description of a Kerr-Bolt-AdS-dS spacetime. We first consider the wave equation of a massless scalar field propagating in extremal Kerr-Bolt-AdS-dS spacetimes and find in the 'near region', the wave equation in extremal limit could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual CFT descriptions of these black holes. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction. Furthermore we study the holographic description of the generic four-dimensional non-extremal Kerr-Bolt-AdS-dS black holes. We find that if focusing on the near-horizon region, for the massless scalar scattering in the low-frequency limit, the radial equation could still be rewritten as the SL(2,R) quadratic Casimir, suggesting the existence of dual 2D description. We read the temperatures of the dual CFT from the conformal coordinates and obtain the central charges by studying the near-horizon geometry of near-extremal black holes. We recover the macroscopic entropy from the microscopic counting. We also show that for the super-radiant scattering, the retarded Green's functions and the corresponding absorption cross sections are in perfect match with CFT prediction.
Beyond AdS Space-times, New Holographic Correspondences and Applications
Ghodrati, Mahdis
2016-01-01
To describe Lifshitz and hyperscaling violating (HSV) phenomena in CM one uses gauge fields on the gravity side which naturally realize the breaking of Lorentz invariance. These gravity constructions often contain naked singularities. In this thesis, we construct a resolution of the infra-red (IR) singularity of the HSV background. The idea is to add squared curvature terms to the Einstein-Maxwell dilaton action to build a flow from $\\text{AdS}_4$ in the ultra violate (UV) to an intermediating HSV region and then to an $\\text{AdS}_2 \\times {\\text{R}}^2$ region in the IR. This general solution is free from the naked singularities and would be more appropriate for applications of HSV in physical systems. We also study the Schwinger effect by using the AdS/CFT duality. We present the phase diagrams of the Schwinger effect and also the "butterfly shaped-phase diagrams" of the entanglement entropy for four different confining supergravity backgrounds. Comparing different features of all of these diagrams could poi...
Beyond AdS Space-times, New Holographic Correspondences and Applications
2016-01-01
To describe Lifshitz and hyperscaling violating (HSV) phenomena in CM one uses gauge fields on the gravity side which naturally realize the breaking of Lorentz invariance. These gravity constructions often contain naked singularities. In this thesis, we construct a resolution of the infra-red (IR) singularity of the HSV background. The idea is to add squared curvature terms to the Einstein-Maxwell dilaton action to build a flow from $\\text{AdS}_4$ in the ultra violate (UV) to an intermediatin...
Exact black hole formation in asymptotically (A)dS and flat spacetimes
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xuefeng, E-mail: zhxf@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Lü, H., E-mail: mrhonglu@gmail.com [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2014-09-07
We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e{sup −u/u{sub 0}} with u{sub 0}∼1/(α{sup 4}M{sub 0}){sup 1/3}, where M{sub 0} is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (A)dS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory.
P-V criticality in the extended phase space of charged f(R) black holes in AdS space-time
Liang, Jun; Sun, Chang-Bo; Feng, Hai-Tao
2016-02-01
The P\\text-V criticality and phase transition in the extended phase space of charged f(R) black holes in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is a thermodynamic volume of the black holes. We take into account three-dimensional and higher-dimensional black holes of the f(R) theory coupled to a conformally invariant Maxwell (CIM) field and find that for a f(R) black hole in three-dimensional space-time, critical behavior cannot occur; for a f(R) black hole in higher-dimensional space-time, no P\\text-V criticality occurs in n = 8 dimensions either, while P\\text-V criticality and the small-black-hole/large-black-hole phase transition appears in n = 12 dimensions. It is shown that the f(R) correction affects the phase transition as well as the critical temperature, volume and pressure. In addition, we also discuss the critical exponents at the critical point for the f(R) black hole in n space-time dimensions and show that they are the same as those in the van de Waals liquid-gas system.
Geodesic Motion in the Spacetime Of a SU(2)-Colored (A)dS Black Hole in Conformal Gravity
Hoseini, Bahareh; Soroushfar, Saheb
2016-01-01
In this paper we are interested to study the geodesic motion in the spacetime of a SU(2)-colored (A)dS black hole solving in conformal gravity. Using Weierstrass elliptic and Kleinian {\\sigma} hyperelliptic functions, we derive the analytical solutions for the equation of motion of test particles and light rays. Also, we classify the possible orbits according to the particle's energy and angular momentum.
Crivellaro, Cinzia; De Ponti, Elena; Elisei, Federica; Morzenti, Sabrina; Picchio, Maria; Bettinardi, Valentino; Versari, Annibale; Fioroni, Federica; Dziuk, Miroslaw; Tkaczewski, Konrad; Ahond-Vionnet, Renée; Nodari, Guillaume; Todde, Sergio; Landoni, Claudio; Guerra, Luca
2017-08-19
The aim of the present study was to evaluate the added diagnostic value of respiratory-gated 4D18F-FDG PET/CT in liver lesion detection and characterization in a European multicenter retrospective study. Fifty-six oncological patients (29 males and 27 females, mean age, 61.2 ± 11.2 years) from five European centers, submitted to standard 3D-PET/CT and liver 4D-PET/CT were retrospectively evaluated. Based on visual analysis, liver PET/CT findings were scored as positive, negative, or equivocal both in 3D and 4D PET/CT. The impact of 4D-PET/CT on the confidence in classifying liver lesions was assessed. PET/CT findings were compared to histology and clinical follow-up as standard reference and diagnostic accuracy was calculated for both techniques. At semi-quantitative analysis, SUVmax was calculated for each detected lesion in 3D and 4D-PET/CT. Overall, 72 liver lesions were considered for the analysis. Based on visual analysis in 3D-PET/CT, 32/72 (44.4%) lesions were considered positive, 21/72 (29.2%) negative, and 19/72 (26.4%) equivocal, while in 4D-PET/CT 48/72 (66.7%) lesions were defined positive, 23/72 (31.9%) negative, and 1/72 (1.4%) equivocal. 4D-PET/CT findings increased the confidence in lesion definition in 37/72 lesions (51.4%). Considering 3D equivocal lesions as positive, sensitivity, specificity, and accuracy were 88.9, 70.0, and 83.1%, respectively, while the same figures were 67.7, 90.0, and 73.8% if 3D equivocal findings were included as negative. 4D-PET/CT sensitivity, specificity, and accuracy were 97.8, 90.0, and 95.4%, respectively, considering equivocal lesions as positive and 95.6, 90.0, and 93.8% considering equivocal lesions as negative. The SUVmax of the liver lesions in 4D-PET (mean ± SD, 6.9 ± 3.2) was significantly higher (p < 0.001) than SUVmax in 3D-PET (mean ± SD, 5.2 ± 2.3). Respiratory-gated PET/CT technique is a valuable clinical tool in diagnosing liver lesions, reducing 3D undetermined findings, improving
Kwon, Oh-Hoon; Zewail, Ahmed H.
2010-06-01
Electron tomography provides three-dimensional (3D) imaging of noncrystalline and crystalline equilibrium structures, as well as elemental volume composition, of materials and biological specimens, including those of viruses and cells. We report the development of 4D electron tomography by integrating the fourth dimension (time resolution) with the 3D spatial resolution obtained from a complete tilt series of 2D projections of an object. The different time frames of tomograms constitute a movie of the object in motion, thus enabling studies of nonequilibrium structures and transient processes. The method was demonstrated using carbon nanotubes of a bracelet-like ring structure for which 4D tomograms display different modes of motion, such as breathing and wiggling, with resonance frequencies up to 30 megahertz. Applications can now make use of the full space-time range with the nanometer-femtosecond resolution of ultrafast electron tomography.
Liang, Jun; Guan, Zhi-Hua; Liu, Yan-Chun; Liu, Bo
2017-02-01
The P- v criticality and phase transition in the extended phase space of a noncommutative geometry inspired Reissner-Nordström (RN) black hole in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is thermodynamic volume of the black hole. It is found that the P- v criticality and the small black hole/large black hole phase transition appear for the noncommutative RN-AdS black hole. Numerical calculations indicate that the noncommutative parameter affects the phase transition as well as the critical temperature, horizon radius, pressure and ratio. The critical ratio is no longer universal, which is different from the result in the van de Waals liquid-gas system. The nature of phase transition at the critical point is also discussed. Especially, for the noncommutative geometry inspired RN-AdS black hole, a new thermodynamic quantity Ψ conjugate to the noncommutative parameter θ has to be defined further, which is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.
Time-dependent spacetimes in AdS/CFT: Bubble and black hole
Ross, S F; Ross, Simon F.; Titchener, Georgina
2005-01-01
We extend the study of time-dependent backgrounds in the AdS/CFT correspondence by examining the relation between bulk and boundary for the smooth 'bubble of nothing' solution and for the locally AdS black hole which has the same asymptotic geometry. These solutions are asymptotically locally AdS, with a conformal boundary conformal to de Sitter space cross a circle. We study the cosmological horizons and relate their thermodynamics in the bulk and boundary. We consider the alpha-vacuum ambiguity associated with the de Sitter space, and find that only the Euclidean vacuum is well-defined on the black hole solution. We argue that this selects the Euclidean vacuum as the preferred state in the dual strongly coupled CFT.
Brane Space-Time and Cosmology
Naboulsi, R
2003-01-01
I reconsider the cosmology of a 3-brane universe imbedded in a five-dimensional anti-de Sitter space AdS5 with a cosmological constant and show that the resulting Friedmann equations for this system are identical to those standard obtained in 4D FRW space-time in the presence of an additional density, playing two roles: the tension of the brane and the gravitino density We discuss some important concequences on hot big bang cosmology.
Comment on the quantum modes of the scalar field on $AdS_{d+1}$ spacetime
Cotaescu, I I
1999-01-01
The problem of the quantum modes of the scalar free field on anti-de Sitter backgrounds with an arbitrary number of space dimensions is considered. It is shown that this problem can be solved by using the same quantum numbers as those of the nonrelativistic oscillator and two parameters which give the energy quanta and respectively the ground state energy. This last one is known to be just the conformal dimension of the boundary field theory of the AdS/CFT conjecture.
Massive charged BTZ black holes in asymptotically (a)dS spacetimes
Energy Technology Data Exchange (ETDEWEB)
Hendi, S.H. [Physics Department and Biruni Observatory,College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM),P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Panah, B. Eslam [Physics Department and Biruni Observatory,College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Panahiyan, S. [Physics Department and Biruni Observatory,College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University,Tehran 19839 (Iran, Islamic Republic of)
2016-05-04
Motivated by recent developments of BTZ black holes and interesting results of massive gravity, we investigate massive BTZ black holes in the presence of Maxwell and Born-Infeld (BI) electrodynamics. We study geometrical properties such as type of singularity and asymptotical behavior as well as thermodynamic structure of the solutions through canonical ensemble. We show that despite the existence of massive term, obtained solutions are asymptotically (a)dS and have a curvature singularity at the origin. Then, we regard varying cosmological constant and examine the Van der Waals like behavior of the solutions in extended phase space. In addition, we employ geometrical thermodynamic approaches and show that using Weinhold, Ruppeiner and Quevedo metrics leads to existence of ensemble dependency while HPEM metric yields consistent picture. For neutral solutions, it will be shown that generalization to massive gravity leads to the presence of non-zero temperature and heat capacity for vanishing horizon radius. Such behavior is not observed for linearly charged solutions while generalization to nonlinearly one recovers this property.
Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei
2013-01-01
Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.
Yang-Baxter deformations of Minkowski spacetime
Matsumoto, Takuya; Reffert, Susanne; Sakamoto, Jun-ichi; Yoshida, Kentaroh
2015-01-01
We study Yang-Baxter deformations of 4D Minkowski spacetime. The Yang-Baxter sigma model description was originally developed for principal chiral models based on a modified classical Yang-Baxter equation. It has been extended to coset curved spaces and models based on the usual classical Yang-Baxter equation. On the other hand, for flat space, there is the obvious problem that the standard bilinear form degenerates if we employ the familiar coset Poincar\\'e group/Lorentz group. Instead we consider a slice of AdS$_5$ by embedding the 4D Poincar\\'e group into the 4D conformal group $SO(2,4)$. With this procedure we obtain metrics and $B$-fields as Yang-Baxter deformations which correspond to well-known configurations such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, the T-dual of Grant space, pp-waves, and T-duals of dS$_4$ and AdS$_4$. Finally we consider a deformation with a classical $r$-matrix of Drinfeld-Jimbo type and explicitly derive the associated met...
Kwon, Oh-Hoon; Zewail, Ahmed H.
2010-01-01
Electron tomography provides three-dimensional (3D) imaging of noncrystalline and crystalline equilibrium structures, as well as elemental volume composition, of materials and biological specimens, including those of viruses and cells. We report the development of 4D electron tomography by integrating the fourth dimension (time resolution) with the 3D spatial resolution obtained from a complete tilt series of 2D projections of an object. The different time frames of tomograms constitute a mov...
Yang-Baxter deformations of Minkowski spacetime
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, Takuya [Graduate School of Mathematics and Institute for Advanced Research,Nagoya University, Nagoya 464-8602 (Japan); Orlando, Domenico [IPT Ph.Meyer, and LPTENS,24 rue Lhomond, 75005 Paris (France); Reffert, Susanne [Institute for Theoretical Physics,Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Sakamoto, Jun-ichi; Yoshida, Kentaroh [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan)
2015-10-28
We study Yang-Baxter deformations of 4D Minkowski spacetime. The Yang-Baxter sigma model description was originally developed for principal chiral models based on a modified classical Yang-Baxter equation. It has been extended to coset curved spaces and models based on the usual classical Yang-Baxter equation. On the other hand, for flat space, there is the obvious problem that the standard bilinear form degenerates if we employ the familiar coset Poincaré group/Lorentz group. Instead we consider a slice of AdS{sub 5} by embedding the 4D Poincaré group into the 4D conformal group SO(2,4) . With this procedure we obtain metrics and B-fields as Yang-Baxter deformations which correspond to well-known configurations such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, the T-dual of Grant space, pp-waves, and T-duals of dS{sub 4} and AdS{sub 4}. Finally we consider a deformation with a classical r-matrix of Drinfeld-Jimbo type and explicitly derive the associated metric and B-field which we conjecture to correspond to a new integrable system.
Emergent Spacetime and Cosmic Inflation
Yang, Hyun Seok
2015-01-01
We propose a background-independent formulation of cosmic inflation. The inflation in this picture corresponds to a dynamical process to generate space and time while the conventional inflation is simply an (exponential) expansion of a preexisting spacetime owing to the vacuum energy carried by an inflaton field. We observe that the cosmic inflation is triggered by the condensate of Planck energy into vacuum responsible for the generation of spacetime and must be a single event according to the exclusion principle of noncommutative spacetime caused by the Planck energy condensate in vacuum. The emergent spacetime picture admits a background-independent formulation so that the inflation can be described by a conformal Hamiltonian system characterized by an exponential phase space expansion without introducing any inflaton field as well as an ad hoc inflation potential. This implies that the emergent spacetime may incapacitate all the rationales to introduce the multiverse hypothesis.
Hamilton-Jacobi renormalization for Lifshitz spacetime
Baggio, M.; de Boer, J.; Holsheimer, K.
2012-01-01
Just like AdS spacetimes, Lifshitz spacetimes require counterterms in order to make the on-shell value of the bulk action finite. We study these counterterms using the Hamilton-Jacobi method. Rather than imposing boundary conditions from the start, we will derive suitable boundary conditions by
Honda, Masazumi; Nishimura, Jun; Tsuchiya, Asato
2011-01-01
We test the AdS/CFT correspondence by calculating Wilson loops in N = 4 super Yang-Mills theory on R*S^3 in the planar limit. Our method is based on a novel large-N reduction, which reduces the problem to Monte Carlo calculations in the plane-wave matrix model or the BMN matrix model, which is a 1d gauge theory with 16 supercharges. By using the gauge-fixed momentumspace simulation, we obtain results respecting 16 supersymmetries. We report on the Monte Carlo results for the BPS circular Wilson loop, which reproduce the exact result up to strong coupling. As a future prospect, we calculate a track-shapedWilson loop from the gravity side, which shows that a clear test of the AdS/CFT for the non-BPS case is also feasible.
Advances in 4D radiation therapy for managing respiration: part II - 4D treatment planning.
Rosu, Mihaela; Hugo, Geoffrey D
2012-12-01
The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle - an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems. Copyright © 2012. Published by Elsevier GmbH.
Advances in 4D Radiation Therapy for Managing Respiration: Part II – 4D Treatment Planning
Rosu, Mihaela; Hugo, Geoffrey D.
2014-01-01
The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle – an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems. PMID:22796324
Zhang, Yong
2016-01-01
In this paper, we develop a rather general way to reduce integrands with polarisation involved in the Cachazo-He-Yuan formulae, such as the reduced Pfaffian and its compactification, as well as the new object for F3 amplitude. We prove that the reduced Pfaffian vanishes unless on a certain set of solutions. It leads us to build up the 4d CHY formulae using spinors, which strains off many useless solutions. The supersymmetrization is straightforward and may provide a hint to understanding ambitwistor string in 4d.
Energy Technology Data Exchange (ETDEWEB)
Miao, Yan-Gang; Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)
2017-06-15
We investigate the P - V criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact P - V critical values. More importantly, we analyze the validity and invalidity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the P - V diagram. This oscillating part, which indicates the phase transition from a small black hole to a large one, can be replaced by an isobar. The small and large black holes have the same Gibbs free energy. We also give the distribution of the critical points in the parameter space both without and with charges, and we obtain for the uncharged case the fitting formula of the co-existence curve. Meanwhile, the latent heat is calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure. (orig.)
Miao, Yan-Gang
2016-01-01
We investigate the $P-V$ criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact $P-V$ critical values. More importantly, we calculate the condition of validity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the $P-V$ diagram. This oscillating part that indicates the phase transition from a small black hole to a large one can be replaced by an isobar. The small and large black holes share the same Gibbs free energy. Meanwhile, the latent heat is also calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure.
Toward a Holographic Theory for General Spacetimes
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J
2016-01-01
We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct sum and "spacetime equals entanglement" structure. The former preserves a naive relationship b...
Kaminar, Aaron
2013-01-01
Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks.This book is written in a friendly, practical style with lots of screenshots and help that will ensure you grow in confidence chapter by chapter.This book is recommended for artists that have experience in other 3D software packages, and who want to learn Cinema 4D. That being said, dedicated readers without experience in other 3D software should not be discouraged from reading this book to learn the basics of Cinema 4D as their first 3D package.
Telles, Eduardo
2014-01-01
HII galaxies are clumpy and their gas kinematics can be mapped to show the global turbulent motions and the effect of massive star evolution. The distribution of their physical conditions is homogeneous and oxygen abundance is uniform. The presence of nebular HeII 4868 line seems to be higher in a low abundance galaxy, implying a harder ionization power probably due to stars in low metallicity. Innovative methods of data cube analysis, namely PCA tomography (nicknamed 4D), seem promising in revealing additional information not detected with the standard methods. I review some of our own recent work on the 3D spectroscopy of HII galaxies.
On Thermodynamics of AdS Black Holes in Arbitrary Dimensions
Belhaj, A; Moumni, H El; Sedra, M B
2012-01-01
Considering the cosmological constant $\\Lambda$ as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume as proposed in Kubiznak and Mann (2012), we discuss the critical behavior of charged AdS black hole in arbitrary dimensions $d$. In particular, we present a comparative study in terms of the spacetime dimension $d$ and the displacement of critical points controlling the transition between the small and the large black holes. Such behaviors vary nicely in terms of $d$. Among our result in this context consists in showing that the equation of state for a charged RN-AdS black hole predicts an universal number given by $\\frac{2d-5}{4d-8}$. The three dimensional solution is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Tipler, F.J.
1977-08-01
Causally symmetric spacetimes are spacetimes with J/sup +/(S) isometric to J/sup -/(S) for some set S. We discuss certain properties of these spacetimes, showing for example that, if S is a maximal Cauchy surface with matter everywhere on S, then the spacetime has singularities in both J/sup +/(S) and J/sup -/(S). We also consider totally vicious spacetimes, a class of causally symmetric spacetimes for which I/sup +/(p) =I/sup -/(p) = M for any point p in M. Two different notions of stability in general relativity are discussed, using various types of causally symmetric spacetimes as starting points for perturbations.
Geodesics in the (anti-)de Sitter spacetime
Tho, Nguyen Phuc Ky
2016-01-01
A class of exact solutions of the geodesic equations in (anti-)de Sitter spacetimes is presented. The geodesics for test particles in $AdS_4$ and $dS_4$ spacetimes are respectively sinusoidal and hyperbolic sine world lines. The world line for light rays is straight lines as known. The world lines of test particles are not dependent on their energy as noted. Spontaneous symmetry breaking of $AdS_4$ spacetime provides a physical explanation for arising of the virtual particle and antiparticle pairs in the vacuum. Interestingly, the energy of a pair and the time its particles moving along their geodesics can be related by a relation similar to Heisenberg uncertainty one pertaining quantum vacuum fluctuations. The sinusoidal geodesics of $AdS_4$ spacetime can describe the world lines of the virtual particles and antiparticles. The hyperbolic sine geodesics of $dS_4$ spacetime can explain why galaxies move apart with positive accelerations.
A curious spacetime entirely free of centrifugal acceleration
Dadhich, Naresh
2012-01-01
In the Einstein gravity, besides the usual gravitational and centrifugal potential there is an additional attractive term that couples these two together. It is fun to enquire whether the latter could fully counteract the centrifugal repulsion everywhere making the spacetime completely free of the centrifugal acceleration. We present here such a curious spacetime metric and it produces a global monopole like stresses going as $~1/r^2$ in an AdS spacetime.
Energy Technology Data Exchange (ETDEWEB)
2016-03-22
Time-lapse ERT imaging for monitoring both natural and engineered subsurface processes has advanced rapidly over the past 15-20 years. However, imaging results generally required a significant amount of manual and computational effort, and therefore were not available while the process was occurring. Although the value of real-time imaging was recognized, several obstacles prevented it's implementation. E4D_RT addresses these obstacles by 1) providing specialized algorithms that negate the need for user intervention, thereby automating the time-lapse data processing steps, 2) linking field data collection systems with parallel supercomputing systems via wireless data transfer link, and 3) addressing the computational burdens by utilizing distributed memory supercomputing resources, thereby enabling rapid data processing and imaging results.
Müller, Thomas
2011-06-01
The new version of the Motion4D-library now also includes the integration of a Sachs basis and the Jacobi equation to determine gravitational lensing of pointlike sources for arbitrary spacetimes.New version program summaryProgram title: Motion4D-libraryCatalogue identifier: AEEX_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 219 441No. of bytes in distributed program, including test data, etc.: 6 968 223Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, WindowsRAM: 61 MbytesClassification: 1.5External routines: Gnu Scientic Library (GSL) (http://www.gnu.org/software/gsl/)Catalogue identifier of previous version: AEEX_v2_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 703Does the new version supersede the previous version?: YesNature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Determine gravitational lensing by integration of Jacobi equation and parallel transport of Sachs basis.Solution method: Integration of ordinary differential equations.Reasons for new version: The main novelty of the current version is the extension to integrate the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. In combination, the change of the cross section of a light bundle and thus the gravitational lensing effect of a spacetime can be determined. Furthermore, we have implemented several new metrics.Summary of revisions: The main novelty of the current version is the integration of the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. The corresponding set of equations readd2xμdλ2=-Γρ
Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research
Directory of Open Access Journals (Sweden)
Raj K Panta
2012-01-01
Conclusions: An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research.
4-D OCT in Developmental Cardiology
Jenkins, Michael W.; Rollins, Andrew M.
Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.
Cosmic Inflation from Emergent Spacetime Picture
Yang, Hyun Seok
2016-01-01
We argue that the emergent spacetime picture admits a background-independent formulation of cosmic inflation. The inflation in this picture corresponds to the dynamical emergence of spacetime while the conventional inflation is simply an (exponential) expansion of a preexisting spacetime owing to the vacuum energy carried by an inflaton field. We show that the cosmic inflation arises as a time-dependent solution of the matrix quantum mechanics describing the dynamical process of Planck energy condensate in vacuum without introducing any inflaton field as well as an {\\it ad hoc} inflation potential. Thus the emergent spacetime picture realizes a background-independent description of the inflationary universe which has a sufficiently elegant and explanatory power to defend the integrity of physics against the multiverse hypothesis.
Vector potentials in gauge theories in flat spacetime
Wong, C W
2015-01-01
A recent suggestion that vector potentials in electrodynamics (ED) are nontensorial objects under 4D frame rotations is found to be both unnecessary and confusing. As traditionally used in ED, a vector potential $A$ always transforms homogeneously under 4D rotations in spacetime, but if the gauge is changed by the rotation, one can restore the gauge back to the original gauge by adding an inhomogeneous term. It is then "not a 4-vector", but two: one for rotation and one for translation. For such a gauge, it is much more important to preserve {\\it explicit} homogeneous Lorentz covariance by simply skipping the troublesome gauge-restoration step. A gauge-independent separation of $A$ into a dynamical term and a non-dynamical term in Abelian gauge theories is re-defined more generally as the terms caused by the presence and absence respectively of the 4-current term in the inhomogeneous Maxwell equations for $A$. Such a separation {\\it cannot} in general be extended to non-Abelian theories where $A$ satisfies no...
CINEMA 4D The Artist's Project Sourcebook
McQuilkin, Kent
2011-01-01
Cinema 4D is a fully integrated 3D modeling, animation, and rendering package used extensively in the film, television, science, architecture, engineering and other industries. Generally ranked as the 3rd most widely-used 3Dapplication Cinema 4D is widely praised for its stability, speed and ease of use. Recent film and broadcast productions that have used Cinema 4D include Open Season, Monster House, Superman Returns, Polar Express, Monday Night Football. This third edition of Cinema 4D is updated to address the latest release of the application as well as its critically acclaimed MoGr
On Hierarchy, Charge Universality, and 4D Effective Theory in Randall-Sundrum Models
Benson, K
2004-01-01
We present a variant formulation of the Randall-Sundrum model which solves both the hierarchy and charge universality problems. We first critique the rationale for hierarchy solution and 4D effective interactions in the Randall-Sundrum model. We note its asymmetric treatment of matter and gravity in the warped braneworld background, leaving uncalibrated the particle scale; as well as its unconventional spatial attribution of integrated 4D effective gravity. Matter and massless gravitons both localize when branes form to warp spacetime; thus consistent accounting of induced 4D physics must track both particle and Planck scales through brane formation. We perform such self-consistent tracking in the warped Randall-Sundrum background, by treating matter as intrinsically extradimensional, on par with gravity, with a unified mass scale. We find this definite, self-consistent theory solves two major problems: the effective 4D theory shows robust hierarchy solution, and preserves charge universality. Our unified 5D ...
Geodesic congruences in warped spacetimes
Ghosh, Suman; Kar, Sayan
2010-01-01
In this article, we explore the kinematics of timelike geodesic congruences in warped five dimensional bulk spacetimes, with and without thick or thin branes. We begin our investigations with the simplest case, namely geodesic flows in the Randall--Sundrum AdS (Anti de Sitter) geometry without and with branes. Analytical expressions for the expansion scalar are obtained and the effect of including one or more thin branes (i.e. a background which is a slice of AdS spacetime) on its evolution, is pointed out. Subsequently, we move on to studying such congruences in more general warped bulk geometries with a cosmological thick brane and a time-dependent extra dimensional scale. Using the analytical expressions for the velocity field components, we interpret the expansion, shear and rotation (ESR) along the flows. The evolution of a cross-sectional area orthogonal to the congruence, as seen from a local observer's point of view, is also shown graphically. Finally, the Raychaudhuri and geodesic equations in the ba...
Non-compact Calabi-Yau spaces and other non-trivial backgrounds for 4-d superstrings
Kiritsis, Elias B; Lüst, Dieter
1993-01-01
A large class of new 4-D superstring vacua with non-trivial/singular geometries, spacetime supersymmetry and other background fields (axion, dilaton) are found. Killing symmetries are generic and are associated with non-trivial dilaton and antisymmetric tensor fields. Duality symmetries preserving N=2 superconformal invariance are employed to generate a large class of explicit metrics for non-compact 4-D Calabi-Yau manifolds with Killing symmetries.
Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging
Hugo, Geoffrey D.; Rosu, Mihaela
2014-01-01
Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described. PMID:22784929
Exploring the relation between 4D and 5D BPS solutions
Energy Technology Data Exchange (ETDEWEB)
Behrndt, Klaus [Arnold-Sommerfeld-Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, 80333 Munich (Germany)]. E-mail: behrndt@theorie.physik.uni-muenchen.de; Lopes Cardoso, Gabriel [Arnold-Sommerfeld-Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, 80333 Munich (Germany)]. E-mail: gcardoso@theorie.physik.uni-muenchen.de; Mahapatra, Swapna [Physics Department, Utkal University, Bhubaneswar 751 004 (India)]. E-mail: swapna@iopb.res.in
2006-01-02
Based on recent proposals linking four and five-dimensional BPS solutions, we discuss the explicit dictionary between general stationary 4D and 5D supersymmetric solutions in N=2 supergravity theories with cubic prepotentials. All these solutions are completely determined in terms of the same set of harmonic functions and the same set of attractor equations. As an example, we discuss black holes and black rings in Godel-Taub-NUT spacetime. Then we consider corrections to the 4D solutions associated with more general prepotentials and comment on analogous corrections on the 5D side.
Positive Energy Conditions in 4D Conformal Field Theory
Farnsworth, Kara; Prilepina, Valentina
2015-01-01
We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality $\\langle T^{00} \\rangle \\ge -C/L^4$, where $L$ is the size of the smearing region, and $C$ is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the "conformal collider" constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarka...
Positive energy conditions in 4D conformal field theory
Farnsworth, Kara; Luty, Markus A.; Prilepina, Valentina
2016-10-01
We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality ≥ - C/L 4, where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the "conformal collider" constraints of Hofman and Maldacena. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.
Lin, De-Hone
2015-01-01
This paper is concerned with the application of a spacetime structure to a three-dimensional quantum system. There are three components. First, the main part of this paper presents the constraint conditions which build the relation of a spacetime structure and a form invariance solution to the covariant Dirac equation. The second is to devise a spacetime cage for fermions with chosen constraints. The third part discusses the feasibility of the cage with an experiment.
Finsler spacetimes and gravity
Pfeifer, Christian
2012-01-01
We consider the geometry of spacetime based on a non-metric, Finslerian, length measure, which, in terms of physics, represents a generalized clock. Our defnition of Finsler spacetimes ensure a well defined notion of causality, a precise description of observers and a geometric background for field theories. Moreover we present our Finsler geometric extension of the Einstein equations, which determine the geometry of Finsler spacetimes dynamically.
2,4-D removal via denitrification using volatile fatty acids.
He, X; Wareham, D G
2011-01-01
Many countries have waters contaminated with both herbicides and nitrates; however, information is limited with respect to removal rates for combined nitrate and herbicide elimination. This research investigates the removal of 2,4-D via denitrification, with a particular emphasis on the effect of adding naturally generated volatile fatty acids (VFAs). The acids were produced from an acid-phase anaerobic digester with a mean VFA concentration of 3153±801 mg/L (as acetic acid). Initially, 2,4-D degrading bacteria were developed in an SBR fed with both sewage and 2,4-D (30-100 mg/L). Subsequent denitrification batch tests demonstrated that the specific denitrification rate increased from 0.0119±0.0039 using 2,4-D alone to 0.0192±0.0079 g NO₃-N/g VSS per day, when 2,4-D was combined with natural VFAs from the digester. Similarly, the specific 2,4-D consumption rate increased from 0.0016±0.0009 using 2,4-D alone to 0.0055±0.0021 g 2,4-D/g VSS per day, when using 2,4-D plus natural VFAs. Finally, a parallel increase in the percent 2,4-D removal was observed, rising from 28.33±11.88 using 2,4-D alone to 54.17±21.89 using 2,4-D plus natural VFAs.
de Boer, J.; Hubeny, V.E.; Rangamani, M.; Shigemori, M.
2009-01-01
We study Brownian motion and the associated Langevin equation in AdS/CFT. The Brownian particle is realized in the bulk spacetime as a probe fundamental string in an asymptotically AdS black hole background, stretching between the AdS boundary and the horizon. The modes on the string are excited by
3D and 4D noncommutative electromagnetic duality and the role of the slowly varying fields limit
Rodrigues, D C; Rodrigues, Davi C.; Wotzasek, Clovis
2006-01-01
We study classical noncommutative (NC) electromagnetic duality in both 3D and 4D space-times through the Seiberg-Witten (SW) map to all orders in theta. We evaluate the role of space-time dimensions, of the gauge coupling constant g^2 inversion, of the slowly varying fields (SVF) limit and of the rule theta --> g^2 *theta (where * is the Hodge duality operator), which was originally found in the 4D space-time. Among our results, a new scalar picture for NC electromagnetism to second order in theta is established, a formula which simplifies considerably the application of the SW map in 3D is presented and we show that the SVF limit has a crucial role in this duality starting from the third order in theta for any dimension: outside this limit the symmetry between theta and g^2 *theta is lost.
Fractional and noncommutative spacetimes
Arzano, M.; Calcagni, M.; Oriti, D.; Scalisi, M.
2011-01-01
We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determi
Spacetime and Euclidean Geometry
Brill, D R; Brill, Dieter; Jacobson, Ted
2004-01-01
Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the "spacetime Pythagoras theorem".
Spacetime and Euclidean geometry
Brill, Dieter; Jacobson, Ted
2006-04-01
Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.
On electric field in anti-de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Cheong, Lee Yen, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Yan, Chew Xiao, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Ching, Dennis Ling Chuan, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)
2014-10-24
In this paper we calculate the electromagnetic field produced using retarded Green's function in Anti-de Sitter spacetime (AdS). Since this spacetime is non-globally hyperbolic and has no Cauchy surface, we only consider the field originated from a charge moving along its geodesic in the region consists of points covered by future null geodesic of the charge.
Superradiant instability in AdS
Ganchev, Bogdan
2016-01-01
The phenomenon of superradiance in the context of asymptotically global AdS spacetimes is investigated with particular accent on its effect on the stability of the systems under consideration. To this end, the concept of an asymptotically AdS spacetime is explained, together with its implications on the boundary conditions at $\\mathcal{I}$, as well as the Newman-Penrose-Teukolsky formalism, whereby the Teukolsky master equation in a most general form for Kerr-AdS is given. Furthermore, work done in the cases of RN-AdS and Kerr-AdS is laid out in a concise manner, putting emphasis on the important steps taken in determining the endpoint of the superradiant instability in the two configurations. For the former this turns out to be a black hole with reduced charge and a static charged scalar condensate around it, whereas for the latter two of the more probable outcomes are presented, both of which imply a violation of one of the cosmic censorships.
Visser, Matt
2013-01-01
Analogue spacetimes, (and more boldly, analogue models both of and for gravity), have attracted significant and increasing attention over the last decade and a half. Perhaps the most straightforward physical example, which serves as a template for most of the others, is Bill Unruh's model for a dumb hole, (mute black hole, acoustic black hole), wherein sound is dragged along by a moving fluid --- and can even be trapped behind an acoustic horizon. This and related analogue models for curved spacetimes are useful in many ways: Analogue spacetimes provide general relativists with extremely concrete physical models to help focus their thinking, and conversely the techniques of curved spacetime can sometimes help improve our understanding of condensed matter and/or optical systems by providing an unexpected and countervailing viewpoint. In this introductory chapter, I shall provide a few simple examples of analogue spacetimes as general background for the rest of the contributions.
Partition Function of Spacetime
Makela, Jarmo
2008-01-01
We consider a microscopic model of spacetime, where spacetime is assumed to be a specific graph with Planck size quantum black holes on its vertices. As a thermodynamical system under consideration we take a certain uniformly accelerating, spacelike two-surface of spacetime which we call, for the sake of brevity and simplicity, as {\\it acceleration surface}. Using our model we manage to obtain an explicit and surprisingly simple expression for the partition function of an acceleration surface. Our partition function implies, among other things, the Unruh and the Hawking effects. It turns out that the Unruh and the Hawking effects are consequences of a specific phase transition, which takes place in spacetime, when the temperature of spacetime equals, from the point of view of an observer at rest with respect to an acceleration surface, to the Unruh temperature measured by that observer. When constructing the partition function of an acceleration surface we are forced to introduce a quantity which plays the ro...
Perko, Howard
2017-01-01
Concepts from physical chemistry and more specifically surface tension are introduced to spacetime. Lagrangian equations of motion for membranes of curved spacetime manifold are derived. The equations of motion in spatial directions are dispersion equations and can be rearranged to Schrodinger's equation where Plank's constant is related to membrane elastic modulus. The equation of motion in the time-direction has two immediately recognizable solutions: electromagnetic waves and corpuscles. The corpuscular membrane solution can assume different genus depending on quantized amounts of surface energy. A metric tensor that relates empty flat spacetime to energetic curved spacetime is found that satisfies general relativity. Application of the surface tension to quantum electrodynamics and implications for quantum chromodynamics are discussed. Although much work remains, it is suggested that spacetime surface tension may provide a classical explanation that combines general relativity with field theories in quantum mechanics and atomic particle physics.
Fractional and noncommutative spacetimes
Arzano, Michele; Calcagni, Gianluca; Oriti, Daniele; Scalisi, Marco
2011-12-01
We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determining the log-period coincides with the nonrotation-invariant but cyclicity-preserving measure of κ-Minkowski spacetime. At scales larger than the log-period, the fractional measure is averaged and becomes a power law with real exponent. This can be also regarded as the cyclicity-inducing measure in a noncommutative spacetime defined by a certain nonlinear algebra of the coordinates, which interpolates between κ-Minkowski and canonical spacetime. These results are based upon a braiding formula valid for any nonlinear algebra which can be mapped onto the Heisenberg algebra.
Residual Representations of Spacetime
Saller, H
2001-01-01
Spacetime is modelled by binary relations - by the classes of the automorphisms $\\GL(\\C^2)$ of a complex 2-dimensional vector space with respect to the definite unitary subgroup $\\U(2)$. In extension of Feynman propagators for particle quantum fields representing only the tangent spacetime structure, global spacetime representations are given, formulated as residues using energy-momentum distributions with the invariants as singularities. The associatated quantum fields are characterized by two invariant masses - for time and position - supplementing the one mass for the definite unitary particle sector with another mass for the indefinite unitary interaction sector without asymptotic particle interpretation.
4D Bioprinting for Biomedical Applications.
Gao, Bin; Yang, Qingzhen; Zhao, Xin; Jin, Guorui; Ma, Yufei; Xu, Feng
2016-09-01
3D bioprinting has been developed to effectively and rapidly pattern living cells and biomaterials, aiming to create complex bioconstructs. However, placing biocompatible materials or cells into direct contact via bioprinting is necessary but insufficient for creating these constructs. Therefore, '4D bioprinting' has emerged recently, where 'time' is integrated with 3D bioprinting as the fourth dimension, and the printed objects can change their shapes or functionalities when an external stimulus is imposed or when cell fusion or postprinting self-assembly occurs. In this review, we highlight recent developments in 4D bioprinting technology. Additionally, we review the uses of 4D bioprinting in tissue engineering and drug delivery. Finally, we discuss the major roadblocks to this approach, together with possible solutions, to provide future perspectives on this technology.
Global 4-D trajectory optimization for spacecraft
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Global 4-D trajectory(x,y,z,t)is optimized for a spacecraft,which is launched from the Earth to fly around the Sun,just as star-drift of 1437 asteroids in the solar system.The spacecraft trajectory is controlled by low thrust.The performance index of optimal trajectory is to maximize the rendezvous times with the intermediate asteroids,and also maximize the final mass.This paper provides a combined algorithm of global 4-D trajectory optimization.The algorithm is composed of dynamic programming and two-point-boundary algorithm based on optimal control theory.The best 4-D trajectory is obtained:the spacecraft flies passing 55 asteroids,and rendezvous with(following or passing again)asteroids for 454 days,and finally rendezvous with the asteroid 2005SN25 on the day 60521(MJD),the final mass of the spacecraft is 836.53 kg.
Szabo, Michael
2012-01-01
This book contains short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity. This book is for anyone who wants to quickly get up to speed with Cinema 4D to create 3D projects that run laps around simple
Representing Participation in ICT4D Projects
DEFF Research Database (Denmark)
Singh, J. P.; Flyverbom, Mikkel
2016-01-01
identify two dimensions to participation and ICT4D: whether participation 1) is hierarchical/top-down or agent-driven/bottom-up, and 2) involves conflict or cooperation. Based on these dimensions we articulate four ideal types of discourse that permeate ICT and development efforts: stakeholder......, depending on the context of their implementation, are permeated by multiple discourses about participation. Our four ideal types of participation discourses are, therefore, useful starting points to discuss the intricate dynamics of participation in ICT4D projects....
4D flow mri post-processing strategies for neuropathologies
Schrauben, Eric Mathew
4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a
National Research Council Canada - National Science Library
Beal, Jacob; Viroli, Mirko
2015-01-01
... in terms of individual devices. This paper aims to provide a unified approach for the investigation and engineering of computations programmed with the aid of space-time abstractions, by bringing together a number of recent results...
Fractional and noncommutative spacetimes
Arzano, Michele; Oriti, Daniele; Scalisi, Marco
2011-01-01
We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determining the log-period coincides with the non-rotation-invariant but cyclicity-preserving measure of \\kappa-Minkowski. At scales larger than the log-period, the fractional measure is averaged and becomes a power-law with real exponent. This can be also regarded as the cyclicity-inducing measure in a noncommutative spacetime defined by a certain nonlinear algebra of the coordinates, which interpolates between \\kappa-Minkowski and canonical spacetime. These results are based upon a braiding formula valid for any nonlinear algebra which can be mapped onto the Heisenberg algebra.
Physics on noncommutative spacetimes
Padmanabhan, Pramod
The structure of spacetime at the Planck scale remains a mystery to this date with a lot of insightful attempts to unravel this puzzle. One such attempt is the proposition of a 'pointless' structure for spacetime at this scale. This is done by studying the geometry of the spacetime through a noncommutative algebra of functions defined on it. We call such spacetimes 'noncommutative spacetimes'. This dissertation probes physics on several such spacetimes. These include compact noncommutative spaces called fuzzy spaces and noncompact spacetimes. The compact examples we look at are the fuzzy sphere and the fuzzy Higg's manifold. The noncompact spacetimes we study are the Groenewold-Moyal plane and the Bcn⃗ plane. A broad range of physical effects are studied on these exotic spacetimes. We study spin systems on the fuzzy sphere. The construction of Dirac and chirality operators for an arbitrary spin j is studied on both S2F and S2 in detail. We compute the spectrums of the spin 1 and spin 32 Dirac operators on S2F . These systems have novel thermodynamical properties which have no higher dimensional analogs, making them interesting models. The fuzzy Higg's manifold is found to exhibit topology change, an important property for any theory attempting to quantize gravity. We study how this change occurs in the classical setting and how quantizing this manifold smoothens the classical conical singularity. We also show the construction of the star product on this manifold using coherent states on the noncommutative algebra describing this noncommutative space. On the Moyal plane we develop the LSZ formulation of scalar quantum field theory. We compute scattering amplitudes and remark on renormalization of this theory. We show that the LSZ formalism is equivalent to the interaction representation formalism for computing scattering amplitudes on the Moyal plane. This result is true for on-shell Green's functions and fails to hold for off-shell Green's functions. With the
Cylindrically symmetric dust spacetime
Senovilla, J M M; Senovilla, Jose M. M.; Vera, Raul
2000-01-01
We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has new surprising features. The universe is ``closed'' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is ``enclosed'' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable agai...
Cylindrically symmetric dust spacetime
Senovilla, José M. M.
2000-07-01
We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has surprising new features. The universe is `closed' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is `enclosed' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable against some global non-vacuum perturbations.
Lax pairs for deformed Minkowski spacetimes
Kyono, Hideki; Yoshida, Kentaroh
2015-01-01
We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical $r$-matrices with Poinca\\'e generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.
Lax pairs for deformed Minkowski spacetimes
Energy Technology Data Exchange (ETDEWEB)
Kyono, Hideki; Sakamoto, Jun-ichi; Yoshida, Kentaroh [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)
2016-01-25
We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical r-matrices with Poincaré generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.
Buchel, Alex; Lehner, Luis
2013-01-01
We construct boson stars in global Anti de Sitter (AdS) space and study their stability. Linear perturbation results suggest that the ground state along with the first three excited state boson stars are stable. We evolve some of these solutions and study their nonlinear stability in light of recent work \\cite{Bizon:2011gg} arguing that a weakly turbulent instability drives scalar perturbations of AdS to black hole formation. However evolutions suggest that boson stars are nonlinearly stable and immune to the instability for sufficiently small perturbation. Furthermore, these studies find other families of initial data which similarly avoid the instability for sufficiently weak parameters. Heuristically, we argue that initial data families with widely distributed mass-energy distort the spacetime sufficiently to oppose the coherent amplification favored by the instability. From the dual CFT perspective our findings suggest that there exist families of rather generic initial conditions in strongly coupled CFT ...
Holographic thermal field theory on curved spacetimes
Marolf, Donald; Rangamani, Mukund; Wiseman, Toby
2014-03-01
The AdS/CFT correspondence relates certain strongly-coupled CFTs with large effective central charge ceff to semi-classical gravitational theories with AdS asymptotics. We describe recent progress in understanding gravity duals for CFTs on non-trivial spacetimes at finite temperature, both in and out of equilibrium. Such gravity methods provide powerful new tools to access the physics of these strongly-coupled theories, which often differs qualitatively from that found at weak coupling. Our discussion begins with basic aspects of AdS/CFT and progresses through thermal CFTs on the Einstein Static Universe and on periodically identified Minkowski spacetime. In the latter context we focus on states describing so-called plasma-balls, which become stable at large ceff. We then proceed to out-of-equilibrium situations associated with dynamical bulk black holes. In particular, the non-compact nature of these bulk black holes allows stationary solutions with non-Killing horizons that describe time-independent flows of CFT plasma. As final a topic we consider CFTs on black hole spacetimes. This discussion provides insight into how the CFT transports heat between general heat sources and sinks of finite size. In certain phases the coupling to small sources can be strongly suppressed, resulting in negligible heat transport despite the presence of a deconfined plasma with sizeable thermal conductivity. We also present a new result, explaining how this so-called droplet behaviour is related to confinement via a change of conformal frame.
Natsuume, Makoto
2014-01-01
This is the draft version of a textbook on "real-world" applications of the AdS/CFT duality for beginning graduate students in particle physics and for researchers in the other fields. The aim of this book is to provide background materials such as string theory, general relativity, nuclear physics, nonequilibrium physics, and condensed-matter physics as well as some key applications of the AdS/CFT duality in a single textbook. Contents: (1) Introduction, (2) General relativity and black holes, (3) Black holes and thermodynamics, (4) Strong interaction and gauge theories, (5) The road to AdS/CFT, (6) The AdS spacetime, (7) AdS/CFT - equilibrium, (8) AdS/CFT - adding probes, (9) Basics of nonequilibrium physics, (10) AdS/CFT - nonequilibrium, (11) Other AdS spacetimes, (12) Applications to quark-gluon plasma, (13) Basics of phase transition, (14) AdS/CFT - phase transition.
Analysis of 4D Var Data Assimilation Application Issues
Trailovic, L.; Etherton, B.; Harrop, C.; Govett, M.
2016-12-01
This paper summarizes the challenges encountered with our ongoing development and use of a software system designed to facilitate exploration of computational optimizations and strategies for Data Assimilation (DA). The software system is designed and constructed from scratch using modern software development methods and tools, though it incorporates components of pre-existing systems where appropriate. We present results of experiments that employ this system to test approaches for assimilation of observations using a four-dimensional variational (4D Var) scheme. We propose a modular DA system software architecture and demonstrate its utility using a set of models of varying realism and complexity. The software system design and implementation was initially tested and validated using a simple chaotic atmospheric model. A Quasi-Geostrophic (QG) atmospheric model was used to conduct DA experiments of increased difficulty and to validate the software design at larger scales of model complexity. Our QG DA study focused on 2016 winter weather data where a Nature run was used to represent the "true" state of the atmosphere and observations, whereas observation error covariance and observation operator were adapted from pre-existing DA systems. To increase performance, a parallel-in-time algorithm was applied to solve the proposed 4D Var data assimilation problem. That is, the assimilation window was divided into multiple sub-intervals, which allowed for parallelization of the cost function and gradient computations. Continuity equations of the solution were added as constraints across interval boundaries. This approach produced a different formulation of the variational data assimilation problem than weakly constrained 4D Var. We explored a combination of serial and parallel 4D Var algorithms to increase performance.
Interactive animation of 4D performance capture.
Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian
2013-05-01
A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance.
4D Lung Reconstruction with Phase Optimization
DEFF Research Database (Denmark)
Lyksborg, Mark; Paulsen, Rasmus; Brink, Carsten;
2009-01-01
This paper investigates and demonstrates a 4D lung CT reconstruction/registration method which results in a complete volumetric model of the lung that deforms according to a respiratory motion field. The motion field is estimated iteratively between all available slice samples and a reference vol...... than using an optimization which does not correct for phase errors. Knowing how the lung and any tumors located within the lung deforms is relevant in planning the treatment of lung cancer.......This paper investigates and demonstrates a 4D lung CT reconstruction/registration method which results in a complete volumetric model of the lung that deforms according to a respiratory motion field. The motion field is estimated iteratively between all available slice samples and a reference...
Are spacetime horizons higher dimensional sources of energy fields? (The black hole case)
Mbonye, M R
2001-01-01
We explore the possibility that spacetime horizons in 4D general relativity can be treated as manifestations of higher dimensions that induce fields on our 4D spacetime. In this paper we discuss the black hole event horizon, as an example (we leave the cosmological case for future discussion). Starting off from the field equations of gravity in 5D and some conditions on the metric we construct a spacetime whose imbedding is a 4D generalization of the Schwarzchild metric. The external region of the imbedded spacetime is found to contain two distinct fields. We discuss the properties of the fields and the potential implications. Taken as they are, the results suggest that the collapse of matter to form a horizon may have non-local consequences on the geomerty of spacetime. In general, the use of horizon-confined mass as a coordinate suggests three potential features of our universe. The first is that the observed 4D spacetime curvature and ordinary matter fields can be identified as hybrid features of 5D origin...
4D image reconstruction for emission tomography
Reader, Andrew J.; Verhaeghe, Jeroen
2014-11-01
An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D
From Femtochemistry to 4D Microscopy
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
To celebrate the 10th anniversary of the Nobel Prize for Femtochemistry,the field is overviewed with several classic examples and the new extension to Femtobiology. The revolutionary breakthrough in 4D electron microscopy is briefly introduced here and a new age to structural dynamics is rising on the horizon,an exciting time and a great opportunity for China and for the world.
Mass Formulae for Broken Supersymmetry in Curved Space-Time
Ferrara, Sergio
2016-01-01
We derive the mass formulae for ${\\cal N}=1$, $D=4$ matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to de Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing.
Energy Technology Data Exchange (ETDEWEB)
Lee, Taek-Soo; Tsui, Benjamin M.W. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Radiology; Gullberg, Grant T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
2011-07-01
We evaluated and proposed here a 4D maximum a posteriori rescaled-block iterative (MAP-RBI)-EM image reconstruction method with a motion prior to improve the accuracy of 4D gated myocardial perfusion (GMP) SPECT images. We hypothesized that a 4D motion prior which resembles the global motion of the true 4D motion of the heart will improve the accuracy of the reconstructed images with regional myocardial motion defect. Normal heart model in the 4D XCAT (eXtended CArdiac-Torso) phantom is used as the prior in the 4D MAP-RBI-EM algorithm where a Gaussian-shaped distribution is used as the derivative of potential function (DPF) that determines the smoothing strength and range of the prior in the algorithm. The mean and width of the DPF equal to the expected difference between the reconstructed image and the motion prior, and smoothing range, respectively. To evaluate the algorithm, we used simulated projection data from a typical clinical {sup 99m}Tc Sestamibi GMP SPECT study using the 4D XCAT phantom. The noise-free projection data were generated using an analytical projector that included the effects of attenuation, collimator-detector response and scatter (ADS) and Poisson noise was added to generated noisy projection data. The projection datasets were reconstructed using the modified 4D MAP-RBI-EM with various iterations, prior weights, and sigma values as well as with ADS correction. The results showed that the 4D reconstructed image estimates looked more like the motion prior with sharper edges as the weight of prior increased. It also demonstrated that edge preservation of the myocardium in the GMP SPECT images could be controlled by a proper motion prior. The Gaussian-shaped DPF allowed stronger and weaker smoothing force for smaller and larger difference of neighboring voxel values, respectively, depending on its parameter values. We concluded the 4D MAP-RBI-EM algorithm with the general motion prior can be used to provide 4D GMP SPECT images with improved
Dirac operators on noncommutative curved spacetimes
Schenkel, Alexander
2013-01-01
We study Dirac operators in the framework of twist-deformed noncommutative geometry. The definition of noncommutative Dirac operators is not unique and we focus on three different ones, each generalizing the commutative Dirac operator in a natural way. We show that the three definitions are mutually inequivalent, and that demanding formal self-adjointness with respect to a suitable inner product singles out a preferred choice. A detailed analysis shows that, if the Drinfeld twist contains sufficiently many Killing vector fields, the three operators coincide, which can simplify explicit calculations considerably. We then turn to the construction of quantized Dirac fields on noncommutative curved spacetimes. We show that there exist unique retarded and advanced Green's operators and construct a canonical anti-commutation relation algebra. In the last part we study noncommutative Minkowski and AdS spacetimes as explicit examples.
Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W
2015-04-07
This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of (99m)Tc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman's rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the
Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.
2015-04-01
This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the
Spin on a 4D Feynman Checkerboard
Foster, Brendan Z
2016-01-01
We discretize the Weyl equation for a massless, spin-1/2 particle on a time-diagonal, hypercubic spacetime lattice with null faces. The amplitude for a step of right-handed chirality is proportional to the spin projection operator in the step direction, while for left-handed it is the orthogonal projector. Iteration yields a path integral for the retarded propagator, with matrix path amplitude proportional to the product of projection operators. This assigns the amplitude $i^{\\pm T}\\, {3}^{-B/2}\\,2^{-N}$ to a path with $N$ steps, $B$ bends, and $T$ right-handed minus left-handed bends, where the sign corresponds to the chirality. Fermion doubling does not occur in this discrete scheme. A Dirac mass $m$ introduces the amplitude $i\\epsilon m$ to flip chirality in any given time step $\\epsilon$, and a Majorana mass similarly introduces a charge conjugation amplitude.
Spin on a 4D Feynman Checkerboard
Foster, Brendan Z.; Jacobson, Ted
2017-01-01
We discretize the Weyl equation for a massless, spin-1/2 particle on a time-diagonal, hypercubic spacetime lattice with null faces. The amplitude for a step of right-handed chirality is proportional to the spin projection operator in the step direction, while for left-handed it is the orthogonal projector. Iteration yields a path integral for the retarded propagator, with matrix path amplitude proportional to the product of projection operators. This assigns the amplitude i ± T 3- B/2 2- N to a path with N steps, B bends, and T right-handed minus left-handed bends, where the sign corresponds to the chirality. Fermion doubling does not occur in this discrete scheme. A Dirac mass m introduces the amplitude i 𝜖 m to flip chirality in any given time step 𝜖, and a Majorana mass similarly introduces a charge conjugation amplitude.
Spin on a 4D Feynman Checkerboard
Foster, Brendan Z.; Jacobson, Ted
2016-11-01
We discretize the Weyl equation for a massless, spin-1/2 particle on a time-diagonal, hypercubic spacetime lattice with null faces. The amplitude for a step of right-handed chirality is proportional to the spin projection operator in the step direction, while for left-handed it is the orthogonal projector. Iteration yields a path integral for the retarded propagator, with matrix path amplitude proportional to the product of projection operators. This assigns the amplitude i ±T 3-B/2 2-N to a path with N steps, B bends, and T right-handed minus left-handed bends, where the sign corresponds to the chirality. Fermion doubling does not occur in this discrete scheme. A Dirac mass m introduces the amplitude i 𝜖 m to flip chirality in any given time step 𝜖, and a Majorana mass similarly introduces a charge conjugation amplitude.
Superfluids in Curved Spacetime
Villegas, Kristian Hauser A
2015-01-01
Superfluids under an intense gravitational field are typically found in neutron star and quark star cores. Most treatments of these superfluids, however, are done in a flat spacetime background. In this paper, the effect of spacetime curvature on superfluidity is investigated. An effective four-fermion interaction is derived by integrating out the mediating scalar field. The fermions interacting via the mediating gauge vector bosons is also discussed. Two possible cases are considered in the mean-field treatment: antifermion-fermion and fermion-fermion pairings. An effective action, quadratic in fermion field, and a self-consistent equation are derived for both cases. The effective Euclidean action and the matrix elements of the heat kernel operator, which are very useful in curved-spacetime QFT calculations, are derived for the fermion-fermion pairing. Finally, explicit numerical calculation of the gravitational correction to the pairing order parameter is performed for the scalar superfluid case. It is foun...
Ashtekar, Abhay
In general relativity space-time ends at singularities. The big bang is considered as the Beginning and the big crunch, the End. However these conclusions are arrived at by using general relativity in regimes which lie well beyond its physical domain of validity. Examples where detailed analysis is possible show that these singularities are naturally resolved by quantum geometry effects. Quantum space-times can be vastly larger than what Einstein had us believe. These non-trivial space-time extensions enable us to answer of some long standing questions and resolve of some puzzles in fundamental physics. Thus, a century after Minkowski's revolutionary ideas on the nature of space and time, yet another paradigm shift appears to await us in the wings.
Comment on "Spacetime Information"
Kent, A
1996-01-01
A recent paper by Hartle [Phys. Rev. D 51, 1800 (1995)] proposes a definition of ``spacetime information'' --- the information available about a quantum system's boundary conditions in the various sets of decohering histories it may display --- and investigates its properties. We note here that Hartle's analysis contains errors which invalidate several of the conclusions. In particular, the proof that the proposed definition agrees with the standard definition for ordinary quantum mechanics is invalid, the evaluations of the spacetime information for time-neutral generalized quantum theories and for generalized quantum theories with non-unitary evolution are incorrect, and the argument that spacetime information is conserved on spacelike surfaces in these last theories is erroneous. We show however that the proposed definition does, in fact, agree with the standard definition for ordinary quantum mechanics. Hartle's definition relies on choosing, case by case, a class of fine-grained consistent sets of histor...
Spacetime Deformation-Induced Inertia Effects
Directory of Open Access Journals (Sweden)
Gagik Ter-Kazarian
2012-01-01
Full Text Available We construct a toy model of spacetime deformation-induced inertia effects, in which we prescribe to each and every particle individually a new fundamental constituent of hypothetical 2D, so-called master space (MS, subject to certain rules. The MS, embedded in the background 4D-spacetime, is an indispensable companion to the particle of interest, without relation to every other particle. The MS is not measurable directly, but we argue that a deformation (distortion of local internal properties of MS is the origin of inertia effects that can be observed by us. With this perspective in sight, we construct the alternative relativistic theory of inertia. We go beyond the hypothesis of locality with special emphasis on distortion of MS, which allows to improve essentially the standard metric and other relevant geometrical structures referred to a noninertial frame in Minkowski spacetime for an arbitrary velocities and characteristic acceleration lengths. Despite the totally different and independent physical sources of gravitation and inertia, this approach furnishes justification for the introduction of the weak principle of equivalence (WPE, that is, the universality of free fall. Consequently, we relate the inertia effects to the more general post-Riemannian geometry.
Clear Evidence of a Continuum Theory of 4D Euclidean Simplicial Quantum Gravity
Egawa, H S; Yukawa, T
2002-01-01
Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N_X) and gauge fields (N_A) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent gamma^{(4)} is estimated. Furthermore, we compare our numerical results with Background-Metric-Independent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity.
4D Scattering Amplitudes and Asymptotic Symmetries from 2D CFT
Cheung, Clifford; Sundrum, Raman
2016-01-01
We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors o...
Emergent Spacetime: Reality or Illusion?
Yang, Hyun Seok
2015-01-01
The contemporary physics has revealed growing evidences that the emergence can be applied to not only biology and condensed matter systems but also gravity and spacetime. We observe that noncommutative spacetime necessarily implies emergent spacetime if spacetime at microscopic scales should be viewed as noncommutative. Since the emergent spacetime is a new fundamental paradigm for quantum gravity, it is necessary to reexamine all the rationales to introduce the multiverse hypothesis from the standpoint of emergent spacetime. We argue that the emergent spacetime certainly opens a new perspective that may cripple all the rationales to introduce the multiverse picture. Moreover the emergent spacetime may rescue us from the doomsday of metastable multiverse as quantum mechanics did from the catastrophic collapse of classical atoms.
Symmetry, structure, and spacetime
Rickles, Dean
2007-01-01
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational
Russell, Simon
2013-01-01
This book is written in a Cookbook style with short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity.This book is for professional artists working in architecture, design, production, or games and wan
Thermodynamics of charged Lovelock: AdS black holes
Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.
2016-04-01
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.
Thermodynamics of charged Lovelock: AdS black holes
Energy Technology Data Exchange (ETDEWEB)
Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Cochin (India)
2016-04-15
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)
Axially Symmetric, Spatially Homothetic Spacetimes
Wagh, S M; Wagh, Sanjay M.; Govinder, Keshlan S.
2002-01-01
We show that the existence of appropriate spatial homothetic Killing vectors is directly related to the separability of the metric functions for axially symmetric spacetimes. The density profile for such spacetimes is (spatially) arbitrary and admits any equation of state for the matter in the spacetime. When used for studying axisymmetric gravitational collapse, such solutions do not result in a locally naked singularity.
4D scattering amplitudes and asymptotic symmetries from 2D CFT
Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman
2017-01-01
We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the "tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Finally, we discuss a toy model for black hole horizons via a restriction to the Rindler region.
4D geomorphological evolution of intertropical islands
Pastier, Anne-Morwenn; Bezos, Antoine; Husson, Laurent; Pedoja, Kevin; Arias, Camilo; Elliot, Mary; Lacroix, Pascal; Imran, Andi Muhammad
2017-04-01
Coral reef terraces record joint variations of sea level and surface elevation. U/Th ratings on corals along with topographic/bathymetric profiles and eustatic reconstitutions allow to locally determine the vertical rate of ground motion, while numerical modelling of reef sequences allows to unravel the processes controlling the architecture of sequences, and high-resolution DEMs facilitates the detailed mapping of the sequences of reef terraces. Alltogether, these methods allow to extrapolate the local vertical rates towards an unprecedented resolution for 4D kinematics. We applied our method to uplifting islands of the tectonically active Buton Archipelago, SE Sulawesi, Indonesia. The area undergoes a general uplift revealed by the ubiquitous occurrence of uplifted and folded reef sequences. We dated some 40 samples using U/Th, acquired sonar and dGPS profiles, and constructed high-res DEMs (Pleiades). Local vertical rates (from 0.2 to 0.28 mm/yr) were determined. Detailed geomorphological mapping of the lateral variations of the terraces are converted into time and space variations of uplift rates. Extrapolating the higher, undated terraces permits to reconstruct the overall 4D geomorphology history over the last Ma. In turns, these results give a unique view on the structural kinematics.
Supercurrent anomalies in 4d SCFTs
Papadimitriou, Ioannis
2017-07-01
We use holographic renormalization of minimal N=2 gauged supergravity in order to derive the general form of the quantum Ward identities for 3d N=2 and 4d N=1 superconformal theories on general curved backgrounds, including an arbitrary fermionic source for the supercurrent. The Ward identities for 4d N=1 theories contain both bosonic and fermionic global anomalies, which we determine explicitly up to quadratic order in the supercurrent source. The Ward identities we derive apply to any superconformal theory, independently of whether it admits a holographic dual, except for the specific values of the a and c anomaly coefficients, which are equal due to our starting point of a two-derivative bulk supergravity theory. We show that the fermionic anomalies lead to an anomalous transformation of the supercurrent under rigid supersymmetry on backgrounds admitting Killing spinors, even if all superconformal anomalies are numerically zero on such backgrounds. The anomalous transformation of the supercurrent under rigid supersymmetry leads to an obstruction to the Q-exactness of the stress tensor in supersymmetric vacua, and may have implications for the applicability of localization techniques. We use this obstruction to the Q-exactness of the stress tensor, together with the Ward identities, in order to determine the general form of the stress tensor and R-current one-point functions in supersymmetric vacua, which allows us to obtain general expressions for the supersymmetric Casimir charges and partition function.
Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.
2014-09-01
Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.
Clark, T E
2016-01-01
Coset methods are used to determine the action of a co-dimension one brane (domain wall) embedded in (d+1)-dimensional AdS space in the Carroll limit in which the speed of light goes to zero. The action is invariant under the non-linearly realized symmetries of the AdS-Carroll spacetime. The Nambu-Goldstone field exhibits a static spatial distribution for the brane with a time varying momentum density related to the brane's spatial shape as well as the AdS-C geometry. The AdS-C vector field dual theory is obtained.
Spectral geometry of spacetime
Kopf, T
2000-01-01
Spacetime, understood as a globally hyperbolic manifold, may be characterized by spectral data using a 3+1 splitting into space and time, a description of space by spectral triples and by employing causal relationships, as proposed earlier. Here, it is proposed to use the Hadamard condition of quantum field theory as a smoothness principle.
Schrödinger, Erwin
1985-01-01
In response to repeated requests this classic book on space-time structure by Professor Erwin Schrödinger is now available in the Cambridge Science Classics series. First published in 1950, and reprinted in 1954 and 1960, this lucid and profound exposition of Einstein's 1915 theory of gravitation still provides valuable reading for students and research workers in the field.
Seed conformal blocks in 4D CFT
Echeverri, Alejandro Castedo; Elkhidir, Emtinan; Karateev, Denis; Serone, Marco
2016-02-01
We compute in closed analytical form the minimal set of "seed" conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation ( ℓ, overline{ℓ} ) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0, | ℓ - overline{7ell;} |) and one (| ℓ - overline{ℓ} |, 0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any ( ℓ, overline{ℓ} ), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p = | ℓ - overline{ℓ} | and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories.
Seed conformal blocks in 4D CFT
Energy Technology Data Exchange (ETDEWEB)
Echeverri, Alejandro Castedo; Elkhidir, Emtinan; Karateev, Denis [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); Serone, Marco [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); ICTP,Strada Costiera 11, I-34151 Trieste (Italy)
2016-02-29
We compute in closed analytical form the minimal set of “seed' conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation (ℓ,ℓ̄) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0,|ℓ−ℓ̄|) and one (|ℓ−ℓ̄|,0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any (ℓ,ℓ̄), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p=|ℓ−ℓ̄| and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories.
Seed Conformal Blocks in 4D CFT
Echeverri, Alejandro Castedo; Karateev, Denis; Serone, Marco
2016-01-01
We compute in closed analytical form the minimal set of "seed" conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation (l,\\bar l) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0,|l-\\bar l|) and one (|l-\\bar l|,0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any (l,\\bar l), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p=|l-\\bar l | and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal f...
Emergent Spacetime for Quantum Gravity
Yang, Hyun Seok
2016-01-01
We emphasize that noncommutative (NC) spacetime necessarily implies emergent spacetime if spacetime at microscopic scales should be viewed as NC. In order to understand NC spacetime correctly, we need to deactivate the thought patterns that we have installed in our brains and taken for granted for so many years. Emergent spacetime allows a background-independent formulation of quantum gravity that will open a new perspective to resolve the notorious problems in theoretical physics such as the cosmological constant problem, hierarchy problem, dark energy, dark matter, and cosmic inflation.
Holographic Space-time Models of Anti-deSitter Space-times
Banks, Tom
2016-01-01
We study the constraints on HST models of AdS space-time. The causal diamonds of HST along time-like geodesics of AdS space-time, fit nicely into the FRW patch of AdS space. The coordinate singularity of the FRW patch is identified with the proper time at which the Hilbert space of the causal diamond becomes infinite dimensional. For diamonds much smaller than the AdS radius, RAdS, the time dependent Hamiltonians of HST are the same as those used to describe similar diamonds in Minkowski space. In particular, they are invariant under the fuzzy analog of volume preserving diffeomorphisms of the holographic screen, which leads to fast scrambling of perturbations on the horizon of a black hole of size smaller than RAdS. We argue that, in order to take a limit of this system which converges to a CFT, one must choose Hamiltonians, in a range of proper times of order RAdS, which break this invariance, and become local in a particular choice of basis for the variables. We show that, beginning with flat, sub-RAdS, pa...
Logarithmic modes of critical gravity in de Sitter space-time
Setare, M R
2012-01-01
In this paper we consider the critical gravity in four dimensional de Sitter space-time. We obtain logarithmic modes in the critical point of the theory. Then we show that these logarithmic modes in de Sitter space-time obey similar properties as the ones in AdS-space-time. Our result in this paper indicate that critical gravity theories in de Sitter space-times could lead to a de Sitter/log CFT correspondence.
Probing the origin of inertia behind spacetime deformation
Ter-Kazarian, Gagik
2011-01-01
To investigate the origin and nature of inertia, we introduce a new concept of hypothetical 2D, so-called, "master-space" (MS), subject to certain rules. The MS, embedded in the background 4D-spacetime, is an indispensable individual companion to the particle of interest, without relation to every other particle. We argue that a deformation/(distortion of local internal properties) of MS is the origin of inertia. With this perspective in sight, we construct the alternative relativistic theory...
Quantum Singularity of Quasiregular Spacetimes
Konkowski, Deborah A.; Helliwell, Thomas M.
2001-04-01
A quasiregular spacetime is a spacetime with a classical quasiregular singularity, the mildest form of true singularity [G.F.R. Ellis and B.G. Schmidt, Gen. Rel. Grav. 8, 915 (1977)]. The definition of G.T. Horowitz and D. Marolf [Phys. Rev. D52, 5670 (1995)] for a quantum-mechanically singular spacetime is one in which the spatial-derivative operator in the Klein-Gordon equation for a massive scalar field is not essentially self-adjoint. In such a quantum-mechanically singular spacetime, the time evolution of a quantum test particle is not uniquely determined. Horowitz and Marolf showed that a two-dimensional spacetime with a classical conical singularity (i.e., a two-dimensional quasiregular singularity) is also quantum-mechanically singular. Here we show that a class of static quasiregular spacetimes possessing disclinations and dislocations [R.A.Puntigam and H.H. Soleng , Class. Quantum Grav. 14, 1129 (1997)] is quantum-mechanically singular, since the scalar wave operator is not essentially self-adjoint. These spacetimes include an idealized cosmic string spacetime, i.e., a four-dimensional spacetime with conical singularity, and a Galtsov/Letelier/Tod spacetime featuring a screw dislocation [K.P. Tod, Class. Quantum Grav. 11, 1331 (1994); D.V. Galtsov and P.S. Letelier, Phys. Rev. D47, 4273 (1993)]. In addition, we show that the definition of quantum-mechanically singular spacetimes can be extended to include Maxwell and Dirac fields.
AdS5 magnetized solutions in minimal gauged supergravity
Directory of Open Access Journals (Sweden)
Jose Luis Blázquez-Salcedo
2017-08-01
Full Text Available We construct a generalization of the AdS charged rotating black holes with two equal magnitude angular momenta in five-dimensional minimal gauged supergravity. In addition to the mass, electric charge and angular momentum, the new solutions possess an extra-parameter associated with a non-zero magnitude of the magnetic potential at infinity. In contrast with the known cases, these new black holes possess a non-trivial zero-horizon size limit which describes a one parameter family of spinning charged solitons. All configurations reported in this work approach asymptotically an AdS5 spacetime in global coordinates and are free of pathologies.
Ohanian, Hans C
2013-01-01
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...
Lovelady, Benjamin C
2015-01-01
According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dim Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected SO(n) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an SO(n-1,1) connection on the spacetime. The principal fiber bundle character of the original SO(n) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.
Computation and Spacetime Structure
Stannett, Mike
2011-01-01
We investigate the relationship between computation and spacetime structure, focussing on the role of closed timelike curves (CTCs) in promoting computational speedup. We note first that CTC traversal can be interpreted in two distinct ways, depending on ones understanding of spacetime. Focussing on one interpretation leads us to develop a toy universe in which no CTC can be traversed more than once, whence no computational speedup is possible. Focussing on the second (and more standard) interpretation leads to the surprising conclusion that CTCs act as perfect information repositories: just as black holes have entropy, so do CTCs. If we also assume that P is not equal to NP, we find that all observers agree that, even if unbounded time travel existed in their youth, this capability eventually vanishes as they grow older. Thus the computational assumption "P is not NP" is also an assumption concerning cosmological structure.
Lovelady, Benjamin C.; Wheeler, James T.
2016-04-01
According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.
Probing crunching AdS cosmologies
Kumar, S Prem
2015-01-01
Holographic gravity duals of deformations of CFTs formulated on de Sitter spacetime contain FRW geometries behind a horizon, with cosmological big crunch singularities. Using a specific analytically tractable solution within a particular single scalar truncation of N=8 supergravity on AdS_4, we first probe such crunching cosmologies with spacelike radial geodesics that compute spatially antipodal correlators of large dimension boundary operators. At late times, the geodesics lie on the FRW slice of maximal expansion behind the horizon. The late time two-point functions factorise, and when transformed to the Einstein static universe, they exhibit a temporal non-analyticity determined by the maximal value of the scale factor a_{max} . Radial geodesics connecting antipodal points necessarily have de Sitter energy E \\leq a_{max}, while geodesics with E > a_{max} terminate at the crunch, the two categories of geodesics being separated by the maximal expansion slice. The spacelike crunch singularity is curved "outw...
Holographic thermal field theory on curved spacetimes
Marolf, Donald; Wiseman, Toby
2013-01-01
The AdS/CFT correspondence relates certain strongly coupled CFTs with large effective central charge $c_\\text{eff}$ to semi-classical gravitational theories with AdS asymptotics. We describe recent progress in understanding gravity duals for CFTs on non-trivial spacetimes at finite temperature, both in and out of equilibrium. Such gravity methods provide powerful new tools to access the physics of these strongly coupled theories, which often differs qualitatively from that found at weak coupling. Our discussion begins with basic aspects of AdS/CFT and progresses through thermal CFTs on the Einstein Static Universe and on periodically identified Minkowski spacetime. In the latter context we focus on states describing so-called plasma balls, which become stable at large $c_\\text{eff}$. We then proceed to out-of-equilibrium situations associated with dynamical bulk black holes. In particular, the non-compact nature of these bulk black holes allows stationary solutions with non-Killing horizons that describe time...
Introducing surface tension to spacetime
Perko, H. A.
2017-05-01
Concepts from physical chemistry of surfaces and surface tension are applied to spacetime. More specifically, spacetime is modeled as a spatial fluid continuum bound together by a multi-dimensional membrane of time. A metric tensor that relates empty flat spacetime to energetic curved spacetime is found. Equations of motion for an infinitesimal unit of spacetime are derived. The equation of motion in a time-like direction is a Klein-Gordon type equation. The equations of motion in space-like directions take the form of Schrodinger’s equation where Plank’s constant is related to membrane elastic modulus. Although much work remains, it is suggested that the spacetime surface tension may serve as a mechanical model for many phenomena in quantum mechanics and atomic particle physics.
5D maximally supersymmetric Yang-Mills in 4D superspace. Applications
Energy Technology Data Exchange (ETDEWEB)
McGarrie, Moritz
2013-03-15
We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.
Spacetime in modern physical theories
Klatt, Carrie
In this thesis we examine the relationship between the gravitational field and spacetime in three modern physical theories: general relativity, the field theoretic approach, and geometrodynamics. Our analysis is based on two questions: first, is gravity best understood as a field in a spacetime background or is the gravitational field indistinguishable from spacetime? Here we compare the field theoretic approach to gravity presented by Feynman and Weinberg, where spacetime is at first taken to be a flat background, to general relativity, where we find that the equivalence principle in conjunction with the geodesic hypothesis allows us to consider the gravitational field as being indistinguishable from curved spacetime. Second, what does it mean to say that spacetime (or alternatively, matter) has a privileged status in a theory? That is, is it sensible to say that one object in a theory, such as spacetime, can be derived from another object in the theory, for example, matter? Here we compare general relativity, where matter and spacetime are considered to be primary notions in the theory, to Wheeler's geometrodynamics, where all objects in the universe, including matter, charge and electromagnetism, are to be explained as manifestations of curved spacetime. By considering these issues, it is hoped that we will be able to contribute to the analysis of similar topics in theories of quantum gravity such as string theory.
Multipole Moments of numerical spacetimes
Pappas, George
2012-01-01
In this article we present some recent results on identifying correctly the relativistic multipole moments of numerically constructed spacetimes, and the consequences that this correction has on searching for appropriate analytic spacetimes that can approximate well the previously mentioned numerical spacetimes. We also present expressions that give the quadrupole and the spin octupole as functions of the spin parameter of a neutron star for various equations of state and in a range of masses for every equation of state used. These results are relevant for describing the exterior spacetime of rotating neutron stars that are made up of matter obeying realistic equations of state.
2010-04-01
... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...
2012-04-01
... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each...
Development operators on 4D moving object databases
Institute of Scientific and Technical Information of China (English)
JUN Sung-woo; LEE Yang-koo; KIM Sang-ho; CHI Jeong-hee; RYU Keun-ho
2004-01-01
In this paper we propose four-dimensional (4D) operators, which can be used to deal with sequential changes of topological relationships between 4D moving objects and we call them 4D development operators. In contrast to the existing operators, we can apply the operators to real applications on 4D moving objects. We also propose a new approach to define them. The approach is based on a dimension-separated method, which considers x-y coordinates and z coordinates separately. In order to show the applicability of our operators, we show the algorithms for the proposed operators and development graph between 4D moving objects.
4D electron microscopy: principles and applications.
Flannigan, David J; Zewail, Ahmed H
2012-10-16
achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells.
Probing crunching AdS cosmologies
Kumar, S. Prem; Vaganov, Vladislav
2016-02-01
Holographic gravity duals of deformations of CFTs formulated on de Sitter spacetime contain FRW geometries behind a horizon, with cosmological big crunch singularities. Using a specific analytically tractable solution within a particular single scalar truncation of {N}=8 supergravity on AdS4, we first probe such crunching cosmologies with spacelike radial geodesics that compute spatially antipodal correlators of large dimension boundary operators. At late times, the geodesics lie on the FRW slice of maximal expansion behind the horizon. The late time two-point functions factorise, and when transformed to the Einstein static universe, they exhibit a temporal non-analyticity determined by the maximal value of the scale factor ã max. Radial geodesics connecting antipodal points necessarily have de Sitter energy Ɛ ≲ ã max, while geodesics with Ɛ > ã max terminate at the crunch, the two categories of geodesics being separated by the maximal expansion slice. The spacelike crunch singularity is curved "outward" in the Penrose diagram for the deformed AdS backgrounds, and thus geodesic limits of the antipodal correlators do not directly probe the crunch. Beyond the geodesic limit, we point out that the scalar wave equation, analytically continued into the FRW patch, has a potential which is singular at the crunch along with complex WKB turning points in the vicinity of the FRW crunch. We then argue that the frequency space Green's function has a branch point determined by ã max which corresponds to the lowest quasinormal frequency.
Computer algebra in spacetime embedding
Roque, Waldir L
2014-01-01
In this paper we describe an algorithm to determine the vectors normal to a space-time V4 embedded in a pseudo-Euclidean manifold M4+n. An application of this algorithm is given considering the Schwarzchild space-time geometry embedded in a 6 dimensional pseudo-Euclidean manifold, using the algebraic computing system REDUCE.
Stability problem in Rindler spacetime
Institute of Scientific and Technical Information of China (English)
2007-01-01
The stability problem of the Rindler spacetime is carefully studies by using the scalar wave perturbation. Using two different coordinate systems, the scalar wave equation is investigated. The results are different in the two cases.They are analysed and compared with each other in detail. The following conclusions are obtained: (a) the Rindler spacetime as a whole is not stable; (b) the Rindler spacetime can exist stably only as part of the Minkowski spacetime,and the Minkowski spacetime can be a real entity independently; (c) there are some defects for the scalar wave equation written by the Rindler coordinates, and it is unsuitable for the investigation of the stability properties of the Rindler spacetime. All these results may shed some light on the stability properties of the Schwarzschild black hole. It is natural and reasonable for one to infer that: (a) perhaps the Regge-Wheeler equation is not sufficient to determine the stable properties; (b) the Schwarzschild black hole as a whole might be really unstable; (c) the Kruskal spacetime is stable and can exist as a real physical entity; whereas the Schwarzschild black hole can occur only as part of the Kruskal spacetime.
Causal Behaviour on Carter spacetime
Blanco, Oihane F
2015-01-01
In this work we will focus on the causal character of Carter Spacetime (see B. Carter, Causal structure in space-time, Gen. Rel. Grav. 1 4 337-406, 1971). The importance of this spacetime is the following: for the causally best well behaved spacetimes (the globally hyperbolic ones), there are several characterizations or alternative definitions. In some cases, it has been shown that some of the causal properties required in these characterizations can be weakened. But Carter spacetime provides a counterexample for an impossible relaxation in one of them. We studied the possibility of Carter spacetime to be a counterexample for impossible lessening in another characterization, based on the previous results. In particular, we will prove that the time-separation or Lorentzian distance between two chosen points in Carter spacetime is infinite. Although this spacetime turned out not to be the counterexample we were looking for, the found result is interesting per se and provides ideas for alternate approaches to t...
Chapline, George
It has been shown that a nonlinear Schrödinger equation in 2+1 dimensions equipped with an SU(N) Chern-Simons gauge field can provide an exact description of certain self-dual Einstein spaces in the limit N-=∞. Ricci flat Einstein spaces can then be viewed as arising from a quantum pairing of the classical self-dual and anti-self-dual solutions. In this chapter, we will outline how this theory of empty space-time might be generalized to include matter and vacuum energy by transplanting the nonlinear Schrödinger equation used to construct Einstein spaces to the 25+1-dimensional Lorentzian Leech lattice. If the distinguished 2 spatial dimensions underlying the construction of Einstein spaces are identified with a hexagonal lattice section of the Leech lattice, the wave-function becomes an 11 × 11 matrix that can represent fermion and boson degrees of freedom (DOF) associated with 2-form and Yang-Mills gauge symmetries. The resulting theory of gravity and matter in 3+1 dimensions is not supersymmetric, which provides an entry for a vacuum energy. Indeed, in the case of a Lemaitre cosmological model, the emergent space-time will naturally have a vacuum energy on the order of the observed cosmological constant.
The Riemann tensor and the Bianchi identity in 5D space-time
Taki, Mehran; Mirjalili, Abolfazl
2017-01-01
The initial assumption of theories with extra dimension is based on the efforts to yield a geometrical interpretation of the gravitation field. In this paper, using an infinitesimal parallel transportation of a vector, we generalize the obtained results in four dimensions to five-dimensional space-time. For this purpose, we first consider the effect of the geometrical structure of 4D space-time on a vector in a round trip of a closed path, which is basically quoted from chapter three of Ref. [5]. If the vector field is a gravitational field, then the required round trip will lead us to an equation which is dynamically governed by the Riemann tensor. We extend this idea to five-dimensional space-time and derive an improved version of Bianchi's identity. By doing tensor contraction on this identity, we obtain field equations in 5D space-time that are compatible with Einstein's field equations in 4D space-time. As an interesting result, we find that when one generalizes the results to 5D space-time, the new field equations imply a constraint on Ricci scalar equations, which might be containing a new physical insight.
Sex-differential genetic effect of phosphodiesterase 4D (PDE4D on carotid atherosclerosis
Directory of Open Access Journals (Sweden)
Guo Yuh-Cherng
2010-06-01
Full Text Available Abstract Background The phosphodiesterase 4D (PDE4D gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis. Methods Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men. Genotype distribution was compared among the high-risk (plaque index ≥ 4, low-risk (index = 1-3, and reference (index = 0 groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect. Results In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034 for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008. For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032 for a thicker IMT at the common carotid artery compared with the (AA + AT genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025 but not in women (p = 0
6d → 5d → 4d reduction of BPS attractors in flat gauged supergravities
Directory of Open Access Journals (Sweden)
Kiril Hristov
2015-08-01
This is achieved starting from the BPS black string in 6d with an AdS3×S3 attractor and taking two different routes to arrive at a 1/2 BPS AdS2×S2 attractor of a non-BPS black hole in 4d N=2 flat gauged supergravity. The two inequivalent routes interchange the order of KK reduction on AdS3 and SS reduction on S3. We also find the commutator between the two operations after performing a duality transformation: on the level of the theory the result is the exchange of electric with magnetic gaugings; on the level of the solution we find a flip of the quartic invariant I4 to −I4.
Detailed ultraviolet asymptotics for AdS scalar field perturbations
Evnin, Oleg
2016-01-01
We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.
Detailed ultraviolet asymptotics for AdS scalar field perturbations
Energy Technology Data Exchange (ETDEWEB)
Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University,Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Jai-akson, Puttarak [Department of Physics, Faculty of Science, Chulalongkorn University,Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand)
2016-04-11
We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.
Mass formulae for broken supersymmetry in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Ferrara, Sergio [Theoretical Physics Department, CERN, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, U.C.L.A, Los Angeles, CA (United States); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)
2016-11-15
We derive the mass formulae for N = 1, D = 4 matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to De Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Space-time curvature signatures in Bose-Einstein condensates
Matos, Tonatiuh; Gomez, Eduardo
2015-05-01
We derive a generalized Gross-Pitaevski (GP) equation for a Bose Einstein Condensate (BEC) immersed in a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the traditional GP equation where the gravitational field is added by hand as an external potential. We show that there is a small difference of order gz/c2 between them that could be measured in the future using Bose-Einstein Condensates. This represents the next order correction to the Newtonian gravity in a curved space-time.
Space-Time Curvature Signatures in Bose-Einstein Condensates
Matos, Tonatiuh
2015-01-01
We derive a generalized Gross-Pitaevski (GP) equation immersed on a electromagnetic and a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the GP equation where the gravitational field is added by hand as an external potential. We show that there is a small difference of order $g z/c^2$ between them that could be measured in the future using Bose-Einstein Condensates (BEC). This represents the next order correction to the Newtonian gravity in a curved space-time.
Standard 4d gravity on a brane in six dimensional flux compactifications
Peloso, M; Tasinato, G; Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo
2006-01-01
We consider a six dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4d gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a delta-like, codimension two brane. To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is consistently taken into account.
Geovisualization Approaches for Spatio-temporal Crime Scene Analysis - Towards 4D Crime Mapping
Wolff, Markus; Asche, Hartmut
This paper presents a set of methods and techniques for analysis and multidimensional visualisation of crime scenes in a German city. As a first step the approach implies spatio-temporal analysis of crime scenes. Against this background a GIS-based application is developed that facilitates discovering initial trends in spatio-temporal crime scene distributions even for a GIS untrained user. Based on these results further spatio-temporal analysis is conducted to detect variations of certain hotspots in space and time. In a next step these findings of crime scene analysis are integrated into a geovirtual environment. Behind this background the concept of the space-time cube is adopted to allow for visual analysis of repeat burglary victimisation. Since these procedures require incorporating temporal elements into virtual 3D environments, basic methods for 4D crime scene visualisation are outlined in this paper.
Framed Wilson operators, fermionic strings, and gravitational anomaly in 4d
Energy Technology Data Exchange (ETDEWEB)
Thorngren, Ryan [Department of Mathematics, University of California, Oxford St., Berkeley, CA (United States)
2015-02-24
We study gapped systems with anomalous time-reversal symmetry and global gravitational anomaly in three and four spacetime dimensions. These systems describe topological order on the boundary of bosonic Symmetry Protected Topological (SPT) Phases. Our description of these phases is via the recent cobordism proposal for their classification. In particular, the behavior of these systems is determined by the geometry of Stiefel-Whitney classes. We discuss electric and magnetic operators defined by these classes, and new types of Wilson lines and surfaces that sit on their boundary. The lines describe fermionic particles, while the surfaces describe a sort of fermionic string. We show that QED with a fermionic monopole exhibits the 4d global gravitational anomaly and has a fermionic π-flux.
Emergent space-time and the supersymmetric index
Benjamin, Nathan; Keller, Christoph; Paquette, Natalie M
2015-01-01
It is of interest to find criteria on a 2d CFT which indicate that it gives rise to emergent gravity in a macroscopic 3d AdS space via holography. Symmetric orbifolds in the large $N$ limit have partition functions which are consistent with an emergent space-time string theory with $L_{\\rm string} \\sim L_{\\rm AdS}$. For supersymmetric CFTs, the elliptic genus can serve as a sensitive probe of whether the SCFT admits a large radius gravity description with $L_{\\rm string} \\ll L_{\\rm AdS}$ after one deforms away from the symmetric orbifold point in moduli space. We discuss several classes of constructions whose elliptic genera strongly hint that gravity with $L_{\\rm Planck} \\ll L_{\\rm string} \\ll L_{\\rm AdS}$ can emerge at suitable points in moduli space.
Emergent space-time and the supersymmetric index
Energy Technology Data Exchange (ETDEWEB)
Benjamin, Nathan; Kachru, Shamit [Stanford Institute for Theoretical Physics,Department of Physics, Stanford University, Palo Alto, CA 94305 (United States); Keller, Christoph A. [Department of Mathematics, ETH Zurich,CH-8092 Zurich (Switzerland); Paquette, Natalie M. [Stanford Institute for Theoretical Physics,Department of Physics, Stanford University, Palo Alto, CA 94305 (United States)
2016-05-26
It is of interest to find criteria on a 2d CFT which indicate that it gives rise to emergent gravity in a macroscopic 3d AdS space via holography. Symmetric orbifolds in the large N limit have partition functions which are consistent with an emergent space-time string theory with L{sub string}∼L{sub AdS}. For supersymmetric CFTs, the elliptic genus can serve as a sensitive probe of whether the SCFT admits a large radius gravity description with L{sub string}≪L{sub AdS} after one deforms away from the symmetric orbifold point in moduli space. We discuss several classes of constructions whose elliptic genera strongly hint that gravity with L{sub Planck}≪L{sub string}≪L{sub AdS} can emerge at suitable points in moduli space.
Polarized electrogowdy spacetimes censored
Energy Technology Data Exchange (ETDEWEB)
Nungesser, Ernesto, E-mail: ernesto.nungesser@aei.mpg.d [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)
2010-05-01
A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.
Springer handbook of spacetime
Petkov, Vesselin
2014-01-01
The Springer Handbook of Spacetime is dedicated to the ground-breaking paradigm shifts embodied in the two relativity theories, and describes in detail the profound reshaping of physical sciences they ushered in. It includes in a single volume chapters on foundations, on the underlying mathematics, on physical and astrophysical implications, experimental evidence and cosmological predictions, as well as chapters on efforts to unify general relativity and quantum physics. The Handbook can be used as a desk reference by researchers in a wide variety of fields, not only by specialists in relativity but also by researchers in related areas that either grew out of, or are deeply influenced by, the two relativity theories: cosmology, astronomy and astrophysics, high energy physics, quantum field theory, mathematics, and philosophy of science. It should also serve as a valuable resource for graduate students and young researchers entering these areas, and for instructors who teach courses on these subjects. The Han...
Chaos synchronization between two different 4D hyperchaotic Chen systems
Institute of Scientific and Technical Information of China (English)
Liu Yang-Zheng; Jiang Chang-Sheng; Lin Chang-Sheng; Jiang Yao-Mei
2007-01-01
This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws.A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system,furthermore,an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed.With nonlinear feedback control method,chaos synchronization between two different 4D hyperchaotic Chen systems is achieved.Based on the stability theory,the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived,the range of feedback gains is determined.Numerical simulations are shown to verify the theoretical results.
Gravitational wave memory in dS4+2n and 4D cosmology
Chu, Y.-Z.
2017-02-01
We argue that massless gravitons in all even dimensional de Sitter (dS) spacetimes higher than two admit a linear memory effect arising from their propagation inside the null cone. Assume that gravitational waves (GWs) are being generated by an isolated source, and over only a finite period of time {η\\text{i}}≤slant η ≤slant {η\\text{f}} . Outside of this time interval, suppose the shear-stress of the GW source becomes negligible relative to its energy-momentum and its mass quadrupole moments settle to static values. We then demonstrate, the transverse-traceless (TT) GW contribution to the perturbation of any dS4+2n written in a conformally flat form ({{a}2}{ημ ν}\\text{d}{{x}μ}\\text{d}{{x}ν} )—after the source has ceased and the primary GW train has passed—amounts to a spacetime constant shift in the flat metric proportional to the difference between the TT parts of the source’s final and initial mass quadrupole moments. As a byproduct, we present solutions to Einstein’s equations linearized about de Sitter backgrounds of all dimensions greater than three. We then point out there is a similar but approximate tail induced linear GW memory effect in 4D matter dominated universes. Our work here serves to improve upon and extend the 4D cosmological results of Chu (2015 Phys. Rev. D 92 124038), which in turn preceded complementary work by Bieri et al (2015 arXiv:1509.01296) and by Kehagias and Riotto (2016 arXiv:1602.02653).
Santacruz, Germán; Bandala, Erick R; Torres, Luis G
2005-01-01
Degradation of two chlorinated pesticides (2,4-D and DDT) using a 54-mL glass column packed with tezontle (a low-cost basaltic scoria) was tested. Bacteria were cultured in YPG (yeast, peptone, and glucose) liquid medium at 32 degrees C. The rich medium was pumped during 24 h through the column to inoculate it. Later, the wasted medium was discharged and the pesticide added. Optical densities, TOC, and pesticide concentration were determined. Pesticide removals for 2,4-D (with initial concentration between 100 and 500 mg/L) were about 99%. DDT removal (at initial concentration of up to 150 mg/L) was as high as 55-99%. TOC removals for 2,4-D was in the 36-87% interval, whereas for DDT they were as high as 36-78%.
Mesoscopic Fluctuations in Stochastic Spacetime
Shiokawa, K
2000-01-01
Mesoscopic effects associated with wave propagation in spacetime with metric stochasticity are studied. We show that the scalar and spinor waves in a stochastic spacetime behave similarly to the electrons in a disordered system. Viewing this as the quantum transport problem, mesoscopic fluctuations in such a spacetime are discussed. The conductance and its fluctuations are expressed in terms of a nonlinear sigma model in the closed time path formalism. We show that the conductance fluctuations are universal, independent of the volume of the stochastic region and the amount of stochasticity.
Ambient cosmology and spacetime singularities
Antoniadis, Ignatios
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.
Ambient cosmology and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Bern University, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Ecole Polytechnique, Palaiseau (France); Cotsakis, Spiros [CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); National Technical University, School of Applied Mathematics and Physical Sciences, Athens (Greece)
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)
Nonlocal gravity: Conformally flat spacetimes
Bini, Donato
2016-01-01
The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.
Interactions Between Real and Virtual Spacetimes
DEFF Research Database (Denmark)
Javadi, Hossein; Forouzbakhsh, Farshid
2014-01-01
. In this article, we analyzed that c is the edge of visible and invisible particles such as virtual photons and graviton. It leads us passing the real spacetime and enter into the virtual spacetime and describe interactions between real spacetime and virtual spacetime and reach to non-obvious space....
The S-matrix of the AdS5xS5 superstring
de Leeuw, M.
2010-01-01
According to the gauge-string duality conjecture, the spectrum of scaling dimensions of composite gauge invariant operators of the planar maximally supersymmetric Yang-Mills theory in four dimensions should be equivalent to the energy spectrum of superstrings propagating in the AdS5 x S5 space-time,
F-string Solution in AdS4 X CP3 PP-wave Background
Banerjee, Gourav
2016-01-01
We present supergravity solution for F-string in pp wave background obtained from AdS4 X CP3 with zero flat directions.The classical solution is shown to break all space-time supersymmetries. We explicitly write down the standard as well as supernumerary Killing spinors both for the background and F-string solution.
Higgs and fermions in D4-D5-E6 model based on Cl(0,8) Clifford algebra
Smith, F D T
1994-01-01
This paper discusses the Higgs and spinor fermion terms of the D4-D5-E6 model of a series of papers (hep-ph/9301210, hep-th/9302030, hep-th/9306011, and hep-th/9402003) an 8-dimensional spacetime is reduced to 4-dimensions. The gauge boson terms give SU(3)xSU(2)xU(1) for the color, weak, and electromagnetic forces and gravity of the MacDowell-Mansouri type, which has recently been shown by Nieto, Obregon, and Socorro (gr-qc/9402029) to be equivalent, up to a Pontrjagin topological term, to the Ashtekar formulation.
Space-Time Diffeomorphisms in Noncommutative Gauge Theories
Directory of Open Access Journals (Sweden)
L. Román Juarez
2008-07-01
Full Text Available In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007, 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985, 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987, 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.
Breban, Romulus
2015-01-01
Five-dimensional (5D) space-time symmetry greatly facilitates how a 4D observer perceives the propagation of a single spinless particle in a 5D space-time. In particular, if the 5D geometry is independent of the fifth coordinate then the 5D physics may be interpreted as 4D quantum mechanics. In this work we address the case where the symmetry is approximate, focusing on the case where the 5D geometry depends weakly on the fifth coordinate. We show that concepts developed for the case of exact...
Spherically Symmetric, Self-Similar Spacetimes
Wagh, S M; Wagh, Sanjay M.; Govinder, Keshlan S.
2001-01-01
Self-similar spacetimes are of importance to cosmology and to gravitational collapse problems. We show that self-similarity or the existence of a homothetic Killing vector field for spherically symmetric spacetimes implies the separability of the spacetime metric in terms of the co-moving coordinates and that the metric is, uniquely, the one recently reported in [cqg1]. The spacetime, in general, has non-vanishing energy-flux and shear. The spacetime admits matter with any equation of state.
Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.
Herdeiro, Carlos A R; Radu, Eugen
2016-11-25
We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.
Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space
Herdeiro, Carlos A. R.; Radu, Eugen
2016-11-01
We explicitly construct static black hole solutions to the fully nonlinear, D =4 , Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.
Quasilocal Energy in Kerr Spacetime
Liu, Jian-Liang
2016-01-01
In this work we study the quasilocal energy as in [11] for a constant radius surface in Kerr spacetime in Boyer-Lindquist coordinates. We show that under suitable conditions for isometric embedding, for a stationary observer the quasilocal energy defined in [11] for constant radius in a Kerr like spacetime is exactly equal to the Brown-York quasilocal energy [2]. By some careful estimations, we show that for a constant radius surface in the Kerr spacetime which is outside the ergosphere the embedding conditions for the previous result are satisfied. Finally we discuss extremal solutions as described in [14] and show that near the horizon of the Kerr spacetime for the small rotation case the extremal solutions are trivial.
Romero, Gustavo E
2015-01-01
I present a discussion of some issues in the ontology of spacetime. After a characterisation of the controversies among relationists, substantivalists, eternalists, and presentists, I offer a new argument for rejecting presentism, the doctrine that only present objects exist. Then, I outline and defend a form of spacetime realism that I call event substantivalism. I propose an ontological theory for the emergence of spacetime from more basic entities (timeless and spaceless `events'). Finally, I argue that a relational theory of pre-geometric entities can give rise to substantival spacetime in such a way that relationism and substantivalism are not necessarily opposed positions, but rather complementary. In an appendix I give axiomatic formulations of my ontological views.
National Research Council Canada - National Science Library
Ronald E Meyers; Keith S Deacon
2015-01-01
.... The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results...
Visualizing spacetimes via embedding diagrams
Hledik, Stanislav; Cipko, Alois
2016-01-01
It is hard to imagine curved spacetimes of General Relativity. A simple but powerful way how to achieve this is visualizing them via embedding diagrams of both ordinary geometry and optical reference geometry. They facilitate to gain an intuitive insight into the gravitational field rendered into a curved spacetime, and to assess the influence of parameters like electric charge and spin of a black hole, magnetic field or cosmological constant. Optical reference geometry and related inertial forces and their relationship to embedding diagrams are particularly useful for investigation of test particles motion. Embedding diagrams of static and spherically symmetric, or stationary and axially symmetric black-hole and naked-singularity spacetimes thus present a useful concept for intuitive understanding of these spacetimes' nature. We concentrate on general way of embedding into 3-dimensional Euclidean space, and give a set of illustrative examples.
Directory of Open Access Journals (Sweden)
Prather B.
2013-07-01
Full Text Available This paper considers the possibility of a teleparallel approximation of general relativity where the underlying space-time of a compact massive source is related to the isotropic coordinate chart rather than the geometric chart. This results in a 20 percent reduction of the expected shadow radius of compact objects. The observation of the shadow radius of Sagittarius A* should be possible in the near future using VLBI. The theoretical reduction is within the uncertainty of the expected shadow radius, however any observation less than a critical radius would indicate that gravity is not the result of space-time curvature alone. If space-time curvature does not act alone it is simpler to adopt the teleparallel view, with the tetrad ﬁeld representing the index of refraction of the required material ﬁeld in a ﬂat space-time.
Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max).
Skelton, Joshua J; Simpson, David M; Peterson, Mark A; Riechers, Dean E
2017-07-26
The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U50= 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M50= 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2007-08-01
Krishnamurthy was elected to Senior Member of the IEEE. John Proakis received the inaugural Athanasios Papoulis award from the European Signal...Conference, September 2006, (with Tiejun Wang and James Zeidler). Athanasios Papoulis Award received on September 6, 2007, fro Processing Society “For
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2009-08-01
nodes each with rN antennas. We represent the tr NN channel matrix from the transmitter to the jth user and at the kth sample time as )( kjH ...covariance of the channel as Hkjkjj )()( hhER , where )( kjh is a vector formed from column-wise stacking of )( kjH , and the expectation is
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2010-05-01
results quantifying the impact of fading on average symbol and error probability (SEP/ BEP ) are available for various modulation schemes. However, in slow...fading situations, there is no mapping between the average SEP/ BEP and the average PEP. Consequently knowing average SEP/ BEP does not help in...understanding the average PEP. Analysis of average PEP is a more complicated problem compared to the analysis of average SEP/ BEP . Analytical
3D/4D ultrasound registration of bone
Schers, Jonathan; Daanen, Vincent; Fouard, Céline; Plaskos, Christopher; Kilian, Pascal
2008-01-01
This paper presents a method to reduce the invasiveness of Computer Assisted Orthopaedic Surgery (CAOS) using ultrasound. In this goal, we need to develop a method for 3D/4D ultrasound registration. The premilinary results of this study suggest that the development of a robust and ``realtime'' 3D/4D ultrasound registration is feasible.
Beyond ICT4D: new media research in Uganda
Lovink, G.
2011-01-01
Beyond ICT4D: New Media Research in Uganda is a collection of ethnographic reports from diverse perspectives of those living at the other end of the African ICT pyramid. Crucially, these texts refocus on the so-called "ICT4D" debate away from the standard western lens, which depicts users in the
32 CFR 1645.4 - Exclusion from Class 4-D.
2010-07-01
... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...
Beyond ICT4D: new media research in Uganda
Lovink, G.
2011-01-01
Beyond ICT4D: New Media Research in Uganda is a collection of ethnographic reports from diverse perspectives of those living at the other end of the African ICT pyramid. Crucially, these texts refocus on the so-called "ICT4D" debate away from the standard western lens, which depicts users in the dev
Coherent Cascade: Collapsing Solutions in Global AdS
Freivogel, Ben
2015-01-01
We analyze the gravitational dynamics of a classical scalar field that sometimes leads to blackhole formation in asymptotically AdS spacetime at the shortest nonlinear time scale. We present strong evidence that the dynamics is governed by a "coherent cascade", with all modes remaining in phase as the energy flows to higher frequencies into a power-law spectrum. Using a coherent phase ansatz, we analytically find these power-law solutions. We show how the particular power is determined by the scaling properties of the interaction coefficients. Our result agrees with existing numerical results in 4+1 dimensions, and makes predictions in higher dimensions.
Configurational entropy of charged AdS black holes
Lee, Chong Oh
2017-09-01
When we consider charged AdS black holes in higher dimensional spacetime and a molecule number density along coexistence curves is numerically extended to higher dimensional cases. It is found that a number density difference of a small and large black holes decrease as a total dimension grows up. In particular, we find that a configurational entropy is a concave function of a reduced temperature and reaches a maximum value at a critical (second-order phase transition) point. Furthermore, the bigger a total dimension becomes, the more concave function in a configurational entropy while the more convex function in a reduced pressure.
Internal Structure of Charged AdS Black Holes
Bhattacharjee, Srijit; Virmani, Amitabh
2016-01-01
When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached. Nevertheless, the mass inflation singularity is still a weak singularity: although spacetime curvature becomes infinite, tidal distortions remain finite on physical objects attempting to cross it.
Vacuum energy in Einstein-Gauss-Bonnet AdS gravity
Kofinas, G; Kofinas, Georgios; Olea, Rodrigo
2006-01-01
A finite action principle for Einstein-Gauss-Bonnet AdS gravity is presented. The boundary term, which is different for even and odd dimensions, is a functional of the boundary metric, intrinsic curvature and extrinsic curvature. For even dimensions, the boundary term corresponds to the maximal Chern form of the spacetime, and the asymptotic AdS condition for the curvature suffices for the well-posedness of this action. For odd dimensions, the action is stationary under a boundary condition on the variation of the extrinsic curvature. The background-independent Noether charges associated to asymptotic symmetries are found and the Euclidean continuation of the action correctly describes the black hole thermodynamics in the canonical ensemble. In particular, this procedure leads to a covariant formula for the vacuum energy in odd-dimensional asymptotically AdS spacetimes.
Mapping curved spacetimes into Dirac spinors
Sabín, Carlos
2016-01-01
We show how to transform a Dirac equation in curved spacetime into a Dirac equation in flat spacetime. In particular, we show that any solution of the free massless Dirac equation in a 1+1 dimensional flat spacetime can be transformed via a local phase transformation into a solution of the corresponding Dirac equation in a curved background, where the spacetime metric is encoded into the phase. In this way, the existing quantum simulators of the Dirac equation can naturally incorporate curved spacetimes. As a first example we use our technique to obtain solutions of the Dirac equation in a particular family of interesting spacetimes in 1+1 dimensions.
SU-D-BRB-01: 4D-CT Lung Ventilation Images Vary with 4D-CT Sorting Techniques.
Yamamoto, T; Kabus, S; Lorenz, C; Johnston, E; Maxim, P; Loo, B; Keall, P
2012-06-01
4D-CT ventilation imaging is a novel promising technique for lung functional imaging and has potential as a biomarker for radiation pneumonitis, but has not been validated in human subjects. The current 4D- CT technique with phase-based sorting results in artifacts at an alarmingly high frequency (90%), which may introduce variations into ventilation calculations. The purpose of this study was to quantify the variability of 4D- CT ventilation imaging to 4D-CT sorting techniques. Two 4D-CT images were generated from the same data set by: (1) phase-based; (2) anatomic similarity- and abdominal displacement-based sorting for five patients. Two ventilation image sets (V_phase and V_anat) were then calculated by deformable image registration of peak-exhale and peak-inhale4D-CT images and quantification of regional volume change based on Hounsfield unit change. The variability of 4D-CT ventilation imaging wasquantified using the voxel-based Spearman rank correlation coefficients and Dice similarity coefficients (DSC) for the spatial overlap of segmented low- functional lung regions. The relationship between the abdominal motionrange variation and ventilation variation was also assessed using linearregression. Furthermore, the correlations between V_phase or V_anat and SPECT ventilation images (assumed ground-truth) were compared. In general, displacement- and anatomic similarity-based sorting reduced 4D- CT artifacts compared to phase-based sorting. The voxel-based correlationsbetween V_phase and V_anat were only moderate (range, 0.57-0.77). The DSCs for the low-functional lung regions were moderate to substantial (0.58-0.70). The relationship between the motion range variation and ventilation variation was strong on average (R2=0.79±0.25), suggesting that ventilation variations are related to 4D-CT artifacts. Vanat was found to improve correlations with SPECT ventilation images compared to V_phase. 4D-CT ventilation images vary markedly with 4D-CT sorting techniques. 4
Beyond the unitarity bound in AdS/CFT{sub (A)dS}
Energy Technology Data Exchange (ETDEWEB)
Andrade, Tomas [University of California, Santa Barbara (United States); Uhlemann, Christoph [Universitaet Wuerzburg (Germany)
2012-07-01
We study CFTs on dS and AdS spacetimes from a holographic perspective, in particular how the unitarity properties of the boundary theory are reflected in the bulk description. On geometries with an (A)dS conformal boundary we choose mass and boundary conditions for a Klein-Gordon field such that the corresponding CFT operator violates the unitarity bound. We analyze how the non-unitarity is reproduced in the bulk and discuss, for the case of an AdS boundary, prospects for multi-layered AdS/CFT-type dualities.
Geometric Finiteness, Holography and Quasinormal Modes for the Warped AdS_3 Black Hole
Gupta, Kumar S; Sen, Siddhartha; Sivakumar, M
2009-01-01
We show that there exists a precise kinematical notion of holography for the Euclidean warped $AdS_3$ black hole. This follows from the fact that the Euclidean warped $AdS_3$ black hole spacetime is a geometrically finite hyperbolic manifold. For such manifolds a theorem of Sullivan provides a one-to-one correspondence between the hyperbolic structure in the bulk and the conformal structure of its boundary. Using this theorem we obtain the holographic quasinormal modes for the warped $AdS_3$ black hole.
Simple generalizations of anti-de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Magueijo, Joao; Mozaffari, Ali, E-mail: ali.mozaffari@imperial.ac.u [Theoretical Physics, Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)
2010-07-07
We consider new cosmological solutions which generalize the cosmological patch of the anti-de Sitter (AdS) spacetime, allowing for fluids with equations of state such that w {ne} -1. We use them to derive the associated full manifolds. We find that these solutions can all be embedded in flat five-dimensional spacetime with -- + + + signature, revealing deformed hyperboloids. The topology and some aspects of the causal structure of these spaces are therefore unchanged, and closed time-like curves are identified, before a covering space is considered. However the structure of Killing vector fields is entirely different and so we may expect a different structure of Killing horizons in these solutions.
4D Applications of GIS in Construction Management
Directory of Open Access Journals (Sweden)
A. Chaitanya Kumar
2017-01-01
Full Text Available Construction industries broadly involve different set of construction activities which are to be executed as per schedule and the major software used for scheduling is PRIMAVERA and Microsoft Project (MSP. But the software still lacks a feature of providing spatial aspects of information in construction schedule. Recently, advanced technology like 4D GIS plays a major role in overcoming the limitation of the software. 4D GIS technology includes integration of 2D drawings from AutoCAD and schedules prepared in PRIMAVERA software. In the present study, a multistair residential building has been selected. ARCMAP 10.2 is used for interlinking of schedules as well as drawings and ARCSCENE has been used for developing 4D view. This linkage between scheduled activities and respective drawings in GIS helps in identifying construction sequences and also in detecting logical errors that occur in project schedules. The developed 4D view provides better visualization of construction progress of a project.
A 4D spacetime embedded in a 5D pseudo-Euclidean space describing interior of compact stars
Energy Technology Data Exchange (ETDEWEB)
Singh, K.N. [National Defence Academy, Department of Physics, Khadakwasla (India); Murad, Mohammad Hassan [BRAC University, Department of Mathematics and Natural Sciences, Dhaka (Bangladesh); Pant, Neeraj [National Defence Academy, Department of Mathematics, Khadakwasla (India)
2017-02-15
The present paper provides a new model of compact stars satisfying the Karmarkar condition. The model is obtained by assuming a new type of metric potential for g{sub rr} from the condition of embedding class I. The model parameters are obtained accordingly by employing the metric potentials to Einstein's field equations. Our model is free from geometric singularity and satisfies all the physical conditions. The obtained mass and radius of the compact stars Cen X-3, EXO 1785-248 and SAX 1808.4-3658 obtained from the model are consistent with the observational data of T. Gangopadhyay et al. Detailed analyses of these neutron stars (Cen X-3, EXO 1785-248 and SAX 1808.4-3658) are also given with the help of graphical representations. (orig.)
C4d staining as immunohistochemical marker in inflammatory myopathies.
Pytel, Peter
2014-10-01
The diagnosis of an inflammatory myopathy is often established based on basic histologic studies. Additional immunohistochemical studies are sometimes required to support the diagnosis and the classification of inflammatory myopathies. Staining for major histocompatibility complex 1 (MHC1) often shows increased sarcolemmal labeling in inflammatory myopathies. Endomysial capillary staining C5b-9 (membrane attack complex) is a feature that is reported as frequently associated with dermatomyositis. Immunohistochemical staining for C4d is widely used for various applications including the assessment of antibody-mediated rejection after solid organ transplantation. In the context of dermatomyositis, C4d staining has been described in skin biopsies but not in muscle biopsies. A total of 32 muscle biopsy specimens were examined. The hematoxylin and eosin-stained slides were reviewed, and immunohistochemical studies for MHC1, C5b-9, and C4d were conducted. The staining observed for C5b-9 and C4d was compared. Overall, the staining pattern for C4d mirrored the one observed for C5b-9 in the examined muscle biopsy specimens. There was high and statistically significant (P<0.0001) correlation between the staining seen with these 2 antibodies. Both antibodies labeled the cytoplasm of degenerating necrotic myofibers. In addition, both antibodies showed distinct endomysial capillary labeling in a subset of dermatomyositis. Areas with perifascicular atrophy often exhibited the most prominent vascular labeling for C4d and C5b-9. In conclusion, C4d and C5b-9 show similar expression patterns in muscle biopsies of patients with inflammatory myopathies and both highlight the presence of vascular labeling associated with dermatomyositis. C4d antibodies are widely used and may offer an alternative for C5b-9 staining.
4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.
Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M
2015-06-01
A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Di Dato, Adriana
2014-01-01
We derive a map between Einstein spaces of positive and negative curvature. Starting from a space of positive curvature with some dimensions compactified on a sphere and analytically continuing the number of compact dimensions, we obtain a space of negative curvature with a compact hyperbolic subspace, and vice versa. Prime examples of such spaces are de Sitter and Anti-de Sitter space, as well as black hole spacetimes with (A)dS asymptotics and perturbed versions thereof, which play an important role in holography. This map extends work done by Caldarelli et.al., who map asymptotically AdS spaces to Ricci-flat ones. A remarkable result is that the boundary of asymptotically AdS spaces is mapped to a brane in the bulk of de Sitter, and perturbations near the AdS boundary are sourced by a stress tensor confined to this brane. We also calculate the Brown-York stress tensor for the perturbed AdS metric, which turns out to be the negative of the stress tensor on the de Sitter brane.
Substitutional 4d and 5d impurities in graphene.
Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino
2016-08-21
We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities.
Geometric Construction of Killing Spinors and Supersymmetry Algebras in Homogeneous Spacetimes
Alonso-Alberca, N; Ortín, Tomas; Alonso-Alberca, Natxo; Lozano-Tellechea, Ernesto; Ortin, Tomas
2002-01-01
We show how the Killing spinors of some maximally supersymmetric supergravity solutions whose metrics describe symmetric spacetimes (including AdS,AdSxS and Hpp-waves) can be easily constructed using purely geometrical and group-theoretical methods. The calculation of the supersymmetry algebras is extremely simple in this formalism.
Probing crunching AdS cosmologies
Energy Technology Data Exchange (ETDEWEB)
Kumar, S. Prem; Vaganov, Vladislav [Department of Physics, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom)
2016-02-03
Holographic gravity duals of deformations of CFTs formulated on de Sitter spacetime contain FRW geometries behind a horizon, with cosmological big crunch singularities. Using a specific analytically tractable solution within a particular single scalar truncation of N=8 supergravity on AdS{sub 4}, we first probe such crunching cosmologies with spacelike radial geodesics that compute spatially antipodal correlators of large dimension boundary operators. At late times, the geodesics lie on the FRW slice of maximal expansion behind the horizon. The late time two-point functions factorise, and when transformed to the Einstein static universe, they exhibit a temporal non-analyticity determined by the maximal value of the scale factor ã{sub max}. Radial geodesics connecting antipodal points necessarily have de Sitter energy E≲ã{sub max}, while geodesics with E>ã{sub max} terminate at the crunch, the two categories of geodesics being separated by the maximal expansion slice. The spacelike crunch singularity is curved “outward” in the Penrose diagram for the deformed AdS backgrounds, and thus geodesic limits of the antipodal correlators do not directly probe the crunch. Beyond the geodesic limit, we point out that the scalar wave equation, analytically continued into the FRW patch, has a potential which is singular at the crunch along with complex WKB turning points in the vicinity of the FRW crunch. We then argue that the frequency space Green’s function has a branch point determined by ã{sub max} which corresponds to the lowest quasinormal frequency.
Spacetime effects on satellite-based quantum communications
Bruschi, David Edward; Ralph, Timothy C.; Fuentes, Ivette; Jennewein, Thomas; Razavi, Mohsen
2014-08-01
We investigate the consequences of space-time being curved on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore adding additional noise to the channel for the transmission of information. The effects could be measured with current technology.
Motion of a spinning particle in curved space-time
Kumar, S Satish
2015-01-01
The motion of spinning test-masses in curved space-time is described with a covariant hamiltonian formalism. A large class of hamiltonians can be used with the model- independent Poisson-Dirac brackets, to obtain equations of motion. Here we apply it to the minimal hamiltonian and also to a non-minimal hamiltonian, describing the gravi- tational Stern-Gerlach force. And a note on ISCO has been added.
Various Facets of Spacetime Foam
Ng, Y Jack
2011-01-01
Spacetime foam manifests itself in a variety of ways. It has some attributes of a turbulent fluid. It is the source of the holographic principle. Cosmologically it may play a role in explaining why the energy density has the critical value, why dark energy/matter exists, and why the effective dynamical cosmological constant has the value as observed. Astrophysically the physics of spacetime foam helps to elucidate why the critical acceleration in modified Newtonian dynamics has the observed value; and it provides a possible connection between global physics and local galactic dynamics involving the phenomenon of flat rotation curves of galaxies and the observed Tully-Fisher relation. Spacetime foam physics also sheds light on nonlocal gravitational dynamics.
Thermal dimension of quantum spacetime
Amelino-Camelia, Giovanni; Gubitosi, Giulia; Santos, Grasiele
2016-01-01
Recent results suggest that a crucial crossroad for quantum gravity is the characterization of the effective dimension of spacetime at short distances, where quantum properties of spacetime become significant. This is relevant in particular for various scenarios of "dynamical dimensional reduction" which have been discussed in the literature. We are here concerned with the fact that the related research effort has been based exclusively on analyses of the "spectral dimension", which involves an unphysical Euclideanization of spacetime and is highly sensitive to the off-shell properties of a theory. As here shown, different formulations of the same physical theory can have wildly different spectral dimension. We propose that dynamical dimensional reduction should be described in terms of the "thermal dimension" which we here introduce, a notion that only depends on the physical content of the theory. We analyze a few models with dynamical reduction both of the spectral dimension and of our thermal dimension, f...
Geodesics of Spherical Dilaton Spacetimes
Institute of Scientific and Technical Information of China (English)
ZENG Yi; L(U) Jun-Li; WANG Yong-Jiu
2006-01-01
The properties of spherical dilaton black hole spacetimes are investigated through a study of their geodesies. The closed and non-closed orbits of test particles are analysed using the effective potential and phase-plane method. The stability and types of orbits are determined in terms of the energy and angular momentum of the test particles. The conditions of the existence of circular orbits for a spherical dilaton spacetime with an arbitrary dilaton coupling constant a are obtained. The properties of the orbits and in particular the position of the innermost stable circular orbit are compared to those of the Reissner-Nordstrom spacetime. The circumferential radius of innermost stable circular orbit and the corresponding angular momentum of the test particles increase for a≠0.
Szpak, Nikodem
2014-01-01
We present some new ideas on how to design analogue models of quantum fields living in curved spacetimes using ultra-cold atoms in optical lattices. We discuss various types of static and dynamical curved spacetimes achievable by simple manipulations of the optical setup. Examples presented here contain two-dimensional spaces of positive and negative curvature as well as homogeneous cosmological models and metric waves. Most of them are extendable to three spatial dimensions. We mention some interesting phenomena of quantum field theory in curved spacetimes which might be simulated in such optical lattices loaded with bosonic or fermionic ultra-cold atoms. We also argue that methods of differential geometry can be used, as an alternative mathematical approach, for dealing with realistic inhomogeneous optical lattices.
Anisotropic inflation in Finsler spacetime
Li, Xin; Chang, Zhe
2015-01-01
We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for quantum fluctuation of the inflation field. It depends not only on the magnitude of wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in angular correlation coefficients if $l'=l+1$. The numerical results of the angular correlation coefficients are given to describe the anisotropic effect.
Differential modulation based on space-time block codes
Institute of Scientific and Technical Information of China (English)
李正权; 胡光锐
2004-01-01
A differential modulation scheme using space-time block codes is put forward. Compared with other schemes,our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmitter antennas, our scheme has a higher rate a higher coding gain and a lower bit error rate for a given rate. Then we made simulations for space-time block codes as well as group codes in the case of two, three, four and five transmit antennas. The simulations prove that using two transmit antennas, one receive antenna and code rate of 4 bits/s/Hz, the differential STBC method outperform the differential group codes method by 4 dB. Useing three, four and five transmit antennas,one receive antenna, and code rate of 3 bits/s/Hz are adopted, the differential STBC method outperform the differential group codes method by 5 dB, 6.5 dB and 7 dB, respectively. In other words, the differential modulation scheme based on space-time block code is better than the corresponding differential modulation scheme
The Weyl tensor correlator in cosmological spacetimes
Fröb, Markus B
2014-01-01
We give a general expression for the Weyl tensor two-point function in a general Friedmann-Lema\\^itre-Robertson-Walker spacetime. We work in reduced phase space for the perturbations, i.e., quantize only the dynamical degrees of freedom without adding any gauge-fixing term. The general formula is illustrated by a calculation in slow-roll single-field inflation to first order in the slow-roll parameters $\\epsilon$ and $\\delta$, and the result is shown to have the correct de Sitter limit as $\\epsilon, \\delta \\to 0$. Furthermore, it is seen that the Weyl tensor correlation function does not suffer from infrared divergences, unlike the two-point functions of the metric and scalar field perturbations. Lastly, we show how to recover the usual tensor power spectrum from the Weyl tensor correlation function.
Radiation Transport in Dynamic Spacetimes
Schnittman, Jeremy; Baker, John G.; Etienne, Zachariah; Giacomazzo, Bruno; Kelly, Bernard J.
2017-08-01
We present early results from a new radiation transport calculation of gas accretion onto merging binary black holes. We use the Monte Carlo radiation transport code Pandurata, now generalized for application to dynamic spacetimes. The time variability of the metric requires careful numerical techniques for solving the geodesic equation, particularly with tabulated spacetime data from numerical relativity codes. Using a new series of general relativistic magneto-hydrodynamical simulations of magnetized flow onto binary black holes, we investigate the possibility for detecting and identifying unique electromagnetic counterparts to gravitational wave events.
Is Quantum Spacetime Foam Unstable?
Redmount, I H; Redmount, Ian H.; Suen, Wai-Mo
1993-01-01
A very simple wormhole geometry is considered as a model of a mode of topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of the hole reduces to quantum mechanics of one variable, throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It has no bound states. Wormhole wave functions must eventually leak to large radii. This suggests that stability considerations along these lines may place strong constraints on the nature and even the existence of spacetime foam.
Tensor networks for dynamic spacetimes
May, Alex
2016-01-01
Existing tensor network models of holography are limited to representing the geometry of constant time slices of static spacetimes. We study the possibility of describing the geometry of a dynamic spacetime using tensor networks. We find it is necessary to give a new definition of length in the network, and propose a definition based on the mutual information. We show that by associating a set of networks with a single quantum state and making use of the mutual information based definition of length, a network analogue of the maximin formula can be used to calculate the entropy of boundary regions.
Black holes and warped spacetime
Energy Technology Data Exchange (ETDEWEB)
Kaufmann, W.J. III
1979-01-01
Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime.
Self-force driven motion in curved spacetimeS
Spallicci, Alessandro D A M; Aoudia, S
2014-01-01
We adopt the Dirac-Detweiler-Whiting radiative and regular effective field in curved spacetime. Thereby, we derive straightforwardly the first order perturbative correction to the geodesic of the background in a covariant form, for the extreme mass ratio two-body problem. The correction contains the self-force contribution and a background metric dependent term.
Non-Relativistic Spacetimes with Cosmological Constant
Aldrovandi, R.; Barbosa, A. L.; Crispino, L.C.B.; Pereira, J. G.
1998-01-01
Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible ...
Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.
Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R
2016-01-01
Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.
Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.
Directory of Open Access Journals (Sweden)
Ying-Hua Yang
Full Text Available Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.
Sutcliffe, Paul
2011-01-01
Applications to holographic theories have led to some recent interest in magnetic monopoles in four-dimensional Anti-de Sitter spacetime. This paper is concerned with a study of these monopoles, using both analytic and numerical methods. An approximation is introduced in which the fields of a charge N monopole are explicitly given in terms of a degree N rational map. Within this approximation, it is shown that the minimal energy monopole of charge N has the same symmetry as the minimal energy Skyrmion with baryon number N in Minkowski spacetime. Beyond charge two the minimal energy monopole has only a discrete symmetry, which is often Platonic. The rational map approximation provides an upper bound on the monopole energy and may be viewed as a smooth non-abelian refinement of the magnetic bag approximation, to which it reverts under some additional approximations. The analytic results are supported by numerical solutions obtained from simulations of the non-abelian field theory. A similar analysis is performe...
Black hole formation in AdS Einstein-Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Deppe, Nils [Cornell Center for Astrophysics and Planetary Science andDepartment of Physics, Cornell University,122 Sciences Drive, Ithaca, New York 14853 (United States); Kolly, Allison [Department of Atmospheric and Oceanic Sciences, McGill University,805 Sherbrooke Street West, Montréal, Québec H3A 0B9 (Canada); Frey, Andrew R.; Kunstatter, Gabor [Department of Physics and Winnipeg Institute for Theoretical Physics, University of Winnipeg,515 Portage Avenue, Winnipeg, Manitoba R3B 2E9 (Canada)
2016-10-17
AdS spacetime has been shown numerically to be unstable against a large class of arbitrarily small perturbations. In http://dx.doi.org/10.1103/PhysRevLett.114.071102, the authors presented a preliminary study of the effects on stability of changing the local dynamics by adding a Gauss-Bonnet term to the Einstein action. Here we provide further details as well as new results with improved numerical methods. In particular, we elucidate new structure in Choptuik scaling plots. We also provide evidence of chaotic behavior at the transition between immediate horizon formation and horizon formation after the matter pulse reflects from the AdS conformal boundary. Finally, we present data suggesting the formation of naked singularities in spacetimes with ADM mass below the algebraic bound for black hole formation.
Black Hole Formation in AdS Einstein-Gauss-Bonnet Gravity
Deppe, Nils; Frey, Andrew R; Kunstatter, Gabor
2016-01-01
AdS spacetime has been shown numerically to be unstable against a large class of arbitrarily small perturbations. In arXiv:1410.1869, the authors presented a preliminary study of the effects on stability of changing the local dynamics by adding a Gauss-Bonnet term to the Einstein action. Here we provide further details as well as new results with improved numerical methods. In particular, we elucidate new structure in Choptuik scaling plots. We also provide evidence of chaotic behavior at the transition between immediate horizon formation and horizon formation after the matter pulse reflects from the AdS conformal boundary. Finally, we present data suggesting the formation of naked singularities in spacetimes with ADM mass below the algebraic bound for black hole formation.
Open string fluctuations in AdS space with and without torsion
DEFF Research Database (Denmark)
Larsen, A.L.; Lomholt, Michael Andersen
2003-01-01
The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in anti-de Sitter space with and without torsion are investigated i...... dangerous than expected in these cases. The general formalism can be straightforwardly used also to study the (bosonic part of the) fluctuations around the closed strings, recently considered in connection with the AdS/conformal field theory duality, on AdS ×S and AdS ×S ×T .......The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in anti-de Sitter space with and without torsion are investigated...
Space-Time Diffeomorphisms in Noncommutative Gauge Theories
Rosenbaum, Marcos; Juarez, L Roman
2008-01-01
In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007), 10367-10382, hep-th/0611160] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics) where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985), 288-315, 316-333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding addi...
Moduli instability in warped compactification - 4D effective theory approach
Arroja, F; Arroja, Frederico; Koyama, Kazuya
2006-01-01
We consider a 5D BPS dilatonic two brane model which reduces to the Randall-Sundrum model or the Horava-Witten theory for a particular choice of parameters. Recently new dynamical solutions were found by Chen et al., which describe a moduli instability of the warped geometry. Using a 4D effective theory derived by solving the 5D equations of motion, based on the gradient expansion method, we show that the exact solution of Chen et. al. can be reproduced within the 4D effective theory and we identify the origin of the moduli instability. We revisit the gradient expansion method with a new metric ansatz to clarify why the 4D effective theory solution can be lifted back to an exact 5D solution. Finally we argue against a recent claim that the 4D effective theory allows a much wider class of solutions than the 5D theory and provide a way to lift solutions in the 4D effective theory to 5D solutions perturbatively in terms of small velocities of the branes.
True 4D Image Denoising on the GPU
Eklund, Anders; Andersson, Mats; Knutsson, Hans
2011-01-01
The use of image denoising techniques is an important part of many medical imaging applications. One common application is to improve the image quality of low-dose (noisy) computed tomography (CT) data. While 3D image denoising previously has been applied to several volumes independently, there has not been much work done on true 4D image denoising, where the algorithm considers several volumes at the same time. The problem with 4D image denoising, compared to 2D and 3D denoising, is that the computational complexity increases exponentially. In this paper we describe a novel algorithm for true 4D image denoising, based on local adaptive filtering, and how to implement it on the graphics processing unit (GPU). The algorithm was applied to a 4D CT heart dataset of the resolution 512 × 512 × 445 × 20. The result is that the GPU can complete the denoising in about 25 minutes if spatial filtering is used and in about 8 minutes if FFT-based filtering is used. The CPU implementation requires several days of processing time for spatial filtering and about 50 minutes for FFT-based filtering. The short processing time increases the clinical value of true 4D image denoising significantly. PMID:21977020
Quantum fields in curved spacetime
Energy Technology Data Exchange (ETDEWEB)
Hollands, Stefan, E-mail: stefan.hollands@uni-leipzig.de [Universität Leipzig, Institut für Theoretische Physik, Brüderstrasse 16, D-04103 Leipzig (Germany); Wald, Robert M., E-mail: rmwa@uchicago.edu [Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637 (United States)
2015-04-16
We review the theory of quantum fields propagating in an arbitrary, classical, globally hyperbolic spacetime. Our review emphasizes the conceptual issues arising in the formulation of the theory and presents known results in a mathematically precise way. Particular attention is paid to the distributional nature of quantum fields, to their local and covariant character, and to microlocal spectrum conditions satisfied by physically reasonable states. We review the Unruh and Hawking effects for free fields, as well as the behavior of free fields in deSitter spacetime and FLRW spacetimes with an exponential phase of expansion. We review how nonlinear observables of a free field, such as the stress–energy tensor, are defined, as well as time-ordered-products. The “renormalization ambiguities” involved in the definition of time-ordered products are fully characterized. Interacting fields are then perturbatively constructed. Our main focus is on the theory of a scalar field, but a brief discussion of gauge fields is included. We conclude with a brief discussion of a possible approach towards a nonperturbative formulation of quantum field theory in curved spacetime and some remarks on the formulation of quantum gravity.
Jing, Yindi
2014-01-01
Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.
Observers in Spacetime and Nonlocality
Mashhoon, B
2012-01-01
Characteristics of observers in relativity theory are critically examined. For field measurements in Minkowski spacetime, the Bohr-Rosenfeld principle implies that the connection between actual (i.e., noninertial) and inertial observers must be nonlocal. Nonlocal electrodynamics of non-uniformly rotating observers is discussed and the consequences of this theory for the phenomenon of spin-rotation coupling are briefly explored.
Accelerating in de Sitter spacetimes
Cotaescu, Ion I
2014-01-01
We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a result with a reasonable physical meaning.
Spacetime compactification induced by scalars
Energy Technology Data Exchange (ETDEWEB)
Gell-Mann, M.; Zwiebach, B.
1984-07-05
It is shown that scalars of a nonlinear sigma model coupled to gravity can trigger spontaneous compactification of spacetime if the scalar manifold has an Einstein metric and the scalar self-coupling constant takes a specific value. The compactified space becomes isomorphic to the scalar manifold and the four-dimensional space has no cosmological term at the classical level.
On spacetime structure and electrodynamics
Ni, Wei-Tou
2016-01-01
Since almost all phenomena electrodynamics deal with have energy scales much lower than the Higgs mass energy and intermediate boson energy, electrodynamics of continuous media should be applicable and the constitutive relation of spacetime/vacuum should be local and linear. What is the key characteristic of the spacetime/vacuum? It is the Weak Equivalence Principle (WEP I) for photons/wave packets of light which states that the spacetime trajectory of light in a gravitational field depends only on its initial position and direction of propagation, and does not depend on its frequency (energy) and polarization, i.e. nonbirefringence of light propagation in spacetime/vacuum. With this principle it is proved by the author in 1981 in the weak field limit, and by Lammerzahl and Hehl in 2004 together with Favaro and Bergamin in 2011 without assuming the weak-field condition that the constitutive tensor must be of the core metric form with only two additional degrees of freedom - the pseudoscalar (Abelian axion or ...
AdS perturbations, isometries, selection rules and the Higgs oscillator
Energy Technology Data Exchange (ETDEWEB)
Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University,Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Nivesvivat, Rongvoram [Department of Physics, Faculty of Science, Chulalongkorn University,Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand)
2016-01-25
Dynamics of small-amplitude perturbations in the global anti-de Sitter (AdS) spacetime is restricted by selection rules that forbid effective energy transfer between certain sets of normal modes. The selection rules arise algebraically because some integrals of products of AdS mode functions vanish. Here, we reveal the relation of these selection rules to AdS isometries. The formulation we discover through this systematic approach is both simpler and stronger than what has been reported previously. In addition to the selection rule considerations, we develop a number of useful representations for the global AdS mode functions, with connections to algebraic structures of the Higgs oscillator, a superintegrable system describing a particle on a sphere in an inverse cosine-squared potential, where the AdS isometries play the role of a spectrum-generating algebra.
STATISTICAL ENTROPIES OF THE TAUB-NUT/BOLT AdS SPACES FROM THE HORIZON CONFORMAL FIELD THEORY
Institute of Scientific and Technical Information of China (English)
JING JI-LIANG; ZHOU SAN-QING; HUANG YI-BIN
2001-01-01
The covariant phase technique is used to compute the constraint algebra of the four-dimensional space-times which are asymptotic to anti-de Sitter (AdS), such as the planar Taub-NUT AdS and Taub-bolt AdS spaces, and the hyperbolic Taub-bolt AdS space. The standard Virasoro subalgebrae with corresponding central charges for these objects are constructed and the resulting densities of states yield the expected Bekenstein-Hawking entropies.
More rings to rule them all: Fragmentation, 4D ↔ 5D and split-spectral flows
Arsiwalla, X.D.
2008-01-01
In this note we set-up an explicit 5D construction of AdS-fragmentation, whereby a single black ring splits-up into a multi-black ring configuration. Furthermore it is seen that these fragmented rings are equivalent to a direct 5D lift of 4D multi-center black holes. Along the way we also determine
Thermodynamic volumes for AdS-Taub-NUT and AdS-Taub-Bolt
Johnson, Clifford V.
2014-12-01
In theories of semi-classical quantum gravity where the cosmological constant is considered a thermodynamic variable, the gravitational mass of a black hole has been shown to correspond to the enthalpy of the thermodynamic system, rather than the energy. We propose that this should be extended to all spacetime solutions, and consider the meaning of this extension of gravitational thermodynamics for the Taub-NUT and Taub-Bolt geometries in four dimensional locally anti-de Sitter spacetime. We present formulae for their thermodynamic volumes. Surprisingly, Taub-NUT has negative volume, for which there is a natural dynamical explanation in terms of the process of formation of the spacetime. A special case corresponds to pure AdS4 with an S3 slicing. The same dynamical setting can explain the negative entropy known to exist for these solutions for a range of parameters.
Razamat, Shlomo S; Zafrir, Gabi
2016-01-01
We study the geometry of 4d N=1 SCFT's arising from compactification of 6d (1,0) SCFT's on a Riemann surface. We show that the conformal manifold of the resulting theory is characterized, in addition to moduli of complex structure of the Riemann surface, by the choice of a connection for a vector bundle on the surface arising from flavor symmetries in 6d. We exemplify this by considering the case of 4d N=1 SCFT's arising from M5 branes probing Z_k singularity compactified on a Riemann surface. In particular, we study in detail the four dimensional theories arising in the case of two M5 branes on Z_2 singularity. We compute the conformal anomalies and indices of such theories in 4d and find that they are consistent with expectations based on anomaly and the moduli structure derived from the 6 dimensional perspective.
4 D-QPSK Constellation Design based on Anti-Gray Mapping%基于Anti-Gray映射的4 D-QPSK星座设计
Institute of Scientific and Technical Information of China (English)
郭常盈; 梁云英; 方伟伟
2015-01-01
多维映射通过增加星座的维度数而使得符号间的平均欧式距离大大增加，这可以大程度地提高数字通信系统的可靠性。然而已有的基于Gray映射的4 D-QPSK星座在设计上，并没有充分利用四维星座的空间优势，对于相邻星座点的汉明距离并未达到最大。提出一种基于Anti-Gray映射的4 D-QPSK星座设计方案，该方案中的比特映射方式按照相邻星座点汉明距离最大，汉明距离为1的星座点欧式距离最大的设计原则，使星座点间具有最大的分集度。仿真结果表明，该方案可以提高抵抗衰落信道的能力。%By adding the number of constellation dimension,the average Euclidean distance of between the symbols could be greatly increased, and the reliability of digital communication system also be significantly improved. However, the existing design of 4D-QPSK constellation based on Gray mapping, make no use of the four-dimensional space, and thus could not reach the maximum Hamming distance to the adjacent con-stellation points. A design scheme of 4D-QPSK constellation based on Anti-Gray mapping is proposed, and in this scheme the bit mapping method is designed in accordance with the maximum Hamming distance to ad-jacent constellation points. The constellation points with Hamming distance of 1 enjoys the maximal Euclide-an distance, thus to reach the maximum diversity of between the constellation points. Simulation results show that the proposed scheme could enhance the capability of communication system to resist fading channel.
4-D-Var or ensemble Kalman filter?
Kalnay, Eugenia; LI, HONG; Miyoshi, Takemasa; Yang, Shu-Chih; Ballabrera-Poy, Joaquim
2007-01-01
We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter (EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4-D-Var, variance inflation in EnKF, and the effect of model errors and reduced observation coverage. For short assimilation windows EnKF gives more a...
Affine conformal vectors in space-time
Coley, A. A.; Tupper, B. O. J.
1992-05-01
All space-times admitting a proper affine conformal vector (ACV) are found. By using a theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine vector and a conformal Killing vector or (ii) the space-time is 2+2 decomposable, in which case it is shown that no ACV can exist (unless the space-time decomposes further). Furthermore, it is proved that all space-times admitting an ACV and a null covariantly constant vector (which are necessarily generalized pp-wave space-times) must have Ricci tensor of Segré type {2,(1,1)}. It follows that, among space-times admitting proper ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null Einstein-Maxwell space-times, and only the pp-wave space-times are representative of null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids and viscous heat-conducting fluids, but only with restricted equations of state in each case.
Spacetime Meshing for Discontinuous Galerkin Methods
Thite, Shripad Vidyadhar
2008-01-01
Spacetime discontinuous Galerkin (SDG) finite element methods are used to solve such PDEs involving space and time variables arising from wave propagation phenomena in important applications in science and engineering. To support an accurate and efficient solution procedure using SDG methods and to exploit the flexibility of these methods, we give a meshing algorithm to construct an unstructured simplicial spacetime mesh over an arbitrary simplicial space domain. Our algorithm is the first spacetime meshing algorithm suitable for efficient solution of nonlinear phenomena in anisotropic media using novel discontinuous Galerkin finite element methods for implicit solutions directly in spacetime. Given a triangulated d-dimensional Euclidean space domain M (a simplicial complex) and initial conditions of the underlying hyperbolic spacetime PDE, we construct an unstructured simplicial mesh of the (d+1)-dimensional spacetime domain M x [0,infinity). Our algorithm uses a near-optimal number of spacetime elements, ea...
Haidar, F; Kisserli, A; Tabary, T; McGregor, B; Noel, L H; Réveil, B; Toupance, O; Rieu, P; Thervet, E; Legendre, C; Morelon, E; Issa, N; Cohen, J H M
2012-06-01
C4d on erythrocytes (EC4d), C4d peritubular capillary deposition (PTC-C4d) staining and histology were compared in a cross-sectional cohort of 146 renal allograft biopsies (132 patients). EC4d levels paralleled PTC-C4d staining, but were more predictive of peritubular capillaritis (PTC). Donor-specific antibodies (DSA), PTC-C4d, EC4d and PTC were analyzed in an independent longitudinal follow-up cohort (96 biopsies, 76 patients). Seventy-six samples were PTC and EC4d concordant, 11 positive and 65 negative, 7 PTC-EC4d+ and 13 PTC+EC4d-. EC4d levels were related to DSA occurrence. With ABMR defined by PTC and DSA, all apparently discordant patients, EC4d negative, were correctly reassigned comparing EC4d level curves with rejection kinetics, with positive EC4d samples predating biopsy or late biopsies compared with ABMR flare-ups. All EC4d-positive patients without PTC or DSA had permanent high EC4d levels unrelated to rejection. EC4d was more abundant in PTC-positive (mean = 108.5%± 3.4; n = 50) than PTC-negative samples (mean = 88.1%± 1.3; n= 96; p PTC-C4d and EC4d for PTC were, respectively, 75%, 79%; 64%, 76% (p < 0.05); 28%, 46% (p < 0.05) and 93%, 94%. Values were similar for DSA. A noninvasive blood test, EC4d, and particularly longitudinally monitoring EC4d levels, may increase surrogate ABMR testing options. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Oscillator strengths and branching fractions of 4d75p-4d75s Rh II transitions
Bouazza, Safa
2017-01-01
This work reports semi-empirical determination of oscillator strengths, transition probabilities and branching fractions for Rh II 4d75p-4d75s transitions in a wide wavelength range. The angular coefficients of the transition matrix, beforehand obtained in pure SL coupling with help of Racah algebra are transformed into intermediate coupling using eigenvector amplitudes of these two configuration levels determined for this purpose; The transition integral was treated as free parameter in the least squares fit to experimental oscillator strength (gf) values found in literature. The extracted value: 5s|r1|4d75p> =2.7426 ± 0.0007 is slightly smaller than that computed by means of ab-initio method. Subsequently to oscillator strength evaluations, transition probabilities and branching fractions were deduced and compared to those obtained experimentally or through another approach like pseudo-relativistic Hartree-Fock model including core-polarization effects.
Enterococcus faecalis promotes osteoclastogenesis and semaphorin 4D expression.
Wang, Shuai; Deng, Zuhui; Seneviratne, Chaminda J; Cheung, Gary S P; Jin, Lijian; Zhao, Baohong; Zhang, Chengfei
2015-10-01
Enterococcus faecalis is considered a major bacterial pathogen implicated in endodontic infections and contributes considerably to periapical periodontitis. This study aimed to investigate the potential mechanisms by which E. faecalis accounts for the bone destruction in periapical periodontitis in vitro. Osteoclast precursor RAW264.7 cells were treated with E. faecalis ATCC 29212 and a wild strain of E. faecalis derived clinically from an infected root canal. The results showed that, to some extent, E. faecalis induced the RAW264.7 cells to form tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclast-like cells. This pathogen markedly stimulated RAW264.7 cells to express semaphorin 4D (Sema4D), which inhibits bone formation. Once RAW264.7 cells were primed by low-dose receptor activator of nuclear factor-kappa B ligand (RANKL), E. faecalis could significantly increase the production of TRAP-positive multinucleated cells and up-regulate the expression of osteoclast-specific markers, including NFATc1, TRAP and cathepsin K. Both p38 and ERK1/2 MAPK signaling pathways were activated by E. faecalis in RANKL-primed RAW264.7 cells, and meanwhile the expression of Sema4D was highly increased. In conclusion, E. faecalis may greatly contribute to the bone resorption in periapical periodontitis by promoting RANKL-dependent osteoclastogenesis and expression of Sema4D through activation of p38 and ERK1/2 MAPK signaling pathways.
From path integrals to tensor networks for the AdS /CFT correspondence
Miyaji, Masamichi; Takayanagi, Tadashi; Watanabe, Kento
2017-03-01
In this paper, we discuss tensor network descriptions of AdS /CFT from two different viewpoints. First, we start with a Euclidean path-integral computation of ground state wave functions with a UV cutoff. We consider its efficient optimization by making its UV cutoff position dependent and define a quantum state at each length scale. We conjecture that this path integral corresponds to a time slice of anti-de Sitter (AdS) spacetime. Next, we derive a flow of quantum states by rewriting the action of Killing vectors of AdS3 in terms of the dual two-dimensional conformal field theory (CFT). Both approaches support a correspondence between the hyperbolic time slice H2 in AdS3 and a version of continuous multiscale entanglement renormalization ansatz. We also give a heuristic argument about why we can expect a sub-AdS scale bulk locality for holographic CFTs.
4D MR imaging using robust internal respiratory signal
Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam
2016-05-01
The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.
2001-01-01
20. mai. Segakoor Ad Libitum laulis Niguliste Muuseum-kontserdisaalis. Dirigendid Alice Pehk ja Kaie Viigipuu. Kaastegev Tiit Kiik (orel). Esitati koorimuusikat renessansist tänapäevani ning prantsuse orelimuusikat : [täistekst
Radiatively induced symmetry breaking and the conformally coupled magnetic monopole in AdS space
Edery, Ariel
2013-01-01
We implement quantum corrections for a magnetic monopole in a classically conformally invariant theory containing gravity. This yields the trace (conformal) anomaly and introduces a length scale in a natural fashion via the process of renormalization. We evaluate the one-loop effective potential and extract the vacuum expectation value (VEV) from it; spontaneous symmetry breaking is radiatively induced. The VEV is set at the renormalization scale $M$ and we exchange the dimensionless scalar coupling constant for the dimensionful VEV via dimensional transmutation. The asymptotic (background) spacetime is anti-de Sitter (AdS) and its Ricci scalar is determined entirely by the VEV. We obtain analytical asymptotic solutions to the coupled set of equations governing gravitational, gauge and scalar fields that yield the magnetic monopole in an AdS spacetime.
Stability of warped AdS3 black holes in Topologically Massive Gravity under scalar perturbations
Ferreira, Hugo R C
2013-01-01
We demonstrate that the warped AdS3 black hole solutions of Topologically Massive Gravity are classically stable against massive scalar field perturbations by analysing the quasinormal and bound state modes of the scalar field. In particular, it is found that although classical superradiance is present it does not give rise to superradiant instabilities. The stability is shown to persist even when the black hole is enclosed by a stationary mirror with Dirichlet boundary conditions. This is a surprising result in view of the similarity between the causal structure of the warped AdS3 black hole and the Kerr spacetime in 3+1 dimensions. This work provides the foundations for the study of quantum field theory in this spacetime.
Chronology protection in stationary three-dimensional spacetimes
Raeymaekers, Joris
2011-01-01
We study chronology protection in stationary, rotationally symmetric spacetimes in 2+1 dimensional gravity, focusing especially on the case of negative cosmological constant. We show that in such spacetimes closed timelike curves must either run all the way to the boundary or, alternatively, the matter stress tensor must violate the null energy condition in the bulk. We also show that the matter in the closed timelike curve region gives a negative contribution to the conformal weight from the point of view of the dual conformal field theory. We illustrate these properties in a class of examples involving rotating dust in anti-de Sitter space, and comment on the use of the AdS/CFT correspondence to study chronology protection.
BPS Wilson loops in Minkowski spacetime and Euclidean space
Ouyang, Hao; Wu, Jun-Bao; Zhang, Jia-ju
2015-12-01
We give evidence that spacelike BPS Wilson loops do not exist in Minkowski spacetime. We show that spacelike Wilson loops in Minkowski spacetime cannot preserve any supersymmetries, in d = 4 N = 4 super Yang-Mills theory, d = 3 N = 2 super Chern-Simons-matter theory, and d = 3 N = 6 Aharony-Bergman-Jafferis-Maldacena theory. We not only show this using infinite straight lines and circles as examples, but also we give proofs for general curves. We attribute this to the conflicts of the reality conditions of the spinors. However, spacelike Wilson loops do exist in Euclidean space. There are both BPS Wilson loops along infinite straight lines and circular BPS Wilson loops. This is because the reality conditions of the spinors are lost after Wick rotation. The result is reasonable in view of the AdS/CFT correspondence.
BPS Wilson loops in Minkowski spacetime and Euclidean space
Energy Technology Data Exchange (ETDEWEB)
Ouyang, Hao, E-mail: ouyangh@ihep.ac.cn; Wu, Jun-Bao, E-mail: wujb@ihep.ac.cn; Zhang, Jia-ju, E-mail: jjzhang@ihep.ac.cn [Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Rd, 100049, Beijing (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, 19B Yuquan Rd, 100049, Beijing (China)
2015-12-21
We give evidence that spacelike BPS Wilson loops do not exist in Minkowski spacetime. We show that spacelike Wilson loops in Minkowski spacetime cannot preserve any supersymmetries, in d=4N=4 super Yang–Mills theory, d=3N=2 super Chern–Simons-matter theory, and d=3N=6 Aharony–Bergman–Jafferis–Maldacena theory. We not only show this using infinite straight lines and circles as examples, but also we give proofs for general curves. We attribute this to the conflicts of the reality conditions of the spinors. However, spacelike Wilson loops do exist in Euclidean space. There are both BPS Wilson loops along infinite straight lines and circular BPS Wilson loops. This is because the reality conditions of the spinors are lost after Wick rotation. The result is reasonable in view of the AdS/CFT correspondence.
BPS Wilson loops in Minkowski spacetime and Euclidean space
Energy Technology Data Exchange (ETDEWEB)
Ouyang, Hao; Wu, Jun-Bao; Zhang, Jia-ju [Chinese Academy of Sciences, Theoretical Physics Division, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Center for Science Facilities, Beijing (China)
2015-12-15
We give evidence that spacelike BPS Wilson loops do not exist in Minkowski spacetime. We show that spacelikeWilson loops in Minkowski spacetime cannot preserve any supersymmetries, in d = 4 N = 4 super Yang-Mills theory, d = 3 N = 2 super Chern-Simons-matter theory, and d = 3 N = 6 Aharony-Bergman-Jafferis- Maldacena theory. We not only show this using infinite straight lines and circles as examples, but also we give proofs for general curves. We attribute this to the conflicts of the reality conditions of the spinors. However, spacelike Wilson loops do exist in Euclidean space. There are both BPS Wilson loops along infinite straight lines and circular BPS Wilson loops. This is because the reality conditions of the spinors are lost after Wick rotation. The result is reasonable in view of the AdS/CFT correspondence. (orig.)
AdS/QCD and Applications of Light-Front Holography
DEFF Research Database (Denmark)
Brodsky, S. J.; Cao, F. G.; de Teramond, G. F.
2012-01-01
Light-front holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in (3+1)-dimensional physical space-time, thus providing a compelling physical interpretation of the AdS/...
Embedding Graphs in Lorentzian Spacetime
Clough, James R
2016-01-01
Geometric approaches to network analysis combine simply defined models with great descriptive power. In this work we provide a method for embedding directed acyclic graphs into Minkowski spacetime using Multidimensional scaling (MDS). First we generalise the classical MDS algorithm, defined only for metrics with a Euclidean signature, to manifolds of any metric signature. We then use this general method to develop an algorithm to be used on networks which have causal structure allowing them to be embedded in Lorentzian manifolds. The method is demonstrated by calculating embeddings for both causal sets and citation networks in Minkowski spacetime. We finally suggest a number of applications in citation analysis such as paper recommendation, identifying missing citations and fitting citation models to data using this geometric approach.
Energy conditions and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Tipler, F.J.
1978-05-15
In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete.
Antigravity from a spacetime defect
Klinkhamer, F R
2013-01-01
A nonsingular localized static classical solution is constructed for standard Einstein gravity coupled to an SO(3)\\times SO(3) chiral model of scalars [Skyrme model]. The construction proceeds in three steps. First, an Ansatz is presented for a solution with nontrivial topology of the spacetime manifold. Second, an exact vacuum solution of the reduced field equations is obtained. Third, matter fields are included and a numerical solution is found. This numerical solution has a negative effective mass, meaning that the gravitational force on a distant point mass is repulsive. The origin of the negative effective mass must lie in the surgery needed to create the "defect" from Minkowski spacetime, but this process involves topology change and lies outside the realm of classical Einstein gravity.
Swimming versus swinging in spacetime
Guéron, E; Matsas, G E A; Gueron, Eduardo; Maia, Clovis A. S.; Matsas, George E. A.
2006-01-01
Wisdom has recently unveiled a new relativistic effect, called ``spacetime swimming'', where quasi-rigid free bodies in curved spacetimes can "speed up", "slow down" or "deviate" their falls by performing "local" cyclic shape deformations. We show here that for fast enough cycles this effect dominates over a non-relativistic related one, named here ``space swinging'', where the fall is altered through "nonlocal" cyclic deformations in Newtonian gravitational fields. We expect, therefore, to clarify the distinction between both effects leaving no room to controversy. Moreover, the leading contribution to the swimming effect predicted by Wisdom is enriched with a higher order term and the whole result is generalized to be applicable in cases where the tripod is in large red-shift regions.
Ray trajectories for Alcubierre spacetime
Anderson, Tom H; Lakhtakia, Akhlesh
2011-01-01
The Alcubierre spacetime was simulated by means of a Tamm medium which is asymptotically identical to vacuum and has constitutive parameters which are ontinuous functions of the spatial coordinates. Accordingly, the Tamm medium is amenable to physical realization as a nanostructured metamaterial. A comprehensive characterization of ray trajectories in the Tamm medium was undertaken, within the geometric-optics regime. Propagation directions corresponding to evanescent waves were identified: these occur in the region of the Tamm medium which corresponds to the warp bubble of the Alcubierre spacetime, especially for directions perpendicular to the velocity of the warp bubble at high speeds of that bubble. Ray trajectories are acutely sensitive to the magnitude and direction of the warp bubble's velocity, but rather less sensitive to the thickness of the transition zone between the warp bubble and its background. In particular, for rays which travel in the same direction as the warp bubble, the latter acts as a ...
Supersymmetric Spacetimes from Curved Superspace
Kuzenko, Sergei M
2015-01-01
We review the superspace technique to determine supersymmetric spacetimes in the framework of off-shell formulations for supergravity in diverse dimensions using the case of 3D N=2 supergravity theories as an illustrative example. This geometric formalism has several advantages over other approaches advocated in the last four years. Firstly, the infinitesimal isometry transformations of a given curved superspace form, by construction, a finite-dimensional Lie superalgebra, with its odd part corresponding to the rigid supersymmetry transformations. Secondly, the generalised Killing spinor equation, which must be obeyed by the supersymmetry parameters, is a consequence of the more fundamental superfield Killing equation. Thirdly, general rigid supersymmetric theories on a curved spacetime are readily constructed in superspace by making use of the known off-shell supergravity-matter couplings and restricting them to the background chosen. It is the superspace techniques which make it possible to generate arbitra...
Penrose Limits and Spacetime Singularities
Blau, Matthias; O'Loughlin, M; Papadopoulos, G; Blau, Matthias; Borunda, Monica; Loughlin, Martin O'; Papadopoulos, George
2003-01-01
We give a covariant characterisation of the Penrose plane wave limit: the plane wave profile matrix $A(u)$ is the restriction of the null geodesic deviation matrix (curvature tensor) of the original spacetime metric to the null geodesic, evaluated in a comoving frame. We also consider the Penrose limits of spacetime singularities and show that for a large class of black hole, cosmological and null singularities (of Szekeres-Iyers ``power-law type''), including those of the FRW and Schwarzschild metrics, the result is a singular homogeneous plane wave with profile $A(u)\\sim u^{-2}$, the scale invariance of the latter reflecting the power-law behaviour of the singularities.
From Horismos to Relativistic Spacetimes
Stoica, Ovidiu Cristinel
2015-01-01
A set endowed with a reflexive relation has surprisingly many features in common with the causal structure of a spacetime in General Relativity. If we identify this relation as the relation between lightlike separated events (the horismos relation), we can construct in a natural way the entire causal structure: causal and chronological relations, causal curves, and a topology. By imposing a simple additional condition, the structure gains a definite number of dimensions. This construction works both with continuous and discrete spacetimes. The dimensionality is obtained with ease also in the discrete case, in contrast with the causal set approach, which starts with a discrete set of events endowed with partial order relation representing the causal relation, but has severe difficulties in recovering the number of dimensions. Other simple conditions make it into a differentiable manifold with a conformal structure (the metric up to a scaling factor) just like in General Relativity. This structure provides a si...
Geometry of black hole spacetimes
Andersson, Lars; Blue, Pieter
2016-01-01
These notes, based on lectures given at the summer school on Asymptotic Analysis in General Relativity, collect material on the Einstein equations, the geometry of black hole spacetimes, and the analysis of fields on black hole backgrounds. The Kerr model of a rotating black hole in vacuum is expected to be unique and stable. The problem of proving these fundamental facts provides the background for the material presented in these notes. Among the many topics which are relevant for the uniqueness and stability problems are the theory of fields on black hole spacetimes, in particular for gravitational perturbations of the Kerr black hole, and more generally, the study of nonlinear field equations in the presence of trapping. The study of these questions requires tools from several different fields, including Lorentzian geometry, hyperbolic differential equations and spin geometry, which are all relevant to the black hole stability problem.
A Concise and Comprehensive Description of Shoulder Pathology and Procedures: The 4D Code System
Directory of Open Access Journals (Sweden)
Laurent Lafosse
2012-01-01
Full Text Available Background. We introduce a novel description system of shoulder pathoanatomy. Its goal is to provide a comprehensive three-dimensional picture, with an additional component of time; thus, we call it the 4D code. Methods. Each line of the code starts with right versus left and a time designation. The pillar components are recorded regardless of pathology; they include subscapularis, long head of biceps tendon, supraspinatus, infraspinatus, and teres minor. Secondary elements can be added if there is observed pathology, including acromioclavicular joint, glenohumeral joint, labrum, tear configuration, location and extent of partial cuff tear, calcific tendonitis, fatty infiltration, and neuropathy. Results. We provide two illustrative examples of patients which show the ease and effectiveness of the 4D code. With a few simple lines, significant amount of information about patients’ pathology, surgery, and recovery can be easily conveyed. Discussion. We utilize existing validated classification systems for parts of the shoulder and provide a frame work to build a comprehensive picture. The alphanumeric code provides a simple language that is universally understood. The 4D code is concise yet complete. It seeks to improve efficiency and accuracy of the communication, documentation, and visualization of shoulder pathology within individual practices and between providers.
Multiscale spacetimes from first principles
Calcagni, Gianluca
2016-01-01
We formulate a theorem for the general profile of the Hausdorff and the spectral dimension of multiscale geometries, assuming a smooth and slow change of spacetime dimensionality at large scales. Agreement with various scenarios of quantum gravity is found. In particular, we derive uniquely the multiscale measure with log oscillations of theories of multifractional geometry. Predictivity of this class of models and falsifiability of their abundant phenomenology are thus established.
Dual geometries and spacetime singularities
Quirós, I
2000-01-01
The concept of geometrical duality is disscused in the context of Brans-Dicke theory and extended to general relativity. It is shown, in some generic cases, that spacetime singularities that arise in usual Riemannian general relativity, may be avoided in its dual representation: Weyl-like general relativity, thus providing a singularity-free picture of the World that is physicaly equivalent to the canonical general relativistic one.
Black Hole: The Interior Spacetime
Ong, Yen Chin
2016-01-01
The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.
Lorentz violations in multifractal spacetimes
Calcagni, Gianluca
2016-01-01
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would manifest an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with $q$-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is $E_*>10^{14}\\,\\text{GeV}$ (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value $1/2$. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not...
Lorentz violations in multifractal spacetimes
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, Madrid (Spain)
2017-05-15
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E{sub *} > 10{sup 14} GeV (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E{sub *} > 10{sup 17} GeV or greater. (orig.)
Spacetime Singularities in Quantum Gravity
Minassian, Eric A.
2000-04-01
Recent advances in 2+1 dimensional quantum gravity have provided tools to study the effects of quantization of spacetime on black hole and big bang/big crunch type singularities. I investigate effects of quantization of spacetime on singularities of the 2+1 dimensional BTZ black hole and the 2+1 dimensional torus universe. Hosoya has considered the BTZ black hole, and using a "quantum generalized affine parameter" (QGAP), has shown that, for some specific paths, quantum effects "smear" the singularities. Using gaussian wave functions as generic wave functions, I found that, for both BTZ black hole and the torus universe, there are families of paths that still reach the singularities with a finite QGAP, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular invariant wave functions of Carlip and Nelson for the torus universe, offer further support for this conclusion. Currently work is in progress to study more realistic quantum gravity effects for BTZ black holes and other spacetime models.
Directory of Open Access Journals (Sweden)
Ronald E. Meyers
2015-03-01
Full Text Available We report on an experimental and theoretical investigation of quantum imaging where the images are stored in both space and time. Ghost images of remote objects are produced with either one or two beams of chaotic laser light generated by a rotating ground glass and two sensors measuring the reference field and bucket field at different space-time points. We further observe that the ghost images translate depending on the time delay between the sensor measurements. The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results. The theoretical model includes certain phase factors of the rotating ground glass. These experiments demonstrated a means to investigate the time and space aspects of ghost imaging and showed that ghost imaging contains more information per measured photon than was previously recognized where multiple ghost images are stored within the same ghost imaging data sets. This suggests new pathways to explore quantum information stored not only in multi-photon coincidence information but also in time delayed multi-photon interference. The research is applicable to making enhanced space-time quantum images and videos of moving objects where the images are stored in both space and time.
Lorentz violations in multifractal spacetimes
Calcagni, Gianluca
2017-05-01
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E_{*}>10^{14} {GeV} (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E_{*}> 10^{17} {GeV} or greater.
SU-E-T-790: Validation of 4D Measurement-Guided Dose Reconstruction (MGDR) with OCTAVIUS 4D System
Energy Technology Data Exchange (ETDEWEB)
Lee, V; Leung, R; Wong, M; Law, G; Lee, K; Tung, S; Chan, M [Tuen Mun Hospital, Hong Kong, Hong Kong (S.A.R) (Hong Kong); Blanck, O [University Clinic Schleswig-Holstein, Kiel, Kiel (Germany)
2015-06-15
Purpose: To validate the MGDR of OCTAVIUS 4D system (PTW, Freiburg, Germany) for quality assurance (QA) of volumetric-modulated arc radiotherapy (VMAT). Methods: 4D-MGDR measurements were divided into two parts: 1) square fields from 2×2 to 25×25 cm{sup 2} at 0°, 10° and 45° gantry, and 2) 8 VMAT plans (5 nasopharyngeal and 3 prostate) collapsed to gantry 40° in QA mode in Monaco v5.0 (Elekta, CMS, Maryland Heights, MO) were delivered on the OCTAVIUS 4D phantom with the OCTAVIUS 1500 detector plane perpendicular to either the incident beam to obtain the reconstructed dose (OCTA4D) or the 0° gantry axis to obtain the raw doses (OCTA3D) in Verisoft 6.1 (PTW, Freiburg, Germany). Raw measurements of OCTA3D were limited to < 45° gantry to avoid >0.5% variation of detector angular response with respect to 0° gantry as determined previously. Reconstructed OCTA4D and raw OCTA3D doses for all plans were compared at the same detector plane using γ criteria of 2% (local dose)/2mm and 3%/3mm criteria. Results: At gantry 0° and 10°, the γ results for all OCTA4D on detector plane coinciding with OCTA3D were over 90% at 2%/2mm except for the largest field (25×25 cm{sup 2} ) showing >88%. For square field at 45° gantry, γ passing rate is > 90% for fields smaller than 15x 15cm2 but < 80% for field size of 20 x20 cm{sup 2} upward. For VMAT, γ results showed 94% and 99% passing rate at 2%/2mm and 3%/3mm, respectively. Conclusion: OCTAVIUS 4D system has compromised accuracy in reconstructing dose away from the central beam axis, possibly due to the off-axis softening correction and errors of the percent depth dose data necessary as input for MGDR. Good results in VMAT delivery suggested that the system is relatively reliable for VMAT with small segments.
Higher derivative corrections to BPS black hole attractors in 4d gauged supergravity
Hristov, Kiril; Lodato, Ivano
2016-01-01
We analyze BPS black hole attractors in 4d gauged supergravity in the presence of higher derivative supersymmetric terms, including a Weyl-squared-type action, and determine the resulting corrections to the Bekenstein-Hawking entropy. The near-horizon geometry AdS$_2 \\times$S$^2$ (or other Riemann surface) preserves half of the supercharges in $N=2$ supergravity with Fayet-Iliopoulos gauging. We derive a relation between the entropy and the black hole charges that suggests via AdS/CFT how subleading corrections contribute to the supersymmetric index in the dual microscopic picture. Depending on the model, the attractors are part of full black hole solutions with different asymptotics, such as Minkowski, AdS$_4$, and hvLif$_4$. We give explicit examples for each of the asymptotic cases and comment on the implications. Among other results, we find that the Weyl-squared terms spoil the exact two-derivative relation to non-BPS asymptotically flat black holes in ungauged supergravity.
Construction of 4d SYM compactified on open Riemann surfaces by the superfield formalism
Energy Technology Data Exchange (ETDEWEB)
Nagasaki, Koichi [KEK Theory Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)
2015-11-23
By compactifying gauge theories on a lower dimensional manifold, we often find many interesting relationships between geometry and supersymmetric quantum field theories. In this paper we consider conformal field theories obtained from twisted compactification on a Riemann surface with a boundary. Various kinds of supersymmetric boundary conditions are exchanged under S-duality. To consider these transformations one need to take into account boundary degrees of freedom. So we study how these degrees of freedom can be added at the boundary of the Riemann surface. For these the boundary fields to be added it is convenient to rewrite the theory by means of superfields. Therefore, I show in this paper that the 4d SYM action can be surely expressed as 2d superfields.
Construction Management Utilizing 4D CAD and Operations Simulation Methodologies
Institute of Scientific and Technical Information of China (English)
ZHANG Jianping; ZHANG Yang; HU Zhenzhong; LU Ming
2008-01-01
The paper presents applications of simplified discrete-event simulation (SDESA), and 4D-GCPSU,to the National Stadium of the Beijing 2008 Olympics. Taking into account influential factors, e.g., resource, spatial condition, and the randomness of the construction process, the installation process of the steel- structure was simulated and optimized by using genetic algorithm (GA) optimization methodology. The op- erations simulation shortened the installation duration by 39 days (about 16% of the original total duration),guided the manufacturers to plan the construction processes, and provided specific suggestions on the en-try time of the installation components, resulting in resource allocation optimization, resource saving, and construction efficiency improvement. Combining with the optimized schedule, the 4D visualization environ- ment can discover time-space conflicts timely, and may assist project managers to reschedule the construc-tion activities in tune with the site layout and resource allocation.
4D embryonic cardiography using gated optical coherence tomography
Jenkins, M. W.; Rothenberg, F.; Roy, D.; Nikolski, V. P.; Hu, Z.; Watanabe, M.; Wilson, D. L.; Efimov, I. R.; Rollins, A. M.
2006-01-01
Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 μm), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.
A brief review of the 2d/4d correspondences
Tachikawa, Yuji
2016-01-01
An elementary introduction to the 2d/4d correspondences is given. After quickly reviewing the 2d q-deformed Yang-Mills theory and the Liouville theory, we will introduce 4d theories obtained by coupling trifundamentals to SU(2) gauge fields. We will then see concretely that the supersymmetric partition function of these theories on S^3 x S^1 and on S^4 is given respectively by the q-deformed Yang-Mills theory and the Liouville theory. After giving a short discussion on how this correspondence may be understood from the viewpoint of the 6d N=(2,0) theory, we conclude the review by enumerating future directions. Most of the technical points will be referred to more detailed review articles.
4D Art: corpos reais e virtuais, uma realidade aumentada
Directory of Open Access Journals (Sweden)
Michel Lemieux
2016-05-01
Full Text Available A companhia canadense 4D Art fascina o olhar do público e interroga seus sentidos de realidade e presença pela interação cênica dos movimentos de corpos reais e virtuais. Para compreender os processos de criação da cena multimídia de 4D Art, apresenta-se uma entrevista exclusiva realizada com os diretores artísticos Michel Lemieux e Victor Pilon. As motivações artísticas do jogo real e virtual, os procedimentos empregados na criação das figuras virtuais e os desafios enfrentados pelos atores aparecem nas palavras dos criadores.
4d SCFTs from negative-degree line bundles
Nardoni, Emily
2016-01-01
We construct 4d $\\mathcal{N}=1$ quantum field theories by compactifying the (2,0) theories on a Riemann surface with genus $g$ and $n$ punctures, where the normal bundle decomposes into a sum of two line bundles with possibly negative degrees $p$ and $q$. Until recently, the only available field-theoretic constructions required the line bundle degrees to be nonnegative, although supergravity solutions were constructed in the literature for the zero-puncture case for all $p$ and $q$. Here, we provide field-theoretic constructions and computations of the central charges of 4d $\\mathcal{N}=1$ SCFTs that are the IR limit of M5-branes wrapping a surface with general $p$ or $q$ negative, for general genus $g$ and number of maximal punctures $n$.
Topological wave functions and the 4D-5D lift
Gao, Peng
2008-01-01
We revisit the holomorphic anomaly equations satisfied by the topological string amplitude from the perspective of the 4D-5D lift, in the context of ``magic'' N=2 supergravity theories. In particular, we interpret the Gopakumar-Vafa relation between 5D black hole degeneracies and the topological string amplitude as the result of a canonical transformation from 4D to 5D charges. Moreover we use the known Bekenstein-Hawking entropy of 5D black holes to constrain the asymptotic behavior of the topological wave function at finite topological coupling but large K\\"ahler classes. In the process, some subtleties in the relation between 5D black hole degeneracies and the topological string amplitude are uncovered, but not resolved. Finally we extend these considerations to the putative one-parameter generalization of the topological string amplitude, and identify the canonical transformation as a Weyl reflection inside the 3D duality group.
Expression of Sema4D in patients with cerebral infarction and its clinical significance
Institute of Scientific and Technical Information of China (English)
朱琳
2012-01-01
Objective To explore the expression and clinical significance of Semaphorin4D (Sema4D) mRNA in peripheral blood lymphocyte,Sema4D on platelet surface, soluble Sema4D (sSema4D) in plasma in patients with cerebral infarction. Methods Taking 299 patients with cerebral infarction
Killing tensors in pp-wave spacetimes
Energy Technology Data Exchange (ETDEWEB)
Keane, Aidan J [87 Carlton Place, Glasgow G5 9TD, Scotland (United Kingdom); Tupper, Brian O J, E-mail: aidan@countingthoughts.co, E-mail: bt32@rogers.co [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada)
2010-12-21
The formal solution of the second-order Killing tensor equations for the general pp-wave spacetime is given. The Killing tensor equations are integrated fully for some specific pp-wave spacetimes. In particular, the complete solution is given for the conformally flat plane wave spacetimes and we find that irreducible Killing tensors arise for specific classes. The maximum number of independent irreducible Killing tensors admitted by a conformally flat plane wave spacetime is shown to be six. It is shown that every pp-wave spacetime that admits an homothety will admit a Killing tensor of Koutras type and, with the exception of the singular scale-invariant plane wave spacetimes, this Killing tensor is irreducible.
A macroscopic challenge for quantum spacetime
Amelino-Camelia, Giovanni
2013-01-01
Over the last decade a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However I here observe that the arguments that originally lead to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles then for the composite macroscopic body the quantization of spa...
Noncommutative Spacetime Symmetries from Covariant Quantum Mechanics
Directory of Open Access Journals (Sweden)
Alessandro Moia
2017-01-01
Full Text Available In the last decades, noncommutative spacetimes and their deformed relativistic symmetries have usually been studied in the context of field theory, replacing the ordinary Minkowski background with an algebra of noncommutative coordinates. However, spacetime noncommutativity can also be introduced into single-particle covariant quantum mechanics, replacing the commuting operators representing the particle’s spacetime coordinates with noncommuting ones. In this paper, we provide a full characterization of a wide class of physically sensible single-particle noncommutative spacetime models and the associated deformed relativistic symmetries. In particular, we prove that they can all be obtained from the standard Minkowski model and the usual Poincaré transformations via a suitable change of variables. Contrary to previous studies, we find that spacetime noncommutativity does not affect the dispersion relation of a relativistic quantum particle, but only the transformation properties of its spacetime coordinates under translations and Lorentz transformations.
AdS and Lifshitz scalar hairy black holes in Gauss-Bonnet gravity
Chen, Bin; Fan, Zhong-Ying; Zhu, Lu-Yao
2016-09-01
We consider Gauss-Bonnet (GB) gravity in general dimensions, which is nonminimally coupled to a scalar field. By choosing a scalar potential of the type V (ϕ )=2 Λ0+1/2 m2ϕ2+γ4ϕ4 , we first obtain large classes of scalar hairy black holes with spherical/hyperbolic/planar topologies that are asymptotic to locally anti- de Sitter (AdS) space-times. We derive the first law of black hole thermodynamics using Wald formalism. In particular, for one class of the solutions, the scalar hair forms a thermodynamic conjugate with the graviton and nontrivially contributes to the thermodynamical first law. We observe that except for one class of the planar black holes, all these solutions are constructed at the critical point of GB gravity where there exist unique AdS vacua. In fact, a Lifshitz vacuum is also allowed at the critical point. We then construct many new classes of neutral and charged Lifshitz black hole solutions for an either minimally or nonminimally coupled scalar and derive the thermodynamical first laws. We also obtain new classes of exact dynamical AdS and Lifshitz solutions which describe radiating white holes. The solutions eventually become AdS or Lifshitz vacua at late retarded times. However, for one class of the solutions, the final state is an AdS space-time with a globally naked singularity.
Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.
Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao
2016-09-01
The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population.
Powers, Shelley
2007-01-01
Ajax can bring many advantages to an existing web application without forcing you to redo the whole thing. This book explains how you can add Ajax to enhance, rather than replace, the way your application works. For instance, if you have a traditional web application based on submitting a form to update a table, you can enhance it by adding the capability to update the table with changes to the form fields, without actually having to submit the form. That's just one example.Adding Ajax is for those of you more interested in extending existing applications than in creating Rich Internet Applica
4D tropospheric tomography using GPS slant wet delays
Directory of Open Access Journals (Sweden)
A. Flores
Full Text Available Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processing. These slant wet delays are the observables in the tomographic processing. We then discuss the inverse problem in 4D tropospheric tomography making extensive use of simulations to test the system and define the resolution and the impact of noise. Finally, we use data from the Kilauea network in Hawaii for February 1, 1997, and a local 4×4×40 voxel grid on a region of 400 km^{2} and 15 km in height to produce the corresponding 4D wet refractivity fields, which are then validated using forecast analysis from the European Center for Medium Range Weather Forecast (ECMWF. We conclude that tomographic techniques can be used to monitor the troposphere in time and space.
Key words: Radio science (remote sensing; instruments and techniques
4D-Flow validation, numerical and experimental framework
Sansom, Kurt; Liu, Haining; Canton, Gador; Aliseda, Alberto; Yuan, Chun
2015-11-01
This work presents a group of assessment metrics of new 4D MRI flow sequences, an imaging modality that allows for visualization of three-dimensional pulsatile flow in the cardiovascular anatomy through time-resolved three-dimensional blood velocity measurements from cardiac-cycle synchronized MRI acquisition. This is a promising tool for clinical assessment but lacks a robust validation framework. First, 4D-MRI flow in a subject's stenotic carotid bifurcation is compared with a patient-specific CFD model using two different boundary condition methods. Second, Particle Image Velocimetry in a patient-specific phantom is used as a benchmark to compare the 4D-MRI in vivo measurements and CFD simulations under the same conditions. Comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, Lagrangian particle residence time, will be discussed, with justification for their biomechanics relevance and the insights they can provide on the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new sequence to provide a quantitative assessment. A parametric analysis on the carotid bifurcation pulsatile flow conditions will be presented and an accuracy assessment provided.
Geodesics in the static Mallett spacetime
Olum, Ken D
2010-01-01
Mallett has exhibited a cylindrically symmetric spacetime containing closed timelike curves produced by a light beam circulating around a line singularity. I analyze the static version of this spacetime obtained by setting the intensity of the light to zero. Some null geodesics can escape to infinity, but all timelike geodesics in this spacetime originate and terminate at the singularity. Freely falling matter originally at rest quickly attains relativistic velocity inward and is destroyed at the singularity.
Theory and Phenomenology of Spacetime Defects
Hossenfelder, Sabine
2014-01-01
Whether or not space-time is fundamentally discrete is of central importance for the development of the theory of quantum gravity. If the fundamental description of space-time is discrete, typically represented in terms of a graph or network, then the apparent smoothness of geometry on large scales should be imperfect -- it should have defects. Here, we review a model for space-time defects and summarize the constraints on the prevalence of these defects that can be derived from observation.
Quantum field theory on locally noncommutative spacetimes
Energy Technology Data Exchange (ETDEWEB)
Lechner, Gandalf [Univ. Leipzig (Germany). Inst. fuer Theoretische Physik; Waldmann, Stefan [Leuven Univ. (Belgium)
2012-07-01
A class of spacetimes which are noncommutative only in a prescribed region is presented. These spacetimes are obtained by a generalization of Rieffel's deformation procedure to deformations of locally convex algebras and modules by smooth polynomially bounded R{sup n}-actions with compact support. Extending previous results of Bahns and Waldmann, it is shown how to perform such deformations in a strict sense. Some results on quantum fields propagating on locally noncommutative spacetimes are also given.
Geometrodynamics: The Nonlinear Dynamics of Curved Spacetime
Scheel, Mark A.; Thorne, Kip S.
2017-01-01
We review discoveries in the nonlinear dynamics of curved spacetime, largely made possible by numerical solutions of Einstein's equations. We discuss critical phenomena and self-similarity in gravitational collapse, the behavior of spacetime curvature near singularities, the instability of black strings in 5 spacetime dimensions, and the collision of four-dimensional black holes. We also discuss the prospects for further discoveries in geometrodynamics via observation of gravitational waves.
Rigid 4D N=2 supersymmetric backgrounds and actions
Butter, Daniel; Lodato, Ivano
2015-01-01
We classify all N=2 rigid supersymmetric backgrounds in four dimensions with both Lorentzian and Euclidean signature that preserve eight real supercharges, up to discrete identifications. Among the backgrounds we find specific warpings of S^3 x R and AdS_3 x R, AdS_2 x S^2 and H^2 x S^2 with generic radii, and some more exotic geometries. We provide the generic two-derivative rigid vector and hypermultiplet actions and analyze the conditions imposed on the special Kahler and hyperkahler target spaces.
Experimental observation of Minkowski spacetime melting
Smolyaninov, Igor I
2015-01-01
Cobalt nanoparticle-based ferrofluid in the presence of an external magnetic field forms a self-assembled hyperbolic metamaterial, which may be described as an effective 3D Minkowski spacetime for extraordinary photons. If the magnetic field is not strong enough, this effective Minkowski spacetime gradually melts under the influence of thermal fluctuations. On the other hand, it may restore itself if the magnetic field is increased back to its original value. Here we present direct microscopic visualization of such a Minkowski spacetime melting/crystallization, which is somewhat similar to hypothesized formation of the Minkowski spacetime in loop quantum cosmology.
Hyperbolic statics in space-time
Pavlov, Dmitry
2015-01-01
Based on the concept of material event as an elementary material source that is concentrated on metric sphere of zero radius --- light-cone of Minkowski space-time, we deduce the analog of Coulomb's law for hyperbolic space-time field universally acting between the events of space-time. Collective field that enables interaction of world lines of a pair of particles at rest contains a standard 3-dimensional Coulomb's part and logarithmic addendum. We've found that the Coulomb's part depends on a fine balance between causal and geometric space-time characteristics (the two regularizations concordance).
Quantum singularity of Levi-Civita spacetimes
Konkowski, D A; Wieland, C
2004-01-01
Quantum singularities in general relativistic spacetimes are determined by the behavior of quantum test particles. A static spacetime is quantum mechanically singular if the spatial portion of the wave operator is not essentially self-adjoint. Here Weyl's limit point-limit circle criterion is used to determine whether a wave operator is essentially self-adjoint. This test is then applied to scalar wave packets in Levi-Civita spacetimes to help elucidate the physical properties of the spacetimes in terms of their metric parameters.
Simulations of black holes in compactified spacetimes
Energy Technology Data Exchange (ETDEWEB)
Zilhao, Miguel; Herdeiro, Carlos [Centro de Fisica do Porto, Departamento de Fisica e Astronomia, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Cardoso, Vitor; Nerozzi, Andrea; Sperhake, Ulrich; Witek, Helvi [Centro Multidisciplinar de Astrofisica, Deptartamento de Fisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gualtieri, Leonardo, E-mail: mzilhao@fc.up.pt [Dipartimento di Fisica, Universita di Roma ' Sapienza' and Sezione INFN Roma1, P.A. Moro 5, 00185, Roma (Italy)
2011-09-22
From the gauge/gravity duality to braneworld scenarios, black holes in compactified spacetimes play an important role in fundamental physics. Our current understanding of black hole solutions and their dynamics in such spacetimes is rather poor because analytical tools are capable of handling a limited class of idealized scenarios, only. Breakthroughs in numerical relativity in recent years, however, have opened up the study of such spacetimes to a computational treatment which facilitates accurate studies of a wider class of configurations. We here report on recent efforts of our group to perform numerical simulations of black holes in cylindrical spacetimes.
Quantum Estimation of Parameters of Classical Spacetimes
Downes, T G; Knill, E; Milburn, G J; Caves, C M
2016-01-01
We describe a quantum limit to measurement of classical spacetimes. Specifically, we formulate a quantum Cramer-Rao lower bound for estimating the single parameter in any one-parameter family of spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to detection of gravitational waves using the electromagnetic field as a probe, as in laser-interferometric gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.
Predictions of noncommutative space-time
Viet, Nguyen Ai
1994-01-01
An unified structure of noncommutative space-time for both gravity and particle physics is presented. This gives possibilities of testing the idea of noncommutative space-time at the currently available energy scale. There are several arguments indicating that noncommutative space-time is visible already at the electroweak scale. This noncommutative space-time predicts the top quark mass m_t \\sim 172 GeV, the Higgs mass M_H \\sim 241 GeV and the existence of a vector meson and a scalar, which ...
Generalised hyperbolicity in conical space-times
Vickers, J A
2000-01-01
Solutions of the wave equation in a space-time containing a thin cosmic string are examined in the context of non-linear generalised functions. Existence and uniqueness of solutions to the wave equation in the Colombeau algebra G is established for a conical space-time and this solution is shown to be associated to a distributional solution. A concept of generalised hyperbolicity, based on test fields, can be defined for such singular space-times and it is shown that a conical space-time is G-hyperbolic.
Scalar Resonances in Axially Symmetric Spacetimes
Ranea-Sandoval, Ignacio F
2015-01-01
We study properties of resonant solutions to the scalar wave equation in several axially symmetric spacetimes. We prove that non-axial resonant modes do not exist neither in the Lanczos dust cylinder, the $(2+1)$ extreme BTZ spacetime nor in a class of simple rotating wormhole solutions. Moreover, we find unstable solutions to the wave equation in the Lanczos dust cylinder and in the $r^2 <0$ region of the extreme $(2+1)$ BTZ spacetime, two solutions that possess closed timelike curves. Similarities with previous results obtained for the Kerr spacetime are explored.
Energy Technology Data Exchange (ETDEWEB)
Bernatowicz, K., E-mail: kingab@student.ethz.ch; Knopf, A.; Lomax, A. [Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI 5232, Switzerland and Department of Physics, ETH Zürich, Zürich 8092 (Switzerland); Keall, P.; Kipritidis, J., E-mail: john.kipritidis@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006 (Australia); Mishra, P. [Brigham and Womens Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)
2015-01-15
: Averaged across all simulations and phase bins, respiratory-gating reduced overall thoracic MSE by 46% compared to conventional 4D CT (p ∼ 10{sup −19}). Gating leads to small but significant (p < 0.02) reductions in lung volume errors (1.8%–1.4%), false positives (4.0%–2.6%), and false negatives (2.7%–1.3%). These percentage reductions correspond to gating reducing image artifacts by 24–90 cm{sup 3} of lung tissue. Similar to earlier studies, gating reduced patient image dose by up to 22%, but with scan time increased by up to 135%. Beam paused 4D CT did not significantly impact normal lung tissue image quality, but did yield similar dose reductions as for respiratory-gating, without the added cost in scanning time. Conclusions: For a typical 6 L lung, respiratory-gated 4D CT can reduce image artifacts affecting up to 90 cm{sup 3} of normal lung tissue compared to conventional acquisition. This image improvement could have important implications for dose calculations based on 4D CT. Where image quality is less critical, beam paused 4D CT is a simple strategy to reduce imaging dose without sacrificing acquisition time.
Gelfond, O A
2015-01-01
Interactions of massless fields of all spins in four dimensions with currents of any spin is shown to result from a solution of the linear problem that describes a gluing between rank-one (massless) system and rank-two (current) system in the unfolded dynamics approach. Since the rank-two system is dual to a free rank-one higher-dimensional system, that effectively describes conformal fields in six space-time dimensions, the constructed system can be interpreted as describing a mixture between linear conformal fields in four and six dimensions. Interpretation of the obtained results in spirit of AdS/CFT correspondence is discussed.
Covariant anomalies and Hawking radiation from Kaluza–Klein AdS black holes
Indian Academy of Sciences (India)
Chuan-Yi Bai
2013-02-01
In this paper, Hawking radiation is studied from four-dimensional (4D) Kaluza–Klein (KK) AdS black holes via the method of anomaly cancellation. The {|bf KK-AdS} black hole considered is a non-extremal charged rotating solution in the theory of 4D gauged supergravity. Its Hawking fluxes of electric charge, angular momentum and energy momentum tensor are derived here. Our results support the common view that Hawking radiation is the quantum effect arising at the event horizon.
Quantum entropy and exact 4d/5d connection
Gomes, Joao
2013-01-01
We consider the AdS_2/CFT_1 holographic correspondence near the horizon of rotating five-dimensional black holes preserving four supersymmetries in N=2 supergravity. The bulk partition function is given by a functional integral over string fields in AdS_2 and is related to the quantum entropy via the Sen's proposal. Under certain assumptions we use the idea of equivariant localization to non-rigid backgrounds and show that the path integral of off-shell supergravity on the near horizon background, which is a circle fibration over AdS_2xS^2, reduces to a finite dimensional integral over n_V+1 parameters C^A, where n_V is the number of vector multiplets of the theory while the C^0 mode corresponds to a normalizable fluctuation of the metric. The localization solutions, which rely only on off-shell supersymmetry, become after a field redefinition, the solutions found for localization of supergravity on AdS_2xS^2. We compute the renormalized action on the localization locus and show that, in the absence of higher...
A Holographic Entanglement Entropy Conjecture for General Spacetimes
Sanches, Fabio
2016-01-01
We present a natural generalization of holographic entanglement entropy proposals beyond the scope of AdS/CFT by anchoring extremal surfaces to holographic screens. Holographic screens are a natural extension of the AdS boundary to arbitrary spacetimes and are preferred codimension 1 surfaces from the viewpoint of the covariant entropy bound. Screens have a unique preferred foliation into codimension 2 surfaces called leaves. Our proposal is to find the areas of extremal surfaces achored to the boundaries of regions in leaves. We show that the properties of holographic screens are sufficient to prove, under generic conditions, that extremal surfaces anchored in this way always lie within a causal region associated with a given leaf. Within this causal region, a maximin construction similar to that of Wall proves that our proposed quantity satisfies standard properties of entanglement entropy like strong subadditivity. We conjecture that our prescription computes entanglement entropies in quantum states that h...
What is the spacetime of {\\em physically realizable} spherical collapse?
Wagh, S M; Govinder, K S; Wagh, Sanjay M.; Saraykar, Ravindra V.; Govinder, Keshlan S.
2002-01-01
We argue that a particular spacetime, a spherically symmetric spacetime with hyper-surface orthogonal, radial, homothetic Killing vector, is a physically meaningful spacetime that describes the problem of spherical gravitational collapse in its full "physical" generality.
On spacetime structure and electrodynamics
Ni, Wei-Tou
2016-10-01
Electrodynamics is the most tested fundamental physical theory. Relativity arose from the completion of Maxwell-Lorentz electrodynamics. Introducing the metric gij as gravitational potential in 1913, versed in general (coordinate-)covariant formalism in 1914 and shortly after the completion of general relativity, Einstein put the Maxwell equations in general covariant form with only the constitutive relation between the excitation and the field dependent on and connected by the metric in 1916. Further clarification and developments by Weyl in 1918, Murnaghan in 1921, Kottler in 1922 and Cartan in 1923 together with the corresponding developments in electrodynamics of continuous media by Bateman in 1910, Tamm in 1924, Laue in 1952 and Post in 1962 established the premetric formalism of electrodynamics. Since almost all phenomena electrodynamics deal with have energy scales much lower than the Higgs mass energy and intermediate boson energy, electrodynamics of continuous media should be applicable and the constitutive relation of spacetime/vacuum should be local and linear. What is the key characteristic of the spacetime/vacuum? It is the Weak Equivalence Principle I (WEP I) for photons/wave packets of light which states that the spacetime trajectory of light in a gravitational field depends only on its initial position and direction of propagation, and does not depend on its frequency (energy) and polarization, i.e. nonbirefringence of light propagation in spacetime/vacuum. With this principle it is proved by the author in 1981 in the weak field limit, and by Lammerzahl and Hehl in 2004 together with Favaro and Bergamin in 2011 without assuming the weak-field condition that the constitutive tensor must be of the core metric form with only two additional degrees of freedom — the pseudoscalar (Abelian axion or EM axion) degree of freedom and the scalar (dilaton) degree of freedom (i.e. metric with axion and dilaton). In this paper, we review this connection and the
Unstable Fields in Kerr Spacetimes
Dotti, Gustavo; Ranea-Sandoval, Ignacio F
2011-01-01
We present a generalization of previous results regarding the stability under gravitational perturbations of nakedly singular super extreme Kerr spacetime and Kerr black hole interior beyond the Cauchy horizon. To do so we study solutions to the radial and angular Teukolsky's equations with different spin weights, particulary $s=\\pm 1$ representing electromagnetic perturbations, $s=\\pm 1/2$ representing a perturbation by a Dirac field and $s=0$ representing perturbations by a scalar field. By analizing the properties of radial and angular eigenvalues we prove the existence of an infinite family of unstable modes.
Chiral Anomaly in Contorted Spacetimes
Mielke, E W
1999-01-01
The Dirac equation in Riemann-Cartan spacetimes with torsion is reconsidered. As is well-known, only the axial covector torsion $A$, a one-form, couples to massive Dirac fields. Using diagrammatic techniques, we show that besides the familiar Riemannian term only the Pontrjagin type four-form $dA\\wedge dA$ does arise additionally in the chiral anomaly, but not the Nieh-Yan term $d ^* A$, as has been claimed recently. Implications for cosmic strings in Einstein-Cartan theory as well as for Ashtekar's canonical approach to quantum gravity are discussed.
Time Evolution in Dynamical Spacetimes
Tiemblo, A
1996-01-01
We present a gauge--theoretical derivation of the notion of time, suitable to describe the Hamiltonian time evolution of gravitational systems. It is based on a nonlinear coset realization of the Poincaré group, implying the time component of the coframe to be invariant, and thus to represent a metric time. The unitary gauge fixing of the boosts gives rise to the foliation of spacetime along the time direction. The three supressed degrees of freedom correspond to Goldstone--like fields, whereas the remaining time component is a Higgs--like boson.
Efeitos do 2,4-D, em laranjeira baianinha Effects of 2,4-D on the baianinha orange
Directory of Open Access Journals (Sweden)
Ody Rodriguez
1960-01-01
Full Text Available Com o objetivo de conhecer a reação da laranjeira Baianinha à aplicação de 2,4-D, principalmente com relação à queda de frutas, executamos um experimento de pulverização de plantas com solução deste hormônio sintético, na Estação Experimental de Limeira, zona de maior densidade citrícola do Estado de São Paulo. Tôdas as concentrações do ácido, usadas no experimento, causaram modificações nos caracteres normais da laranjeira (Citrus sinensis Osb. As fôlhas, flôres e frutas sofreram modificações mais ou menos acentuadas, de acordo com a concentração do produto, os resultados permitindo contra-indicar pulverizações com 2,4-D nas condições apresentadas; mostram também, que as modificações atribuídas ao hormônio só se produziram durante a safra em que se fizeram os tratamentos. São apresentados dados das produções, do aumento de pêso das frutas e de queda das mesmas e das fôlhas, bem como ilustrações das principais modificações ocorridas nas frutas. A aplicação do 2,4-D causou decréscimo linear do número de frutas, proporcional as dosagens do hormônio. Como conseqüência houve aumento do seu pêso médio. Êste fato pode ser de utilidade para outras variedades cítricas, quando houver interesse no aumento de tamanho das frutas.The reaction of the Baianinha orange (Citrus sinensis Osb., a Brazilian hud sport of the Washington Navel, to applications of 2,4-D was studied at the Limeira Agr. Exp. Sta., São Paulo. All concentrations of this hormonial herbicide used in the tests induced some modifications of the normal characteristics of the plants when compared with the controls. The leaves, flowers, and fruits were the plant parts most affected by the treatments. Some of the morphological changes induced on the fruits tend to confirm the view that the Baia orange originated as a mutation from the Seleta variety. Data obtained on the yield, weight per fruit, and fruit drop indicate that application
ULTRASSONOGRAFIA GESTACIONAL 3D/4D EM PEQUENOS ANIMAIS
Directory of Open Access Journals (Sweden)
Guilherme Fazan Rossi
2015-06-01
Full Text Available Esta revisión tiene como objetivo describir el uso actual de la ecografía tridimensional (3D/4D en obstetricia veterinários del pequeños animales. La ecografía tridimensional surgió en la década de 1950 y comenzó a tener una aplicación más amplia en las áreas de obstetricia y ginecología a principios de 1980. Esta técnica facilita 3D estudio volumétrico de ultrasonidos de órganos y las estructuras y permitir tercera plano de la imagen (plano coronal permite el cálculo volumétrico con mayor precisión, especialmente aquellos cuerpos de forma irregular. El método 4D se utiliza para evaluar las estructuras y funciones a través de la imagen de correlación espacio-temporal. Aun siendo una técnica disponible para más de 30 años en la medicina humana, en los estudios de veterinaria son necesarios para demostrar reciente y la especificidad y la sensibilidad de la técnica en la rutina de ultrasonido obstétrico de animales pequeños. A presente revisão tem por objetivo descrever as atuais utilizações da ultrassonografia tridimensional (US 3D/4D em obstetrícia veterinária de pequenos animais. A ultrassonografia tridimensional surgiu na década de 1950 e começou a ter maior aplicabilidade nas áreas de obstetrícia e ginecologia no início dos anos 1980. Essa técnica ultrassonográfica 3D facilita o estudo volumétrico de órgãos e estruturas e por permitir um terceiro plano da imagem (plano coronal possibilita o cálculo volumétrico mais precisamente, principalmente aqueles órgãos com formato irregular. A modalidade 4D é utilizada na avaliação de estruturas e funções via correlação imagem espaçotemporal. Mesmo sendo uma técnica disponível há mais de 30 anos em medicina humana, na veterinária os estudos são recentes e necessários para demonstrar a especificidade e sensibilidade da técnica ultrassonográfica na rotina da obstetrícia de pequenos animais. This review aims to describe the current use of three
The fate of monsters in anti-de Sitter spacetime
Ong, Yen Chin; Chen, Pisin
2013-07-01
Black hole entropy remains a deep puzzle: where does such enormous amount of entropy come from? Curiously, there exist gravitational configurations that possess even larger entropy than a black hole of the same mass, in fact, arbitrarily high entropy. These are the so-called monsters, which are problematic to the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence paradigm since there is far insufficient degrees of freedom on the field theory side to account for the enormous entropy of monsters in AdS bulk. The physics of the bulk however may be considerably modified at semi-classical level due to the presence of branes. We show that this is especially so since monster spacetimes are unstable due to brane nucleation. As a consequence, it is not clear what the final fate of monsters is. We argue that in some cases there is no real threat from monsters since although they are solutions to Einstein's Field Equations, they are very likely to be completely unstable when embedded in string theory, and thus probably are not solutions to the full quantum theory of gravity. Our analysis, while suggestive and supportive of the claim that such pathological objects are not allowed in the final theory, by itself does not rule out all monsters. We comment on various kin of monsters such as the "bag-of-gold" spacetime, and also discuss briefly the implications of our work to some puzzles related to black hole entropy.
Holographic entanglement entropies for Schwarzschild and Reisner-Nordstr\\"om spacetimes
Sun, Yuan
2016-01-01
The holographic entanglement entropies (HEE) associated with four dimensional Schwarzschild and Reisner-Nordstr\\"om spacetimes are investigated. Unlike the cases of asymptotically AdS spacetimes for which the boundaries are always taken at (timelike) conformal infinities, we take the boundaries at either large but finite radial coordinate (far boundary) or very close to the black hole event horizons (near horizon boundary). The reason for such choices is that such boundaries are similar to the conformal infinity of AdS spacetime in that they are all timelike, so that there may be some hope to define dual systems with ordinary time evolution on such boundaries. Our results indicate that, in the case of far boundaries, the leading order contribution to the HEEs come from the background Minkowski spacetime, however, the next to leading order contribution which arises from the presence of the black holes is always proportional to the black hole mass, which constitutes a version of the first law of the HEE for asy...
Fast GPU based adaptive filtering of 4D echocardiography.
Broxvall, Mathias; Emilsson, Kent; Thunberg, Per
2012-06-01
Time resolved three-dimensional (3D) echocardiography generates four-dimensional (3D+time) data sets that bring new possibilities in clinical practice. Image quality of four-dimensional (4D) echocardiography is however regarded as poorer compared to conventional echocardiography where time-resolved 2D imaging is used. Advanced image processing filtering methods can be used to achieve image improvements but to the cost of heavy data processing. The recent development of graphics processing unit (GPUs) enables highly parallel general purpose computations, that considerably reduces the computational time of advanced image filtering methods. In this study multidimensional adaptive filtering of 4D echocardiography was performed using GPUs. Filtering was done using multiple kernels implemented in OpenCL (open computing language) working on multiple subsets of the data. Our results show a substantial speed increase of up to 74 times, resulting in a total filtering time less than 30 s on a common desktop. This implies that advanced adaptive image processing can be accomplished in conjunction with a clinical examination. Since the presented GPU processor method scales linearly with the number of processing elements, we expect it to continue scaling with the expected future increases in number of processing elements. This should be contrasted with the increases in data set sizes in the near future following the further improvements in ultrasound probes and measuring devices. It is concluded that GPUs facilitate the use of demanding adaptive image filtering techniques that in turn enhance 4D echocardiographic data sets. The presented general methodology of implementing parallelism using GPUs is also applicable for other medical modalities that generate multidimensional data.
Phase and amplitude binning for 4D-CT imaging
Abdelnour, A. F.; Nehmeh, S. A.; Pan, T.; Humm, J. L.; Vernon, P.; Schöder, H.; Rosenzweig, K. E.; Mageras, G. S.; Yorke, E.; Larson, S. M.; Erdi, Y. E.
2007-07-01
We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2π rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error μe ± σe in PB ranged from 18% ± 20% to 30% ± 35%, while in AB the error ranged from 11% ± 14% to 20% ± 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.
Phase and amplitude binning for 4D-CT imaging
Energy Technology Data Exchange (ETDEWEB)
Abdelnour, A F [US Patent and Trademark Office, Alexandria, VA (United States); Nehmeh, S A [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Pan, T [M.D. Anderson Cancer Center, Houston, TX (United States); Humm, J L [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Vernon, P [GE Healthcare Technologies, Waukesha, WI (United States); Schoeder, H [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rosenzweig, K E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Mageras, G S [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Larson, S M [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Erdi, Y E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)
2007-07-21
We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2{pi} rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error {mu}{sub e} {+-} {sigma}{sub e} in PB ranged from 18% {+-} 20% to 30% {+-} 35%, while in AB the error ranged from 11% {+-} 14% to 20% {+-} 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.
Chruściel, Piotr T.; Delay, Erwann
2017-08-01
We construct infinite-dimensional families of non-singular static space-times, solutions of the vacuum Einstein-Maxwell equations with a negative cosmological constant. The families include an infinite-dimensional family of solutions with the usual AdS conformal structure at conformal infinity.
4D micro-CT using fast prospective gating
Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.
2012-01-01
Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The
Seeing the unseen-bioturbation in 4D
DEFF Research Database (Denmark)
Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane;
2015-01-01
Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities...... and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images...
Actively triggered 4d cone-beam CT acquisition
Energy Technology Data Exchange (ETDEWEB)
Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)
2013-09-15
Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145
4D Flow MRI in Neuroradiology: Techniques and Applications.
Pereira, Vitor Mendes; Delattre, Benedicte; Brina, Olivier; Bouillot, Pierre; Vargas, Maria Isabel
2016-04-01
Assessment of the intracranial flow is important for the understanding and management of cerebral vascular diseases. From brain aneurysms and arteriovenous malformations lesions to intracranial and cervical stenosis, the appraisal of the blood flow can be crucial and influence positively on patients' management. The determination of the intracranial hemodynamics and the collateral pattern seems to play to a major role in the management of these lesions. 4D flow magnetic resonance imaging is a noninvasive phase contrast derived method that has been developed and applied in neurovascular diseases. It has a great potential if followed by further technical improvements and comprehensive and systematic clinical studies.
Realistic CT simulation using the 4D XCAT phantom.
Segars, W P; Mahesh, M; Beck, T J; Frey, E C; Tsui, B M W
2008-08-01
The authors develop a unique CT simulation tool based on the 4D extended cardiac-torso (XCAT) phantom, a whole-body computer model of the human anatomy and physiology based on NURBS surfaces. Unlike current phantoms in CT based on simple mathematical primitives, the 4D XCAT provides an accurate representation of the complex human anatomy and has the advantage, due to its design, that its organ shapes can be changed to realistically model anatomical variations and patient motion. A disadvantage to the NURBS basis of the XCAT, however, is that the mathematical complexity of the surfaces makes the calculation of line integrals through the phantom difficult. They have to be calculated using iterative procedures; therefore, the calculation of CT projections is much slower than for simpler mathematical phantoms. To overcome this limitation, the authors used efficient ray tracing techniques from computer graphics, to develop a fast analytic projection algorithm to accurately calculate CT projections directly from the surface definition of the XCAT phantom given parameters defining the CT scanner and geometry. Using this tool, realistic high-resolution 3D and 4D projection images can be simulated and reconstructed from the XCAT within a reasonable amount of time. In comparison with other simulators with geometrically defined organs, the XCAT-based algorithm was found to be only three times slower in generating a projection data set of the same anatomical structures using a single 3.2 GHz processor. To overcome this decrease in speed would, therefore, only require running the projection algorithm in parallel over three processors. With the ever decreasing cost of computers and the rise of faster processors and multi-processor systems and clusters, this slowdown is basically inconsequential, especially given the vast improvement the XCAT offers in terms of realism and the ability to generate 3D and 4D data from anatomically diverse patients. As such, the authors conclude
4D-QSAR: Perspectives in Drug Design
Directory of Open Access Journals (Sweden)
Carolina H. Andrade
2010-05-01
Full Text Available Drug design is a process driven by innovation and technological breakthroughs involving a combination of advanced experimental and computational methods. A broad variety of medicinal chemistry approaches can be used for the identification of hits, generation of leads, as well as to accelerate the optimization of leads into drug candidates. The quantitative structure–activity relationship (QSAR formalisms are among the most important strategies that can be applied for the successful design new molecules. This review provides a comprehensive review on the evolution and current status of 4D-QSAR, highlighting present challenges and new opportunities in drug design.
Gender matters: Female perspectives in ICT4D research
CSIR Research Space (South Africa)
Light, A
2010-12-01
Full Text Available phrases for greetings, introductions and providing training feedback (e.g. ?Very good!?). In many cases, she played the role of a comically lost in translation foreigner, encouraging participants to correct her in order to foster interaction. Slightly... on differences between men and women in the roles and opportunities which affect technology usage [19]. A number of ICT4D solutions focus on women?s empowerment or welfare as First Days [6] and microfinance beneficiaries [17], while Human Computer Interaction...
Medicoscapes: on mobile ubiquity effects and ICT4D
DEFF Research Database (Denmark)
Michelsen, Anders Ib
2012-01-01
The Article presents theoretical comments on the theme of ‘media ubiquity’, as an introduction to the presentation of an information and communication technology ‘4’ development (ICT4D) project in the Republic of Somaliland: The Somaliland Telemedical System for Psychiatry. This project is based ...... perspective. It will ponder issues of collective imagination as exerted by way of such effects, i.e. in cultural forms that emerge out of media-roles in the ‘complex connectivity’ in globalisation processes....
Parikh, Maulik
2012-01-01
In anti-de Sitter space a highly accelerating observer perceives a Rindler horizon. The two Rindler wedges in AdS_{d+1} are holographically dual to an entangled conformal field theory that lives on two boundaries with geometry R x H_{d-1}. For AdS_3, the holographic duality is especially tractable, allowing quantum-gravitational aspects of Rindler horizons to be probed. We recover the thermodynamics of Rindler-AdS space directly from the boundary conformal field theory. We derive the temperature from the two-point function and obtain the Rindler entropy density precisely, including numerical factors, using the Cardy formula. We also probe the causal structure of the spacetime, and find from the behavior of the one-point function that the CFT "knows" when a source has fallen across the Rindler horizon. This is so even though, from the bulk point of view, there are no local signifiers of the presence of the horizon. Finally, we discuss an alternate foliation of Rindler-AdS which is dual to a CFT living in de Si...
A model of the two-dimensional quantum harmonic oscillator in an $AdS_3$ background
Frick, Rudolf
2016-01-01
In this paper we study a model of the two-dimensional quantum harmonic oscillator in a 3-dimensional anti-de Sitter background. We use a generalized Schr\\"odinger picture in which the analogs of the Schr\\"odinger operators of the particle are independent of both the time and the space coordinates in different representations. The spacetime independent operators of the particle induce the Lie algebra of Killing vector fields of the $AdS_3$ spacetime. In this picture, we have a metamorphosis of the Heisenberg's uncertainty relations.
Quantum singularities in static and conformally static space-times
Konkowski, D A; 10.1142/S0217751X11054334
2011-01-01
The definition of quantum singularity is extended from static space-times to conformally static space-times. After the usual definitions of classical and quantum singularities are reviewed, examples of quantum singularities in static space-times are given. These include asymptotically power-law space-times, space-times with diverging higher-order differential invariants, and a space-time with a 2-sphere singularity. The theory behind quantum singularities in conformally static space-times is followed by an example, a Friedmann-Robertson-Walker space-time with cosmic string. The paper concludes by discussing areas of future research.
Quantum Field Theory in de Sitter spacetime
So, Ashaq Hussain; Sibuea, Marlina Rosalinda; Akhoon, Shabir Ahmad; Khanday, Bilal Nisar; Majeed, Sajad Ul; Rather, Asloob Ahmad; Nahvi, Ishaq
2013-01-01
In this paper we will analyse quantum ?eld theory on de Sitter space- time. We will ?rst analyse a general scalar and vector ?eld theory on de Sitter spacetime. This is done by ?rst calculating these propagators on four-Sphere and then analytically continuing it to de Sitter spacetime.
An analytic regularisation scheme on curved spacetimes with applications to cosmological spacetimes
Géré, Antoine; Pinamonti, Nicola
2015-01-01
We develop a renormalisation scheme for time--ordered products in interacting field theories on curved spacetimes which consists of an analytic regularisation of Feynman amplitudes and a minimal subtraction of the resulting pole parts. This scheme is directly applicable to spacetimes with Lorentzian signature, manifestly generally covariant, invariant under any spacetime isometries present and constructed to all orders in perturbation theory. Moreover, the scheme captures correctly the non--geometric state--dependent contribution of Feynman amplitudes and it is well--suited for practical computations. To illustrate this last point, we compute explicit examples on a generic curved spacetime, and demonstrate how momentum space computations in cosmological spacetimes can be performed in our scheme. In this work, we discuss only scalar fields in four spacetime dimensions, but we argue that the renormalisation scheme can be directly generalised to other spacetime dimensions and field theories with higher spin, as ...
Cosmic Censorship for Gowdy Spacetimes.
Ringström, Hans
2010-01-01
Due to the complexity of Einstein's equations, it is often natural to study a question of interest in the framework of a restricted class of solutions. One way to impose a restriction is to consider solutions satisfying a given symmetry condition. There are many possible choices, but the present article is concerned with one particular choice, which we shall refer to as Gowdy symmetry. We begin by explaining the origin and meaning of this symmetry type, which has been used as a simplifying assumption in various contexts, some of which we shall mention. Nevertheless, the subject of interest here is strong cosmic censorship. Consequently, after having described what the Gowdy class of spacetimes is, we describe, as seen from the perspective of a mathematician, what is meant by strong cosmic censorship. The existing results on cosmic censorship are based on a detailed analysis of the asymptotic behavior of solutions. This analysis is in part motivated by conjectures, such as the BKL conjecture, which we shall therefore briefly describe. However, the emphasis of the article is on the mathematical analysis of the asymptotics, due to its central importance in the proof and in the hope that it might be of relevance more generally. The article ends with a description of the results that have been obtained concerning strong cosmic censorship in the class of Gowdy spacetimes.
Dark Energy and Spacetime Symmetry
Directory of Open Access Journals (Sweden)
Irina Dymnikova
2017-03-01
Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.
Cancer Incidence of 2,4-D Production Workers
Directory of Open Access Journals (Sweden)
Marcia Lee
2011-09-01
Full Text Available Despite showing no evidence of carcinogenicity in laboratory animals, the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D has been associated with non-Hodgkin lymphoma (NHL in some human epidemiology studies, albeit inconsistently. We matched an existing cohort of 2,4-D manufacturing employees with cancer registries in three US states resulting in 244 cancers compared to 276 expected cases. The Standardized Incidence Ratio (SIR for the 14 NHL cases was 1.36 (95% Confidence Interval (CI 0.74–2.29. Risk estimates were higher in the upper cumulative exposure and duration subgroups, yet not statistically significant. There were no clear patterns of NHL risk with period of hire and histology subtypes. Statistically significant results were observed for prostate cancer (SIR = 0.74, 95% CI 0.57–0.94, and “other respiratory” cancers (SIR = 3.79, 95% CI 1.22–8.84; 4 of 5 cases were mesotheliomas. Overall, we observed fewer cancer cases than expected, and a non statistically significant increase in the number of NHL cases.
488-4D ASH LANDFILL CLOSURE CAP HELP MODELING
Energy Technology Data Exchange (ETDEWEB)
Phifer, M.
2014-11-17
At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.
Exploration of 4D MRI blood flow using stylistic visualization.
van Pelt, Roy; Oliván Bescós, Javier; Breeuwer, Marcel; Clough, Rachel E; Gröller, M Eduard; ter Haar Romenij, Bart; Vilanova, Anna
2010-01-01
Insight into the dynamics of blood-flow considerably improves the understanding of the complex cardiovascular system and its pathologies. Advances in MRI technology enable acquisition of 4D blood-flow data, providing quantitative blood-flow velocities over time. The currently typical slice-by-slice analysis requires a full mental reconstruction of the unsteady blood-flow field, which is a tedious and highly challenging task, even for skilled physicians. We endeavor to alleviate this task by means of comprehensive visualization and interaction techniques. In this paper we present a framework for pre-clinical cardiovascular research, providing tools to both interactively explore the 4D blood-flow data and depict the essential blood-flow characteristics. The framework encompasses a variety of visualization styles, comprising illustrative techniques as well as improved methods from the established field of flow visualization. Each of the incorporated styles, including exploded planar reformats, flow-direction highlights, and arrow-trails, locally captures the blood-flow dynamics and may be initiated by an interactively probed vessel cross-section. Additionally, we present the results of an evaluation with domain experts, measuring the value of each of the visualization styles and related rendering parameters.
4D experience on Girassol Field block 17, Angola
Energy Technology Data Exchange (ETDEWEB)
Lefeuvre, F.; Brechet, E.; Bertini, F.; Jourdan, J.M.; Cassou, G. [TOTAL S.A., Luanda (Angola); Dubucq, D. [TOTAL Angola, Luanda (Angola)
2004-07-01
The Girassol field is located in Angolan deep water of Block 17 and consists of large vertically stacked turbidities complexes. The reservoir extends over approximately 200 km{sup 2} and water depth ranges between 1300 and 1400 meters. In that context High Resolution 3D seismic became the most valuable tool to describe and monitor the reservoir. The field development plan took into account, through re-injection of the gas into the reservoir, Total environmental policy imposing the recycling of production gas. Monitoring of this injection was the main reason to shoot the first High Resolution 4D extremely early in the life of field. Despite the complexity of interpretation due to complex fluid situation and pressure effect, the results went way beyond expectations as the 4D images are of very high quality. Data has also been used to update and refine the reservoir flow model as well as to help deciding on the location of latest development wells. Other repeat surveys are scheduled, the next one before the end of 2004. The ultimate goal which we hope to reach in the very near future will be to use seismic-derived saturation and pressure changes to constrain the reservoir model during the history matching process. (author)
4-D XRD for strain in many grains using triangulation
Energy Technology Data Exchange (ETDEWEB)
Bale, Hrishikesh A.; Hanan, Jay C.; Tamura, Nobumichi
2006-12-31
Determination of the strains in a polycrystalline materialusing 4-D XRD reveals sub-grain and grain-to-grain behavior as a functionof stress. Here 4-D XRD involves an experimental procedure usingpolychromatic micro-beam X-radiation (micro-Laue) to characterizepolycrystalline materials in spatial location as well as with increasingstress. The in-situ tensile loading experiment measured strain in a modelaluminum-sapphire metal matrix composite using the Advanced Light Source,Beam-line 7.3.3. Micro-Laue resolves individual grains in thepolycrystalline matrix. Results obtained from a list of grains sorted bycrystallographic orientation depict the strain states within and amongindividual grains. Locating the grain positions in the planeperpendicular to the incident beam is trivial. However, determining theexact location of grains within a 3-D space is challenging. Determiningthe depth of the grains within the matrix (along the beam direction)involved a triangulation method tracing individual rays that producespots on the CCD back to the point of origin. Triangulation wasexperimentally implemented by simulating a 3-D detector capturingmultiple diffraction images while increasing the camera to sampledistance. Hence by observing the intersection of rays from multiple spotsbelonging to the corresponding grain, depth is calculated. Depthresolution is a function of the number of images collected, grain to beamsize ratio, and the pixel resolution of the CCD. The 4DXRD methodprovides grain morphologies, strain behavior of each grain, andinteractions of the matrix grains with each other and the centrallylocated single crystal fiber.
Separable geodesic action slicing in stationary spacetimes
Bini, Donato; Jantzen, Robert T
2014-01-01
A simple observation about the action for geodesics in a stationary spacetime with separable geodesic equations leads to a natural class of slicings of that spacetime whose orthogonal geodesic trajectories represent freely falling observers. The time coordinate function can then be taken to be the observer proper time, leading to a unit lapse function. This explains some of the properties of the original Painlev\\'e-Gullstrand coordinates on the Schwarzschild spacetime and their generalization to the Kerr-Newman family of spacetimes, reproducible also locally for the G\\"odel spacetime. For the static spherically symmetric case the slicing can be chosen to be intrinsically flat with spherically symmetric geodesic observers, leaving all the gravitational field information in the shift vector field.
Minkowski Spacetime A Hundred Years Later
Petkov, Vesselin
2009-01-01
This volume is dedicated to the one hundredth anniversary of the publication of Hermann Minkowski's paper "Space and Time" in 1909. His work on the spacetime representation of special relativity had a huge impact on the twentieth century physics to the extent that modern physics would be impossible without the notion of spacetime. While there is consensus on the mathematical significance of spacetime in theoretical physics, for a hundred years there has been no consensus on the nature of spacetime itself. We owe Minkowski a clear answer to the question of the nature of spacetime -- whether it is only a mathematical space or represents a real four-dimensional world. A century after its publication the original Minkowski paper still represents an enrichment to the physicists, especially the relativists, who read it with the intent to fully investigate the depth of Minkowski's ideas on space and time and the physical meaning of special relativity. The volume begins with an excellent retranslation of Minkowski's ...
Evolving spacetimes with purely radial tension
Directory of Open Access Journals (Sweden)
B. Nasre Esfahani
2000-12-01
Full Text Available In this study time-dependent and spherically symmetric solutions of the Einstein field equations in an anisotropic background with a purely radial tension are presented. There exist three classes of solutions,1 An open spacetime with a wormhole at its center. 2 A conical spacetime. 3 A closed spacetime. These inhomogeneous solutions are reduced to FRW spacetimes in matter-dominated era, asymptotically. Therefore, they can be used to describe local inhomogeneities that are not considered in the standard model. For the wormhole solution. it is explicity shown that the considered matter is non-exotic, that is, it does not violate the energy conditions. Also, static solutions are studied. There is only one static solution,a conical spacetime. In this case, the matter satisfies the energy condition critically.
Partially massless graviton on beyond Einstein spacetimes
Bernard, Laura; Deffayet, Cédric; Hinterbichler, Kurt; von Strauss, Mikael
2017-06-01
We show that a partially massless graviton can propagate on a large set of spacetimes which are not Einstein spacetimes. Starting from a recently constructed theory for a massive graviton that propagates the correct number of degrees of freedom on an arbitrary spacetime, we first give the full explicit form of the scalar constraint responsible for the absence of a sixth degree of freedom. We then spell out generic conditions for the constraint to be identically satisfied, so that there is a scalar gauge symmetry which makes the graviton partially massless. These simplify if one assumes that spacetime is Ricci symmetric. Under this assumption, we find explicit non-Einstein spacetimes (some, but not all, with vanishing Bach tensors) allowing for the propagation of a partially massless graviton. These include in particular the Einstein static Universe.
Cosmological power spectrum in a noncommutative spacetime
Kothari, Rahul; Rath, Pranati K.; Jain, Pankaj
2016-09-01
We propose a generalized star product that deviates from the standard one when the fields are considered at different spacetime points by introducing a form factor in the standard star product. We also introduce a recursive definition by which we calculate the explicit form of the generalized star product at any number of spacetime points. We show that our generalized star product is associative and cyclic at linear order. As a special case, we demonstrate that our recursive approach can be used to prove the associativity of standard star products for same or different spacetime points. The introduction of a form factor has no effect on the standard Lagrangian density in a noncommutative spacetime because it reduces to the standard star product when spacetime points become the same. We show that the generalized star product leads to physically consistent results and can fit the observed data on hemispherical anisotropy in the cosmic microwave background radiation.
Traversable acausal retrograde domains in spacetime
Tippett, Benjamin K.; Tsang, David
2017-05-01
In this paper we present geometry which has been designed to fit a layperson’s description of a ‘time machine’. It is a box which allows those within it to travel backwards and forwards through time and space, as interpreted by an external observer. Timelike observers travel within the interior of a ‘bubble’ of geometry which moves along a circular, acausal trajectory through spacetime. If certain timelike observers inside the bubble maintain a persistent acceleration, their worldlines will close. Our analysis includes a description of the causal structure of our spacetime, as well as a discussion of its physicality. The inclusion of such a bubble in a spacetime will render the background spacetime non-orientable, generating additional consistency constraints for formulations of the initial value problem. The spacetime geometry is geodesically incomplete, contains naked singularities, and requires exotic matter.
Effects of Herbicide 2,4-D on Soil Microbial Population%除草剂2，4-D 对土壤微生物类群的影响
Institute of Scientific and Technical Information of China (English)
韩丽珍; 赵德刚; 罗信旭
2014-01-01
为了评价除草剂2，4-D 对土壤生态系统的影响，采用构建人工微生态的方法，在42 d 内动态评估供试土壤中微生物类群的变化。结果表明：当2，4-D 使用浓度为5 mg/kg 时，对土壤细菌及放线菌均没有显著影响，对真菌的影响也可以较快地恢复；浓度为25 mg/kg 和50 mg/kg 的处理，细菌和真菌总数均表现下降，但细菌的适应性更强；放线菌总数则表现出一定的波动性。2，4-D 处理浓度越高，对真菌的抑制作用也越强。因此，建议将土壤中真菌总数作为评估除草剂2，4-D 污染土壤生态环境效应的敏感指标。%In order to assess the effects of herbicide 2,4-D on soil microecological systems,the dynamic changes of soil microbial population were evaluated during 42 days incubation times by constructing manual micro-ecology.The results showed that bacteria and actinomyces were not suffered significant effects,and the influence on fungus was recovered soon when soils were treated with 5 mg/kg 2,4-D.Whenever 25 mg/kg and 50 mg/kg of 2,4-D were added to the soils,the number of bacteria and fungus was decreased, whereas the adaptability of bacteria was stronger than fungus.Meanwhile actinomyces number was risen and fallen,too.And the inhibition on fungus was increased with the higher treated concentration of 2,4-D.It suggested that fungus number could be a sensitive indicator which assessed the ecological effect of environment herbicide 2,4-D polluted.
Quantum cat map dynamics on AdS$_2$
Axenides, Minos; Nicolis, Stam
2016-01-01
We present a toy model for the chaotic unitary scattering of single particle wave packets on the radial AdS$_2$ geometry of extremal BH horizons. Based on our recent work for the discretization of the AdS$_2$ space-time, which describes a finite and random geometry, by modular arithmetic, we investigate the validity of the eigenstate thermalization hypothesis (ETH), as well as that of the fast scrambling time bound conjecture (STB), for an observer with time evolution operator the quantum Arnol'd cat map (QACM). We find that the QACM, while possessing a linear spectrum, has eigenstates, which can be expressed in closed form, are found to be random and to satisfy the assumptions of the ETH.The implications are that the dynamics is described by a chaotic, unitary, single particle S-matrix, which completely delocalizes and randomizes initial gaussian wave packets . Applying results obtained by Dyson and Falk for the periods of the Arnol'd Cat Map(ACM),which are related to its mixing time, we also find that the t...
Energy Technology Data Exchange (ETDEWEB)
Leung, R; Wong, M; Lee, V; Law, G; Lee, K; Tung, S; Chan, M [Tuen Mun Hospital, Hong Kong, Hong Kong (China); Blanck, O [University Clinic Schleswig-Holstein, Kiel (Germany)
2015-06-15
Purpose: To cross-validate the MGDR of COMPASS (IBA dosimetry, GmbH, Germany) and OCTAVIUS 4D system (PTW, Freiburg, Germany). Methods: Volumetric-modulated arc plans (5 head-and-neck and 3 prostate) collapsed to 40° gantry on the OCTAVIUS 4D phantom in QA mode on Monaco v5.0 (Elekta, CMS, Maryland Heights, MO) were delivered on a Elekta Agility linac. This study was divided into two parts: (1) error-free measurements by gantry-mounted EvolutionXX 2D array were reconstructed in COMPASS (IBA dosimetry, GmbH, Germany), and by OCTAVIUS 1500 array in Versoft v6.1 (PTW, Freiburg, Germany) to obtain the 3D doses (COM4D and OCTA4D). COM4D and OCTA4D were compared to the raw measurement (OCTA3D) at the same detector plane for which OCTAVIUS 1500 was perpendicular to 0° gantry axis while the plans were delivered at gantry 40°; (2) beam steering errors of energy (Hump=-2%) and symmetry (2T=+2%) were introduced during the delivery of 5 plans to compare the MGDR doses COM4D-Hump (COM4D-2T), OCTA4D-Hump (OCTA4D-2T), with raw doses OCTA3D-Hump (OCTA3D-2T) and with OCTA3D to assess the error reconstruction and detection ability of MGDR tools. All comparisons used Υ-criteria of 2%(local dose)/2mm and 3%/3mm. Results: Averaged Υ passing rates were 85% and 96% for COM4D,and 94% and 99% for OCTA4D at 2%/2mm and 3%/3mm criteria respectively. For error reconstruction, COM4D-Hump (COM4D-2T) showed 81% (93%) at 2%/2mm and 94% (98%) at 3%/3mm, while OCTA4D-Hump (OCTA4D-2T) showed 96% (96%) at 2%/2mm and 99% (99%) at 3%/3mm. For error detection, OCTA3D doses were compared to COM4D-Hump (COM4D-2T) showing Υ passing rates of 93% (93%) at 2%/2mm and 98% (98%), and to OCTA4D-Hump (OCTA4D -2T) showing 94% (99%) at 2%/2mm and 81% (96%) at 3%/3mm, respectively. Conclusion: OCTAVIUS MGDR showed better agreement to raw measurements in both error- and error-free comparisons. COMPASS MGDR deviated from the raw measurements possibly owing to beam modeling uncertainty.
4D XCAT phantom for multimodality imaging research
Energy Technology Data Exchange (ETDEWEB)
Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W. [Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Hock Plaza, Suite 302, Durham, North Carolina 27705 (United States); Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Hock Plaza, Suite 302, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Hock Plaza, Suite 302, Durham, North Carolina 27705 (United States); The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287 (United States)
2010-09-15
Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the
Analysis of phase space topologies for models of 4D betatronic motion in view of 4D beam splitting
Percival, Benjamin
2015-01-01
The novel technique of multiturn extraction is used to ll the Super Proton Synchrotron (SPS) at CERN with a high-intensity proton beam delivered by the Proton Synchrotron (PS). This technique involves manipulating nonlinear fields of sextupoles and octupoles in the PS to trap the beam into stable islands in the transverse phase space. By varying the tunes slowly and crossing a resonance condition it is possible to trap particles by means of stable structures. This generates a number of well-dened beamlets, which may be extracted over a number of turns proportional to the order of the resonance that is crossed and its stability. In this report, the theoretical background of how to construct the Normal Form of a 4D map incorporating a sextupolar and an octupolar eld contribution that act on a particle in our beam close to a 4th order difference resonance is detailed. A Hamiltonian will be analysed after transforming from a 4D to a 2D system using a canonical transformation, which allows us to visualise the isla...
Imaging of aortic valve dynamics in 4D OCT
Directory of Open Access Journals (Sweden)
Schnabel Christian
2015-09-01
Full Text Available The mechanical components of the heart, especially the valves and leaflets, are enormous stressed during lifetime. Therefore, those structures undergo different pathophysiological tissue transformations which affect cardiac output and in consequence living comfort of affected patients. These changes may lead to calcific aortic valve stenosis (AVS, the major heart valve disease in humans. The knowledge about changes of the dynamic behaviour during the course of this disease and the possibility of early stage diagnosis is of particular interest and could lead to the development of new treatment strategies and drug based options of prevention or therapy. 4D optical coherence tomography (OCT in combination with high-speed video microscopy were applied to characterize dynamic behaviour of the murine aortic valve and to characterize dynamic properties during artificial stimulation. We present a promising tool to investigate the aortic valve dynamics in an ex vivo disease model with a high spatial and temporal resolution using a multimodal imaging setup.
Medicoscapes: on mobile ubiquity effects and ICT4D
DEFF Research Database (Denmark)
Michelsen, Anders Ib
2012-01-01
on use of resources of the global civil society emerging in global ‘transformations’ related to migration, media and ‘the social work of the imagination’. Whereas much new media debate departs from the assumption of media ubiquity affecting our notions of reality, the article will attempt a different...... perspective. It will ponder issues of collective imagination as exerted by way of such effects, i.e. in cultural forms that emerge out of media-roles in the ‘complex connectivity’ in globalisation processes.......The Article presents theoretical comments on the theme of ‘media ubiquity’, as an introduction to the presentation of an information and communication technology ‘4’ development (ICT4D) project in the Republic of Somaliland: The Somaliland Telemedical System for Psychiatry. This project is based...
4D fast tracking for experiments at high luminosity LHC
Neri, N.; Cardini, A.; Calabrese, R.; Fiorini, M.; Luppi, E.; Marconi, U.; Petruzzo, M.
2016-11-01
The full exploitation of the physics potential of the high luminosity LHC is a big challenge that requires new instrumentation and innovative solutions. We present here a conceptual design and simulation studies of a fast timing pixel detector with embedded real-time tracking capabilities. The system is conceived to operate at 40 MHz event rate and to reconstruct tracks in real-time, using precise space and time 4D information of the hit, for fast trigger decisions. This work is part of an R&D project aimed at building an innovative tracking detector with superior time (10 ps) and position (10 μm) resolutions to be used in very harsh radiation environments, for the ultimate flavour physics experiment at the high luminosity phase of the LHC.
4D GPR Experiments--Towards the Virtual Lysimeter
Grasmueck, M.; Viggiano, D. A.; Day-Lewis, F. D.; Drasdis, J. B.; Kruse, S. E.; Or, D.
2006-05-01
In-situ monitoring of infiltration, water flow and retention in the vadose zone currently rely primarily on invasive methods, which irreversibly disturb original soil structure and alter its hydrologic behavior in the vicinity of the measurement. For example, use of lysimeters requires extraction and repacking of soil samples, and time- domain reflectometry (TDR) requires insertion of probes into the soil profile. This study investigates the use of repeated high-density 3D ground penetrating radar surveys (also known as 4D GPR) as a non-invasive alternative for detailed visualization and quantification of water flow in the vadose zone. Evaluation of the 4D GPR method was based on a series of controlled point-source water injection experiments into undisturbed beach sand deposits at Crandon Park in Miami, Florida. The goal of the GPR surveys was to image the shape and evolution of a wet-bulb as it propagates from the injection points (~0.5 m) towards the water table at 2.2 m depth. The experimental design was guided by predictive modeling using Hydrus 2D and finite-difference GPR waveform codes. Input parameters for the modeling were derived from hydrologic and electromagnetic characterization of representative sand samples. Guided by modeling results, we injected 30 to 40 liters of tap water through plastic-cased boreholes with slotted bottom sections (0.1 m) located 0.4 to 0.6 m below the surface. During and after injection, an area of 25 m2 was surveyed every 20 minutes using 250 and 500 MHz antennas with a grid spacing of 0.05 x 0.025 m. A total of 20 3D GPR surveys were completed over 3 infiltration sites. To confirm wet-bulb shapes measured by GPR, we injected 2 liters of "brilliant blue" dye (~100 mg/l) along with a saline water tracer towards the end of one experiment. After completion of GPR scanning, a trench was excavated to examine the distribution of the saltwater and dye using TDR and visual inspection, respectively. Preliminary analysis of the 4D GPR
When chaos meets hyperchaos: 4D Rössler model
Energy Technology Data Exchange (ETDEWEB)
Barrio, Roberto, E-mail: rbarrio@unizar.es [Departamento de Matemática Aplicada and IUMA, University of Zaragoza, E-50009 Zaragoza (Spain); Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza (Spain); Angeles Martínez, M., E-mail: gelimc@unizar.es [Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza (Spain); Serrano, Sergio, E-mail: sserrano@unizar.es [Departamento de Matemática Aplicada and IUMA, University of Zaragoza, E-50009 Zaragoza (Spain); Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza (Spain); Wilczak, Daniel, E-mail: wilczak@ii.uj.edu.pl [Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków (Poland)
2015-10-09
Chaotic behavior is a common feature of nonlinear dynamics, as well as hyperchaos in high-dimensional systems. In numerical simulations of these systems it is quite difficult to distinguish one from another behavior in some situations, as the results are frequently quite “noisy”. We show that in such systems a global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. This fact provides a mechanism for these noisy results. The coexistence of chaos and hyperchaos is proved via Computer-Assisted Proofs techniques. - Highlights: • The coexistence of chaos and hyperchaos in the 4D Rössler system is proved via Computer-Assisted Proofs techniques. • A global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. • The long transient behaviors make difficult in numerical simulations to distinguish chaos from hyperchaos in some situations.
(Delta a) curiosities in some 4d susy RG flows
Amariti, Antonio
2012-01-01
We explore some curiosities in 4d susy RG flows. One issue is that the compelling candidate a-function, from a-maximization with Lagrange multipliers, has a `strange branch," with reversed RG flow properties, monotonically increasing instead of decreasing. The branch flip to the strange branch occurs where a double-trace deformation Delta W=O ^2 passes through marginality, reminiscent of the condition for the chiral symmetry breaking, out of the conformal window transition in non-susy gauge theories. The second issue arises from Higgsing vevs for IR-free fields, which sometimes superficially violate the a-theorem. The resolution is that some vevs trigger marginal or irrelevant interactions, leading to Delta a=0 and decoupled dilaton on a subspace of the moduli space of vacua. This is contrary to classical intuition about Higgsing. This phenomenon often (but not always) correlates with negative R-charge for the Higgsing chiral operator.
Euclidean 4d exact solitons in a Skyrme type model
Energy Technology Data Exchange (ETDEWEB)
Ferreira, L.A. [Instituto de Fisica de Sao Carlos, IFSC/USP, Universidade de Sao Paulo, Caixa Postal 369, CEP 13560-970 Sao Carlos, SP (Brazil) and Instituto de Fisica Teorica, IFT/UNESP, Universidade Estadula Paulista, Rua Pamplona 145, 01405-900 Sao Paulo, SP (Brazil)]. E-mail: laf@if.sc.usp.br
2005-01-27
We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n->, taking values on the sphere S{sup 2}, and an additional real scalar field {phi}, which is dynamical only on a three-dimensional surface embedded in R{sup 4}. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory.
Myocardial motion and function assessment using 4D images
Shi, Peng-Cheng; Robinson, Glynn P.; Duncan, James S.
1994-09-01
This paper describes efforts aimed at more objectively and accurately quantifying the local, regional and global function of the left ventricle (LV) of the heart from 4D image data. Using our shape-based image analysis methods, point-wise myocardial motion vector fields between successive image frames through the entire cardiac cycle will be computed. Quantitative LV motion, thickening, and strain measurements will then be established from the point correspondence maps. In the paper, we will also briefly describe an in vivo experimental model which uses implanted imaging-opaque markers to validate the results of our image analysis methods. Finally, initial experimental results using image sequences from two different modalities will be presented.
Contextualised ICT4D: a Bottom-Up Approach
DEFF Research Database (Denmark)
Lund, Henrik Hautop; Sutinen, Erkki
2010-01-01
. In a certain way, this agenda can be understood as a topdown approach which transfers technology in a hierarchical way to actual users. Complementary to the traditional approach, a bottom-up approach starts by identifying communities that are ready to participate in a process to use technology to transform......The term ICT4D refers to the opportunities of Information and Communication Technology (ICT) as an agent of development. Much of the research in the field is based on evaluating the feasibility of existing technologies, mostly of Western or Asian origin, in the context of developing countries...... their own strengths to new levels by designing appropriate technologies with experts of technology and design. The bottomup approach requires a new kind of ICT education at the undergraduate level. An example of the development of a contextualized IT degree program at Tumaini University in Tanzania shows...
ULTRASSONOGRAFIA GESTACIONAL 3D/4D EM PEQUENOS ANIMAIS
2015-01-01
Esta revisión tiene como objetivo describir el uso actual de la ecografía tridimensional (3D/4D) en obstetricia veterinários del pequeños animales. La ecografía tridimensional surgió en la década de 1950 y comenzó a tener una aplicación más amplia en las áreas de obstetricia y ginecología a principios de 1980. Esta técnica facilita 3D estudio volumétrico de ultrasonidos de órganos y las estructuras y permitir tercera plano de la imagen (plano coronal) permite el cálculo volumétrico con may...
Energy Technology Data Exchange (ETDEWEB)
Breban, Romulus [Institut Pasteur, Paris Cedex 15 (France)
2016-09-15
Five-dimensional (5D) space-time symmetry greatly facilitates how a 4D observer perceives the propagation of a single spinless particle in a 5D space-time. In particular, if the 5D geometry is independent of the fifth coordinate then the 5D physics may be interpreted as 4D quantum mechanics. In this work we address the case where the symmetry is approximate, focusing on the case where the 5D geometry depends weakly on the fifth coordinate. We show that concepts developed for the case of exact symmetry approximately hold when other concepts such as decaying quantum states, resonant quantum scattering, and Stokes drag are adopted, as well. We briefly comment on the optical model of the nuclear interactions and Millikan's oil drop experiment. (orig.)
Breban, Romulus
2016-09-01
Five-dimensional (5D) space-time symmetry greatly facilitates how a 4D observer perceives the propagation of a single spinless particle in a 5D space-time. In particular, if the 5D geometry is independent of the fifth coordinate then the 5D physics may be interpreted as 4D quantum mechanics. In this work we address the case where the symmetry is approximate, focusing on the case where the 5D geometry depends weakly on the fifth coordinate. We show that concepts developed for the case of exact symmetry approximately hold when other concepts such as decaying quantum states, resonant quantum scattering, and Stokes drag are adopted, as well. We briefly comment on the optical model of the nuclear interactions and Millikan's oil drop experiment.
Overview of 4D Printing Technology%四维打印技术概述
Institute of Scientific and Technical Information of China (English)
邵文; 邢明浩
2014-01-01
四维打印技术是在三维打印技术的基础上增加一维时间元素，人们可以通过软件设定模型和时间，变形材料会在设定的时间内折叠为所需的形状。相对于三维打印技术，四维打印技术更加“智能”，物料可自行组装，具有经济、高效、直接的优点。文章对这项新技术的相关名词、技术要点以及应用前景进行了简要介绍。%4D printing is a technology which adding one-dimensional time element on the basis of 3 D printing. People can set models and time by software, thus modified materials shape in set time. Relative to the 3D printing, 4D printing is more intel igent, because the materials could be assembly by itself, which has the advantages of economic, efficient and direct.
Assimilation of SAPHIR radiance: impact on hyperspectral radiances in 4D-VAR
Indira Rani, S.; Doherty, Amy; Atkinson, Nigel; Bell, William; Newman, Stuart; Renshaw, Richard; George, John P.; Rajagopal, E. N.
2016-04-01
Assimilation of a new observation dataset in an NWP system may affect the quality of an existing observation data set against the model background (short forecast), which in-turn influence the use of an existing observation in the NWP system. Effect of the use of one data set on the use of another data set can be quantified as positive, negative or neutral. Impact of the addition of new dataset is defined as positive if the number of assimilated observations of an existing type of observation increases, and bias and standard deviation decreases compared to the control (without the new dataset) experiment. Recently a new dataset, Megha Tropiques SAPHIR radiances, which provides atmospheric humidity information, is added in the Unified Model 4D-VAR assimilation system. In this paper we discuss the impact of SAPHIR on the assimilation of hyper-spectral radiances like AIRS, IASI and CrIS. Though SAPHIR is a Microwave instrument, its impact can be clearly seen in the use of hyper-spectral radiances in the 4D-VAR data assimilation systems in addition to other Microwave and InfraRed observation. SAPHIR assimilation decreased the standard deviation of the spectral channels of wave number from 650 -1600 cm-1 in all the three hyperspectral radiances. Similar impact on the hyperspectral radiances can be seen due to the assimilation of other Microwave radiances like from AMSR2 and SSMIS Imager.
Higher derivative corrections to BPS black hole attractors in 4d gauged supergravity
Energy Technology Data Exchange (ETDEWEB)
Hristov, Kiril [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Katmadas, Stefanos [Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN, Sezione di Milano-Bicocca,I-20126 Milano (Italy); Lodato, Ivano [Department of Physics, IISER Pune,Homi Bhaba Road, Pashan, Pune (India)
2016-05-30
We analyze BPS black hole attractors in 4d gauged supergravity in the presence of higher derivative supersymmetric terms, including a Weyl-squared-type action, and determine the resulting corrections to the Bekenstein-Hawking entropy. The near-horizon geometry AdS{sub 2}×S{sup 2} (or other Riemann surface) preserves half of the supercharges in N=2 supergravity with Fayet-Iliopoulos gauging. We derive a relation between the entropy and the black hole charges that suggests via AdS/CFT how subleading corrections contribute to the supersymmetric index in the dual microscopic picture. Depending on the model, the attractors are part of full black hole solutions with different asymptotics, such as Minkowski, AdS{sub 4}, and hvLif{sub 4}. We give explicit examples for each of the asymptotic cases and comment on the implications. Among other results, we find that the Weyl-squared terms spoil the exact two-derivative relation to non-BPS asymptotically flat black holes in ungauged supergravity.
All Chern-Simons invariants of 4D, N = 1 gauged superform hierarchies
Becker, Katrin; Becker, Melanie; Linch, William D.; Randall, Stephen; Robbins, Daniel
2017-04-01
We give a geometric description of supersymmetric gravity/(non-)abelian p-form hierarchies in superspaces with 4D, N = 1 super-Poincaré invariance. These hierarchies give rise to Chern-Simons-like invariants, such as those of the 5D, N = 1 graviphoton and the eleven-dimensional 3-form but also generalizations such as Green-Schwarz-like/ BF -type couplings. Previous constructions based on prepotential superfields are reinterpreted in terms of p-forms in superspace thereby elucidating the underlying geometry. This vastly simplifies the calculations of superspace field-strengths, Bianchi identities, and Chern-Simons invariants. Using this, we prove the validity of a recursive formula for the conditions defining these actions for any such tensor hierarchy. Solving it at quadratic and cubic orders, we recover the known results for the BF -type and cubic Chern-Simons actions. As an application, we compute the quartic invariant ˜ AdAdAdA + . . . relevant, for example, to seven-dimensional supergravity compactifications.
Scattering vector mesons in D4-D8 holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Boschi-Filho, Henrique; Braga, Nelson; Ballon Bayona, C.A.; Torres, Marcus A.C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)
2009-07-01
Full text. Sakai and Sugimoto authored one of the most successful string top-down models in describing real QCD, the D4-D8 brane model of holographic QCD. This model succeeds in exhibiting chiral symmetry breaking and confinement.A drawback of this model is that all massive hadrons have their masses set by the Kaluza-Klein compactification scale and we would have to work at energy scales below 1 GeV in order to describe a four dimensional physics. Still, they were able to find pion form factors and pion in agreement with experiment at scale of 1 GeV and above. They also calculate pion quadratic square radius in check with experiment, from a formula that depends on the entire Kaluza-Klein tower of excited pion states. Their model also realizes vector meson dominance (VMD) in electromagnetic interaction as proposed by Sakurai in the sixties. 5D gauge fields from flavor symmetry provides a zoo of mesons (scalar, pseudo-scalar, vector and pseudo-vector) and instanton configurations of such fields are interpreted as baryon fields. Inspired by the results of pion form factors and pion quadratic radius predicted in close agreement with experiment, we further calculate vector and axial vector mesons {psi}(z) wave functions, form factors, we discuss about its Q{sup -2} power behavior at large virtuosity (Q{sup 2}), and we check necessary relations between coupling constants and masses (superconvergence) that grants such power behavior of form factors. We compare our results with what is found in bottom-up hard wall and soft wall models and discuss the problems of the D4-D8 model. (author)
Parallel Wavefront Analysis for a 4D Interferometer
Rao, Shanti R.
2011-01-01
This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.
Pre-Big Bang, space-time structure, asymptotic Universe
Directory of Open Access Journals (Sweden)
Gonzalez-Mestres Luis
2014-04-01
Full Text Available Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95, while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2 spinor and the Lundmark-Lemaître-Hubble (LLH expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of
Shi, Shuai; Zhou, Zhi-Yuan; Li, Yan; Zhang, Wei; Shi, Bao-Sen; Guo, Guang-Can
2016-01-01
Light with phase front carrying an orbital angular momentum (OAM) is useful in many fields, such as optical tweezers, astronomy. In optical communication, light encoded information in its OAM degrees of freedom enables networks to carry significantly more information and increase their capacity significantly. However, light with OAM has a difficulty in propagating in commercial optical fibers, while light in Gaussian mode encoded with time-bin is most suitable for transmission in fiber. Therefore it is crucially important to build up a bridge for interfacing lights with OAM and time-bin. Here, we report the realization of a photonic space-time transcoder, by which light with an arbitrary OAM superposition is experimentally converted into a time-bin Gaussian pulse and vice versa in principle. Furthermore, we clearly demonstrate that the coherence is conserved very well and there is no crosstalk between orthogonal modes. Such a photonic device is simple and theoretically can be built up in a scalable architectu...
Newtonian gravity on quantum spacetime
Directory of Open Access Journals (Sweden)
Majid Shahn
2014-04-01
Full Text Available The bicrossproduct model λ-Minkowski (or ‘κ-Minkowski’ quantum space-time has an anomaly for the action of the Poincaré quantum group which was resolved by an extra cotangent direction θ’ not visible classically. We show that gauging a coefficient of θ′ introduces gravity into the model. We solve and analyse the model nonrelativisticaly in a 1/r potential, finding an induced constant term in the effective potential energy and a weakening and separation of the effective gravitational and inertial masses as the test particle Klein-Gordon mass increases. The present work is intended as a proof of concept but the approach could be relevant to an understanding of dark energy and possibly to macroscopic quantum systems.
Supergravity one-loop corrections on AdS7 and AdS3, higher spins and AdS/CFT
Directory of Open Access Journals (Sweden)
Matteo Beccaria
2015-03-01
Full Text Available As was shown earlier, the one-loop correction in 10d supergravity on AdS5×S5 corresponds to the contributions to the vacuum energy and 4d boundary conformal anomaly which are minus the values for one N=4 Maxwell supermultiplet, thus reproducing the subleading term in the N2−1 coefficient in the dual SU(N SYM theory. We perform similar one-loop computations in 11d supergravity on AdS7×S4 and 10d supergravity on AdS3×S3×T4. In the AdS7 case we find that the corrections to the 6d conformal anomaly a-coefficient and the vacuum energy are again minus the ones for one (2,0 tensor multiplet, suggesting that the total a-anomaly coefficient for the dual (2,0 theory is 4N3−9/4N−7/4 and thus vanishes for N=1. In the AdS3 case the one-loop correction to the vacuum energy or 2d central charge turns out to be equal to that of one free (4,4 scalar multiplet, i.e. is c=+6. This reproduces the subleading term in the central charge c=6(Q1Q5+1 of the dual 2d CFT describing decoupling limit of D5–D1 system. We also present the expressions for the 6d a-anomaly coefficient and vacuum energy contributions of general-symmetry higher spin field in AdS7 and consider their application to tests of vectorial AdS/CFT with the boundary conformal 6d theory represented by free scalars, spinors or rank-2 antisymmetric tensors.
Meson Thermalization by Baryon Injection in D4/D6 Model
Rezaei, Zahra
2016-01-01
We study meson thermalization in a strongly coupled plasma of quarks and gluons using AdS/CFT duality technique. Four dimensional large-Nc QCD is considered as a theory governing this quark-gluon plasma (QGP) and D4/D6- brane model is chosen to be its holographic dual theory. In order to investigate meson thermalization, we consider a time-dependent change of baryon number chemical potential. Thermalization in gauge theory side corresponds to horizon formation on the probe flavor brane in the gravity side. The gravitational dual theory is compactified on a circle that the inverse of its radius is proportional to energy scale of dual gauge theory. It is seen that increase of this energy scale results in thermalization time dilation. In addition we study the effect of magnetic field on meson thermalization. It will be seen that magnetic field also prolongs thermalization process by making mesons more stable.
Meson thermalization by baryon injection in D4/D6 model
Rezaei, Z.
2016-12-01
We study meson thermalization in a strongly coupled plasma of quarks and gluons using AdS/CFT duality technique. Four dimensional large-Nc QCD is considered as a theory governing this quark-gluon plasma (QGP) and D4/D6-brane model is chosen to be its holographic dual theory. In order to investigate meson thermalization, we consider a time-dependent change of baryon number chemical potential. Thermalization in gauge theory side corresponds to horizon formation on the probe flavor brane in the gravity side. The gravitational dual theory is compactified on a circle that the inverse of its radius is proportional to energy scale of dual gauge theory. It is seen that increase of this energy scale results in thermalization time dilation. In addition we study the effect of magnetic field on meson thermalization. It will be seen that magnetic field also prolongs thermalization process by making mesons more stable.
New integrable non-gauge 4D CFTs from strongly deformed planar N=4 SYM
Gurdogan, Omer
2015-01-01
We consider the $\\gamma$-deformed $\\mathcal{N}=4$ SYM in the double scaling limit of large imaginary twist and small coupling, which discards the gauge fields and retains only certain Yukawa and scalar interactions with three arbitrary couplings. In the 't Hooft limit, these 4D theories are conformal and integrable, with the whole arsenal of AdS/CFT integrability applicable. In particular, for one non-zero coupling, we obtain a QFT of two complex scalars with a chiral, quartic interaction. The BMN vacuum anomalous dimension is dominated in each order by a single "wheel" graph, in principle computable by integrability. Thus we also provide an explicit conjecture for the periods of double-wheel graphs with an arbitrary number of spokes.
Induced higher-derivative massive gravity on a 2-brane in 4D Minkowski space
Directory of Open Access Journals (Sweden)
D. Bazeia
2015-03-01
Full Text Available In this paper we revisit the problem of localizing gravity in a 2-brane embedded in a 4D Minkowski space to address induction of high derivative massive gravity. We explore the structure of propagators to find well-behaved higher-derivative massive gravity induced on the brane. Exploring a special case in the generalized mass term of the graviton propagator we find a model of consistent higher order gravity with an additional unitary massive spin-2 particle and two massless particles: one spin-0 particle and one spin-1 particle. The condition for the absence of tachyons is satisfied for both ‘right’ and ‘wrong’ signs of the Einstein–Hilbert term on the 2-brane. We also find the Pauli–Fierz mass term added to the new massive gravity in three dimensions and recover the low-dimensional DGP model.
Induced higher-derivative massive gravity on a 2-brane in 4D Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D. [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil); Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Brito, F.A., E-mail: fabrito@df.ufcg.edu.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil); Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Costa, F.G. [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil); Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB), Campus Picuí (Brazil)
2015-03-06
In this paper we revisit the problem of localizing gravity in a 2-brane embedded in a 4D Minkowski space to address induction of high derivative massive gravity. We explore the structure of propagators to find well-behaved higher-derivative massive gravity induced on the brane. Exploring a special case in the generalized mass term of the graviton propagator we find a model of consistent higher order gravity with an additional unitary massive spin-2 particle and two massless particles: one spin-0 particle and one spin-1 particle. The condition for the absence of tachyons is satisfied for both ‘right’ and ‘wrong’ signs of the Einstein–Hilbert term on the 2-brane. We also find the Pauli–Fierz mass term added to the new massive gravity in three dimensions and recover the low-dimensional DGP model.
Gravity induced from quantum spacetime
Beggs, Edwin J.; Majid, Shahn
2014-02-01
We show that tensoriality constraints in noncommutative Riemannian geometry in the two-dimensional bicrossproduct model quantum spacetime algebra [x, t] = λx drastically reduce the moduli of possible metrics g up to normalization to a single real parameter, which we interpret as a time in the past from which all timelike geodesics emerge and a corresponding time in the future at which they all converge. Our analysis also implies a reduction of moduli in n-dimensions and we study a suggested spherically symmetric classical geometry in n = 4 in detail, identifying two one-parameter subcases where the Einstein tensor matches that of a perfect fluid for (a) positive pressure, zero density and (b) negative pressure and positive density with ratio w_Q=-{1\\over 2}. The classical geometry is conformally flat and its geodesics motivate new coordinates which we extend to the quantum case as a new description of the quantum spacetime model as a quadratic algebra. The noncommutative Riemannian geometry is fully solved for n = 2 and includes the quantum Levi-Civita connection and a second, nonperturbative, Levi-Civita connection which blows up as λ → 0. We also propose a ‘quantum Einstein tensor’ which is identically zero for the main part of the moduli space of connections (as classically in 2D). However, when the quantum Ricci tensor and metric are viewed as deformations of their classical counterparts there would be an O(λ2) correction to the classical Einstein tensor and an O(λ) correction to the classical metric.
Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.
Sylvia, R. T.; Kincaid, C. R.
2015-12-01
Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based
Entanglement Entropy of AdS Black Holes
Directory of Open Access Journals (Sweden)
Maurizio Melis
2010-11-01
Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.
Condensation Energy of a Spacetime Condensate
de Matos, Clovis Jacinto
2010-01-01
Starting from an analogy between the Planck-Einstein scale and the dual length scales in Ginzburg-Landau theory of superconductivity, and assuming that space-time is a condensate of neutral fermionic particles with Planck mass, we derive the baryonic mass of the universe. In that theoretical framework baryonic matter appears to be associated with the condensation energy gained by spacetime in the transition from its normal (symetric) to its (less symetric) superconducting-like phase. It is shown however that the critical transition temperature cannot be the Planck temperature. Thus leaving open the enigma of the microscopic description of spacetime at quantum level.
Local spacetime effects on gyroscope systems
Wohlfarth, Mattias N R
2012-01-01
We give a precise theoretical description of initially aligned sets of orthogonal gyroscopes which are transported along different paths from some initial point to the same final point in spacetime. These gyroscope systems can be used to synchronize separated observers' spatial frames by free fall along timelike geodesics. We find that initially aligned gyroscope systems, or spatial frames, lose their synchronization due to the curvature of spacetime and their relative motion. On the basis of our results we propose a simple experiment which enables observers to determine locally whether their spacetime is described by a rotating Kerr or a non-rotating Schwarzschild metric.
Local spacetime effects on gyroscope systems
Wohlfarth, Mattias N. R.; Pfeifer, Christian
2013-01-01
We give a precise theoretical description of initially aligned sets of orthogonal gyroscopes which are transported along different paths from some initial point to the same final point in spacetime. These gyroscope systems can be used to synchronize separated observers’ spatial frames by free fall along timelike geodesics. We find that initially aligned gyroscope systems, or spatial frames, lose their synchronization due to the curvature of spacetime and their relative motion. On the basis of our results we propose a simple experiment that enables observers to determine locally whether their spacetime is described by a rotating Kerr or a nonrotating Schwarzschild metric.
Asymptotic structure of the Einstein-Maxwell theory on AdS$_{3}$
Perez, Alfredo; Tempo, David; Troncoso, Ricardo
2015-01-01
The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to $\\mathbb{R}\\otimes U\\left(1\\right)\\otimes U\\left(1\\right)$. Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized b...
Energy Technology Data Exchange (ETDEWEB)
Vogt, Florian M.; Hunold, Peter; Barkhausen, Joerg [University Hospital Schleswig-Holstein, Clinic for Radiology and Nuclear Medicine, Luebeck (Germany); Theysohn, Jens M.; Kinner, Sonja [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Michna, Dariusz [Elisabeth Hospital, Department of Neonatology, Essen (Germany); Neudorf, Ulrich [University Hospital Essen, Clinic for Pediatrics III, Essen (Germany); Quick, Harald H. [University of Erlangen-Nuernberg, Institute of Medical Physics, Erlangen (Germany)
2013-09-15
To evaluate time-resolved interleaved stochastic trajectories (TWIST) contrast-enhanced 4D magnetic resonance angiography (MRA) and compare it with 3D FLASH MRA in patients with congenital heart and vessel anomalies. Twenty-six patients with congenital heart and vessel anomalies underwent contrast-enhanced MRA with both 3D FLASH and 4D TWIST MRA. Images were subjectively evaluated regarding total image quality, artefacts, diagnostic value and added diagnostic value of 4D dynamic imaging. Quantitative comparison included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness measurements. Three-dimensional FLASH MRA was judged to be significantly better in terms of image quality (4.0 {+-} 0.6 vs 3.4 {+-} 0.6, P < 0.05) and artefacts (3.8 {+-} 0.4 vs 3.3 {+-} 0.5, P < 0.05); no difference in diagnostic value was found (4.2 {+-} 0.4 vs 4.0 {+-} 0.4); important additional functional information was found in 21/26 patients. SNR and CNR were higher in the pulmonary trunk in 4D TWIST, but slightly higher in the systemic arteries in 3D FLASH. No difference in vessel sharpness delineation was found. Although image quality was inferior compared with 3D FLASH MRA, 4D TWIST MRA yields robust images and added diagnostic value through dynamic acquisition was found. Thus, 4D TWIST MRA is an attractive alternative to 3D FLASH MRA. (orig.)
Islands of stability and recurrence times in AdS
Green, Stephen R; Lehner, Luis; Liebling, Steven L
2015-01-01
We study the stability of anti-de Sitter (AdS) spacetime to spherically symmetric perturbations of a real scalar field in general relativity. Further, we work within the context of the "two time framework" (TTF) approximation, which describes the leading nonlinear effects for small amplitude perturbations, and is therefore suitable for studying the weakly turbulent instability of AdS---including both collapsing and non-collapsing solutions. We have previously identified a class of quasi-periodic (QP) solutions to the TTF equations, and in this work we analyze their stability. We show that there exist several families of QP solutions that are stable to linear order, and we argue that these solutions represent islands of stability in TTF. We extract the eigenmodes of small oscillations about QP solutions, and we use them to predict approximate recurrence times for generic non-collapsing initial data in the full (non-TTF) system. Alternatively, when sufficient energy is driven to high-frequency modes, as occurs ...
Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI.
Wolz, Robin; Heckemann, Rolf A; Aljabar, Paul; Hajnal, Joseph V; Hammers, Alexander; Lötjönen, Jyrki; Rueckert, Daniel
2010-08-01
We propose a new method of measuring atrophy of brain structures by simultaneously segmenting longitudinal magnetic resonance (MR) images. In this approach a 4D graph is used to represent the longitudinal data: edges are weighted based on spatial and intensity priors and connect spatially and temporally neighboring voxels represented by vertices in the graph. Solving the min-cut/max-flow problem on this graph yields the segmentation for all timepoints in a single step. By segmenting all timepoints simultaneously, a consistent and atrophy-sensitive segmentation is obtained. The application to hippocampal atrophy measurement in 568 image pairs (Baseline and Month 12 follow-up) as well as 362 image triplets (Baseline, Month 12, and Month 24) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) confirms previous findings for atrophy in Alzheimer's disease (AD) and healthy aging. Highly significant correlations between hippocampal atrophy and clinical variables (Mini Mental State Examination, MMSE and Clinical Dementia Rating, CDR) were found and atrophy rates differ significantly according to subjects' ApoE genotype. Based on one year atrophy rates, a correct classification rate of 82% between AD and control subjects is achieved. Subjects that converted from Mild Cognitive Impairment (MCI) to AD after the period for which atrophy was measured (i.e., after the first 12 months) and subjects for whom conversion is yet to be identified were discriminated with a rate of 64%, a promising result with a view to clinical application. Power analysis shows that 67 and 206 subjects are needed for the AD and MCI groups respectively to detect a 25% change in volume loss with 80% power and 5% significance.
The bizarre anti-de Sitter spacetime
Sokołowski, Leszek M.
2016-08-01
Anti-de Sitter spacetime is important in general relativity and modern field theory. We review its geometrical features and properties of light signals and free particles moving in it. By applying only the elementary tools of tensor calculus, we derive ab initio of all these properties and show that they are really weird. One finds superluminal velocities of light and particles, infinite particle energy necessary to escape at infinite distance and spacetime regions inaccessible by a free fall, though reachable by an accelerated spaceship. Radial timelike geodesics are identical to the circular ones and actually all timelike geodesics are identical to one circle in a fictitious five-dimensional space. Employing the latter space, one is able to explain these bizarre features of anti-de Sitter spacetime; in this sense the spacetime is not self-contained. This is not a physical world.
B^F Theory and Flat Spacetimes
Waelbroeck, Henri
2009-01-01
We propose a reduced constrained Hamiltonian formalism for the exactly soluble $B \\wedge F$ theory of flat connections and closed two-forms over manifolds with topology $\\Sigma^3 \\times (0,1)$. The reduced phase space variables are the holonomies of a flat connection for loops which form a basis of the first homotopy group $\\pi_1(\\Sigma^3)$, and elements of the second cohomology group of $\\Sigma^3$ with value in the Lie algebra $L(G)$. When $G=SO(3,1)$, and if the two-form can be expressed as $B= e\\wedge e$, for some vierbein field $e$, then the variables represent a flat spacetime. This is not always possible: We show that the solutions of the theory generally represent spacetimes with ``global torsion''. We describe the dynamical evolution of spacetimes with and without global torsion, and classify the flat spacetimes which admit a locally homogeneous foliation, following Thurston's classification of geometric structures.
Field Theory on Curved Noncommutative Spacetimes
Directory of Open Access Journals (Sweden)
Alexander Schenkel
2010-08-01
Full Text Available We study classical scalar field theories on noncommutative curved spacetimes. Following the approach of Wess et al. [Classical Quantum Gravity 22 (2005, 3511 and Classical Quantum Gravity 23 (2006, 1883], we describe noncommutative spacetimes by using (Abelian Drinfel'd twists and the associated *-products and *-differential geometry. In particular, we allow for position dependent noncommutativity and do not restrict ourselves to the Moyal-Weyl deformation. We construct action functionals for real scalar fields on noncommutative curved spacetimes, and derive the corresponding deformed wave equations. We provide explicit examples of deformed Klein-Gordon operators for noncommutative Minkowski, de Sitter, Schwarzschild and Randall-Sundrum spacetimes, which solve the noncommutative Einstein equations. We study the construction of deformed Green's functions and provide a diagrammatic approach for their perturbative calculation. The leading noncommutative corrections to the Green's functions for our examples are derived.
Riemann curvature of a boosted spacetime geometry
Battista, Emmanuele; Scudellaro, Paolo; Tramontano, Francesco
2014-01-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature through Dirac's delta distribution and its derivatives is numerically evaluated for this class of spacetimes. Eventually, the analysis of the Kteschmann invariant and the geodesic equation show that the spacetime possesses a scalar curvature singularity within a 3-sphere and it is possible to define what we here call boosted horizon, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. Thi...
Field, J H
2016-01-01
Space-time intervals corresponding to different events on the worldline of any ponderable object (for example a clock) are time-like. In consequence, in the analysis of any space-time experiment involving clocks only the region for $c\\Delta t \\ge 0$ between the line $\\Delta x = 0$ and the light cone projection $c\\Delta t = \\Delta x$ of the $c\\Delta t$ versus $\\Delta x$ Minkowski plot is physically relevant. This breaks the manifest space-time symmetry of the plot. A further consequence is the unphysical nature of the `relativity of simultaneity' and `length contraction' effects of conventional special relativity theory. The only modification of space-time transformation laws in passing from Galilean to special relativity is then the replacement of universal Newtonian time by a universal (position independent) time dilation effect for moving clocks.
Hawking evaporation and space-time structure
Energy Technology Data Exchange (ETDEWEB)
Balbinot, R.; Bergamini, R. (Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. di Radioastronomia); Giorgini, B. (Bologna Univ. (Italy). Ist. di Fisica)
1982-08-11
The Vaidya radiating metric is used to model an evaporating black-hole space-time. It is shown that, thus, a wormhole is produced in analogy with the Einstein-Rosen bridge. Its physical consequences are discussed.
Relative Locality in Curved Space-time
Kowalski-Glikman, Jerzy
2013-01-01
In this paper we construct the action describing dynamics of the particle moving in curved spacetime, with a non-trivial momentum space geometry. Curved momentum space is the core feature of theories where relative locality effects are presents. So far aspects of nonlinearities in momentum space have been studied only for flat or constantly expanding (De Sitter) spacetimes, relying on the their maximally symmetric nature. The extension of curved momentum space frameworks to arbitrary spacetime geometries could be relevant for the opportunities to test Planck-scale curvature/deformation of particles momentum space. As a first example of this construction we describe the particle with kappa-Poincar\\'e momentum space on a circular orbit in Schwarzschild spacetime, where the contributes of momentum space curvature turn out to be negligible. The analysis of this problem relies crucially on the solution of the soccer ball problem.
Pseudo-Z symmetric space-times
Energy Technology Data Exchange (ETDEWEB)
Mantica, Carlo Alberto, E-mail: carloalberto.mantica@libero.it [Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Suh, Young Jin, E-mail: yjsuh@knu.ac.kr [Department of Mathematics, Kyungpook National University, Taegu 702-701 (Korea, Republic of)
2014-04-15
In this paper, we investigate Pseudo-Z symmetric space-time manifolds. First, we deal with elementary properties showing that the associated form A{sub k} is closed: in the case the Ricci tensor results to be Weyl compatible. This notion was recently introduced by one of the present authors. The consequences of the Weyl compatibility on the magnetic part of the Weyl tensor are pointed out. This determines the Petrov types of such space times. Finally, we investigate some interesting properties of (PZS){sub 4} space-time; in particular, we take into consideration perfect fluid and scalar field space-time, and interesting properties are pointed out, including the Petrov classification. In the case of scalar field space-time, it is shown that the scalar field satisfies a generalized eikonal equation. Further, it is shown that the integral curves of the gradient field are geodesics. A classical method to find a general integral is presented.
Space-time crystals of trapped ions.
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang
2012-10-19
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.
Maximal Hypersurfaces in Spacetimes with Translational Symmetry
Bulawa, Andrew
2016-01-01
We consider four-dimensional vacuum spacetimes which admit a free isometric spacelike R-action. Taking a quotient with respect to the R-action produces a three-dimensional quotient spacetime. We establish several results regarding maximal hypersurfaces (spacelike hypersurfaces of zero mean curvature) in quotient spacetimes. First, we show that complete noncompact maximal hypersurfaces must either be flat cylinders S^1 x R or conformal to the Euclidean plane. Second, we establish a positive mass theorem for certain maximal hypersurfaces. Finally, while it is meaningful to use a bounded lapse when adopting the maximal hypersurface gauge condition in the four-dimensional (asymptotically flat) setting, it is shown here that nontrivial quotient spacetimes admit the maximal hypersurface gauge only with an unbounded lapse.
The bizarre anti-de Sitter spacetime
Sokolowski, Leszek M
2016-01-01
Anti--de Sitter spacetime is important in general relativity and modern field theory. We review its geometrical features and properties of light signals and free particles moving in it. Applying only elementary tools of tensor calculus we derive \\textit{ab initio\\/} all these properties and show that they are really weird. One finds superluminal velocities of light and particles, infinite particle energy necessary to escape at infinite distance and spacetime regions inaccessible by a free fall, though reachable by an accelerated spaceship. Radial timelike geodesics are identical to the circular ones and actually all timelike geodesics are identical to one circle in a fictitious five--dimensional space. Employing the latter space one is able to explain these bizarre features of anti--de Sitter spacetime; in this sense the spacetime is not self--contained. This is not a physical world.
Respiratory triggered 4D cone-beam computed tomography: A novel method to reduce imaging dose
Cooper, Benjamin J.; O’Brien, Ricky T.; Balik, Salim; Hugo, Geoffrey D.; Keall, Paul J.
2013-01-01
Purpose: A novel method called respiratory triggered 4D cone-beam computed tomography (RT 4D CBCT) is described whereby imaging dose can be reduced without degrading image quality. RT 4D CBCT utilizes a respiratory signal to trigger projections such that only a single projection is assigned to a given respiratory bin for each breathing cycle. In contrast, commercial 4D CBCT does not actively use the respiratory signal to minimize image dose. Methods: To compare RT 4D CBCT with conventional 4D CBCT, 3600 CBCT projections of a thorax phantom were gathered and reconstructed to generate a ground truth CBCT dataset. Simulation pairs of conventional 4D CBCT acquisitions and RT 4D CBCT acquisitions were developed assuming a sinusoidal respiratory signal which governs the selection of projections from the pool of 3600 original projections. The RT 4D CBCT acquisition triggers a single projection when the respiratory signal enters a desired acquisition bin; the conventional acquisition does not use a respiratory trigger and projections are acquired at a constant frequency. Acquisition parameters studied were breathing period, acquisition time, and imager frequency. The performance of RT 4D CBCT using phase based and displacement based sorting was also studied. Image quality was quantified by calculating difference images of the test dataset from the ground truth dataset. Imaging dose was calculated by counting projections. Results: Using phase based sorting RT 4D CBCT results in 47% less imaging dose on average compared to conventional 4D CBCT. Image quality differences were less than 4% at worst. Using displacement based sorting RT 4D CBCT results in 57% less imaging dose on average, than conventional 4D CBCT methods; however, image quality was 26% worse with RT 4D CBCT. Conclusions: Simulation studies have shown that RT 4D CBCT reduces imaging dose while maintaining comparable image quality for phase based 4D CBCT; image quality is degraded for displacement based RT 4D
Multimaterial 4D Printing with Tailorable Shape Memory Polymers
Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.
2016-08-01
We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.
4D ANIMATION RECONSTRUCTION FROM MULTI-CAMERA COORDINATES TRANSFORMATION
Directory of Open Access Journals (Sweden)
J. P. Jhan
2016-06-01
Full Text Available Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australis© coded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.
MULTIVARIABLE ANALYSIS OF 2,4-D HERBICIDE PHOTOCATALYTIC DEGRADATION
Directory of Open Access Journals (Sweden)
ANDRÉS F. LÓPEZ-VÁSQUEZ
2011-01-01
Full Text Available La degradación del herbicida 2,4-D en suspensiones de TiO2 en agua real fue evaluada bajo condiciones de irradiación artificial. El análisis multivariable de metodología de superficie de respuesta (MSR, se aplicó para evaluar el efecto de variables como la concentración de catalizador y pesticida, el pH y el caudal volumétrico sobre la reacción fotocatalítica en dos fotorreactores catalíticos: placa plana y tubular. La variable de respuesta fue la mineralización del pesticida expresada como porcentaje de degradación de carbono orgánico total (COT después de cuatro horas de irradiación. Para el fotorreactor tubular, los cuatro factores tuvieron la misma significancia sobre la degradación, mientras que para el fotorreactor de placa plana inclinada, sólo la concentración de catalizador y el pH tuvieron significancia. La MSR fue una técnica adecuada para obtener parámetros de operación óptimos de un proceso fotocatalítico con un reactor específico y dentro de un rango de estudio determinado.
Multimaterial 4D Printing with Tailorable Shape Memory Polymers.
Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K; Fang, Nicholas X; Dunn, Martin L
2016-08-08
We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.
4D Cellular Automaton Track Finder in the CBM Experiment
Akishina, Valentina; Kisel, Ivan
2016-11-01
The CBM experiment (FAIR/GSI, Darmstadt, Germany) will focus on the measurement of rare probes at interaction rates up to 10MHz with data flow of up to 1 TB/s. It requires a novel read-out and data-acquisition concept with self-triggered electronics and free-streaming data. In this case resolving different collisions is a non-trivial task and event building must be performed in software online. That requires full online event reconstruction and selection not only in space, but also in time, so-called 4D event building and selection. This is a task of the First-Level Event Selection (FLES). The FLES reconstruction and selection package consists of several modules: track finding, track fitting, short-lived particles finding, event building and event selection. The Cellular Automaton (CA) track finder algorithm was adapted towards time-based reconstruction. In this article, we describe in detail the modification done to the algorithm, as well as the performance of the developed time-based CA approach.
Cardy Formula for 4d SUSY Theories and Localization
Di Pietro, Lorenzo
2016-01-01
We study 4d $\\mathcal{N}=1$ supersymmetric theories on a compact Euclidean manifold of the form $S^1 \\times\\mathcal{M}_3$. Partition functions of gauge theories on this background can be computed using localization, and explicit formulas have been derived for different choices of the compact manifold $\\mathcal{M}_3$. Taking the limit of shrinking $S^1$, we present a general formula for the limit of the localization integrand, derived by simple effective theory considerations, generalizing the result of arXiv:1512.03376. The limit is given in terms of an effective potential for the holonomies around the $S^1$, whose minima determine the asymptotic behavior of the partition function. If the potential is minimized in the origin, where it vanishes, the partition function has a Cardy-like behavior fixed by $\\mathrm{Tr}(R)$, while a nontrivial minimum gives a shift in the coefficient. In all the examples that we consider, the origin is a minimum iff $\\mathrm{Tr}(R) \\leq 0$.
4D Near-Field Source Localization Using Cumulant
Directory of Open Access Journals (Sweden)
Zhao Feng
2007-01-01
Full Text Available This paper proposes a new cumulant-based algorithm to jointly estimate four-dimensional (4D source parameters of multiple near-field narrowband sources. Firstly, this approach proposes a new cross-array, and constructs five high-dimensional Toeplitz matrices using the fourth-order cumulants of some properly chosen sensor outputs; secondly, it forms a parallel factor (PARAFAC model in the cumulant domain using these matrices, and analyzes the unique low-rank decomposition of this model; thirdly, it jointly estimates the frequency, two-dimensional (2D directions-of-arrival (DOAs, and range of each near-field source from the matrices via the low-rank three-way array (TWA decomposition. In comparison with some available methods, the proposed algorithm, which efficiently makes use of the array aperture, can localize sources using sensors. In addition, it requires neither pairing parameters nor multidimensional search. Simulation results are presented to validate the performance of the proposed method.
4D Near-Field Source Localization Using Cumulant
Directory of Open Access Journals (Sweden)
Junying Zhang
2007-01-01
Full Text Available This paper proposes a new cumulant-based algorithm to jointly estimate four-dimensional (4D source parameters of multiple near-field narrowband sources. Firstly, this approach proposes a new cross-array, and constructs five high-dimensional Toeplitz matrices using the fourth-order cumulants of some properly chosen sensor outputs; secondly, it forms a parallel factor (PARAFAC model in the cumulant domain using these matrices, and analyzes the unique low-rank decomposition of this model; thirdly, it jointly estimates the frequency, two-dimensional (2D directions-of-arrival (DOAs, and range of each near-field source from the matrices via the low-rank three-way array (TWA decomposition. In comparison with some available methods, the proposed algorithm, which efficiently makes use of the array aperture, can localize N−3 sources using N sensors. In addition, it requires neither pairing parameters nor multidimensional search. Simulation results are presented to validate the performance of the proposed method.
A dynamic 4D probabilistic atlas of the developing brain.
Kuklisova-Murgasova, Maria; Aljabar, Paul; Srinivasan, Latha; Counsell, Serena J; Doria, Valentina; Serag, Ahmed; Gousias, Ioannis S; Boardman, James P; Rutherford, Mary A; Edwards, A David; Hajnal, Joseph V; Rueckert, Daniel
2011-02-14
Probabilistic atlases are widely used in the neuroscience community as a tool for providing a standard space for comparison of subjects and as tissue priors used to enhance the intensity-based classification of brain MRI. Most efforts so far have focused on static brain atlases either for adult or pediatric cohorts. In contrast to the adult brain the rapid growth of the neonatal brain requires an age-specific spatial probabilistic atlas to provide suitable anatomical and structural information. In this paper we describe a 4D probabilistic atlas that allows dynamic generation of prior tissue probability maps for any chosen stage of neonatal brain development between 29 and 44 gestational weeks. The atlas is created from the segmentations of 142 neonatal subjects at different ages using a kernel-based regression method and provides prior tissue probability maps for six structures - cortex, white matter, subcortical grey matter, brainstem, cerebellum and cerebro-spinal fluid. The atlas is publicly available at www.brain-development.org.
Bounds in 4D conformal field theories with global symmetry
Energy Technology Data Exchange (ETDEWEB)
Rattazzi, Riccardo; Vichi, Alessandro [Institut de Theorie des Phenomenes Physiques, EPFL, CH-1015 Lausanne (Switzerland); Rychkov, Slava [Laboratoire de Physique Theorique, Ecole Normale Superieure, and Faculte de Physique, Universite Pierre et Marie Curie (France)
2011-01-21
We explore the constraining power of OPE associativity in 4D conformal field theory with a continuous global symmetry group. We give a general analysis of crossing symmetry constraints in the 4-point function ({phi}{phi}{phi}{dagger}{phi}{dagger}), where {phi} is a primary scalar operator in a given representation R. These constraints take the form of 'vectorial sum rules' for conformal blocks of operators whose representations appear in RxR and Rx R-bar . The coefficients in these sum rules are related to the Fierz transformation matrices for the RxRx R-bar x R-bar invariant tensors. We show that the number of equations is always equal to the number of symmetry channels to be constrained. We also analyze in detail two cases-the fundamental of SO(N) and the fundamental of SU(N). We derive the vectorial sum rules explicitly, and use them to study the dimension of the lowest singlet scalar in the {phi} x {phi}{dagger} OPE. We prove the existence of an upper bound on the dimension of this scalar. The bound depends on the conformal dimension of {phi} and approaches 2 in the limit dim({Phi}){yields}1. For several small groups, we compute the behavior of the bound at dim({Phi})>1. We discuss implications of our bound for the conformal technicolor scenario of electroweak symmetry breaking.
Rotating black holes in 4d gauged supergravity
Energy Technology Data Exchange (ETDEWEB)
Gnecchi, Alessandra [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Hristov, Kiril [Dipartimento di Fisica, Università di Milano-Bicocca, and INFN, sezione di Milano-Bicocca,Piazza della Scienza 3, 20126 Milano (Italy); Klemm, Dietmar [Dipartimento di Fisica, Università di Milano, and INFN, sezione di Milano,Via Celoria 16, 20133 Milano (Italy); Toldo, Chiara [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Vaughan, Owen [Department of Mathematics and Center for Mathematical Physics, University of Hamburg,Bundesstrasse 55, 20146 Hamburg (Germany)
2014-01-23
We present new results towards the construction of the most general black hole solutions in four-dimensional Fayet-Iliopoulos gauged supergravities. In these theories black holes can be asymptotically AdS and have arbitrary mass, angular momentum, electric and magnetic charges and NUT charge. Furthermore, a wide range of horizon topologies is allowed (compact and noncompact) and the complex scalar fields have a nontrivial radial and angular profile. We construct a large class of solutions in the simplest single scalar model with prepotential F=−iX{sup 0}X{sup 1} and discuss their thermodynamics. Moreover, various approaches and calculational tools for facing this problem with more general prepotentials are presented.
Double conformal space-time algebra
Easter, Robert Benjamin; Hitzer, Eckhard
2017-01-01
The Double Conformal Space-Time Algebra (DCSTA) is a high-dimensional 12D Geometric Algebra G 4,8that extends the concepts introduced with the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA) G 8,2 with entities for Darboux cyclides (incl. parabolic and Dupin cyclides, general quadrics, and ring torus) in spacetime with a new boost operator. The base algebra in which spacetime geometry is modeled is the Space-Time Algebra (STA) G 1,3. Two Conformal Space-Time subalgebras (CSTA) G 2,4 provide spacetime entities for points, flats (incl. worldlines), and hyperbolics, and a complete set of versors for their spacetime transformations that includes rotation, translation, isotropic dilation, hyperbolic rotation (boost), planar reflection, and (pseudo)spherical inversion in rounds or hyperbolics. The DCSTA G 4,8 is a doubling product of two G 2,4 CSTA subalgebras that inherits doubled CSTA entities and versors from CSTA and adds new bivector entities for (pseudo)quadrics and Darboux (pseudo)cyclides in spacetime that are also transformed by the doubled versors. The "pseudo" surface entities are spacetime hyperbolics or other surface entities using the time axis as a pseudospatial dimension. The (pseudo)cyclides are the inversions of (pseudo)quadrics in rounds or hyperbolics. An operation for the directed non-uniform scaling (anisotropic dilation) of the bivector general quadric entities is defined using the boost operator and a spatial projection. DCSTA allows general quadric surfaces to be transformed in spacetime by the same complete set of doubled CSTA versor (i.e., DCSTA versor) operations that are also valid on the doubled CSTA point entity (i.e., DCSTA point) and the other doubled CSTA entities. The new DCSTA bivector entities are formed by extracting values from the DCSTA point entity using specifically defined inner product extraction operators. Quadric surface entities can be boosted into moving surfaces with constant velocities that display the length
Twin Paradox in de Sitter Spacetime
Boblest, Sebastian; Wunner, Günter
2010-01-01
The "twin paradox" of special relativity offers the possibility to make interstellar flights within a lifetime. For very long journeys with velocities close to the speed of light, however, we have to take into account the expansion of the universe. Inspired by the work of Rindler on hyperbolic motion in curved spacetime, we study the worldline of a uniformly accelerated observer in de Sitter spacetime and the communication between the traveling observer and an observer at rest.
Space-Time Disarray and Visual Awareness
Directory of Open Access Journals (Sweden)
Jan Koenderink
2012-04-01
Full Text Available Local space-time scrambling of optical data leads to violent jerks and dislocations. On masking these, visual awareness of the scene becomes cohesive, with dislocations discounted as amodally occluding foreground. Such cohesive space-time of awareness is technically illusory because ground truth is jumbled whereas awareness is coherent. Apparently the visual field is a construction rather than a (veridical perception.
Free of centrifugal acceleration spacetime - Geodesics
Culetu, Hristu
2013-01-01
A static spacetime with no centrifugal repulsion, previously studied by Dadhich, is investigate in this paper. The source of curvature is considered to be an anisotropic fluid with $\\rho = -p_{r}$ and constant angular pressures. The positive parameter from the line-element is interpreted as the invariant acceleration of a static observer. We found that the Tolman-Komar gravitational energy is finite everywhere. The timelike and null geodesics of the spacetime are examined.
Exact Philosophy of Space-Time
Vucetich, Héctor
2011-01-01
Starting from Bunge's (1977) scientific ontology, we expose a materialistic relational theory of space-time, that carries out the program initiated by Leibniz, and provides a protophysical basis consistent with any rigorous formulation of General Relativity. Space-time is constructed from general concepts which are common to any consistent scientific theory and they are interpreted as emergent properties of the greatest assembly of things, namely, the world.
Strong cosmic censorship and Misner spacetime
Denaro, Pedro
2015-01-01
Misner spacetime is among the simplest solutions of Einstein's equation that exhibits a Cauchy horizon with a smooth extension beyond it. Besides violating strong cosmic censorship, this extension contains closed timelike curves. We analyze the stability of the Cauchy horizon, and prove that neighboring spacetimes in one parameter families of solutions through Misner's in pure gravity, gravity coupled to a scalar field, or Einstein-Maxwell theory, end at the Cauchy horizon developing a curvature singularity.
String cosmology and the dimension of spacetime
Cleaver, G B; Gerald B Cleaver; Philip J Rosenthal
1994-01-01
The implications of string theory for understanding the dimension of uncompactified spacetime are investigated. Using recent ideas in string cosmology, a new model is proposed to explain why three spatial dimensions grew large. Unlike the original work of Brandenberger and Vafa, this paradigm uses the theory of random walks. A computer model is developed to test the implications of this new approach. It is found that a four-dimensional spacetime can be explained by the proper choice of initial conditions.
String Cosmology and the Dimension of Spacetime
Cleaver, Gerald B.; Rosenthal, Philip J.
1994-01-01
The implications of string theory for understanding the dimension of uncompactified spacetime are investigated. Using recent ideas in string cosmology, a new model is proposed to explain why three spatial dimensions grew large. Unlike the original work of Brandenberger and Vafa, this paradigm uses the theory of random walks. A computer model is developed to test the implications of this new approach. It is found that a four-dimensional spacetime can be explained by the proper choice of initia...
Space-time as strongly bent plate
Kokarev, S S
1999-01-01
Futher development is made of a consept of space-time as multidimensional elastic plate, proposed earlier in [20,21]. General equilibrium equations, including 4-dimensional tangent stress tensor - energy-momentum tensor of matter - are derived. Comparative analysis of multidimensional elasticity theory (MET) and GR is given. Variational principle, boundary conditions, energy-momentum tensor, matter and space-time signature are reviewed within the context of MET.
Navigation in Curved Space-Time
Bahder, T B
2001-01-01
A covariant and invariant theory of navigation in curved space-time with respect to electromagnetic beacons is written in terms of J. L. Synge's two-point invariant world function. Explicit equations are given for navigation in space-time in the vicinity of the Earth in Schwarzschild coordinates and in rotating coordinates. The restricted problem of determining an observer's coordinate time when their spatial position is known is also considered.
Space-time singularities in Weyl manifolds
Energy Technology Data Exchange (ETDEWEB)
Lobo, I.P. [CAPES Foundation, Ministry of Education of Brazil, Brasilia (Brazil); Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Barreto, A.B.; Romero, C. [Universidade Federal da Paraiba, Departamento de Fisica, C. Postal 5008, Joao Pessoa, PB (Brazil)
2015-09-15
We extend one of the Hawking-Penrose singularity theorems in general relativity to the case of some scalar-tensor gravity theories in which the scalar field has a geometrical character and space-time has the mathematical structure of a Weyl integrable space-time. We adopt an invariant formalism, so that the extended version of the theorem does not depend on a particular frame. (orig.)
A Spacetime Map of the Universe
Gowan, J A
1999-01-01
A geometric spacetime map of the universe is presented challanging certain assumptions of the Hubble model of cosmic expansion. The earth-observer is situated on the edge of spacetime, looking backward in time through ever- smaller universes toward the Big Bang. Implications for the Hubble expansion model, the cosmological horizon problem, and the red shift are discussed. Flat as well as gravitationally curved models are considered.
Dynamical Space-Time and Gravitational Waves
van Holten, J W
2016-01-01
According to General Relativity gravity is the result of the interaction between matter and space-time geometry. In this interaction space-time geometry itself is dynamical: it can store and transport energy and momentum in the form of gravitational waves. We give an introductory account of this phenomenon and discuss how the observation of gravitational waves may open up a fundamentally new window on the universe.
Curvature of spacetime: A simple student activity
Wood, Monika; Smith, Warren; Jackson, Matthew
2016-12-01
The following is a description of an inexpensive and simple student experiment for measuring the differences between the three types of spacetime topology—Euclidean (flat), Riemann (spherical), and Lobachevskian (saddle) curvatures. It makes use of commonly available tools and materials, and requires only a small amount of construction. The experiment applies to astronomical topics such as gravity, spacetime, general relativity, as well as geometry and mathematics.
Cosmic strings in an expanding spacetime
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.; Burd, A.B.
1988-03-15
We study string solutions in an expanding Friedmann-Robertson-Walker (FRW) spacetime. The back reaction of the string on the spacetime has been ignored so that the background stays Friedmannian throughout the evolution. By numerically integrating the field equations in both radiation- and matter-dominated eras, we discover some new oscillatory solutions. The possible damping of these oscillations is discussed. For late times the solution becomes identical to the static one.
Park, M H
1989-11-05
Eukaryotic translation initiation factor 4D (eIF-4D) is the only protein known to contain the amino acid, hypusine [N epsilon-(4-amino-2-hydroxybutyl)lysine]. This unusual amino acid is formed post-translationally by modification of a single specific lysine residue in an eIF-4D precursor protein. Two separate eIF-4D precursors, each of which contains a lysine residue in place of the hypusine residue and each of which thereby serves as a protein substrate for the hypusine modification, were purified from DL-2-difluoromethylornithine-treated Chinese hamster ovary cells by means of a five-step procedure. These two precursors termed PI and PII both have apparent molecular masses of approximately 17 kDa, indistinguishable from that of eIF-4D, but exhibit more acidic isoelectric points (5.1 and 5.25 for PI and PII, respectively, compared with 5.37 for eIF-4D). These physical characteristics, together with other properties, indicate that eIF-4D differs from PII only in possessing the hypusine residue in place of a lysine residue, whereas an additional structural difference exists between PI and eIF-4D. eIF-4D from CHO cells provides a significant enhancement of methionyl-puromycin synthesis, a model assay for translation initiation. Neither PI nor PII stimulates this in vitro system. These findings are the first direct evidence that hypusine is essential for the biological activity of eIF-4D.
Superradiance and instability of small rotating charged AdS black holes in all dimensions
Energy Technology Data Exchange (ETDEWEB)
Aliev, Alikram N. [Yeni Yuezyil University, Faculty of Engineering and Architecture, Istanbul (Turkey)
2016-02-15
Rotating small AdS black holes exhibit the superradiant instability to low-frequency scalar perturbations, which is amenable to a complete analytic description in four dimensions. In this paper, we extend this description to all higher dimensions, focusing on slowly rotating charged AdS black holes with a single angular momentum. We divide the spacetime of these black holes into the near-horizon and far regions and find solutions to the scalar wave equation in each of these regions. Next, we perform the matching of these solutions in the overlap between the regions, by employing the idea that the orbital quantum number l can be thought of as an approximate integer. Thus, we obtain the complete low-frequency solution that allows us to calculate the complex frequency spectrum of quasinormal modes, whose imaginary part is determined by a small damping parameter. Finally, we find a remarkably instructive expression for the damping parameter, which appears to be a complex quantity in general. We show that the real part of the damping parameter can be used to give a universal analytic description of the superradiant instability for slowly rotating charged AdS black holes in all spacetime dimensions. (orig.)
Electrodynamics and spacetime geometry: Astrophysical applications
Cabral, Francisco; Lobo, Francisco S. N.
2017-07-01
After a brief review of the foundations of (pre-metric) electromagnetism, we explore some physical consequences of electrodynamics in curved spacetime. In general, new electromagnetic couplings and related phenomena are induced by the spacetime curvature. The applications of astrophysical interest considered here correspond essentially to the following geometries: the Schwarzschild spacetime and the spacetime around a rotating spherical mass in the weak field and slow rotation regime. In the latter, we use the Parameterised Post-Newtonian (PPN) formalism. We also explore the hypothesis that the electric and magnetic properties of vacuum reflect the spacetime isometries. Therefore, the permittivity and permeability tensors should not be considered homogeneous and isotropic a priori. For spherical geometries we consider the effect of relaxing the homogeneity assumption in the constitutive relations between the fields and excitations. This affects the generalized Gauss and Maxwell-Ampère laws, where the electric permittivity and magnetic permeability in vacuum depend on the radial coordinate in accordance with the local isometries of space. For the axially symmetric geometries we relax both the assumptions of homogeneity and isotropy. We explore simple solutions and discuss the physical implications related to different phenomena, such as the decay of electromagnetic fields in the presence of gravity, magnetic terms in Gauss law due to the gravitomagnetism of the spacetime around rotating objects, a frame-dragging effect on electric fields and the possibility of a spatial (radial) variability of the velocity of light in vacuum around spherical astrophysical objects for strong gravitational fields.
Searching for Causality in AdS/CFT
Kelly, William R.
String theory with certain asymptotically AdS boundary conditions can be defined non-perturbatively using the AdS/CFT correspondence, which reformulates the theory in terms of a non-gravitational quantum field theory in a lower dimensional spacetime. In this way many of the subtleties of quantizing gravity are circumvented, however, the price of this simplification is that locality is no longer manifest, even in an approximate sense. In this dissertation we study features of asymptotically AdS spacetimes related to causality and search for these properties in the dual CFT description. We begin by reviewing some of the salient features of the correspondence and studying some puzzles related to the Ryu-Takayanagi conjecture. We then show that the notion of boundary causality associated with the Gao-Wald theorem implies that holographic CFT's on Minkowski space must satisfy the averaged null energy condition (ANEC). The ANEC is a quasilocal energy condition that requires the integrated null energy on a null line to be positive. Any violations of this condition in a holographic theory would result in "causal shortcuts'' through the bulk spacetime which would allow propagation outside of the light cone in the CFT. We next study causal wedges associated with subregions of the boundary and argue that these regions of the bulk spacetime are associated with a particular coarse-graining of the CFT reduced density matrix. In particular, we conjecture that the area of the codimension-two boundary of these wedges is equal to a particular coarse-grained entropy which we name the 'one-point entropy.' We present several suggestive examples in which the conjecture holds as well as a proof that it holds to leading order in a class of spacetimes with a bulk first law. In an appendix we explain how the conjecture is equivalent to a statement about the classical Einstein equation which in principle could be rigorously proven or falsified.
Digit ratio (2D:4D) and hand preference for writing in the BBC Internet Study.
Manning, J T; Peters, M
2009-09-01
The ratio of the length of the second to the fourth digit (2D:4D) may be negatively correlated with prenatal testosterone. Hand preference has been linked with prenatal testosterone and 2D:4D. Here we show that 2D:4D is associated with hand preference for writing in a large internet sample (n>170,000) in which participants self-reported their finger lengths. We replicated a significant association between right 2D:4D and writing hand preference (low right 2D:4D associated with left hand preference) as well as a significant correlation between writing hand preference and the difference between left and right 2D:4D or Dr-l (low Dr-l associated with left hand preference). A new significant correlation between left 2D:4D and writing hand preference was also shown (high left 2D:4D associated with left hand preference). There was a clear interaction between writing hand preference and 2D:4D: The left 2D:4D was significantly larger than the right 2D:4D in male and female left-handed writers, and the right hand 2D:4D was significantly larger than the left hand 2D:4D in male and female right-handed writers.
Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.
2015-09-01
We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion
Supergravity with Doubled Spacetime Structure
Ma, Chen-Te
2016-01-01
Double Field Theory (DFT) is a low-energy effective theory of a manifestly $O(D,D)$ invariant formulation of the closed string theory when the toroidally compact dimensions are present. The theory is based on a doubled spacetime structure and, in order to preserve the gauge symmetry provided by the invariance under generalized diffeomorphisms, a constraint has to be imposed on fields and gauge parameters. In this paper, we propose a DFT-inspired Supergravity by using a suitable {\\em star product} with the aim of studying the corresponding algebraic structure. We get a consistent DFT in which also an orthogonality condition of momenta is necessary for having a closed gauge algebra. In constructing this theory, we start from the simplest case of doubling one spatial dimension where the action is uniquely determined, without any ambiguities, by the gauge symmetry. Then, the extension to the generic $O(D, D)$ case is studied and it results to be consistent with the closed string field theory.
Cosmology in Conformally Flat Spacetime
Endean, Geoffrey
1997-04-01
A possible solution to cosmological age and redshift-distance difficulties has recently been proposed by applying the appropriate conformally flat spacetime (CFS) coordinates to the standard solution of the field equations in a standard dust model closed universe. Here it is shown that CFS time correctly measures the true age of the universe, thus answering a major theoretical objection to the proposal. It is also shown that the CFS interpretation leads to a strong Copernican principle and is in all other respects wholly self-consistent. The deceleration parameter q0 is related to t0, the present age of the universe divided by L, the scale length of its curvature (an absolute constant). The values of q0 and L are approximately 5/6 and 9.2 × 109 yr, respectively. It is shown that the universe started everywhere simultaneously, with no recession velocity until the effects of its closed topology became significant. Conclusions to the contrary in standard theory (the big bang) stem from a different definition of recession velocity. The theoretical present cosmological mass density is quantified as 4.4 × 10-27 kg m-3 approximately, thus greatly reducing, in a closed universe, the observational requirement to find hidden mass. It is also shown that the prediction of standard theory, for a closed universe, of collapse toward a big crunch termination, will not in fact take place.
Quantum gravity from noncommutative spacetime
Energy Technology Data Exchange (ETDEWEB)
Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)
2014-12-15
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
Spacetime Metrology with LISA Pathfinder
Congedo, Giuseppe
2012-01-01
LISA is the proposed ESA-NASA gravitational wave detector in the 0.1 mHz - 0.1 Hz band. LISA Pathfinder is the down-scaled version of a single LISA arm. The arm -- named Doppler link -- can be treated as a differential accelerometer, measuring the relative acceleration between test masses. LISA Pathfinder -- the in-flight test of the LISA instrumentation -- is currently in the final implementation and planned to be launched in 2014. It will set stringent constraints on the ability to put test masses in geodesic motion to within the required differential acceleration of 3\\times10^{-14} m s^{-2} Hz^{-1/2} and track their relative motion to within the required differential displacement measurement noise of 9\\times10^{-12} m Hz^{-1/2}, around 1 mHz. Given the scientific objectives, it will carry out -- for the first time with such high accuracy required for gravitational wave detection -- the science of spacetime metrology, in which the Doppler link between two free-falling test masses measures the curvature. Thi...
4D measurement system for automatic location of anatomical structures
Witkowski, Marcin; Sitnik, Robert; Kujawińska, Małgorzata; Rapp, Walter; Kowalski, Marcin; Haex, Bart; Mooshake, Sven
2006-04-01
Orthopedics and neurosciences are fields of medicine where the analysis of objective movement parameters is extremely important for clinical diagnosis. Moreover, as there are significant differences between static and dynamic parameters, there is a strong need of analyzing the anatomical structures under functional conditions. In clinical gait analysis the benefits of kinematical methods are undoubted. In this paper we present a 4D (3D + time) measurement system capable of automatic location of selected anatomical structures by locating and tracing the structures' position and orientation in time. The presented system is designed to help a general practitioner in diagnosing selected lower limbs' dysfunctions (e.g. knee injuries) and also determine if a patient should be directed for further examination (e.g. x-ray or MRI). The measurement system components are hardware and software. For the hardware part we adapt the laser triangulation method. In this way we can evaluate functional and dynamic movements in a contact-free, non-invasive way, without the use of potentially harmful radiation. Furthermore, opposite to marker-based video-tracking systems, no preparation time is required. The software part consists of a data acquisition module, an image processing and point clouds (point cloud, set of points described by coordinates (x, y, z)) calculation module, a preliminary processing module, a feature-searching module and an external biomechanical module. The paper briefly presents the modules mentioned above with the focus on the feature-searching module. Also we present some measurement and analysis results. These include: parameters maps, landmarks trajectories in time sequence and animation of a simplified model of lower limbs.
Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil
National Research Council Canada - National Science Library
Silva, Tatiane M; Stets, Maria I; Mazzetto, André M; Andrade, Fabiana D; Pileggi, Sônia A. V; Fávero, Paulo R; Cantú, Marcelo D; Carrilho, Emanuel; Carneiro, Paulo I.B; Pileggi, Marcos
2007-01-01
The aim of this work was to isolate microorganisms from Brazilian soil contaminated with 2,4-D herbicide, and analyze the efficiency for 2,4D degradation, using high-performance liquid chromatography (HPLC...
Quantum fluctuations of rotating strings in AdS_5 \\times S^5
Fuji, H; Fuji, Hiroyuki; Satoh, Yuji
2005-01-01
We discuss quantum fluctuations of a class of rotating strings in AdS_5 \\times S^5. In particular, we develop a systematic method to compute the one-loop sigma-model effective actions in closed forms as expansions for large spins. As examples, we explicitly evaluate the leading terms for the constant radii strings in the SO(6) sector with two equal spins, the SU(2) sector, and the SL(2) sector. We also obtain the leading quantum corrections to the space-time energy for these sectors.
Charged Rotating AdS Black Hole and Its Thermodynamics in Conformal Gravity
Liu, Hai-Shan
2013-01-01
We obtain the charged rotating black hole in conformal gravity. The metric is asymptotic to the (anti-)de Sitter spacetime. The contribution to the metric from the charges has a slower falloff than that in the Kerr-Newman AdS black hole. We analyse the global structure and obtain all the thermodynamical quantities including the mass, angular momentum, electric/magnetic charges and their thermodynamical conjugates. We verify that the first law of thermodynamics holds. We also obtain the new neutral rotating black holes that are beyond Einstein metrics. In contrast to the static ones, these rotating black holes have no parameters associated with the massive spin-2 hair.
Symmetry operators of Killing spinors and superalgebras in AdS_5
Ertem, Ümit
2016-01-01
We construct the first-order symmetry operators of Killing spinor equation in terms of odd Killing-Yano forms. By modifying the Schouten-Nijenhuis bracket of Killing-Yano forms, we show that the symmetry operators of Killing spinors close into an algebra in AdS_5 spacetime. Since the symmetry operator algebra of Killing spinors corresponds to a Jacobi identity in extended Killing superalgebras, we investigate the possible extensions of Killing superalgebras to include higher-degree Killing-Ya...
The Elastodynamics of the Spacetime Continuum as a Framework for Strained Spacetime
Directory of Open Access Journals (Sweden)
Millette P. A.
2013-01-01
Full Text Available We derive the elastodynamics of the spacetime continuum by applying continuum me- chanical results to strained spacetime. Based on this model, a stress-strain relation is derived for the spacetime continuum. From the kinematic relations and the equilibrium dynamic equation of the spacetime continuum, we derive a series of wave equations: the displacement, dilatational, rotational and strain wave equations. Hence energy propa- gates in the spacetime continuum as wave-like deformations which can be decomposed into dilatations and distortions. Dilatations involve an invariant change in volume of the spacetime continuum which is the source of the associated rest-mass energy density of the deformation, while distortions correspond to a change of shape of the space- time continuum without a change in volume and are thus massless. The deformations propagate in the continuum by longitudinal and transverse wave displacements. This is somewhat reminiscent of wave-particle duality, with the transverse mode correspond- ing to the wave aspects and the longitudinal mode corresponding to the particle aspects. A continuity equation for deformations of the spacetime continuum is derived, where the gradient of the massive volume dilatation acts as a source term. The nature of the spacetime continuum volume force and the inhomogeneous wave equations need further investigation.
String solutions in $AdS_3\\times S^3\\times S^3\\times S^1$ with $B$-field
Bozhilov, Plamen
2016-01-01
We consider strings living in $AdS_3\\times S^3\\times S^3\\times S^1$ with nonzero $B$-field. By using specific ansatz for the string embedding, we obtain a class of solutions corresponding to strings moving in the whole ten dimensional space-time. For the $AdS_3$ subspace, these solutions are given in terms of incomplete elliptic integrals. For the two three-spheres, they are expressed in terms of Lauricella hypergeometric functions of many variables. The conserved charges, i.e. the string energy, spin and angular momenta, are also found.
Strings from 3D gravity: asymptotic dynamics of AdS$_3$ gravity with free boundary conditions
Apolo, Luis
2015-01-01
Pure three-dimensional gravity in anti-de Sitter space can be formulated as an SL(2,R) $\\times$ SL(2,R) Chern-Simons theory, and the latter can be reduced to a WZW theory at the boundary. In this paper we show that AdS$_3$ gravity with free boundary conditions is described by a string theory at the boundary whose target spacetime is also AdS$_3$. While boundary conditions in the standard construction of Coussaert, Henneaux, and van Driel are enforced through constraints on the WZW currents, we find that free boundary conditions are partially enforced through the string Virasoro constraints.
Non-coherent space-time code based on full diversity space-time block coding
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A non-unitary non-coherent space-time code which is capable of achieving full algebraic diversity is proposed based on full diversity space-time block coding. The error performance is optimized by transforming the non-unitary space-time code into unitary space-time code. By exploiting the desired structure of the proposed code, a grouped generalized likelihood ratio test decoding algorithm is presented to overcome the high complexity of the optimal algorithm. Simulation results show that the proposed code possesses high spectrum efficiency in contrast to the unitary space-time code despite slight loss in the SNR, and besides, the proposed grouped decoding algorithm provides good tradeoff between performance and complexity.
Spacetime-Free Approach to Quantum Theory and Effective Spacetime Structure
Raasakka, Matti
2017-01-01
Motivated by hints of the effective emergent nature of spacetime structure, we formulate a spacetime-free algebraic framework for quantum theory, in which no a priori background geometric structure is required. Such a framework is necessary in order to study the emergence of effective spacetime structure in a consistent manner, without assuming a background geometry from the outset. Instead, the background geometry is conjectured to arise as an effective structure of the algebraic and dynamical relations between observables that are imposed by the background statistics of the system. Namely, we suggest that quantum reference states on an extended observable algebra, the free algebra generated by the observables, may give rise to effective spacetime structures. Accordingly, perturbations of the reference state lead to perturbations of the induced effective spacetime geometry. We initiate the study of these perturbations, and their relation to gravitational phenomena.
32 CFR 1630.43 - Class 4-D: Minister of religion.
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b) Regular...
Sorption of atrazine, acetochlor, and 2,4-D by hardwood-derived biochar
Gonzalez, J. M.; Shipitalo, M. J.
2016-12-01
Offsite transport of herbicides and other agricultural pesticides to streams and other bodies of water can adversely impact drinking water supplies and aquatic ecology. Atrazine, acetochlor, and 2,4-D are herbicides commonly used to control weeds in maize (Zea mays) and soybean (Glycine max), the dominant crops in the U.S. Midwest. Unfortunately, these materials are frequently detected at high concentrations in surface runoff and subsurface drainage, especially when rainstorms occur shortly after their application. Thus, edge-of-field technologies employing effective sorbents to remove pesticides in water are needed to reduce this concern. In this study, we investigated the sorption of atrazine, acetochlor, and 2,4-D by a hardwood-derived biochar. Sorption kinetics and isotherms were determined for each pesticide using concentrations ranging from 5 to 100 ug L-1. The results from the kinetic sorption studies were fitted to pseudo first- and second-order reaction models and demonstrated that sorption was fast; in less than an hour > 90% of the added pesticides were sorbed and after 24 hours up to 100% was removed. The pH of the suspensions after the sorption kinetic and isotherm studies was 8.26 ± 0.51. Thus, because of the nature of the biochar and the pesticides used in this study, hydrophobic interactions appear to be the main mechanism of sorption. Furthermore, since the sorption was fast, we hypothesize that sorption occurred on the surface of biochar. The information from this study can be used to develop agricultural best management practices to remove pesticides in water.
Predicting lower mantle heterogeneity from 4-D Earth models
Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.
2016-04-01
basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).
A set of 4D pediatric XCAT reference phantoms for multimodality research
Energy Technology Data Exchange (ETDEWEB)
Norris, Hannah, E-mail: Hannah.norris@duke.edu; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Minhas, Anum; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)
2014-03-15
Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Ong, Yen Chin, E-mail: yenchin.ong@nordita.org
2016-02-15
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
Directory of Open Access Journals (Sweden)
Yen Chin Ong
2016-02-01
Full Text Available It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Relativity for everyone how space-time bends
Fischer, Kurt
2015-01-01
This book, now in a revised and updated second edition, explains the theory of special and general relativity in detail without approaching Einstein's life or the historical background. The text is formulated in such a way that the reader will be able to understand the essence intuitively, and new sections have been added on time machines, the twin paradoxes, and tensors. The first part of the book focuses on the essentials of special relativity. It explains the famous equivalence between mass and energy and tells why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies". General relativity is then addressed, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending under gravity. The climax of the book is the Einstein equation of gravity, which describes the way in which matter bends space-time. The read...
Holographic complexity and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)
2016-01-15
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Parikh, Maulik; Samantray, Prasant; Verlinde, Erik
2012-07-01
If the Hamiltonian of a quantum field theory is taken to be a timelike isometry, the vacuum state remains empty for all time. We search for such stationary vacua in anti-de Sitter space. By considering conjugacy classes of the Lorentz group, we find interesting one-parameter families of stationary vacua in three-dimensional anti-de Sitter space. In particular, there exists a family of rotating Rindler vacua, labeled by the rotation parameter β, which are related to the usual Rindler vacuum by nontrivial Bogolubov transformations. Rotating Rindler-AdS space possesses not only an observer-dependent event horizon but even an observer-dependent ergosphere. We also find rotating vacua in global AdS provided a certain region of spacetime is excluded.
Parikh, Maulik; Verlinde, Erik
2011-01-01
If the Hamiltonian of a quantum field theory is taken to be a timelike isometry, the vacuum state remains empty for all time. We search for such stationary vacua in anti-de Sitter space. By considering conjugacy classes of the Lorentz group, we find interesting one-parameter families of stationary vacua in three-dimensional anti-de Sitter space. In particular, there exists a family of rotating Rindler vacua, labeled by the rotation parameter beta, which are related to the usual Rindler vacuum by non-trivial Bogolubov transformations. Rotating Rindler-AdS space possesses not only an observer-dependent event horizon but even an observer-dependent ergosphere. We also find rotating vacua in global AdS provided a certain region of spacetime is excluded.
AdS crunches, CFT falls, and cosmological complexity
Barbón, José Luis
2015-01-01
This chapter discusses the holographic description of crunching AdS cosmologies. Crunching FRW models with hyperbolic spatial sections are dual to semiclassical condensates in deformed de Sitter (dS) CFTs. dS-invariant condensates with a sharply defined energy scale are induced by effective negative-definite relevant or marginal operators, which may or may not destabilize the CFT. This result is obtained by explicitly constructing a “complementarity map” for this model, given by a conformal transformation of the dS CFT into a static time-frame, which reveals the crunch as an infinite potential-energy fall in finite time. Quite generically, the crunch is associated with a finite-mass black hole if the dS O(d, 1) invariance is an accidental IR symmetry, broken to U(1) × O(d) in the UV. Any such regularization cuts off the eternity of dS spacetime. Equivalently, the dimension of the Hilbert space propagating into the crunch is finite only when dS is not eternal.
de Boer, J.
2000-01-01
In these notes we discuss various aspects of string theory in AdS spaces. We briefly review the formulation in terms of Green-Schwarz, NSR, and Berkovits variables, as well as the construction of exact conformal field theories with AdS backgrounds. Based on lectures given at the Kyoto YITP Workshop
Einstein Spacetimes with Constant Weyl Eigenvalues
Barnes, Alan
2014-01-01
Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero cosmological constant {\\Lambda}) with constant non-zero Weyl eigenvalus are considered. For type Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily has the value 2{\\Lambda}/3 and it turns out that the only possible spacetimes are some Kundt-waves considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D. For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution found long ago by Petrov using group theoretic methods. These results can be summarised by the statement that the only vacuum spacetimes with constant Weyl eigenvalues are either homogeneous or are Kundt space- times. This result is similar to that of Coley et al. who proved their result for general spacetimes under the assumption that all scalar invariants constructed from the curvature tensor and all its derivatives were constant. Some preliminary results are also presented f...
Deformed symmetries in noncommutative and multifractional spacetimes
Calcagni, Gianluca; Ronco, Michele
2017-02-01
We clarify the relation between noncommutative spacetimes and multifractional geometries, two quantum-gravity-related approaches where the fundamental description of spacetime is not given by a classical smooth geometry. Despite their different conceptual premises and mathematical formalisms, both research programs allow for the spacetime dimension to vary with the probed scale. This feature and other similarities led to ask whether there is a duality between these two independent proposals. In the absence of curvature and comparing the symmetries of both position and momentum space, we show that κ -Minkowski spacetime and the commutative multifractional theory with q -derivatives are physically inequivalent but they admit several contact points that allow one to describe certain aspects of κ -Minkowski noncommutative geometry as a multifractional theory and vice versa. Contrary to previous literature, this result holds without assuming any specific measure for κ -Minkowski. More generally, no well-defined ⋆-product can be constructed from the q -theory, although the latter does admit a natural noncommutative extension with a given deformed Poincaré algebra. A similar no-go theorem may be valid for all multiscale theories with factorizable measures. Turning gravity on, we write the algebras of gravitational first-class constraints in the multifractional theories with q - and weighted derivatives and discuss their differences with respect to the deformed algebras of κ -Minkowski spacetime and of loop quantum gravity.
Causality in noncommutative space-time
Energy Technology Data Exchange (ETDEWEB)
Neves, M.J.; Abreu, E.M.C. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil)
2011-07-01
Full text: Space-time noncommutativity has been investigated in the last years as a real possibility to describe physics at fundamental scale. This subject is associated with many tough issues in physics, i.e., strings, gravity, noncommutative field theories and others. The first formulation for a noncommutative spacetime was proposed by Snyder in 1947, where the object of noncommutativity is considered as a constant matrix that breaks the Lorentz symmetry. His objective was to get rid of the infinities that intoxicate quantum field theory. Unfortunately it was demonstrated not a success. Here we consider an alternative recent formulation known as Doplicher-Fredenhagen-Roberts-Amorim (DFRA) algebra in which the object of noncommutativity is treated as an ordinary coordinate by constructing an extended space-time with 4 + 6 dimensions (x + {phi}) - spacetime. In this way, the Lorentz symmetry is preserved in DFRA algebra. A quantum field theory is constructed in accordance with DFRA Poincare algebra, as well as a Lagrangian density formulation. By means of the Klein-Gordon equation in this (x + {phi}) - spacetime. We analyze the aspects of causality by studying the advanced and retarded Green functions. (author)
Weak Gravity Conjecture in AdS/CFT
Nakayama, Yu
2015-01-01
We study implications of the weak gravity conjecture in the AdS/CFT correspondence. Unlike in Minkowski spacetime, AdS spacetime has a physical length scale, so that the conjecture must be generalized with an additional parameter. We discuss possible generalizations and translate them into the language of dual CFTs, which take the form of inequalities involving the dimension and charge of an operator as well as the current and energy-momentum tensor central charges. We then test these inequalities against various CFTs to see if they are universally obeyed by all the CFTs. We find that certain CFTs, such as supersymmetric QCDs, do not satisfy them even in the large $N$ limit. This does not contradict the conjecture in AdS spacetime because the theories violating them are either unlikely or unclear to have weakly coupled gravitational descriptions, but it suggests that the CFT inequalities obtained here by naive translations do not apply beyond the regime in which weakly coupled gravitational descriptions are a...
Online Ad Assignment with an Ad Exchange
Dvořák, Wolfgang; Henzinger, Monika
2016-01-01
Ad exchanges are becoming an increasingly popular way to sell advertisement slots on the internet. An ad exchange is basically a spot market for ad impressions. A publisher who has already signed contracts reserving advertisement impressions on his pages can choose between assigning a new ad impression for a new page view to a contracted advertiser or to sell it at an ad exchange. This leads to an online revenue maximization problem for the publisher. Given a new impression to sell decide whe...