WorldWideScience

Sample records for 45-mhz needle transducer

  1. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging.

    Science.gov (United States)

    Yoon, Sangpil; Williams, Jay; Kang, Bong Jin; Yoon, Changhan; Cabrera-Munoz, Nestor; Jeong, Jong Seob; Lee, Sang Goo; Shung, K Kirk; Kim, Hyung Ham

    2015-06-01

    A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast.

  2. Novice performance of ultrasound-guided needle advancement: standard 38-mm transducer vs 25-mm hockey stick transducer.

    Science.gov (United States)

    Davies, T; Townsley, P; Jlala, H; Dowling, M; Bedforth, N; Hardman, J G; McCahon, R A

    2012-08-01

    The optimal method to develop expertise in ultrasound-guided regional anaesthesia is unknown. Studies of laryngoscopic expertise in novices demonstrate that the choice of laryngoscope affects performance. In this study, we aimed to compare the effect of two different linear array transducers (38-mm standard vs 25-mm hockey stick) on novice performance of ultrasound-guided needle advancement. Following randomisation, participants watched a video model of expert performance of ultrasound-guided needle advancement. Recruits performed the modelled task on a turkey breast model. The median (IQR [range]) composite error score was statistically significantly larger for participants in the hockey stick transducer group compared with the standard transducer group; 10.0 (7.3-14.3 [2.5-29.0]) vs 7.5 (4.5-10.0 [2.0-28.0]) respectively, (p = 0.01). This study has demonstrated that performance of ultrasound-guided needle advancement by novice operators after simple video instruction is better (as assessed using a composite error score) with a standard 38-mm transducer than with a 25-mm hockey stick transducer. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  3. A 45-MHz continuum survey of the northern hemisphere

    Science.gov (United States)

    Maeda, K.; Alvarez, H.; Aparici, J.; May, J.; Reich, P.

    We present a 45-MHz continuum survey in the declination range of +5 to +65 degrees in sets of maps in galactic and equatorial coordinates (epoch 1950). The observations were made at 46.5 MHz with a circular filled array of the Japanese Middle and Upper Atmosphere Radar (MU Radar) located at Shigaraki, Japan. The radar array consists of 475 crossed 3-element Yagis arranged within a circle of 103 m diameter, with a the half-power beam width of 3.6 degrees. In order to calibrate the data from the MU radar we used the Chilean 45-MHz survey which was made with an array of size comparable with that of the MU radar. The data processing was performed at the Maipu Radio Observatory, University of Chile, and this process brought the data to 45 MHz. The final maps were obtained at the Max-Plank-Institut fur Radioastronomie, Germany, using of the NOD2 program package.

  4. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.

    Science.gov (United States)

    Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk

    2007-03-01

    High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.

  5. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.-C. [Department of Electronic Engineering, Fu Jen Catholic University, Taipei 24205, Taiwan (China); Chen Ruimin; Zhou Qifa; Shung, K Kirk [NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Tsui, P.-H. [Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Humayun, Mark S [Doheny Retina Institute, Doheny Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)], E-mail: j648816n@ms23.hinet.net

    2009-10-07

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 {+-} 0.02 to 0.520 {+-} 0.06 dB mm{sup -1} MHz{sup -1} corresponding to an increase in Young's modulus from 6 {+-} 0.4 to 96 {+-} 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

  6. Statistical characterization of the dynamic human body communication channel at 45 MHz.

    Science.gov (United States)

    Nie, Zedong; Ma, Jingjing; Chen, Hong; Wang, Lei

    2013-01-01

    The dynamic human body communication (HBC) propagation channel at 45 MHz was statistical characterized in this paper. A large amount of measurement data has been gathered in practical environment with real activities -treadmill running at different speeds in a lab room. The received power between two lower legs was acquired from three volunteers, with more than 60,000 snap shot of data in total. The statistical analyses confirmed that the HBC propagation channel at 45 MHz followed the Gamma and Lognormal distributions at the slower (2 km/h and 4 km/h) and faster (6 km/h and 8 km/h) running activities, respectively. The channel is insensitive to body motion with the maximum average fade duration is 0.0413 s and the most averaging bad channel duration time being less than 60 ms with the percentage of the bad channel duration time being less than 4.35%.

  7. A partial 45 MHz sky temperature map obtained from the observations of five ST radars

    Directory of Open Access Journals (Sweden)

    B. Campistron

    Full Text Available A sky temperature map at 45 MHz covering declination between + 30° and + 60°  is presented. The sampling in right ascension is 20 min (~5° and 2°  in declination in most of the map. The originality of the work was to use cosmic emission measurements from five VHF Stratosphere-Troposphere (ST radars collected during long periods of routine meteorological surveys. This map, which has an accuracy in temperature of about 600 K, is intended first for radar reflectivity calibration and system performance monitoring. The presence of two strong radio sources, Cassiopeia A and Cygnus A, can also serve as the verification of the beam diagram, beam width, and beam pointing direction of the antenna. Finally, this work is an attempt to show the potentiality of ST radar for astronomical purposes.

    Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (radio astronomy

  8. Implementation of a Rotational Ultrasound Biomicroscopy System Equipped with a High-Frequency Angled Needle Transducer — Ex Vivo Ultrasound Imaging of Porcine Ocular Posterior Tissues

    Directory of Open Access Journals (Sweden)

    Tae-Hoon Bok

    2014-09-01

    Full Text Available The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270° ~ 330° and at a distance range of 6 ~ 7 mm, whereas the tissues of the other eye were observed in relative angle range of 160° ~ 220° and at a distance range of 7.5 ~ 9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system.

  9. Analysis of Bromination of Ethylbenzene Using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Isaac-Lam, Meden F.

    2014-01-01

    A 45 MHz benchtop NMR spectrometer is used to identify the structures and determine the amount of 1-bromoethylbenzene and 1,1-dibromoethylbenzene produced from free-radical bromination of ethylbenzene. The experiment is designed for nonchemistry majors, specifically B.S. Biology students, in a predominantly undergraduate institution with…

  10. Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers.

    Science.gov (United States)

    Siebert, Frank-André; Hirt, Markus; Niehoff, Peter; Kovács, György

    2009-08-01

    Ultrasound imaging is becoming increasingly important in prostate brachytherapy. In high-dose-rate (HDR) real-time planning procedures the definition of the implant needles is often performed by transrectal ultrasound. This article describes absolute measurements of the visibility and accuracy of manual detection of implant needle tips and compares measurement results of different biplane ultrasound systems in transversal and longitudinal (i.e., sagittal) ultrasound modes. To obtain a fixed coordinate system and stable conditions the measurements were carried out in a water tank using a dedicated marker system. Needles were manually placed in the phantom until the observer decided by the real-time ultrasound image that the zero position was reached. A comparison of three different ultrasound systems yielded an offset between 0.8 and 3.1 mm for manual detection of the needle tip in ultrasound images by one observer. The direction of the offset was discovered to be in the proximal direction, i.e., the actual needle position was located more distally compared to the ultrasound-based definition. In the second part of the study, the ultrasound anisotropy of trocar implant needles is reported. It was shown that the integrated optical density in a region of interest around the needle tip changes with needle rotation. Three peaks were observed with a phase angle of 120 degrees. Peaks appear not only in transversal but also in longitudinal ultrasound images, with a phase shift of 60 degrees. The third section of this study shows results of observer dependent influences on needle tip detection in sagittal ultrasound images considering needle rotation. These experiments were carried out using the marker system in a water tank. The needle tip was placed exactly at the position z=0 mm. It was found that different users tend to differently interpret the same ultrasound images. The needle tip was manually detected five times in the ultrasound images by three experienced observers

  11. Needle visualization using photoacoustic effect

    Science.gov (United States)

    Kang, Hyun Jae; Guo, Xiaoyu; Cheng, Alexis; Choti, Michael A.; Boctor, Emad M.

    2015-03-01

    We investigated a novel needle visualization using the PA effect to enhance needle-tip tracking. An optical fiber and laser source are used to generate acoustic waves inside the needle with the PA effect. Acoustic waves are generated along the needle. Some amount of acoustic energy leaks into the surrounding material. The leakage of acoustic waves is captured by a conventional US transducer and US channel data collection system. Then, the collected data are converted to a PA image. The needle-tip can be visualized more clearly in this PA image than a general US brightness mode image.

  12. Microinterferometer transducer

    Science.gov (United States)

    Corey, III, Harry S.

    1979-01-01

    An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.

  13. Acoustic transducer

    Science.gov (United States)

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  14. Needle Biopsy

    Science.gov (United States)

    ... for a day or two During the needle biopsy Your health care team will position you in ... if you're feeling uncomfortable. After the needle biopsy Once your doctor has collected enough cells or ...

  15. Ultrasonic transducer

    Science.gov (United States)

    Taylor, Steven C.; Kraft, Nancy C.

    2007-03-13

    An ultrasonic transducer having an effective center frequency of about 42 MHz; a bandwidth of greater than 85% at 6 dB; a spherical focus of at least 0.5 inches in water; an F4 lens; a resolution sufficient to be able to detect and separate a 0.005 inch flat-bottomed hole at 0.005 inches below surface; and a beam size of approximately 0.006–0.008 inches measured off a 11/2 mm ball in water at the transducer's focal point.

  16. Pressure transducer

    Science.gov (United States)

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  17. Acoustic impedance matching of piezoelectric transducers to the air.

    Science.gov (United States)

    Gómez Alvarez-Arenas, Tomás E

    2004-05-01

    The purpose of this work is threefold: to investigate material requirements to produce impedance matching layers for air-coupled piezoelectric transducers, to identify materials that meet these requirements, and to propose the best solution to produce air-coupled piezoelectric transducers for the low megahertz frequency range. Toward this end, design criteria for the matching layers and possible configurations are reviewed. Among the several factors that affect the efficiency of the matching layer, the importance of attenuation is pointed out. A standard characterization procedure is applied to a wide collection of candidate materials to produce matching layers. In particular, some types of filtration membranes are studied. From these results, the best materials are identified, and the better matching configuration is proposed. Four pairs of air-coupled piezoelectric transducers also are produced to illustrate the performance of the proposed solution. The lowest two-way insertion loss figure is -24 dB obtained at 0.45 MHz. This increases for higher frequency transducers up to -42 dB at 1.8 MHz and -50 at 2.25 MHz. Typical bandwidth is about 15-20%.

  18. Iterative reconstruction of the transducer surface velocity.

    Science.gov (United States)

    Alles, Erwin; van Dongen, Koen

    2013-05-01

    Ultrasound arrays used for medical imaging consist of many elements placed closely together. Ideally, each element vibrates independently. However, because of mechanical coupling, crosstalk between neighboring elements may occur. To quantify the amount of crosstalk, the transducer velocity distribution should be measured. In this work, a method is presented to reconstruct the velocity distribution from far-field pressure field measurements acquired over an arbitrary surface. The distribution is retrieved from the measurements by solving an integral equation, derived from the Rayleigh integral of the first kind, using a conjugate gradient inversion scheme. This approach has the advantages that it allows for arbitrary transducer and pressure field measurement geometries, as well as the application of regularization techniques. Numerical experiments show that measuring the pressure field along a hemisphere enclosing the transducer yields significantly more accurate reconstructions than measuring along a parallel plane. In addition, it is shown that an increase in accuracy is achieved when the assumption is made that all points on the transducer surface vibrate in phase. Finally, the method has been tested on an actual transducer with an active element of 700 × 200 μm which operates at a center frequency of 12.2 MHz. For this transducer, the velocity distribution has been reconstructed accurately to within 50 μm precision from pressure measurements at a distance of 1.98 mm (=16λ0) using a 200-μm-diameter needle hydrophone.

  19. Steerable real-time sonographically guided needle biopsy.

    Science.gov (United States)

    Buonocore, E; Skipper, G J

    1981-02-01

    A method for dynamic real-time ultrasonic guidance for percutaneous needle biopsy has been successful in obtaining cytologic and histologic specimens from abdominal masses. The system depends on a real-time ultrasonic transducer that has been rigidly attached to a laterally placed steerable needle holder. Using simple trigonometric functions, a chart has been derived that gives the exact angulation and needle length to produce quick, reliable, guided needle placements. Examples of successful renal, hepatobiliary, and retroperitoneal biopsies are presented. Advantages of this technique include speed, accuracy, low cost, three-dimensional format, and the omission of contrast media and radiation.

  20. Macro tree transducers

    NARCIS (Netherlands)

    Engelfriet, Joost; Vogler, Heiko

    1985-01-01

    Macro tree transducers are a combination of top-down tree transducers and macro grammars. They serve as a model for syntax-directed semantics in which context information can be handled. In this paper the formal model of macro tree transducers is studied by investigating typical automata theoretical

  1. Megahertz tonpilz transducer

    Science.gov (United States)

    Van Tol, Dave; Hughes, W. Jack

    1999-06-01

    The tonpilz configuration is applied to a transducer operating in the megahertz frequency range. The KLM model is used to design the transducer using readily available components. The construction techniques used are the same as those applied to standard high frequency transducers. Modeled and measured pulse-echo results display a high level of agreement, but impedance and sensitivity comparisons are less promising.

  2. Macro tree transducers

    NARCIS (Netherlands)

    Engelfriet, Joost; Vogler, Heiko

    1985-01-01

    Macro tree transducers are a combination of top-down tree transducers and macro grammars. They serve as a model for syntax-directed semantics in which context information can be handled. In this paper the formal model of macro tree transducers is studied by investigating typical automata theoretical

  3. Needle autopsy

    Directory of Open Access Journals (Sweden)

    Philip Davis Marsden

    1997-04-01

    Full Text Available Often in tropical practice there is not time or conditions to do a proper autopsy on a patient who has died. A needle biopsy technique is described for limited closed autopsy examination to clariffy organ histology. In this way the clinician may resolve puzzling fatal disease.Muitas vezes, em clínicas de países tropicais, não há tempo nem condições para se realizar uma necropsia adequada em um paciente que foi a óbito. Um técnica de biópsia por punção é descrita para fins de exame em necropsia limitadamente fechada, para esclarecimento da histologia do órgão. Dessa maneira, o clínico pode resolver enigmas de doenças fatais.

  4. Handbook of force transducers

    CERN Document Server

    Stefanescu, Dan Mihai

    2011-01-01

    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  5. Gas speed flow transducer

    Directory of Open Access Journals (Sweden)

    Godovaniouk V. N.

    2011-08-01

    Full Text Available The design of a gas speed flow transducer using the coupling of gas speed and heat streams within the transducer itself is proposed. To maintain the heat balance between two thermoresistors under gas stream at different temperatures, it provides energy consumption monitoring. The detailed combined planar technology for the transducer production is presented. The worked-out measurement procedure allows to make measurements in the temperature range. Information enough to organize production of cheap, reliable and precise gas speed flow transducers is given.

  6. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed......, and a high voltage attenuation interface for an audio analyzer is presented. THD below 0:1% is reported....

  7. An Inexpensive Position Transducer.

    Science.gov (United States)

    Fox, J.; And Others

    1989-01-01

    Described is a position transducer used to convert the position of an object into a voltage read by a computer with use of an interface board. The arrangement of the apparatus, electronic circuit, and typical graph displays are presented. Discussed is the instructional use of the transducer. (YP)

  8. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    deviation of 5.5 % to 11.0 %. Finite element modeling of piezoceramics in combination with Field II is addressed and reveals the influence of restricting the modeling of transducers to the one-dimensional case. An investigation on modeling capacitive micromachined ultrasonic transducers (CMUT)s with Field......This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...... II is addressed. It is shown how a single circular CMUT cell can be well approximated with a simple square transducer encapsulating the cell, and how this influence the modeling of full array elements. An optimal cell discretization with Field II’s mathematical elements is addressed as well...

  9. Triple-resonant transducers.

    Science.gov (United States)

    Butler, Stephen C

    2012-06-01

    A detailed analysis is presented of two novel multiple-resonant transducers which produce a wider transmit response than that of a conventional Tonpilz-type transducer. These multi-resonant transducers are Tonpilz-type longitudinal vibrators that produce three coupled resonances and are referred to as triple-resonant transducers (TRTs). One of these designs is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, second central mass, second compliant spring, and a piston-radiating head mass. The other TRT design is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, and head mass with a quarter-wave matching layer of poly(methyl methacrylate) on the head mass. Several prototype transducer element designs were fabricated that demonstrated proof-of-concept.

  10. Programming macro tree transducers

    DEFF Research Database (Denmark)

    Bahr, Patrick; Day, Laurence E.

    2013-01-01

    A tree transducer is a set of mutually recursive functions transforming an input tree into an output tree. Macro tree transducers extend this recursion scheme by allowing each function to be defined in terms of an arbitrary number of accumulation parameters. In this paper, we show how macro tree...... transducers can be concisely represented in Haskell, and demonstrate the benefits of utilising such an approach with a number of examples. In particular, tree transducers afford a modular programming style as they can be easily composed and manipulated. Our Haskell representation generalises the original...... definition of (macro) tree transducers, abolishing a restriction on finite state spaces. However, as we demonstrate, this generalisation does not affect compositionality....

  11. Programming macro tree transducers

    DEFF Research Database (Denmark)

    Bahr, Patrick; Day, Laurence E.

    2013-01-01

    A tree transducer is a set of mutually recursive functions transforming an input tree into an output tree. Macro tree transducers extend this recursion scheme by allowing each function to be defined in terms of an arbitrary number of accumulation parameters. In this paper, we show how macro tree...... transducers can be concisely represented in Haskell, and demonstrate the benefits of utilising such an approach with a number of examples. In particular, tree transducers afford a modular programming style as they can be easily composed and manipulated. Our Haskell representation generalises the original...... definition of (macro) tree transducers, abolishing a restriction on finite state spaces. However, as we demonstrate, this generalisation does not affect compositionality....

  12. Compact Transducers and Arrays

    Science.gov (United States)

    2005-05-01

    Soc. Am., 104, pp.64-71 44 25.Decarpigny, J.N., J.C. Debus, B. Tocquet & D. Boucher. 1985. "In-Air Analysis Of Piezoelectric Tonpilz Transducers In A... Transducers and Arrays Final Report May 2005 Contacts: Dr. Robert E. Newnham The Pennsylvania State University, 251 MRL, University Park, PA 16802 phone...814) 865-1612 fax: (814) 865-2326 email: ....c xx.....i.i.....ht.. .u a.p.u..c.e.du. Dr. Richard J. Meyer, Jr. Systems Engineering ( Transducers ), ARL

  13. Needle Biopsy of the Lung

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Needle Biopsy of the Lung Needle biopsy of the lung ... Needle Biopsy of Lung Nodules? What is Needle Biopsy of the Lung? A lung nodule is relatively ...

  14. Fine Needle Aspiration

    Science.gov (United States)

    ... FNA), also called fine needle biopsy, is a type of biopsy that can be used to diagnose many types ... in which case another FNA or a different type of biopsy procedure may needed. Because the needle is so ...

  15. Pressure Transducer Locations

    Data.gov (United States)

    National Aeronautics and Space Administration — Files are located here, defining the locations of the pressure transducers on the HIRENASD model. These locations also correspond to the locations that analysts...

  16. Konstruktion af transducer

    DEFF Research Database (Denmark)

    Henriksen, Lars; Nielsen, Martin Pram

    Formålet med dette midtvejsprojekt er at udarbejde en transducer til måling af pressers stivhed. Dette er gjort på baggrund af en gennemgang af både presse- og stativ-typer samtidig med at udbøjningssituationen beskrives. Der introduceres en ide, der udgør grundkonceptet for opmålingsproceduren o...... færdige transducer – Load cellen. Strain gauge sørger for dataopsamlingen fra load cellen. Disse kalibreres således at transduceren er klar til de videre målinger der ligger i forlængelse af dette projekt....

  17. Improved transvenous liver biopsy needle

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Matzen, P; Christoffersen, P

    1979-01-01

    A modified type of the standard transvenous cholangiography biopsy needle is described. The modified tranvenous liver biopsy needle caused only minimal artefactual changes of the liver biopsy specimens. The new type of biopsy needle is a modified Menghini needle. The conventional Menghini needle...... should be avoided for transvenous catheter biopsies because of risk of leaving catheter fragments in the liver....

  18. Glass-windowed ultrasound transducers.

    Science.gov (United States)

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  19. Modeling of phased array transducers.

    Science.gov (United States)

    Ahmad, Rais; Kundu, Tribikram; Placko, Dominique

    2005-04-01

    Phased array transducers are multi-element transducers, where different elements are activated with different time delays. The advantage of these transducers is that no mechanical movement of the transducer is needed to scan an object. Focusing and beam steering is obtained simply by adjusting the time delay. In this paper the DPSM (distributed point source method) is used to model the ultrasonic field generated by a phased array transducer and to study the interaction effect when two phased array transducers are placed in a homogeneous fluid. Earlier investigations modeled the acoustic field for conventional transducers where all transducer points are excited simultaneously. In this research, combining the concepts of delayed firing and the DPSM, the phased array transducers are modeled semi-analytically. In addition to the single transducer modeling the ultrasonic fields from two phased array transducers placed face to face in a fluid medium is also modeled to study the interaction effect. The importance of considering the interaction effect in multiple transducer modeling is discussed, pointing out that neighboring transducers not only act as ultrasonic wave generators but also as scatterers.

  20. Curved PVDF airborne transducer.

    Science.gov (United States)

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  1. Future needs for biomedical transducers

    Science.gov (United States)

    Wooten, F. T.

    1971-01-01

    In summary there are three major classes of transducer improvements required: improvements in existing transducers, needs for unexploited physical science phenomena in transducer design, and needs for unutilized physiological phenomena in transducer design. During the next decade, increasing emphasis will be placed on noninvasive measurement in all of these areas. Patient safety, patient comfort, and the need for efficient utilization of the time of both patient and physician requires that noninvasive methods of monitoring be developed.

  2. Needle biopsy of histoplasmosis

    Energy Technology Data Exchange (ETDEWEB)

    Sinner, W.N.

    1980-12-01

    A case of histoplasmosis, simulating a bronchogenic carcinoma, was needle biopsied. Histoplasma capsulatum organisms were found in great numbers. Needle biopsy established an accurate diagnosis making an exploratory thoracotomy unnecessary and preventing the patient from an already planned lobectomy. Specific treatment with Amphotericin B healed the lesion.

  3. Precessing Ferromagnetic Needle Magnetometer.

    Science.gov (United States)

    Jackson Kimball, Derek F; Sushkov, Alexander O; Budker, Dmitry

    2016-05-13

    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, Nℏ≫IΩ (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin Nℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t^{-3/2}. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.

  4. Three dimensional transducer

    Science.gov (United States)

    Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje; Feng, Yuxin; Cyrankowski, Edward; Major, Ryan

    2014-09-30

    A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.

  5. Nano-optomechanical transducer

    Science.gov (United States)

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  6. Three dimensional transducer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje; Feng, Yuxin; Cyrankowski, Edward; Major, Ryan

    2014-09-30

    A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.

  7. Numerical transducer modelling

    DEFF Research Database (Denmark)

    Cutanda, Vicente

    1999-01-01

    Numerical modelling is of importance for the design, improvement and study of acoustic transducers such as microphones and accelerometers. Techniques like the boundary element method and the finite element method are the most common supplement to the traditional empirical and analytical approaches...... errors and instabilities in the computations of numerical solutions. An investigation to deal with this narrow-gap problem has been carried out....

  8. Stress wave focusing transducers

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  9. Frequency steerable acoustic transducers

    Science.gov (United States)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  10. Fluid force transducer

    Science.gov (United States)

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  11. Polymer film composite transducer

    Science.gov (United States)

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  12. Steerable Doppler transducer probes

    Energy Technology Data Exchange (ETDEWEB)

    Fidel, H.F.; Greenwood, D.L.

    1986-07-22

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis.

  13. Transducers for ultrasonic limb plethysmography

    Science.gov (United States)

    Nickell, W. T.; Wu, V. C.; Bhagat, P. K.

    1983-01-01

    The design, construction, and performance characteristics of ultasonic transducers suitable for limb plethysmography are presented. Both 3-mm-diameter flat-plate and 12-mm-diameter hemispheric ceramic transducers operating at 2 MHz were fitted in 1-mm thick epoxy-resin lens/acoustic-coupling structures and mounted in exercie-EKG electrode housings for placement on the calf using adhesive collars. The effects of transducer directional characteristics on performance under off-axis rotation and the electrical impedances of the transducers were measured: The flat transducer was found to be sensitive to rotation and have an impedance of 800 ohms; the hemispheric transducer, to be unaffected by rotation and have an impedance of 80 ohms. The use of hemispheric transducers as both transmitter and receiver, or of a flat transducer as transmitter and a hemispheric transducer as receiver, was found to produce adequate dimensional measurements, with minimum care in transducer placement, in short-term physiological experiments and long-term (up to 7-day) attachment tests.

  14. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  15. Numerical transducer modelling

    DEFF Research Database (Denmark)

    Cutanda, Vicente

    1999-01-01

    Numerical modelling is of importance for the design, improvement and study of acoustic transducers such as microphones and accelerometers. Techniques like the boundary element method and the finite element method are the most common supplement to the traditional empirical and analytical approaches....... However, there are several difficulties to be addressed that are derived from the size, internal structure and precision requirements that are characteristic of these devices. One of them, the presence of very close surfaces (e.g. the microphone diaphragm and back-electrode), leads to machine precision...

  16. Wellbore pressure transducer

    Science.gov (United States)

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  17. RADIO-ACTIVE TRANSDUCER

    Science.gov (United States)

    Wanetick, S.

    1962-03-01

    ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

  18. Handling sharps and needles

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000444.htm Handling sharps and needles To use the sharing features ... Health Administration. OSHA fact sheet: protecting yourself when handling contaminated sharps. Updated January 2011. Available at: www. ...

  19. Myocardial wall-thickness transducer

    Science.gov (United States)

    Feldstein, C.; Lewis, G. W.; Silver, R. H.; Culler, V. H.

    1976-01-01

    Device consists of highly compliant circular beam attached to piezoresistive strain gage and barbed needle. Radial deflection of myocardium is measured with minimal disturbance of normal heart functions.

  20. Transducer of linear displacements

    Science.gov (United States)

    Malamed, Y. R.

    1984-02-01

    The basic PLP transducer is designed for a UIM-29 microscope and a 2-coordinate measuring instrument with electronic digital readout. Its optical system consists of an AL-107B light-emitting diode as light source, two condenser lenses, a special wedge carrying two pairs of joined receiver lenses, a prism-mirror, a photoreceiver, a wedge-shape transparent replica of a twin diffraction grating which prevents light reflected by the air-glass interface from focusing on the receiver photodiodes, and a reflective replica of a diffraction grating on a movable carriage. The already available three models of this transducer are PLP1-0.2, PLP1-0.5, and PLP1-1.0 with respectively 625, 250, 125 lines/mm on the transparent replica and respectively 312.5, 125, 62.5 lines/mm on the reflective replica. The scale of moire-interference fringes characterizing the shift between both diffraction gratings per grating period (9.16 mm in each model) is respectively 0.8, 2.0, 4.0 microns and the angle between the two arrays of grating lines on the transparent replica is respectively 36 + or - 4 deg, 90 + or - 10 deg, 190 + or - 20 deg.

  1. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The

  2. Miniature multimode monolithic flextensional transducers.

    Science.gov (United States)

    Hladky-Hennion, Anne-Christine; Uzgur, A Erman; Markley, Douglas C; Safari, Ahmad; Cochran, Joe K; Newnham, Robert E

    2007-10-01

    Traditional flextensional transducers classified in seven groups based on their designs have been used extensively in 1-100 kHz range for mine hunting, fish finding, oil explorations, and biomedical applications. In this study, a new family of small, low cost underwater, and biomedical transducers has been developed. After the fabrication of transducers, finite-elements analysis (FEA) was used extensively in order to optimize these miniature versions of high-power, low-frequency flextensional transducer designs to achieve broad bandwidth for both transmitting and receiving, engineered vibration modes, and optimized acoustic directivity patterns. Transducer topologies with various shapes, cross sections, and symmetries can be fabricated through high-volume, low-cost ceramic and metal extrusion processes. Miniaturized transducers posses resonance frequencies in the range of above 1 MHz to below 10 kHz. Symmetry and design of the transducer, polling patterns, driving and receiving electrode geometries, and driving conditions have a strong effect on the vibration modes, resonance frequencies, and radiation patterns. This paper is devoted to small, multimode flextensional transducers with active shells, which combine the advantages of small size and low-cost manufacturing with control of the shape of the acoustic radiation/receive pattern. The performance of the transducers is emphasized.

  3. Numerical Transducer Modeling

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... tools and implementation techniques are described and performance tests are carried out. The equations that govern the motion of fluids with losses and the corresponding boundary conditions are reduced to a form that is tractable for the Boundary Element Method (BEM) by adopting some hypotheses...... that are allowable in this case: linear variations, absence of flow, harmonic time variation, thermodynamical equilibrium and physical dimensions much larger than the molecular mean free path. A formulation of the BEM is also developed with an improvement designed to cope with the numerical difficulty associated...

  4. Optically transduced MEMS magnetometer

    Science.gov (United States)

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  5. Electromagnetic acoustic transducer

    Science.gov (United States)

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  6. Calibration of Underwater Sound Transducers

    Directory of Open Access Journals (Sweden)

    H.R.S. Sastry

    1983-07-01

    Full Text Available The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  7. On a New Optical Transducer

    Directory of Open Access Journals (Sweden)

    Cornel Bit

    2015-07-01

    Full Text Available This paper presents a new type of mechano – optical force transducer which to be used in different mechanical experimental investigations. This transducer has been integrated within a mechanical modulus, providing a useful tool for this kind of measurements. The use of optical methods for the elastic contact measurements has several important advantages.

  8. Trigger Point Dry Needling.

    Science.gov (United States)

    2017-03-01

    Increasingly, physical therapists in the United States and throughout the world are using dry needling to treat musculoskeletal pain, even though this treatment has been a controversial addition to practice. To better generalize to physical therapy practice the findings about dry needling thus far, the authors of a study published in the March 2017 issue of JOSPT identified the need for a systematic review examining the effectiveness of dry needling performed by physical therapists on people with musculoskeletal pain. Their review offers a meta-analysis of data from several included studies and assesses the evidence for risks of bias. J Orthop Sports Phys Ther 2017;47(3):150. doi:10.2519/jospt.2017.0502.

  9. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    Science.gov (United States)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  10. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  11. Needle breakage: incidence and prevention.

    Science.gov (United States)

    Malamed, Stanley F; Reed, Kenneth; Poorsattar, Susan

    2010-10-01

    Since the introduction of nonreusable, stainless steel dental local anesthetic needles, needle breakage has become an extremely rare complication of dental local anesthetic injections. But although rare, dental needle breakage can, and does, occur. Review of the literature and personal experience brings into focus several commonalities which, when avoided, can minimize the risk of needle breakage with the fragment being retained from occurring. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Passive wireless ultrasonic transducer systems

    Science.gov (United States)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2014-02-01

    Inductive coupling and capacitive coupling both offer simple solutions to wirelessly probe ultrasonic transducers. This paper investigates the theory and feasibility of such system in the context of non-destructive evaluation (NDE) applications. Firstly, the physical principles and construction of an inductively coupled transducer system (ICTS) and a capacitively coupled transducer system (CCTS) are introduced. Then the development of a transmission line model with the measured impedance of a bonded piezoelectric ceramic disc representing a sensor attached to an arbitrary solid substrate for both systems is described. The models are validated experimentally. Several applications of CCTS are presented, such CCTS for the underwater and through-composite testing.

  13. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is to fabricate, characterize, and verify performance of a new type of frequency steered acoustic transducer...

  14. An enzyme logic bioprotonic transducer

    Science.gov (United States)

    Miyake, Takeo; Josberger, Erik E.; Keene, Scott; Deng, Yingxin; Rolandi, Marco

    2015-01-01

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdHx electrode as a bioprotonic transducer that connects H+ currents in solution into an electronic signal. This transducer exploits the reversible formation of PdHx in solution according to PdH↔Pd + H+ + e-, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic and gate for glucose and NAD+. PdHx formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output.

  15. Laboratories practice to transducers study

    Directory of Open Access Journals (Sweden)

    Kleber Romero Felizardo

    2004-01-01

    Full Text Available The objective of this work was to gather a collection of practical laboratory experiences , to discover the physical principles of different types of electrical transducers , and to compare them with theoretical models.

  16. Fixture for holding testing transducer

    Science.gov (United States)

    Wagner, Thomas A.; Engel, Herbert P.

    1984-01-01

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  17. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...

  18. Transducer Field Imaging Using Acoustography

    Directory of Open Access Journals (Sweden)

    Jaswinder S. Sandhu

    2012-01-01

    Full Text Available A common current practice for transducer field mapping is to scan, point-by-point, a hydrophone element in a 2D raster at various distances from the transducer radiating surface. This approach is tedious, requiring hours of scanning time to generate full cross-sectional and/or axial field distributions. Moreover, the lateral resolution of the field distribution image is dependent on the indexing steps between data points. Acoustography is an imaging process in which an acousto-optical (AO area sensor is employed to record the intensity of an ultrasound wavefield on a two-dimensional plane. This paper reports on the application of acoustography as a simple but practical method for assessing transducer field characteristics. A case study performed on a commercial transducer is reported, where the radiated fields are imaged using acoustography and compared to the corresponding quantities that are predicted numerically.

  19. Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging

    OpenAIRE

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 (PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at ...

  20. Acoustic transducer with damping means

    Science.gov (United States)

    Smith, Richard W.; Adamson, Gerald E.

    1976-11-02

    An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.

  1. Characterization of Dielectric Electroactive Polymer transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah;

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide...

  2. CASPER: computer-aided segmentation of imperceptible motion-a learning-based tracking of an invisible needle in ultrasound.

    Science.gov (United States)

    Beigi, Parmida; Rohling, Robert; Salcudean, Septimiu E; Ng, Gary C

    2017-06-24

    This paper presents a new micro-motion-based approach to track a needle in ultrasound images captured by a handheld transducer. We propose a novel learning-based framework to track a handheld needle by detecting microscale variations of motion dynamics over time. The current state of the art on using motion analysis for needle detection uses absolute motion and hence work well only when the transducer is static. We have introduced and evaluated novel spatiotemporal and spectral features, obtained from the phase image, in a self-supervised tracking framework to improve the detection accuracy in the subsequent frames using incremental training. Our proposed tracking method involves volumetric feature selection and differential flow analysis to incorporate the neighboring pixels and mitigate the effects of the subtle tremor motion of a handheld transducer. To evaluate the detection accuracy, the method is tested on porcine tissue in-vivo, during the needle insertion in the biceps femoris muscle. Experimental results show the mean, standard deviation and root-mean-square errors of [Formula: see text], [Formula: see text] and [Formula: see text] in the insertion angle, and 0.82, 1.21, 1.47 mm, in the needle tip, respectively. Compared to the appearance-based detection approaches, the proposed method is especially suitable for needles with ultrasonic characteristics that are imperceptible in the static image and to the naked eye.

  3. The Terry Biopsy Needle

    Science.gov (United States)

    Bond, Alan F.; Murphy, Fergus A.; Nanson, Eric M.

    1963-01-01

    Six illustrative cases are reported to demonstrate the versatility of the Terry biopsy needle as a useful instrument for obtaining satisfactory biopsy specimens from the liver and from other tissues as well. The apparatus and method of use are described and illustrated. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6aFig. 6bFig. 7Fig. 8Fig. 9Fig. 10Fig. 11 PMID:13968726

  4. Freehand versus guided breast biopsy: comparison of accuracy, needle motion, and biopsy time in a tissue model.

    Science.gov (United States)

    Bluvol, Nathan; Kornecki, Anat; Shaikh, Allison; Del Rey Fernandez, David; Taves, Donald H; Fenster, Aaron

    2009-06-01

    Freehand ultrasound-guided breast biopsy may present difficulties in needle visualization within the scanning plane of the ultrasound image. Scanning plane and needle misalignment, an unknown needle insertion site (relative to the ultrasound image), needle trajectory before insertion, and physician experience play roles in the difficulty of these biopsy procedures. The objective of our study was to compare the currently used freehand technique with the use of a needle guidance system that limits needle motion to within the ultrasound scanning plane for breast biopsy. We developed a needle guidance system for breast biopsy that is composed of an electronically tracked passive mechanical arm and braking mechanism. The system was attached to an ultrasound transducer, and biopsy needles were inserted through the guidance arm. Both experienced and inexperienced radiologists performed ultrasound-guided biopsy on simulated breast lesions with and without the guidance system. Success rates were scored on the basis of the presence of lesions in the core biopsy samples. The biopsy procedures were analyzed using procedure time and total needle tip travel distance before firing. The biopsy success rates were greater using the guidance system (p < 0.05) than using the freehand technique. Experienced radiologists and inexperienced radiologists performed biopsy significantly faster using the needle guidance system (p < 0.001). Additionally, needle tip motion was significantly greater when using the freehand technique (p < 0.001) than using the guidance system. Biopsy using the developed needle guidance system is feasible and its use decreases procedure time and decreases needle motion; thus, it has the potential to reduce patient morbidity. Moreover, less operator experience is required for a successful breast biopsy using the needle guidance system than using the freehand technique.

  5. Ultrasonic Transducer Irradiation Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Joe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Paul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States); Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States); Rempe, Joy [Rempe and Associates, Idaho Falls, ID (United States)

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  6. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  7. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    NARCIS (Netherlands)

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  8. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    NARCIS (Netherlands)

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  9. Calculations for Piezoelectric Ultrasonic Transducers

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1986-01-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a boay which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation...... and in particular the finite element method are considered. The finite element method is utilized for analysis of axisymmetric transducers. An explicit, fully piezoelectric, triangular ring element, with linear variations in displacememnt and electric potential is given. The influence of a fluid half-space is also...

  10. Model of a Piezoelectric Transducer

    Science.gov (United States)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  11. Mosquito inspired medical needles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Hesselberg, Thomas; Drakidis, Alexandros Dimitrios

    2017-01-01

    The stinging proboscis in mosquitos have diameters of only 40-100 μm which is much less than the thinnest medical needles and the mechanics of these natural stinging mechanisms have therefore attracted attention amongst developers of injection devises. The mosquito use a range of different...... strategies to lower the required penetration force hence allowing a thinner and less stiff proboscis structure. Earlier studies of the mosquito proboscis insertion strategies have shown how each of the single strategies reduces the required penetration force. The present paper gives an overview...

  12. Non-bonded ultrasonic transducer

    Science.gov (United States)

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  13. Acoustic transducer for acoustic microscopy

    Science.gov (United States)

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  14. Vacuum mounting for piezoelectric transducers

    Science.gov (United States)

    Tiede, D. A.

    1977-01-01

    Special housing couples piezoelectric transducers to nonporous surfaces for ultrasonic or acoustic-emission testing. Device, while providing sound isolation on flat or nonflat surfaces, can be attached and detached quickly. Vacuum sealing mechanism eliminates need for permanent or semipermanent bonds, viscous coupling liquids, weights, magnets, tape, or springs ordinarily used.

  15. Smart needles for percutaneous interventions

    NARCIS (Netherlands)

    Henken, K.R.

    2014-01-01

    The development of advanced needles for diagnostic and therapeutic purposes such as ablation and brachytherapy in the liver has offered minimally invasive therapies to patients that were previously untreatable. This thesis focuses on accurate placement of such needles guided by magnetic resonance im

  16. Irradiation Testing of Ultrasonic Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  17. Wideband Single Crystal Transducer for Bone Characterization

    Science.gov (United States)

    Sahul, Raffi

    2015-01-01

    Phase II objectives: Optimize the Phase I transducer for sensitivity; Test different transmit signals for optimum performance; Demonstrate compatibility with electronics; Confirm additional transducer capabilities over conventional systems by calibrating with other methods.

  18. Transducers and Arrays for Underwater Sound

    CERN Document Server

    Sherman, Charles H

    2007-01-01

    This book is concerned with the theory, development and design of electroacoustic transducers for underwater applications, and is more comprehensive than any existing book in this field. It includes the basics of the six major types of electroacoustic transducers, with emphasis on the piezoelectric ceramic transducers that are currently most widely used. It presents the basic acoustics, as well as specific acoustic data, needed in transducer design and includes analysis of nonlinear effects in transducers. A large number of specific transducer designs, including both projectors and hydrophones, are described in detail as well as methods of modeling, evaluation and measurement. Analysis of transducer arrays, including the effects of mutual radiation impedance, as well as numerical models for transducers and arrays are also covered. The book contains an extensive Appendix of useful current information, including data on the latest transduction materials, and numerous diagrams that will facilitate its use by stu...

  19. PMN-PT single crystal thick films on silicon substrate for high-frequency micromachined ultrasonic transducers

    Energy Technology Data Exchange (ETDEWEB)

    Peng, J.; Lau, S.T.; Chao, C.; Dai, J.Y.; Chan, H.L.W. [The Hong Kong Polytechnic University, Department of Applied Physics and Materials Research Center, Hong Kong (China); Luo, H.S. [Chinese Academy of Sciences, The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai (China); Zhu, B.P.; Zhou, Q.F.; Shung, K.K. [University of Southern California, Department of Biomedical Engineering and NIH Transducer Resource Center, Los Angeles, CA (United States)

    2010-01-15

    In this work, a novel high-frequency ultrasonic transducer structure is realized by using PMNPT-on-silicon technology and silicon micromachining. To prepare the single crystalline PMNPT-on-silicon wafers, a hybrid processing method involving wafer bonding, mechanical lapping and wet chemical thinning is successfully developed. In the transducer structure, the active element is fixed within the stainless steel needle housing. The measured center frequency and -6 dB bandwidth of the transducer are 35 MHz and 34%, respectively. Owing to the superior electromechanical coupling coefficient (k{sub t}) and high piezoelectric constant (d{sub 33}) of PMNPT film, the transducer shows a good energy conversion performance with a very low insertion loss down to 8.3 dB at the center frequency. (orig.)

  20. PMN-PT single crystal thick films on silicon substrate for high-frequency micromachined ultrasonic transducers.

    Science.gov (United States)

    Peng, J; Lau, S T; Chao, C; Dai, J Y; Chan, H L W; Luo, H S; Zhu, B P; Zhou, Q F; Shung, K K

    2008-11-02

    In this work, a novel high-frequency ultrasonic transducer structure is realized by using PMNPT-on-silicon technology and silicon micromachining. To prepare the single crystalline PMNPT-on-silicon wafers, a hybrid processing method involving wafer bonding, mechanical lapping and wet chemical thinning is successfully developed. In the transducer structure, the active element is fixed within the stainless steel needle housing. The measured center frequency and -6 dB bandwidth of the transducer are 35 MHz and 34%, respectively. Owing to the superior electromechanical coupling coefficient (k(t)) and high piezoelectric constant (d(33)) of PMNPT film, the transducer shows a good energy conversion performance with a very low insertion loss down to 8.3 dB at the center frequency.

  1. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  2. Transducer for harmonic intravascular ultrasound imaging

    NARCIS (Netherlands)

    Vos, Hendrik J.; Frijlink, Martijn E.; Droog, E.J.; Goertz, David E.; Blacquiere, Gerrit; Gisolf, Anton; de Jong, N.; van der Steen, Antonius F.W.

    2005-01-01

    A recent study has shown the feasibility of tissue harmonic imaging (THI) using an intravascular ultrasound (IVUS) transducer. This correspondence describes the design, fabrication, and characterization of a THI-optimized piezoelectric transducer with oval aperture of 0.75 mm by 1 mm. The transducer

  3. 21 CFR 882.1950 - Tremor transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tremor transducer. 882.1950 Section 882.1950 Food... DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1950 Tremor transducer. (a) Identification. A tremor transducer is a device used to measure the degree of tremor caused by certain diseases...

  4. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  5. Self-Calibrating Pressure Transducer

    Science.gov (United States)

    Lueck, Dale E. (Inventor)

    2006-01-01

    A self-calibrating pressure transducer is disclosed. The device uses an embedded zirconia membrane which pumps a determined quantity of oxygen into the device. The associated pressure can be determined, and thus, the transducer pressure readings can be calibrated. The zirconia membrane obtains oxygen .from the surrounding environment when possible. Otherwise, an oxygen reservoir or other source is utilized. In another embodiment, a reversible fuel cell assembly is used to pump oxygen and hydrogen into the system. Since a known amount of gas is pumped across the cell, the pressure produced can be determined, and thus, the device can be calibrated. An isolation valve system is used to allow the device to be calibrated in situ. Calibration is optionally automated so that calibration can be continuously monitored. The device is preferably a fully integrated MEMS device. Since the device can be calibrated without removing it from the process, reductions in costs and down time are realized.

  6. Advanced Geothermal Optical Transducer (AGOT)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-01

    Today's geothermal pressure-temperature measuring tools are short endurance, high value instruments, used sparingly because their loss is a major expense. In this project LEL offered to build and test a rugged, affordable, downhole sensor capable ofretuming an uninterrupted data stream at pressures and of 10,000 psi and temperatures up to 250 C, thus permitting continuous deep-well logging. It was proposed to meet the need by specializing LEL's patented 'Twin Column Transducer' technology to satisfy the demands of geothermal pressure/temperature measurements. TCT transducers have very few parts, none of which are moving parts, and all of which can be fabricated from high-temperature super alloys or from ceramics; the result is an extremely rugged device, essentially impervious to chemical attack and readily modified to operate at high pressure and temperature. To measure pressure and temperature they capitalize on the relative expansion of optical elements subjected to thermal or mechanical stresses; if one element is maintained at a reference pressure while the other is opened to ambient, the differential displacement then serves as a measure of pressure. A transducer responding to temperature rather than pressure is neatly created by 'inverting' the pressure-measuring design so that both deflecting structures see identical temperatures and temperature gradients, but whose thermal expansion coefficients are deliberately mismatched to give differential expansion. The starting point for development of a PT Tool was the company's model DPT feedback-stabilized 5,000 psi sensor (U.S. Patent 5,311,014, 'Optical Transducer for Measuring Downhole Pressure', claiming a pressure transducer capable of measuring static, dynamic, and true bi-directional differential pressure at high temperatures), shown in the upper portion of Figure 1. The DPT occupies a 1 x 2 x 4-inch volume, weighs 14 ounces, and is accurate to 1 percent of full

  7. Elongation Transducer For Tensile Tests

    Science.gov (United States)

    Roberts, Paul W.; Stokes, Thomas R.

    1994-01-01

    Extensometer transducer measures elongation of tensile-test specimen with negligible distortion of test results. Used in stress-versus-strain tests of small specimens of composite materials. Clamping stress distributed more evenly. Specimen clamped gently between jaw and facing surface of housing. Friction force of load points on conical tips onto specimen depends on compression of spring, adjusted by turning cover on housing. Limp, light nylon-insulated electrical leads impose minimal extraneous loads on measuring elements.

  8. Covert Channel Synthesis for Transducers

    OpenAIRE

    Benattar, Gilles; Bérard, Béatrice; Lime, Didier; Mullins, John; Roux, Olivier Henri; Sassolas, Mathieu

    2010-01-01

    Research report; Covert channels are a security threat for information systems, since they permit illegal flows, and sometimes leaks, of classified data. Although numerous descriptions have been given at a concrete level, relatively little work has been carried out at a more abstract level, outside probabilistic models. In this paper, we propose a definition of covert channels based on encoding and decoding binary messages with transducers, in a finite transition system. We first compare this...

  9. Changing the needle for lumbar punctures

    DEFF Research Database (Denmark)

    Engedal, Thorbjørn Søndergaard; Ording, H.; Vilholm, O. J.

    2015-01-01

    describes the process of changing the needle in an outpatient clinic of a Danish neurology department. Methods: Prospective interventional trial. Phase 1: 22 G cutting needle. Phase 2: 25 G non-cutting needle. Practical usability of each needle was recorded during the procedure, while the rate of PDPH...

  10. 21 CFR 880.5580 - Acupuncture needle.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acupuncture needle. 880.5580 Section 880.5580 Food... § 880.5580 Acupuncture needle. (a) Identification. An acupuncture needle is a device intended to pierce the skin in the practice of acupuncture. The device consists of a solid, stainless steel needle....

  11. Micromachined Ultrasonic Transducers for 3-D Imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann

    such transducer arrays, capacitive micromachined ultrasonic transducer (CMUT) technology is chosen for this project. Properties such as high bandwidth and high design flexibility makes this an attractive transducer technology, which is under continuous development in the research community. A theoretical...... of state-of-the-art 3-D ultrasound systems. The focus is on row-column addressed transducer arrays. This previously sparsely investigated addressing scheme offers a highly reduced number of transducer elements, resulting in reduced transducer manufacturing costs and data processing. To produce......Real-time ultrasound imaging is a widely used technique in medical diagnostics. Recently, ultrasound systems offering real-time imaging in 3-D has emerged. However, the high complexity of the transducer probes and the considerable increase in data to be processed compared to conventional 2-D...

  12. Focused ultrasound transducer for thermal treatment.

    Science.gov (United States)

    Umemura, Shin-ichiro

    2015-03-01

    Air-backed transducers have been employed for thermal ultrasonic treatment including both ablation and hyperthermia because the power efficiency rather than the bandwidth is a main concern, unlike a typical imaging transducer working in a pulse mode. The characteristic of an air-backed piezoelectric transducer with a matching layer is analysed, and the role and choice of the matching layer is discussed. An element size of a focused array transducer, appropriate for such thermal treatment, is then estimated, and the characteristic of a piezoceramic transducer element of such a size was numerically analysed using a finite element code. The characteristic of a piezocomposite transducer element is also numerically analysed and its suitability to such a therapeutic array transducer is discussed.

  13. TOPICAL REVIEW: Capacitive micromachined ultrasonic transducer arrays for minimally invasive medical ultrasound

    Science.gov (United States)

    Chen, Jingkuang

    2010-02-01

    This paper reviews the minimally invasive capacitive micromachined ultrasonic transducer (CMUT) arrays for medical diagnosis and therapy. While piezoelectric transducers dominate today's medical ultrasound market, the capacitive micromachined ultrasonic transducer has recently emerged as a promising alternative which delivers a comparable device performance to its piezoelectric counterparts, is compatible with front-end circuit integration, allows high-density imager integration and is relative easy in miniaturization. Utilizing MEMS technology, the substrate of CMUT arrays can be micromachined into miniature platforms with various geometrical shapes, which include needles, three-dimensional prisms, as well as other flexible-substrate configurations. These arrays are useful for reaching deep inside the tissue or an organ with a minimally invasive approach. Due to the close proximity of the transducers to the target organ/tissue, a higher resolution/accuracy of diagnostic information can be achieved. In addition to pulse-echo and photoacoustic imaging, high-power CMUT devices capable of delivering ultrasounds with a pressure greater than 1.0 MPa have been monolithically integrated with imager CMUTs for image-guided therapy (IGT). Such miniature devices would facilitate diagnostic and therapy interventions not possible with conventional piezoelectric transducers.

  14. Lead-Free Intravascular Ultrasound Transducer Using BZT-50BCT Ceramics

    Science.gov (United States)

    Yan, Xingwei; Lam, Kwok Ho; Li, Xiang; Chen, Ruimin; Ren, Wei; Ren, Xiaobing; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the fabrication and evaluation of a high-frequency ultrasonic transducer based on a new lead-free piezoelectric material for intravascular imaging application. Lead-free 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3 (BZT-50BCT) ceramic with a high dielectric constant (~2800) was employed to develop a high-frequency (~30 MHz) needle-type ultrasonic transducer. With superior piezoelectric performance (piezoelectric coefficient d33 ~ 600 pC/N), the lead-free transducer was found to exhibit a −6-dB bandwidth of 53% with an insertion loss of 18.7 dB. In vitro intravascular ultrasound (IVUS) imaging of a human cadaver coronary artery was performed to demonstrate the potential of the lead-free transducer for biomedical imaging applications. This is the first time that a lead-free transducer has been used for IVUS imaging application. The experimental results suggest that the BZT-50BCT ceramic is a promising lead-free piezoelectric material for high-frequency intravascular imaging applications. PMID:25004492

  15. Transducers

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    stream_size 27 stream_content_type text/plain stream_name Encycl_Microcomputers_18_335.pdf.txt stream_source_info Encycl_Microcomputers_18_335.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  16. Missing needle during episiotomy repair

    Directory of Open Access Journals (Sweden)

    Joydeb Roychowdhury

    2008-01-01

    Full Text Available Breakage and missing of the episiotomy needle is not uncommon occurrence at the hands of the junior doctors. Retrieving it from deeper tissue planes following its migration can be a challenging task.

  17. Endoscopic ultrasound guided fine needle aspiration biopsy in the diagnosis of pancreatic masses.

    Science.gov (United States)

    Jinga, Mariana; Gheorghe, Cristian; Dumitrescu, Marius; Gheorghe, Liana; Nicolaie, Tudor

    2004-03-01

    Endoscopic ultrasound (EUS) represents a highly sensitive method for the detection of pancreatic masses. When available, EUS-guided fine needle aspiration (FNA) is the best technique for the diagnosis and staging of pancreatic cancer due to its ability to obtain tissue for diagnosis. The standardized indications for pancreatic EUS-FNA comprise the definite diagnosis of malignancy and histopathological confirmation of adenocarcinoma before surgical resection, chemo/radiotherapy, or celiac plexus neurolysis. The technique of performing EUS-FNA is described in detail, from the vizualization of the target lesion and adequate placement of the transducer to allow optimal needle access, to needle penetration and sampling of the targeted lesion. We report a series of 9 patients who underwent EUS-FNA and shortly review the indications, technique, results and impact of EUS-FNA on the management of these patients.

  18. LAVA Pressure Transducer Trade Study

    Science.gov (United States)

    Oltman, Samuel B.

    2016-01-01

    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  19. Accuracy of Core Needle Biopsy Versus Fine Needle Aspiration Cytology for Diagnosing Salivary Gland Tumors.

    Science.gov (United States)

    Song, In Hye; Song, Joon Seon; Sung, Chang Ohk; Roh, Jong-Lyel; Choi, Seung-Ho; Nam, Soon Yuhl; Kim, Sang Yoon; Lee, Jeong Hyun; Baek, Jung Hwan; Cho, Kyung-Ja

    2015-03-01

    Core needle biopsy is a relatively new technique used to diagnose salivary gland lesions, and its role in comparison with fine needle aspiration cytology needs to be refined. We compared the results of 228 ultrasound-guided core needle biopsy and 371 fine needle aspiration procedures performed on major salivary gland tumors with their postoperative histological diagnoses. Core needle biopsy resulted in significantly higher sensitivity and more accurate tumor subtyping, especially for malignant tumors, than fine needle aspiration. No patient developed major complications after core needle biopsy. We recommend ultrasoundguided core needle biopsy as the primary diagnostic tool for the preoperative evaluation of patients with salivary gland lesions, especially when malignancy is suspected.

  20. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L

    2016-01-01

    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  1. Mechanical and electrical characteristics of cymbal transducer

    Institute of Scientific and Technical Information of China (English)

    WANG Guangcan; ZHANG Jin; TIAN Wenjie; LIN Guoguang; LIAN Guandong; ZHANG Fuxue

    2005-01-01

    The electromechanical of Cymbal transducer has been researched. Under simple supporting condition, the mechanical and electrical characteristics have been analyzed by using Piezoelectric-elastic theory, Kirchhoff's thin shell vibration theory, Rayleigh-Ritz's theory and equivalent circuit method. The approximate solution and series resonance frequency equation have been given. Under no load, equivalent circuit, correlation parameters of cymbal transducer and the relations between the ratio of cavity depth to radius of Cymbal transducer with resonance frequency, electromechanical coupling coefficient of cymbal transducer have been researched. The best electromechanical coupling coefficient of cymbal transducer has been gained from the results of numerical analysis. It offers a valid theoretical foundation for optimum design of cymbal transducer.

  2. Analog circuit for controlling acoustic transducer arrays

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas S. (Cedar Crest, NM)

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  3. ERROR COMPENSATOR FOR A POSITION TRANSDUCER

    Science.gov (United States)

    Fowler, A.H.

    1962-06-12

    A device is designed for eliminating the effect of leadscrew errors in positioning machines in which linear motion of a slide is effected from rotary motion of a leadscrew. This is accomplished by providing a corrector cam mounted on the slide, a cam follower, and a transducer housing rotatable by the follower to compensate for all the reproducible errors in the transducer signal which can be related to the slide position. The transducer has an inner part which is movable with respect to the transducer housing. The transducer inner part is coupled to the means for rotating the leadscrew such that relative movement between this part and its housing will provide an output signal proportional to the position of the slide. The corrector cam and its follower perform the compensation by changing the angular position of the transducer housing by an amount that is a function of the slide position and the error at that position. (AEC)

  4. Finite State Transducers Approximating Hidden Markov Models

    CERN Document Server

    Kempe, A

    1999-01-01

    This paper describes the conversion of a Hidden Markov Model into a sequential transducer that closely approximates the behavior of the stochastic model. This transformation is especially advantageous for part-of-speech tagging because the resulting transducer can be composed with other transducers that encode correction rules for the most frequent tagging errors. The speed of tagging is also improved. The described methods have been implemented and successfully tested on six languages.

  5. Introduction to Piezoelectric Actuators and Transducers

    Science.gov (United States)

    2007-11-02

    1 Introduction to Piezoelectric Actuators and Transducers Kenji Uchino, International Center for Actuators and Transducers, Penn State University...REPORT DATE 00 JUN 2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Introduction to Piezoelectric Actuators and Transducers...now used in various fields. The sound source is made from piezoelectric ceramics as well as magnetostrictive materials. Piezoceramics are generally

  6. Finite Element Modeling for Ultrasonic Transducers (Preprint)

    Science.gov (United States)

    1998-02-27

    virtual prototyping of transducers . Fig. 18 shows a 3D model of a Tonpilz device for low frequency sensing in air. This classical design is usually used...coupled Tonpilz transducer . A thick, flexible matching layer is bonded to the face of the conical head-mass. 7. CONCLUSIONS This paper was intended as a...This is a preprint of a paper published in Proc. SPIE Int. Symp. Medical Imaging 1998, San Diego, Feb 21-27, 1998 Ultrasonic Transducer Engineering

  7. Transducers in medical ultrasound: Part Three. Transducer applications in echocardiology.

    Science.gov (United States)

    Lancée, C T; Daigle, R; Sahn, D J; Thijssen, J M

    1985-09-01

    A comparison is made between phased arrays and mechanical sector scanners in transcutaneous echocardiographic applications. Aspects such as contact area, beam control, side lobes, grating lobes and image quality are discussed in the context of transducer frequency. The incorporation of simultaneous acquisition of Doppler velocity information and display of M-mode signals is considered. Transoesophageal and intraoperative scanning systems for cardiology are also compared, in particular linear arrays, phased arrays and mechanical scanners, and their advantages and disadvantages in relation to the above mentioned aspects are discussed. The general conclusion is that electronic sector scanners may have a considerably improved cost/benefit ratio in the near future and thereby will become the leading systems for echocardiography.

  8. Does needle rotation improve lesion targeting?

    Science.gov (United States)

    Badaan, Shadi; Petrisor, Doru; Kim, Chunwoo; Mozer, Pierre; Mazilu, Dumitru; Gruionu, Lucian; Patriciu, Alex; Cleary, Kevin; Stoianovici, Dan

    2011-06-01

    Image-guided robots are manipulators that operate based on medical images. Perhaps the most common class of image-guided robots are robots for needle interventions. Typically, these robots actively position and/or orient a needle guide, but needle insertion is still done by the physician. While this arrangement may have safety advantages and keep the physician in control of needle insertion, actuated needle drivers can incorporate other useful features. We first present a new needle driver that can actively insert and rotate a needle. With this device we investigate the use of needle rotation in controlled in-vitro experiments performed with a specially developed revolving needle driver. These experiments show that needle rotation can improve targeting and may reduce errors by as much as 70%. The new needle driver provides a unique kinematic architecture that enables insertion with a compact mechanism. Perhaps the most interesting conclusion of the study is that lesions of soft tissue organs may not be perfectly targeted with a needle without using special techniques, either manually or with a robotic device. The results of this study show that needle rotation may be an effective method of reducing targeting errors. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Does Deqi (needle sensation) exist?

    Science.gov (United States)

    Park, Hijoon; Park, Jongbae; Lee, Hyangsook; Lee, Hyejung

    2002-01-01

    The mechanism, by which acupuncture works is not yet clear, therefore there is no unequivocal consensus about styles and sensations of needling. To enhance the scientific base of acupuncture, needling somehow should be objectified. The term Deqi is understood to represent all or at least the main form of phenomena to acupuncture stimulation. The characteristics of Deqi, however, have always been based on a translation of original Chinese description. Hoping to find a clue to develop sham (placebo) method for subject blinding, we investigated which sensations are frequently expected and experienced, and whether or not these expectations and experiences of sensations are similar in naive subjects. The acupuncture sensation scale developed by Vincent et al. (1989) was translated into Korean. Thirty-eight healthy acupuncture naïve female volunteers (mean age 29.1, range 25-39) were asked to complete the sensation scale of acupuncture according to what they expected needling to feel like before needling. Needling was done on left Hegu (LI4) point in the hand and consisted of insertion, stimulation for 30 seconds, and removal. Directly after needling, the subjects were asked to complete the same sensation scale according to what they experienced. The subjects expected to feel hurting, penetrating, sharp, tingling, pricking and stinging, and actually experienced aching, spreading, radiating, pricking and stinging more than 60% of the time. Comparison between expectation and experience, the subjects expected more penetrating, tingling, pricking and burning than they experienced, and on the contrary experienced more aching, pulling, heavy, dull, electric and throbbing than they expected. Traditionally described sensations of Deqi are something beyond just a general pain dimension in the Korean population. Further study involving acupuncture experienced subjects or subjects from other cultures need to confirm this finding. Moreover, sham acupuncture should be studied.

  10. A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer.

    Science.gov (United States)

    Urban, Matthew W; Chalek, Carl; Haider, Bruno; Thomenius, Kai E; Fatemi, Mostafa; Alizad, Azra

    2013-03-01

    Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using 1-D linear-array transducers. In this article, we discuss VA beamforming and image formation using a 1.75-D array transducer. A 1.75-D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75-D array over a 1-D linear-array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75-D array transducer offers several advantages over scanning with a linear-array transducer, including improved image resolution and contrast resulting from better elevation focusing of the imaging point-spread function.

  11. A Beamforming Study for Implementation of Vibro-acoustography with a 1.75D Array Transducer

    Science.gov (United States)

    Urban, Matthew W.; Chalek, Carl; Haider, Bruno; Thomenius, Kai E.; Fatemi, Mostafa; Alizad, Azra

    2013-01-01

    Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using one-dimensional (1D) linear array transducers. In this article, we discuss VA beamforming and image formation using a 1.75D array transducer. A 1.75D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75D array over a 1D linear array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75D array transducer offers several advantages over scanning with a linear array transducer including improved image resolution and contrast due to better elevation focusing of the imaging point-spread function. PMID:23475919

  12. Linearization of resistance thermometers and other transducers

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1970-01-01

    Given a resistive transducer which responds directly or indirectly to a physical quantity x, it is shown that the relationship may be linearized by linear methods if and only if both the resistance and conductance of the transducer are concave upward as functions of x. This result applies to eith...

  13. 21 CFR 870.2880 - Ultrasonic transducer.

    Science.gov (United States)

    2010-04-01

    ... structures. This device includes phased arrays and two-dimensional scanning transducers. (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic...

  14. Characterization of Ultrasonic Transducers. Measurement report

    DEFF Research Database (Denmark)

    Wilhjelm, Jens Erik

    1996-01-01

    This report contains the first results of a field measurement program for characterizing ultrasonic transducers in use at the Department. Specifically, a number of Panametrics Inc, transducers are characterized by using a 0.1 mm point scatterer as target, which is moved in front of the transdcuer....

  15. Pushdown machines for the macro tree transducer

    NARCIS (Netherlands)

    Engelfriet, Joost; Vogler, Heiko

    1986-01-01

    The macro tree transducer can be considered as a system of recursive function procedures with parameters, where the recursion is on a tree (e.g., the syntax tree of a program). We investigate characterizations of the class of tree (tree-to-string) translations which is induced by macro tree transduc

  16. Dry needling — peripheral and central considerations

    OpenAIRE

    Dommerholt, Jan

    2011-01-01

    Dry needling is a common treatment technique in orthopedic manual physical therapy. Although various dry needling approaches exist, the more common and best supported approach targets myofascial trigger points. This article aims to place trigger point dry needling within the context of pain sciences. From a pain science perspective, trigger points are constant sources of peripheral nociceptive input leading to peripheral and central sensitization. Dry needling cannot only reverse some aspects...

  17. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...... project and collaboration with a lot of partners to improve medical ultrasound imaging. The focus in this part of the project is to design, fabricate and characterize 1D CMUT arrays. Two versions of 1D transducers are made, one at Stanford University and one at DTU. Electrical and acoustical...... resolution it is however necessary to develop new fabrication methods that allows fabrication of transducer elements with smaller dimensions. By using microfabrication technology it is possible to push the dimensions down and provide higher design flexibility. This project is part of a large ultrasound...

  18. Ultrasound transducer selection in clinical imaging practice.

    Science.gov (United States)

    Szabo, Thomas L; Lewin, Peter A

    2013-04-01

    Many types of medical ultrasound transducers are used in clinical practice. They operate at different center frequencies, have different physical dimensions, footprints, and shapes, and provide different image formats. However, little information is available about which transducers are most appropriate for a given application, and the purpose of this article is to address this deficiency. Specifically, the relationship between the transducer, imaging format, and clinical applications is discussed, and systematic selection criteria that allow matching of transducers to specific clinical needs are presented. These criteria include access to and coverage of the region of interest, maximum scan depth, and coverage of essential diagnostic modes required to optimize a patient's diagnosis. Three comprehensive figures organize and summarize the imaging planes, scanning modes, and types of diagnostic transducers to facilitate their selection in clinical diagnosis.

  19. In-plane ultrasonic needle tracking using a fiber-optic hydrophone

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Wenfeng, E-mail: wenfeng.xia@ucl.ac.uk; Desjardins, Adrien E. [Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT (United Kingdom); Mari, Jean Martial [Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom and GePaSud, University of French Polynesia, Faa’a 98702, French Polynesia (France); West, Simeon J. [Department of Anaesthesia, University College Hospital, Main Theatres, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU (United Kingdom); Ginsberg, Yuval; David, Anna L. [Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX (United Kingdom); Ourselin, Sebastien [Center for Medical Imaging Computing, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    Purpose: Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction with the imaging probe used to acquire B-mode ultrasound images. Methods: Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°–68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14–5 MHz probe for the first and second sets, and a 9–4 MHz probe for the third. Results: During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With

  20. Needle-free influenza vaccination

    NARCIS (Netherlands)

    Amorij, Jean-Pierre; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; Wilschut, Jan C.; Huckriede, Anke

    2010-01-01

    Vaccination is the cornerstone of influenza control in epidemic and pandemic situations. Influenza vaccines are typically given by intramuscular injection. However, needle-free vaccinations could offer several distinct advantages over intramuscular injections: they are pain-free, easier to distribut

  1. Electrical modeling of dielectric elastomer stack transducers

    Science.gov (United States)

    Haus, Henry; Matysek, Marc; Moessinger, Holger; Flittner, Klaus; Schlaak, Helmut F.

    2013-04-01

    Performance of dielectric elastomer transducers (DEST) depends on mechanical and electrical parameters. For designing DEST it is therefore necessary to know the influences of these parameters on the overall performance. We show an electrical equivalent circuit valid for a transducer consisting of multiple layers and derive the electrical parameters of the circuit depending on transducers geometry and surface resistivity of the electrodes. This allows describing the DESTs dynamic behavior as a function of fabrication (layout, sheet and interconnection resistance), material (breakdown strength, permittivity) and driving (voltage) parameters. Using this electrical model transfer function and cut-off frequency are calculated, describing the influence of transducer capacitance, resistance and driving frequency on the achievable actuation deflection. Furthermore non ideal boundary effects influencing the capacitance value of the transducer are investigated by an electrostatic simulation and limits for presuming a simple plate capacitor model for calculating the transducer capacitance are derived. Results provide the plate capacitor model is a valid assumption for typical transducer configurations but for certain aspect ratios of electrode dimensions to dielectric thickness -- arising e.g. in the application of tactile interfaces -- the influence of boundary effects is to be considered.

  2. Modeling of functionally graded piezoelectric ultrasonic transducers.

    Science.gov (United States)

    Rubio, Wilfredo Montealegre; Buiochi, Flávio; Adamowski, Julio Cezar; Silva, Emílio Carlos Nelli

    2009-05-01

    The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.

  3. Seismic transducer modeling using ABAQUS

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Novascone

    2004-05-01

    A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the media’s physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.

  4. Compensating for Torsion Windup in Steerable Needles

    Science.gov (United States)

    Reed, Kyle B.

    2010-01-01

    Long, flexible, bevel-tip needles curve during insertion into tissue, and rotations of the needle base reorient the tip to steer subsequent insertions. Friction between the tissue and the needle shaft, however, can cause a severe discrepancy between the needle base and tip angles. In this paper, I demonstrate an algorithm to properly align the entire length of the needle using torque measured at the base. My algorithm uses several intermediate base rotations to align the orientation of points along the shaft with the desired angle, with minimal remaining torque exerted by the base. I performed an experimental validation with four angle sensors attached to the needle throughout the tissue. My compensation algorithm decreased the lag throughout the needle by up to 88%. PMID:20640198

  5. Hybrid piezoelectric energy harvesting transducer system

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  6. Piezoelectric pressure transducer technique for oxidizing atmospheres

    Science.gov (United States)

    Roberts, Ted A.; Burton, Rodney L.

    1992-07-01

    The diaphragm sensing tip of a high-speed piezoelectric pressure transducer can be destroyed when measuring transient impulse pressures in hot oxidizing atmospheres, e.g., oxygen at 3000 K and 34 atm for times of tens of milliseconds. A technique is presented to preserve the transducer under these conditions, which uses a protective layer of 0.025-0.050-mm-thick brass foil, held in place with double-sided tape. The integrity of the transducer is preserved, and the response time to a shock wave is increased from 1 to 2-6/microsec using the technique.

  7. Compact Orthomode Transducers Using Digital Polarization Synthesis

    CERN Document Server

    Morgan, Matthew A; Boyd, Tod A

    2010-01-01

    In this paper we present a novel class of compact orthomode transducers which use digital calibration to synthesize the desired polarization vectors while maintaining high isolation and minimizing mass and volume. These digital orthomode transducers consist of an arbitrary number of planar probes in a circular waveguide, each of which is connected to an independent receiver chain designed for stability of complex gain. The outputs of each receiver chain are then digitized and combined numerically with calibrated, complex coefficients. Measurements on two prototype digital orthomode transducers, one with three probes and one with four, show better than 50 dB polarization isolation over a 10 C temperature range with a single calibration.

  8. Portable high precision pressure transducer system

    Science.gov (United States)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  9. Be on Pins and Needles

    Institute of Scientific and Technical Information of China (English)

    周立

    2003-01-01

    英语对话:A:It seems you’re on pins and needles today.Anything troubling you?B:Yeah.I don’t know why bad things keep happening to me .You see,mycar was stolen and the warehouse had been broken into.I can’t keep myfinger on the causes of this damned thing.A:There must be someone who had planned that.Do you have a partieularperson in mind?

  10. Conductometric transducers for enzyme-based biosensors.

    Science.gov (United States)

    Mikkelsen, S R; Rechnitz, G A

    1989-08-01

    The use of alternating current conductometric transducers in biosensing devices has been investigated for urea and D-amino acid sensors using the enzyme systems urease and D-amino acid oxidase/catalase. Transducers with copper and platinum electrodes were constructed and characterized, and two enzyme immobilization methods were tested. Detection limits of 1 x 10(-6)M and linear ranges of 2 orders of magnitude were routinely achieved for these model sensors with enzymes covalently immobilized on collagen films.

  11. Performance of Honeywell silicon pressure transducers

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Nagvekar, S.; Prabhudesai, S.; Damodaran, V.

    strain gauge, semiconductor strain gauge, and quartz crystal beam. In this paper we examine the laboratory performance of a few temperature-compensated Honeywell silicon strain gauge pressure transducers based on their static calibration. 2. Silicon... Thin-Diaphragm Strain Gauge Pressure Transducer Although semiconductor materials such as germanium and silicon exhibit substantial temperature-dependence, they possess pressure-sensitivities several times that of metallic strain gauges. Silicon...

  12. Piezoelectric and Electrostrictive Materials for Transducer Applications.

    Science.gov (United States)

    1985-05-01

    Structure Ferroelastic Silicates" Alan Hain, Jr. B.S. Engineering Science, May 1984. "New Bimorph Structures with High Flexural Resonance Frequency" Eric ...Applications of PZT/Polymer Composite Materials,’ Ferroelectrics 39, 1245-1248 (1981). 22. Erikson , K.R. ’Tone-Burst Testing of Pulse-Echo Transducer...burst pulse-echo method described by Erikson [2]. A schematic diagram of the experimental set up is shown in Figure 1. The composite transducer was

  13. Design considerations for piezoelectric polymer ultrasound transducers.

    Science.gov (United States)

    Brown, L F

    2000-01-01

    Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.

  14. Estimation of Model Parameters for Steerable Needles

    Science.gov (United States)

    Park, Wooram; Reed, Kyle B.; Okamura, Allison M.; Chirikjian, Gregory S.

    2010-01-01

    Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable. We characterize the deviations in needle tip pose (position and orientation) by performing repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant speed without rotating, and the covariance of the distribution of the needle tip pose is computed from experimental data. We develop the closed-form equations to describe how the covariance varies with different model parameters. We estimate the model parameters by matching the closed-form covariance and the experimentally obtained covariance. In this work, we use a needle model modified from a previously developed model with two noise parameters. The modified needle model uses three noise parameters to better capture the stochastic behavior of the needle insertion. The modified needle model provides an improvement of the covariance error from 26.1% to 6.55%. PMID:21643451

  15. Teleoperated master-slave needle insertion.

    Science.gov (United States)

    Abolhassani, Niki; Patel, Rajni V

    2009-12-01

    Accuracy of needle tip placement and needle tracking in soft tissue are of particular importance in many medical procedures. In recent years, developing autonomous and teleoperated systems for needle insertion has become an active area of research. In this study, needle insertion was performed using a master-slave set-up with multi-degrees of freedom. The effect of force feedback on the accuracy of needle insertion was investigated. In addition, this study compared autonomous, teleoperated and semi-autonomous needle insertion. The results of this study show that incorporation of force feedback can improve teleoperated needle insertion. However, autonomous and semi-autonomous needle insertions, which use feedback from a deflection model, provide significantly better performance. Development of a haptic master-slave needle insertion system, which is capable of performing some autonomous tasks based on feedback from tissue deformation and needle deflection models, can improve the performance of autonomous robotics-based insertions as well as non-autonomous teleoperated manual insertions. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. Estimation of Model Parameters for Steerable Needles.

    Science.gov (United States)

    Park, Wooram; Reed, Kyle B; Okamura, Allison M; Chirikjian, Gregory S

    2010-01-01

    Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable. We characterize the deviations in needle tip pose (position and orientation) by performing repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant speed without rotating, and the covariance of the distribution of the needle tip pose is computed from experimental data. We develop the closed-form equations to describe how the covariance varies with different model parameters. We estimate the model parameters by matching the closed-form covariance and the experimentally obtained covariance. In this work, we use a needle model modified from a previously developed model with two noise parameters. The modified needle model uses three noise parameters to better capture the stochastic behavior of the needle insertion. The modified needle model provides an improvement of the covariance error from 26.1% to 6.55%.

  17. Comparison of piezoresistive and capacitive ultrasonic transducers

    Science.gov (United States)

    Neumann, John J.; Greve, David W.; Oppenheim, Irving J.

    2004-07-01

    MEMS ultrasonic transducers for flaw detection have heretofore been built as capacitive diaphragm-type devices. A diaphragm forms a moveable electrode, placed at a short gap from a stationary electrode, and diaphragm movement has been detected by capacitance change. Although several research teams have successfully demonstrated that technology, the detection of capacitance change is adversely affected by stray and parasitic capacitances, limiting the sensitivity of such transducers and typically requiring relatively large diaphragm areas. We describe the design and fabrication of what to our knowledge is the first CMOS-MEMS ultrasonic phased array transducer using piezoresistive strain sensing. Piezoresistors have been patterned within the diaphragms, and diaphragm movement creates bending strain which is detected by a bridge circuit, for which conductor losses will be less significant. The prospective advantage of such piezoresistive transducers is that sufficient sensitivity may be achieved with very small diaphragms. We compare transducer response under fluid-coupled ultrasonic excitation and report the experimental gauge factor for the piezoresistors. We also discuss the phased array performance of the transducer in sensing the direction of an incoming wave.

  18. Experimental and modelling characterisation of adjustable hollow Micro-needle delivery systems.

    Science.gov (United States)

    Liu, Ting-Ting; Chen, Kai; Pan, Min

    2017-09-06

    Hollow micro-needles have been used increasingly less in practice because the infusion into the skin is limited by the tissue resistance to flow. The relationship between the infusion flow rate and tissue resistance pressure is not clear. A custom-made, hollow micro-needle system was used in this study. The driving force and infusion flow rate were measured using a force transducer attached to an infusion pump. Evans blue dye was injected into the air, polyacrylamide gel and in-vivo mouse skin at different flow rates. Two different micro-needle lengths were used for in-vivo infusion into the mouse. A model was derived to calculate the driving force of the micro-needle infusion into the air, and the results were compared to experimental data. The calculated driving forces match the experimental results with different infusion flow rates. The pressure loss throughout the micro-needle delivery system was found to be two orders smaller than the resistance pressure inside the gel and mouse skin, and the resistance pressure increased with increasing flow rate. A portion of liquid backflow was observed when the flow rate was relatively larger, and the backflow was associated with a sudden larger increase in resistance pressure at a higher flow rate. The current micro-needle delivery system is capable of administering liquid into the mouse skin at a flow rate of up to 0.15 ml/min, without causing significant backflow on the surface. The resistance pressure increases with increasing flow rate, causing infusion restriction at higher flow rates. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. [Inductance transducers for borderline localization of metallic foreign bodies].

    Science.gov (United States)

    Pudov, V I; Reutov, Iu Ia; Korotkikh, S A

    1996-01-01

    The paper outlines the advantages and disadvantages of a ferroprobe inductance transducer used in the borderline localization of a foreign ferromagnetic body. To eliminate the ferroprobe transducer-inherent disadvantages, a whirl-current inductance transducer has been developed. The transducer localizes a foreign nonferromagnetic and ferromagnetic body in its borderline localization in the eye and in the whole body.

  20. 21 CFR 870.2890 - Vessel occlusion transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vessel occlusion transducer. 870.2890 Section 870... transducer. (a) Identification. A vessel occlusion transducer is a device used to provide an electrical..., sound, and ultrasonic transducers. (b) Classification. Class II (performance standards). ...

  1. 21 CFR 870.2850 - Extravascular blood pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extravascular blood pressure transducer. 870.2850... blood pressure transducer. (a) Identification. An extravascular blood pressure transducer is a device... proximal end of the transducer is connected to a pressure monitor that produces an analog or digital...

  2. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transducer signal amplifier and conditioner. 870... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier and conditioner is a device used to provide the excitation energy for the transducer and to amplify or condition...

  3. 21 CFR 870.2860 - Heart sound transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heart sound transducer. 870.2860 Section 870.2860...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2860 Heart sound transducer. (a) Identification. A heart sound transducer is an external transducer that exhibits a change in...

  4. Dry needling - peripheral and central considerations.

    Science.gov (United States)

    Dommerholt, Jan

    2011-11-01

    Dry needling is a common treatment technique in orthopedic manual physical therapy. Although various dry needling approaches exist, the more common and best supported approach targets myofascial trigger points. This article aims to place trigger point dry needling within the context of pain sciences. From a pain science perspective, trigger points are constant sources of peripheral nociceptive input leading to peripheral and central sensitization. Dry needling cannot only reverse some aspects of central sensitization, it reduces local and referred pain, improves range of motion and muscle activation pattern, and alters the chemical environment of trigger points. Trigger point dry needling should be based on a thorough understanding of the scientific background of trigger points, the differences and similarities between active and latent trigger points, motor adaptation, and central sensitize application. Several outcome studies are included, as well as comments on dry needling and acupuncture.

  5. Dry needling — peripheral and central considerations

    Science.gov (United States)

    Dommerholt, Jan

    2011-01-01

    Dry needling is a common treatment technique in orthopedic manual physical therapy. Although various dry needling approaches exist, the more common and best supported approach targets myofascial trigger points. This article aims to place trigger point dry needling within the context of pain sciences. From a pain science perspective, trigger points are constant sources of peripheral nociceptive input leading to peripheral and central sensitization. Dry needling cannot only reverse some aspects of central sensitization, it reduces local and referred pain, improves range of motion and muscle activation pattern, and alters the chemical environment of trigger points. Trigger point dry needling should be based on a thorough understanding of the scientific background of trigger points, the differences and similarities between active and latent trigger points, motor adaptation, and central sensitize application. Several outcome studies are included, as well as comments on dry needling and acupuncture. PMID:23115475

  6. Dimensions of stabident intraosseous perforators and needles.

    Science.gov (United States)

    Ramlee, R A; Whitworth, J

    2001-09-01

    Problems can be encountered inserting intraosseous injection needles through perforation sites. This in vitro study examined the variability and size compatibility of Stabident intraosseous injection components. The diameters of 40 needles and perforators from a single Stabident kit were measured in triplicate with a toolmakers microscope. One-way ANOVA revealed that mean needle diameter (0.411 mm) was significantly narrower than mean perforator diameter (0.427 mm) (p < 0.001). A frequency distribution plot revealed that needle diameter followed a normal distribution, indicating tight quality control during manufacture. The diameter of perforators was haphazardly distributed, with a clustering of 15% at the lower limit of the size range. However on no occasion was the diameter of a perforator smaller than that of an injection needle. We conclude that components of the Stabident intraosseous anaesthetic system are size-compatible, but there is greater and more haphazard variability in the diameter of perforators than injection needles.

  7. Accuracy of Core Needle Biopsy Versus Fine Needle Aspiration Cytology for Diagnosing Salivary Gland Tumors

    Directory of Open Access Journals (Sweden)

    In Hye Song

    2015-03-01

    Full Text Available Background: Core needle biopsy is a relatively new technique used to diagnose salivary gland lesions, and its role in comparison with fine needle aspiration cytology needs to be refined. Methods: We compared the results of 228 ultrasound-guided core needle biopsy and 371 fine needle aspiration procedures performed on major salivary gland tumors with their postoperative histological diagnoses. Results: Core needle biopsy resulted in significantly higher sensitivity and more accurate tumor subtyping, especially for malignant tumors, than fine needle aspiration. No patient developed major complications after core needle biopsy. Conclusions: We recommend ultrasoundguided core needle biopsy as the primary diagnostic tool for the preoperative evaluation of patients with salivary gland lesions, especially when malignancy is suspected.

  8. Sliding Mode Control of Steerable Needles

    OpenAIRE

    Rucker, D. Caleb; Das, Jadav; Gilbert, Hunter B.; Swaney, Philip J.; Miga, Michael I.; Sarkar, Nilanjan; Webster, Robert J.

    2013-01-01

    Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little...

  9. Extraordinary Vessels Needling for Vascular Dementia

    Institute of Scientific and Technical Information of China (English)

    YU Jin; LAI Xin-sheng; HUANG Qiu-tang; XIAO Yuan-chun

    2003-01-01

    Purpose To observe the clinical efficacy of extraordinary vessels needling in treating vascular dementia. Method 39 cases vascular dementia were treated by acupoints selected from the eight extraordinary meridians and the time needling techniques such as eight methods of spiritual turtle, in accordance with time period and pattern identifition. Results 2 cases were cured, 30 cases improved and 7 cases failed; the total effective rate was 82.1%. Conclusion Extraordinary vessels needling has positive effects in treating vascular dementia.

  10. Needle-Tissue Interaction Forces for Bevel-Tip Steerable Needles

    OpenAIRE

    Misra, Sarthak; Reed, Kyle B.; Douglas, Andrew S.; Ramesh, K. T.; Okamura, Allison M.

    2008-01-01

    The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. As a first step toward modeling the mechanics of deflection of the needle, we determine the forces at the bevel tip. In order to find the forces acting at the needle tip, we measure rupture toughness and nonlinear material elasticity parameters of several soft tissue simulant gels and chicken tissue. We incorporate these physical parameters into a finite element model that include...

  11. Freehand biopsy guided by electromagnetic needle tracking

    DEFF Research Database (Denmark)

    Ewertsen, C; Nielsen, Marie Kristina Rue; Nielsen, M Bachmann

    2011-01-01

    To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking.......To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking....

  12. Freehand biopsy guided by electromagnetic needle tracking

    DEFF Research Database (Denmark)

    Ewertsen, C; Nielsen, Marie Kristina Rue; Nielsen, M Bachmann

    2011-01-01

    To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking.......To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking....

  13. Some Strip Contributions to Transducer Design and Analysis

    Science.gov (United States)

    1989-04-28

    19951116 110 14. SUBJECT TERMS Sonar transducers , Tonpilz transducers , ku-mode transducers , 15. NUMBER OF PAGES Piezoelectric ceramic, Ceramic stack...PRACTICAL ILLUSTRATIONS OF THE SGM ANALYSIS ................. 149 B.1 THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER M O D E L...150 B.2 THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER MODEL: VARIABLE mH, FIXED mTAND com

  14. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging.

    Science.gov (United States)

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K Kirk

    2014-07-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3-PbMg1/3Nb2/3O3-PbTiO 3 (PIN-PMNPT) single crystal 1-3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT.

  15. Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging

    Science.gov (United States)

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 (PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT. PMID:24960706

  16. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  17. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  18. A subcutaneous Raman needle probe.

    Science.gov (United States)

    Day, John C C; Stone, Nicholas

    2013-03-01

    Raman spectroscopy is a powerful tool for studying the biochemical composition of tissues and cells in the human body. We describe the initial results of a feasibility study to design and build a miniature, fiber optic probe incorporated into a standard hypodermic needle. This probe is intended for use in optical biopsies of solid tissues to provide valuable information of disease type, such as in the lymphatic system, breast, or prostate, or of such tissue types as muscle, fat, or spinal, when identifying a critical injection site. The optical design and fabrication of this probe is described, and example spectra of various ex vivo samples are shown.

  19. Geographical and climatic limits of needle types of one- and two-needled pinyon pines

    Science.gov (United States)

    Cole, K.L.; Fisher, J.; Arundel, S.T.; Cannella, J.; Swift, S.

    2008-01-01

    Aim: The geographical extent and climatic tolerances of one- and two-needled pinyon pines (Pinus subsect. Cembroides) are the focus of questions in taxonomy, palaeoclimatology and modelling of future distributions. The identification of these pines, traditionally classified by one- versus two-needled fascicles, is complicated by populations with both one- and two-needled fascicles on the same tree, and the description of two more recently described one-needled varieties: the fallax-type and californiarum-type. Because previous studies have suggested correlations between needle anatomy and climate, including anatomical plasticity reflecting annual precipitation, we approached this study at the level of the anatomy of individual pine needles rather than species. Location: Western North America. Methods: We synthesized available and new data from field and herbarium collections of needles to compile maps of their current distributions across western North America. Annual frequencies of needle types were compared with local precipitation histories for some stands. Historical North American climates were modelled on a c. 1-km grid using monthly temperature and precipitation values. A geospatial model (ClimLim), which analyses the effect of climate-modulated physiological and ecosystem processes, was used to rank the importance of seasonal climate variables in limiting the distributions of anatomical needle types. Results: The pinyon needles were classified into four distinct types based upon the number of needles per fascicle, needle thickness and the number of stomatal rows and resin canals. The individual needles fit well into four categories of needle types, whereas some trees exhibit a mixture of two needle types. Trees from central Arizona containing a mixture of Pinus edulis and fallax-type needles increased their percentage of fallax-type needles following dry years. All four needle types occupy broader geographical regions with distinctive precipitation regimes

  20. Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid

    Science.gov (United States)

    ... Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid An ultrasound-guided thyroid biopsy uses sound waves ... Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid? During a fine needle aspiration biopsy of the ...

  1. Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid ... Needle Aspiration Biopsy of the Thyroid? What is Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid? ...

  2. Estimating needle-tissue interaction forces for hollow needles using fiber Bragg grating sensors

    Science.gov (United States)

    Kumar, Saurabh; Shrikanth, V.; Bharadwaj, Amrutur; Asokan, Sundarrajan; Bobji, M. S.

    2016-03-01

    Brachytherapy and neurological procedures can benefit from real-time estimation of needle-tissue interaction forces, specifically for robotic or robot-assisted procedures. Fiber Bragg Grating Sensors provide advantages of very small size and electromagnetic immunity for use in measurement of the forces directly at the needle tip. This has advantages compared to measurements at the needle shaft which require extensive models of the friction between needle and tissues with varying depth. This paper presents the measurement of tip forces for a hollow needle and compensation for bending when encountering regions of varying stiffness in phantoms with multiple layers prepared using Polydimethylsiloxane.

  3. Comparative Study of Core Needle Biopsy and Fine Needle Aspiration Cytology in Palpable Breast Lumps: Scenario in Developing Nations.

    Science.gov (United States)

    Tikku, Gargi; Umap, Pradeep

    2016-01-01

    The purpose of this study was to evaluate the utility of core needle biopsy as a diagnostic tool for palpable breast lumps in developing countries as compared to fine needle aspiration cytology. All patients attending the surgery outpatient department with palpable breast lumps were subjected to fine needle aspiration cytology and core needle biopsy by the same operator in a single session. Fine needle aspiration cytology was performed by the standard technique. Core needle biopsy was done freehand using a 14G manual core biopsy needle. Reporting categories of the two techniques were taken from the standard National Health Service Breast Screening Programme criteria and were compared with the final histopathology results. A total of 107 patients underwent fine needle aspiration cytology and core needle biopsy simultaneously. Histopathology was available for 85 cases. Statistical analysis of fine needle aspiration cytology and core needle biopsy showed no significant difference between the diagnoses offered by core needle biopsy and histopathology while there was a significant difference between fine needle aspiration cytology and histopathology diagnoses. Core needle biopsy detected more breast carcinomas as compared to fine needle aspiration cytology with a sensitivity 95.83% as opposed to 64.58%. Though both the techniques were equally specific (100%), Core needle biopsy was able to correctly categorize borderline / inadequate lesions into definitely benign and malignant categories. We suggest that core needle biopsy should be preferred over fine needle aspiration cytology for the diagnosis of palpable breast lumps with fine needle aspiration cytology being reserved for definitely benign lesions.

  4. Investigating the Effects of Three Needling Parameters (Manipulation, Retention Time, and Insertion Site on Needling Sensation and Pain Profiles: A Study of Eight Deep Needling Interventions

    Directory of Open Access Journals (Sweden)

    Bertrand Y. K. Loyeung

    2013-01-01

    Full Text Available Introduction. In traditional Chinese acupuncture, needle sensation (deqi is purported to contribute to a therapeutic outcome. While researchers have attempted to define deqi qualitatively, few have examined the effects of needling parameters on its intensity. Methods. 24 healthy subjects completed eight interventions scheduled at least one week apart, which involved manual acupuncture to LI4 or a designated nonacupoint (NAP on the hand, with real or simulated manipulation each three minutes and needle retentions of one or 21 minutes. Intensities of needling sensation and pain were reported every three minutes and sensation qualities were reported post-intervention. Results. Immediately after needle insertion, similar levels of mean needle sensation and of pain were reported independent of intervention. At subsequent measurement times, only two interventions (one at LI4 and one at NAP maintained statistically significantly elevated needle sensation and pain scores and reported higher numbers of needle sensation descriptors. For both, the needle was retained for 21 minutes and manipulated every three minutes. Neither intervention differed significantly in terms of levels of pain, and needle sensation or numbers and qualities of needle sensation described. Conclusion. In this group of healthy subjects, the initial needling for all eight interventions elicited similar levels of needle sensation and pain. These levels were only maintained if there was ongoing of needle manipulation and retention of the needle. By contrast, the strength of needle sensation or pain experienced was independent of insertion site.

  5. Investigating the effects of three needling parameters (manipulation, retention time, and insertion site) on needling sensation and pain profiles: a study of eight deep needling interventions.

    Science.gov (United States)

    Loyeung, Bertrand Y K; Cobbin, Deirdre M

    2013-01-01

    Introduction. In traditional Chinese acupuncture, needle sensation (deqi) is purported to contribute to a therapeutic outcome. While researchers have attempted to define deqi qualitatively, few have examined the effects of needling parameters on its intensity. Methods. 24 healthy subjects completed eight interventions scheduled at least one week apart, which involved manual acupuncture to LI4 or a designated nonacupoint (NAP) on the hand, with real or simulated manipulation each three minutes and needle retentions of one or 21 minutes. Intensities of needling sensation and pain were reported every three minutes and sensation qualities were reported post-intervention. Results. Immediately after needle insertion, similar levels of mean needle sensation and of pain were reported independent of intervention. At subsequent measurement times, only two interventions (one at LI4 and one at NAP) maintained statistically significantly elevated needle sensation and pain scores and reported higher numbers of needle sensation descriptors. For both, the needle was retained for 21 minutes and manipulated every three minutes. Neither intervention differed significantly in terms of levels of pain, and needle sensation or numbers and qualities of needle sensation described. Conclusion. In this group of healthy subjects, the initial needling for all eight interventions elicited similar levels of needle sensation and pain. These levels were only maintained if there was ongoing of needle manipulation and retention of the needle. By contrast, the strength of needle sensation or pain experienced was independent of insertion site.

  6. The simulation model of planar electrochemical transducer

    Science.gov (United States)

    Zhevnenko, D. A.; Vergeles, S. S.; Krishtop, T. V.; Tereshonok, D. V.; Gornev, E. S.; Krishtop, V. G.

    2016-12-01

    Planar electrochemical systems are very perspective to build modern motion and pressure sensors. Planar microelectronic technology is successfully used for electrochemical transducer of motion parameters. These systems are characterized by an exceptionally high sensitivity towards mechanic exposure due to high rate of conversion of the mechanic signal to electric current. In this work, we have developed a mathematical model of this planar electrochemical system, which detects the mechanical signals. We simulate the processes of mass and charge transfer in planar electrochemical transducer and calculated its transfer function with different geometrical parameters of the system.

  7. Processing and Characterization of Needled Carbon Composites

    Science.gov (United States)

    2015-12-01

    ARL-RP-0563 ● DEC 2015 US Army Research Laboratory Processing and Characterization of Needled Carbon Composites by Bradley D...US Army Research Laboratory Processing and Characterization of Needled Carbon Composites by Bradley D Lawrence TKC Global, LLC; Herndon, VA...

  8. HOW TO REDUCE NEEDLE INSERTION INDUCED PAIN

    Institute of Scientific and Technical Information of China (English)

    王斌; 董莉

    2001-01-01

    Acupuncture needle insertion always results in pain in the local area due to stimulating the free nerve endings—algesireceptors of the skin. In spite of mildness, this pain may induce many patients' fright, and thus, hinders more extensive application of acupuncture. In the present paper, the author introduces some methods for reducing needle insertion induced pain.

  9. Fine needle aspiration cytology of rectal masses.

    Science.gov (United States)

    Kochhar, R; Rajwanshi, A; Wig, J D; Gupta, N M; Kesiezie, V; Bhasin, D K; Malik, A K; Gupta, S K; Mehta, S K

    1990-01-01

    This paper describes the results of transproctoscopic fine needle aspiration cytology in the diagnosis of rectal lesions. Fifty one consecutive patients referred with a presumptive diagnosis of rectal mass were subjected to proctoscopic examination when fine needle aspiration cytology, brush cytology and biopsy samples were taken. Of the 30 patients of malignancy of rectum in whom all the three sampling techniques were applied, the biopsy was positive in 27 (90%), brush cytology in 25 (83.3%) and fine needle aspiration cytology in 29 (96.6%). A combination of fine needle aspiration cytology with brush cytology gave a positive yield in 96.6% while that fine needle aspiration cytology with brush cytology gave a yield of 100%. Fine needle aspiration cytology was most helpful in infiltrative tumours. All 10 patients with secondaries in the pouch of Douglas or rectovesical pouch, and the single patient with submucosal rectal carcinoma were correctly diagnosed at fine needle aspiration cytology. There were no false positive results with fine needle aspiration cytology and no complications were encountered with the procedure. Images Figure 1 Figure 2 Figure 3 PMID:2323600

  10. Needle exchange programs in prisons in Spain.

    Science.gov (United States)

    Menoyo, C; Zulaica, D; Parras, F

    2000-01-01

    On 11 July 2000, at the XIII International AIDS Conference in Durban, yet another country--Spain--presented evidence that needle exchange programs in prisons work. We reproduce here the text of the presentation entitled "Needle Exchange Program at the Bilbao Prison, Spain: Two Years of Experience (1997-1999)."

  11. An Elementary Account of Needle Insertion

    Institute of Scientific and Technical Information of China (English)

    张文兵; 霍则军

    2004-01-01

    @@ Based on the authors' clinical and personal experiences, several pain-inducing factors easily to be ignored by the operators when quick needle insertion is applied, and the authors' first invented slow painless needle insertion method are introduced in the article.

  12. Applications of the Method for Transducer Transient Suppression to Various Transducer Types

    Science.gov (United States)

    1993-08-01

    previously. These types are (i) flexural disk, (ii) Helmholtz resonator, (iii) moving coil, (iv) inductor-tuned Tonpilz , and (v)a dual transducer array of...previously. These types are (i) flexural disk. (ii) Helmholtz resonator, (iii) moving coil, (iv) inductor-tuned Tonpilz , and (v) a dual transducer array of...cycle case, we findV(O -- t-- +i, R (t;>r. even number of half-cycles), (3) FIG. 2. Equivalent circuit for an inductor-tuned Tonpilz transducer . The

  13. Transducer-based evaluation of tremor.

    Science.gov (United States)

    Haubenberger, Dietrich; Abbruzzese, Giovanni; Bain, Peter G; Bajaj, Nin; Benito-León, Julián; Bhatia, Kailash P; Deuschl, Günther; Forjaz, Maria João; Hallett, Mark; Louis, Elan D; Lyons, Kelly E; Mestre, Tiago A; Raethjen, Jan; Stamelou, Maria; Tan, Eng-King; Testa, Claudia M; Elble, Rodger J

    2016-09-01

    The International Parkinson and Movement Disorder Society established a task force on tremor that reviewed the use of transducer-based measures in the quantification and characterization of tremor. Studies of accelerometry, electromyography, activity monitoring, gyroscopy, digitizing tablet-based measures, vocal acoustic analysis, and several other transducer-based methods were identified by searching PubMed.gov. The availability, use, acceptability, reliability, validity, and responsiveness were reviewed for each measure using the following criteria: (1) used in the assessment of tremor; (2) used in published studies by people other than the developers; and (3) adequate clinimetric testing. Accelerometry, gyroscopy, electromyography, and digitizing tablet-based measures fulfilled all three criteria. Compared to rating scales, transducers are far more sensitive to changes in tremor amplitude and frequency, but they do not appear to be more capable of detecting a change that exceeds random variability in tremor amplitude (minimum detectable change). The use of transducer-based measures requires careful attention to their limitations and validity in a particular clinical or research setting. © 2016 International Parkinson and Movement Disorder Society.

  14. Broadband, High-Temperature Ultrasonic Transducer

    Science.gov (United States)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  15. Pressure compensated transducer system with constrained diaphragm

    Science.gov (United States)

    Percy, Joseph L.

    1992-08-01

    An acoustic source apparatus has an acoustic transducer that is enclosed in a substantially rigid and watertight enclosure to resist the pressure of water on the transducer and to seal the transducer from the water. The enclosure has an opening through which acoustic signals pass and over which is placed a resilient, expandable and substantially water-impermeable diaphragm. A net stiffens and strengthens the diaphragm as well as constrains the diaphragm from overexpansion or from migrating due to buoyancy forces. Pressurized gas, regulated at slightly above ambient pressure, is supplied to the enclosure and the diaphragm to compensate for underwater ambient pressures. Gas pressure regulated at above ambient pressure is used to selectively tune the pressure levels within the enclosure and diaphragm so that diaphragm resonance can be achieved. Controls are used to selectively fill, as well as vent the enclosure and diaphragm during system descent and ascent, respectively. A signal link is used to activate these controls and to provide the driving force for the acoustic transducer.

  16. An IVUS Transducer for Microbubble Therapies

    Science.gov (United States)

    Kilroy, Joseph P.; Patil, Abhay V.; Rychak, Joshua J.; Hossack, John A.

    2014-01-01

    There is interest in examining the potential of modified intravascular ultrasound (IVUS) catheters to facilitate dual diagnostic and therapeutic roles using ultrasound plus microbubbles for localized drug delivery to the vessel wall. The goal of this study was to design, prototype, and validate an IVUS transducer for microbubble-based drug delivery. A 1-D acoustic radiation force model and finite element analysis guided the design of a 1.5-MHz IVUS transducer. Using the IVUS transducer, biotinylated microbubbles were displaced in water and bovine whole blood to the streptavidin-coated wall of a flow phantom by a 1.5-MHz center frequency, peak negative pressure = 70 kPa pulse with varying pulse repetition frequency (PRF) while monitoring microbubble adhesion with ultrasound. A fit was applied to the RF data to extract a time constant (τ). As PRF was increased in water, the time constant decreased (τ = 32.6 s, 1 kHz vs. τ = 8.2 s, 6 kHz), whereas in bovine whole blood an adhesion–no adhesion transition was found for PRFs ≥ 8 kHz. Finally, a fluorophore was delivered to an ex vivo swine artery using microbubbles and the IVUS transducer, resulting in a 6.6-fold increase in fluorescence. These results indicate the importance of PRF (or duty factor) for IVUS acoustic radiation force microbubble displacement and the potential for IVUS and microbubbles to provide localized drug delivery. PMID:24569249

  17. Eliminating transducer distortion in acoustic measurements

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Torras Rosell, Antoni; McWalter, Richard Ian

    2014-01-01

    This paper investigates the in uence of nonlinear components that contaminate the linear response of acoustic transducer, and presents a method for eliminating the in uence of nonlinearities in acoustic measurements. The method is evaluated on simulated as well as experimental data, and is shown...

  18. Pushdown machines for the macro tree transducer

    NARCIS (Netherlands)

    Engelfriet, Joost; Vogler, Heiko

    1986-01-01

    The macro tree transducer can be considered as a system of recursive function procedures with parameters, where the recursion is on a tree (e.g., the syntax tree of a program). We investigate characterizations of the class of tree (tree-to-string) translations which is induced by macro tree

  19. Analysis of multifrequency langevin composite ultrasonic transducers.

    Science.gov (United States)

    Lin, Shuyu

    2009-09-01

    The multimode coupled vibration of Langevin composite ultrasonic transducers with conical metal mass of large cross-section is analyzed. The coupled resonance and anti-resonance frequency equations are derived and the effective electromechanical coupling coefficient is analyzed. The effect of the geometrical dimensions on the resonance frequency, the anti-resonance frequency, and the effective electromechanical coupling coefficient is studied. It is illustrated that when the radial dimension is large compared with the longitudinal dimension, the vibration of the Langevin transducer becomes a multifrequency multimode coupled vibration. Numerical methods are used to simulate the coupled vibration; the simulated results are in good agreement with those from the analytical results. Some Langevin transducers of large cross-section are designed and manufactured and their resonance frequencies are measured. It can be seen that the resonance frequencies obtained from the coupled resonance frequency equations are in good agreement with the measured results. It is expected that by properly choosing the dimensions, multifrequency Langevin transducers can be designed and used in ultrasonic cleaning, ultrasonic sonochemistry, and other applications.

  20. Evolvable Cryogenics (ECRYO) Pressure Transducer Calibration Test

    Science.gov (United States)

    Diaz, Carlos E., Jr.

    2015-01-01

    This paper provides a summary of the findings of recent activities conducted by Marshall Space Flight Center's (MSFC) In-Space Propulsion Branch and MSFC's Metrology and Calibration Lab to assess the performance of current "state of the art" pressure transducers for use in long duration storage and transfer of cryogenic propellants. A brief historical narrative in this paper describes the Evolvable Cryogenics program and the relevance of these activities to the program. This paper also provides a review of three separate test activities performed throughout this effort, including: (1) the calibration of several pressure transducer designs in a liquid nitrogen cryogenic environmental chamber, (2) the calibration of a pressure transducer in a liquid helium Dewar, and (3) the calibration of several pressure transducers at temperatures ranging from 20 to 70 degrees Kelvin (K) using a "cryostat" environmental chamber. These three separate test activities allowed for study of the sensors along a temperature range from 4 to 300 K. The combined data shows that both the slope and intercept of the sensor's calibration curve vary as a function of temperature. This homogeneous function is contrary to the linearly decreasing relationship assumed at the start of this investigation. Consequently, the data demonstrates the need for lookup tables to change the slope and intercept used by any data acquisition system. This ultimately would allow for more accurate pressure measurements at the desired temperature range. This paper concludes with a review of a request for information (RFI) survey conducted amongst different suppliers to determine the availability of current "state of the art" flight-qualified pressure transducers. The survey identifies requirements that are most difficult for the suppliers to meet, most notably the capability to validate the sensor's performance at temperatures below 70 K.

  1. The Biological Safety of Stainless Steel Needles Used in Warm-Needling

    Directory of Open Access Journals (Sweden)

    Sabina Lim

    2010-01-01

    Full Text Available Warm-needling (also called thermo-acupuncture is a combination of acupuncture and moxibustion. Due to the intense heat involved, there have been concerns over the biological safety of the acuneedles used in the treatment. This paper reports two phases of a safety test. For a preliminary test, we compared the temperature change patterns of stainless steel (SS304 needles and traditional gold alloy needles, which have been increasingly replaced by the former. To verify the effects of the presence of coating materials, the main test involved three different kinds of SS304: silicone-coated, salicylic acid-coated and non-coated needles. Each group of needles was tested for pH level, heavy metals and UV absorbance spectrum along with biological tests on the cytotoxicity and hemolysis of the needle. All the tests on the extractants from the needles were negative. In the biological tests, each test result showed a significant difference from the positive control samples, while no significant difference was observed compared with the negative control samples. In the hemolysis tests, all samples satisfied the Korean Government Standards. All the results suggest that SS304 needles are biologically safe to be used in warm-needling, though they can be improved to perform as well as the gold alloy needles in terms of temperature fluctuations.

  2. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging

    National Research Council Canada - National Science Library

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    .... Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays...

  3. A wideband combined transducer for measuring system in sound tube

    Institute of Scientific and Technical Information of China (English)

    PAN Yaozong; MO Xiping; LIU Yongping; CUI Zheng; ZHANG Tonggen

    2012-01-01

    A wideband transducer for sound tube system is presented, which combines longitudinal transducer and Class IV flextensional transducer to improve the performance at low frequency and broaden the working band. The equivalent circuit is obtained and used to analyze the coupling mechanism between longitudinal transducer and flextensional transducer. A prototype of the transducer is developed after optimizing the electro-acoustic performances by Finite Element Method. The standing wave in the sound tube stimulated by this transducer has been studied and the sound absorbing coefficients of two acoustic materials samples are measured using this sound tube, which shows that the transducer can meet the requirements of acoustic material measurement with the working band ranging from 1.4 kHz to 23 kHz.

  4. Toward a 3D transrectal ultrasound system for verification of needle placement during high-dose-rate interstitial gynecologic brachytherapy.

    Science.gov (United States)

    Rodgers, Jessica Robin; Surry, Kathleen; Leung, Eric; D'Souza, David; Fenster, Aaron

    2017-05-01

    Treatment for gynecologic cancers, such as cervical, recurrent endometrial, and vaginal malignancies, commonly includes external-beam radiation and brachytherapy. In high-dose-rate (HDR) interstitial gynecologic brachytherapy, radiation treatment is delivered via hollow needles that are typically inserted through a template on the perineum with a cylinder placed in the vagina for stability. Despite the need for precise needle placement to minimize complications and provide optimal treatment, there is no standard intra-operative image-guidance for this procedure. While some image-guidance techniques have been proposed, including magnetic resonance (MR) imaging, X-ray computed tomography (CT), and two-dimensional (2D) transrectal ultrasound (TRUS), these techniques have not been widely adopted. In order to provide intra-operative needle visualization and localization during interstitial brachytherapy, we have developed a three-dimensional (3D) TRUS system. This study describes the 3D TRUS system and reports on the system validation and results from a proof-of-concept patient study. To obtain a 3D TRUS image, the system rotates a conventional 2D endocavity transducer through 170 degrees in 12 s, reconstructing the 2D frames into a 3D image in real-time. The geometry of the reconstruction was validated using two geometric phantoms to ensure the accuracy of the linear measurements in each of the image coordinate directions and the volumetric accuracy of the system. An agar phantom including vaginal and rectal canals, as well as a model uterus and tumor, was designed and used to test the visualization and localization of the interstitial needles under idealized conditions by comparing the needles' positions between the 3D TRUS scan and a registered MR image. Five patients undergoing HDR interstitial gynecologic brachytherapy were imaged using the 3D TRUS system following the insertion of all needles. This image was manually, rigidly registered to the clinical

  5. Needle muscle biopsy and its application

    Directory of Open Access Journals (Sweden)

    Meng-long CHEN

    2015-07-01

    Full Text Available Needle muscle biopsy is a straightforward and reliable minimally-invasive technique. During the past century, the needle biopsy can provide adequate samples and the technique has gradually gained wider acceptance. Compared with open biopsy, needle biopsy is less traumatic, with low rate of complications, and is suitable for the identifications and evaluations of muscular dystrophy, inflammatory myopathies and systemic diseases involving muscles, specially for infants and young children. Domestic insiders should be encouraged to apply this technique. DOI: 10.3969/j.issn.1672-6731.2015.06.003 

  6. Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers

    OpenAIRE

    Nie, Liming; Guo, Zijian; Wang, Lihong V.

    2011-01-01

    A photoacoustic tomography system (PAT) using virtual point ultrasonic transducers was developed and applied to image a monkey brain. The custom-built transducers provide a 10-fold greater field-of-view (FOV) than finite-aperture unfocused transducers as well as an improved signal-to-noise ratio (SNR) and reduced artifacts rather than negative-lens transducers. Their tangential resolution, radial resolution, and (SNR) improvements were quantified using tissue phantoms. Our PAT system can achi...

  7. Needle-Tissue Interaction Forces for Bevel-Tip Steerable Needles

    Science.gov (United States)

    Misra, Sarthak; Reed, Kyle B.; Douglas, Andrew S.; Ramesh, K. T.; Okamura, Allison M.

    2010-01-01

    The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. As a first step toward modeling the mechanics of deflection of the needle, we determine the forces at the bevel tip. In order to find the forces acting at the needle tip, we measure rupture toughness and nonlinear material elasticity parameters of several soft tissue simulant gels and chicken tissue. We incorporate these physical parameters into a finite element model that includes both contact and cohesive zone models to simulate tissue cleavage. We investigate the sensitivity of the tip forces to tissue rupture toughness, linear and nonlinear tissue elasticity, and needle tip bevel angle. The model shows that the tip forces are sensitive to the rupture toughness. The results from these studies contribute to a mechanics-based model of bevel-tip needle steering, extending previous work on kinematic models. PMID:22020139

  8. Needle-Tissue Interaction Forces for Bevel-Tip Steerable Needles.

    Science.gov (United States)

    Misra, Sarthak; Reed, Kyle B; Douglas, Andrew S; Ramesh, K T; Okamura, Allison M

    2008-10-19

    The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. As a first step toward modeling the mechanics of deflection of the needle, we determine the forces at the bevel tip. In order to find the forces acting at the needle tip, we measure rupture toughness and nonlinear material elasticity parameters of several soft tissue simulant gels and chicken tissue. We incorporate these physical parameters into a finite element model that includes both contact and cohesive zone models to simulate tissue cleavage. We investigate the sensitivity of the tip forces to tissue rupture toughness, linear and nonlinear tissue elasticity, and needle tip bevel angle. The model shows that the tip forces are sensitive to the rupture toughness. The results from these studies contribute to a mechanics-based model of bevel-tip needle steering, extending previous work on kinematic models.

  9. Distribution of elements in needles of Pinus massoniana (Lamb.) was uneven and affected by needle age

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Yuanwen [South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou (China)]. E-mail: kuangyw@scbg.ac.cn; Wen Dazhi [South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou (China)]. E-mail: dzwen@scbg.ac.cn; Zhou Guoyi [South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou (China)]. E-mail: gyzhou@scbg.ac.cn; Liu Shizhong [South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou (China)]. E-mail: lsz@scbg.ac.cn

    2007-02-15

    Macronutrients (P, S, K, Na, Mg, Ca), heavy metals (Fe, Zn, Mn, Cu, Pb, Cr, Ni, Cd,) and Al concentrations as well as values of Ca/Al in the tip, middle and base sections, and sheaths of current year and previous year needles of Pinus massoniana from Xiqiao Mountain were analyzed and the distribution patterns of those elements were compared. The results indicated that many elements were unevenly distributed among the different components of needles. Possible deficiency of P, K, Ca, Mn and Al toxicity occurred in needles under air pollution. Heavy metals may threaten the health of Masson pine. Needle sheaths were good places to look for particulate pollutants, in this case including Fe, Cu, Zn, Pb, Cr, Cd and Al. - Pine needle sections as bioindicator for heavy metals and nutrient deficiency particularly needle sheath for particle pollutants.

  10. Distribution of elements in needles of Pinus massoniana (Lamb.) was uneven and affected by needle age

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Yuanwen [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou (China)]. E-mail: kuangyw@scbg.ac.cn; Wen Dazhi [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou (China)]. E-mail: dzwen@scbg.ac.cn; Zhou Guoyi [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou (China)]. E-mail: gyzhou@scbg.ac.cn; Liu Shizhong [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou (China)]. E-mail: lsz@scbg.ac.cn

    2007-01-15

    Macronutrients (P, S, K, Na, Mg, Ca), heavy metals (Fe, Zn, Mn, Cu, Pb, Cr, Ni, Cd) and Al concentrations as well as values of Ca/Al in the tip, middle, base sections and sheaths of current year and previous year needles of Pinus massoniana from Xiqiao Mountain were analyzed and the distribution patterns of those elements were compared. The results indicated that many elements were unevenly distributed among the different components of needles. Possible deficiency of P, K, Ca, Mn and Al toxicity occurred in needles under air pollution. Heavy metals may threaten the health of Masson pine. Needle sheaths were good places to look for particulate pollutants, in this case including Fe, Cu, Zn, Pb, Cr, Cd and Al. - Pine needle sections as bioindicator for heavy metals and nutrient deficiency particularly needle sheath for particle pollutants.

  11. [Discussion on needling sensation, arrival of qi and needling response (Deqi)].

    Science.gov (United States)

    Zhang, Fang; Wang, Hong-Du

    2012-12-01

    The current appointed teaching material of Science of Acupuncture and Moxibustion holds that there is no difference among the needling sensation, arrival of qi and needling response. However, the author has a different understanding. Therefore, Neijing (Internal Classic), its annotation, exposition and understandings of ancient and modern famous experts are cited to analyze their meanings. And the result indicates that the needling sensation is subjective feelings and perceived responses of doctors and patients. Arrival of qi is the healing process of the organ through activating the anti-pathogenic qi to expel the pathogens. The needling response is the final aim of acupuncture therapy. Thus, the meaning of needling sensation, arrival of qi, and needling response are different. And an accurate understanding can better guide acupuncture treatment.

  12. [Approach to teaching methods of the needling skill of filiform needle].

    Science.gov (United States)

    Wang, Cai-Hong; Xu, Jian-Min; Wang, Yin-Ping; Li, Yi

    2008-08-01

    The present paper is armed at approach to a set of teaching method about the needling skill of filiform needle, so as to increase teaching quality. After review and analysis on present situation of teaching methods about the needling skill of filiform needle, it is raised that traditional teaching methods are unable to objectively and comprehensively reflect characteristics and requirement of manipulation, so try to adopt acupuncture manipulation detection instrument, on the basis of traditional teaching methods about the needling skill of filiform needle. And the parameters and figures of manipulation examine of real-time collection in 131 students and information of 120 copies of questionnaire are analyzed and summarized. It is indicated that combined teaching method of traditional model and the manipulation instrument is more reasonable, and basic manipulation training most he strengthened in manipulation skill training, particularly, pay attention to training of twirling manipulation.

  13. Observations and models for needle-tissue interactions

    NARCIS (Netherlands)

    Misra, Sarthak; Reed, Kyle B.; Schafer, Benjamin W.; Ramesh, K.T.; Okamura, Allison M.

    2009-01-01

    The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. In this study we present a mechanics-based model that calculates the deflection of the needle embedded in an elastic medium. Microscopic observations for several needle- gel interactions

  14. Pine needle abortion biomarker detected in bovine fetal fluids

    Science.gov (United States)

    Pine needle abortion is a naturally occurring condition in free-range cattle caused by the consumption of pine needles from select species of cypress, juniper, pine, and spruce trees. Confirmatory diagnosis of pine needle abortion has previously relied on a combined case history of pine needle cons...

  15. An ultrasonic--EMG transducer for biodynamic research.

    Science.gov (United States)

    Watkin, K L; Minifie, F D; Kennedy, J G

    1978-03-01

    This note describes a newly developed single-element muscle action potential/motion transducer. The transcuer was specially designed for speech research. Techniques for use of the transducer are described. Sample data are presented illustrating the capability of the transducer, and applications of the device are discussed.

  16. 21 CFR 890.1615 - Miniature pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Miniature pressure transducer. 890.1615 Section 890.1615 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Miniature pressure transducer. (a) Identification. A miniature pressure transducer is a device intended for...

  17. 21 CFR 868.2900 - Gas pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas pressure transducer. 868.2900 Section 868.2900...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2900 Gas pressure transducer. (a) Identification. A gas pressure transducer is a device intended for medical purposes that is used to convert gas...

  18. 21 CFR 868.2885 - Gas flow transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas flow transducer. 868.2885 Section 868.2885...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2885 Gas flow transducer. (a) Identification. A gas flow transducer is a device intended for medical purposes that is used to convert gas flow...

  19. 21 CFR 870.2870 - Catheter tip pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Catheter tip pressure transducer. 870.2870 Section 870.2870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pressure transducer. (a) Identification. A catheter tip pressure transducer is a device incorporated into...

  20. 21 CFR 870.2840 - Apex cardiographic transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Apex cardiographic transducer. 870.2840 Section 870.2840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... cardiographic transducer. (a) Identification. An apex cardiographic transducer is a device used to detect motion...

  1. 21 CFR 868.2875 - Differential pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Differential pressure transducer. 868.2875 Section 868.2875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... transducer. (a) Identification. A differential pressure transducer is a two-chambered device intended for...

  2. Missing Broken Needle During Caesarean Section

    Directory of Open Access Journals (Sweden)

    Chandana Das

    2009-09-01

    Full Text Available Breakage of the needle and missing while repairing the uterine wound during cesarean section is an uncommon event. Subsequently it was removed under fluoroscopic guidance on the 7th postoperative day

  3. A Multi-Layered Needle Injection Simulator.

    Science.gov (United States)

    Laufer, Shlomi; Kempton, Steve J; Maciolek, Kimberly; Terry, Aliyya; Ray, Rebeca D; Pugh, Carla M; Afifi, Ahmed M

    2016-01-01

    Insuring correct needle location is crucial in many medical procedures. This can be even more challenging for physicians injecting in a new location for the first time. Since they do not necessarily know how the tissue is supposed to feel, finding the correct location and correct depth can be difficult. In this study we designed a simulator for training needle injection. The simulator was fabricated to give a realistic feeling of injecting Botox® in the temporalis and the semispinalis muscles as part of migraine treatment. In addition the simulator provided real-time feedback of correct needle location. Nine residents and medical students evaluated the simulator. They made several errors that were corrected real time using the real time feedback provided. They found the simulator to be very useful and that the training significantly improved their confidence. The methods described in this study can easily be implemented for developing needle injection simulators for other anatomical locations.

  4. Sliding Mode Control of Steerable Needles.

    Science.gov (United States)

    Rucker, D Caleb; Das, Jadav; Gilbert, Hunter B; Swaney, Philip J; Miga, Michael I; Sarkar, Nilanjan; Webster, Robert J

    2013-10-01

    Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation.

  5. Inverse Kinematics of Concentric Tube Steerable Needles

    Science.gov (United States)

    Sears, Patrick; Dupont, Pierre E.

    2013-01-01

    Prior papers have introduced steerable needles composed of precurved concentric tubes. The curvature and extent of these needles can be controlled by the relative rotation and translation of the individual tubes. Under certain assumptions on the geometry and design of these needles, the forward kinematics problem can be solved in closed form by means of algebraic equations. The inverse kinematics problem, however, is not as straightforward owing to the nonlinear map between relative tube displacements and needle tip configuration as well as to the multiplicity of solutions as the number of tubes increases. This paper presents a general approach to solving the inverse kinematics problem using a pseudoinverse solution together with gradients of nullspace potential functions to enforce geometric and mechanical constraints. PMID:23685532

  6. Sliding Mode Control of Steerable Needles

    Science.gov (United States)

    Rucker, D. Caleb; Das, Jadav; Gilbert, Hunter B.; Swaney, Philip J.; Miga, Michael I.; Sarkar, Nilanjan; Webster, Robert J.

    2014-01-01

    Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation. PMID:25400527

  7. Biopsy needle detection in transrectal ultrasound.

    Science.gov (United States)

    Ayvaci, Alper; Yan, Pingkun; Xu, Sheng; Soatto, Stefano; Kruecker, Jochen

    2011-01-01

    Using the fusion of pre-operative MRI and real time intra-procedural transrectal ultrasound (TRUS) to guide prostate biopsy has been shown as a very promising approach to yield better clinical outcome than the routinely performed TRUS only guided biopsy. In several situations of the MRI/TRUS fusion guided biopsy, it is important to know the exact location of the deployed biopsy needle, which is imaged in the TRUS video. In this paper, we present a method to automatically detect and segment the biopsy needle in TRUS. To achieve this goal, we propose to combine information from multiple resources, including ultrasound probe stability, TRUS video background model, and the prior knowledge of needle orientation and position. The proposed algorithm was tested on TRUS video sequences which have in total more than 25,000 frames. The needle deployments were successfully detected and segmented in the sequences with high accuracy and low false-positive detection rate.

  8. Optomechanical transducers for quantum information processing

    CERN Document Server

    Stannigel, K; Sørensen, A S; Lukin, M D; Zoller, P

    2011-01-01

    We discuss the implementation of optical quantum networks where the interface between stationary and photonic qubits is realized by optomechanical transducers [K. Stannigel et al., PRL 105, 220501 (2010)]. This approach does not rely on the optical properties of the qubit and thereby enables optical quantum communication applications for a wide range of solid-state spin- and charge-based systems. We present an effective description of such networks for many qubits and give a derivation of a state transfer protocol for long-distance quantum communication. We also describe how to mediate local on-chip interactions by means of the optomechanical transducers that can be used for entangling gates. We finally discuss experimental systems for the realization of our proposal.

  9. Electromechanical transducer for acoustic telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas S. (Cedar Crest, NM)

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  10. Electromechanical transducer for acoustic telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  11. New piezoelectric transducers for therapeutic ultrasound.

    Science.gov (United States)

    Chapelon, J Y; Cathignol, D; Cain, C; Ebbini, E; Kluiwstra, J U; Sapozhnikov, O A; Fleury, G; Berriet, R; Chupin, L; Guey, J L

    2000-01-01

    Therapeutic ultrasound (US) has been of increasing interest during the past few years. However, the development of this technique depends on the availability of high-performance transducers. These transducers have to be optimised for focusing and steering high-power ultrasonic energy within the target volume. Recently developed high-power 1-3 piezocomposite materials bring to therapeutic US the exceptional electroacoustical properties of piezocomposite technology: these are high efficiency, large bandwidth, predictable beam pattern, more flexibility in terms of shaping and definition of sampling in annular arrays, linear arrays or matrix arrays. The construction and evaluation of several prototypes illustrates the benefit of this new approach that opens the way to further progress in therapeutic US.

  12. Hybrid neural network models of transducers

    Science.gov (United States)

    Xie, Shilin; Zhang, Xinong; Chen, Shenglai; Zhu, Changchun

    2011-10-01

    A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input-single output and multi input-multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance.

  13. Orbital angular momentum-entanglement frequency transducer

    CERN Document Server

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the information carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 nm to 525 nm for OAM qubits, OAMpolarization hybrid entangled states, and OAM entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link betwe...

  14. Self-Aligned Interdigitated Transducers for Acoustofluidics

    Directory of Open Access Journals (Sweden)

    Zhichao Ma

    2016-11-01

    Full Text Available The surface acoustic wave (SAW is effective for the manipulation of fluids and particles at microscale. The current approach of integrating interdigitated transducers (IDTs for SAW generation into microfluidic channels involves complex and laborious microfabrication steps. These steps often require full access to clean room facilities and hours to align the transducers to the precise location. This work presents an affordable and innovative method for fabricating SAW-based microfluidic devices without the need for clean room facilities and alignment. The IDTs and microfluidic channels are fabricated using the same process and thus are precisely self-aligned in accordance with the device design. With the use of the developed fabrication approach, a few types of different SAW-based microfluidic devices have been fabricated and demonstrated for particle separation and active droplet generation.

  15. Transducer Arrays Suitable for Acoustic Imaging

    Science.gov (United States)

    1978-06-01

    extensional resonance of a thin plate. The stif- fened velocity and acoustic im.pedance of the transducer can be defined then as follows: ,,,D 1/2 󈧥 (3...finite radius performing rotaticnal oscillations about its center. Case (a) is identical to the cne evaluated in this pape-. The integrals in...Poisson’s ratio. For (k.L) > I , the impedance is essen- tially real and oscillates slowly about the longitudinal plane wave impedance. Below (k,L) = 1

  16. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  17. Transducer Analysis and ATILA++ Model Development

    Science.gov (United States)

    2016-10-10

    the ATILA finite element software package. This will greatly enhance the state-of-the-art in transducer performance prediction and provide a tool...The free dielectric constants for soft crystals show significant change with preload which affects device impedance and amplifier considerations...under Static Preload An apparatus and software control system have been fabricated and developed for evaluating the behavior of materials under high

  18. Characterization of transducer cavities to oscillatory inputs

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Hollingshead, J.R.

    1993-12-31

    The design and use of measurement systems must ensure that the data are not computed by the measurement system. A wide variety of sources can be responsible for compromising the integrity of test data. Among the sources of error are transducer calibration errors, signal conditioning problems, recording problems, and characteristics of the mechanical system which introduce errors. In this paper, the characteristics of an acoustic cavity are discussed as they apply to a pressure measurement problem.

  19. Finite element model of needle electrode sensitivity

    Science.gov (United States)

    Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.

    2010-04-01

    We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.

  20. Micromachined capacitive transducer arrays for intravascular ultrasound

    Science.gov (United States)

    Degertekin, F. Levent; Guldiken, R. Oytun; Karaman, Mustafa

    2005-01-01

    Intravascular ultrasound (IVUS) imaging has become an essential imaging modality for the effective diagnosis and treatment of cardiovascular diseases during the past decade enabled by innovative applications of piezoelectric transducer technology. The limitations in the manufacture and performance of the same piezoelectric transducers have also impeded the improvement of IVUS for emerging clinically important applications such as forward viewing arrays for guiding interventions and high resolution imaging of arterial structure such as vulnerable plaque and fibrous cap, and also implementation of techniques such as harmonic imaging of the tissue and of the contrast agents. Capacitive micromachined ultrasonic transducer (CMUT) technology shows great potential for transforming IVUS not only to satisfy these clinical needs but also to open up possibilities for low-cost imaging devices integrated to therapeutic tools. We have developed manufacturing processes with a maximum process temperature of 250°C to build CMUTs on the same silicon chip with integrated electronics. Using these processes we fabricated CMUT arrays suitable for forward viewing IVUS in the 10-20MHz range. We characterized these array elements in terms of pulse-echo response, radiation pattern measurements and demonstrated its volumetric imaging capabilities on various imaging targets.

  1. Enhanced C-band Coaxial Orthomode Transducer

    Directory of Open Access Journals (Sweden)

    S. I. Piltyay

    2014-09-01

    Full Text Available Introduction. In this paper a novel configuration of wideband coherent coaxial OMT is presented. General Design of an Orthomode Transducer. The OMT consists of elements of 3 main types: a turnstile junction between coaxial quad-ridged waveguide and 4 coaxial transmission lines; 4 coaxial transmission lines of LMR400 type; 2 antiphase power combiners/dividers. A Turnstile Junction Optimization. The optimization of a turnstile junction has been performed. Its minimized reflection coefficient is less than −28 dB in the operation frequency band 3.4–5.4 GHz. A Wideband Antiphase Power Combiner/Divider. The optimization of an antiphase power combiner/divider has been performed. Its minimized reflection coefficient is less than −38 dB. Characteristics of Coaxial Orthomode Transducer Developed. The simulation of OMT characteristics has been performed using CST Design Studio software. Conclusions. A wideband coherent coaxial orthomode transducer has been developed for the operation frequency band 3.4–5.4 GHz. In this frequency band the reflection coefficient of OMT is less than −24 dB and its crosspolar isolation exceeds 38 dB. The wideband coaxial OMT developed can be used in dual-polarized multiband antennas for satellite telecommunications and for radioastronomy.

  2. Stress Sensors and Signal Transducers in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Sergey Kryazhov

    2010-03-01

    Full Text Available In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks, 12 genes for serine-threonine protein kinases (Spks, 42 genes for response regulators (Rres, seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress.

  3. Cross-fiber Bragg grating transducer

    Science.gov (United States)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  4. A Neoprene with Optimized Bondability for Sonar Transducer Applications

    Science.gov (United States)

    1987-06-05

    TR-317R TRANSDUCER The TR-317R is a tonpilz transducer mounted in a large spherical array on the front of U.S. Navy submarines of several classes... TRANSDUCER APPLICATIONS TASK NO. 59-0593-0 [SQ-ns«A-n WORK UNIT ACCESSION NO. )N880-326 12. PERSONAL AUTHOR(S) "^ ^Zl!l ^’ ’^’^°"’P"°" ^"i... Transducer Applications tX: C. M. Thompson Materials Section Transducer Branch Underwater Sound Reference Detachment Naval Research Laboratory P.O

  5. Language of Transducer Manipulation: Codifying Terms for Effective Teaching.

    Science.gov (United States)

    Bahner, David P; Blickendorf, J Matthew; Bockbrader, Marcia; Adkins, Eric; Vira, Amar; Boulger, Creagh; Panchal, Ashish R

    2016-01-01

    There is a need for consistent, repetitive, and reliable terminology to describe the basic manipulations of the ultrasound transducer. Previously, 5 basic transducer motions have been defined and used in education. However, even with this effort, there is still a lack of consistency and clarity in describing transducer manipulation and motion. In this technical innovation, we describe an expanded definition of transducer motions, which include movements to change the transducer's angle of insonation to the target as well as the location on the body to optimize the ultrasound image. This new terminology may allow for consistent teaching and improved communication in the process of image acquisition.

  6. Dry needling versus acupuncture: the ongoing debate.

    Science.gov (United States)

    Zhou, Kehua; Ma, Yan; Brogan, Michael S

    2015-12-01

    Although Western medical acupuncture (WMA) is commonly practised in the UK, a particular approach called dry needling (DN) is becoming increasingly popular in other countries. The legitimacy of the use of DN by conventional non-physician healthcare professionals is questioned by acupuncturists. This article describes the ongoing debate over the practice of DN between physical therapists and acupuncturists, with a particular emphasis on the USA. DN and acupuncture share many similarities but may differ in certain aspects. Currently, little information is available from the literature regarding the relationship between the two needling techniques. Through reviewing their origins, theory, and practice, we found that DN and acupuncture overlap in terms of needling technique with solid filiform needles as well as some fundamental theories. Both WMA and DN are based on modern biomedical understandings of the human body, although DN arguably represents only one subcategory of WMA. The increasing volume of research into needling therapy explains its growing popularity in the musculoskeletal field including sports medicine. To resolve the debate over DN practice, we call for the establishment of a regulatory body to accredit DN courses and a formal, comprehensive educational component and training for healthcare professionals who are not physicians or acupuncturists. Because of the close relationship between DN and acupuncture, collaboration rather than dispute between acupuncturists and other healthcare professionals should be encouraged with respect to education, research, and practice for the benefit of patients with musculoskeletal conditions who require needling therapy.

  7. Trigger point needling: techniques and outcome.

    Science.gov (United States)

    Vulfsons, Simon; Ratmansky, Motti; Kalichman, Leonid

    2012-10-01

    In this review we provide the updates on last years' advancements in basic science, imaging methods, efficacy, and safety of dry needling of myofascial trigger points (MTrPs). The latest studies confirmed that dry needling is an effective and safe method for the treatment of MTrPs when provided by adequately trained physicians or physical therapists. Recent basic studies have confirmed that at the site of an active MTrP there are elevated levels of inflammatory mediators, known to be associated with persistent pain states and myofascial tenderness and that this local milieu changes with the occurrence of local twitch response. Two new modalities, sonoelastography and magnetic resonance elastography, were recently introduced allowing noninvasive imaging of MTrPs. MTrP dry needling, at least partially, involves supraspinal pain control via midbrain periaqueductal gray matter activation. A recent study demonstrated that distal muscle needling reduces proximal pain by means of the diffuse noxious inhibitory control. Therefore, in a patient too sensitive to be needled in the area of the primary pain source, the treatment can be initiated with distal needling.

  8. Silver Doped 0.9PMN-PT-0.1PZT Composite Films for very High Frequency Ultrasonic Transducer Applications.

    Science.gov (United States)

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Wei, Qiang; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2013-05-01

    A series of silver doping concentration into the 0.9PMN-PT-0.1PZT (PMN-PT-PZT) films via the composite sol-gel technique were prepared. The crystallographic properties and microstructures of PMN-PT-PZT films with the silver dopant were investigated. Additionally, the effect of silver doping on dielectric and ferroelectric properties was examined. The results show that in general, the dielectric permittivity and remnant polarization increase as the silver doping concentration is increased. The PMN-PT-PZT+ 2.5 mol% Ag film exhibits a dielectric constant of 3,610 at 1 kHz and a remnant polarization of 57.6 µC/cm(2) at room temperature. From this silver doped film, very high frequency ultrasonic needle transducers were fabricated and evaluated. The representative transducer had the center frequency of 225 MHz with a -6 dB bandwidth of 29% (65 MHz) and 62 dB insertion loss. The performance of this transducer is comparable to other composite sol-gel films transducer. The results suggest that this silver-doped PMN-PT-PZT film is a promising candidate as an alternative piezoelectric film for very high frequency transducer applications.

  9. Silver doped 0.9PMN-PT-0.1PZT composite films for very high frequency ultrasonic transducer applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiu-Sheng [University of Southern California, Department of Biomedical Engineering and NIH Transducer Resource Center, Los Angeles, CA (United States); University of Southern California, Mork Family Department of Chemical Engineering and Materials Science, Los Angeles, CA (United States); Benjauthrit, Vatcharee; Zhou, Qifa; Shung, K.K. [University of Southern California, Department of Biomedical Engineering and NIH Transducer Resource Center, Los Angeles, CA (United States); Wei, Qiang; Huang, Yuhong [Chemat Technology Inc., Northridge, CA (United States)

    2013-05-15

    A series of silver doping concentration into the 0.9PMN-PT-0.1PZT (PMN-PT-PZT) films via the composite sol-gel technique were prepared. The crystallographic properties and microstructures of PMN-PT-PZT films with the silver dopant were investigated. Additionally, the effect of silver doping on dielectric and ferroelectric properties was examined. The results show that in general, the dielectric permittivity and remnant polarization increase as the silver doping concentration is increased. The PMN-PT-PZT+2.5 mol% Ag film exhibits a dielectric constant of 3,610 at 1 kHz and a remnant polarization of 57.6 {mu}C/cm{sup 2} at room temperature. From this silver doped film, very high frequency ultrasonic needle transducers were fabricated and evaluated. The representative transducer had the center frequency of 225 MHz with a -6 dB bandwidth of 29 % (65 MHz) and 62 dB insertion loss. The performance of this transducer is comparable to other composite sol-gel films transducer. The results suggest that this silver-doped PMN-PT-PZT film is a promising candidate as an alternative piezoelectric film for very high frequency transducer applications. (orig.)

  10. Needle-in-Needle Technique for Percutaneous Retrieval of a Fractured Biopsy Needle during CT-Guided Biopsy of the Thoracic Spine.

    Science.gov (United States)

    Shaikh, Hamza; Thawani, Jayesh; Pukenas, Bryan

    2014-10-31

    Common complications related to CT-guided percutaneous thoracic bone biopsy procedures include pneumothorax and muscular hematoma. Serious, but rare complications include paralysis, nerve injury, CSF leak, and aortic injury. Device failure has not been well documented in the literature. We discuss our experience with biopsy needle breakage during retrieval of a core specimen and the technique used to help retrieve an embedded needle using a CT fluoroscopic-guided, needle-in-needle approach. A 43 year-old man with Stage IIIa NSCLC was found to have a T11 vertebral body lesion as seen on PET, CT, and MR imaging. The patient underwent a CT-guided biopsy in the prone position. The T11 vertebral body was localized and cannulated using the percutaneous Bonopty(®) (Apriomed, Upsala, Sweden) needle device. After fine needle aspiration samples were obtained, a core needle biopsy was attempted with a 16-gauge device. The needle fractured 4 cm deep to the skin during removal of a sclerotic lesion, leaving a retained portion within the pedicle and vertebral body. Using CT-guided fluoroscopy, a large diameter Murphy M2 needle was advanced over the distal portion of the fractured Bonopty needle. The Murphy M2 needle was advanced distal to the tip of the Bonopty needle and removed, capturing the broken Bonopty penetration needle along with a core specimen. Larger-bore biopsy needle systems and/or a coaxial system should be used to perform core biopsies in sclerotic lesions to prevent device fracture. If there is device fracture, a larger-bore needle may be used to help capture the fractured needle and prevent open surgery.

  11. Parameter sensitivity study of a Field II multilayer transducer model on a convex transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2009-01-01

    .ResultsPredictions using the ZR give a pressure pulse error (PPE) and an intensity error (IE) of 32 % and 23 %, respectively, relative to the measured. Altering the piezoelectric permittivity +12 % from ZR decreases the PPE to 30 % and the IE to 2 % relative to the measured. Changing the stiffness constant of the lens -4......A multilayer transducer model for predicting a transducer impulse response has in earlier works been developed and combined with the Field II software. This development was tested on current, voltage, and intensity measurements on piezoceramics discs (Bæk et al. IUS 2008) and a convex 128 element...... ultrasound imaging transducer (Bæk et al. ICU 2009). The model benefits from its 1D simplicity and hasshown to give an amplitude error around 1.7‐2 dB. However, any prediction of amplitude, phase, and attenuation of pulses relies on the accuracy of manufacturer supplied material characteristics, which may...

  12. Does a child's fear of needles decrease through a learning event with needles?

    Science.gov (United States)

    Kajikawa, Natsuki; Maeno, Takami; Maeno, Tetsuhiro

    2014-09-01

    Most children have a fear of needles. Suitable preparation can decrease the pain and fear of needles in hospitals; however, few have examined how such preparation affects healthy children. This study examined whether learning with needles decreases fear of needles and changes motivation to get vaccinations in school-age children and the possible association between fear of needles and motivation toward vaccinations. This study included children participating in the "Let's Be Doctors" event, which was held in 4 child centers in Tsukuba city, Ibaraki, Japan. In this event, children learned about injections and how a vaccine works, and injected a vaccine (water) into skin (sponge) using a real syringe and imitation needle. Data were collected just before and after the event by anonymous self-assessment questionnaires that used a 4-point Likert scale to assess fear of needles, motivation to get vaccinations, recommendation of vaccinations, and fear toward doctors among the children. Answers were divided into two categories for statistical analysis. In total, 194 children participated in the event and 191 children answered the questionnaire (response rate 98.5%). We analyzed 180 subjects, comprising 79 boys (43.9%) and 94 girls (52.2%), mean age of 8.1 ± 1.0 years. The number of children reporting a fear of needles decreased from 69 (38.3%) before the event to 51 (28.3%) after the event, and those unwilling to get vaccinations decreased from 48 (26.7%) to 27 (15.0%). Children who reported fear of needles before the event were more unwilling to get vaccinations than those with no fear of needles (36 [52.2%] vs. 12 [10.8%]), while after the event the number of needle-fearing children unwilling to get vaccinations decreased to 19 (27.5%). Children's fear of needles and unwillingness to get vaccinations were decreased after experiencing a learning event with needles. The fear of needles is associated with a negative motivation to get vaccinations in children.

  13. Methods for segmenting curved needles in ultrasound images.

    Science.gov (United States)

    Okazawa, Stephen H; Ebrahimi, Richelle; Chuang, Jason; Rohling, Robert N; Salcudean, Septimiu E

    2006-06-01

    Ultrasound-guided percutaneous needle insertions are widely used techniques in current clinical practice. Some of these procedures have a high degree of difficulty because of poor observability of the needle in the ultrasound image. There have been recent efforts to improve guidance by computer assisted needle detection. These software techniques are often limited by not representing needle curvature. We present two methods to detect the needle in 2D ultrasound that specifically address needle curvature. Firstly, we demonstrate a real-time needle segmentation algorithm based on the Hough transform which detects the needle and represents its curved shape. Secondly, we demonstrate how a new coordinate transformation can transform detection of a curved needle to a linear fit. These methods are demonstrated on ultrasound and photographic images.

  14. Needle deflection estimation using fusion of electromagnetic trackers.

    Science.gov (United States)

    Sadjadi, H; Hashtrudi-Zaad, K; Fichtinger, G

    2012-01-01

    We present a needle deflection estimation method to compensate for needle bending during insertion into deformable tissue. We combine a kinematic needle deflection estimation model, electromagnetic (EM) trackers, and a Kalman filter (KF). We reduce the impact of error from the needle deflection estimation model by using the fusion of two EM trackers to report the approximate needle tip position in real-time. One reliable EM tracker is installed on the needle base, and estimates the needle tip position using the kinematic needle deflection model. A smaller but much less reliable EM tracker is installed on the needle tip, and estimates the needle tip position through direct noisy measurements. Using a KF, the sensory information from both EM trackers is fused to provide a reliable estimate of the needle tip position with much reduced variance in the estimation error. We then implement this method to compensate for needle deflection during simulated prostate cancer brachytherapy needle insertion. At a typical maximum insertion depth of 15 cm, needle tip mean estimation error was reduced from 2.39 mm to 0.31 mm, which demonstrates the effectiveness of our method, offering a clinically practical solution.

  15. The cellularity yield of three different 22-gauge endoscopic ultrasound fine needle aspiration needles.

    Science.gov (United States)

    Othman, Mohamed O; Abdelfatah, Mohamed M; Padilla, Osvaldo; Hussinat, Maha; Elhanafi, Sherif; Eloliby, Mohamed; Torabi, Alireza; Hakim, Nawar; Boman, Darius A

    2017-05-01

    Endoscopic ultrasound (EUS) fine needle aspiration (FNA) is an integral part in the diagnosis of pancreatic, intestinal and extra-intestinal masses or lesions. There is no clear data on the superiority of the core biopsy needle over standard 22-gauge needles. The aim of this study is to prospectively compare the cellularity yield of three commonly used 22-gauge FNA needles available in the US market. This is a prospective, randomized study comparing the cellularity yield of three commercially available EUS needles (two standard FNA needles and core biopsy needle). Two blinded pathologists evaluated the cytology specimens based on an already agreed upon cytology score. We included adult patients (18-80 years old) who presented to our endoscopy unit for FNA of pancreatic or extrapancreatic masses. 109 patients (57 F, 52 M) were recruited to the study, 88 lesions were pancreatic lesions. 39 patients were recruited in the EZ Shot 2™ group, 36 in the Procore(®) group and 34 in the Expect™ group. The average cellularity score and the mean number of passes (SD) were not different between the three needles; P = 0.91 and P = 0.16, respectively. There was no difference between the three needles in obtaining an onsite diagnosis (P = 0.627) and no difference in reported adverse events between the three groups. The cellularity yields, the mean number of passes and reported adverse events were similar in the three compared 22-gauge needles. Diagn. Cytopathol. 2017;45:426-432. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Ultrasound transducer function: annual testing is not sufficient.

    Science.gov (United States)

    Mårtensson, Mattias; Olsson, Mats; Brodin, Lars-Åke

    2010-10-01

    The objective was to follow-up the study 'High incidence of defective ultrasound transducers in use in routine clinical practice' and evaluate if annual testing is good enough to reduce the incidence of defective ultrasound transducers in routine clinical practice to an acceptable level. A total of 299 transducers were tested in 13 clinics at five hospitals in the Stockholm area. Approximately 7000-15,000 ultrasound examinations are carried out at these clinics every year. The transducers tested in the study had been tested and classified as fully operational 1 year before and since then been in normal use in the routine clinical practice. The transducers were tested with the Sonora FirstCall Test System. There were 81 (27.1%) defective transducers found; giving a 95% confidence interval ranging from 22.1 to 32.1%. The most common transducer errors were 'delamination' of the ultrasound lens and 'break in the cable' which together constituted 82.7% of all transducer errors found. The highest error rate was found at the radiological clinics with a mean error rate of 36.0%. There was a significant difference in error rate between two observed ways the clinics handled the transducers. There was no significant difference in the error rates of the transducer brands or the transducers models. Annual testing is not sufficient to reduce the incidence of defective ultrasound transducers in routine clinical practice to an acceptable level and it is strongly advisable to create a user routine that minimizes the handling of the transducers.

  17. Safety Issues for HIFU Transducer Design

    Science.gov (United States)

    Fleury, Gérard; Berriet, Rémi; Chapelon, Jean Yves; ter Haar, Gail; Lafon, Cyril; Le Baron, Olivier; Chupin, Laurent; Pichonnat, Fabrice; Lenormand, Jérôme

    2005-03-01

    In contrast with most ultrasound modalities for medical applications, (especially ultrasound imaging), High Intensity Focused Ultrasound (HIFU) involves technologies and procedures which may present risk to the patient. These risks, resulting from the high power levels required for effective therapy, should be taken into account at the earliest stages in the design of a system dedicated to HIFU treatment. An understanding of these risks must thus be shared amongst the many players in the field of therapy using high power ultrasound. Moreover, since the number of applications of HIFU has increased appreciably over recent years and the technology is ready to move from the research to the industrial level, it is worth now considering solutions that should be put in place to guarantee the safety of the patient during HIFU treatment. This paper reports thoughts on this, identifies some risks to the patient that must be taken into consideration in the design of HIFU transducers, and proposes some solutions that could prevent the deleterious consequences of transducer misuse or failure. For the main risks identified, such as exceeding the desired acoustic power or poor control of tissue targeting, a description of transducer performance that could potentially result in problems is systematically sought. This allows proposals for precautions to be taken during operation to be made. Parameters which should be monitored to ensure safe use are also suggested. This type of approach, which should be undertaken for the different components of a therapeutic system, highlights the challenges that must be faced in the immediate future for the development and safe exploitation of HIFU systems. The necessity for standard definitions of the parameters to be checked or monitored during HIFU treatments is crucial in this approach, as is the availability of reliable dedicated measurement devices. Co-ordinated action on these topics in the HIFU community would contribute to the

  18. Dynamics of receptor and protein transducer homodimerisation

    Directory of Open Access Journals (Sweden)

    Kolch Walter

    2008-10-01

    Full Text Available Abstract Background Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalling pathways. Several authors have suggested in recent times that dimerisation relates to a series of physical and biological outcomes used by the cell in the regulation of signal transduction. Results In this paper we investigate the role of homodimerisation in receptor-protein transducer interactions. Towards this end, mathematical modelling is used to analyse the features of such kind of interactions and to predict the behaviour of the system under different experimental conditions. A kinetic model in which the interaction between homodimers provokes a dual mechanism of activation (single and double protein transducer activation at the same time is proposed. In addition, we analyse under which conditions the use of a power-law representation for the system is useful. Furthermore, we investigate the dynamical consequences of this dual mechanism and compare the performance of the system in different simulated experimental conditions. Conclusion The analysis of our mathematical model suggests that in receptor-protein interacting systems with dual mechanism there may be a shift between double and single activation in a way that intense double protein transducer activation could initiate and dominate the signal in the short term (getting a fast intense signal, while single protein activation could control the system in the medium and long term (when input signal is weaker and decreases slowly. Our investigation suggests that homodimerisation and oligomerisation are mechanisms used to enhance and regulate the dynamic properties of the initial steps in signalling pathways.

  19. A Hail Size Distribution Impact Transducer

    CERN Document Server

    Lane, John E; Haskell, William D; Cox, Robert B

    2014-01-01

    An active impact transducer has been designed and tested for the purpose of monitoring hail fall in the vicinity of the Space Shuttle launch pads. An important outcome of this design is the opportunity to utilize frequency analysis to discriminate between the audio signal generated from raindrop impacts and that of hailstone impacts. The sound of hail impacting a metal plate is sub-tly but distinctly different than the sound of rain impacts. This useful characteristic permits application of signal processing algorithms that are inherently more robust than techniques relying on amplitude processing alone in the implementation of a hail disdrometer.

  20. Optical Coherence Tomography in a Needle Format

    Science.gov (United States)

    Lorenser, Dirk; McLaughlin, Robert A.; Sampson, David D.

    In this chapter, we review the technology and applications of needle probes for optical coherence tomography (OCT). Needle probes are miniaturized fiber-optic probes that can be mounted inside hypodermic needles, allowing them to be inserted deep into the body during OCT imaging. This overcomes the very limited imaging depth of OCT of only 2-3 mm in biological tissue, enabling access to deep-tissue locations that are beyond the reach of free-space optical scan heads or catheters. This chapter provides an in-depth review of the current state-of-the art in needle probe technology, including optical design and fabrication, scan mechanisms (including three-dimensional scanning), and integration into OCT systems. It also provides an overview of emerging applications of this fascinating new imaging tool in areas such as cancer diagnosis, pulmonary imaging, imaging of the eye and imaging of the brain. Finally, two case studies are presented, illustrating needle-based OCT imaging in breast cancer and lungs.

  1. Dry needling for myofascial pain: prognostic factors.

    Science.gov (United States)

    Huang, Yuan-Ting; Lin, Shun-Yuan; Neoh, Choo-Aun; Wang, Kuo-Yang; Jean, Yen-Hsuan; Shi, Hon-Yi

    2011-08-01

    The study objectives were to evaluate outcomes in patients who have received dry needling treatments and to identify predictors of pain and disability. The study was a prospective cohort follow-up design. The study was conducted at the Pain Clinic at Pingtung Christian Hospital, Taiwan. Ninety-two (92) patients sick-listed for 3 months or longer for myofascial pain syndrome. From February to October 2008, participants were treated at the pain clinic with dry needling of trigger points and muscle stretches of the involved muscles. Data were collected by self-administered questionnaires to assess changes in pain intensity and pain interference. Data collection was performed at baseline and after 2, 4, and 8 weeks. Sociodemographic variables, symptom characteristics, and baseline outcome measures were analyzed using generalized estimating equation methodology. The proposed dry-needling protocol reduced pain intensity and pain interference. Long duration of pain symptoms, high pain intensity, poor quality of sleep, and repetitive stress were associated with poor outcomes. Dry needling is an effective treatment for reducing pain and pain interference. However, long pain duration, high pain intensity, poor quality of sleep, and repetitive stress are associated with poor outcomes. Treatment outcome depends not only on the dry needling protocol, but also on disease characteristics and patient demographic profile.

  2. Medically relevant ElectroNeedle technology development.

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Carrie Frances; Thomas, Michael Loren; McClain, Jaime L.; Harper, Jason C.; Achyuthan, Komandoor E.; Ten Eyck, Gregory A.

    2008-11-01

    ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.

  3. Sugar export limits size of conifer needles

    Science.gov (United States)

    Rademaker, Hanna; Zwieniecki, Maciej A.; Bohr, Tomas; Jensen, Kaare H.

    2017-04-01

    Plant leaf size varies by more than three orders of magnitude, from a few millimeters to over one meter. Conifer leaves, however, are relatively short and the majority of needles are no longer than 6 cm. The reason for the strong confinement of the trait-space is unknown. We show that sugars produced near the tip of long needles cannot be exported efficiently, because the pressure required to drive vascular flow would exceed the greatest available pressure (the osmotic pressure). This basic constraint leads to the formation of an inactive region of stagnant fluid near the needle tip, which does not contribute to sugar flow. Remarkably, we find that the size of the active part does not scale with needle length. We predict a single maximum needle size of 5 cm, in accord with data from 519 conifer species. This could help rationalize the recent observation that conifers have significantly smaller leaves than angiosperms, and provide a biophysical explanation for this intriguing difference between the two largest groups of plants.

  4. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    Science.gov (United States)

    Zalameda, Joseph N. (Inventor); Johnston, Patrick H. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  5. Needle-free insulin drug delivery

    Directory of Open Access Journals (Sweden)

    Patni Preeti

    2006-01-01

    Full Text Available For most patients with type 1 diabetes, the worst part of the disease is to tolerate needle after needle, both for glucose measurement and to deliver insulin. In the last two decades, concept of insulin therapy by multiple-dose injection has undergone a miraculous change. Needle-free insulin delivery appeared to be a wonderful approach, and its allure rested in being comfortable and safe. In today′s era, insulin delivery by alternative route is a topic of current interest in the design of drug delivery system. Major global pharmaceutical companies are showing encouraging progress in their attempts to develop alternative insulin delivery technologies. Many such drug delivery systems have been developed for oral, buccal and nasal route. This review article discusses, in brief, the novel and emerging technologies that are in pipeline, including insulin inhalers, insulin spray, insulin pill, insulin analogues, insulin complement, islet cell transplant, implantable insulin pumps and guardian continuous glucose monitoring system.

  6. TREATMENT OF EPIGASTRIC PAIN WITH SUBCUTANEOUS NEEDLING

    Institute of Scientific and Technical Information of China (English)

    GUO Jia-tu

    2006-01-01

    @@ Subcutaneous needling is a new therapeutic method which is based on the features of the meridian-collateral theory of cutaneous regions in traditional Chinese medicine and the neurohumeral theory and skin anatomy of modern medicine and is of the features of "fixed meridian but not fixed acupoints", "micro stimulation", and "subcutaneous needling with filiform needles" to achieve the goal of treating diseases. This method is indicated clinically to the analgesia and relaxation of spasm especially the pain caused by the disorders of the internal organs and marked therapeutic effect has been obtained. With method, 150 cases of epigastric pain were treated by our department and the total effective rate was over 90%. It is presented herein below.

  7. Perception and Action in Teleoperated Needle Insertion.

    Science.gov (United States)

    Nisky, I; Pressman, A; Pugh, C M; Mussa-Ivaldi, F A; Karniel, A

    2011-01-01

    We studied the effect of delay on perception and action in contact with a force field that emulates elastic soft tissue with a rigid nonlinear boundary. Such a field is similar to forces exerted on a needle during teleoperated needle insertion. We found that delay causes motor underestimation of the stiffness of this nonlinear soft tissue, without perceptual change. These experimental results are supported by simulation of a simplified mechanical model of the arm and neural controller, and a model for perception of stiffness, which is based on regression in the force-position space. In addition, we show that changing the gain of the teleoperation channel cancels the motor effect of delay without adding perceptual distortion. We conclude that it is possible to achieve perceptual and motor transparency in virtual one-dimensional remote needle insertion task.

  8. Orbital Angular Momentum-Entanglement Frequency Transducer

    Science.gov (United States)

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-09-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.

  9. Instantaneous crack detection using dual PZT transducers

    Science.gov (United States)

    Kim, Seung Bum; Sohn, Hoon

    2008-03-01

    A new guided wave based nondestructive testing (NDT) technique is developed to detect crack damage in metallic plates commonly used in aircraft without using prior baseline data or a predetermined decision boundary. In conventional guided wave based techniques, damage is often identified by comparing the "current" data obtained from a potentially damaged condition of a structure with the "past" baseline data collected at the pristine condition of the structure. However, it has been reported that this type of pattern comparison with the baseline data can lead to increased false alarms due to its susceptibility to varying operational and environmental conditions of the structure. In order to tackle this issue, a reference-free damage detection technique is previously developed using two pairs of collocated lead zirconate titanate transducers (PZTs) placed on both sides of a plate. In this study, this reference-free technique is further advanced so that the PZT transducers can be placed only on one side of the specimen. Crack formation creates Lamb wave mode conversion due to a sudden change in the thickness of the structure. Then, the proposed technique instantly detects the appearance of the crack by extracting this mode conversion from the measured Lamb waves. This study suggests a reference-free statistical approach that enables damage classification using only the current data set. Numerical and experimental results are presented to demonstrate the applicability of the proposed technique to instantaneous crack detection.

  10. Enhanced C-band Coaxial Orthomode Transducer

    Directory of Open Access Journals (Sweden)

    S. I. Piltyay

    2014-06-01

    Full Text Available Introduction. In this paper a novel configuration of wideband coherent coaxial OMT is presented. General Design of an Orthomode Transducer. The OMT consists of elements of 3 main types: a turnstile junction between coaxial quad-ridged waveguide and 4 coaxial transmission lines; 4 right-angle coaxial junctions for each polarization; 2 antiphase power combiners/dividers. A Turnstile Junction Optimization. The optimization of a turnstile junction has been performed. Its minimized reflection coefficient is less than −28 dB in the operation frequency band 3.4–5.4 GHz. An Optimized Right-Angle Coaxial Junction. A right-angle coaxial junction has been optimized to provide reflection coefficient, which is less than −42 dB in the operation frequency band 3.4–5.4 GHz. An Antiphase Power Combiner/Divider. The optimization of an antiphase power com-biner/divider has been performed. Its minimized reflection coefficient is less than −38 dB. Conclusions. A wideband coaxial orthomode transducer has been developed for the operation frequency band 3.4–5.4 GHz. In this frequency band the reflection coefficient is less than −27 dB.

  11. Syringe and Needle Size, Syringe Type, Vacuum Generation, and Needle Control in Aspiration Procedures

    Science.gov (United States)

    Haseler, Luke J.; Sibbitt, Randy R.; Sibbitt, Wilmer L.; Michael, Adrian A.; Gasparovic, Charles M.; Bankhurst, Arthur D.

    2013-01-01

    Purpose Syringes are used for diagnostic fluid aspiration and fine needle aspiration biopsy (FNA) in interventional procedures. We determined the benefits, disadvantages, and patient safety implications of syringe and needle size on vacuum generation, hand force requirements, biopsy/fluid yield, and needle control during aspiration procedures. Materials and Methods Different sizes (1, 3, 5, 10, and 20 ml) of the conventional syringe and aspirating mechanical safety syringe, the reciprocating procedure device (RPD), were studied. 20 operators performed aspiration procedures with the following outcomes measured: 1) vacuum (Torr), 2) time to vacuum (seconds), 3) hand force to generate vacuum (Torr-cm2), 4) operator difficulty during aspiration, 5) biopsy yield (mg), and 6) operator control of the needle tip position (mm). Results Vacuum increased tissue biopsy yield at all needle diameters (p aspirate, and resulted in significant loss of needle control (pneedle control (pneedle and maximize fluid and tissue yield during aspiration procedures, a two-handed technique and the smallest syringe size adequate for the procedure should be used. If precise needle control or one-handed operation is required, a mechanical safety syringe should be considered. PMID:21057795

  12. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    OpenAIRE

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO...

  13. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    OpenAIRE

    Zhou, Qifa; Lau, Sienting; WU, DAWEI; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the curr...

  14. Low-cost ultrasonic lamb-wave transducer

    Science.gov (United States)

    Kammerer, C. C.

    1978-01-01

    Transducer propagates Lamb wave through thin aluminum sheet material. Model includes two elements that measure effects of damping and loading which, in turn, are indirectly equated to bond integrity. Transducer has been used to evaluate bond integrity of aluminum facing adhesively bonded to aluminum facing. Because of versatility, it is now possible to inspect many objects of different configurations that could not be reached with earlier transducers.

  15. Broadband tonpilz underwater acoustic transducers based on multimode optimization

    OpenAIRE

    Yao, Qingshan; Jensen, Leif Bjørnø

    1997-01-01

    Head flapping has often been considered to be deleterious for obtaining a tonpilz transducer with broadband, high power performance. In the present work, broadband, high power tonpilz transducers have been designed using the finite element (FE) method. Optimized vibrational modes including the flapping mode of the head are effectively used to achieve the broadband performance. The behavior of the transducer in its longitudinal piston mode and in its flapping mode is analysed for in-air and in...

  16. An Algorithm for Selecting Transducer Element Array Positions

    Science.gov (United States)

    1988-06-01

    response. A lumped-parameter equivalent circuit of a tonpilz transducer is used to predict element amplitude and phase tolerances for different radiation...lumped-parameter equivalent circuit of a tonpilz transducer is used to predict element amplitude and phase tolerances for different radiation loadings...FIGURES p Figure Page : 2.1 A Tonpilz Type Transducer . . .............. . 6 % 2.2 The Equivalent Circuit .......... .................... 7 2.3 The

  17. Design and Test of Capacitive Micromachined Ultrasonic Transducer

    National Research Council Canada - National Science Library

    Hongliang Wang; Xiangjun Wang; Changde He; Chenyang Xue; Jijun Xiong; Wendong Zhang; Jing Miao; Yuping Li

    2014-01-01

      Currently, most capacitive micromachined ultrasound transducers, adopting surface sacrificial technology encounter various problems such as difficult cavity etch, low controllability of membrane thickness etc...

  18. MEMS acoustic emission transducers designed with high aspect ratio geometry

    Science.gov (United States)

    Saboonchi, H.; Ozevin, D.

    2013-09-01

    In this paper, micro-electro-mechanic systems (MEMS) acoustic emission (AE) transducers are manufactured using an electroplating technique. The transducers use a capacitance change as their transduction principle, and are tuned to the range 50-200 kHz. Through the electroplating technique, a thick metal layer (20 μm nickel + 0.5 μm gold) is used to form a freely moving microstructure layer. The presence of the gold layer reduces the potential corrosion of the nickel layer. A dielectric layer is deposited between the two electrodes, thus preventing the stiction phenomenon. The transducers have a measured quality factor in the range 15-30 at atmospheric pressure and are functional without vacuum packaging. The transducers are characterized using electrical and mechanical tests to identify the capacitance, resonance frequency and damping. Ultrasonic wave generation using a Q-switched laser shows the directivity of the transducer sensitivity. The comparison of the MEMS transducers with similar frequency piezoelectric transducers shows that the MEMS AE transducers have better response characteristics and sensitivity at the resonance frequency and well-defined waveform signatures (rise time and decay time) due to pure resonance behavior in the out-of-plane direction. The transducers are sensitive to a unique wave direction, which can be utilized to increase the accuracy of source localization by selecting the correct wave velocity at the structures.

  19. Radiation endurance of piezoelectric ultrasonic transducers--a review.

    Science.gov (United States)

    Sinclair, A N; Chertov, A M

    2015-03-01

    A literature survey is presented on the radiation endurance of piezoelectric ultrasonic transducer components and complete transducer assemblies, as functions of cumulative gamma dose and neutron fluence. The most extensive data on this topic has been acquired in CANDU electrical generating stations, which use piezoelectric ultrasonic transducers manufactured commercially with minor accommodation for high radiation fields. They have been found to be reliable for cumulative gamma doses of up to approximately 2 MegaGrays; a brief summary is made of the associated accommodations required to the transducer design, and the ultimate expected failure modes. Outside of the CANDU experience, endurance data have been acquired under a diverse spectrum of operating conditions; this can impede a direct comparison of the information from different sources. Much of this data is associated with transducers immersed in liquid metal coolants associated with advanced reactor designs. Significant modifications to conventional designs have led to the availability of custom transducers that can endure well over 100 MegaGrays of cumulative gamma dose. Published data on transducer endurance against neutron fluence are reviewed, but are either insufficient, or were reported with inadequate description of test conditions, to make general conclusions on transducer endurance with high confidence. Several test projects are planned or are already underway by major laboratories and research consortia to augment the store of transducer endurance data with respect to both gamma and neutron radiation.

  20. Monitoring Method for the Electrical Properties of Piezoelectric Transducer

    Institute of Scientific and Technical Information of China (English)

    李文; 朱泽琪

    2012-01-01

    The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasonic elliptic vibration cutting is monitored using the electrical properties of transducer was proposed by studying on the relationship of cutting force, transducer electric impedance and load. A measurement system was designed for the electrical properties of transducer. The feasibility of cutting force monitoring method based on the electrical properties of piezoelectric transducer was proved by the cutting experiments.

  1. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Science.gov (United States)

    2010-04-01

    ... that converts electrical signals into acoustic signals and acoustic signals into electrical signals and... include transmission media for acoustically coupling the transducer to the body surface, such as...

  2. Method and results of studying conduction measuring transducers

    Energy Technology Data Exchange (ETDEWEB)

    Dunaevskii, I.G.; Korotkov, B.N.; Povkh, I.L.; Cheplyukov, V.G.

    1977-01-01

    The method and results are given for determining the sensitivity of conduction measuring transducers with a local magnetic field. The results were obtained by frequency-dependent gradation on a model pulsation velocity gauge--a thermoanemometer. The effect of measuring a transducer's diameter, inter-electrode distance and nose line forms on its spatial resolution capacity was estimated. Adjustment functions were obtained for these transducers. A concept was formulated for measuring transducers belonging to the same class. 5 references, 5 figures.

  3. Analysis of the NovoTwist pen needle in comparison with conventional screw-thread needles.

    Science.gov (United States)

    Aye, Tandy

    2011-11-01

    Administration of insulin via a pen device may be advantageous over a vial and syringe system. Hofman and colleagues introduce a new insulin pen needle, the NovoTwist, to simplify injections to a small group of children and adolescents. Their overall preferences and evaluation of the handling of the needle are reported in the study. This new needle has the potential to ease administration of insulin via a pen device that may increase both the use of a pen device and adherence to insulin therapy.

  4. Preparation of (non-)aqueous dispersins of colloidal boehmite needles

    NARCIS (Netherlands)

    Buining, P.A.; Pathmamanoharan, C.; Philipse, A.P.; Lekkerkerker, H.N.W.

    1993-01-01

    A novel hydrothermal alkoxide method is presented for the preparation of stable, aqueousdispersions of fairly monodisperse, charged colloidal boehmite needles. A polymer coating procedure for the needles is described which leads to sterically stabilized dispersions in organic solvents.

  5. Winging of the scapula: An unusual complication of needle thoracocentesis.

    Science.gov (United States)

    Faruqi, S; Raychaudhuri, C; Thirumaran, M; Blaxill, P

    2008-07-01

    Needle thoracocentesis is a common interventional procedure and is generally considered to be safe. Major complications associated with this procedure are uncommon. Here we describe a rare instance of winging of the scapula following needle thoracocentesis.

  6. The Needling Technique and Clinical Application of Point Zhibian

    Institute of Scientific and Technical Information of China (English)

    张远东

    2004-01-01

    @@ The Needling Technique The patient is asked to lie in a lateral or prone position. A No. 28 filiform needle of 3 cun is inserted perpendicularly into the point Zhibian (BL 54), with the direction of the needle tip varying according to the different conditions of the diseases. The needle can be directed in three directions, the first along the sciatic nerve; the second pointing to the genitals; and the third pointing to the anus. The reinforcing,reducing, or even needling manipulation can be used,and the needling depth can be deep or superficial.The needling can also be applied in combination with the warm-needle, cupping, and point-injection.

  7. A double-blind placebo needle for acupuncture research

    Directory of Open Access Journals (Sweden)

    Takakura Nobuari

    2007-10-01

    Full Text Available Abstract Background Placebo needles that can mask acupuncture practitioners to the type of needle used have been considered almost impossible to develop until now. Methods We designed a double-blind non-penetrating placebo needle, the needle tip of which simply presses against the skin, and a matched penetrating needle. The needles are encased inside an opaque guide tube and the appearance and feel of the pair are designed to be indistinguishable. To validate the masking effect for the practitioner, 10 acupuncturists each applied 23 non-penetrating needles and 17 penetrating needles to the Large Intestine-4 point. After removing each needle, they judged whether the needle was 'penetrating', 'non-penetrating' or 'unidentifiable'. For the validation of patient masking, an acupuncturist randomly applied a non-penetrating/penetrating needle pair to the bilateral Sanjiao-5 points in 60 volunteers. When both applications were completed, we asked them to write down anything that they noticed regarding the needle application and associated sensations. Results The mean ± SD of correct/unidentifiable/incorrect answers given by the 10 acupuncturists were 17.0 ± 4.1/6.4 ± 3.6/16.6 ± 3.0, respectively. Regarding patient masking, none of the subjects commented in the questionnaire that they had received a non-penetrating needle. Of 60 penetrating and 60 non-penetrating needle applications, 48 (80.0% and 25 (41.7% applications elicited skin penetration sensation and 48 (80.0% and 20 (33.3% applications elicited de qi, respectively. Conclusion These needles have the potential to mask both practitioners and patients from the type of needle used in acupuncture research.

  8. EUS needle identification comparison and evaluation (NICE) study (with videos)

    Science.gov (United States)

    Tang, Shou-jiang; Vilmann, Andreas S.; Saftoiu, Adrian; Wang, Wanmei; Streba, Costin; Fink, Peter P.; Griswold, Michael; Wu, Ruonan; Dietrich, Christoph F.; Jenssen, Christian; Hocke, Michael; Kantowski, Marcus; Pohl, Jürgen; Fockens, Paul; Annema, Jouke T.; van der Heijden, Erik H.F.M.; Havre, Roald Flesland; Pham, Khanh Do-Cong; Kunda, Rastislav; Deprez, Pierre H.; Mariana, Jinga; Vazquez-Sequeiros, Enrique; Larghi, Alberto; Buscarini, Elisabetta; Fusaroli, Pietro; Lahav, Maor; Puri, Rajesh; Garg, Pramod Kumar; Sharma, Malay; Maluf-Filho, Fauze; Sahai, Anand; Brugge, William R.; Lee, Linda S.; Aslanian, Harry R.; Wang, Andrew Y.; Shami, Vanessa M.; Markowitz, Arnold; Siddiqui, Ali A.; Mishra, Girish; Scheiman, James M.; Isenberg, Gerard; Siddiqui, Uzma D.; Shah, Raj J.; Buxbaum, James; Watson, Rabindra R.; Willingham, Field F.; Bhutani, Manoop S.; Levy, Michael J.; Harris, Cynthia; Wallace, Michael B.; Nolsøe, Christian Pállson; Lorentzen, Torben; Bang, Niels; Sørensen, Sten Mellerup; Gilja, Odd Helge; D’Onofrio, Mirko; Piscaglia, Fabio; Gritzmann, Norbert; Radzina, Maija; Sparchez, Zeno Adrian; Sidhu, Paul S.; Freeman, Simon; McCowan, Timothy C.; de Araujo, Cyrillo Rodrigues; Patel, Akash; del Ali, Mohammad A; Campbell, Garth; Chen, Edward; Vilmann, Peter

    2017-01-01

    Background and Aims Endoscopic ultrasound (EUS)-guided fine-needle aspiration (FNA) or biopsy is widely practiced. Optimal sonographic visualization of the needle is critical for image guided interventions. There are several commercially available needles but no bench-top testing and direct comparison of these needles to reveal their inherent echogenicity. The aims are to provide bench-top data that can be used to guide clinical applications and to promote future device research and development. Methods Descriptive bench-top testing and comparison. Bench-top testing of 8 commonly used EUS-FNA needles (all of 22 gauge in size): SonoTip Pro Control (Medi-Globe); Expect Slimline (Boston Scientific); EchoTip, EchoTip Ultra, EchoTip ProCore High Definition, (Cook Medical); ClearView (Conmed); EZ Shot2 (Olympus); BNX (Beacon Endoscopic); and 2 new prototype needles that are coated by echogenic polymers by Medi-Globe. Blinded evaluation of standardized and unedited videos by 43 EUS endoscopists and 17 radiologists specialized in gastrointestinal ultrasound examination that is unfamiliar with EUS needle devices. Results There was no significant difference in the ratings and rankings of these needles between endosonographers and radiologists. Overall, one prototype needle was rated as the best, ranking 10% to 40% higher than all other needles (pneedles, the EchoTip Ultra needle and the ClearView needle were top choices. The EZ Shot 2 needle was ranked statistically lower than other needles (30%–75% worse, pneedles have their inherent and different echogenicity, and these differences are similarly recognized by EUS endoscopists and radiologists. Needles with polymeric coating from the entire shaft to the needle tip may offer better echogenicity. PMID:26873530

  9. Needle Path Planning for Autonomous Robotic Surgical Suturing.

    Science.gov (United States)

    Jackson, Russell C; Cavuşoğlu, M Cenk

    2013-12-31

    This paper develops a path plan for suture needles used with solid tissue volumes in endoscopic surgery. The path trajectory is based on the best practices that are used by surgeons. The path attempts to minimize the interaction forces between the tissue and the needle. Using surgical guides as a basis, two different techniques for driving a suture needle are developed. The two techniques are compared in hardware experiments by robotically driving the suture needle using both of the motion plans.

  10. The Cavitation With Plate Transducer And Non Cavitation With Knob Transducer By Manihot Utilissima Fermentation The Potential Hydrogen Ph Method

    Directory of Open Access Journals (Sweden)

    Syamsul Arifin

    2015-08-01

    Full Text Available Abstract Manihot M. utilissima fermentation is popular foods and drinks for Indonesia people but it fermented foods 24 hours per day will breed fungi and anaerobic bacteriae so it will make it into acidic foods and alcoholic beverages. Ultrasonic 48 kHz 5 Vpp 1 VDC with functional generator and of the two models of transducers will have two different phenomena on M. utilissima fermentation. Methods Model-1. Radiation ultrasonic transducer plate or Flat of piezoelectric speakers2 were applied with transducers M. utilissima dipped in a test tube. Model-2. Knob or small ball ultrasonic transducer 12 balls were applied with transducers of tin knob which was connected to the copper wire2 and piezoelectricspeakers were dipped into the media M. utilissima in a test tube. After ultrasonic radiation fluid liquid from two models of transducers measured total acid in M. utilissima fermentation liquid by paper indicators of potential Hydrogen pH. The conclusion of this study can predict different phenomena namely the transducer plate of the initial pH value-acid fermentation M. utilissima can change increases the pH-value end of the base which means that the transducer plate has a cavitation phenomenon and media M. utilissima lead to the delicious food but on transducer knob that the initial pH value-acid fermentation M. utilissima will decrease more acid value so that have no phenomenon of cavitation and the media will lead M. utilissima to be alcoholic foods.

  11. Robotic needle steering: design, modeling, planning, and image guidance

    NARCIS (Netherlands)

    Cowan, Noah J.; Goldberg, Ken; Chirikjian, Gregory S.; Fichtinger, Gabor; Alterovitz, Ron; Reed, Kyle B.; Kallem, Vinutha; Park, Wooram; Misra, Sarthak; Okamura, Allison M.; Rosen, Jacob; Hannaford, Blake; Satava, Richard M.

    2010-01-01

    This chapter describes how advances in needle design, modeling, planning, and image guidance make it possible to steer flexible needles from outside the body to reach specified anatomical targets not accessible using traditional needle insertion methods. Steering can be achieved using a variety of m

  12. Modeling and Control of Needles with Torsional Friction

    Science.gov (United States)

    Reed, Kyle B.; Okamura, Allison M.; Cowan, Noah J.

    2010-01-01

    A flexible needle can be accurately steered by robotically controlling the bevel tip orientation as the needle is inserted into tissue. Friction between the long, flexible needle shaft and the tissue can cause a significant discrepancy between the orientation of the needle tip and the orientation of the base where the needle angle is controlled. Our experiments show that several common phantom tissues used in needle steering experiments impart substantial friction forces to the needle shaft, resulting in a lag of over 45° for a 10 cm insertion depth in some phantoms; clinical studies report torques large enough to cause similar errors during needle insertions. Such angle discrepancies will result in poor performance or failure of path planners and image-guided controllers, since the needles used in percutaneous procedures are too small for state-of-the-art imaging to accurately measure the tip angle. To compensate for the angle discrepancy, we develop an estimator using a mechanics-based model of the rotational dynamics of a needle being inserted into tissue. Compared to controllers that assume a rigid needle in a frictionless environment, our estimator-based controller improves the tip angle convergence time by nearly 50% and reduces the path deviation of the needle by 70%. PMID:19695979

  13. Comparative Study of Wear Resistance of Sewing Needles

    Institute of Scientific and Technical Information of China (English)

    FEI Dong-ye; ZHU Shi-gen

    2002-01-01

    Poor wearability is the most serious problem of domestic sewing needle, which is the main reason for their short service lives. The influences of needle materials,microstructures and manufacturing technologies on the wear resistance are analyzed in comparison with foreign sewing needles. A series of suitable measures are proposed to improve the wear resistance.

  14. Mechanics of Flexible Needles Robotically Steered through Soft Tissue

    NARCIS (Netherlands)

    Misra, S.; Reed, K.B.; Schafer, B.W.; Ramesh, K.T.; Okamura, A.M.

    2010-01-01

    The tip asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. This enables robotic needle steering, which can be used in medical procedures to reach subsurface targets inaccessible by straight-line trajectories. However, accurate path planning

  15. Design optimization of embedded ultrasonic transducers for concrete structures assessment.

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2017-08-01

    In the last decades, the field of structural health monitoring and damage detection has been intensively explored. Active vibration techniques allow to excite structures at high frequency vibrations which are sensitive to small damage. Piezoelectric PZT transducers are perfect candidates for such testing due to their small size, low cost and large bandwidth. Current ultrasonic systems are based on external piezoelectric transducers which need to be placed on two faces of the concrete specimen. The limited accessibility of in-service structures makes such an arrangement often impractical. An alternative is to embed permanently low-cost transducers inside the structure. Such types of transducers have been applied successfully for the in-situ estimation of the P-wave velocity in fresh concrete, and for crack monitoring. Up to now, the design of such transducers was essentially based on trial and error, or in a few cases, on the limitation of the acoustic impedance mismatch between the PZT and concrete. In the present study, we explore the working principles of embedded piezoelectric transducers which are found to be significantly different from external transducers. One of the major challenges concerning embedded transducers is to produce very low cost transducers. We show that a practical way to achieve this imperative is to consider the radial mode of actuation of bulk PZT elements. This is done by developing a simple finite element model of a piezoelectric transducer embedded in an infinite medium. The model is coupled with a multi-objective genetic algorithm which is used to design specific ultrasonic embedded transducers both for hard and fresh concrete monitoring. The results show the efficiency of the approach and a few designs are proposed which are optimal for hard concrete, fresh concrete, or both, in a given frequency band of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Distribution of elements in needles of Pinus massoniana (Lamb.) was uneven and affected by needle age.

    Science.gov (United States)

    Kuang, Yuan Wen; Wen, Da Zhi; Zhou, Guoyi; Liu, Shi Zhong

    2007-02-01

    Macronutrients (P, S, K, Na, Mg, Ca), heavy metals (Fe, Zn, Mn, Cu, Pb, Cr, Ni, Cd,) and Al concentrations as well as values of Ca/Al in the tip, middle and base sections, and sheaths of current year and previous year needles of Pinus massoniana from Xiqiao Mountain were analyzed and the distribution patterns of those elements were compared. The results indicated that many elements were unevenly distributed among the different components of needles. Possible deficiency of P, K, Ca, Mn and Al toxicity occurred in needles under air pollution. Heavy metals may threaten the health of Masson pine. Needle sheaths were good places to look for particulate pollutants, in this case including Fe, Cu, Zn, Pb, Cr, Cd and Al.

  17. Percutaneous needle fasciotomy in dupuytren's disease

    NARCIS (Netherlands)

    van Rijssen, A L; Werker, P M N

    2006-01-01

    The aim of this study was to examine our results of 74 percutaneous needle fasciotomies for Dupuytren's contracture. Pre-operative and postoperative total passive extension deficit was measured. Patients were seen at the outpatient clinic at 32 months for final follow-up. Extension deficit and

  18. Relationship between needle phobia and dental anxiety

    NARCIS (Netherlands)

    Majstorovic, M.; Veerkamp, J.S.J.

    2004-01-01

    Purpose: This cross-sectional study aimed to explain the nature of needle phobia and its relationship in dental phobic children with evidence on age-related differences. Methods: The study used 2,865 patients (52% boys, 48% girls), 4 to 11 years old (mean=7.18 years). The patient sample included ran

  19. Buffon Needle Problem Application to Space Exploration

    CERN Document Server

    Sedelnikov, A V

    2010-01-01

    In this article the possibility of application of classical Buffon needle problem to the investigation of orientation engine firing problem has been investigated. Such an approach makes it possible to get a reliable EP of this undesired event without using a more complicated analysis.

  20. Bubble Growth and Detachment from a Needle

    Science.gov (United States)

    Shusser, Michael; Rambod, Edmond; Gharib, Morteza

    1999-11-01

    The release of bubbles from an underwater nozzle or orifice occurs in large number of applications, such as perforated plate columns, blood oxygenators and various methods of water treatment. It is also a widely used method in laboratory research on multiphase flow and acoustics for generating small bubbles in a controlled fashion. We studied experimentally the growth and pinch-off of air bubbles released from a submerged needle into a quiescent liquid or a liquid flowing parallel to the needle. Micron-sized bubbles were generated by an air-liquid dispenser. High-speed imaging was performed to study the formation and detachment of bubbles from the tip of the needle. The impact of the needle diameter was investigated and the size and number of produced bubbles were assessed for different flow rates of air and for different velocities of the imposed upward liquid flow. The results were compared with available theoretical models and numerical computations. The existence of a critical gas flow rate and two regimes of bubble growth were verified.

  1. Biocompatible 3D printed magnetic micro needles

    KAUST Repository

    Kavaldzhiev, Mincho

    2017-01-30

    Biocompatible functional materials play a significant role in drug delivery, tissue engineering and single cell analysis. We utilized 3D printing to produce high aspect ratio polymer resist microneedles on a silicon substrate and functionalized them by iron coating. Two-photon polymerization lithography has been used for printing cylindrical, pyramidal, and conical needles from a drop cast IP-DIP resist. Experiments with cells were conducted with cylindrical microneedles with 630 ± 15 nm in diameter with an aspect ratio of 1:10 and pitch of 12 μm. The needles have been arranged in square shaped arrays with various dimensions. The iron coating of the needles was 120 ± 15 nm thick and has isotropic magnetic behavior. The chemical composition and oxidation state were determined using energy electron loss spectroscopy, revealing a mixture of iron and Fe3O4 clusters. A biocompatibility assessment was performed through fluorescence microscopy using calcein/EthD-1 live/dead assay. The results show a very high biocompatibility of the iron coated needle arrays. This study provides a strategy to obtain electromagnetically functional microneedles that benefit from the flexibility in terms of geometry and shape of 3D printing. Potential applications are in areas like tissue engineering, single cell analysis or drug delivery.

  2. Magnetoelastic Transducer Materials - a Plateable Possibility

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Møller, Per

    2001-01-01

    A short presentation of the magnetostriction theory as well as a series of possible applications for magnetoelastic transducers are given. A review of the present state of development for these materials is discussed with relation to the various ways of manufacture. The paper is concluded...... with the presentation of a method for making magnetoelastic materials by electrochemical deposition (electroless) as tried by the authors in collaboration with the Daimler-Chrysler research centre in Ulm, Germany. First results of this work are both promising and intriguing: Sensitivities of the same order...... as the reference material Terfenol-D were obtained, but reproduction of exact magnetic properties is still critical with the new plating technique....

  3. Linear ultrasonic motor using quadrate plate transducer

    Institute of Scientific and Technical Information of China (English)

    Jiamei JIN; Chunsheng ZHAO

    2009-01-01

    A linear ultrasonic motor using a quadrate plate transducer was developed for precision positioning. This motor consists of two pairs of Pb(Zr, Ti)O3 piezo-electric ceramic elements, which are piezoelectrically excited into the second-bending mode of the motor stator's neutral surface in two orthogonal directions, on which the tops of four projections move along an elliptical trajectory, which in turn drives a contacted slider into linear motion via frictional forces. The coincident frequency of the stator is easily obtained for its coincident characteristic dimen-sion in two orthogonal directions. The performance characteristics achieved by the motor are: 1) a maximum linear speed of more than 60 mm/s; 2) a stroke of more than 150 mm; 3) a driving force of more than 5.0 N; and 4) a response time of about 2 ms.

  4. Multilayer Array Transducer for Nonlinear Ultrasound Imaging

    Science.gov (United States)

    Owen, Neil R.; Kaczkowski, Peter J.; Li, Tong; Gross, Dan; Postlewait, Steven M.; Curra, Francesco P.

    2011-09-01

    The properties of nonlinear acoustic wave propagation are known to be able to improve the resolution of ultrasound imaging, and could be used to dynamically estimate the physical properties of tissue. However, transducers capable of launching a wave that becomes nonlinear through propagation do not typically have the necessary bandwidth to detect the higher harmonics. Here we present the design and characterization of a novel multilayer transducer for high intensity transmit and broadband receive. The transmit layer was made from a narrow-band, high-power piezoceramic (PZT), with nominal frequency of 2.0 MHz, that was diced into an array of 32 elements. Each element was 0.300 mm wide and 6.3 mm in elevation, and with a pitch of 0.400 mm the overall aperture width was 12.7 mm. A quarter-wave matching layer was attached to the PZT substrate to improve transmit efficiency and bandwidth. The overlaid receive layer was made from polyvinylidene fluoride (PVDF) that had gold metalization on one side. A custom two-sided flex circuit routed electrical connections to the PZT elements and patterned the PVDF elements; the PZT and PVDF elements had identical apertures. A low viscosity and electrically nonconductive epoxy was used for all adhesion layers. Characterization of electrical parameters and acoustic output were performed per standard methods, where transmit and receive events were driven by a software-controlled ultrasound engine. Echo data, collected from ex vivo tissue and digitized at 45 MS/s, exhibited frequency content up to the 4th harmonic of the 2 MHz transmit frequency.

  5. Dry needling versus cervical spine manipulation combined with dry needling of infraspinatus muscle myofascial trigger points

    OpenAIRE

    2013-01-01

    M.Tech. (Chiropractic) Objective: The purpose of this study was to compare dry needling with cervical spine manipulation combined with dry needling, in the treatment of infraspinatus muscle myofascial trigger points. Study Design: This was a randomized experimental study Setting: The participants were treated at the University of Johannesburg chiropractic day clinic Subjects: 30 participants volunteered for the study. The participants were divided into groups by randomly drawing thirty num...

  6. Fine-needle aspiration with selective use of core needle biopsy of major salivary gland tumors.

    Science.gov (United States)

    Romano, Erica B; Wagner, Jason M; Alleman, Anthony M; Zhao, Lichao; Conrad, Rachel D; Krempl, Greg A

    2017-05-23

    Preferential use of fine-needle aspiration (FNA) versus core needle biopsy (CNB) for distinguishing benign from malignant major salivary gland tumors is highly debated. The main disadvantage of FNA is lower sensitivity, whereas arguments against CNB include use of a larger bore needle and greater risk of complications. The aim of this study is to evaluate our experience performing ultrasound-guided (UG) FNA with selective use of CNB based on preliminary cytopathology, and to determine whether our preoperative diagnostic approach is more sensitive and specific than FNA alone-and at least as sensitive and specific as CNB alone. Retrospective review of UG needle biopsy sampling of lesions arising in or around parotid and submandibular glands. Ultrasounds of 141 needle biopsies were identified. Patient/lesion/needle biopsy characteristics, preliminary cytopathology, final pathology, imaging studies, and subsequent clinical course and treatment were documented. Needle biopsies performed according to our protocol provided results that guided clinical decision making in 125 of 135 cases, 92.6% (95% confidence interval [CI], 86.8%-96.4%) of the time. Using 41 cases that had histologic verification, sensitivity was 100% (95% CI, 79.6%-100%), and specificity was 92.3% (95% CI, 75.9%-97.9%) for detecting malignancy. We definitively characterized 120 lesions as benign (84) or malignant (36). Preoperative needle biopsy diagnoses allowed clinical management to progress 92.6% of the time. The protocol of FNA with selective use of CNB may potentially reduce patient exposure to risks associated with CNB without the tradeoff of lower sensitivity seen with FNA. 4. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Dry needling of trigger points with and without paraspinal needling in myofascial pain syndromes in elderly patients.

    Science.gov (United States)

    Ga, Hyuk; Choi, Ji-Ho; Park, Chang-Hae; Yoon, Hyun-Jung

    2007-01-01

    To compare the efficacies of dry needling of trigger points (TrPs) with and without paraspinal needling in myofascial pain syndrome of elderly patients. Single-blinded, randomized controlled trial. Forty (40) subjects, between the ages of 63 and 90 with myofascial pain syndrome of the upper trapezius muscle. Eighteen (18) subjects were treated with dry needling of all the TrPs only and another 22 with additional paraspinal needling on days 0, 7, and 14. At 4-week follow-up the results were as follows: (1) TrP and paraspinal dry needling resulted in more continuous subjective pain reduction than TrP dry needling only; (2) TrP and paraspinal dry needling resulted in significant improvements on the geriatric depression scale but TrP dry needling only did not; (3) TrP and paraspinal dry needling resulted in improvements of all the cervical range of motions but TrP dry needling only did not in extensional cervical range of motion; and (4) no cases of gross hemorrhage were noted. TrP and paraspinal dry needling is suggested to be a better method than TrP dry needling only for treating myofascial pain syndrome in elderly patients.

  8. Resonant acoustic transducer system for a well drilling string

    Science.gov (United States)

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  9. Thermal dispersion method for an ultrasonic phased-array transducer

    Science.gov (United States)

    Choi, Euna; Lee, Wonseok; Roh, Yongrae

    2016-07-01

    When the driving voltage of an ultrasonic transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer, which can burn the patient’s skin and degrade transducer performance. In this study, the method to disperse the heat inside an ultrasonic phased-array transducer has been examined. The mechanism of temperature rise due to heat generation inside the transducer was investigated by numerical analysis and the effects of the thermal properties of the components of the transducer such as specific heat and thermal conductivity on the temperature rise were analyzed. On the basis of the results, a heat-dispersive structure was devised to reduce the temperature at the surface of the acoustic lens of the transducer. Prototype transducers were fabricated to check the efficacy of the heat-dispersive structure. By experiments, we have confirmed that the new heat-dispersive structure can reduce the internal temperature by as much as 50% in comparison with the conventional structure, which confirms the validity of the thermal dispersion mechanism developed in this work.

  10. Inter Digital Transducer Modelling through Mason Equivalent Circuit Model

    DEFF Research Database (Denmark)

    Mishra, Dipti; Singh, Abhishek; Hussain, Dil muhammed Akbar

    2016-01-01

    The frequency reliance of inter-digital transducer is analyzed with the help of MASON’s Equivalent circuit which is based on Smith’s Equivalent circuit which is further based on Foster’sNetwork. An inter-digital transducer has been demonstratedas a RLC network. The circuit is simulated by Simulat...

  11. Inter digital transducer modelling through Mason equivalent circuit model

    DEFF Research Database (Denmark)

    Mishra, Dipti; Singh, Abhishek; Hussain, Dil muhammed Akbar

    2016-01-01

    The frequency reliance of inter-digital transducer is analyzed with the help of MASON's Equivalent circuit which is based on Smith's Equivalent circuit which is further based on Foster's Network. An inter-digital transducer has been demonstrated as a RLC network. The circuit is simulated by Simul...

  12. Metal cap flexural transducers for air-coupled ultrasonics

    Science.gov (United States)

    Eriksson, T. J. R.; Dixon, S.; Ramadas, S. N.

    2015-03-01

    Ultrasonic generation and detection in fluids is inefficient due to the large difference in acoustic impedance between the piezoelectric element and the propagation medium, leading to large internal reflections and energy loss. One way of addressing the problem is to use a flexural transducer, which uses the bending modes in a thin plate or membrane. As the plate bends, it displaces the medium in front of it, hence producing sound waves. A piezoelectric flexural transducer can generate large amplitude displacements in fluid media for relatively low excitation voltages. Commercially available flexural transducers for air applications operate at 40 kHz, but there exists ultrasound applications that require significantly higher frequencies, e.g. flow measurements. Relatively little work has been done to date to understand the underlying physics of the flexural transducer, and hence how to design it to have specific properties suitable for particular applications. This paper investigates the potential of the flexural transducer and its operating principles. Two types of actuation methods are considerd: piezoelectric and electrodynamic. The piezoelectrically actuated transducer is more energy efficient and intrinsically safe, but the electrodynamic transducer has the advantage of being less sensitive to high temperature environments. The theory of vibrating plates is used to predict transducer frequency in addition to front face amplitude, which shows good correlation with experimental results.

  13. Respiratory Belt Transducer Constructed Using a Singing Greeting Card Beeper

    Science.gov (United States)

    Bhaskar, Anand; Subramani, Selvam; Ojha, Rajdeep

    2013-01-01

    An article by Belusic and Zupancic described the construction of a finger pulse sensor using a singing greeting card beeper. These authors felt that this beeper made of piezoelectric material could be easily modified to function as a respiratory belt transducer to monitor respiratory movements. Commercially available respiratory belt transducers,…

  14. Transverse Oscillation Vector Velocity Estimation using a Phased Array Transducer

    DEFF Research Database (Denmark)

    Marcher, Jønne; Pihl, Michael Johannes; Seerup, Gert

    2012-01-01

    The Transverse Oscillation method has shown its commercial feasibility, providing the user with 2D velocity information. Todays implementation on commercial ultrasound platforms only support linear array transducers and are limited in depth. Extending the implementation to a phased array transducer...

  15. Respiratory Belt Transducer Constructed Using a Singing Greeting Card Beeper

    Science.gov (United States)

    Bhaskar, Anand; Subramani, Selvam; Ojha, Rajdeep

    2013-01-01

    An article by Belusic and Zupancic described the construction of a finger pulse sensor using a singing greeting card beeper. These authors felt that this beeper made of piezoelectric material could be easily modified to function as a respiratory belt transducer to monitor respiratory movements. Commercially available respiratory belt transducers,…

  16. A Force Transducer from a Junk Electronic Balance

    Science.gov (United States)

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  17. Ultrasonic transducer with thermomechanical excitation and piezoresistive detection

    NARCIS (Netherlands)

    Popescu, Dan S.; Dascalu, Dan C.; Elwenspoek, Michael Curt; Lammerink, Theodorus S.J.

    1996-01-01

    Ultrasonic transducer was fabricated from silicon buckled membrane using a thermo mechanical excitation and piezoresistive detection. The transducer has a 4 mm square silicon membrane, buckled with an initial deflection of 20μm, actuated by dynamically heating an aluminium ring layer, 3μm thick, wit

  18. A Force Transducer from a Junk Electronic Balance

    Science.gov (United States)

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  19. Top-down tree transducers with regular look-ahead

    NARCIS (Netherlands)

    Engelfriet, Joost

    1977-01-01

    Top-down tree transducers with regular look-ahead are introduced. It is shown how these can be decomposed and composed, and how this leads to closure properties of surface sets and tree transformation languages. Particular attention is paid to deterministic tree transducers.

  20. Micro-stereolithography as a transducer design method.

    Science.gov (United States)

    Ho, K S; Bradley, R J; Billson, D R; Hutchins, D A

    2008-03-01

    This paper investigates the use of micro-stereolithography, a rapid prototyping technique, in the manufacture of transducers. It is illustrated for the production of electromagnetic acoustic transducer (EMATs) coils in both meander-line and spiral configurations. A synthetic aperture focussing technique (SAFT) has been applied to the ultrasonic signals from these devices to reconstruct images in metallic objects.

  1. Energy Conversion Efficiency of Rainbow Shape Piezoelectric Transducer

    Institute of Scientific and Technical Information of China (English)

    LIU Xiangjian; CHEN Renwen; ZHU Liya

    2012-01-01

    With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer,an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory.It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and material properties from the analysis model.Simulation results show that there is an optimal length ratio to generate maximum energy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate transducer and steel substrate transducer are (0.65,2.21%) and (0.65,1.64%) respectively.The optimal thickness ratios and energy conversion efficiencies of beryllium bronze substrate transducer and steel substrate transducer are (1.16,2.56%) and (1.49,1.57%) respectively.With the increase of width ratio and initial curvature radius,both the energy conversion efficiencies decrease.Moreover,beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer.

  2. Effects of Low-Load Exercise on Post-needling Induced Pain After Dry Needling of Active Trigger Point in Individuals with Subacromial Pain Syndrome.

    OpenAIRE

    Salom Moreno, Jaime; Jiménez Gómez, Laura; Gómez Ahufinger, Victoria; Palacios Ceña, María; Arias Buría, José Luis; Koppenhaver, Shane L.; Fernández de las Peñas, César

    2017-01-01

    Background: Application of dry needling is usually associated to post-needling induced pain. Development of post-needling intervention targeting to reduce this adverse event is needed. Objective: To determine the effectiveness of low-load exercise on reducing post-needling induced-pain after dry needling of active trigger points (TrPs) in the infraspinatus muscle in subacromial pain syndrome.

  3. Transducer hygiene: comparison of procedures for decontamination of ultrasound transducers and their use in clinical practice.

    Science.gov (United States)

    Häggström, Mikael; Spira, Jack; Edelstam, Greta

    2015-02-01

    To determine whether current hygiene practices are appropriate during sonographic examinations. Five major hospitals in Sweden were investigated with a survey. At each hospital, the departments corresponding to the main types of sonographic examination were chosen. Personnel who were responsible for or acquainted with the local hygiene procedures completed a standardardized questionnaire. The surveys were completed by 25 departments, where the total number of sonographic examinations was approximately 20,000 per month. For transvaginal and transrectal sonographic examinations, the most common method for decontamination of the transducer was barrier protection during the procedure followed by cleansing with alcohol. Latex was the predominant cover material, but one department used polyethylene gloves, and another department used nitrile gloves. Both of these involved transvaginal ultrasonography. In transcutaneous examinations, all hospitals were using alcohol and paper or cloth for decontamination at a minimum. Transesophageal examinations were carried out without barrier protection, and decontamination was performed with an alkylating substance. The hygiene practices appear to be appropriate at most hospitals, but there is a prevalence of transducer cover materials of unacceptable permeability, as well as use of gloves on transducers despite insufficient evidence of safety. © 2015 Wiley Periodicals, Inc.

  4. Durability investigation of a group of strain gage pressure transducers

    Science.gov (United States)

    Lederer, P. S.; Hilten, J. S.

    1972-01-01

    A durability investigation was conducted on a group of eighteen bonded-wire strain gage pressure transducers with ranges of 0 to 15 psig and 0 to 100 psig using an improved version of a previously developed technique. Some of the transducers were subjected to 40 million pressure cycles at a 5-Hz rate at laboratory ambient conditions, others were cycled at a temperature of 150 F (65.6 C). The largest change in sensitivity observed was 0.22% for a 100-psig transducer subjected to 40 million pressure cycles at 150 F. The largest change in zero pressure output observed was 0.91% FS for the same transducer. None of the transducers failed completely as a result of cycling at or below full scale pressure.

  5. Transducers for Sound and Vibration - FEM Based Design

    DEFF Research Database (Denmark)

    Liu, Bin

    2001-01-01

    Design of transducers for measurement of vibration (piezoelectric accelerometers) and sound (condenser microphones) is a very labour intensive work. The design work is mostly based on experience and on simple analogies to electrical circuit design. Often a time consuming itterative loop is used......: Specification of the transducer, production of a physical prototype, measurements on the prototype, changed specification of the transducer etc. Furthermore are many transducers made based on customer requirements which also increases the amount of required design work. For these reasons there is a need...... for methods that can reduce the design time consumption and the number of itterations. The present work proposes to use finite element based programs for simulating the behaviour of a transducer with a given set of specifications. A simulation program for accelerometers was developed and has been tested...

  6. Calibration of Field II using a Convex Ultrasound Transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    Field II is an ultrasound simulation program capable of simulating the pressure scattering from inhomogeneous tissue. The simulations are based on a convolution between spatial impulse responses from the field in front of the transducer and the volt-to-surface acceleration impulse response...... of the transducer. For such simulations to reflect actual measured intensities and pressure levels, the transducer impulse response is to be known. This work presents the results of combining a modified form of a 1D linear transducer model originally suggested by Willatzen with the Field II program to calibrate...... BK-Medical (Herlev, Denmark). As input waveform for the Field model we measured the output voltage of the research amplifier, which peak voltage was limited to 31 V to avoid too high non linear effects. We measured the hydrophone output from three transducer front elements by averaging 40 shoot...

  7. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Mohammad Saleh Salmanpour

    2016-12-01

    Full Text Available This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions.

  8. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  9. Study on the broadband tonpilz transducer with a single hole.

    Science.gov (United States)

    Xiping, He; Jing, Hu

    2009-05-01

    To get a wide-band transducer, the piezoelectric sandwiched transducer with a frustum hole in its head piece is presented in this paper. The equivalent circuit is derived, and the expressions of the equivalent mass and the equivalent impedance of the transducer are obtained by using one-dimensional (1D) design theory. Moreover, the expressions of the mechanical quality factor and the frequency bandwidth are obtained and the transmitting voltage response of the transducer is calculated by using finite element method. The theoretical results show that the frequency bandwidth of the transducer with a hole is wider than that without a hole when their resonant frequencies are almost equal. The tested results are in good agreement with the theoretical calculations.

  10. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    Science.gov (United States)

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  11. Ultrasound transducer positioning aid for fetal heart rate monitoring.

    Science.gov (United States)

    Hamelmann, Paul; Kolen, Alex; Schmitt, Lars; Vullings, Rik; van Assen, Hans; Mischi, Massimo; Demi, Libertario; van Laar, Judith; Bergmans, Jan

    2016-08-01

    Fetal heart rate (fHR) monitoring is usually performed by Doppler ultrasound (US) techniques. For reliable fHR measurements it is required that the fetal heart is located within the US beam. In clinical practice, clinicians palpate the maternal abdomen to identify the fetal presentation and then the US transducer is fixated on the maternal abdomen where the best fHR signal can be obtained. Finding the optimal transducer position is done by listening to the strength of the Doppler audio output and relying on a signal quality indicator of the cardiotocographic (CTG) measurement system. Due to displacement of the US transducer or displacement of the fetal heart out of the US beam, the fHR signal may be lost. Therefore, it is often necessary that the obstetrician repeats the tedious procedure of US transducer positioning to avoid long periods of fHR signal loss. An intuitive US transducer positioning aid would be highly desirable to increase the work flow for the clinical staff. In this paper, the possibility to determine the fetal heart location with respect to the transducer by exploiting the received signal power in the transducer elements is shown. A commercially available US transducer used for fHR monitoring is connected to an US open platform, which allows individual driving of the elements and raw US data acquisition. Based on the power of the received Doppler signals in the transducer elements, the fetal heart location can be estimated. A beating fetal heart setup was designed and realized for validation. The experimental results show the feasibility of estimating the fetal heart location with the proposed method. This can be used to support clinicians in finding the optimal transducer position for fHR monitoring more easily.

  12. Tendon needling for treatment of tendinopathy: A systematic review.

    Science.gov (United States)

    Krey, David; Borchers, James; McCamey, Kendra

    2015-02-01

    To summarize the best available evidence to determine if tendon needling is an effective treatment for tendinopathy. Data source. Medline and Cochrane Databases through November 2013. Utilizing the search terms tendinopathy, needle, needling, tenotomy, dry needling, needling tendon, needle fenestration, and tendon fenestration, 17 articles were identified through our systematic literature search. Of these, 4 studies met the inclusion criteria. Four independent reviewers reviewed the articles. The study results and generated conclusions were agreed upon. The studies that were included in this review suggest that tendon needling improves patient reported outcomes in patients with tendinopathy. In 2 studies evaluating tendon needling in lateral epicondylosis, one showed an improvement in a subjective visual analogue scale score of 34% (significant change > 25%) from baseline at 6 months. The other showed an improvement of 56.1% in a visual analogue scale score from baseline. In 1 study evaluating tendon needling in addition to eccentric therapy for Achilles tendinosis, the subjective Victorian Institute of Sport Assessment-Achilles (VISA-A) score improved by 19.9 (significant change > 10) (95% CI, 13.6-26.2) from baseline. In 1 study evaluating tendon needling in rotator cuff tendinosis, the subjective shoulder pain and disability index showed statistical significant improvement from baseline at 6 months (P < 0.05). The evidence suggests that tendon needling improves patient-reported outcome measures in patients with tendinopathy. There is a trend that shows that the addition of autologous blood products may further improve theses outcomes.

  13. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle

    Science.gov (United States)

    Singh, Mithun Kuniyil Ajith; Parameshwarappa, Vinay; Hendriksen, Ellen; Steenbergen, Wiendelt; Manohar, Srirang

    2016-12-01

    An important problem in minimally invasive photoacoustic (PA) imaging of brachytherapy seeds is reflection artifacts caused by the high signal from the optical fiber/needle tip reflecting off the seed. The presence of these artifacts confounds interpretation of images. In this letter, we demonstrate a recently developed concept called photoacoustic-guided focused ultrasound (PAFUSion) for the first time in the context of interstitial illumination PA imaging to identify and remove reflection artifacts. In this method, ultrasound (US) from the transducer is focused on the region of the optical fiber/needle tip identified in a first step using PA imaging. The image developed from the US diverging from the focus zone at the tip region visualizes only the reflections from seeds and other acoustic inhomogeneities, allowing identification of the reflection artifacts of the first step. These artifacts can then be removed from the PA image. Using PAFUSion, we demonstrate reduction of reflection artifacts and thereby improved interstitial PA visualization of brachytherapy seeds in phantom and ex vivo measurements on porcine tissue.

  14. Torsional dynamics of steerable needles: modeling and fluoroscopic guidance.

    Science.gov (United States)

    Swensen, John P; Lin, MingDe; Okamura, Allison M; Cowan, Noah J

    2014-11-01

    Needle insertions underlie a diversity of medical interventions. Steerable needles provide a means by which to enhance existing needle-based interventions and facilitate new ones. Tip-steerable needles follow a curved path and can be steered by twisting the needle base during insertion, but this twisting excites torsional dynamics that introduce a discrepancy between the base and tip twist angles. Here, we model the torsional dynamics of a flexible rod-such as a tip-steerable needle-during subsurface insertion and develop a new controller based on the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions inherent during insertion. Numerical simulations and physical experiments using two distinct setups-stereo camera feedback in semitransparent artificial tissue and feedback control with real-time X-ray imaging in optically opaque artificial tissue-demonstrate the need to account for torsional dynamics in control of the needle tip.

  15. A new instrument facilitates the needle trephination procedure: technical note.

    Science.gov (United States)

    Heese, Oliver; Sepehrnia, A

    2002-03-01

    Percutaneous needle trephination is a well known neurosurgical procedure. The aim of this study was to develop a new instrument, which allows a stable fixation of an 18-G spinal needle in order to improve handling and precision of percutaneous needle trephinations. METHODS AND INSTRUMENTATION: The needle stabilizer was designed in a T-shape fashion morphologically similar to a corkscrew. The length of the uncovered needle tip is adjustable for individual requirements. Using the new needle stabilizing device a total number of 18 percutaneous needle trephinations were performed for the following indications: subdural hematoma, epidural hygroma, bifrontal air accumulation, superficial tumor cyst, superficial brain abscess. No complications have been observed. Our experience using this device shows that the modified technique fulfils criteria for clinical acceptance such as simplicity, low risk, reliability and cost effectiveness.

  16. NUTRIENTS CONCENTRATION AND RETRANSLOCATION IN THE Pinus taeda L. NEEDLES

    Directory of Open Access Journals (Sweden)

    Márcio Viera

    2010-03-01

    Full Text Available Aiming at evaluating nutrients concentration and retranslocation in the Pinus taeda L. needles, this study was developed in two stands, in native grass area and in second rotation area, with same species and same age (7.5 years old in Cambará do Sul, RS. The needles were collected in plants in four orthogonal points (South, North, East and West, sampled new needles, mature needles and old needles. The material was dried in a stove, milled and chemically analyzed (macro and micronutrients. The concentrations of N, P, K, B, Cu and Zn had decreased, of Ca, Fe and Mn increased, and the Mg and S have remained constant with the age of the needles. The retranslocation rate (old-new needles was more than 50% for most nutrients, except for Mn and Fe, showed that cumulative effect and the Ca reference element.

  17. Dynamics of electromagnetically-transduced microresonators

    Science.gov (United States)

    Sabater, Andrew B.

    Electromagnetic transduction is a means of actuating and sensing microelectromechanical systems (MEMS) through the interaction of electric and magnetic fields. Electromagnetically-transduced devices are Lorentz force actuated and sensed via an induced electromotive force (EMF). As such, transduction requires that the vibrations of one of these devices take place within a magnetic field. Provided one can leverage relatively recent advances with rare-earth magnets or complementary metal-oxide-semiconductor (CMOS) fabrication for magnetic field generation, electromagnetic transduction offers many distinct advantages over other methods of actuating and sensing MEMS. These advantages include the ability to generate large forces and moments that are linearly related to the supplied current, comparatively low power consumption metrics obtained with comparatively-low excitation voltages, and comparatively-simple device geometries that do not interfere with transduction. This type of transduction also facilitates operation in fluidic or harsh environments. In addition, an electromagnetically-transduced microresonator (ETM) could be used in the future for numerous applications which utilize a microresonator, such as electrical signal processing and resonant-based mass sensing, as well as self-sustaining oscillators. Other potential applications that are relatively unique to ETMs are a product of electromagnetic transduction, like magnetic field sensing. Arrays of electromagnetically-transduced devices could also be used to improve a sensor's throughput, or the total amount of sensed information, as it is comparatively-easy to electrically-couple multiple devices together. The efforts associated with the design, fabrication and characterization in both low-pressure and atmospheric conditions of one such array that has multiple, easily-tailored resonances with single-input, single-output (SISO) characteristics are documented in this dissertation. This type of electromagnetic

  18. [Needling technique of Professor Li Yan-Fang].

    Science.gov (United States)

    Li, Li-Jun

    2014-01-01

    Experiences of needling techniques of Professor LI Ya- fang is introduced in this article. Gentle and superficial insertion is adopted by Professor LI in clinic. Emphases are put on the qi regulation function, needling sensation to the affected region and insertion with both hands, especially the function of the left hand as pressing hand. The gentle and superficial insertion should be done as the follows: hold the needle with the right hand, press gently along the running course of meridians with the left hand to promote qi circulation, hard pressing should be applied at acupoints to disperse the local qi and blood, insert the needle gently and quickly into the subcutaneous region with the right hand, and stop the insertion when patient has the needling sensation. While the fast needling is characterized with shallow insertion and swift manipulation: the left hand of the manipulator should press first along the running course of the meridian, and fix the local skin, hold the needle with the right hand and insert the needle quickly into the acupoint. Withdrawal of the needle should be done immediately after the reinforcing and reducing manipulations. Professor LI is accomplished in qi regulation. It is held by him that regulating qi circulation is essence of acupuncture, letting the patient get the needling sensation is the most important task of needling. Lifting, thrusting and rotation manipulations should be applied to do reinforcing or reducing. The tissue around the tip of the needle should not be too contracted or too relaxed, and the resistance should not be too strong or too weak. The feeling of the insertion hand of the practitioner should not be too smooth or too hesitant. Needle should be inserted into the skin quickly at the moment of hard pressing by the left hand. And then, slow rotation and gentle lifting and thrusting can be applied to promote the needling sensation like electric current pass through and to reach the affected region along the

  19. An Exploration of the Needling Depth in Acupuncture: The Safe Needling Depth and the Needling Depth of Clinical Efficacy

    Directory of Open Access Journals (Sweden)

    Jaung-Geng Lin

    2013-01-01

    Full Text Available Objective. To explore the existing scientific information regarding safe needling depth of acupuncture points and the needling depth of clinical efficacy. Methods. We searched the PubMed, EMBASE, Cochrane, Allied and Complementary Medicine (AMED, The National Center for Complementary and Alternative Medicine (NCCAM, and China National Knowledge Infrastructure (CNKI databases to identify relevant monographs and related references from 1991 to 2013. Chinese journals and theses/dissertations were hand searched. Results. 47 studies were recruited and divided into 6 groups by measuring tools, that is, MRI, in vivo evaluation, CT, ultrasound, dissected specimen of cadavers, and another group with clinical efficacy. Each research was analyzed for study design, definition of safe depth, and factors that would affect the measured depths. Depths of clinical efficacy were discussed from the perspective of de-qi and other clinical observations. Conclusions. Great inconsistency in depth of each point measured from different subject groups and tools exists. The definition of safe depth should be established through standardization. There is also lack of researches to compare the clinical efficacy. A well-designed clinical trial selecting proper measuring tools to decide the actual and advisable needling depth for each point, to avoid adverse effects or complications and promote optimal clinical efficacy, is a top priority.

  20. Paraesthesia during the needle-through-needle and the double segment technique for combined spinal epidural anaesthesia.

    Science.gov (United States)

    Ahn, H J; Choi, D H; Kim, C S

    2006-07-01

    Paraesthesia during regional anaesthesia is an unpleasant sensation for patients and, more importantly, in some cases it is related to neurological injury. Relatively few studies have been conducted on the frequency of paraesthesia during combined spinal epidural anaesthesia. We compared two combined spinal epidural anaesthesia techniques: the needle-through-needle technique and the double segment technique in this respect. We randomly allocated 116 parturients undergoing elective Caesarean section to receive anaesthesia using one of these techniques. Both techniques were performed using a 27G pencil point needle, an 18G Tuohy needle, and a 20G multiport epidural catheter from the same manufacturer. The overall frequency of paraesthesia was higher in the needle-through-needle technique group (56.9% vs. 31.6%, p = 0.011). The frequency of paraesthesia at spinal needle insertion was 20.7% in the needle-through-needle technique group and 8.8% in the double segment technique group; whereas the frequency of paraesthesia at epidural catheter insertion was 46.6% in the needle-through-needle technique group and 24.6% in the double segment technique group.

  1. Ultrasound-guided fine needle aspiration versus core needle biopsy: comparison of post-biopsy hematoma rates and risk factors.

    Science.gov (United States)

    Chae, In Hye; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Park, Vivian Y; Kwak, Jin Young

    2017-07-01

    To compare post-biopsy hematoma rates between ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy, and to investigate risk factors for post-biopsy hematoma. A total of 5304 thyroid nodules which underwent ultrasound guided biopsy were included in this retrospective study. We compared clinical and US features between patients with and without post-biopsy hematoma. Associations between these features and post-biopsy hematoma were analyzed. Post-biopsy hematoma rate was 0.8% (43/5121) for ultrasound guided-fine needle aspiration and 4.9% (9/183) for ultrasound guided-core needle biopsy (P fine needle aspiration, gender, age, size, presence of vascularity, and suspicious US features were not associated with post-biopsy hematoma according to experience level. Post-biopsy hematoma occurred significantly more with ultrasound guided-core needle biopsy (9/179, 5.0%) than with ultrasound guided-fine needle aspiration (9/1138, 0.8%) (P needle biopsy was the only significant risk factor for post-biopsy hematoma (adjusted Odds Ratio, 6.458, P biopsy hematoma occurred significantly more in ultrasound guided-core needle biopsy than in ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy was the only independent factor of post-biopsy hematoma in thyroid nodules.

  2. Dual-frequency transducer for nonlinear contrast agent imaging.

    Science.gov (United States)

    Guiroy, Axel; Novell, Anthony; Ringgaard, Erling; Lou-Moeller, Rasmus; Grégoire, Jean-Marc; Abellard, André-Pierre; Zawada, Tomasz; Bouakaz, Ayache; Levassort, Franck

    2013-12-01

    Detection of high-order nonlinear components issued from microbubbles has emerged as a sensitive method for contrast agent imaging. Nevertheless, the detection of these high-frequency components, including the third, fourth, and fifth harmonics, remains challenging because of the lack of transducer sensitivity and bandwidth. In this context, we propose a new design of imaging transducer based on a simple fabrication process for high-frequency nonlinear imaging. The transducer is composed of two elements: the outer low-frequency (LF) element was centered at 4 MHz and used in transmit mode, whereas the inner high-frequency (HF) element centered at 14 MHz was used in receive mode. The center element was pad-printed using a lead zirconate titanate (PZT) paste. The outer element was molded using a commercial PZT, and curved porous unpoled PZT was used as backing. Each piezoelectric element was characterized to determine the electromechanical performance with thickness coupling factor around 45%. After the assembly of the two transducer elements, hydrophone measurements (electroacoustic responses and radiation patterns) were carried out and demonstrated a large bandwidth (70% at -3 dB) of the HF transducer. Finally, the transducer was evaluated for contrast agent imaging using contrast agent microbubbles. The results showed that harmonic components (up to the sixth harmonic) of the microbubbles were successfully detected. Moreover, images from a flow phantom were acquired and demonstrated the potential of the transducer for high-frequency nonlinear contrast imaging.

  3. Design of advanced ultrasonic transducers for welding devices.

    Science.gov (United States)

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  4. TRANSDUCER GENERATED ARRAYS OF ROBOTIC NANO-ARMS.

    Science.gov (United States)

    Dolzhenko, Egor; Jonoska, Nataša; Seeman, Nadrian C

    2010-06-01

    We consider sets of two-dimensional arrays, called here transducer generated languages, obtained by iterative applications of transducers (finite state automata with output). Each transducer generates a set of blocks of symbols such that the bottom row of a block is an input string accepted by the transducer and, by iterative application of the transducer, each row of the block is an output of the transducer on the preceding row. We show how these arrays can be implemented through molecular assembly of triple crossover DNA molecules. Such assembly could serve as a scaffold for arranging molecular robotic arms capable for simultaneous movements. We observe that transducer generated languages define a class of languages which is a proper subclass of recognizable picture languages, but it containing the class of all factorial local two-dimensional languages. By taking the average growth rate of the number of blocks in the language as a measure of its complexity, we further observe that arrays with high complexity patterns can be generated in this way.

  5. Percutaneous transhepatic cholangiography using special needle

    Energy Technology Data Exchange (ETDEWEB)

    Auh, Yong Ho [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-10-15

    Using the special needle (22 Gauze, 17 cm long, flexible needle) percutaneous transhepatic cholangiography were performed in 23 cases at Seoul National University Hospital during the period from July 1973 to August 1974. The results were as follows:1. Successful cholangiograms are obtained in 20 cases among the total of 23 cases. The 3 cases of the unsuccessful are two cases of sclerosing cholangitis and one case of hepatoma. 2. Average attempts of puncture in successful care are 3. It was not necessary to puncture more than 6 times to visualize biliary tree in dilated biliary tree. 3. Lateral approach (midaxillary line and 8th or 9th intercostal space) was used. The advantage of this method was briefly discussed. 4. Over all complication are occurred in 6 cases. 3 cases: transient fever 1 case: bile leakage without peritonitis 1 case: local peritonitis probably due to bile leakage 1 case: septicemia (the organism can not be detected even after blood culture)

  6. [Fine needle aspiration cytology of mammography screening

    DEFF Research Database (Denmark)

    Engvad, B.; Laenkholm, A.V.; Schwartz, Thue W.

    2009-01-01

    INTRODUCTION: In the year 2000 a quality assurance programme for the preoperative breast diagnostics was introduced in Denmark. The programme was based on the "European guidelines for quality assurance in breast cancer screening and diagnosis" where - among other measures - five cytological...... diagnostic classes were introduced. The aim of this study was to evaluate the quality assurance programme in a screening population to determine whether fine needle aspiration cytology (FNAC) as first choice remains a useful tool in the preoperative diagnostics, or if needle core biopsy should be the first...... of 66% of the 783 FNACs had a malignant cytology diagnosis, which in 99% of the cases turned out to be the correct diagnosis. Four lesions were false positives all of which represented benign proliferative breast diseases. The surgical procedures in these cases were either excisional biopsy...

  7. Maxillofacial Changes in Melnick-Needles Syndrome

    Directory of Open Access Journals (Sweden)

    Leilane Larissa Albuquerque do Nascimento

    2016-01-01

    Full Text Available Background. Melnick-Needles Syndrome is rare congenital hereditary skeletal dysplasia caused by mutations in the FLNA gene, which codifies the protein filamin A. This condition leads to serious skeletal abnormalities, including the stomatognathic region. Case Presentation. This paper describes the case of a 13-year-old girl diagnosed with Melnick-Needles Syndrome presenting with different forms of skeletal dysplasia, such as cranial hyperostosis, short upper limbs, bowed long bones, metaphyseal thickening, genu valgum (knock-knee, shortened distal phalanges, narrow pelvis and shoulders, rib tapering and irregularities, elongation of the vertebrae, kyphoscoliosis, micrognathia, hypoplastic coronoid processes of the mandible, left stylohyoid ligament suggesting ossification, and dental development anomalies. Conclusion. Knowledge of this rare syndrome on the part of dentists is important due to the fact that this condition involves severe abnormalities of the stomatognathic system that cause an impact on the development of the entire face as well as functional and esthetic impairments.

  8. Yield of new versus reused endobronchial ultrasound-guided transbronchial needle aspiration needles: A retrospective analysis of 500 patients

    Directory of Open Access Journals (Sweden)

    Sahajal Dhooria

    2016-01-01

    Full Text Available Background: Endobronchial ultrasound (EBUS-guided transbronchial needle aspiration (TBNA requires a dedicated needle for aspiration of mediastinal lesions. There is no data on reuse of these needles. Methods: This is a retrospective study of patients who underwent EBUS-TBNA with either new or reused EBUS-TBNA needles. The needles were reused after thorough cleaning with filtered water and organic cleaning solution, disinfection with 2.4% glutaraldehyde solution followed by ethylene oxide sterilization. The yield of EBUS-TBNA was compared between the two groups. Results: A total of 500 EBUS-TBNA procedures (351 new, 149 reused needles were performed. The baseline characteristics were different in the two groups with suspected granulomatous disorders (sarcoidosis or tuberculosis being significantly more common in the new compared to the reused needle group. Similarly, the median, interquartile range number of lymph node stations sampled, and the total number of passes were significantly higher in the new versus the reused needle group. The diagnostic yield was significantly higher with new needle as compared to reused needle (65.2% vs. 53.7%, P = 0.02. On multivariate logistic regression analysis, clinical suspicion of granulomatous disorders (odds ratio 1.86 [95% confidence interval, 1.20-2.87], P = 0.005 was the only predictor of diagnostic yield, after adjusting for the type of needle (new or reused, total number of passes and the number of lymph node stations sampled. No case of mediastinitis was encountered in either group. Conclusions: The yield of EBUS-TBNA might be similar with single reuse of needles as compared to new needles. However, reuse of needle should be performed only when absolutely necessary.

  9. A novel adaptive needle insertion sequencing for robotic, single needle MR-guided high-dose-rate prostate brachytherapy

    Science.gov (United States)

    Borot de Battisti, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; Maenhout, M.; Moerland, M. A.

    2017-05-01

    MR-guided high-dose-rate (HDR) brachytherapy has gained increasing interest as a treatment for patients with localized prostate cancer because of the superior value of MRI for tumor and surrounding tissues localization. To enable needle insertion into the prostate with the patient in the MR bore, a single needle MR-compatible robotic system involving needle-by-needle dose delivery has been developed at our institution. Throughout the intervention, dose delivery may be impaired by: (1) sub-optimal needle positioning caused by e.g. needle bending, (2) intra-operative internal organ motion such as prostate rotations or swelling, or intra-procedural rectum or bladder filling. This may result in failure to reach clinical constraints. To assess the first aforementioned challenge, a recent study from our research group demonstrated that the deposited dose may be greatly improved by real-time adaptive planning with feedback on the actual needle positioning. However, the needle insertion sequence is left to the doctor and therefore, this may result in sub-optimal dose delivery. In this manuscript, a new method is proposed to determine and update automatically the needle insertion sequence. This strategy is based on the determination of the most sensitive needle track. The sensitivity of a needle track is defined as its impact on the dose distribution in case of sub-optimal positioning. A stochastic criterion is thus presented to determine each needle track sensitivity based on needle insertion simulations. To assess the proposed sequencing strategy, HDR prostate brachytherapy was simulated on 11 patients with varying number of needle insertions. Sub-optimal needle positioning was simulated at each insertion (modeled by typical random angulation errors). In 91% of the scenarios, the dose distribution improved when the needle was inserted into the most compared to the least sensitive needle track. The computation time for sequencing was less than 6 s per needle track. The

  10. Extinction by the long dielectric needles

    CERN Document Server

    Cherkas, Nadejda L

    2016-01-01

    Electromagnetic wave extinction by the very long but finite dielectric needle is compared with that by the infinite dielectric cylinder for an oblique incidence of the electromagnetic wave. It is shown that the renormalized Hankel functions without the logarithmic terms should be used for the calculation of the extinction per unit length of the infinite dielectric cylinder to apply it for extinction calculations by the finite dielectric cylinder.

  11. Sugar export limits size of conifer needles

    DEFF Research Database (Denmark)

    Rademaker, Hanna; Zwieniecki, Maciej A.; Bohr, Tomas

    2017-01-01

    Plant leaf size varies by more than three orders of magnitude, from a few millimeters to over one meter. Conifer leaves, however, are relatively short and the majority of needles are no longer than 6 cm. The reason for the strong confinement of the trait-space is unknown. We show that sugars prod...... smaller leaves than angiosperms, and provide a biophysical explanation for this intriguing difference between the two largest groups of plants....

  12. A retractable barb needle for drug darts

    Directory of Open Access Journals (Sweden)

    G.L. van Rooyen

    1973-07-01

    Full Text Available The mechanism and action of a new retractable barbneedle for drug darts are described. This dart needle is particularly successful in obviating unnecessary flight reactions andtrauma in darted animals, and facilitates the complete injection of the drug dose before the barb is retracted and the dart is dislogded from the animal. The whole process is completed within a few seconds and the expended dart can usually be retrieved in the immediate vicinity where the animal was darted.

  13. Design, analysis, and modeling of giant magnetostrictive transducers

    Science.gov (United States)

    Calkins, Frederick Theodore

    The increased use of giant magnetostrictive, Terfenol-D transducers in a wide variety of applications has led to a need for greater understanding of the materials performance. This dissertation attempts to add to the Terfenol-D transducer body of knowledge by providing an in-depth analysis and modeling of an experimental transducer. A description of the magnetostriction process related to Terfenol-D includes a discussion of material properties, production methods, and the effect of mechanical stress, magnetization, and temperature on the material performance. The understanding of the Terfenol-D material performance provides the basis for an analysis of the performance of a Terfenol-D transducer. Issues related to the design and utilization of the Terfenol-D material in the transducers are considered, including the magnetic circuit, application of mechanical prestress, and tuning of the mechanical resonance. Experimental results from two broadband, Tonpilz design transducers show the effects of operating conditions (prestress, magnetic bias, AC magnetization amplitude, and frequency) on performance. In an effort to understand and utlilize the rich performance space described by the experimental results a variety of models are considered. An overview of models applicable to Terfenol-D and Terfenol-D transducers is provided, including a discussion of modeling criteria. The Jiles-Atherton model of ferromagnetic hysteresis is employed to describe the quasi-static transducer performance. This model requires the estimation of only six physically-based parameters to accurately simulate performance. The model is shown to be robust with respect to model parameters over a range of mechanical prestress, magnetic biases, and AC magnetic field amplitudes, allowing predictive capability within these ranges. An additional model, based on electroacoustics theory, explains trends in the frequency domain and facilitates an analysis of efficiency based on impedance and admittance

  14. Bonding and impedance matching of acoustic transducers using silver epoxy.

    Science.gov (United States)

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles.

  15. Exploration of New Electroacupuncture Needle Material

    Directory of Open Access Journals (Sweden)

    Sanghun Lee

    2012-01-01

    Full Text Available Background. Electro Acupuncture (EA uses the acupuncture needle as an electrode to apply low-frequency stimulation. For its safe operation, it is essential to prevent any corrosion of the acupuncture needle. Objective. The aim of this study is to find an available material and determine the possibility of producing a standard EA needle that is biocompatible. Methods. Biocompatibility was tested by an MTT assay and cytotoxicity testing. Corrosion was observed with a scanning electron microscope (SEM after 0.5 mA, 60 min stimulation. The straightness was measured using a gap length of 100 mm, and tensile testing was performed by imposing a maximum tensile load. Results. Phosphor bronze, Ni coated SS304, were deemed inappropriate materials because of mild-to-moderate cytotoxicity and corrosion. Ti-6Al-4V and SS316 showed no cytotoxicity or corrosion. Ti-6Al-4V has a 70 times higher cost and 2.5 times lower conductivity than SS316. The results of both straightness and tensile testing confirmed that SS316 can be manufactured as a standard product. Conclusion. As a result, we confirmed that SS316 can be used a new EA electrode material. We hope that a further study of the maximum capacity of low-frequency stimulation using an SS316 for safe operation.

  16. Pulsed photoelectric field emission from needle cathodes

    CERN Document Server

    Hernandez-Garcia, C

    2002-01-01

    Experiments have been carried out to measure the current emitted by tungsten needles with 1-mu m tip radius operated up to 50 kV. This corresponds to electric fields in the order of 10 sup 9 to 10 sup 1 sup 0 V/m. The needles were illuminated with 10-ns laser pulses at 532, 355 and 266 nm. The laser intensity was varied from 10 sup 1 sup 0 to 10 sup 1 sup 2 W/m sup 2 , limited by damage to the needle tip. The observed quantum efficiency depends on the wavelength and the electric field, approaching unity at the highest electric fields when illuminated at 266 nm. Peak currents up to 100 mA were observed in nanosecond pulses, corresponding to an estimated brightness of 10 sup 1 sup 6 A/m sup 2 sr. Since the current is controlled by the laser intensity, with only a weak voltage dependence, these cathodes can be used for infrared and ultraviolet tabletop free-electron lasers and other applications that demand short electron-beam pulses with high brightness.

  17. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  18. Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers

    Institute of Scientific and Technical Information of China (English)

    葛立峰

    1999-01-01

    A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.

  19. A thermal insulation method for a piezoelectric transducer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study deals with the sources of signal distortion of a piezoelectric transducer heated by measured gas flow. These signal distortions originate from both unloading of preload on a piezocrystal because of expansion of a diaphragm in the test apparatus and the pyroelectric effect of a heated piezoelectric crystal. A plastic film on the diaphragm of the transducer can effectively insulate the diaphragm and the piezocrystal within transducer from heating by gas flow, eliminating the sources of distortion. A method for evaluating the thickness of the film is proposed.

  20. Optimization of ultrasonic transducers for selective guided wave actuation

    Science.gov (United States)

    Miszczynski, Mateusz; Packo, Pawel; Zbyrad, Paulina; Stepinski, Tadeusz; Uhl, Tadeusz; Lis, Jerzy; Wiatr, Kazimierz

    2016-04-01

    The application of guided waves using surface-bonded piezoceramic transducers for nondestructive testing (NDT) and Structural Health Monitoring (SHM) have shown great potential. However, due to difficulty in identification of individual wave modes resulting from their dispersive and multi-modal nature, selective mode excitement methods are highly desired. The presented work focuses on an optimization-based approach to design of a piezoelectric transducer for selective guided waves generation. The concept of the presented framework involves a Finite Element Method (FEM) model in the optimization process. The material of the transducer is optimized in topological sense with the aim of tuning piezoelectric properties for actuation of specific guided wave modes.

  1. Broadband tonpilz underwater acoustic transducers based on multimode optimization

    DEFF Research Database (Denmark)

    Yao, Qingshan; Jensen, Leif Bjørnø

    1997-01-01

    Head flapping has often been considered to be deleterious for obtaining a tonpilz transducer with broadband, high power performance. In the present work, broadband, high power tonpilz transducers have been designed using the finite element (FE) method. Optimized vibrational modes including...... the flapping mode of the head are effectively used to achieve the broadband performance. The behavior of the transducer in its longitudinal piston mode and in its flapping mode is analysed for in-air and in-water situations. For the 37.8% bandwidth of the center frequency from 28.5 to 41.8 kHz, the amplitude...

  2. Design and fabrication of a low frequency giant magnetostrictive transducer

    Energy Technology Data Exchange (ETDEWEB)

    Dhilsha, K.R. [Nat. Inst. of Ocean Technol, Madras (India); Markandeyulu, G.; Subrahmanyeswara Rao, B.V.P.; Rama Rao, K.V.S. [Magnetism and Magnetic Materials Laboratory, Department of Physics, Indian Institute of Technology, Madras 600 036 (India)

    1997-08-01

    A Tonpilz-type single ended transducer employing two rods of giant magnetostrictive materials has been fabricated and its underwater acoustic characteristics have been studied. The transducer resonated at a frequency of 3.1 kHz in air and at 2.65 kHz in water with a Q factor of 6. The TCR and RS at resonance in water have been measured to be 172.1 dB re 1 {mu}Pa/A at 1 m and -196.7 dB re 1 V/{mu}Pa respectively. The dimensions of the transducer are 60 mm in diameter and 110 mm long. (orig.)

  3. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  4. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  5. Manually controlled steerable needle for MRI-guided percutaneous interventions.

    Science.gov (United States)

    Henken, Kirsten R; Seevinck, Peter R; Dankelman, Jenny; van den Dobbelsteen, John J

    2017-02-01

    This study aims to develop and evaluate a manually controlled steerable needle that is compatible with and visible on MRI to facilitate full intra-procedural control and accurate navigation in percutaneous interventions. The steerable needle has a working channel that provides a lumen to a cutting stylet or a therapeutic instrument. A steering mechanism based on cable-operated compliant elements is integrated in the working channel. The needle can be steered by adjusting the orientation of the needle tip through manipulation of the handle. The steering mechanism is evaluated by recording needle deflection at constant steering angles. A steering angle of 20.3° results in a deflection of 9.1-13.3 mm in gelatin and 4.6-18.9 mm in porcine liver tissue at an insertion depth of 60 mm. Additionally, the possibility to control the needle path under MRI guidance is evaluated in a gelatin phantom. The needle can be steered to targets at different locations while starting from the same initial position and orientation under MRI guidance with generally available sequences. The steerable needle offers flexibility to the physician in control and choice of the needle path when navigating the needle toward the target position, which allows for optimization of individual treatment and may increase target accuracy.

  6. The effects of needle deformation during lumbar puncture

    Science.gov (United States)

    Özdemir, Hasan Hüseyin; Demir, Caner F.; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref

    2015-01-01

    Objective: The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. Materials and Methods: The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. Results: A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Conclusion: Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH. PMID:25883480

  7. The effects of needle deformation during lumbar puncture

    Directory of Open Access Journals (Sweden)

    Hasan Hüseyin Özdemir

    2015-01-01

    Full Text Available Objective: The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP. Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. Materials and Methods: The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. Results: A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1% of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3% of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%. Forty-seven (41.5% patients experienced post lumbar puncture headache (PLPH and 13 (11.5% patients experienced intracranial hypotension (IH. No statistically significant correlation between the degree of deflection and headache was found (P > 0.05. Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Conclusion: Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH.

  8. Free thyroxine in needle washout after fine needle aspiration biopsy of toxic thyroid nodules.

    Science.gov (United States)

    Raikov, Nikolai; Nonchev, Boyan; Chaushev, Borislav; Vjagova, Diyana; Todorov, Svetoslav; Bocheva, Yana; Malceva, Daniela; Vicheva, Snejinka; Raikova, Asyia; Argatska, Antoaneta; Raikov, Miroslav

    2016-01-01

    The main diagnostic tool for toxic adenomas (TA) is radionuclide imaging indicated in patients with evidence of thyroid nodules in combination with thyrotoxic syndrome. Thyroid ultrasound and fine-needle aspiration biopsy (FNAB) are widely used for the valuation of thyroid masses. There is no literature data concerning the utility of FNAB and related tests for the diagnosis of hyperfunctioning thyroid nodules. The purpose of this study is to determine the levels of free thyroxine (FT4) in the needle washout after FNAB of hot thyroid nodules. The results of our study show that the FT4 levels in needle washout from TA were significantly higher than the surrounding parenchyma and correlated with the hormonal changes in patients with thyroid hyperfunctioning nodules. Further studies on a large number of patients are needed to refine the diagnostic value of this method and evaluate its importance in quantitative risk assessment of thyroid autonomy.

  9. EFFICACY OF IMMUNOHISTOCHEMISTRY IN PROSTATE NEEDLE BIOPSIES

    Directory of Open Access Journals (Sweden)

    Tameem Afroz

    2016-10-01

    Full Text Available BACKGROUND Prostate needle biopsies can pose a major diagnostic challenge when it comes to differentiating adenocarcinoma and its variants from its benign mimics. In needle biopsies, when the suspicious focus is small, morphological features may not suffice to differentiate it from its morphologic mimics like atrophy, basal cell hyperplasia, reactive inflammatory changes, seminal vesicles and adenosis. Immunohistochemical marker for basal cells, p63 and prostate cancer specific marker, Alpha-Methylacyl-CoA Racemase (AMACR help in overcoming such diagnostic dilemmas. MATERIALS AND METHODS We analysed 157 prostate core needle biopsies over a period of 2 years. Routine Hematoxylin and Eosin (H and E sections and immunohistochemical markers for basal cells (p63 and prostate cancer specific marker (AMACR were used. Prospective study was done on prostate needle core biopsies. Biopsy was done under ultrasound guidance with an 18-gauge needle. Biopsy was done in patients with raised serum PSA levels for exclusion of prostate carcinoma. RESULTS Over a period of two years, 157 prostate core needle biopsies were studied. 83 were benign lesions comprising 69 benign prostatic hyperplasias, five basal cell hyperplasias, four granulomatous lesions and three showed atrophic changes. Two biopsies morphologically resembled seminal vesicles. Prostate cancer specific marker, AMACR was negative in all, but two lesions. In these two lesions, it showed weak nonspecific staining. Basal cell marker p63 showed a continuous staining pattern highlighting the basal cells in all the 69 cases of benign prostatic hyperplasia, 5 cases of basal hyperplasia showed positivity in all the hyperplastic basal cells. In the two cases of seminal vesicles, it showed intense basal cell positivity. It showed a discontinuous pattern in two of the four granulomatous lesions and showed a weak, but a continuous staining pattern in the atrophic lesions. 74 were adenocarcinomas; the predominant

  10. Electromechanically active polymer transducers: research in Europe

    Science.gov (United States)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  11. Core Needle Biopsy and Fine Needle Aspiration Alone or in Combination: Diagnostic Accuracy and Impact on Management of Renal Masses.

    Science.gov (United States)

    Cate, Frances; Kapp, Meghan E; Arnold, Shanna A; Gellert, Lan L; Hameed, Omar; Clark, Peter E; Wile, Geoffrey; Coogan, Alice; Giannico, Giovanna A

    2017-06-01

    Fine needle aspiration with and without concurrent core needle biopsy is a minimally invasive method to diagnose and assist in management of renal masses. We assessed the pathological accuracy of fine needle aspiration compared to and associated with core needle biopsy and the impact on management. We performed a single institution, retrospective study of 342 cases from 2001 to 2015 with small and large renal masses (4 or less and greater than 4 cm, respectively). Diagnostic and concordance rates, and the impact on management were analyzed. Adequacy rates for fine needle aspiration only, core needle biopsy only and fine needle aspiration plus core needle biopsy were 21%, 12% and 8% (aspiration vs aspiration plus biopsy p aspiration plus biopsy group adding aspiration to biopsy and biopsy to aspiration reduced the inadequacy rate from 23% to 8% and from 27% to 8% for a total reduction rate of 15% and 19%, respectively, corresponding to 32 cases (9.3%). Rapid on-site examination contributed to a 22.5% improvement in fine needle aspiration adequacy rates. In this cohort 30% of aspiration only, 5% of biopsy only and 12% of aspiration plus biopsy could not be subtyped (aspiration vs biopsy p aspiration vs aspiration plus biopsy p biopsy vs aspiration plus biopsy p = 0.06). The diagnostic concordance rate with surgical resection was 99%. Conversion of an inadequate specimen to an adequate one by a concurrent procedure impacted treatment in at least 29 of 32 patients. Limitations include the retrospective design and accuracy measurement based on surgical intervention. Fine needle aspiration plus core needle biopsy vs at least fine needle aspiration alone may improve diagnostic yield when sampling renal masses but it has subtyping potential similar to that of core needle biopsy only. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Wideband Single Crystal Transducer for Bone Characterization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS proposes to develop a simple-to-use, launch capable, ultrasound transducer that is capable of producing the necessary bandwidth to accurately determine in vivo...

  13. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  14. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  15. Transducer for Tension Force Measuring of Strip Materials

    Directory of Open Access Journals (Sweden)

    Emad S. Addasi

    2005-01-01

    Full Text Available In winding-up motor drive systems, such as that used in textile industry, it is very important to get a constant tension force for the winding strip material (thread and to reduce its oscillations. This study recommends a transducer with a special design to be used in the mentioned motor drive systems. By using a piston damper, spring, levers, slider and other simple components the suggested sensor (transducer can be used to control the motor speed for getting the required thread tension force. Also the suggested transducer avoids the disadvantage of other used conventional transducer: the parasitic (detrimental oscillations of the thread tension force, which affect the quality of the produced strip material.

  16. Spatial impulse response of a rectangular double curved transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2012-01-01

    Calculation of the pressure field from transducers having both a convex and a concave surface geometry is a complicated assignment that often is accomplished by subdividing the transducer surface into smaller flat elements of which the spatial impulse response is known. This method is often seen...... applied to curved transducers because an analytical solution is un-known. In this work a semi-analytical algorithm for the exact solution to a first order in diffraction effect of the spatial impulse response of rectangular shaped double curved transducers is presented. The algorithm and an approximation...... approximations ranging from 0.03 % to 0.8 % relative to a numerical solution for the spatial impulse response. It is shown that the presented algorithm gives consistent results with Field II for a linear flat, a linear focused, and a convex non-focused element. Best solution was found to be 0.01 % with a three...

  17. Studies on coaxial circular array for underwater transducer applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    This thesis presents analytical methods to study important aspects of a coaxial circular array for wideband underwater transducer application. It begins with detailed theoretical study of a coaxial circular array of three turns and an analysis...

  18. Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers.

    Science.gov (United States)

    Nie, Liming; Guo, Zijian; Wang, Lihong V

    2011-07-01

    A photoacoustic tomography system (PAT) using virtual point ultrasonic transducers was developed and applied to image a monkey brain. The custom-built transducers provide a 10-fold greater field-of-view (FOV) than finite-aperture unfocused transducers as well as an improved signal-to-noise ratio (SNR) and reduced artifacts rather than negative-lens transducers. Their tangential resolution, radial resolution, and (SNR) improvements were quantified using tissue phantoms. Our PAT system can achieve high uniformity in both resolution (8) within a large FOV of 6 cm in diameter, even when the imaging objects are enclosed by a monkey skull. The cerebral cortex of a monkey brain was accurately mapped transcranially, through a skull ranging from 2 to 4 mm in thickness. This study demonstrates that PAT can overcome the optical and ultrasound attenuation of a relatively thick skull and can potentially be applied to human neonatal brain imaging.

  19. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate.

  20. Finite element analysis for acoustic characteristics of a magnetostrictive transducer

    Science.gov (United States)

    Kim, Jaehwan; Jung, Eunmi

    2005-12-01

    This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.

  1. Traceable dynamic calibration of force transducers by primary means

    Science.gov (United States)

    Vlajic, Nicholas; Chijioke, Ako

    2016-08-01

    We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton’s second law, F  =  ma. The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1.2%. We give an account of all significant sources of uncertainty, including a detailed consideration of the effects of dynamic tilting (rocking), which is a leading source of uncertainty in such harmonic force calibration systems.

  2. Class D audio amplifiers for high voltage capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis

    voltage capacitive transducers can be constructed with THD+N below 0.1 % and peak efficiency above 80 %. However the complexity of the amplifier combined with the current high cost of components, makes the technology of DEAP based loudspeaker unfeasible. Suggestions to future work in the pursuit...... of high volume, weight, and cost. High efficient class D amplifiers are now widely available offering power densities, that their linear counterparts can not match. Unlike the technology of audio amplifiers, the loudspeaker is still based on the traditional electrodynamic transducer invented by C.W. Rice....... Due to the similarities between the electrostatic loudspeaker and the DEAP transducer, the state-of-the-art has a special focus on amplifiers for electrostatic loudspeakers. Amplifiers for other type of capacitive transducers like piezoelectric ones are also considered. Finally the current state...

  3. Tunable interdigital transducers made of piezoelectric macro-fiber composite

    Science.gov (United States)

    Mańka, Michał; Martowicz, Adam; Rosiek, Mateusz; Stepinski, Tadeusz; Uhl, Tadeusz

    2016-11-01

    The number of applications of Lamb waves (LWs) based structural health monitoring (SHM) has significantly increased in recent decades. The growth of interest results from several advantages of this diagnostic technique, that is, considerable mode selectivity and directivity that allow for the assessment of the technical condition of a monitored structure. Successful applications of LWs in the field of SHM stimulate continuous improvement of the transducers’ design to enable capturing more reliable diagnostic data. The paper introduces a new type of transducer that may be used in the LWs based SHM systems, namely tunable-interdigital transducer (T-IDT) based on macro-fiber composites (MFC). The authors provide a short overview on different types of transducers that may be used in SHM applications, followed by a detailed description of the structure of proposed T-IDT. Finally, the results of numerical and experimental tests carried out employing the proposed transducer are discussed and compared to those obtained with a traditional IDT.

  4. Phylocomposer and phylodirector: analysis and visualization of transducer indel models.

    Science.gov (United States)

    Holmes, Ian

    2007-12-01

    Finite-state string transducers are probabilistic tools similar to Hidden Markov Models that can be systematically extended to large number of sequences related by indel and substitution processes on phylogenetic trees. The number of states in such models grows exponentially with the number of nodes in the tree, with the consequence that even quite small trees can be difficult to analyze or visualize. Here, we present two tools, phylocomposer and phylodirector, for working with string transducers. The former tool implements previously described composition algorithms for extending transducers to arbitrary tree topologies, while the latter generates short animations for arbitrary input alignments and phylogenetic trees, illustrating the state path through the composed transducer. Phylocomposer and phylodirector are freely available at http://biowiki.org/PhyloComposer and http://biowiki.org/PhyloDirector

  5. A Novel Drive Option for Piezoelectric Ultrasonic Transducers

    OpenAIRE

    Diana Engelke; Bernd Oehme; Jens Strackeljan

    2011-01-01

    This paper concentrates on ultrasonic transducers, which are driven by piezoelectric ceramic rings that are arranged in a stack. A novel drive option, where the stack contains a new type of divided piezoelectric rings, is analyzed using the finite element method, prototyped, and tested. To gain a better sense of the vibration behavior, the studies focus initially on one ring and subsequently on the different possibilities to assemble the transducer. The investigations point out that natural b...

  6. Lead-Free Piezoelectric Transducers for Microelectronic Wirebonding Applications

    OpenAIRE

    Kwok, K.W.; T. Lee; Choy, S. H.; Chan, H.L.W.

    2010-01-01

    Lead-free KNLNTS and BNKLBT piezoelectric ceramic rings have been successfully prepared and used as the driving elements for fabricating ultrasonic wirebonding transducers. In order to improve the energy transfer between different parts of the transducer, titanium alloy has been used to fabricate the front and back plates. The dimensions of the ceramic rings and the titanium alloy plates have been optimized to give an operation frequency of 65 kHz. Because of the better matching of the acoust...

  7. Capacitive Ultrasonic Transducer Development for Acoustic Anemometry on Mars

    Science.gov (United States)

    Leonard-Pugh, Eurion; Wilson, C.; Calcutt, S.; Davis, L.

    2012-10-01

    Previous Mars missions have used either mechanical or thermal anemometry techniques. The moving parts of mechanical anemometers are prone to damage during launch and landing and their inertia makes them unsuited for turbulence studies. Thermal anemometers have been used successfully on Mars but are difficult to calibrate and susceptible to varying ambient temperatures. In ultrasonic anemometry, wind speed and sound speed are calculated from two-way time-of-flight measurements between pairs of transducers; three pairs of transducers are used to return a 3-D wind vector. These high-frequency measurements are highly reliable and immune from drift. Piezo-electric ultrasonic anemometers are widely used on Earth due to their full-range accuracy and high measurement frequency. However these transducers have high acoustic impedances and would not work on Mars. We are developing low-mass capacitive ultrasonic transducers for Mars missions which have significantly lower acoustic impedances and would therefore have a much stronger coupling to the Martian atmosphere. These transducers consist of a metallised polymer film pulled taught against a machined metal backplane. The film is drawn towards the backplane by a DC bias voltage. A varying signal is used on top of the DC bias to oscillate the film; generating acoustic waves. This poster will look at the operation of such sensors and the developments necessary to operate the devices under Martian conditions. Transducer performance is determined primarily by two elements; the front film and the backplane. The sensitivity of the transducer is affected by the thickness of the front film; as well as the diameter, curvature and roughness of the metal backplane. We present data on the performance of the sensors and instrument design considerations including signal shapes and transducer arrangements.

  8. Finite-State Complexity and the Size of Transducers

    Directory of Open Access Journals (Sweden)

    Cristian Calude

    2010-08-01

    Full Text Available Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.

  9. Ionic solvents used in ionic polymer transducers, sensors and actuators

    OpenAIRE

    2004-01-01

    Ionic liquids are incorporated into transducers, actuators or sensors which employ the ionic polymer membranes. The ionic liquids have superior electrochemical stability, low viscosity and low vapor pressure. The transducers, actuators and sensors which utilize ionic polymer membranes solvated with ionic liquids have long term air stability. Superior results are achieved when a conductive powder and ionomer mixture is applied to the ionic polymer membrane to form the electrodes during or afte...

  10. Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Imaging.

    Science.gov (United States)

    Lee, Junsu; Jang, Jihun; Chang, Jin Ho

    2017-03-01

    In intravascular ultrasound (IVUS) imaging, a transducer is inserted into a blood vessel and rotated to obtain image data. For this purpose, the transducer aperture is typically less than 0.5 mm in diameter, which causes natural focusing to occur in the imaging depth ranging from 1 to 5 mm. Due to the small aperture, however, it is not viable to conduct geometric focusing in order to enhance the spatial resolution of IVUS images. Furthermore, this hampers narrowing the slice thickness of a cross-sectional scan plane in the imaging depth, which leads to lowering spatial and contrast resolutions of IVUS images. To solve this problem, we propose an oblong-shaped-focused transducer for IVUS imaging. Unlike the conventional IVUS transducers with either a circular or a square flat aperture, the proposed transducer has an oblong aperture of which long side is positioned along a blood vessel. This unique configuration makes it possible to conduct geometric focusing at a desired depth in the elevation direction. In this study, furthermore, it is demonstrated that a spherically shaped aperture in both lateral and elevation directions also improves lateral resolution, compared to the conventional flat aperture. To ascertain this, the conventional and the proposed IVUS transducers were designed and fabricated to evaluate and to compare their imaging performances through wire phantom and tissue-mimicking phantom experiments. For the proposed 50-MHz IVUS transducer, a PZT piece of 0.5 × 1.0 mm(2) was spherically shaped for elevation focus at 3 mm by using the conventional press-focusing technique whereas the conventional one has a flat aperture of 0.5 × 0.5 mm(2). The experimental results demonstrated that the proposed IVUS transducer is capable of improving spatial and contrast resolutions of IVUS images.

  11. Method and apparatus for air-coupled transducer

    Science.gov (United States)

    Song, Junho (Inventor); Chimenti, Dale E. (Inventor)

    2010-01-01

    An air-coupled transducer includes a ultrasonic transducer body having a radiation end with a backing fixture at the radiation end. There is a flexible backplate conformingly fit to the backing fixture and a thin membrane (preferably a metallized polymer) conformingly fit to the flexible backplate. In one embodiment, the backing fixture is spherically curved and the flexible backplate is spherically curved. The flexible backplate is preferably patterned with pits or depressions.

  12. Micromachining of a piezocomposite transducer using a copper vapor laser.

    Science.gov (United States)

    Farlow, R; Galbraith, W; Knowles, M; Hayward, G

    2001-05-01

    A 1-3 piezocomposite transducer with front face dimensions of 2 x 2 mm has been micromachined using a copper vapor laser. The device consists of PZT5A piezoceramic pillars with a 65-micron pitch suspended in a low viscosity thermosetting polymer. The kerf width is 13 microns, and the transducer thickness is 170 microns, making the device suitable for ultrasonic reception at frequencies close to 10 MHz.

  13. Study into the displacement of tumor localization needle during navigated breast cancer surgery

    Science.gov (United States)

    Yan, Christina; Ungi, Tamas; Gauvin, Gabrielle; Jabs, Doris; Lasso, Andras; Engel, Jay; Rudan, John; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Early stage breast cancer is typically treated with lumpectomy. During lumpectomy, electromagnetic tracking can be used to monitor tumor position using a localization needle with an electromagnetic sensor fixed on the needle shaft. This needle is stabilized in the tumor with tissue locking wire hooks, which are deployed once the needle is inserted. The localization needle may displace from its initial position of insertion due to mechanical forces, providing false spatial information about the tumor position and increasing the probability of an incomplete resection. This study investigates whether gravitational and mechanical forces affected the magnitude of needle displacement. METHODS: Ten ultrasound scans were evaluated to measure needle displacement in vivo. Needle position was approximated by the distance between the needle tip and the tumor boundary on a 2D ultrasound image, and needle displacement was defined by the change in position. The angle between the localization needle and the coronal plane was computed in an open-source platform. RESULTS: A significant relationship (p = 0.04) was found between the needle to coronal plane angle and increased needle displacement. Needles inserted vertically, pointing towards the operating room ceiling, tended to exhibit greater needle displacement. Average needle displacement was 1.7 +/-1.2 mm. CONCLUSION: Angle between the needle and the horizontal plane has been shown to affect needle displacement, and should be taken into consideration when inserting the localization needle. Future works can be directed towards improving the clinical workflow and mechanical design of the localization needle to reduce slippage during surgery.

  14. Manually controlled steerable needle for MRI-guided percutaneous interventions

    OpenAIRE

    Henken, Kirsten R.; Seevinck, Peter R.; Dankelman, Jenny; van den Dobbelsteen, John J.

    2016-01-01

    This study aims to develop and evaluate a manually controlled steerable needle that is compatible with and visible on MRI to facilitate full intra-procedural control and accurate navigation in percutaneous interventions. The steerable needle has a working channel that provides a lumen to a cutting stylet or a therapeutic instrument. A steering mechanism based on cable-operated compliant elements is integrated in the working channel. The needle can be steered by adjusting the orientation of th...

  15. Home Automation System Based on Intelligent Transducer Enablers

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Dapena, Adriana; González-López, Miguel

    2016-01-01

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet. PMID:27690031

  16. An analytical model of a longitudinal-torsional ultrasonic transducer

    Science.gov (United States)

    Al-Budairi, Hassan; Lucas, Margaret

    2012-08-01

    The combination of longitudinal and torsional (LT) vibrations at high frequencies finds many applications such as ultrasonic drilling, ultrasonic welding, and ultrasonic motors. The LT mode can be obtained by modifications to the design of a standard bolted Langevin ultrasonic transducer driven by an axially poled piezoceramic stack, by a technique that degenerates the longitudinal mode to an LT motion by a geometrical alteration of the wave path. The transducer design is developed and optimised through numerical modelling which can represent the geometry and mechanical properties of the transducer and its vibration response to an electrical input applied across the piezoceramic stack. However, although these models can allow accurate descriptions of the mechanical behaviour, they do not generally provide adequate insights into the electrical characteristics of the transducer. In this work, an analytical model is developed to present the LT transducer based on the equivalent circuit method. This model can represent both the mechanical and electrical aspects and is used to extract many of the design parameters, such as resonance and anti-resonance frequencies, the impedance spectra and the coupling coefficient of the transducer. The validity of the analytical model is demonstrated by close agreement with experimental results.

  17. Exact series model of Langevin transducers with internal losses.

    Science.gov (United States)

    Nishamol, P A; Ebenezer, D D

    2014-03-01

    An exact series method is presented to analyze classical Langevin transducers with arbitrary boundary conditions. The transducers consist of an axially polarized piezoelectric solid cylinder sandwiched between two elastic solid cylinders. All three cylinders are of the same diameter. The length to diameter ratio is arbitrary. Complex piezoelectric and elastic coefficients are used to model internal losses. Solutions to the exact linearized governing equations for each cylinder include four series. Each term in each series is an exact solution to the governing equations. Bessel and trigonometric functions that form complete and orthogonal sets in the radial and axial directions, respectively, are used in the series. Asymmetric transducers and boundary conditions are modeled by using axially symmetric and anti-symmetric sets of functions. All interface and boundary conditions are satisfied in a weighted-average sense. The computed input electrical admittance, displacement, and stress in transducers are presented in tables and figures, and are in very good agreement with those obtained using atila-a finite element package for the analysis of sonar transducers. For all the transducers considered in the analysis, the maximum difference between the first three resonance frequencies calculated using the present method and atila is less than 0.03%.

  18. Software for Correcting the Dynamic Error of Force Transducers

    Directory of Open Access Journals (Sweden)

    Naoki Miyashita

    2014-07-01

    Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.

  19. Microelectronics mounted on a piezoelectric transducer: method, simulations, and measurements.

    Science.gov (United States)

    Johansson, Jonny; Delsing, Jerker

    2006-01-01

    This paper describes the design of a highly integrated ultrasound sensor where the piezoelectric ceramic transducer is used as the carrier for the driver electronics. Intended as one part in a complete portable, battery operated ultrasound sensor system, focus has been to achieve small size and low power consumption. An optimized ASIC driver stage is mounted directly on the piezoelectric transducer and connected using wire bond technology. The absence of wiring between driver and transducer provides excellent pulse control possibilities and eliminates the need for broad band matching networks. Estimates of the sensor power consumption are made based on the capacitive behavior of the piezoelectric transducer. System behavior and power consumption are simulated using SPICE models of the ultrasound transducer together with transistor level modelling of the driver stage. Measurements and simulations are presented of system power consumption and echo energy in a pulse echo setup. It is shown that the power consumption varies with the excitation pulse width, which also affects the received ultrasound energy in a pulse echo setup. The measured power consumption for a 16 mm diameter 4.4 MHz piezoelectric transducer varies between 95 microW and 130 microW at a repetition frequency of 1 kHz. As a lower repetition frequency gives a linearly lower power consumption, very long battery operating times can be achieved. The measured results come very close to simulations as well as estimated ideal minimum power consumption.

  20. Study of the compact fiber optic photoacoustic ultrasonic transducer

    Science.gov (United States)

    Wu, Nan; Tian, Ye; Zou, Xiaotian; Wang, Xingwei

    2012-04-01

    Recently, many studies have been exerted on developing ultrasonic transducers that can feature high frequencies for better resolutions and compact sizes for the limit space nondestructive testing applications. Conventional ultrasonic transducers, which are made by piezoelectric materials, suffer from issues such as low frequencies and bulky sizes due to the difficulty of dicing piezoelectric materials into smaller pieces. On the other hand, generating ultrasonic signals by photoacoustic principle is a promising way to generate a high frequency ultrasonic pulse. Optical fiber is a very compact material that can carry the light energy. By combining the photoacoustic principle and the optical fiber together, a novel ultrasonic transducer that features a high frequency and a compact size could be achieved. In this paper, an ultrasonic transducer using gold nanoparticles as the photoacoustic generation material is described. Gold nanoparticles are deposited on the end surface of an optical fiber acting as the ultrasonic generator. A cavity and a diaphragm are fabricated in the center of the fiber using as the ultrasonic receiver. A phase array technique is applied to the transducer to steer the direction of the acoustic beam. Simulation results demonstrated that the photoacoustic ultrasonic transducer is feasible.

  1. Home Automation System Based on Intelligent Transducer Enablers.

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M; Dapena, Adriana; González-López, Miguel

    2016-09-28

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  2. Characterization of noncontact piezoelectric transducer with conically shaped piezoelement

    Science.gov (United States)

    Williams, James H., Jr.; Ochi, Simeon C. U.

    1988-01-01

    The characterization of a dynamic surface displacement transducer (IQI Model 501) by a noncontact method is presented. The transducer is designed for ultrasonic as well as acoustic emission measurements and, according to the manufacturer, its characteristic features include a flat frequency response range which is from 50 to 1000 kHz and a quality factor Q of less than unity. The characterization is based on the behavior of the transducer as a receiver and involves exciting the transducer directly by transient pulse input stress signals of quasi-electrostatic origin and observing its response in a digital storage oscilloscope. Theoretical models for studying the response of the transducer to pulse input stress signals and for generating pulse stress signals are presented. The characteristic features of the transducer which include the central frequency f sub o, quality factor Q, and flat frequency response range are obtained by this noncontact characterization technique and they compare favorably with those obtained by a tone burst method which are also presented.

  3. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers

    Science.gov (United States)

    Eriksson, Tobias J. R.; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N.; Dixon, Steve

    2016-01-01

    Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio (SNR)≃15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart. PMID:27571075

  4. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    Science.gov (United States)

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  5. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    Science.gov (United States)

    Li, H.; Jung, K. W.; Deng, Z. D.

    2015-11-01

    Implantable acoustic transmitters have been used in the last 20 years to track fish movement for fish survival and migration behavior studies. However, the relatively large weights and sizes of commercial transmitters limit the populations of studied fish. The surgical implantation procedures may also affect fish adversely and incur a significant amount of labor. Therefore, a smaller, lighter, and injectable transmitter was needed, and similar or better acoustic performance and service life over those provided by existing commercial transmitters was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. Our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the signal was not blocked by the transmitter body. We found that a novel off-center tube transducer improved the average source level by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 1.3 dB. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. Lastly, a tuning inductor in series with the transducer was used to help optimize the source level. The findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.

  6. Analytical calibration of linear transducer arrays for photoacoustic tomography

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Fournelle, Marc

    2015-07-01

    Tomographic photoacoustic imaging (PAT) allows to overcome the anisotropic image resolution of conventional reflection mode imaging. In order to achieve high-resolution, tomographic images, precise information on the position of each detector element is required. PAT systems that acquire signals from rotating linear transducer arrays come with inevitable transducer misalignments. Up to now, transducer orientation (x/y-tilt) and radial distance uncertainty were measured experimentally or have not been considered. Uncalibrated, these systems suffer from characteristic artifacts yielding misinterpretations of anatomic structures. Herein, we derive the artifact mathematically and investigate an analytical calibration method that enables the calculation and compensation of important transducer positioning parameters: the rotational radius and in-plane tilt. We studied the approach theoretically and evaluated the performance of the developed algorithm both on numerical and experimental data. A PAT system based on a 5-MHz linear transducer array, a multichannel electronics platform with channel data access, a NIR-emitting laser system and a rotating samples is used to demonstrate the benefit of the transducer calibration method providing isotropic resolution of 160 μm.

  7. Focusing of ferroelectret air-coupled ultrasound transducers

    Science.gov (United States)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  8. Home Automation System Based on Intelligent Transducer Enablers

    Directory of Open Access Journals (Sweden)

    Manuel Suárez-Albela

    2016-09-01

    Full Text Available This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers, which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  9. Lab in a needle for epidural space identification

    Science.gov (United States)

    Carotenuto, B.; Micco, A.; Ricciardi, A.; Amorizzo, E.; Mercieri, M.; Cutolo, A.; Cusano, A.

    2016-05-01

    This work relies on the development of a sensorized medical needle with an all-optical guidance (Lab in a Needle) system for epidural space identification. The device is based on the judicious integration of a Fiber Bragg grating sensor inside the lumen of an epidural needle to discriminate between different types of tissue and thus providing continuous and real time measurements of the pressure experienced by the needle tip during its advancement. Experiments carried out on an epidural training phantom demonstrate the validity of our approach for the correct and effective identification of the epidural space.

  10. Serrated needle design facilitates precise round window membrane perforation.

    Science.gov (United States)

    Stevens, James P; Watanabe, Hirobumi; Kysar, Jeffrey W; Lalwani, Anil K

    2016-07-01

    The round window membrane (RWM) has become the preferred route, over cochleostomy, for the introduction of cochlear implant electrodes as it minimizes inner ear trauma. However, in the absence of a tool designed for creating precise perforation, current practices lead to tearing of the RWM and significant intracochlear pressure fluctuations. On the basis of RWM mechanical properties, we have designed a multi-serrated needle to create consistent holes without membrane tearing or damaging inner ear structures. Four and eight-serrated needles were designed and produced with wire electrical discharge machining (EDM). The needle's ability to create RWM perforations was tested in deidentified, commercially acquired temporal bones with the assistance of a micromanipulator. Subsequently, specimens were imaged under light and scanning electron microscopy (SEM). The needles created consistent, appropriately sized holes in the membrane with minimal tearing. While a four-serrated crown needle made rectangular/trapezoid perforations, the octagonal crown formed smooth oval holes within the membrane. Though designed for single use, the needle tolerated repeated use without significant damage. The serrated needles formed precise perforations in the RWM while minimizing damage during cochlear implantation. The octagonal needle design created the preferred oval perforation better than the quad needle. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1633-1637, 2016.

  11. Current status of core needle biopsy of the thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jung Hwan [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Thyroid nodules are a common clinical problem. Fine-needle aspiration (FNA) and large-needle biopsy have been used to diagnose thyroid nodules. Before the 1980s, large-needle biopsy was the standard procedure for the thyroid, but FNA became the standard diagnostic tool in the 1980s because it is a safe procedure that leads to accurate diagnoses. With advances in core needle biopsy (CNB) devices (i.e., spring-activated core needles) and development of high-resolution ultrasound, it has become possible to make accurate diagnoses while minimizing complications. Although 18- to 21-gauge core needles can be used to biopsy thyroid nodules, 18-gauge needles are most commonly used in Korea. The relationships among the size of the needle, the number of core specimens, and diagnostic accuracy have not yet been conclusively established, but the general tendency is that thinner needles cause less damage to the normal thyroid, but allow a smaller amount of thyroid tissue to be biopsied to be obtained. These relationships may be validated in the future.

  12. Ultrasonic Transducers for Air and Underwater Communication.

    Science.gov (United States)

    Koosha, Abdolrahim

    Available from UMI in association with The British Library. The performance of a novel radiator capable of producing ultrasonic waves in air and liquids has been investigated. For commercial transducers when operating in air or liquids, impedance matching is the necessary condition for maximum transfer of energy to the medium (thus no standing waves are involved). However, for this radiator the formation of the mechanical standing waves on it is the key condition for directional radiation of energy into the surrounding environment. Under this condition the radiator exhibits a practical conversion of electrical energy into ultrasound. To further improve the performance of the radiator the wavelength coincidence condition must be satisfied. This condition implies that the wavelength of the bending vibration developed on the blade to be the same as that in the medium to which it is coupled. Consequently, an end-fire radiation pattern is obtained. The theory of this when applied to water and also for a double blade configuration are presented. The main component of the radiator consists of a cantilever blade on which a pair of piezoelectric (PZT) ceramic bars are fixed. These the so called excitation gauges, are fixed on both sides of a thin rectangular metal blade near the clamped end. When wavelength coincidence condition is fulfilled, the radiator transmits ultrasonic wave in a highly directional pattern. The direction of propagation of ultrasound is solely steered by frequency of the applied signal. System imperfections such as inter modal coupling when used underwater are considered. An analytical approach is developed to investigate the performance of the radiator for transmission of digital signals in air as well as in water. This method is used to evaluate the efficiency of the device as a suitable means for communication between divers or a diver and an underwater stationary station. Amplitude modulation of speech signals demonstrated the capabilities of a new

  13. The effectiveness of myofascial deep dry needling versus superficial dry needling in the treatment of Trapezius Myofascial Pain Syndrome

    OpenAIRE

    2012-01-01

    M.Tech. Purpose: The purpose of this study is to investigate whether needling active trigger points in the upper fibres of the trapezius muscle, using myofascial deep dry needling versus superficial dry needling is effective in the treatment of Trapezius Myofascial Pain Syndrome. Method: Forty participants underwent a general screening to determine whether they have active myofascial trigger points in the upper fibres of the Trapezius muscle. The general screening was done by using a pince...

  14. Percutaneous needle fasciotomy for recurrent Dupuytren disease.

    Science.gov (United States)

    van Rijssen, Annet L; Werker, Paul M N

    2012-09-01

    Increasing options to treat Dupuytren disease include percutaneous needle fasciotomy (PNF), a minimally invasive technique that has proven to be effective for the treatment of primary disease. However, its effect on recurrent disease is not clear. We studied 30 patients with recurrent Dupuytren disease in 40 fingers, with a mean follow-up of 4.4 years. Primary outcome measures were total passive extension deficit reduction and interval to a second recurrence, defined as an increase of more than 30° compared with the result at the end of the previous treatment. We noted complications. Total passive extension reduction was 76%. Percutaneous needle fasciotomy was especially effective for the metacarpophalangeal joint, with an average reduction of 93%, whereas the average reduction in the proximal interphalangeal joint was 57%. A total of 50% of patients did not develop a secondary recurrence during follow-up. The other 50% did, and we treated recurrence within an average of 1.4 years after PNF. By means of PNF, we postponed tertiary treatment an average of 2.9 years starting from the initial treatment for Dupuytren disease. We successfully treated all secondary recurrences by limited fasciectomy, according to patients' wishes. We noted no major adverse effects. Percutaneous needle fasciotomy can be applied effectively for recurrent disease; 50% of patients remain free of recurrence for a mean of 4.4 years. If a secondary recurrence occurs, it does so relatively early after treatment. Patients must therefore be willing to accept this uncertainty in the context of the advantages of PNF, such as fast recovery, low complication rate, and minimal invasiveness. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. Transbronchial needle aspiration "by the books"

    Directory of Open Access Journals (Sweden)

    Kupeli Elif

    2011-01-01

    Full Text Available Background : Training for advanced bronchoscopic procedures is acquired during the interventional pulmonology (IP Fellowship. Unfortunately a number of such programs are small, limiting dissemination of formal training. Objective : We studied success of conventional transbronchial needle aspiration (C-TBNA in the hands of physicians without formal IP training. Methods : A technique of C-TBNA was learned solely from the literature, videos and practicing on inanimate models at "Hands-On" courses. Conventional TBNA with 21 and/or 19 gauge Smooth Shot Needles (Olympus® , Japan was performed on consecutive patients with undiagnosed mediastinal lymphadenopathy. Results : Thirty-four patients (male 23, mean age 54.9 ± 11.8 years underwent C-TBNA. Twenty-two patients had nodes larger than 20 mms. Suspected diagnoses were malignancy in 20 and nonmalignant conditions in 14. Final diagnoses were malignancy 17, sarcoidosis 4, reactive lymph nodes 12, and tuberculosis 1. Final diagnosis was established by C-TBNA in 14 (11 malignancy, 3 sarcoidosis; yield 41.1%, mediastinoscopy in 14, transthoracic needle aspiration in 3, peripheral lymph node biopsies in 2 and by endobronchial biopsy in 1. Nodal size had an impact on outcome (P = 0.000 while location did not (P = 0.33. C-TBNA was positive in 11/20 when malignancy was suspected (yield 55%, while 3/14 when benign diagnosis was suspected (yield 21.4% (P = 0.05. Sensitivity, specificity, PPV, NPV, and diagnostic accuracy were 66.6%, 100%, 100%, 65%, and 79.4%, respectively. There were no complications or scope damage. Conclusion : Conventional-TBNA can be learned by the books and by practicing on inanimate models without formal training and results similar to those published in the literature could be achieved.

  16. Polychlorinated naphthalenes in pine needles from Poland

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowska, A.; Falandysz, J.; Bochentin, I. [Dept. of Environmental Chemistry and Ecotoxicology, Univ. of Gdansk (Poland); Hanari, N.; Wyrzykowska, B.; Yamashita, N. [National Inst. of Advanced Industrial Science and Technology (AIST), EMTECH, Tsukuba (Japan)

    2004-09-15

    Polychlorinated naphthalenes (PCNs) are a group of 75 compounds, which have been commercially produced and used in a wide range of industrial applications for the sake of their specific chemical properties. They are recognized as good electrical insulators and also as water and flame resistant materials. Technical PCNs formulations were mainly used as capacitor dielectrics, engine oil additives, electroplating stop-off compounds, in wire insulations and as paper, wood and fabric preservatives. Moreover, they have been formed during production of PCBs formulations. Although recently most countries have stopped synthesis of PCNs, they still are widely distributed in the environment. Nowadays the principal sources of these compounds are municipal solid wastes incineration, metallurgical and chloro-alkali processes. In last years PCNs concentrations in the environment have posed the cynosure of big group of scientists in the whole world. The relatively high concentrations are regarded as an environmental problem. Because they are persistent, toxic and lipophilic they might be bioaccumulated in living organisms and generate the danger for animals and humans. It is essentially to monitor their levels in air, regional transport, as well as estimate specific sources. It is possible by using as a biomonitors pine tree needles. These trees are considered as the very suitable passive indicators for monitoring of PCNs concentrations in the troposphere. This is because the surface wax layer of the needles poses an ability to absorb these lipophilic compounds from the surrounding air. In the current study pine needles were employed as biomonitors of PCNs concentrations in the ambient air of Poland. This country with its past history of production and use of different applications including these compounds, as well as with its location in the centre of Europe, presents the interesting region to these researches.

  17. Ultrasonic transducer chip assembly, ultrasound probe, ultrasonic imaging system and ultrasound assembly and probe manufacturing methods

    NARCIS (Netherlands)

    Weekamp, J.W.; Henneken, V.A.; Groenland, A.W.; Louwerse, M.C.

    2015-01-01

    Disclosed is an ultrasonic transducer assembly comprising an ultrasonic transducer chip (100) having a main surface comprising a plurality of ultrasound transducer elements (112) and a plurality of first contacts (120) for connecting to said ultrasound transducer elements; a contact chip (400) havin

  18. Three-dimensional needle-tip localization by electric field potential and camera hybridization for needle electromyography exam robotic simulator

    Science.gov (United States)

    He, Siyu; Gomez-Tames, Jose; Yu, Wenwei

    2016-01-01

    As one of neurological tests, needle electromygraphy exam (NEE) plays an important role to evaluate the conditions of nerves and muscles. Neurology interns and novice medical staff need repetitive training to improve their skills in performing the exam. However, no training systems are able to reproduce multiple pathological conditions to simulate real needle electromyogram exam. For the development of a robotic simulator, three components need to be realized: physical modeling of upper limb morphological features, position-dependent electromyogram generation, and needle localization; the latter is the focus of this study. Our idea is to couple two types of sensing mechanism in order to acquire the needle-tip position with high accuracy. One is to segment the needle from camera images and calculate its insertion point on the skin surface by a top-hat transform algorithm. The other is voltage-based depth measurement, in which a conductive tissue-like phantom was used to realize both needle-tip localization and physical sense of needle insertion. For that, a pair of electrodes was designed to generate a near-linear voltage distribution along the depth direction of the tissue-like phantom. The accuracy of the needle-tip position was investigated by the electric field potential and camera hybridization. The results showed that the needle tip could be detected with an accuracy of 1.05±0.57 mm. PMID:27382339

  19. Systematic review of the effectiveness of fine-needle aspiration and/or core needle biopsy for subclassifying lymphoma.

    Science.gov (United States)

    Frederiksen, John K; Sharma, Meenal; Casulo, Carla; Burack, W Richard

    2015-02-01

    The World Health Organization system for lymphoma classification relies on histologic findings from excisional biopsies. In contradistinction to expert guidelines, practitioners increasingly rely on fine-needle aspiration cytology and core needle biopsies rather than excisional biopsies to diagnose lymphomas. To determine a rate at which fine-needle aspiration cytology and core needle biopsies, combined with flow cytometry and/or genetic techniques, can provide a diagnosis sufficient for optimal medical management of lymphoma. The English-language literature on fine-needle aspiration cytology and core needle biopsies for lymphoma was reviewed to identify studies that provided interpretations of all specimens regardless of whether these were deemed diagnostic. Forty-two studies (1989-2012) specified the lymphoma subtypes for each diagnosis or indicated a rate at which the methods failed to provide a diagnosis. The median rate at which fine-needle aspiration cytology and core needle biopsies yielded a subtype-specific diagnosis of lymphoma was 74%. Strictly adhering to expert guidelines, which state that follicular lymphoma cannot be graded by these techniques, decreased the diagnostic yield further to 66%. Thus, 25% to 35% of fine-needle aspirates and/or core biopsies of nodes must be followed by an excisional lymph node biopsy to fully classify lymphoma.

  20. Development of the needle insertion robot for percutaneous vertebroplasty.

    Science.gov (United States)

    Onogi, S; Morimoto, K; Sakuma, I; Nakajima, Y; Koyama, T; Sugano, N; Tamura, Y; Yonenobu, S; Momoi, Y

    2005-01-01

    Percutaneous Vertebroplasty (PVP) is an effective and less invasive medical treatment for vertebral osteoporotic compression fractures. However, this operative procedure is quite difficult because an arcus vertebra, which is narrow, is needled with accuracy, and an operator's hand is exposed to X-ray continuously. We have developed a needle insertion robot for Percutaneous Vertebroplasty. Its experimental evaluation on the basic performance of the system and needle insertion accuracy are presented. A needle insertion robot is developed for PVP. This robot can puncture with accuracy and an operator does not need to be exposed to X-ray. The mechanism of the robot is compact in size (350 mm x D 400 mm x H270 mm, weight: 15 kg) so that the robot system can be inserted in the space between C-arm and the patient on the operating table. The robot system is controlled by the surgical navigation system where the appropriate needle trajectory is planned based on pre-operative three-dimensional CT images. The needle holding part of the robot is X-ray lucent so that the needle insertion process can be monitored by fluoroscopy. The position of the needle during insertion process can be continuously monitored. In vitro evaluation of the system showed that average position and orientation errors were less than 1.0 mm and 1.0 degree respectively. Experimental results showed that the safety mechanism called mechanical fuse released the needle holding disk properly when excessive force was applied to the needle. These experimental results demonstrated that the developed system has the satisfactory basic performance as needle insertion robot for PVP.

  1. Ultrasonic flowmeters: temperature gradients and transducer geometry effects.

    Science.gov (United States)

    Willatzen, M

    2003-03-01

    Ultrasonic flowmeter performance is addressed for the case of cylindrically shaped flowmeters employing two reciprocal ultrasonic transducers A and B so as to measure time-of-flight differences between signals transmitted from transducer A towards B followed by an equivalent signal transmitted from transducer B towards A. In the case where a liquid flows through the flowmeter's measuring section ("spoolpiece"), the arrival times of the two signals differ by an amount related to the flow passing between the two transducers. Firstly, a detailed study of flow measurement errors with mean flow in the laminar flow regime is carried out as a function of the mode index and the transducer diameter/cylinder diameter ratio in the case where no temperature gradients are present in the flowmeter sensor. It is shown that all modes except the fundamental mode overestimate the mean flow by a factor of 33.33% while excitation of the fundamental mode solely give error-free measurements. The immediate consequences are that the flowmeter error decreases as the transducer diameter/cylinder diameter ratio approaches 1 from 0 reflecting the fact that the excitation level of the fundamental mode increases from almost 0 to 1 as this ratio approaches 1 from 0. Secondly, the effect on flowmeter performance due to flow-induced temperature gradients is examined. It is shown that the presence of temperature gradients leads to flowmeter errors at the higher-flow values even in the case where the fundamental mode is the only mode excited. It is also deduced that flowmeter errors in general depend on the distance between transducers A and B whether temperature gradients exist or not. This conclusion is not reflected in the usual definition of flowmeter errors given by the so-called mode-dependent deviation of measurement introduced in earlier works.

  2. Transducer-binding and transducer-mutations modulate photoactive-site-deprotonation in sensory rhodopsin I.

    Science.gov (United States)

    Jung, K H; Spudich, E N; Dag, P; Spudich, J L

    1999-10-05

    Sensory rhodopsin I (SRI) is a seven-transmembrane helix retinylidene protein that mediates color-sensitive phototaxis responses through its bound transducer HtrI in the archaeon Halobacterium salinarum. Deprotonation of the Schiff base attachment site of the chromophore accompanies formation of the SRI signaling state, S(373). We measured the rate of laser flash-induced S(373) formation in the presence and absence of HtrI, and the effects of mutations in SRI or HtrI on the kinetics of this process. In the absence of HtrI, deprotonation occurs rapidly (halftime 10 micros) if the proton acceptor Asp76 is ionized (pK(a) = approximately 7), and only very slowly (halftime > 10 ms) when Asp76 is protonated. Transducer-binding, although it increases the pK(a) of Asp76 so that it is protonated throughout the range of pH studied, results in a first order, pH-independent rate of S(373) formation of approximately 300 micros. Therefore, the complexation of HtrI facilitates the proton-transfer reaction, increasing the rate approximately 50-fold at pH6. Arrhenius analysis shows that HtrI-binding accelerates the reaction primarily by an entropic effect, suggesting HtrI constrains the SRI molecule in the complex. Function-perturbing mutations in SRI and HtrI also alter the rate of S(373) formation and the lambda(max) of the parent state as assessed by laser flash-induced kinetic difference spectroscopy, and shifts to longer wavelength are correlated with slower deprotonation. The data indicate that HtrI affects electrostatic interactions of the protonated Schiff base and not only receives the signal from SRI but also optimizes the photochemical reaction process for SRI signaling.

  3. Synthesis of nano-crystalline multifibrous zirconia needle

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Mridula; Bandyopadhyay, Siddhartha, E-mail: sbando@cgcri.res.in

    2013-06-01

    Graphical abstract: - Highlights: • Zirconia needles have been successfully prepared by simple inorganic sol–gel route. • The shape of the needles was retained after firing with aspect ratio > 400. • Needles are composed of multiple fibres. • Fibres are composed of nano crystals. - Abstract: Zirconia needles have been successfully synthesized using a simple inorganic sol–gel process without using any template. The method employs mixture of zirconium oxychloride octahydrate and sulphuric acid in aqueous medium. This process requires heat treatment at 40 °C for 2 h in an oven for nucleus formation. Complete formation of needle occurs after 17 days. The green needle retained its original shape after calcination at 1200 °C. Fired needles were of 1–2 cm in length and 5–50 μm in diameter and possess monoclinic phase. Needles are composed of multiple fibres. Depending on the heat treatment temperature, crystallite size varies in the range of 8 to around 300 nm.

  4. Observations on rotating needle insertions using a brachytherapy robot

    Energy Technology Data Exchange (ETDEWEB)

    Meltsner, M A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Ferrier, N J [Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706 (United States); Thomadsen, B R [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2007-09-21

    A robot designed for prostate brachytherapy implantations has the potential to greatly improve treatment success. Much of the research in robotic surgery focuses on measuring accuracy. However, there exist many factors that must be optimized before an analysis of needle placement accuracy can be determined. Some of these parameters include choice of the needle type, insertion velocity, usefulness of the rotating needle and rotation speed. These parameters may affect the force at which the needle interacts with the tissue. A reduction in force has been shown to decrease the compression of the prostate and potentially increase the accuracy of seed position. Rotating the needle as it is inserted may reduce frictional forces while increasing accuracy. However, needle rotations are considered to increase tissue damage due to the drilling nature of the insertion. We explore many of the factors involved in optimizing a brachytherapy robot, and the potential effects each parameter may have on the procedure. We also investigate the interaction of rotating needles in gel and suggest the rotate-cannula-only method of conical needle insertion to minimize any tissue damage while still maintaining the benefits of reduced force and increased accuracy.

  5. Ultrasound guided needle biopsy of skeletal muscle in neuromuscular disease

    DEFF Research Database (Denmark)

    Lindequist, S; Schrøder, H D; Larsen, C

    1990-01-01

    Guided by ultrasonography percutaneous needle biopsy of skeletal muscle was performed in 24 patients, using the one hand held Biopty system and a 2 mm Tru-Cut needle. The specimens were graded with regard to diagnostic quality and utility and almost all specimens (96%) were of highest quality...

  6. Needle Steering in 3-D Via Rapid Replanning.

    Science.gov (United States)

    Patil, Sachin; Burgner, Jessica; Webster, Robert J; Alterovitz, Ron

    2014-08-01

    Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm.

  7. Path planning for steerable needles using duty-cycled spinning

    Directory of Open Access Journals (Sweden)

    Borges G.A.

    2011-12-01

    Full Text Available This paper presents an adaptive approach for 2D path planning of steerable needles. It combines dutycycled rotation of the needle with the classic RapidlyExploring Random Tree (RRT algorithm and it is used intraoperatively to compensate for system uncertainties and perturbations. Simulation results demonstrate the performance of the proposed motion planner on a workspace based in ultrasound images.

  8. Laser-Controlled Growth of Needle-Shaped Organic Nanoaggregates

    DEFF Research Database (Denmark)

    Balzer, Frank; Rubahn, Horst-Günter

    2002-01-01

    Arrays of mutually parallel oriented, single-crystalline, needle-like structures of light-emitting p-hexaphenyl molecules are generated in the focus of an argon ion laser. The cross sectional dimensions of the needles are of the order of 100 to 200 nm with lengths up to several hundred micrometers...

  9. Manually controlled steerable needle for MRI-guided percutaneous interventions

    NARCIS (Netherlands)

    Henken, Kirsten R; Seevinck, Peter R; Dankelman, Jenny; van den Dobbelsteen, John J

    2017-01-01

    This study aims to develop and evaluate a manually controlled steerable needle that is compatible with and visible on MRI to facilitate full intra-procedural control and accurate navigation in percutaneous interventions. The steerable needle has a working channel that provides a lumen to a cutting s

  10. Needle Steering in 3-D Via Rapid Replanning

    Science.gov (United States)

    Patil, Sachin; Burgner, Jessica; Webster, Robert J.; Alterovitz, Ron

    2014-01-01

    Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm. PMID:25435829

  11. 1-3 Piezocomposite transducers for AUV applications

    Science.gov (United States)

    Pazol, Brian; Lannaman, Ken; Doust, Barry

    2001-05-01

    Sonar systems on board AUVs present interesting challenges to the transducer designer because of their small size, low weight requirements, and limited available power. 1-3 piezocomposite transducers offer many performance characteristics which make them ideal for deployment in AUVs. Piezocomposite transducers are light weight, have broad bandwidth, have high efficiency, and can be conformed to fit the curvature of the vehicle. The broad bandwidths and low sidelobes made possible by piezocomposites result in sharper images with less distortion. The piezocomposite material is mechanically robust and can survive the rigors of normal operations as well as AUV deployment and retrieval. In addition, the conformal configuration substantially reduces hydrodynamic drag. As a conformal array, there is nothing to get knocked off during deployment and retrieval operations, or entangled with natural or man-made objects suspended in the water column. This contributes directly to improving the operational endurance of the AUV system, thereby enhancing overall system utility. MSI has produced and tested a variety of piezocomposite transducers for use in obstacle avoidance, mine hunting, and acoustic communications. An overview of piezocomposites and recent results of piezocomposite transducers will be presented.

  12. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).

  13. Delimitation of the lung region with distributed ultrasound transducers

    Science.gov (United States)

    Cardona Cárdenas, Diego Armando; Furuie, Sérgio Shiguemi

    2016-04-01

    One technique used to infer and monitor patient's respiratory conditions is the electrical impedance tomography (EIT). This provides images with information about lung function. The EIT image contrast is dependent on the variation of electrical impedance, therefore, this image does not provide anatomical details in border regions of several organs. To contribute to a clinical solution, we propose a new method to delimit regions of interest such as the pulmonary region and to improve the reconstruction quality of the EIT. Using a Matlab Toolbox k-wave, the ultrasound propagation phenomenon in homogeneous medium without patient (Reference) and with thoracic models were simulated, separately via a set of several ultrasound transducers distributed around the chest. After pulse emission by a transducer (TR), all received signals were compared considering the two sets of signals. If the energy relation between parts of the signals does not exceed an empirical threshold (30% in this study), a partial mask is generated between the transmitter and the receptor. This process was repeated until all 128 transducers are considered as TR-emitters. The 128 transducers (150kHz) are uniformly distributed. The evaluation was made by visually comparing the resulting images with the respective simulated object. A simple approach was presented to delimit high contrast organs with ultrasound transducers distributed around the patient. This approach allows other lower contrast objects to become invisible by varying the threshold limit. The investigation, based on numerical simulations of ultrasonic propagation, has shown promising results in the delimitation of the pulmonary region.

  14. Wideband Tonpilz Transducer with a Cavity Inside a Head Mass

    Science.gov (United States)

    Saosometh Chhith,; Yongrae Roh,

    2010-07-01

    A multimode Tonpilz transducer is well-known for providing a wider bandwidth than a single-mode transducer. In this paper, a new structure for the head mass of a multimode Tonpilz transducer was designed to further widen the bandwidth. The mechanical quality factor of a Tonpilz transducer is proportional to the weight of its head mass. In that sense, making the cavity inside the head mass will surely lead to a much lighter head mass, which can lead to a lower mechanical quality factor, thus a wider bandwidth. Through finite element analyses, the effects of the void head mass structure on the transducer performance were analyzed, and the dimension of the cavity to achieve the widest bandwidth was determined within given structural variation ranges. The variation ranges were selected as those in which the coefficient of determination in regression analyses was larger than 0.95 over all the ranges. The structure of a tail mass was also designed using the same method to match the new head mass.

  15. A hybrid transducer to magnetically and ultrasonically evaluate magnetic fluids.

    Science.gov (United States)

    Bruno, Alexandre Colello; Pavan, Théo Z; Baffa, Oswaldo; Carneiro, Antonio Adilton Oliveira

    2013-09-01

    Ultrasound, magnetic fields, and optical techniques have been explored for clinical diagnosis and therapy. However, these techniques have limitations. In this study, we constructed and characterized a transducer to magnetically and ultrasonically investigate samples labeled with magnetic particles. The transducer is a hybrid system consisting of an ac biosusceptometer (ACB) and an ultrasonic transducer. The basic operation principle consisted of measuring the magnetization and microvibrations of ferromagnetic particles (37 and 70 μm) mixed in yogurt and excited by an external alternating magnetic field generated by the ACB's excitation coils. The vibration of the ferromagnetic particles was measured in phantoms using a Doppler ultrasonic transducer; we verified the sensitivity to detecting the vibrations at low concentrations of ferromagnetic material (~1%). The responses of the susceptometer and Doppler ultrasound linearly depended on the voltage level applied to the magnetizing coils at low ferromagnetic particle concentrations (⩽ 5%). We also conducted a repeatability test on the prototype, which indicated a deviation of 0.94% and 0.25% in the Doppler and susceptometric measurements, respectively. We can conclude that the hybrid transducer technique has potential clinical applications.

  16. A highly sensitive fiber Bragg grating diaphragm pressure transducer

    Science.gov (United States)

    Allwood, Gary; Wild, Graham; Lubansky, Alex; Hinckley, Steven

    2015-10-01

    In this work, a novel diaphragm based pressure transducer with high sensitivity is described, including the physical design structure, in-depth analysis of optical response to changes in pressure, and a discussion of practical implementation and limitations. A flat circular rubber membrane bonded to a cylinder forms the body of the transducer. A fiber Bragg grating bonded to the center of the diaphragm structure enables the fractional change in pressure to be determined by analyzing the change in Bragg wavelength of the reflected spectra. Extensive evaluation of the physical properties and optical characteristics of the transducer has been performed through experimentation, and modeling using small deformation theory. The results show the transducer has a sensitivity of 0.116 nm/kPa, across a range of 15 kPa. Ultra-low cost interrogation of the optical signal was achieved through the use of an optically mismatched Bragg grating acting as an edge filter to convert the spectral change into an intensity change. A numerical model of the intensity based interrogation was implemented in order to validate the experimental results. Utilizing this interrogation technique and housing both the sensing and reference Bragg gratings within the main body of the transducer means it is effectively temperature insensitive and easily connected to electronic systems.

  17. Optimizing EUS-guided liver biopsy sampling: comprehensive assessment of needle types and tissue acquisition techniques.

    Science.gov (United States)

    Schulman, Allison R; Thompson, Christopher C; Odze, Robert; Chan, Walter W; Ryou, Marvin

    2017-02-01

    EUS-guided liver biopsy sampling using FNA and, more recently, fine-needle biopsy (FNB) needles has been reported with discrepant diagnostic accuracy, in part due to differences in methodology. We aimed to compare liver histologic yields of 4 EUS-based needles and 2 percutaneous needles to identify optimal number of needle passes and suction. Six needle types were tested on human cadaveric tissue: one 19G FNA needle, one existing 19G FNB needle, one novel 19G FNB needle, one 22G FNB needle, and two 18G percutaneous needles (18G1 and 18G2). Two needle excursion patterns (1 vs 3 fanning passes) were performed on all EUS needles. Primary outcome was number of portal tracts. Secondary outcomes were degree of fragmentation and specimen adequacy. Pairwise comparisons were performed using t tests, with a 2-sided P samplings (48 per needle type) were performed. The novel 19G FNB needle had significantly increased mean portal tracts compared with all needle types. The 22G FNB needle had significantly increased portal tracts compared with the 18G1 needle (3.8 vs 2.5, P sampling. Investigations are underway to determine whether these results can be replicated in a clinical setting. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  18. [Brief introduction of acupuncture needling and teaching keypoint].

    Science.gov (United States)

    Hou, Shu-wei; Guo, Li; Kong, Su-ping

    2014-09-01

    We summarized our accumulated clinical and teaching experiences and explored the regularity of acupuncture needling and teaching. It is of great importance in pressing hand during inserting needle. Stroking and pressing are two crucial parts which deserve more attention, and seldom useage of pressing hand should be abolished. Operating hand needs practice before inserting needle, while it should fully relaxed during inserting. Blending "touching", "stretch" "gathering" "erupting" and "advancing" in single moment, applying appropriate dynamic mode of inserting needle such as "join 3 forces as one" "3 points in a line" expertly and naturally. In addition, enough attention should be paid on "altering direction" and "shifting point". Inserting deftly and powerfully, no/slight sensation, deqi when inserting needle are the highest reflection as an acupuncturist.

  19. Effect of physical disturbance on the structure of needle coke

    Science.gov (United States)

    Zhao, Shi-Gui; Wang, Bao-Cheng; Sun, Quan

    2010-10-01

    Through different preparation technology, this paper reports that the needle coke is prepared with coal-tar pitch under the effect of magnetic field and ultrasonic cavitation. It studies the effect of physical disturbance on the structure of needle coke. The structure of needle coke is characterized by scanning electron microscope and x-ray diffractometer, and the influence mechanism is analysed. Results showed that the structure and property of needle coke could be effectively improved by magnetic field and ultrasonic cavitations, such as degree of order, degree of graphitization and crystallization. Comparatively speaking, the effect of magnetic field was greater. The graphitization degree of needle coke prepared under the effect of magnetic field is up to 45.35%.

  20. Design of an Optically Controlled MR-Compatible Active Needle

    Science.gov (United States)

    Ryu, Seok Chang; Quek, Zhan Fan; Koh, Je-Sung; Renaud, Pierre; Black, Richard J.; Moslehi, Behzad; Daniel, Bruce L.; Cho, Kyu-Jin; Cutkosky, Mark R.

    2015-01-01

    An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy. PMID:26512231

  1. A novel accurate minioptical tracking system for percutaneous needle placement.

    Science.gov (United States)

    von Jako, Christopher R; Zuk, Yuval; Zur, Oded; Gilboa, Pini

    2013-08-01

    The novel optical tracking system employs a miniature video camera, mounted on the hub of an interventional needle, to determine the location and orientation of the needle relative to a skin-attached sticker with color reference markers. A computed tomography (CT) scan is used to register the same reference markers to the anatomy in the CT images, and thus, register the needle to the anatomy and to a user-selected target. A computer displays a simulation of the interventional needle on the CT images, providing guidance information to assist a user in directing the needle to the target. Bench testing was performed on a custom phantom to determine the accuracy of this minioptical tracking system. The resulting accuracy data demonstrate a good correlation with phantom coordinates and the CT images.

  2. Reducing the Effect of Transducer Mount Induced Noise on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

    Science.gov (United States)

    Herron, A. J.; Reed, D. K.; Nance, D. K.

    2015-01-01

    Characterization of launch vehicle unsteady aerodynamics is a field best studied through experimentation, which is often carried out in the form of large scale wind tunnel testing. Measurement of the fluctuating pressures induced by the boundary layer noise is customarily made with miniature pressure transducers installed into a model of the vehicle of interest. Literature shows that noise level increases between two to five decibels (dB referenced to 20 micropascal) can be induced when the transducer surface is not mounted perfectly flush with the model outer surface. To reduce this artificially induced noise, special transducer holders have been used for aeroacoustic wind tunnel testing by NASA. This holder is a sleeve into which the transducer fits, with a cap that allows it to be mounted in a recessed hole in the model. A single hole in the holder allows the transport of the tunnel medium so the transducer can discriminate the fluctuating pressure due to the turbulent boundary layer noise. The holder is first dry fitted into the model and any difference in height between the holder and the model surface can be sanded flush. The holder is then removed from the model, the transducer glued inside the holder, and the holder replaced in the model, secured also with glue, thus eliminating the problem of noise level increases due to lack of flushness. In order to work with this holder design, special transducers have been ordered with their standard screen removed and the diaphragm moved as close to the top of the casing as possible to minimize any cavity volume. Although this greatly reduces induced noise due to the transducers being out of flush, the holders can also induce a cavity resonance that is usually at a very high frequency. This noise is termed transducer mount induced noise (XMIN). The peak of the mode can vary with the cavity depth, boundary layer noise that can excite the mode, tunnel flow medium, and the build of the transducers. Because the boundary

  3. Energy harvesting with a slotted-cymbal transducer

    Institute of Scientific and Technical Information of China (English)

    Jiang-bo YUAN; Xiao-biao SHAN; Tao XIE; Wei-shan CHEN

    2009-01-01

    A cymbal transducer is made up of a piezoceramic disk sandwiched between two dome-shaped metal endcaps. High circumferential stresses caused by flexural motion of the metal endcaps can induce the loss of mechanical input energy. Finite element analysis shows that the radial slots fabricated in metal endcaps can release the circumferential stresses, and reduce the loss of mechanical input energy that could be converted into electrical energy. In this letter, the performance of a slotted-cymbal transducer in energy harvesting was tested. The results show that the output voltage and power of the cymbal are improved. A maximum output power of around 16 mW could be harvested from a cymbal with 18 cone radial slots across a 500kΩ resistive load, which is approximately 0.6 times more than that of the original cymbal transducer.

  4. A novel serrated columnar phased array ultrasonic transducer

    Science.gov (United States)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  5. The Use of Phononic Crystals to Design Piezoelectric Power Transducers

    Directory of Open Access Journals (Sweden)

    Silvia Ronda

    2017-03-01

    Full Text Available It was recently proposed that the lateral resonances around the working resonance band of ultrasonic piezoelectric sandwich transducers can be stopped by a periodic array of circular holes drilled along the main propagation direction (a phononic crystal. In this work, the performance of different transducer designs made with this procedure is tested using laser vibrometry, electric impedance tests and finite element models (FEM. It is shown that in terms of mechanical vibration amplitude and acoustic efficiency, the best design for physiotherapy applications is when both, the piezoceramic and an aluminum capsule are phononic structures. The procedure described here can be applied to the design of power ultrasonic devices, physiotherapy transducers and other external medical power ultrasound applications where piston-like vibration in a narrow band is required.

  6. Design, production and testing of PMN-PT electrostrictive transducers.

    Science.gov (United States)

    Coutte, J; Dubus, B; Debus, J C; Granger, C; Jones, D

    2002-05-01

    Lead magnesium niobate ceramics (PMN) are promising materials for application in the field of high power transducers. The advantage of PMN materials are the large strains generated under moderate electric field and the low hysteresis. The electrostrictive effect is non-linear, the corresponding physical constants depend on temperature and frequency and a DC electrical bias is required. These difficulties must be considered at the design stage. A finite element model has been developed and validated in the ATILA code for non-linear static and time-domain analyses. These numerical modelings are used to design and test two Langevin-type electrostrictive transducers. The first transducer is made of PMN-PT-La (90-10-1%) ceramics (TRS Ceramics), the second one of ESCI ceramics (Morgan Matroc). For given static mechanical prestresses, resonance frequencies and effective coupling coefficients are measured at different DC electric fields and temperatures.

  7. Inter Digital Transducer Modelling through Mason Equivalent Circuit Model

    DEFF Research Database (Denmark)

    Mishra, Dipti; Singh, Abhishek; Hussain, Dil muhammed Akbar

    2016-01-01

    by Simulation program with Integrated Circuit Emphasis (HSPICE), a well-liked electronic path simulator. The acoustic wave devices are not suitable to simulation through circuit simulator.In this paper, an electrical model of Mason’s Equivalent electricalcircuit for an inter-digital transducer (IDT......The frequency reliance of inter-digital transducer is analyzed with the help of MASON’s Equivalent circuit which is based on Smith’s Equivalent circuit which is further based on Foster’sNetwork. An inter-digital transducer has been demonstratedas a RLC network. The circuit is simulated......) is projected which is well-suitedwith a broadlycast-offuniversalresolution circuit simulator SPICE built-in out with the proficiency to simulatethenegative capacitances and inductances. The investigationis done to prove the straightforwardness of establishing the frequency and time domain physical...

  8. Phased annular array transducers for ultrasonic guided wave applications

    Science.gov (United States)

    Yan, Fei; Borigo, Cody; Liang, Yue; Koduru, Jaya P.; Rose, Joseph L.

    2011-04-01

    Mode and frequency control always plays an important role in ultrasonic guided wave applications. In this paper, theoretical understanding of guided wave excitations of axisymmetric sources on plate structures is established. It is shown that a wave number spectrum can be used to investigate the guided wave excitations of an axisymmetric source. The wave number spectrum is calculated from a Hankel transform of the axial source loading profile. On the basis of the theoretical understanding, phased annular array transducers are developed as a powerful tool for guided wave mode and frequency control. By applying appropriate time delays to phase the multiple elements of an annular array transducer, guided wave mode and frequency tuning can be achieved fully electronically. The phased annular array transducers have been successfully used for various applications. Example applications presented in this paper include phased annular arrays for guided wave beamforming and a novel ultrasonic vibration modal analysis technique for damage detection.

  9. Some design considerations for small piezo-electrical ceramic transducers

    Science.gov (United States)

    Rijnja, H. A. J.

    1989-07-01

    The design parameters and the characteristics of small omnidirectional transducers, to be applied under water as projectors in the frequency range of about 1 kHz to 100 kHz and as hydrophones from very low frequencies up to again 100kHz are described. The transducers are constructed with piezoelectrical ceramic materials in the shape of hollow spheres, end capped tubes or piston (Tonpilz) elements. The highest source levels are obtained with spherical transducers as single omnidirectional sound sources. If larger arrays of sources are applied the array should be composed of single ended Tonpilz elements. The most sensitive receivers (hydrophones) are obtained with tangentially polarized end-capped tubes.

  10. Finite element analysis of piezoelectric underwater transducers for acoustic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwan [Inha University, Incheon (Korea, Republic of); Kim, Heung Soo [Catholic University, Daegu (Korea, Republic of)

    2009-02-15

    This paper presents a simulation technique for analyzing acoustic characteristics of piezoelectric underwater transducers. A finite element method is adopted for modeling piezoelectric coupled problems including material damping and fluid-structure interaction problems by taking system matrices in complex form. For the finite element modeling of unbounded acoustic fluid, infinite wave envelope element (IWEE) is adopted to take into account the infinite domain. An in-house finite element program is developed and technical issues for implementing the program are explained. Using the simulation program, acoustic characteristics of tonpilz transducer are analyzed in terms of modal analysis, radiated pressure distribution, pressure spectrum, transmitting-voltage response and impedance analysis along with experimental comparison. The developed simulation technique can be used for designing ultrasonic transducers in the areas of nondestructive evaluation, underwater acoustics and bioengineering

  11. Actuators, transducers and motors based on giant magnetostrictive materials

    Energy Technology Data Exchange (ETDEWEB)

    Claeyssen, F.; Lhermet, N.; Le Letty, R. [Cedrat Recherche, Meylan (France); Bouchilloux, P. [Magsoft Corporation, 1223 People`s Avenue, New York 12180 (United States)

    1997-08-01

    Rare earth-iron magnetostrictive alloys, especially Terfenol-D, feature ``giant`` magnetostrains: static strains of 1000-2000 ppm and dynamic strains of 3500 ppm are reported. These strains permit building various actuating devices (actuators, transducers, motors) both at macro and micro scale. The object of the paper is to recall adapted design methods, especially finite element methods such as ATILA, and to review these different kinds of devices studied at Cedrat Recherche, providing both up-dated experimental and numerical results. The presented devices will include several large displacement longitudinal and shear actuators biased using permanent magnets and used either as characterisation devices or as electromechanical actuators (for active damping, for sonar transducers..), a 1 kHz 4 kW Tonpilz-type sonar transducer called the tripode, a 2 N m torque rotating multi-mode motor, a torsion based drift free micro actuator and a wireless linear micromotor. (orig.)

  12. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  13. Thyroid nodules with initially non-diagnostic, fine-needle aspiration results: comparison of core-needle biopsy and repeated fine-needle aspiration.

    Science.gov (United States)

    Choi, Sang Hyun; Baek, Jung Hwan; Lee, Jeong Hyun; Choi, Young Jun; Hong, Min Ji; Song, Dong Eun; Kim, Jae Kyun; Yoon, Jong Ho; Kim, Won Bae

    2014-11-01

    To evaluate the role of core-needle biopsy (CNB) by comparing the results of CNB and repeated fine-needle aspiration (FNA) for thyroid nodules with initially non-diagnostic FNA results. From October 2008 to December 2011, 360 nodules - 180 consecutive repeated FNAs and 180 consecutive CNBs -- from 360 patients (83 men, 277 women; mean age, 54.4 years) with initially non-diagnostic FNA results were analyzed retrospectively. The incidence of non-diagnostic results, inconclusive results, diagnostic surgery, and diagnostic performance of repeated FNA and CNB were assessed, and factors affecting second non-diagnostic results were evaluated. CNB achieved a significantly lower non-diagnostic and inconclusive rate than repeated FNA (1.1 % versus 40.0 %, P needle biopsy achieved a lower number of non-diagnostic and inconclusive results. • Core-needle biopsy achieved better diagnostic performance. • Use of core-needle biopsy could prevent unnecessary diagnostic surgery. • Repeated fine-needle aspiration was significantly associated with a second non-diagnosis.

  14. High intensity ultrasound transducer used in gene transfection

    Science.gov (United States)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  15. Comparison of sonography with sonographically guided fine-needle aspiration biopsy and core-needle biopsy for initial axillary staging of breast cancer.

    Science.gov (United States)

    Ahn, Hye Shin; Kim, Sun Mi; Jang, Mijung; La Yun, Bo; Kim, Sung-Won; Kang, Eunyoung; Park, So Yeon; Moon, Woo Kyung; Choi, Hye Young

    2013-12-01

    The purpose of this study was to determine the roles of sonography and sonographically guided fine-needle aspiration biopsy and core-needle biopsy for initial axillary staging of breast cancer. Of 220 patients with breast cancer who underwent preoperative or prechemotherapy sonography for axillary staging, 52 patients who underwent sonographically guided fine-needle aspiration biopsy and core-needle biopsy for cortical thickening or a compressed hilum of lymph nodes on sonography were prospectively enrolled. Sonography and fine-needle aspiration biopsy/core-needle biopsy findings were compared with final pathologic results from sentinel lymph node biopsy or axillary lymph node dissection. Forty-eight patients met the final study criteria; we excluded 4 who had received primary systemic chemotherapy and showed negative fine-needle aspiration biopsy/core-needle biopsy results and negative final postoperative pathologic results. The positive predictive value of axillary sonography was 54%. The sensitivity and specificity of fine-needle aspiration biopsy were 73% and 100%, respectively, and those of core-needle biopsy were 77% and 100%. Results did not differ significantly between sonographically guided core-needle biopsy and fine-needle aspiration biopsy. The complication rates of fine-needle aspiration biopsy and core-needle biopsy were both 4%, and fine-needle aspiration biopsy and core-needle biopsy cost $180 and $350, respectively. Both sonographically guided fine-needle aspiration biopsy and core-needle biopsy were useful for axillary staging of breast cancer with high sensitivity. However, fine-needle aspiration biopsy is recommended based on the advantages of low cost and minimal invasiveness.

  16. Diagnostic value of core needle biopsy and fine-needle aspiration in salivary gland lesions.

    Science.gov (United States)

    Novoa, Eva; Gürtler, Nicolas; Arnoux, André; Kraft, Marcel

    2016-04-01

    Core needle biopsy (CNB) has gained acceptance as a minimally invasive procedure in the head and neck. Nevertheless, many concerns arise regarding the value and safety of this method in the assessment of salivary gland lesions. This prospective study comprises 111 patients with a salivary gland lesion. The results of ultrasound-guided CNB were compared with those of fine-needle aspiration (FNA) in the 103 histologically verified cases. CNB achieved a higher accuracy than FNA in identifying true neoplasms (98% vs 91%) and detecting malignancy (99% vs 87%), and was also superior to FNA providing a specific diagnosis (93% vs 74%). In both methods, no complications, such as bleeding, infection, nerve injury, or tumor-cell seeding, occurred. CNB is a simple, safe, and highly accurate procedure, which should be considered as an additional diagnostic tool in the assessment of salivary gland lesions. © 2015 Wiley Periodicals, Inc. Head Neck 38: E346-E352, 2016. © 2015 Wiley Periodicals, Inc.

  17. [Acupuncture therapy for regaining consciousness in terms of acupoint location, needle insertion and needle manipulation].

    Science.gov (United States)

    Meng, Xianggang; Gu, Wenlong; Ma, Fen; Du, Yuzheng; Zhao, Qi

    2015-03-01

    Acupuncture therapy for regaining consciousness activates soreness, numbness, distention, heaviness, radiating and moving, electric shock and ant climbing sensations at the specific acupoints in the stroke patients. Radiating and moving sensations are the summary of needling sensations such as soreness, numbness and twitching presenting during lifting and thrusting manipulation. These sensations are the essential factors of the therapeutic effect of regaining consciousness. Radiating sensation refers to the conduction along meridians and radiation of soreness and numbness. Moving sensation refers to the local muscular twitching at acupoints and the involuntary movement of limbs, joints and the distal. Acupuncture at the specific acupoints achieves radiating and moving sensations for promoting the circulation in meridians, regulating qi and mind and balancing yin and yang in stroke patients. This therapy was introduced in the paper in view of acupoint location, needle insertion and manipulation.

  18. Skin Blood Perfusion and Cellular Response to Insertion of Insulin Pen Needles With Different Diameters

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente Merete; Bo Jensen, Casper

    2014-01-01

    Today most research on pen needle design revolves around pain perception statements through clinical trials, but these are both costly, timely, and require high sample sizes. The purpose of this study was to test if tissue damage, caused by different types of needles, can be assessed by evaluating...... skin blood perfusion response around needle insertion sites. Three common sized pen needles of 28G, 30G, and 32G as well as hooked 32G needles, were inserted into the neck skin of pigs and then removed. Laser Speckle Contrast Analysis was used to measure skin blood perfusion for 20 minutes after......, but there was a trend of an increased response with increasing needle diameter. Skin blood perfusion response to pen needle insertions rank according to needle diameter, and the tissue response caused by hooked 32G needles corresponds to that of 28G needles. The relation between needle diameter and trauma when...

  19. Remote Electromagnetic Vibration of Steerable Needles for Imaging in Power Doppler Ultrasound.

    Science.gov (United States)

    Cabreros, Sarah S; Jimenez, Nina M; Greer, Joseph D; Adebar, Troy K; Okamura, Allison M

    2015-05-01

    Robotic needle steering systems for minimally invasive medical procedures require complementary medical imaging systems to track the needles in real time. Ultrasound is a promising imaging modality because it offers relatively low-cost, real-time imaging of the needle. Previous methods applied vibration to the base of the needle using a voice coil actuator, in order to make the needle visible in power Doppler ultrasound. We propose a new method for needle tip vibration, using electromagnetic actuation of small permanent magnets placed inside the needle to improve needle tip visibility in power Doppler imaging. Robotic needle insertion experiments using artificial tissue and ex vivo porcine liver showed that the electromagnetic tip vibration method can generate a stronger Doppler response compared to the previous base vibration method, resulting in better imaging at greater needle depth in tissue. It also eliminates previous issues with vibration damping along the shaft of the needle.

  20. The planar silicon-based microelectronic technology for electrochemical transducers

    Science.gov (United States)

    Novikov, A. V.; Egorchikov, A. E.; Dolgov, A. N.; Gornev, E. S.; Popov, V. G.; Egorov, I. V.; Krishtop, V. G.

    2016-12-01

    We have developed the new technology for production of sensitive modules for electrochemical sensors of pressure and acceleration. The technology is applicable for mass production and scalable for high-volume production. In this work we demonstrate the new sensing module for electrochemical motion sensors, and its possibility of applying in geophones. We fabricated prototypes of electrochemical planar transducer chips, produced a laboratory prototype of a geophone based on our planar transducer chip, and tested them. This paper presents the preliminary results of the tests.

  1. Sensory TRP channels: the key transducers of nociception and pain.

    Science.gov (United States)

    Mickle, Aaron D; Shepherd, Andrew J; Mohapatra, Durga P

    2015-01-01

    Peripheral detection of nociceptive and painful stimuli by sensory neurons involves a complex repertoire of molecular detectors and/or transducers on distinct subsets of nerve fibers. The majority of such molecular detectors/transducers belong to the transient receptor potential (TRP) family of cation channels, which comprise both specific receptors for distinct nociceptive stimuli, as well as for multiple stimuli. This chapter discusses the classification, distribution, and functional properties of individual TRP channel types that have been implicated in various nociceptive and/or painful conditions.

  2. Wideband Single-Crystal Transducer for Bone Characterization

    Science.gov (United States)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an

  3. Simulating Capacitive Micromachined Ultrasonic Transducers (CMUTs) using Field II

    DEFF Research Database (Denmark)

    Bæk, David; Oralkan, Omer; Kupnik, Mario;

    2010-01-01

    Field II has been a recognized simulation tool for piezoceramic medical transducer arrays for more than a decade. The program has its strength in doing fast computations of the spatial impulse response (SIR) from array elements by dividing the elements into smaller mathematical elements (ME)s from...... which it calculates the SIR responses. The program features predefined models for classical transducer geometries, but currently none for the fast advancing CMUTs. This work addresses the assumptions required for modeling CMUTs with Field II. It is shown that rectangular array elements, populated...

  4. Hip Pain: Dry Needling Versus Cortisone Injections.

    Science.gov (United States)

    2017-04-01

    Greater trochanteric pain syndrome (GTPS) is chronic, intermittent pain and tenderness on the outside of the hip. The medical community once thought that a swollen hip bursa was the source of such pain, which led to the use of corticosteroid injections to the bursa to help decrease swelling and pain. However, researchers now believe that injuries to the muscles and tendons around the hip are the actual cause of this pain, and that inflammation is often not involved. A study published in the April 2017 issue of JOSPT explores dry needling as an alternative to cortisone injections to reduce pain and improve function in patients with GTPS. J Orthop Sports Phys Ther 2017;47(4):240. doi:10.2519/jospt.2017.0504.

  5. [Design of acupoint electric characteristic sensing needle].

    Science.gov (United States)

    Liu, Tang-yi; Yang, Hua-yuan; Kuai, Le; Gao, Ming

    2007-09-01

    The electric characteristics of acupoints have been confirmed by researchers at home and abroad. Because the traditional detection methods are various (mainly are different positions of the reference electrode), and they are influenced by many affective factors, with unstable results and bad repeatability, so the studies of the electric characteristics of acupoints are limited. The acupoint electric characteristic sensing needle is introduced in detail from its design, detection methods and so on, which can detects changes of the acupoint electric characteristics of channels and acupoints in different healthy states real-timely, dynamically and continuously. It not only can avoid those affective factors, and also the detective results are relatively stable and the repeatability is also better.

  6. Fine needle aspiration biopsy of ophthalmic tumors☆

    Science.gov (United States)

    Singh, Arun D.; Biscotti, Charles V.

    2012-01-01

    A majority of intraocular tumors can be diagnosed based on clinical examination and ocular imaging studies, which obviate the need for diagnostic ophthalmic fine needle aspiration biopsy (FNAB). Overall, diagnostic accuracy of ophthalmic FNAB is high but limited cellularity can compromise the diagnostic potential of ophthalmic aspirate samples. The role of ophthalmic FNAB is limited in retinal tumors. Orbital FNAB should be considered in the evaluation of lacrimal gland tumors, orbital metastasis, and lymphoproliferative lesions. Negative cytologic diagnosis of malignancy should not be considered unequivocal proof that an intraocular malignancy does not exist. With improved understanding of genetic prognostic factors of uveal melanoma, ophthalmic FNAB is gaining popularity for prognostic purposes in combination with eye conserving treatment of the primary tumor. In special clinical indications, ancillary studies such as immunohistochemistry and FISH can be performed on ophthalmic FNAB samples. Assistance of an experienced cytopathologist cannot be overemphasized. PMID:23960981

  7. Needle steering for robot-assisted insertion into soft tissue: A survey

    Science.gov (United States)

    Gao, Dedong; Lei, Yong; Zheng, Haojun

    2012-07-01

    Needle insertion is a common surgical procedure used in diagnosis and treatment. The needle steering technologies make continuous developments in theoretical and practical aspects along with the in-depth research on needle insertion. It is necessary to summarize and analyze the existing results to promote the future development of theories and applications of needle insertion. Thus, a survey of the state of the art of research is presented on algorithms of needle steering techniques, the surgical robots and devices. Based on the analysis of the needle insertion procedure, the concept of needle steering is defined as a kinematics problem, which is to place the needle at the target and avoid the obstacles. The needle steering techniques, including the artificial potential field method and the nonholonomic model, are introduced to control the needles for improving the accuracy. Based on the quasi-static thinking, the virtual spring model and the cantilever-beam model are developed to calculate the amount of needle deflection and generate the needle path. The phantoms instead of the real tissue are used to verify the models mentioned in most of the experimentations. For the desired needle trajectories, the image-guided robotic devices and some novel needles are presented to achieve the needle steering. Finally, the challenges are provided involving the controllability of the long flexible needle and the properties of soft tissue. The results and investigations can be used for further study on the precision and accuracy of needle insertion.

  8. Curved Needles in CT-Guided Fine Needle Biopsies of Abdominal and Retroperitoneal Small Lesions.

    Science.gov (United States)

    De Filippo, Massimo; Saba, Luca; Rossi, Enrica; Nizzoli, Rita; Tiseo, Marcello; Pedrazzi, Giuseppe; Brunese, Luca; Rotondo, Antonio; Rossi, Cristina

    2015-12-01

    To demonstrate the advantages of using curved needles in fine needle aspiration (FNA) with CT-guided, for analyzing abdominal and/or retroperitoneal small lesions which are impossible to reach with conventional non-surgical biopsy techniques, particularly in cases in which the cytology sample was not possible to obtain by means of US or CT guide with axial images. An authorization for CT-guided FNA in patients with neoplasms is not required by the institutional review board of our Institute. From April 2012 to November 2014, the study included retrospectively 25 patients (16 M, 9 F) who underwent CT-guided FNA of abdominal and/or retroperitoneal small lesions (biopsy procedure because of the interposition of anatomical obstacles. Patients with suspected lymphomas or sarcomas, pediatric patients and patients with bleeding diathesis were excluded. Cytology reports were used for evaluating suitability. The biological material was considered to be suitable for cytological study, with a diagnostic value in all 25 cases, finding in particular: out of 23 neoplastic lesions (85%), 21 were malignant (90.2%) and 2 were benign (8%). 2 out 25 were non-neoplastic benign lesions (8%). No procedural complications arose in any of the cases (0%). Using curved needles, there is an effective improvement in CT-guided FNA of abdominal and retroperitoneal small lesions which are difficult to achieve with conventional CT or ultrasound guide.

  9. Emergency percutaneous needle decompression for tension pneumoperitoneum

    Directory of Open Access Journals (Sweden)

    Körner Markus

    2011-05-01

    Full Text Available Abstract Background Tension pneumoperitoneum as a complication of iatrogenic bowel perforation during endoscopy is a dramatic condition in which intraperitoneal air under pressure causes hemodynamic and ventilatory compromise. Like tension pneumothorax, urgent intervention is required. Immediate surgical decompression though is not always possible due to the limitations of the preclinical management and sometimes to capacity constraints of medical staff and equipment in the clinic. Methods This is a retrospective analysis of cases of pneumoperitoneum and tension pneumoperitoneum due to iatrogenic bowel perforation. All patients admitted to our surgical department between January 2005 and October 2010 were included. Tension pneumoperitoneum was diagnosed in those patients presenting signs of hemodynamic and ventilatory compromise in addition to abdominal distension. Results Between January 2005 and October 2010 eleven patients with iatrogenic bowel perforation were admitted to our surgical department. The mean time between perforation and admission was 36 ± 14 hrs (range 30 min - 130 hrs, between ER admission and begin of the operation 3 hrs and 15 min ± 47 min (range 60 min - 9 hrs. Three out of eleven patients had clinical signs of tension pneumoperitoneum. In those patients emergency percutaneous needle decompression was performed with a 16G venous catheter. This improved significantly the patients' condition (stabilization of vital signs, reducing jugular vein congestion, bridging the time to the start of the operation. Conclusions Hemodynamical and respiratory compromise in addition to abdominal distension shortly after endoscopy are strongly suggestive of tension pneumoperitoneum due to iatrogenic bowel perforation. This is a rare but life threatening condition and it can be managed in a preclinical and clinical setting with emergency percutaneous needle decompression like tension pneumothorax. Emergency percutaneous decompression is no

  10. Mechatronic system for in-bore MRI-guided insertion of needles to the prostate: An in vivo needle guidance accuracy study.

    Science.gov (United States)

    Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Louis, Alyssa S; Davidson, Sean R H; Gertner, Mark; Hlasny, Eugen; Sussman, Marshall S; Fenster, Aaron; Trachtenberg, John

    2015-07-01

    To present our experiences in initial clinical evaluation of a novel mechatronic system for in-bore guidance of needles to the prostate for MRI-guided prostate interventions in 10 patients. We report accuracy of this device in the context of focal laser ablation therapy for localized prostate cancer. An MRI-compatible needle guidance device was developed for transperineal prostate interventions. Ten patients underwent MRI-guided focal laser ablation therapy with device-mediated laser fiber delivery. We recorded needle guidance error and needle delivery time. A total of 37 needle insertions were evaluated. Median needle guidance error was 3.5 mm (interquartile range, 2.1-5.4 mm), and median needle delivery time was 9 min (interquartile range, 6.5-12 min). This system provides a reliable method of accurately aligning needle guides for in-bore transperineal needle delivery to the prostate. © 2014 Wiley Periodicals, Inc.

  11. Comparison of a needle-free high-pressure injection system with needle-tipped injection of intracavernosal alprostadil for erectile dysfunction.

    Science.gov (United States)

    Harding, L M; Adeniyi, A; Everson, R; Barker, S; Ralph, D J; Baranowski, A P

    2002-12-01

    Patients identified from hospital records as using alprostadil injections for erectile dysfunction were invited to take part in this open crossover study. On alternate weeks eight patients were given intracavernosal needle injections and transdermal needle-free injection of alprostadil in a randomized order. Efficacy of injection and associated pain were assessed and compared for the two methods. Pain produced during injection was significantly greater with the needle-free system than with the needle-tipped injection whilst efficacy was significantly less. Bruising was reported in all except one patient following needle-free injection only. Patient ratings of the needle-free injector were significantly lower than ratings for needle-tipped alprostadil delivery and when asked to express a preference, every patient chose the needle-tipped injection over the needle-free device.

  12. Image Guidance of Flexible Tip-Steerable Needles

    Science.gov (United States)

    Kallem, Vinutha; Cowan, Noah J

    2010-01-01

    Image guidance promises to improve targeting accuracy and broaden the scope of medical procedures performed with needles. This paper takes a step toward automating the guidance of a flexible tip-steerable needle as it is inserted into human tissue. We build upon a previously proposed nonholonomic model of needles that derive steering from asymmetric bevel forces at the tip. The bevel-tip needle is inserted and rotated at its base in order to steer it in six degrees of freedom. As a first step for control, we show that the needle tip can be automatically guided to a planar slice of tissue as it is inserted. Our approach keeps the physician in the loop to control insertion speed. The distance of the needle tip position from the plane of interest is used to drive an observer-based feedback controller which we prove is locally asymptotically stable. Numerical simulations demonstrate a large domain of attraction and robustness of the controller in the face of parametric uncertainty and measurement noise. Physical experiments with tip-steerable Nitinol needles inserted into a transparent plastisol tissue phantom under stereo image guidance validate the effectiveness of our approach. PMID:20431694

  13. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle

    Science.gov (United States)

    Li, Yu-Tao; Tang, Li-Na; Ning, Yong; Shu, Qing; Liang, Feng-Xia; Wang, Hua; Zhang, Guo-Jun

    2016-06-01

    Acupuncture treatment is amazing but controversial. Up to now, the mechanism of treating diseases by acupuncture and moxibustion is still unclear, especially the occurrence of the molecular events in local acupoints. Herein, we report an extremely stable microsensor by modifying carbon nanotube (CNT) to the tip surface of acupuncture needle and applying this CNT-modified acupuncture needle for real time monitoring of serotonin (5-HT) in vivo. To stabilize CNT modification on the needle tip surface, poly(3,4-ethylenedioxythiophene)(PEDOT) was employed as glue water to stick CNT on the needle. The detection limit of the CNT-modified needle was found to be approximately 50 nM and 78 nM in the PBS and the cell medium, respectively. In addition, the needle showed good selectivity to some inflammatory mediators and some electroactive molecules. For the first time, the CNT-modified needle could be directly probed into rat body for real time monitoring of 5-HT in vivo, showing a great potential for better understanding the mechanism of acupuncture treatment.

  14. Development of plasma needle to be used for biomedical applications

    Science.gov (United States)

    Bora, B.; Jain, J.; Inestrosa-Izurieta, M. J.; Avaria, G.; Moreno, J.; Pavez, C.; Marcelain, K.; Armisen, R.; Soto, L.

    2016-05-01

    Plasma needle is a novel design of a plasma source at atmospheric pressure to achieve a non-thermal plasma jet. The advantage of the plasma needle is that it can be operated in open air, outside a vessel. The plasma that is generated with the plasma needle is small (about one millimetre) and non-thermal, the temperature of the neutral particles and ions is in about room temperature and suitably can interact with living biological cell without damaging the cell. In this work, we report the development of a plasma needle, which is operated by a dc power source and produced a stable plasma jet on water surface. Argon gas is used to operate the plasma needle. The preliminary electrical diagnostics of the plasma needle shows that the discharge is filamentary in nature. For diagnostic of the plasma jet produced by the developed plasma needle, the produced plasma jet is directed to water surface and characterization are carried out by means of electrical discharge characteristics and optical emission spectroscopy. In this work, preliminary results of the diagnostic will be presented.

  15. Reliability of fine needle aspiration biopsy in large thyroid nodules.

    Science.gov (United States)

    Bozbıyık, Osman; Öztürk, Şafak; Ünver, Mutlu; Erol, Varlık; Bayol, Ümit; Aydın, Cengiz

    2017-01-01

    Fine needle aspiration biopsy provides one of the most important data that determines the treatment algorithm of thyroid nodules. Nevertheless, the reliability of fine needle aspiration biopsy is controversial in large nodules. The aim of this study was to evaluate the adequacy of fine needle aspiration biopsy in thyroid nodules that are four cm or greater. We retrospectively examined 219 patients files who underwent thyroidectomy for thyroid nodules that were greater than four centimeter between May 2007 and December 2012. Seventy-four patients with hyperthyroidism, and 18 patients without preoperative fine needle aspiration cytology were excluded from the study. Histopathologic results after thyroidectomy were compared with preoperative cytology results, and sensitivity and specificity rates were calculated. False-negativity, sensitivity and specificity rates of fine needle aspiration biopsy of thyroid nodules were found to be 9.7%, 55.5%, and 85%, respectively. Within any nodule of the 127 patients, 28 (22.0%) had thyroid cancer. However, when only nodules of at least 4 cm were evaluated, thyroid cancer was detected in 22 (17.3%) patients. In this study, fine needle aspiration biopsy of large thyroid nodules was found to have a high false-negativity rate. The limitations of fine-needle aspiration biopsy should be taken into consideration in treatment planning of thyroid nodules larger than four centimeters.

  16. Comparison of a new aspiration needle device and the Quick-Core biopsy needle for transjugular liver biopsy

    Institute of Scientific and Technical Information of China (English)

    Toru Ishikawa; Tomoteru Kamimura; Hiroteru Kamimura; Atsunori Tsuchiya; Tadayuki Togashi; Kouji Watanabe; Kei-ichi Seki; Hironobu Ohta; Toshiaki Yoshida; Noriko Ishihara

    2006-01-01

    AIM: To evaluate sample adequacy, safety, and needle passes of a new biopsy needle device compared to the Quick-Core biopsy needle for transjugular liver biopsy in patients affected by liver disease.METHODS: Thirty consecutive liver-disease patients who had major coagulation abnormalities and/or relevant ascites underwent transjugular liver biopsy using either a new needle device (18 patients) or the Quick-Core biopsy needle (12 patients). The length of the specimens was measured before fixation. A pathologist reviewed the histological slides for sample adequacy and pathologic diagnoses. The two methods' specimen adequacy and complication rates were assessed.RESULTS: Liver biopsies were technically successful in all 30 (100%) patients, with diagnostic histological core specimens obtained in 30 of 30 (100%) patients, for an overall success rate of 100%. With the new device,18 specimens were obtained, with an average of 1.1passes per patient. Using the Quick-Core biopsy needle,12 specimens were obtained, with an average of 1.8passes per patient. Specimen length was significantly longer with the new needle device than with the QuickCore biopsy needle (P < 0.05). The biopsy tissue was not fragmented in any of the specimens with the new aspiration needle device, but tissue was fragmented in 3 of 12 (25.0%) specimens obtained using the Quick-Core biopsy needle. Complications included cardiac arrhythmia in 3 (10.0%) patients, and transient abdominal pain in 4 (13.3%) patients. There were no cases of subcapsular hematoma, hemoperitoneum, or sepsis, and there was no death secondary to the procedure. In particular, no early or delayed major procedure-related complications were observed in any patient.CONCLUSION: Transjugular liver biopsy is a safe and effective procedure, and there was significant difference in the adequacy of the specimens obtained using the new needle device compared to the QuickCore biopsy needle. Using the new biopsy needle device,the specimens showed

  17. Analysis of eigenfrequencies in piezoelectric transducers using the finite element method

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1988-01-01

    It is noted that the finite-element method is a valuable supplement to the traditional methods for design of novel transducer types because it can determine the vibrational pattern of piezoelectric transducers and is applicable to any geometry. Computer programs for analysis of axisymmetric...... transducers, which include the complete set of piezoelectric equations, have been included. They can find eigenfrequencies for undamped transducers and perform forced-response analysis for transducers with internal and radiation damping. The superelement technique is used to model the transducer backing...

  18. A novel curvature-controllable steerable needle for percutaneous intervention.

    Science.gov (United States)

    Bui, Van Khuyen; Park, Sukho; Park, Jong-Oh; Ko, Seong Young

    2016-08-01

    Over the last few decades, flexible steerable robotic needles for percutaneous intervention have been the subject of significant interest. However, there still remain issues related to (a) steering the needle's direction with less damage to surrounding tissues and (b) increasing the needle's maximum curvature for better controllability. One widely used approach is to control the fixed-angled bevel-tip needle using a "duty-cycle" algorithm. While this algorithm has shown its applicability, it can potentially damage surrounding tissue, which has prevented the widespread adoption of this technology. This situation has motivated the development of a new steerable flexible needle that can change its curvature without axial rotation, while at the same time producing a larger curvature. In this article, we propose a novel curvature-controllable steerable needle. The proposed robotic needle consists of two parts: a cannula and a stylet with a bevel-tip. The curvature of the needle's path is controlled by a control offset, defined by the offset between the bevel-tip and the cannula. As a result, the necessity of rotating the whole needle's body is decreased. The duty-cycle algorithm is utilized to a limited degree to obtain a larger radius of curvature, which is similar to a straight path. The first prototype of 0.46 mm (outer diameter) was fabricated and tested with both in vitro gelatin phantom and ex vivo cow liver tissue. The maximum curvatures measured 0.008 mm(-1) in 6 wt% gelatin phantom, 0.0139 mm(-1) in 10 wt% gelatin phantom, and 0.0038 mm(-1) in cow liver. The experimental results show a linear relationship between the curvature and the control offset, which can be utilized for future implementation of this control algorithm.

  19. Characteristics of Children Who Undergo Intraosseous Needle Placement.

    Science.gov (United States)

    Reuter-Rice, Karin; Patrick, Dana; Kantor, Elizabeth; Nolin, Cathy; Foley, Jennifer

    2015-01-01

    Intraosseous (IO) access is a standard of care for pediatric emergencies in the absence of conventional intravenous access. Intraosseous needles provide access for resuscitation fluids and medications and are often placed in the emergency department. However, there are no studies to date that describe the characteristics of pediatric IO needle recipients or their dispositions and outcomes. This study examined the characteristics and disposition of children following IO needle placement by prehospital and emergency room teams before being transported to a children's hospital. We conducted a retrospective descriptive analysis of pediatric patients who had an IO needle placed as a part of their transport care. Data was extracted from a Level 1 trauma tertiary care children's hospital transport database from 1993 to 2009. We measured diagnosis, insertion reason, insertion time (day vs. night shift), complications, and disposition of patients after IO needle placement. There were 143 eligible patients in the study; 65% were males. Mean patient's age was 1.2 years (range: 0.01-13 years). Intraosseous needles were placed most often for patients with cardiopulmonary compromise. Of the 143 patients transported, 53% (n = 76) were placed for no intravenous access and 34% (n = 49) were placed for nonperfusing rhythm. The majority of the IO needles were placed during the daytime (0700-1900 hr), and most patients experienced no complications (n = 67; 47%). However, of those who experienced a complication, 27% were due to infiltration of the IO needle. Of those admitted to hospital, 58% (n = 83) were ultimately discharged home. Intraosseous access provides a safe and reliable method for rapidly achieving a route for administration of medications, fluids and blood products. It is a lifesaving measure with most IO needles successfully placed by referring facilities prior to transport, with few reported complications.

  20. A New Flavonoid in Pine Needles of Cedrus deodara

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-yan; SHI Xiao-feng; WANG Dong-dong; MA Qu-huan; ZHANG Jun-min; LI Chong

    2011-01-01

    Objective To study the chemical constituents of flavonoids in pine needles of Cedrus deodara.Methods Flavonoids were isolated and purified from ethyl acetate extract of pine needles by chromatography on silica gel and Sephadex LH-20.Their structures were identified on the basis of spectroscopic analysis and chemical evidence.Results Five flavonoids were isolated and purified.Their structures were identified as cedrusone A(1),myricetin(2),2R,3R-dihydromyricetin(3),quercctin(4),and 2R,3R-dihydroquercetin(5).Conclusion Compound 1 is a new compound.Compounds 2-5 are isolated from pine needles of this genus for the first time.

  1. Robotic image-guided needle interventions of the prostate.

    Science.gov (United States)

    Mozer, Pierre C; Partin, Alan W; Stoianovici, Dan

    2009-01-01

    Prostate biopsy and needle-directed prostate therapies are currently performed free-handed or with needle external templates under ultrasound guidance. Direct image-guided intervention robots are modern instruments that have the potential to substantially enhance these procedures. These may increase the accuracy and repeatability with which needles are placed in the gland. The authors' group has developed a robot for precise prostate targeting that operates remotely alongside the patient in the magnetic resonance imaging scanner, as guided according to the image.

  2. Diagenesis of conifer needles in a coastal marine environment

    Science.gov (United States)

    Hedges, John I.; Weliky, K.

    1989-10-01

    Physically intact fir, hemlock and cedar needles were isolated from different horizons of a sediment core from a coastal marine bay (Dabob Bay, Washington State, U.S.A.) and from nearby trees and forest litter. Green fir, hemlock and cedar needles were all characterized by glucose-rich aldose mixtures (~30% of tissue carbon), the production of vanillyl and cinnamyl CuO-derived phenols (~8% of tissue carbon) and the presence of both pinitol and myo-inositol (1-2% of tissue carbon). Needles from forest litter were enriched in lignin phenols and non-glucose aldoses and depleted in glucose and cyclitols. The sediment core contained an average of 10 mg/1 of physically intact fir, hemlock and cedar needles, which occurred in similar relative abundances and accounted for less than 1% of the total nonwoody gymnosperm tissue. Compared to the green and litter counterparts, all sedimentary needles were greatly depleted in cyclitols, glucose and p-coumaric acid and enriched in vanillyl phenol precursors. The degree of elevation of vanillyl phenol yield from the degraded needles was used to estimate minimal carbon losses from the samples, which ranged from near 40% for needle litter to almost 70% for the deepest (~100 years old) sedimentary fir/hemlock samples. Although downcore increases in carbon loss and refractory organic components indicated in situ diagenesis, the bulk of overall degradation occurred either on land or during the first 10-20 years after deposition. Atomic C/N ratios of degraded needles were lower than for green counterparts, but nitrogen was lost overall. These relative changes indicate the following stability series: vanillyl phenols > N > ferulic acid, p-hydroxy phenols, most aldoses and bulk tissue > glucose and p-coumaric acid > cyclitols (near 100% loss). Vanillic acid to vanillin ratios, (Ad/Al)v, of the green fir and hemlock needles were unusually high (0.36-0.38) and decreased downcore. Diagenesis also decreased the cinnamyl/vanillyl phenol ratio

  3. Investigation of capacitively coupled ultrasonic transducer system for nondestructive evaluation.

    Science.gov (United States)

    Zhong, Cheng Huan; Wilcox, Paul D; Croxford, Anthony J

    2013-12-01

    Capacitive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory, feasibility, and optimization of such a capacitively coupled transducer system (CCTS) in the context of nondestructive evaluation (NDE) applications. The noncontact interface relies on an electric field formed between four metal plates-two plates are physically connected to the electrodes of a transducer, the other two are in a separate probing unit connected to the transmit/receive channel of the instrumentation. The complete system is modeled as an electric network with the measured impedance of a bonded piezoelectric ceramic disc representing a transducer attached to an arbitrary solid substrate. A transmission line model is developed which is a function of the physical parameters of the capacitively coupled system, such as the permittivity of the material between the plates, the size of the metal plates, and their relative positions. This model provides immediate prediction of electric input impedance, pulse-echo response, and the effect of plate misalignment. The model has been validated experimentally and has enabled optimization of the various parameters. It is shown that placing a tuning inductor and series resistor on the transmitting side of the circuit can significantly improve the system performance in terms of the signal-to-crosstalk ratio. Practically, bulk-wave CCTSs have been built and demonstrated for underwater and through-composite testing. It has been found that electrical conduction in the media between the plates limits their applications.

  4. Inductively coupled transducer system for damage detection in composites

    Science.gov (United States)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2012-04-01

    The laminated construction of composite offers the possibility of permanently embedding sensors into structure, for example, ultrasonic transducers which can be used for NDE applications. An attractive and simple solution for probing embedded sensors wirelessly is via inductive coupling. However, before this can be achieved it is necessary to have a full understanding and proper design strategy for the inductively coupled system. This paper presents the developments of both system design procedure and a computer program for one dimensional inductively coupled transducer system mounted on a solid substrate. The design strategy in this paper mainly focuses on issues of localization of transducers, and optimizing the signal to noise level. Starting from a three coil equivalent circuit, this paper also explains how the measured impedance of a bonded piezoelectric disc is implemented into the system model representing a transducer bonded to an arbitrary solid substrate. The computer programme using this model provides immediate predictions of electrical input impedance, acoustic response and pulse-echo response. A series of experiments and calculations have been performed in order to validate the model. This has enabled the degree of accuracy required for various parameters within the model, such as mutual inductance between the coils and self-inductance of coils, to be assessed. Once validated, the model can be used as a tool to predict the effect of physical parameters, such as distance, lateral misalignment between the coils, and the coil geometry on the performance of an inductively coupled system.

  5. High Temperature Ultrasonic Transducers : Material Selection and Testing

    Science.gov (United States)

    Bar-Cohen, Yoseph; Bruno, Alessandro

    2012-01-01

    The task of my two-months internship was to test different materials to be used to build an high temperature transducer, to develop some prototypes and to test their performance, to assess the reliability of commercial product rated for such a temperature, as well as to collaborate in developing the signal processing code to measure the condensed water levels.

  6. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  7. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  8. Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Nicolás Peréz Alvarez

    2015-11-01

    Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.

  9. Transverse Mode Multi-Resonant Single Crystal Transducer

    Science.gov (United States)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  10. A distributed transducer system for functional electrical stimulation

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Nielsen, Jannik Hammel; Bruun, Erik

    2001-01-01

    Implanted transducers for functional electrical stimulation (FES) powered by inductive links are subject to conflicting requirements arising from low link efficiency, a low power budget and the need for protection of the weak signals against strong RF electromagnetic fields. We propose a solution...

  11. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  12. Two methods for absolute calibration of dynamic pressure transducers

    Science.gov (United States)

    Swift, G. W.; Migliori, A.; Garrett, S. L.; Wheatley, J. C.

    1982-12-01

    Two techniques are described for absolute calibration of a dynamic pressure transducer from 0 to 400 Hz in 1-MPa helium gas. One technique is based on a comparison to a mercury manometer; the other is based on the principle of reciprocity. The two techniques agree within the instrumental uncertainties of 1%.

  13. Physical and chemical sensing using monolithic semiconductor optical transducers

    Science.gov (United States)

    Zappe, Hans P.; Hofstetter, Daniel; Maisenhoelder, Bernd; Moser, Michael; Riel, Peter; Kunz, Rino E.

    1997-09-01

    We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.

  14. Cooling method prolongs life of hot-wire transducer

    Science.gov (United States)

    Baldwin, L. V.; Sandborn, V. A.

    1964-01-01

    To cool a hot-wire transducer, the two ends of the wire are supported on thermally and electrically conductive rods, surrounded by a fluid cooling medium. By keeping the supporting rods at a substantially constant temperature, the probe is prevented from overheating.

  15. Neutron Irradiation Tests of Pressure Transducers in Liquid Helium

    CERN Document Server

    Amand, J F; Casas-Cubillos, J; Thermeau, J P

    1999-01-01

    The superconducting magnets of the future Large Hadron Collider (LHC) at CERN will operate in pressurised superfluid helium (1 bar, 1.9 K). About 500 pressure transducers will be placed in the liquid helium bath for monitoring the filling and the pressure transients after resistive transitions. Their precision must remain better than 100 mbar at pressures below 2 bar and better than 5% for higher pressures (up to 20 bar), with temperatures ranging from 1.8 K to 300 K. All the tested transducers are based on the same principle: the fluid or gas is separated from a sealed reference vacuum by an elastic membrane; its deformation indicates the pressure. The transducers will be exposed to high neutron fluence (2 kGy, 1014 n/cm2 per year) during the 20 years of machine operation. This irradiation may induce changes both on the membranes characteristics (leakage, modification of elasticity) and on gauges which measure their deformations. To investigate these effects and select the transducer to be used in the LHC, a...

  16. Interdigitated interdigital transducer for surface elastometry of soft damping tissue.

    Science.gov (United States)

    Danicki, Eugene; Nowicki, Andrzej; Tasinkevych, Yuriy

    2013-06-01

    Measurement of the shear elastic constant of soft and highly damping tissue of high Poisson ratio is quite a challenging task. It is proposed to evaluate shear wave velocity and damping of tissue by measuring the shear skimming bulk waves using one interdigitated interdigital transducer on a piezoelectric layer, such as polyvinylidene fluoride, applied to the surface of the small tissue sample.

  17. Cantilever deflection measurement and actuation by an nterdigitated transducer

    NARCIS (Netherlands)

    Strambini, E.; Piazza, V.; Pingue, P.; Biasiol, G.; Sorba, L.; Beltram, F.

    2010-01-01

    A scheme that allows all-electrical high-bandwidth readout of a cantilever deflection by means of an integrated interdigitated transducer is presented. The present approach takes advantage of the piezoelectricity of the chosen cantilever substrate material to generate and detect surface-acoustic-wav

  18. Multilayer piezoelectric transducer models combined with Field II

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten; Jensen, Jørgen Arendt

    2012-01-01

    with a polymer ring, and submerged into water. The transducer models are developed to account for any external electrical loading impedance in the driving circuit. The models are adapted to calculate the surface acceleration needed by the Field II software in predicting pressure pulses at any location in front...

  19. Multilevel inverter based class D audio amplifier for capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The reduced semiconductor voltage stress makes the multilevel inverters especially interesting, when driving capacitive transducers for audio applications. A ± 300 V flying capacitor class D audio amplifier driving a 100 nF load in the midrange region of 0.1-3.5 kHz with Total Harmonic Distortion...

  20. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.