WorldWideScience

Sample records for 40-mhz focused transducer

  1. Stress wave focusing transducers

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  2. Focused intravascular ultrasonic probe using dimpled transducer elements.

    Science.gov (United States)

    Chen, Y; Qiu, W B; Lam, K H; Liu, B Q; Jiang, X P; Zheng, H R; Luo, H S; Chan, H L W; Dai, J Y

    2015-02-01

    High-frequency focused intravascular ultrasonic probes were fabricated in this study using dimple technique based on PMN-PT single crystal and lead-free KNN-KBT-Mn ceramic. The center frequency, bandwidth, and insertion loss of the PMN-PT transducer were 34 MHz, 75%, and 22.9 dB, respectively. For the lead-free probe, the center frequency, bandwidth, and insertion loss were found to be 40 MHz, 72%, and 28.8 dB, respectively. The ultrasonic images of wire phantom and vessels with good resolution were obtained to evaluate the transducer performance. The -6 dB axial and lateral resolutions of the PMN-PT probe were determined to be 58 μm and 131 μm, respectively. For the lead-free probe, the axial and lateral resolutions were found to be 44 μm and 125 μm, respectively. These results suggest that the mechanical dimpling technique has good potential in preparing focused transducers for intravascular ultrasound applications.

  3. Focused ultrasound transducer for thermal treatment.

    Science.gov (United States)

    Umemura, Shin-ichiro

    2015-03-01

    Air-backed transducers have been employed for thermal ultrasonic treatment including both ablation and hyperthermia because the power efficiency rather than the bandwidth is a main concern, unlike a typical imaging transducer working in a pulse mode. The characteristic of an air-backed piezoelectric transducer with a matching layer is analysed, and the role and choice of the matching layer is discussed. An element size of a focused array transducer, appropriate for such thermal treatment, is then estimated, and the characteristic of a piezoceramic transducer element of such a size was numerically analysed using a finite element code. The characteristic of a piezocomposite transducer element is also numerically analysed and its suitability to such a therapeutic array transducer is discussed.

  4. Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Imaging.

    Science.gov (United States)

    Lee, Junsu; Jang, Jihun; Chang, Jin Ho

    2017-03-01

    In intravascular ultrasound (IVUS) imaging, a transducer is inserted into a blood vessel and rotated to obtain image data. For this purpose, the transducer aperture is typically less than 0.5 mm in diameter, which causes natural focusing to occur in the imaging depth ranging from 1 to 5 mm. Due to the small aperture, however, it is not viable to conduct geometric focusing in order to enhance the spatial resolution of IVUS images. Furthermore, this hampers narrowing the slice thickness of a cross-sectional scan plane in the imaging depth, which leads to lowering spatial and contrast resolutions of IVUS images. To solve this problem, we propose an oblong-shaped-focused transducer for IVUS imaging. Unlike the conventional IVUS transducers with either a circular or a square flat aperture, the proposed transducer has an oblong aperture of which long side is positioned along a blood vessel. This unique configuration makes it possible to conduct geometric focusing at a desired depth in the elevation direction. In this study, furthermore, it is demonstrated that a spherically shaped aperture in both lateral and elevation directions also improves lateral resolution, compared to the conventional flat aperture. To ascertain this, the conventional and the proposed IVUS transducers were designed and fabricated to evaluate and to compare their imaging performances through wire phantom and tissue-mimicking phantom experiments. For the proposed 50-MHz IVUS transducer, a PZT piece of 0.5 × 1.0 mm(2) was spherically shaped for elevation focus at 3 mm by using the conventional press-focusing technique whereas the conventional one has a flat aperture of 0.5 × 0.5 mm(2). The experimental results demonstrated that the proposed IVUS transducer is capable of improving spatial and contrast resolutions of IVUS images.

  5. Focusing of ferroelectret air-coupled ultrasound transducers

    Science.gov (United States)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  6. PMN-PT single crystal focusing transducer fabricated using a mechanical dimpling technique.

    Science.gov (United States)

    Lam, K H; Chen, Y; Cheung, K F; Dai, J Y

    2012-01-01

    A ∼5MHz focusing PMN-PT single crystal ultrasound transducer has been fabricated utilizing a mechanical dimpling technique, where the dimpled crystal wafer was used as an active element of the focusing transducer. For the dimpled focusing transducer, the effective electromechanical coupling coefficient was enhanced significantly from 0.42 to 0.56. The dimpled transducer also yields a -6dB bandwidth of 63.5% which is almost double the bandwidth of the plane transducer. An insertion loss of the dimpled transducer (-18.1dB) is much lower than that of the plane transducer. Finite element simulation also reveals specific focused beam from concave crystal surface. These promising results show that the dimpling technique can be used to develop high-resolution focusing single crystal transducers.

  7. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.

    Science.gov (United States)

    Chen, Gin-Shin; Liu, Hsin-Chih; Lin, Yu-Cheng; Lin, Yu-Li

    2013-01-01

    Piezocomposites with 1-3 connectivity have been extensively used in medical imaging transducers and high-intensity focused ultrasound transducers, but most studies of 1-3 piezocomposites address medical imaging applications. The purpose of this study was to completely investigate 1-3 composites specifically for high-power ultrasonic transducer applications via a series of experimental analyses. PZT4-epoxy composite focused transducers with various aspect ratios and volume fractions were constructed in-house for the evaluation of the coupling factor, dielectric loss tangent, quality factor, bandwidth, acoustic impedance, and electroacoustic efficiency. The experimental analyses demonstrated that although the coupling factor of composite transducers was higher than that of the ceramic transducer, the composite transducers had a lower efficiency due to the high dielectric loss and high mechanical energy loss of the composites. In addition, the bandwidth and acoustic impedance of composite transducers were superior to the ceramic transducer. For the composite transducers, the efficiency and acoustic impedance were inversely proportional to the aspect ratio and linearly proportional to the volume fraction. The coupling of inter pillars that are too close to each other could cause a significant decrease in the efficiency of the composite transducer. With an appropriate design in terms of the aspect ratio, volume fraction, and PZT-pillar spacing, a high-efficiency composite high-intensity focused ultrasound transducer can be achieved.

  8. High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique.

    Science.gov (United States)

    Chen, Y; Lam, K H; Zhou, D; Cheng, W F; Dai, J Y; Luo, H S; Chan, H L W

    2013-02-01

    High frequency (∼30MHz and ∼80MHz) focusing ultrasound transducers were fabricated using a PMN-0.28PT single crystal by a mechanical dimpling technique. The dimpled single crystal was used as an active element for the focusing transducer. Compared with a plane transducer, the focusing transducer fabricated with a dimpled active element exhibits much broader bandwidth and higher sensitivity. Besides, a high quality image can be obtained by the 30MHz focusing transducer, in which the -6dB axial and lateral resolution is 27μm and 139μm, respectively. These results prove that the dimpling technique is capable to fabricate the high frequency focusing transducers with excellent performance for imaging applications.

  9. Ultrasonic measurements of surface defects on flexible circuits using high-frequency focused polymer transducers

    Science.gov (United States)

    Wagle, Sanat; Habib, Anowarul; Melandsø, Frank

    2017-07-01

    High-frequency transducers made from a layer-by-layer deposition method are investigated as transducers for ultrasonic imaging. Prototypes of adhesive-free transducers with four active elements were made on a high-performance poly(ether imide) substrate with precision milled spherical cavities used to produce focused ultrasonic beams. The transducer prototypes were characterized using a pulse-echo experimental setup in a water tank using a glass plate as a reflector. Then, transducer was used in a three-dimensional ultrasonic scanning tank, to produce high-resolution ultrasonic images of flexible electronic circuits with the aim to detect defects in the outermost cover layer.

  10. Techniques and physical properties of 10MHz short pulse focused ultrasonic transducer

    Institute of Scientific and Technical Information of China (English)

    ZHU Guozhen; YANG Yong; LU Kean

    2004-01-01

    A focused ultrasonic transducer used for biomedical purposes with a fundamental frequency of 10MHz and a pulse width of one and a half periods is described in this paper. Its physical properties are given including (1) focused acoustic field recorded by an optical means, (2) electric waveform for triggering the transducer and the corresponding waveform of the wave received by another transducer, and (3) result of tests on a sample object.

  11. Synthetic Aperture Focusing for a Single Element Transducer undergoing Helix Motion

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt

    2011-01-01

    This paper describes the application of 3D synthetic aperture focusing (SAF) to a single element trans-rectal ultrasound transducer. The transducer samples a 3D volume by simultaneous rotation and translation giving a helix motion. Two different 3D SAF methods are investigated, a direct and a two...

  12. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging.

    Science.gov (United States)

    Yoon, Sangpil; Williams, Jay; Kang, Bong Jin; Yoon, Changhan; Cabrera-Munoz, Nestor; Jeong, Jong Seob; Lee, Sang Goo; Shung, K Kirk; Kim, Hyung Ham

    2015-06-01

    A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast.

  13. Free Field Reciprocity Calibration in a Convergent Spherical Acoustic Wave of a Focusing Transducer

    Institute of Scientific and Technical Information of China (English)

    寿文德; 严加勇; 王鸿樟; 钱德初

    2002-01-01

    Based on the reciprocity theorem of the acoustic field, we derive the formula of the reciprocity coefficient of a convergent spherical acoustic wave and we calculate a series of diffraction corrective factor curves of the reciprocity coefficient of transducers. Using these formulae and corrective factors, we calibrate the free field transmitting current response and the free field voltage sensitivity of a focusing transducer using the self-reciprocity method.The experimental results of the reciprocity calibration of the focusing transducer in the frequency range of 2 MHz to 5.4 MHz are presented.

  14. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    Science.gov (United States)

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  15. Focusing Modeling of OPFC Linear Array Transducer by Using Distributed Point Source Method

    Directory of Open Access Journals (Sweden)

    Ziping Wang

    2014-01-01

    Full Text Available The improvement of ultrasonic phased array detection technology is a major concern of engineering community. Orthotropic piezoelectric fiber composite (OPFC can be constructed to multielement linear array which may be applied conveniently to actuators and sensors. The phased array transducers can generate special directional strong actuator power and high sensitivity for its orthotropic performance. Focusing beam of the linear phased array transducer is obtained simply only by adjusting a parabolic time delay. In this work, the distributed point source method (DPSM is used to model the ultrasonic field. DPSM is a newly developed mesh-free numerical technique that has been developed for solving a variety of engineering problems. This work gives the basic theory of this method and solves the problems from the application of new OPFC phased array transducer. Compared with traditional transducer, the interaction effect of two OPFC linear phased array transducers is also modeled in the same medium, which shows that the pressure beam produced by the new transducer is narrower or more collimated than that produced by the conventional transducer at different angles. DPSM can be used to analyze and optimally design the OPFC linear phased array transducer.

  16. The effects of focused transducer geometry and sample size on the measurement of ultrasonic transmission properties

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, T J; Duck, F A; Tooley, M A [Department of Medical Physics and Bioengineering, Royal United Hospital, Combe Park, Bath BA1 3NG (United Kingdom); Humphrey, V F, E-mail: timothy.atkins@nhs.net [Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2011-02-01

    The response of two coaxially aligned weakly focused ultrasonic transducers, typical of those employed for measuring the attenuation of small samples using the immersion method, has been investigated. The effects of the sample size on transmission measurements have been analyzed by integrating the sound pressure distribution functions of the radiator and receiver over different limits to determine the size of the region that contributes to the system response. The results enable the errors introduced into measurements of attenuation to be estimated as a function of sample size. A theoretical expression has been used to examine how the transducer separation affects the receiver output. The calculations are compared with an experimental study of the axial response of three unpaired transducers in water. The separation of each transducer pair giving the maximum response was determined, and compared with the field characteristics of the individual transducers. The optimum transducer separation, for accurate estimation of sample properties, was found to fall between the sum of the focal distances and the sum of the geometric focal lengths as this reduced diffraction errors.

  17. DUAL-FOCUS THERAPEUTIC ULTRASOUND TRANSDUCER FOR PRODUCTION OF BROAD TISSUE LESIONS

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan M.; Shung, K. Kirk

    2011-01-01

    In noninvasive high-intensity focused ultrasound (HIFU) treatment, formation of a large tissue lesion per sonication is desirable for reducing the overall treatment time. The goal of this study is to show the feasibility of enlarging tissue lesion size with a dual-focus therapeutic ultrasound transducer (DFTUT) by increasing the depth-of-focus (DOF). The proposed transducer consists of a disc- and an annular-type element of different radii of curvatures to produce two focal zones. To increase focal depth and to maintain uniform beamwidth of the elongated DOF, each element transmits ultrasound of a different center frequency: the inner element at a higher frequency for near field focusing and the outer element at a lower frequency for far field focusing. By activating two elements at the same time with a single transmitter capable of generating a dual-frequency mixed signal, the overall DOF of the proposed transducer may be extended considerably. A prototype transducer composed of a 4.1 MHz inner element and a 2.7 MHz outer element was fabricated to obtain preliminary experimental results. The feasibility the proposed technique was demonstrated through sound field, temperature and thermal dose simulations. The performance of the prototype transducer was verified by hydrophone measurements and tissue ablation experiments on a beef liver specimen. When several factors affecting the length and the uniformity of elongated DOF of the DFTUT are optimized, the proposed therapeutic ultrasound transducer design may increase the size of ablated tissues in the axial direction and, thus, decreasing the treatment time for a large volume of malignant tissues especially deep-seated targets. PMID:20870346

  18. Design and implementation of capacitive micromachined ultrasonic transducers for high intensity focused ultrasound

    OpenAIRE

    Yamaner, Yalçın Feysel; Yamaner, Yalcin Feysel

    2011-01-01

    High intensity focused ultrasound (HIFU) is a medical procedure for noninvasive treatment of cancers. High intensity focused ultrasound is used to heat and destroy the diseased tissue. Piezoelectricity has been the core mechanism for generation of ultrasound waves in the treatment. Focusing can be done by using spherically curved transducers or using a lens or electronically steering sound waves by using phased arrays. Current research in HIFU technology targets the development of MR-guided m...

  19. Three-Dimensional Synthetic Aperture Focusing Using a Rocking Convex Array Transducer

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Pedersen, Mads Møller;

    2010-01-01

    Volumetric imaging can be performed using 1-D arrays in combination with mechanical motion. Outside the elevation focus of the array, the resolution and contrast quickly degrade compared with the lateral plane, because of the fixed transducer focus. This paper shows the feasibility of using...... synthetic aperture focusing for enhancing the elevation focus for a convex rocking array. The method uses a virtual source (VS) for defocused multi-element transmit, and another VS in the elevation focus point. This allows a direct time-of-flight to be calculated for a given 3-D point. To avoid artifacts...

  20. Photoacoustic tomography with a high lateral resolution and a large field of view using a rectangular focused ultrasound transducer

    Science.gov (United States)

    Zhang, Shangyu; Cheng, Renxiang; Tao, Chao; Liu, Xiaojun

    2016-04-01

    The enlargement of the field of view (FOV) of a photoacoustic (PA) tomography (PAT) system and the improvement of its lateral resolution are often two conflicting goals. A rectangular focused transducer is proposed to solve this problem. An asymmetric geometry of the transducer results in its asymmetric characteristics of the ultrasound (US) field. Both simulation and experiments confirm that the rectangular focused transducer can improve the FOV and lateral resolution of PAT systems simultaneously. The US transducer proposed in this study has the potential to improve the performance of a PAT system for practical biomedical applications.

  1. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-02-01

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  2. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  3. Radiation force on a spherical object in the field of a focused cylindrical transducer.

    Science.gov (United States)

    Chen, X; Apfel, R E

    1997-05-01

    An exact solution of the radiation force on a spherical object, when positioned on the acoustic axis of a cylindrical transducer, is provided. The solution is valid for any type of sphere of any size. The radiation force function allows the calibration of high-frequency focused ultrasound fields from radiation force measurements and expands the utility of the elastic sphere radiometer developed by Dunn et al. [Acustica 38, 58-61 (1977)]. Numeral results reveal an oscillatory behavior of the radiation force function for small spheres near the transducer surface and this behavior may present an opportunity for particle sorting based on the mechanical properties of the particle and other types of manipulation.

  4. Non-contact optoacoustic imaging with focused air-coupled transducers

    Energy Technology Data Exchange (ETDEWEB)

    Deán-Ben, X. Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Pang, Genny A.; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); School of Medicine, Technische Universität München (TUM), Munich (Germany); Montero de Espinosa, Francisco [CSIC, Institute of Physics and Communication Technologies, Madrid (Spain)

    2015-08-03

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  5. Nonlinear Effect on Focusing Gain of a Focusing Transducer with a Wide Aperture Angle

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-He; ZHANG Dong; GONG Xiu-Fen

    2007-01-01

    @@ Nonlinear effect on focusing gain of acoustic field radiated from a 1-MHz focusing transmitter with a wide aperture angle of 35° is theoretically and experimentally investigated. With the enhancement of nonlinearity, the focusing gains of both intensity and peak positive pressure show non-monotonic behaviour. There exist the same saturated levels at which the maximum outputs are reached and their spatial distributions are more localized. In contrast,the peak negative pressure always decreases monotonically and its spatial distribution is less localized.

  6. Single-element focused ultrasound transducer method for harmonic motion imaging.

    Science.gov (United States)

    Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa E

    2006-07-01

    The harmonic motion imaging (HMI) technique for simultaneous monitoring and generation of ultrasound therapy using two separate focused ultrasound transducer elements was previously demonstrated. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force using a single focused-ultrasound element. A wave propagation simulation model first indicated that, unlike in the two-beam configuration, the amplitude-modulated beam produced a stable focal zone for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were performed on gelatin phantoms and ex vivo tissues. The radiation force was generated by a 4.68 MHz focused ultrasound (FUS) transducer using a 50 Hz amplitude-modulated wave. A 7.5 MHz pulse-echo transducer was used to acquire rf echoes during the application of the harmonic radiation force. Consecutive rf echoes were acquired with a pulse repetition frequency (PRF) of 6.5 kHz and 1D cross-correlation was performed to estimate the resulting axial tissue displacement. The HMI technique was shown capable of estimating stiffness-dependent displacement amplitudes. Finally, taking advantage of the real-time capability of the HMI technique, temperature-dependent measurements enabled monitoring ofHIFU sonication in ex vivo tissues. The new HMI method may thus enable a highly-localized force and stiffness-dependent measurements as well as real-time and low-cost HIFU monitoring.

  7. Numerical simulation of ultrasound thermotherapy of brain with a scanned focus transducer

    Science.gov (United States)

    Behnia, Sohrab; Ghalichi, Farzan; Jafari, Amin; Bonabi, Ashkan

    2005-04-01

    Brain tumors are one of the most difficult ones to treat. The margin between destruction of the tumor and damage to the surrounding tissue is narrow in the brain. Ultrasound could be an effective treatment because of its ability to propagate deep in tissue and induce temperature rise at the focus while leaving the surrounding tissue intact. This study investigates whether using a fix-focus transducer could destroy brain tumor cells, in a cost effective manner which reduces the treatment time significantly. In this work an appropriate fix-focus transducer was designed considering effective parameters and limitations which are dominant in this case. Then a real 2-D brain model was constructed from a MR image. A piece of the skull bone has been removed to allow ultrasound to propagate into the brain. The resultant pressure field and the temperature rise were calculated by Rayleigh integral and bio-heat equation on the model. The obtained results were promising indicating that toxic temperatures could be obtained in short treatment times. This could be of great advantage especially in treating primary brain tumors.

  8. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral

    Science.gov (United States)

    Ramaekers, P.; de Greef, M.; Berriet, R.; Moonen, C. T. W.; Ries, M.

    2017-06-01

    The purpose of this study was to evaluate a novel phased array transducer design rule for therapeutic focused ultrasound applications. This design rule uses the discretized Fermat’s spiral to determine the positioning of the transducer elements for a given number of elements and f-number. Using this principle, three variations of Fermat’s spiral were generated, aimed at (1) grating lobe minimization, (2) side lobe minimization, and (3) an optimized element packing efficiency. For each spiral, sparse layouts using identical circular elements and fully populated layouts based on additional Voronoi tessellation were evaluated numerically. Evaluation criteria included the element size distribution, beam steering capabilities, focal plane pressure distribution, prefocal pressure distribution, and practical considerations. Finally, one Voronoi-tessellated design with a focal length and aperture diameter of 16 cm and a natural frequency of 1.3 MHz was evaluated experimentally through hydrophone measurements. The numerical evaluation showed that while sparse arrays possess superior beam steering capabilities for a given number of elements, the focal point quality and prefocal pressure distribution is substantially more favorable when using the Voronoi-tessellated designs. Beam steering was shown to be feasible with the tessellated designs for lateral deflections up to 10 mm and axial deflections up to 20 mm. The experimental evaluation showed that such a transducer is capable of inducing 40.00 MPa rarefactional and 237.50 MPa compressional peak pressure levels at 800 W instantaneous acoustic output power under free-field conditions, making the system potentially relevant for thermal ablation therapy, histotripsy applications, and shockwave-enhanced heating.

  9. Photoacoustic Tomography Imaging of the Adult Zebrafish by Using Unfocused and Focused High-Frequency Ultrasound Transducers

    Directory of Open Access Journals (Sweden)

    Yubin Liu

    2016-11-01

    Full Text Available The zebrafish model provides an essential platform for the study of human diseases or disorders due to the possession of about 87% homologous genes with human. However, it is still very challenging to noninvasively visualize the structure and function of adult zebrafish based on available optical imaging techniques. In this study, photoacoustic tomography (PAT was utilized for high-resolution imaging of adult zebrafish by using focused and unfocused high-frequency (10 MHz ultrasound transducers. We examined and compared the imaging results from the two categories of transducers with in vivo experimental tests, in which we discovered that the unfocused transducer is able to identify the inner organs of adult zebrafish with higher contrast but limited regional resolution, whereas the findings from the focused transducer were with high resolution but limited regional contrast for the recovered inner organs.

  10. 40 MHz high-frequency ultrafast ultrasound imaging.

    Science.gov (United States)

    Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang

    2017-06-01

    Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.

  11. A Novel Method to Measure Acoustic Power of Focusing Transducer with Spherical Surface Based on Self-Reciprocity Theorem

    Institute of Scientific and Technical Information of China (English)

    DUAN Shi-Mei; SHOU Wen-De; HE Pei-Zhong; QIAN De-Chu; XIA Rong-Min

    2005-01-01

    @@ A novel method to measure acoustic power of focusing transducer based on the self-reciprocity theorem of con vergent spherical acoustic wave is proposed. The performance of this reciprocity method is compared with that of the radiation force balance (RFB) method and the admittance circle method. The average deviations of the reciprocity method from RFB in measurements of the acoustic power and the radiation conductance for a focusing transducer of 1.525 MHz are 7.5% and 3.6% respectively, and for another focusing transducer of 5.27MHz,they are 1.7% and 1.1%. The measured radiation conductance deviation by the reciprocity method from the admittance circle method for the focusing transducer of 1.525 MHz is 7.9%. It presents encouraging results even in measuring low acoustic power level. The overall uncertainty of acoustic power measurement using the method is evaluated below 10%, and it has many advantages such as high signal-to-noise ratio, good stability and less interference of bubbles and environment.

  12. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  13. Setting boundary conditions on the Khokhlov-Zabolotskaya equation for modeling ultrasound fields generated by strongly focused transducers

    Science.gov (United States)

    Rosnitskiy, P. B.; Yuldashev, P. V.; Vysokanov, B. A.; Khokhlova, V. A.

    2016-03-01

    An equivalent source model is developed for setting boundary conditions on the parabolic diffraction equation in order to simulate ultrasound fields radiated by strongly focused medical transducers. The equivalent source is defined in a plane; corresponding boundary conditions for pressure amplitude, aperture, and focal distance are chosen so that the axial solution to the parabolic model in the focal region of the beam matches the solution to the full diffraction model (Rayleigh integral) for a spherically curved uniformly vibrating source. It is shown that the proposed approach to transferring the boundary condition from a spherical surface to a plane makes it possible to match the solutions over an interval of several diffraction maxima around the focus even for focused sources with F-numbers less than unity. This method can be used to accurately simulate nonlinear effects in the fields of strongly focused therapeutic transducers using the parabolic Khokhlov-Zabolotskaya equation.

  14. Theoretical Calculation of a Focused Acoustic Field from a Linear Phased Array on a Concave Cylindrical Transducer

    Institute of Scientific and Technical Information of China (English)

    YU Li-Li; SHOU Wen-De; HUI Chun

    2011-01-01

    A new linear phased array on a concave cylindrical transducer is designed for meeting the specific requirements of applications for interstitial thermal ablation. Using the array, a focal line can be generated rapidly and the focal position can be adjusted in the proper range without the use of complex mechanical structures. The focused acoustic Reid distributions in the axial, radial and azimuthal directions of the transducer are investigated theoretically by numerical simulation. Effects of the focal distance, steering angle, element arc-width, arc-space between adjacent elements and number of elements on the acoustic field are also thoroughly studied. Many important results are obtained.%A new linear phased array on a concave cylindrical transducer is designed for meeting the specific requirements of applications for interstitial thermal ablation.Using the array,a focal line can be generated rapidly and the focal position can be adjusted in the proper range without the use of complex mechanical structures.The focused acoustic field distributions in the axial,radial and azimuthal directions of the transducer are investigated theoretically by numerical simulation.Effects of the focai distance,steering angle,element arc-width,arc-space between adjacent elements and number of elements on the acoustic field are also thoroughly studied.Many important results are obtained.Interstitial thermal ablation is a promising technique for treating tumors that are both nonresectable and difficult to reach with extracorporeal therapy.[1,2] In this method,a small transducer is brought into contact with the targeted region and emits a highintensity acoustic wave;the interaction between the wave and the tissues causes a strong heating effect that induces the thermal coagulation and necrosis of the target.[3

  15. A 40 MHz Trigger-free Readout Architecture for the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F; Guzik, Z

    2009-01-01

    LHCb is considering an upgrade towards a full 40 MHz readout. In this paper we investigate possibilities for a new Timing and Fast Control (TFC) system based on completely new technologies, and the consequences for the readout electronics. We define the requirements and propose an architecture allowing partitioning, complete readout control and event management. The backbone is based on bidirectional high-speed optical links using the latest FPGA transceivers. For the Front-End Electronics we advocate exploiting the bidirectional capability of the CERN GigaBit Transceiver to make the Readout Boards the TFC and the Control System interface to the Front-End

  16. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    CERN Document Server

    Abba, A; Citterio, M; Caponio, F; Cusimano, A; Geraci, A; Marino, P; Morello, M J; Neri, N; Punzi, G.; Piucci, A; Ristori, L; Spinella, F; Stracka, S; Tonelli, D

    2015-01-01

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40MHz. The detailed geometry and charged-particle activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. Excellent performances have been found for the retina pattern-recognition algorithm, comparable with the full LHCb reconstruction algorithm.

  17. Microinterferometer transducer

    Science.gov (United States)

    Corey, III, Harry S.

    1979-01-01

    An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.

  18. A 40 MHz Bunch by Bunch Intensity Measurement for the CERN SPS and LHC

    CERN Document Server

    Jakob, H; Jones, R; Jensen, L

    2003-01-01

    A new acquisition system has been developed to allow the measurement of the individual intensity of each bunch in a 40MHz bunch train. Such a system will be used for the measurement of LHC type beams after extraction from the CERN-PS right through to the dump lines of the CERN-LHC. The method is based on integrating the analogue signal supplied by a Fast Beam Current Transformer at a frequency of 40MHz. This has been made possible with the use of a fast integration ASIC developed by the University of Clermont-Ferrand, France, for the LHC-b pre-shower detector. The output of the integrator is digitised using a 12-bit ADC and fed into a Digital Acquisition Board (DAB) that was originally developed by TRIUMF, Canada, for use in the LHC orbit system. A full system set-up was commissioned during 2002 in the CERN-SPS, and following its success will now be extended in 2003 to cover the PS to SPS transfer lines and the new TT40 LHC extraction channel.

  19. Heart ablation using a planar rectangular high intensity focused ultrasound transducer and MRI guidance

    Science.gov (United States)

    Couppis, Andreas; Damianou, Christakis; Ioannides, Kleanthis; Mylonas, Nicos; Iosif, Demitris; Kyriakou, Panagiotis; Lafon, Cyril; Chavrier, Francoise; Chapelon, Jean-Yves; Birer, Alain

    2011-09-01

    The aim of this study was to evaluate the performance of a flat rectangular (3×10 mm2) MRI compatible transducer operating at 5 MHz in creating deep lesions in heart at a depth of at least 15 mm. The size of thermal necrosis in heart tissue was estimated as a function of power and time using a simulation model. The system was then tested in freshly excised heart of pig and lamb. In this study we were able to create lesions 15 mm deep with an acoustic power of 6W for an exposure of approximately one minute. The contrast to noise ratio (CNR) between lesion and heart tissue was evaluated using Fast Spin Echo (FSE). With T1W FSE the CNR value was approximately 22. Maximum CNR was achieved with repetition times (TR) between 300 and 800 ms. With T2W FSE the corresponding CNR was approximately 13. The transducer was tested in rabbits in vivo and despite the motion of the heart; it was possible to create thermal lesions.

  20. Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs

    Science.gov (United States)

    Xin, Wang; Jiexing, Lin; Xiaozhou, Liu; Jiehui, Liu; Xiufen, Gong

    2016-04-01

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the Fund from State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), China Postdoctoral Science Foundation (Grant No. 2013M531313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and SRF for ROCS, SEM.

  1. A 14-bit 40-MHz analog front end for CCD application

    Science.gov (United States)

    Jingyu, Wang; Zhangming, Zhu; Shubin, Liu

    2016-06-01

    A 14-bit, 40-MHz analog front end (AFE) for CCD scanners is analyzed and designed. The proposed system incorporates a digitally controlled wideband variable gain amplifier (VGA) with nearly 42 dB gain range, a correlated double sampler (CDS) with programmable gain functionality, a 14-bit analog-to-digital converter and a programmable timing core. To achieve the maximum dynamic range, the VGA proposed here can linearly amplify the input signal in a gain range from -1.08 to 41.06 dB in 6.02 dB step with a constant bandwidth. A novel CDS takes image information out of noise, and further amplifies the signal accurately in a gain range from 0 to 18 dB in 0.035 dB step. A 14-bit ADC is adopted to quantify the analog signal with optimization in power and linearity. An internal timing core can provide flexible timing for CCD arrays, CDS and ADC. The proposed AFE was fabricated in SMIC 0.18 μm CMOS process. The whole circuit occupied an active area of 2.8 × 4.8 mm2 and consumed 360 mW. When the frequency of input signal is 6.069 MHz, and the sampling frequency is 40 MHz, the signal to noise and distortion (SNDR) is 70.3 dB, the effective number of bits is 11.39 bit. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033), the National High-Tech Program of China (No. 2013AA014103), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory (No. ZHD201302).

  2. Synthetic Aperture Focusing Applied to Imaging Using a Rotating Single Element Transducer

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2007-01-01

    This paper applies the concept of virtual sources and mono-static synthetic aperture focusing (SAF) to 2-dimensional imaging with a single rotating mechanically focused concave element with the objective of improving lateral resolution and signal-to-noise ratio (SNR). The geometrical focal point ...

  3. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  4. Reflection-mode photoacoustic microscopy using a hollow focused ultrasound transducer for in vivo imaging of blood vessels

    Institute of Scientific and Technical Information of China (English)

    Yuan Yi; Yang Si-Hua

    2012-01-01

    A reflection-mode photoacoustic microscope using a hollow focused ultrasound transducer is developed for highresolution in vivo imaging.A confocal structure of the laser and the ultrasound is used to improve the system resolution.The axial and lateral resolutions of the system are measured to be~32 μm and~58 μm,respectively.Ex vivo and in vivo modes are tested to validate the imaging capability of the photoacoustic microscope.The adjacent vein and artery can be seen clearly from the reconstructed photoacoustic images.The results demonstrate that the reflectionmode photoacoustic microscope can be used for high-resolution imaging of micro-blood vessels,which would be of great benefit for monitoring the neovascularization in tumor angiogenesis.

  5. Simulation study of a chaotic cavity transducer based virtual phased array used for focusing in the bulk of a solid material.

    Science.gov (United States)

    Delrue, Steven; Van Den Abeele, Koen; Matar, Olivier Bou

    2016-04-01

    In acoustic and ultrasonic non-destructive testing techniques, it is sometimes beneficial to concentrate sound energy at a chosen location in space and at a specific instance in time, for example to improve the signal-to-noise ratio or activate the nonlinearity of damage features. Time Reversal (TR) techniques, taking advantage of the reversible character of the wave equation, are particularly suited to focus ultrasonic waves in time and space. The characteristics of the energy focusing in solid media using principles of time reversed acoustics are highly influenced by the nature and dimensions of the medium, the number of transducers and the length of the received signals. Usually, a large number of transducers enclosing the domain of interest is needed to improve the quality of the focusing. However, in the case of highly reverberant media, the number of transducers can be reduced to only one (single-channel TR). For focusing in a non-reverberant medium, which is impossible when using only one source, an adaptation of the single-channel reciprocal TR procedure has been recently suggested by means of a Chaotic Cavity Transducer (CCT), a single element transducer glued on a cavity of chaotic shape. In this paper, a CCT is used to focus elastic energy, at different times, in different points along a predefined line on the upper surface of a thick solid sample. Doing so, all focusing points can act as a virtual phased array transducer, allowing to focus in any point along the depth direction of the sample. This is impossible using conventional reciprocal TR, as you need to have access to all points in the bulk of the material for detecting signals to be used in the TR process. To asses and provide a better understanding of this concept, a numerical study has been developed, allowing to verify the basic concepts of the virtual phased array and to illustrate multi-component time reversal focusing in the bulk of a solid material.

  6. Focused, phased-array plane piston and spherically-shaped concave piston transducers: comparison for the same aperture and focal point.

    Science.gov (United States)

    Warriner, Renée K; Cobbold, Richard S C

    2012-04-01

    It has sometimes been assumed that the phased-array plane piston transducer and the spherically-shaped concave piston transducer are equivalent structures when both have the same aperture and focal point. This assumption has not been previously examined, nor has an expression for the on-axis impulse response of the focused, phased-array plane piston transducer been derived. It is shown in this paper how such an expression can be obtained. Comparisons of the impulse response for both structures show similarities, as well as some differences that could be significant as the observation point approaches the focal point. Comparisons are also performed for wide-band pulses close to the focus as well as for sinusoidal excitation. A physical explanation for the cause of the impulse response discrepancy is shown to be due to the nature of the piston focusing delay and its effect on the Rayleigh integral.

  7. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    Science.gov (United States)

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  8. Ultrasonic transducer

    Science.gov (United States)

    Taylor, Steven C.; Kraft, Nancy C.

    2007-03-13

    An ultrasonic transducer having an effective center frequency of about 42 MHz; a bandwidth of greater than 85% at 6 dB; a spherical focus of at least 0.5 inches in water; an F4 lens; a resolution sufficient to be able to detect and separate a 0.005 inch flat-bottomed hole at 0.005 inches below surface; and a beam size of approximately 0.006–0.008 inches measured off a 11/2 mm ball in water at the transducer's focal point.

  9. The 40 MHz trigger-less DAQ for the LHCb Upgrade

    Science.gov (United States)

    Campora Perez, D. H.; Falabella, A.; Galli, D.; Giacomini, F.; Gligorov, V.; Manzali, M.; Marconi, U.; Neufeld, N.; Otto, A.; Pisani, F.; Vagnoni, V. M.

    2016-07-01

    The LHCb experiment will undergo a major upgrade during the second long shutdown (2018-2019), aiming to let LHCb collect an order of magnitude more data with respect to Run 1 and Run 2. The maximum readout rate of 1 MHz is the main limitation of the present LHCb trigger. The upgraded detector, apart from major detector upgrades, foresees a full read-out, running at the LHC bunch crossing frequency of 40 MHz, using an entirely software based trigger. A new high-throughput PCIe Generation 3 based read-out board, named PCIe40, has been designed for this purpose. The read-out board will allow an efficient and cost-effective implementation of the DAQ system by means of high-speed PC networks. The network-based DAQ system reads data fragments, performs the event building, and transports events to the High-Level Trigger at an estimated aggregate rate of about 32 Tbit/s. Different architecture for the DAQ can be implemented, such as push, pull and traffic shaping with barrel-shifter. Possible technology candidates for the foreseen event-builder under study are InfiniBand and Gigabit Ethernet. In order to define the best implementation of the event-builder we are performing tests of the event-builder on different platforms with different technologies. For testing we are using an event-builder evaluator, which consists of a flexible software implementation, to be used on small size test beds as well as on HPC scale facilities. The architecture of DAQ system and up to date performance results will be presented.

  10. The 40 MHz trigger-less DAQ for the LHCb Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Campora Perez, D.H. [INFN CNAF, Bologna (Italy); Falabella, A., E-mail: antonio.falabella@cnaf.infn.it [CERN, Geneva (Switzerland); Galli, D. [INFN Sezione di Bologna, Bologna (Italy); Università Bologna, Bologna (Italy); Giacomini, F. [CERN, Geneva (Switzerland); Gligorov, V. [INFN CNAF, Bologna (Italy); Manzali, M. [Università Bologna, Bologna (Italy); Università Ferrara, Ferrara (Italy); Marconi, U. [INFN Sezione di Bologna, Bologna (Italy); Neufeld, N.; Otto, A. [INFN CNAF, Bologna (Italy); Pisani, F. [INFN CNAF, Bologna (Italy); Università la Sapienza, Roma (Italy); Vagnoni, V.M. [INFN Sezione di Bologna, Bologna (Italy)

    2016-07-11

    The LHCb experiment will undergo a major upgrade during the second long shutdown (2018–2019), aiming to let LHCb collect an order of magnitude more data with respect to Run 1 and Run 2. The maximum readout rate of 1 MHz is the main limitation of the present LHCb trigger. The upgraded detector, apart from major detector upgrades, foresees a full read-out, running at the LHC bunch crossing frequency of 40 MHz, using an entirely software based trigger. A new high-throughput PCIe Generation 3 based read-out board, named PCIe40, has been designed for this purpose. The read-out board will allow an efficient and cost-effective implementation of the DAQ system by means of high-speed PC networks. The network-based DAQ system reads data fragments, performs the event building, and transports events to the High-Level Trigger at an estimated aggregate rate of about 32 Tbit/s. Different architecture for the DAQ can be implemented, such as push, pull and traffic shaping with barrel-shifter. Possible technology candidates for the foreseen event-builder under study are InfiniBand and Gigabit Ethernet. In order to define the best implementation of the event-builder we are performing tests of the event-builder on different platforms with different technologies. For testing we are using an event-builder evaluator, which consists of a flexible software implementation, to be used on small size test beds as well as on HPC scale facilities. The architecture of DAQ system and up to date performance results will be presented.

  11. Performance of a double metal n-on-n and a Czochralski silicon strip detector read out at 40 MHz

    CERN Document Server

    Palacios, J P; Buytaert, J; Collins, P; Eckstein, D; Härkönen, J; Luukka, Panja; Parkes, C; Tuovinen, E

    2004-01-01

    The R&D undertaken by the VELO group in order to produce a sensor that satisfies the tight radiation hardness, efficiency, resolution and low material requirements of LHCb has resulted in the choice of an n-on-n double metal layer solution. First, measurements of the performance of the latest prototype and its related front end electronics, designed to function at the LHC speed of 40 MHz, are presented here. In addition, research has been carried out into new materials which could retain good performance in high-radiation environments at and beyond the LHC, and could provide an alternative for a possible VELO upgrade. For the first time, a full size Czochralski silicon detector sample with 50 mum pitch strips has been irradiated with high energy protons and its performance has been measured in a test beam with 40 MHz electronics. The results of this test will be presented.

  12. Performance of a double metal n-on-n and a Czochralski silicon strip detector read out at 40 MHz

    CERN Document Server

    Palacios, J P; Buytaert, J; Collins, P; Eckstein, D; Harkonen, J; Tuovinen, E; Luukka, P

    2006-01-01

    The R&D undertaken by the VELO group in order to produce a sensor that satisfies the tight radiation hardness, efficiency, resolution and low material requirements of LHCb has resulted in the choice of an n-on-n double metal layer solution. First measurements of the performance of the latest prototype and its related front end electronics, designed to function at the LHC speed of 40 MHz, are presented here. In addition, research has been carried out into new materials which could retain good performance in high radiation environments at and beyond the LHC, and could provide an alternative for a possible VELO upgrade. For the first time a full size Czochralski silicon detector sample with 50$\\mu$m pitch strips has been irradiated with high energy protons and its performance has been measured in a test beam with 40 MHz electronics. The results of this test will be presented.

  13. The readout of the LHC beam luminosity monitor: accurate shower energy measurements at a 40 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Manfredi, P.F. E-mail: pfmanfredi@lbl.gov; Ratti, L.; Speziali, V.; Traversi, G.; Manghisoni, M.; Re, V.; Denes, P.; Placidi, M.; Ratti, A.; Turner, W.C.; Datte, P.S.; Millaud, J.E

    2004-02-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  14. The readout of the LHC beam luminosity monitor Accurate shower energy measurements at a 40 MHz repetition rate

    CERN Document Server

    Manfredi, P F; Speziali, V; Traversi, G; Manghisoni, M; Re, V; Denes, P; Placidi, Massimo; Ratti, A; Turner, W C; Datte, P S; Millaud, J E

    2004-01-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  15. 开口柱面换能器声场分析%Study of Focused Ultrasonic Field of Cylindrical Transducer with a Hole

    Institute of Scientific and Technical Information of China (English)

    赵泉洲; 惠春; 余立立; 胡振林

    2011-01-01

    Objective: Focused ultrasound treatment of superficial tissue disease, gynecological there focused transducer placed at the same time and location of the probe problems in the actual design of the treatment must be considered in the first place the B-probe the impact of the sound field of focus, This relates to a cylindrical opening focused ultrasound transducer sound field of numerical calculation and simulation, calculated by three-dimensional sound field distribution, while the self-focusing of cylindrical transducer in different opening shapes, location, size of the sound field impact, to guide the opening of the actual transducer design. Methods: hi this paper, three-dimensional Cartesian coordinate system, the application of variable-step method of Simpson double integral focused ultrasound on the open cylinder transducer sound field for a numerical calculation and simulation, draw three-dimensional sound field distribution. Results: Openings of different shapes, sizes, location of the sound field distribution simulation results show that: different shape of the opening pressure will cause the amplitude of the focus area decreased, opening the radius increases, the pressure showed a downward trend, Z axis of the sound pressure in the exchange can control the edge of the large middle small. With the open center of the greater distance from the origin, Z axis of the sound pressure distribution more uneven, but has little effect on the focus position.Conclusions: We can see from the effects on the distribution of the three-dimensional sound field of different parameters: cylindrical ultrasound transducer opening shape,location, size of the focus areas of sound pressure are significantly affected. Compared with the given conditions, selected centrally located, smaller, transducers, focusing performance can be improved, and the opening shape of the transducer little effect on the focus.%目的:聚焦超声治疗妇科浅表组织疾病中存在聚焦换能器和

  16. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    deviation of 5.5 % to 11.0 %. Finite element modeling of piezoceramics in combination with Field II is addressed and reveals the influence of restricting the modeling of transducers to the one-dimensional case. An investigation on modeling capacitive micromachined ultrasonic transducers (CMUT)s with Field......This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...... II is addressed. It is shown how a single circular CMUT cell can be well approximated with a simple square transducer encapsulating the cell, and how this influence the modeling of full array elements. An optimal cell discretization with Field II’s mathematical elements is addressed as well...

  17. Multiple matching scheme for broadband 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) single crystal phased-array transducer.

    Science.gov (United States)

    Lau, S T; Li, H; Wong, K S; Zhou, Q F; Zhou, D; Li, Y C; Luo, H S; Shung, K K; Dai, J Y

    2009-05-01

    Lead magnesium niobate-lead titanate single crystal 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and backing. The calculated results show that the -6 dB transducer bandwidth can be improved significantly by using double lambda8 matching layers and hard backing. A 4.0 MHz PMN-PT transducer array (with 16 elements) was fabricated and tested in a pulse-echo arrangement. A -6 dB bandwidth of 110% and two-way insertion loss of -46.5 dB were achieved.

  18. Modeling of phased array transducers.

    Science.gov (United States)

    Ahmad, Rais; Kundu, Tribikram; Placko, Dominique

    2005-04-01

    Phased array transducers are multi-element transducers, where different elements are activated with different time delays. The advantage of these transducers is that no mechanical movement of the transducer is needed to scan an object. Focusing and beam steering is obtained simply by adjusting the time delay. In this paper the DPSM (distributed point source method) is used to model the ultrasonic field generated by a phased array transducer and to study the interaction effect when two phased array transducers are placed in a homogeneous fluid. Earlier investigations modeled the acoustic field for conventional transducers where all transducer points are excited simultaneously. In this research, combining the concepts of delayed firing and the DPSM, the phased array transducers are modeled semi-analytically. In addition to the single transducer modeling the ultrasonic fields from two phased array transducers placed face to face in a fluid medium is also modeled to study the interaction effect. The importance of considering the interaction effect in multiple transducer modeling is discussed, pointing out that neighboring transducers not only act as ultrasonic wave generators but also as scatterers.

  19. Acoustic transducer

    Science.gov (United States)

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  20. 聚焦型热声转换装置的特性%Characteristics of a Focusing-type Thermo-acoustic Transducer

    Institute of Scientific and Technical Information of China (English)

    万广通; 董卫; 王红星; 吴仲武; 姚丽

    2012-01-01

    A new type of focusing thermo-acoustic transducer, which is composed of a heating surface, an insulation layer and a thermal storage substrate, was designed. When alternative voltage signal is input to the heating surface, due to the Joule heating effect and thermodynamic characteristic of material in each layer, the pressure of the air near the heating surface will oscillate, and the radiation sound will be focused in a small region by the concave spherically heating surface. Through numerical simulation and experimental study of the device, the variations of the focusing area and the sound pressure at the focusing point with acoustic frequency were given. The device can be used as a new type of acoustic-focusing and energy-exchanging device. It can radiate sound in the audible and ultrasonic regions without resonances and moving components. This study has a practical significance and an application prospect.%设计了一种新型的聚焦型热声转换装置,主要由加热层、绝缘层和储热层三层结构构成.当加热层输入交变电信号时,由于焦耳热效应及各层材料的热力学特性,其表面附近区域内气体压力产生交变的振荡,加热层的凹球表面会使产生的声波在某一区域聚焦.通过对装置进行数值模拟与实验研究,得出声波聚焦区域及聚焦点声压强度随声波频率的变化情况.装置可作为一种新型的声学聚焦换能装置,工作频率涉及可听及超声频域,无共振,无运动部件.这一研究具有一定的应用价值.

  1. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  2. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  3. Pressure transducer

    Science.gov (United States)

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  4. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    CERN Document Server

    Ryser, Manuel; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2014-01-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063nm. The diode was driven at a repetition rate of 40MHz and delivered 13$\\mu$W of fiber-coupled average output power. For the low output pulse energy of 0.33pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40MHz repetition rate to 1MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72dBs to an output pulse energy of 5.7$\\mu$J, pulse duration of 11ps and peak power of >0.6MW.

  5. Dual-Element Transducer with Phase-Inversion for Wide Depth of Field in High-Frequency Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Jong Seob Jeong

    2014-08-01

    Full Text Available In high frequency ultrasound imaging (HFUI, the quality of focusing is deeply related to the length of the depth of field (DOF. In this paper, a phase-inversion technique implemented by a dual-element transducer is proposed to enlarge the DOF. The performance of the proposed method was numerically demonstrated by using the ultrasound simulation program called Field-II. A simulated dual-element transducer was composed of a disc- and an annular-type elements, and its aperture was concavely shaped to have a confocal point at 6 mm. The area of each element was identical in order to provide same intensity at the focal point. The outer diameters of the inner and the outer elements were 2.1 mm and 3 mm, respectively. The center frequency of each element was 40 MHz and the f-number (focal depth/aperture size was two. When two input signals with 0° and 180° phases were applied to inner and outer elements simultaneously, a multi-focal zone was generated in the axial direction. The total −6 dB DOF, i.e., sum of two −6 dB DOFs in the near and far field lobes, was 40% longer than that of the conventional single element transducer. The signal to noise ratio (SNR was increased by about two times, especially in the far field. The point and cyst phantom simulation were conducted and their results were identical to that of the beam pattern simulation. Thus, the proposed scheme may be a potential method to improve the DOF and SNR in HFUI.

  6. Current Research Situation of High-intensity Focused Ultrasound Transducer for Oncotherapy%肿瘤治疗用高强度聚焦超声换能器的研究现状

    Institute of Scientific and Technical Information of China (English)

    刘刚; 尹军刚

    2012-01-01

    高强度聚集超声(High-intensity Focused Ultrasound,HIFU)作为一种非侵入性、无毒副作用、具有巨大潜力的肿瘤治疗手段,近年来已经越来越受到国内外学者的广泛关注.高强度聚焦超声换能器是HIFU肿瘤治疗设备的核心部件,直接影响治疗的效果.因此,本文就其发展过程、治疗机制及应用等相关问题做一综述.%As non-invasive technique with non-toxic side effects and great potential, high-intensity focused ultrasound(HIFU) has received widespread attention from scholars both at home and abroad in recent years. Higb- intensity focused ultrasound transducer is the core component of HIFU treatment equipment for oncotherapy, which chould affect the therapeutical result directly. Therefore, this paper summarizes some related issues of high-intensity focused ultrasound transducer, including its development, working principle, applications and so on.

  7. Frequency dependence of backscatter from thin, oblique, finite-length cylinders measured with a focused transducer-with applications in cancellous bone.

    Science.gov (United States)

    Wear, Keith A; Harris, Gerald R

    2008-11-01

    A model is presented for the echo from a thin, oblique, finite-length cylinder. The echo is calculated from the line integral of the transducer directivity pattern along the cylinder axis. The model was validated with broadband pulse-echo measurements from (1) a perpendicular (to the ultrasound beam) nylon wire as a function of lateral displacement from the beam center, (2) a tilted nylon wire as a function of the angle of inclination relative to the ultrasound beam, and (3) a quasi-parallel-nylon-wire phantom, which mimicked the scattering properties of cancellous bone. The transducer directivity pattern (as a function of position and frequency) was measured with a membrane hydrophone. The model predicts an approximately cubic frequency dependence of backscatter coefficient from the phantom, as has been observed experimentally in cancellous bone. The model also predicts the relationship between the cylinder length and the exponent of a power law fit to backscatter coefficient versus frequency, which is 4 for very short (compared to a wavelength) cylinders and asymptotically approaches 3 for very long cylinders.

  8. Micromachined Ultrasonic Transducers for 3-D Imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann

    such transducer arrays, capacitive micromachined ultrasonic transducer (CMUT) technology is chosen for this project. Properties such as high bandwidth and high design flexibility makes this an attractive transducer technology, which is under continuous development in the research community. A theoretical...... of state-of-the-art 3-D ultrasound systems. The focus is on row-column addressed transducer arrays. This previously sparsely investigated addressing scheme offers a highly reduced number of transducer elements, resulting in reduced transducer manufacturing costs and data processing. To produce......Real-time ultrasound imaging is a widely used technique in medical diagnostics. Recently, ultrasound systems offering real-time imaging in 3-D has emerged. However, the high complexity of the transducer probes and the considerable increase in data to be processed compared to conventional 2-D...

  9. Comparison of first-intention healing of carbon dioxide laser, 4.0-MHz radiosurgery, and scalpel incisions in ball pythons (Python regius).

    Science.gov (United States)

    Hodshon, Rebecca T; Sura, Patricia A; Schumacher, Juergen P; Odoi, Agricola; Steeil, James C; Newkirk, Kim M

    2013-03-01

    To evaluate first-intention healing of CO(2) laser, 4.0-MHz radiowave radiosurgery (RWRS), and scalpel incisions in ball pythons (Python regius). 6 healthy adult ball pythons. A skin biopsy sample was collected, and 2-cm skin incisions (4/modality) were made in each snake under anesthesia and closed with surgical staples on day 0. Incision sites were grossly evaluated and scored daily. One skin biopsy sample per incision type per snake was obtained on days 2, 7, 14, and 30. Necrotic and fibroplastic tissue was measured in histologic sections; samples were assessed and scored for total inflammation, histologic response (based on the measurement of necrotic and fibroplastic tissues and total inflammation score), and other variables. Frequency distributions of gross and histologic variables associated with wound healing were calculated. Gross wound scores were significantly greater (indicating greater separation of wound edges) for laser incisions than for RWRS and scalpel incisions at all evaluated time points. Necrosis was significantly greater in laser and RWRS incisions than in scalpel incision sites on days 2 and 14 and days 2 and 7, respectively; fibroplasia was significantly greater in laser than in scalpel incision sites on day 30. Histologic response scores were significantly lower for scalpel than for other incision modalities on days 2, 14, and 30. In snakes, skin incisions made with a scalpel generally had less necrotic tissue than did CO(2) laser and RWRS incisions. Comparison of the 3 modalities on the basis of histologic response scores indicated that use of a scalpel was preferable, followed by RWRS and then laser.

  10. Macro tree transducers

    NARCIS (Netherlands)

    Engelfriet, Joost; Vogler, Heiko

    1985-01-01

    Macro tree transducers are a combination of top-down tree transducers and macro grammars. They serve as a model for syntax-directed semantics in which context information can be handled. In this paper the formal model of macro tree transducers is studied by investigating typical automata theoretical

  11. Megahertz tonpilz transducer

    Science.gov (United States)

    Van Tol, Dave; Hughes, W. Jack

    1999-06-01

    The tonpilz configuration is applied to a transducer operating in the megahertz frequency range. The KLM model is used to design the transducer using readily available components. The construction techniques used are the same as those applied to standard high frequency transducers. Modeled and measured pulse-echo results display a high level of agreement, but impedance and sensitivity comparisons are less promising.

  12. Macro tree transducers

    NARCIS (Netherlands)

    Engelfriet, Joost; Vogler, Heiko

    1985-01-01

    Macro tree transducers are a combination of top-down tree transducers and macro grammars. They serve as a model for syntax-directed semantics in which context information can be handled. In this paper the formal model of macro tree transducers is studied by investigating typical automata theoretical

  13. Ultrasound backscatter microscope using PZT, fine-grain PZT, and single-crystal perovskite transducers

    Science.gov (United States)

    Olbrish, Kenneth D.; Zipparo, Michael J.; Lopath, Patrick D.; Yu, Clarence; Shrout, Thomas R.; Shung, K. Kirk

    1997-04-01

    Higher frequency ultrasound is rapidly becoming an important tool for dermatologic and ophthalmologic imaging. This brings about a need for improvement in single element transducers operating in the frequency range between 40 MHz and 100 MHz. Several piezoelectric materials may yield improved performance over common lead zirconate titanate (PZT) transducers. This study investigated several different materials incorporated into single element transducers. A static ultrasonic backscatter microscope (UBM) was constructed in the laboratory. This system allowed for a comparative testing of the imaging performance of various transducers. B-mode scans made by individual transducers show differences in image resolution. Clinically, these differences may be important to allow finer detail to be observed in a structure. Not only does this work show differences between transducers constructed from various materials, but it does so in an application-based environment. Previously, only a limited number of materials were used in such a system. This study showed results from several materials that had not been demonstrated before.

  14. Transducer of linear displacements

    Science.gov (United States)

    Malamed, Y. R.

    1984-02-01

    The basic PLP transducer is designed for a UIM-29 microscope and a 2-coordinate measuring instrument with electronic digital readout. Its optical system consists of an AL-107B light-emitting diode as light source, two condenser lenses, a special wedge carrying two pairs of joined receiver lenses, a prism-mirror, a photoreceiver, a wedge-shape transparent replica of a twin diffraction grating which prevents light reflected by the air-glass interface from focusing on the receiver photodiodes, and a reflective replica of a diffraction grating on a movable carriage. The already available three models of this transducer are PLP1-0.2, PLP1-0.5, and PLP1-1.0 with respectively 625, 250, 125 lines/mm on the transparent replica and respectively 312.5, 125, 62.5 lines/mm on the reflective replica. The scale of moire-interference fringes characterizing the shift between both diffraction gratings per grating period (9.16 mm in each model) is respectively 0.8, 2.0, 4.0 microns and the angle between the two arrays of grating lines on the transparent replica is respectively 36 + or - 4 deg, 90 + or - 10 deg, 190 + or - 20 deg.

  15. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...... project and collaboration with a lot of partners to improve medical ultrasound imaging. The focus in this part of the project is to design, fabricate and characterize 1D CMUT arrays. Two versions of 1D transducers are made, one at Stanford University and one at DTU. Electrical and acoustical...... resolution it is however necessary to develop new fabrication methods that allows fabrication of transducer elements with smaller dimensions. By using microfabrication technology it is possible to push the dimensions down and provide higher design flexibility. This project is part of a large ultrasound...

  16. Model of a Piezoelectric Transducer

    Science.gov (United States)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  17. Handbook of force transducers

    CERN Document Server

    Stefanescu, Dan Mihai

    2011-01-01

    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  18. Lead-free KNLNT Piezoelectric Ceramics for High-frequency Ultrasonic Transducer Application

    Science.gov (United States)

    Wu, D. W.; Chen, R. M.; Zhou, Q. F.; Shung, K. K.; Lin, D.M.; Chan, H. L. W.

    2010-01-01

    This paper presents the latest development of a lead-free piezoelectric ceramic and its application to transducers suitable for high-frequency ultrasonic imaging. A lead-free piezoelectric ceramic with formula of (K0.5Na0.5)0.97Li0.03(Nb0.9 Ta0.1)O3 (abbreviated as KNLNT-0.03/0.10) was fabricated and characterized. The material was found to have a clamped dielectric constant ε33S = ε0 = 890, piezoelectric coefficient d33 = 245 pC/N, electromechanical coupling factor kt = 0.42 and Curie temperature Tc > 300 °C. High-frequency (40 MHz) ultrasound transducers were successfully fabricated with the lead-free material. A representative lead-free transducer had a bandwidth of 45%, two-way insertion loss of −18 dB. This performance is comparable to reported performances of popular lead-based transducers. The comparison results suggest that the lead-free piezoelectric material may serve as an alternative to lead-based piezoelectric materials for high-frequency ultrasonic transducer applications. PMID:19121835

  19. Gas speed flow transducer

    Directory of Open Access Journals (Sweden)

    Godovaniouk V. N.

    2011-08-01

    Full Text Available The design of a gas speed flow transducer using the coupling of gas speed and heat streams within the transducer itself is proposed. To maintain the heat balance between two thermoresistors under gas stream at different temperatures, it provides energy consumption monitoring. The detailed combined planar technology for the transducer production is presented. The worked-out measurement procedure allows to make measurements in the temperature range. Information enough to organize production of cheap, reliable and precise gas speed flow transducers is given.

  20. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed......, and a high voltage attenuation interface for an audio analyzer is presented. THD below 0:1% is reported....

  1. An Inexpensive Position Transducer.

    Science.gov (United States)

    Fox, J.; And Others

    1989-01-01

    Described is a position transducer used to convert the position of an object into a voltage read by a computer with use of an interface board. The arrangement of the apparatus, electronic circuit, and typical graph displays are presented. Discussed is the instructional use of the transducer. (YP)

  2. Triple-resonant transducers.

    Science.gov (United States)

    Butler, Stephen C

    2012-06-01

    A detailed analysis is presented of two novel multiple-resonant transducers which produce a wider transmit response than that of a conventional Tonpilz-type transducer. These multi-resonant transducers are Tonpilz-type longitudinal vibrators that produce three coupled resonances and are referred to as triple-resonant transducers (TRTs). One of these designs is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, second central mass, second compliant spring, and a piston-radiating head mass. The other TRT design is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, and head mass with a quarter-wave matching layer of poly(methyl methacrylate) on the head mass. Several prototype transducer element designs were fabricated that demonstrated proof-of-concept.

  3. Programming macro tree transducers

    DEFF Research Database (Denmark)

    Bahr, Patrick; Day, Laurence E.

    2013-01-01

    A tree transducer is a set of mutually recursive functions transforming an input tree into an output tree. Macro tree transducers extend this recursion scheme by allowing each function to be defined in terms of an arbitrary number of accumulation parameters. In this paper, we show how macro tree...... transducers can be concisely represented in Haskell, and demonstrate the benefits of utilising such an approach with a number of examples. In particular, tree transducers afford a modular programming style as they can be easily composed and manipulated. Our Haskell representation generalises the original...... definition of (macro) tree transducers, abolishing a restriction on finite state spaces. However, as we demonstrate, this generalisation does not affect compositionality....

  4. Programming macro tree transducers

    DEFF Research Database (Denmark)

    Bahr, Patrick; Day, Laurence E.

    2013-01-01

    A tree transducer is a set of mutually recursive functions transforming an input tree into an output tree. Macro tree transducers extend this recursion scheme by allowing each function to be defined in terms of an arbitrary number of accumulation parameters. In this paper, we show how macro tree...... transducers can be concisely represented in Haskell, and demonstrate the benefits of utilising such an approach with a number of examples. In particular, tree transducers afford a modular programming style as they can be easily composed and manipulated. Our Haskell representation generalises the original...... definition of (macro) tree transducers, abolishing a restriction on finite state spaces. However, as we demonstrate, this generalisation does not affect compositionality....

  5. Compact Transducers and Arrays

    Science.gov (United States)

    2005-05-01

    Soc. Am., 104, pp.64-71 44 25.Decarpigny, J.N., J.C. Debus, B. Tocquet & D. Boucher. 1985. "In-Air Analysis Of Piezoelectric Tonpilz Transducers In A... Transducers and Arrays Final Report May 2005 Contacts: Dr. Robert E. Newnham The Pennsylvania State University, 251 MRL, University Park, PA 16802 phone...814) 865-1612 fax: (814) 865-2326 email: ....c xx.....i.i.....ht.. .u a.p.u..c.e.du. Dr. Richard J. Meyer, Jr. Systems Engineering ( Transducers ), ARL

  6. Pressure Transducer Locations

    Data.gov (United States)

    National Aeronautics and Space Administration — Files are located here, defining the locations of the pressure transducers on the HIRENASD model. These locations also correspond to the locations that analysts...

  7. Konstruktion af transducer

    DEFF Research Database (Denmark)

    Henriksen, Lars; Nielsen, Martin Pram

    Formålet med dette midtvejsprojekt er at udarbejde en transducer til måling af pressers stivhed. Dette er gjort på baggrund af en gennemgang af både presse- og stativ-typer samtidig med at udbøjningssituationen beskrives. Der introduceres en ide, der udgør grundkonceptet for opmålingsproceduren o...... færdige transducer – Load cellen. Strain gauge sørger for dataopsamlingen fra load cellen. Disse kalibreres således at transduceren er klar til de videre målinger der ligger i forlængelse af dette projekt....

  8. Curved PVDF airborne transducer.

    Science.gov (United States)

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  9. Future needs for biomedical transducers

    Science.gov (United States)

    Wooten, F. T.

    1971-01-01

    In summary there are three major classes of transducer improvements required: improvements in existing transducers, needs for unexploited physical science phenomena in transducer design, and needs for unutilized physiological phenomena in transducer design. During the next decade, increasing emphasis will be placed on noninvasive measurement in all of these areas. Patient safety, patient comfort, and the need for efficient utilization of the time of both patient and physician requires that noninvasive methods of monitoring be developed.

  10. Three dimensional transducer

    Science.gov (United States)

    Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje; Feng, Yuxin; Cyrankowski, Edward; Major, Ryan

    2014-09-30

    A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.

  11. Nano-optomechanical transducer

    Science.gov (United States)

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  12. Three dimensional transducer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje; Feng, Yuxin; Cyrankowski, Edward; Major, Ryan

    2014-09-30

    A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.

  13. Numerical transducer modelling

    DEFF Research Database (Denmark)

    Cutanda, Vicente

    1999-01-01

    Numerical modelling is of importance for the design, improvement and study of acoustic transducers such as microphones and accelerometers. Techniques like the boundary element method and the finite element method are the most common supplement to the traditional empirical and analytical approaches...... errors and instabilities in the computations of numerical solutions. An investigation to deal with this narrow-gap problem has been carried out....

  14. Frequency steerable acoustic transducers

    Science.gov (United States)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  15. Fluid force transducer

    Science.gov (United States)

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  16. Polymer film composite transducer

    Science.gov (United States)

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  17. Steerable Doppler transducer probes

    Energy Technology Data Exchange (ETDEWEB)

    Fidel, H.F.; Greenwood, D.L.

    1986-07-22

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis.

  18. Modeling the radiation of ultrasonic phased-array transducers with Gaussian beams.

    Science.gov (United States)

    Huang, Ruiju; Schmerr, Lester W; Sedov, Alexander

    2008-12-01

    A new transducer beam model, called a multi-Gaussian array beam model, is developed to simulate the wave fields radiated by ultrasonic phased-array transducers. This new model overcomes the restrictions on using ordinary multi-Gaussian beam models developed for large single-element transducers in phased-array applications. It is demonstrated that this new beam model can effectively model the steered and focused beams of a linear phased-array transducer.

  19. Transducers for ultrasonic limb plethysmography

    Science.gov (United States)

    Nickell, W. T.; Wu, V. C.; Bhagat, P. K.

    1983-01-01

    The design, construction, and performance characteristics of ultasonic transducers suitable for limb plethysmography are presented. Both 3-mm-diameter flat-plate and 12-mm-diameter hemispheric ceramic transducers operating at 2 MHz were fitted in 1-mm thick epoxy-resin lens/acoustic-coupling structures and mounted in exercie-EKG electrode housings for placement on the calf using adhesive collars. The effects of transducer directional characteristics on performance under off-axis rotation and the electrical impedances of the transducers were measured: The flat transducer was found to be sensitive to rotation and have an impedance of 800 ohms; the hemispheric transducer, to be unaffected by rotation and have an impedance of 80 ohms. The use of hemispheric transducers as both transmitter and receiver, or of a flat transducer as transmitter and a hemispheric transducer as receiver, was found to produce adequate dimensional measurements, with minimum care in transducer placement, in short-term physiological experiments and long-term (up to 7-day) attachment tests.

  20. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  1. Numerical transducer modelling

    DEFF Research Database (Denmark)

    Cutanda, Vicente

    1999-01-01

    Numerical modelling is of importance for the design, improvement and study of acoustic transducers such as microphones and accelerometers. Techniques like the boundary element method and the finite element method are the most common supplement to the traditional empirical and analytical approaches....... However, there are several difficulties to be addressed that are derived from the size, internal structure and precision requirements that are characteristic of these devices. One of them, the presence of very close surfaces (e.g. the microphone diaphragm and back-electrode), leads to machine precision...

  2. Wellbore pressure transducer

    Science.gov (United States)

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  3. RADIO-ACTIVE TRANSDUCER

    Science.gov (United States)

    Wanetick, S.

    1962-03-01

    ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

  4. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The

  5. Miniature multimode monolithic flextensional transducers.

    Science.gov (United States)

    Hladky-Hennion, Anne-Christine; Uzgur, A Erman; Markley, Douglas C; Safari, Ahmad; Cochran, Joe K; Newnham, Robert E

    2007-10-01

    Traditional flextensional transducers classified in seven groups based on their designs have been used extensively in 1-100 kHz range for mine hunting, fish finding, oil explorations, and biomedical applications. In this study, a new family of small, low cost underwater, and biomedical transducers has been developed. After the fabrication of transducers, finite-elements analysis (FEA) was used extensively in order to optimize these miniature versions of high-power, low-frequency flextensional transducer designs to achieve broad bandwidth for both transmitting and receiving, engineered vibration modes, and optimized acoustic directivity patterns. Transducer topologies with various shapes, cross sections, and symmetries can be fabricated through high-volume, low-cost ceramic and metal extrusion processes. Miniaturized transducers posses resonance frequencies in the range of above 1 MHz to below 10 kHz. Symmetry and design of the transducer, polling patterns, driving and receiving electrode geometries, and driving conditions have a strong effect on the vibration modes, resonance frequencies, and radiation patterns. This paper is devoted to small, multimode flextensional transducers with active shells, which combine the advantages of small size and low-cost manufacturing with control of the shape of the acoustic radiation/receive pattern. The performance of the transducers is emphasized.

  6. Numerical Transducer Modeling

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... tools and implementation techniques are described and performance tests are carried out. The equations that govern the motion of fluids with losses and the corresponding boundary conditions are reduced to a form that is tractable for the Boundary Element Method (BEM) by adopting some hypotheses...... that are allowable in this case: linear variations, absence of flow, harmonic time variation, thermodynamical equilibrium and physical dimensions much larger than the molecular mean free path. A formulation of the BEM is also developed with an improvement designed to cope with the numerical difficulty associated...

  7. Optically transduced MEMS magnetometer

    Science.gov (United States)

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  8. Electromagnetic acoustic transducer

    Science.gov (United States)

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  9. Optimization of ultrasonic transducers for selective guided wave actuation

    Science.gov (United States)

    Miszczynski, Mateusz; Packo, Pawel; Zbyrad, Paulina; Stepinski, Tadeusz; Uhl, Tadeusz; Lis, Jerzy; Wiatr, Kazimierz

    2016-04-01

    The application of guided waves using surface-bonded piezoceramic transducers for nondestructive testing (NDT) and Structural Health Monitoring (SHM) have shown great potential. However, due to difficulty in identification of individual wave modes resulting from their dispersive and multi-modal nature, selective mode excitement methods are highly desired. The presented work focuses on an optimization-based approach to design of a piezoelectric transducer for selective guided waves generation. The concept of the presented framework involves a Finite Element Method (FEM) model in the optimization process. The material of the transducer is optimized in topological sense with the aim of tuning piezoelectric properties for actuation of specific guided wave modes.

  10. Spatial impulse response of a rectangular double curved transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2012-01-01

    Calculation of the pressure field from transducers having both a convex and a concave surface geometry is a complicated assignment that often is accomplished by subdividing the transducer surface into smaller flat elements of which the spatial impulse response is known. This method is often seen...... applied to curved transducers because an analytical solution is un-known. In this work a semi-analytical algorithm for the exact solution to a first order in diffraction effect of the spatial impulse response of rectangular shaped double curved transducers is presented. The algorithm and an approximation...... approximations ranging from 0.03 % to 0.8 % relative to a numerical solution for the spatial impulse response. It is shown that the presented algorithm gives consistent results with Field II for a linear flat, a linear focused, and a convex non-focused element. Best solution was found to be 0.01 % with a three...

  11. Calibration of Underwater Sound Transducers

    Directory of Open Access Journals (Sweden)

    H.R.S. Sastry

    1983-07-01

    Full Text Available The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  12. On a New Optical Transducer

    Directory of Open Access Journals (Sweden)

    Cornel Bit

    2015-07-01

    Full Text Available This paper presents a new type of mechano – optical force transducer which to be used in different mechanical experimental investigations. This transducer has been integrated within a mechanical modulus, providing a useful tool for this kind of measurements. The use of optical methods for the elastic contact measurements has several important advantages.

  13. Echo signal from rough planar interfaces influence of roughness, angle, range and transducer type

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P.C.; Jacobsen, S.M.

    1998-01-01

    The received electrical signal from a pulse-echo system insonifying a planar acoustical interface was measured for varying degrees of rms roughness (0-0.16 mm), angle of incidence (typically +/-7°) and range to the transducer. A planar and a focused 5 MHz transducer was used. When insonifying...... a smooth interface, the normalized spectrum of the received signals for a planar transducer exhibits an increasing number of nulls with increased angle of insonification, as predicted from numerical modeling while the dependence on insonification angle for the focused transducer was smaller and the null...... pattern was much less distinct. For the planar transducer and for the focused transducer with the interface located at the geometrical point of focus, the energy of the received signal as a function of incident angle was approximately Gaussian with maximum at 0°. For the smooth interface, the -3 dB width...

  14. A Novel Drive Option for Piezoelectric Ultrasonic Transducers

    OpenAIRE

    Diana Engelke; Bernd Oehme; Jens Strackeljan

    2011-01-01

    This paper concentrates on ultrasonic transducers, which are driven by piezoelectric ceramic rings that are arranged in a stack. A novel drive option, where the stack contains a new type of divided piezoelectric rings, is analyzed using the finite element method, prototyped, and tested. To gain a better sense of the vibration behavior, the studies focus initially on one ring and subsequently on the different possibilities to assemble the transducer. The investigations point out that natural b...

  15. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  16. New piezoelectric transducers for therapeutic ultrasound.

    Science.gov (United States)

    Chapelon, J Y; Cathignol, D; Cain, C; Ebbini, E; Kluiwstra, J U; Sapozhnikov, O A; Fleury, G; Berriet, R; Chupin, L; Guey, J L

    2000-01-01

    Therapeutic ultrasound (US) has been of increasing interest during the past few years. However, the development of this technique depends on the availability of high-performance transducers. These transducers have to be optimised for focusing and steering high-power ultrasonic energy within the target volume. Recently developed high-power 1-3 piezocomposite materials bring to therapeutic US the exceptional electroacoustical properties of piezocomposite technology: these are high efficiency, large bandwidth, predictable beam pattern, more flexibility in terms of shaping and definition of sampling in annular arrays, linear arrays or matrix arrays. The construction and evaluation of several prototypes illustrates the benefit of this new approach that opens the way to further progress in therapeutic US.

  17. Passive wireless ultrasonic transducer systems

    Science.gov (United States)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2014-02-01

    Inductive coupling and capacitive coupling both offer simple solutions to wirelessly probe ultrasonic transducers. This paper investigates the theory and feasibility of such system in the context of non-destructive evaluation (NDE) applications. Firstly, the physical principles and construction of an inductively coupled transducer system (ICTS) and a capacitively coupled transducer system (CCTS) are introduced. Then the development of a transmission line model with the measured impedance of a bonded piezoelectric ceramic disc representing a sensor attached to an arbitrary solid substrate for both systems is described. The models are validated experimentally. Several applications of CCTS are presented, such CCTS for the underwater and through-composite testing.

  18. Class D audio amplifiers for high voltage capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis

    voltage capacitive transducers can be constructed with THD+N below 0.1 % and peak efficiency above 80 %. However the complexity of the amplifier combined with the current high cost of components, makes the technology of DEAP based loudspeaker unfeasible. Suggestions to future work in the pursuit...... of high volume, weight, and cost. High efficient class D amplifiers are now widely available offering power densities, that their linear counterparts can not match. Unlike the technology of audio amplifiers, the loudspeaker is still based on the traditional electrodynamic transducer invented by C.W. Rice....... Due to the similarities between the electrostatic loudspeaker and the DEAP transducer, the state-of-the-art has a special focus on amplifiers for electrostatic loudspeakers. Amplifiers for other type of capacitive transducers like piezoelectric ones are also considered. Finally the current state...

  19. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is to fabricate, characterize, and verify performance of a new type of frequency steered acoustic transducer...

  20. An enzyme logic bioprotonic transducer

    Science.gov (United States)

    Miyake, Takeo; Josberger, Erik E.; Keene, Scott; Deng, Yingxin; Rolandi, Marco

    2015-01-01

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdHx electrode as a bioprotonic transducer that connects H+ currents in solution into an electronic signal. This transducer exploits the reversible formation of PdHx in solution according to PdH↔Pd + H+ + e-, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic and gate for glucose and NAD+. PdHx formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output.

  1. Laboratories practice to transducers study

    Directory of Open Access Journals (Sweden)

    Kleber Romero Felizardo

    2004-01-01

    Full Text Available The objective of this work was to gather a collection of practical laboratory experiences , to discover the physical principles of different types of electrical transducers , and to compare them with theoretical models.

  2. Fixture for holding testing transducer

    Science.gov (United States)

    Wagner, Thomas A.; Engel, Herbert P.

    1984-01-01

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  3. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...

  4. Transducer Field Imaging Using Acoustography

    Directory of Open Access Journals (Sweden)

    Jaswinder S. Sandhu

    2012-01-01

    Full Text Available A common current practice for transducer field mapping is to scan, point-by-point, a hydrophone element in a 2D raster at various distances from the transducer radiating surface. This approach is tedious, requiring hours of scanning time to generate full cross-sectional and/or axial field distributions. Moreover, the lateral resolution of the field distribution image is dependent on the indexing steps between data points. Acoustography is an imaging process in which an acousto-optical (AO area sensor is employed to record the intensity of an ultrasound wavefield on a two-dimensional plane. This paper reports on the application of acoustography as a simple but practical method for assessing transducer field characteristics. A case study performed on a commercial transducer is reported, where the radiated fields are imaged using acoustography and compared to the corresponding quantities that are predicted numerically.

  5. Acoustic transducer with damping means

    Science.gov (United States)

    Smith, Richard W.; Adamson, Gerald E.

    1976-11-02

    An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.

  6. Characterization of Dielectric Electroactive Polymer transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah;

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide...

  7. Ultrasonic Transducer Irradiation Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Joe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Paul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States); Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States); Rempe, Joy [Rempe and Associates, Idaho Falls, ID (United States)

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  8. Microelectronics mounted on a piezoelectric transducer: method, simulations, and measurements.

    Science.gov (United States)

    Johansson, Jonny; Delsing, Jerker

    2006-01-01

    This paper describes the design of a highly integrated ultrasound sensor where the piezoelectric ceramic transducer is used as the carrier for the driver electronics. Intended as one part in a complete portable, battery operated ultrasound sensor system, focus has been to achieve small size and low power consumption. An optimized ASIC driver stage is mounted directly on the piezoelectric transducer and connected using wire bond technology. The absence of wiring between driver and transducer provides excellent pulse control possibilities and eliminates the need for broad band matching networks. Estimates of the sensor power consumption are made based on the capacitive behavior of the piezoelectric transducer. System behavior and power consumption are simulated using SPICE models of the ultrasound transducer together with transistor level modelling of the driver stage. Measurements and simulations are presented of system power consumption and echo energy in a pulse echo setup. It is shown that the power consumption varies with the excitation pulse width, which also affects the received ultrasound energy in a pulse echo setup. The measured power consumption for a 16 mm diameter 4.4 MHz piezoelectric transducer varies between 95 microW and 130 microW at a repetition frequency of 1 kHz. As a lower repetition frequency gives a linearly lower power consumption, very long battery operating times can be achieved. The measured results come very close to simulations as well as estimated ideal minimum power consumption.

  9. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    Science.gov (United States)

    Li, H.; Jung, K. W.; Deng, Z. D.

    2015-11-01

    Implantable acoustic transmitters have been used in the last 20 years to track fish movement for fish survival and migration behavior studies. However, the relatively large weights and sizes of commercial transmitters limit the populations of studied fish. The surgical implantation procedures may also affect fish adversely and incur a significant amount of labor. Therefore, a smaller, lighter, and injectable transmitter was needed, and similar or better acoustic performance and service life over those provided by existing commercial transmitters was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. Our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the signal was not blocked by the transmitter body. We found that a novel off-center tube transducer improved the average source level by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 1.3 dB. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. Lastly, a tuning inductor in series with the transducer was used to help optimize the source level. The findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.

  10. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  11. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    NARCIS (Netherlands)

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  12. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    NARCIS (Netherlands)

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  13. Calculations for Piezoelectric Ultrasonic Transducers

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1986-01-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a boay which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation...... and in particular the finite element method are considered. The finite element method is utilized for analysis of axisymmetric transducers. An explicit, fully piezoelectric, triangular ring element, with linear variations in displacememnt and electric potential is given. The influence of a fluid half-space is also...

  14. Optimization of matching layer design for medical ultrasonic transducer

    Science.gov (United States)

    Zhu, Jie

    This thesis work contains two major parts. In the first part, ultrasonic wave propagation in multilayer structure is investigated. Delaminations between ceramic and electrode layers in multilayer capacitors and multilayer actuators are common defects, which are difficult to detect using traditional ultrasonic imaging method if the size is smaller than 50 microns in diameter. The T-Matrix method is used to treat wave attenuation in periodic structures with alternating ceramic and electrode layers. Multiple penny-shaped delaminations are assumed perpendicular to the incidence wave, and the forward scattering amplitude of the wave from delaminations is calculated by substituting the average effective crack opening displacement into the scattered wave displacement. The effective phase velocity, wave amplitude and the attenuation coefficient have been calculated for different crack densities. The results provide a theoretical base for potential attenuation based ultrasonic non-destructive evaluation (NDE) method. The second part is a study on matching layers. Matching layers are crucial components in ultrasonic transducers for medical imaging. Without proper matching layers, large acoustic impedance mismatch between piezoelectric resonator and the human body tissue will cause most of the ultrasound energy to be reflected at the interface. For a given frequency, the matching layer thickness should be one quarter of the wavelength and its acoustic impedance should be the geometric mean of the acoustic impedances of piezoelectric material and the imaging body. There are no natural materials that can precisely meet such requirements. Therefore, solid particle/polymer composites are commonly used as matching layer materials. The acoustic impedance of such composites is generally in the range of 2-15 MRayls. It is a routine task to make such composite for low frequency transducers, but for transducers with operating frequency higher than 40 MHz, the powder size must be sub

  15. Local piezoelectric behavior in PZT-based thin films for ultrasound transducers

    Science.gov (United States)

    Griggio, Flavio

    superior crystal quality. Thirdly, changes in the mechanical boundary conditions experienced by a ferroelectric thin film were found to influence both the properties and the length scale for correlated motion of domain walls. Microfabrication was employed to release the PZT films from the Si substrate. Nonlinear piezoelectric maps, by band excitation piezoforce microscopy, showed formation of clusters of higher nonlinear activities of similar size for clamped PZT films with different microstructures. However PZT films that had been released from the Si substrate showed a distinct increase in the correlation length associated with coupled domain wall motion, suggesting that the local mechanical boundary conditions, more than microstructure or composition govern the domain wall dynamics. Release of both the local and the global stress states in films produced dielectric nonlinearities comparable to those of bulk ceramics. The second research direction was targeted at demonstrating the functionality of a one dimensional transducer array. A diaphragm geometry was used for the transducer arrays in order to benefit from the unimorph-type displacement of the PZT-SiO2 layers. For this purpose, the PZT and remaining films in the stack were patterned using reactive ion etching and partially released from the underlying silicon substrate by XeF2 etching from the top. Admittance measurements on the fabricated structures showed resonance frequencies at ˜40 MHz for a 80 mum diameter-wide diaphragms with a PZT thickness of 1.74 mum. In-water transmit and receive functionalities were demonstrated. A bandwidth on receive of 80 % centered at 40 MHz was determined during pitch-mode tests.

  16. Transducer models in the ultrasound simulation program FIELD II and their accuracy

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Bæk, David

    2010-01-01

    The FIELD II simulation program can be used for simulating any kind of linear ultrasound fields. The program is capable of describing multi-element transducers used with any kind of excitation, apodization, and focusing. The program has been widely used in both academia and by commercial ultrasound...... companies for investigation novel transducer geometries and advanced linear imaging schemes. The program models transducer geometries using a division of the transducer elements into either rectangles, triangles, or bounding lines. The precision of the simulation and the simulation time is intimately linked...

  17. Non-bonded ultrasonic transducer

    Science.gov (United States)

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  18. Acoustic transducer for acoustic microscopy

    Science.gov (United States)

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  19. Vacuum mounting for piezoelectric transducers

    Science.gov (United States)

    Tiede, D. A.

    1977-01-01

    Special housing couples piezoelectric transducers to nonporous surfaces for ultrasonic or acoustic-emission testing. Device, while providing sound isolation on flat or nonflat surfaces, can be attached and detached quickly. Vacuum sealing mechanism eliminates need for permanent or semipermanent bonds, viscous coupling liquids, weights, magnets, tape, or springs ordinarily used.

  20. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  1. Irradiation Testing of Ultrasonic Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  2. Safety Issues for HIFU Transducer Design

    Science.gov (United States)

    Fleury, Gérard; Berriet, Rémi; Chapelon, Jean Yves; ter Haar, Gail; Lafon, Cyril; Le Baron, Olivier; Chupin, Laurent; Pichonnat, Fabrice; Lenormand, Jérôme

    2005-03-01

    In contrast with most ultrasound modalities for medical applications, (especially ultrasound imaging), High Intensity Focused Ultrasound (HIFU) involves technologies and procedures which may present risk to the patient. These risks, resulting from the high power levels required for effective therapy, should be taken into account at the earliest stages in the design of a system dedicated to HIFU treatment. An understanding of these risks must thus be shared amongst the many players in the field of therapy using high power ultrasound. Moreover, since the number of applications of HIFU has increased appreciably over recent years and the technology is ready to move from the research to the industrial level, it is worth now considering solutions that should be put in place to guarantee the safety of the patient during HIFU treatment. This paper reports thoughts on this, identifies some risks to the patient that must be taken into consideration in the design of HIFU transducers, and proposes some solutions that could prevent the deleterious consequences of transducer misuse or failure. For the main risks identified, such as exceeding the desired acoustic power or poor control of tissue targeting, a description of transducer performance that could potentially result in problems is systematically sought. This allows proposals for precautions to be taken during operation to be made. Parameters which should be monitored to ensure safe use are also suggested. This type of approach, which should be undertaken for the different components of a therapeutic system, highlights the challenges that must be faced in the immediate future for the development and safe exploitation of HIFU systems. The necessity for standard definitions of the parameters to be checked or monitored during HIFU treatments is crucial in this approach, as is the availability of reliable dedicated measurement devices. Co-ordinated action on these topics in the HIFU community would contribute to the

  3. Wideband Single Crystal Transducer for Bone Characterization

    Science.gov (United States)

    Sahul, Raffi

    2015-01-01

    Phase II objectives: Optimize the Phase I transducer for sensitivity; Test different transmit signals for optimum performance; Demonstrate compatibility with electronics; Confirm additional transducer capabilities over conventional systems by calibrating with other methods.

  4. Transducers and Arrays for Underwater Sound

    CERN Document Server

    Sherman, Charles H

    2007-01-01

    This book is concerned with the theory, development and design of electroacoustic transducers for underwater applications, and is more comprehensive than any existing book in this field. It includes the basics of the six major types of electroacoustic transducers, with emphasis on the piezoelectric ceramic transducers that are currently most widely used. It presents the basic acoustics, as well as specific acoustic data, needed in transducer design and includes analysis of nonlinear effects in transducers. A large number of specific transducer designs, including both projectors and hydrophones, are described in detail as well as methods of modeling, evaluation and measurement. Analysis of transducer arrays, including the effects of mutual radiation impedance, as well as numerical models for transducers and arrays are also covered. The book contains an extensive Appendix of useful current information, including data on the latest transduction materials, and numerous diagrams that will facilitate its use by stu...

  5. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  6. Transducer for harmonic intravascular ultrasound imaging

    NARCIS (Netherlands)

    Vos, Hendrik J.; Frijlink, Martijn E.; Droog, E.J.; Goertz, David E.; Blacquiere, Gerrit; Gisolf, Anton; de Jong, N.; van der Steen, Antonius F.W.

    2005-01-01

    A recent study has shown the feasibility of tissue harmonic imaging (THI) using an intravascular ultrasound (IVUS) transducer. This correspondence describes the design, fabrication, and characterization of a THI-optimized piezoelectric transducer with oval aperture of 0.75 mm by 1 mm. The transducer

  7. 21 CFR 882.1950 - Tremor transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tremor transducer. 882.1950 Section 882.1950 Food... DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1950 Tremor transducer. (a) Identification. A tremor transducer is a device used to measure the degree of tremor caused by certain diseases...

  8. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  9. Self-Calibrating Pressure Transducer

    Science.gov (United States)

    Lueck, Dale E. (Inventor)

    2006-01-01

    A self-calibrating pressure transducer is disclosed. The device uses an embedded zirconia membrane which pumps a determined quantity of oxygen into the device. The associated pressure can be determined, and thus, the transducer pressure readings can be calibrated. The zirconia membrane obtains oxygen .from the surrounding environment when possible. Otherwise, an oxygen reservoir or other source is utilized. In another embodiment, a reversible fuel cell assembly is used to pump oxygen and hydrogen into the system. Since a known amount of gas is pumped across the cell, the pressure produced can be determined, and thus, the device can be calibrated. An isolation valve system is used to allow the device to be calibrated in situ. Calibration is optionally automated so that calibration can be continuously monitored. The device is preferably a fully integrated MEMS device. Since the device can be calibrated without removing it from the process, reductions in costs and down time are realized.

  10. Advanced Geothermal Optical Transducer (AGOT)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-01

    Today's geothermal pressure-temperature measuring tools are short endurance, high value instruments, used sparingly because their loss is a major expense. In this project LEL offered to build and test a rugged, affordable, downhole sensor capable ofretuming an uninterrupted data stream at pressures and of 10,000 psi and temperatures up to 250 C, thus permitting continuous deep-well logging. It was proposed to meet the need by specializing LEL's patented 'Twin Column Transducer' technology to satisfy the demands of geothermal pressure/temperature measurements. TCT transducers have very few parts, none of which are moving parts, and all of which can be fabricated from high-temperature super alloys or from ceramics; the result is an extremely rugged device, essentially impervious to chemical attack and readily modified to operate at high pressure and temperature. To measure pressure and temperature they capitalize on the relative expansion of optical elements subjected to thermal or mechanical stresses; if one element is maintained at a reference pressure while the other is opened to ambient, the differential displacement then serves as a measure of pressure. A transducer responding to temperature rather than pressure is neatly created by 'inverting' the pressure-measuring design so that both deflecting structures see identical temperatures and temperature gradients, but whose thermal expansion coefficients are deliberately mismatched to give differential expansion. The starting point for development of a PT Tool was the company's model DPT feedback-stabilized 5,000 psi sensor (U.S. Patent 5,311,014, 'Optical Transducer for Measuring Downhole Pressure', claiming a pressure transducer capable of measuring static, dynamic, and true bi-directional differential pressure at high temperatures), shown in the upper portion of Figure 1. The DPT occupies a 1 x 2 x 4-inch volume, weighs 14 ounces, and is accurate to 1 percent of full

  11. Elongation Transducer For Tensile Tests

    Science.gov (United States)

    Roberts, Paul W.; Stokes, Thomas R.

    1994-01-01

    Extensometer transducer measures elongation of tensile-test specimen with negligible distortion of test results. Used in stress-versus-strain tests of small specimens of composite materials. Clamping stress distributed more evenly. Specimen clamped gently between jaw and facing surface of housing. Friction force of load points on conical tips onto specimen depends on compression of spring, adjusted by turning cover on housing. Limp, light nylon-insulated electrical leads impose minimal extraneous loads on measuring elements.

  12. Covert Channel Synthesis for Transducers

    OpenAIRE

    Benattar, Gilles; Bérard, Béatrice; Lime, Didier; Mullins, John; Roux, Olivier Henri; Sassolas, Mathieu

    2010-01-01

    Research report; Covert channels are a security threat for information systems, since they permit illegal flows, and sometimes leaks, of classified data. Although numerous descriptions have been given at a concrete level, relatively little work has been carried out at a more abstract level, outside probabilistic models. In this paper, we propose a definition of covert channels based on encoding and decoding binary messages with transducers, in a finite transition system. We first compare this...

  13. Nanomaterial-based biosensors using dual transducing elements for solution phase detection.

    Science.gov (United States)

    Li, Ning; Su, Xiaodi; Lu, Yi

    2015-05-07

    Biosensors incorporating nanomaterials have demonstrated superior performance compared to their conventional counterparts. Most reported sensors use nanomaterials as a single transducer of signals, while biosensor designs using dual transducing elements have emerged as new approaches to further improve overall sensing performance. This review focuses on recent developments in nanomaterial-based biosensors using dual transducing elements for solution phase detection. The review begins with a brief introduction of the commonly used nanomaterial transducers suitable for designing dual element sensors, including quantum dots, metal nanoparticles, upconversion nanoparticles, graphene, graphene oxide, carbon nanotubes, and carbon nanodots. This is followed by the presentation of the four basic design principles, namely Förster Resonance Energy Transfer (FRET), Amplified Fluorescence Polarization (AFP), Bio-barcode Assay (BCA) and Chemiluminescence (CL), involving either two kinds of nanomaterials, or one nanomaterial and an organic luminescent agent (e.g. organic dyes, luminescent polymers) as dual transducers. Biomolecular and chemical analytes or biological interactions are detected by their control of the assembly and disassembly of the two transducing elements that change the distance between them, the size of the fluorophore-containing composite, or the catalytic properties of the nanomaterial transducers, among other property changes. Comparative discussions on their respective design rules and overall performances are presented afterwards. Compared with the single transducer biosensor design, such a dual-transducer configuration exhibits much enhanced flexibility and design versatility, allowing biosensors to be more specifically devised for various purposes. The review ends by highlighting some of the further development opportunities in this field.

  14. Transducers

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    stream_size 27 stream_content_type text/plain stream_name Encycl_Microcomputers_18_335.pdf.txt stream_source_info Encycl_Microcomputers_18_335.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  15. High intensity ultrasound transducer used in gene transfection

    Science.gov (United States)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  16. LAVA Pressure Transducer Trade Study

    Science.gov (United States)

    Oltman, Samuel B.

    2016-01-01

    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  17. Circumferential phased array of shear-horizontal wave magnetostrictive patch transducers for pipe inspection.

    Science.gov (United States)

    Kim, Hoe Woong; Lee, Joo Kyung; Kim, Yoon Young

    2013-02-01

    Several investigations report effective uses of magnetostrictive patch transducers to generate and measure longitudinal and torsional guided waves in a pipe. They can be used to form a phased array for the circumferential inspection of pipes. Although there are circumferential phased arrays employing piezoelectric transducers or EMAT's, no magnetostrictive patch transducer based array system has been attempted. In this investigation, we aim to develop a circumferential phased magnetostrictive patch transducer (PMPT) array that can focus shear-horizontal waves at any target point on a cylindrical surface of a pipe. For the development, a specific configuration of a PMPT array employing six magnetostrictive patch transducers is proposed. A wave simulation model is also developed to determine time delays and amplitudes of signals generated by the transducers of the array. This model should be able to predict accurately the angular profiles of shear-horizontal waves generated by the transducers. For wave focusing, the time reversal idea will be utilized. The wave focusing ability of the developed PMPT array is tested with multiple-crack detection experiments. Imaging of localized surface inspection regions is also attempted by using wave signals measured by the developed PMPT array system.

  18. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L

    2016-01-01

    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  19. Mechanical and electrical characteristics of cymbal transducer

    Institute of Scientific and Technical Information of China (English)

    WANG Guangcan; ZHANG Jin; TIAN Wenjie; LIN Guoguang; LIAN Guandong; ZHANG Fuxue

    2005-01-01

    The electromechanical of Cymbal transducer has been researched. Under simple supporting condition, the mechanical and electrical characteristics have been analyzed by using Piezoelectric-elastic theory, Kirchhoff's thin shell vibration theory, Rayleigh-Ritz's theory and equivalent circuit method. The approximate solution and series resonance frequency equation have been given. Under no load, equivalent circuit, correlation parameters of cymbal transducer and the relations between the ratio of cavity depth to radius of Cymbal transducer with resonance frequency, electromechanical coupling coefficient of cymbal transducer have been researched. The best electromechanical coupling coefficient of cymbal transducer has been gained from the results of numerical analysis. It offers a valid theoretical foundation for optimum design of cymbal transducer.

  20. Analog circuit for controlling acoustic transducer arrays

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas S. (Cedar Crest, NM)

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  1. ERROR COMPENSATOR FOR A POSITION TRANSDUCER

    Science.gov (United States)

    Fowler, A.H.

    1962-06-12

    A device is designed for eliminating the effect of leadscrew errors in positioning machines in which linear motion of a slide is effected from rotary motion of a leadscrew. This is accomplished by providing a corrector cam mounted on the slide, a cam follower, and a transducer housing rotatable by the follower to compensate for all the reproducible errors in the transducer signal which can be related to the slide position. The transducer has an inner part which is movable with respect to the transducer housing. The transducer inner part is coupled to the means for rotating the leadscrew such that relative movement between this part and its housing will provide an output signal proportional to the position of the slide. The corrector cam and its follower perform the compensation by changing the angular position of the transducer housing by an amount that is a function of the slide position and the error at that position. (AEC)

  2. Finite State Transducers Approximating Hidden Markov Models

    CERN Document Server

    Kempe, A

    1999-01-01

    This paper describes the conversion of a Hidden Markov Model into a sequential transducer that closely approximates the behavior of the stochastic model. This transformation is especially advantageous for part-of-speech tagging because the resulting transducer can be composed with other transducers that encode correction rules for the most frequent tagging errors. The speed of tagging is also improved. The described methods have been implemented and successfully tested on six languages.

  3. Introduction to Piezoelectric Actuators and Transducers

    Science.gov (United States)

    2007-11-02

    1 Introduction to Piezoelectric Actuators and Transducers Kenji Uchino, International Center for Actuators and Transducers, Penn State University...REPORT DATE 00 JUN 2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Introduction to Piezoelectric Actuators and Transducers...now used in various fields. The sound source is made from piezoelectric ceramics as well as magnetostrictive materials. Piezoceramics are generally

  4. Finite Element Modeling for Ultrasonic Transducers (Preprint)

    Science.gov (United States)

    1998-02-27

    virtual prototyping of transducers . Fig. 18 shows a 3D model of a Tonpilz device for low frequency sensing in air. This classical design is usually used...coupled Tonpilz transducer . A thick, flexible matching layer is bonded to the face of the conical head-mass. 7. CONCLUSIONS This paper was intended as a...This is a preprint of a paper published in Proc. SPIE Int. Symp. Medical Imaging 1998, San Diego, Feb 21-27, 1998 Ultrasonic Transducer Engineering

  5. Transducer combination for high-quality ultrasound tomography based on speed of sound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hun; Park, Kwan Kyu [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-02-15

    The type of ultrasound transducer used influences the quality of a reconstructed ultrasound image. This study analyzed the effect of transducer type on ultrasound computed tomography (UCT) image quality. The UCT was modeled in an ultrasound simulator by using a 5 cm anatomy model and a ring-shape 5 MHz 128 transducer array, which considered attenuation, refraction, and reflection. Speed-of-sound images were reconstructed by the Radon transform as the UCT image modality. Acoustic impedance images were also reconstructed by the delayand-sum (DAS) method, which considered the speed of sound information. To determine the optimal combination of transducers in observation, point-source, flat, and focused transducers were tested in combination as trasmitters and receivers; UCT images were constructed from each combination. The combination of point-source/flat transducer as transmitting and receiving devices presented the best reconstructed image quality. In UCT implementation, the combination of a flat transducer for transmitting and a point transducer for receiving permitted acceptable image quality.

  6. Transducers in medical ultrasound: Part Three. Transducer applications in echocardiology.

    Science.gov (United States)

    Lancée, C T; Daigle, R; Sahn, D J; Thijssen, J M

    1985-09-01

    A comparison is made between phased arrays and mechanical sector scanners in transcutaneous echocardiographic applications. Aspects such as contact area, beam control, side lobes, grating lobes and image quality are discussed in the context of transducer frequency. The incorporation of simultaneous acquisition of Doppler velocity information and display of M-mode signals is considered. Transoesophageal and intraoperative scanning systems for cardiology are also compared, in particular linear arrays, phased arrays and mechanical scanners, and their advantages and disadvantages in relation to the above mentioned aspects are discussed. The general conclusion is that electronic sector scanners may have a considerably improved cost/benefit ratio in the near future and thereby will become the leading systems for echocardiography.

  7. The effect of transducer characteristics on the estimation of Nakagami paramater as a function of scatterer concentration.

    Science.gov (United States)

    Tsui, Po-Hsiang; Wang, Shyh-Hau

    2004-10-01

    The effect of transducer characteristics on the sensitivity of the Nakagami parameter to detect the variation of scatterer concentrations was studied. The rationale for this study stems from our pilot results which showed that the Nakagami parameters, estimated using a nonfocused transducer were not as sensitive as those of measurements using a commercial ultrasonic scanner in previous reports. This discrepancy may be attributed to the effects of transducer characteristics relative to the size of the resolution cell as verified by measurements of phantoms and 2-D computer simulations. The Nakagami parameter as a function of scatterer concentration was calculated using backscattered signals acquired from the scattering medium of different scatterer concentrations ranging from 2 to 32 scatterers/mm(3) using both 5 MHz nonfocused and focused transducers. Experimental and simulation results obtained from the nonfocused transducer represent that their respective Nakagami parameters increased from 1.17 to 1.31 and from 0.82 to 1.01 corresponding to the increase of scatterer concentrations. For the results obtained from the focused transducer, their average Nakagami parameters increased from 0.27 to 0.72 and from 0.33 to 0.81. These consistent results demonstrated that Nakagami parameter estimated using a focused transducer tends to be more sensitive than that by a nonfocused transducer to detect the variation of low scatterer concentration. This difference is fully due to the effect of transducer characteristics associated with the effective number of scatterers in the resolution cell.

  8. Inductively coupled transducer system for damage detection in composites

    Science.gov (United States)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2012-04-01

    The laminated construction of composite offers the possibility of permanently embedding sensors into structure, for example, ultrasonic transducers which can be used for NDE applications. An attractive and simple solution for probing embedded sensors wirelessly is via inductive coupling. However, before this can be achieved it is necessary to have a full understanding and proper design strategy for the inductively coupled system. This paper presents the developments of both system design procedure and a computer program for one dimensional inductively coupled transducer system mounted on a solid substrate. The design strategy in this paper mainly focuses on issues of localization of transducers, and optimizing the signal to noise level. Starting from a three coil equivalent circuit, this paper also explains how the measured impedance of a bonded piezoelectric disc is implemented into the system model representing a transducer bonded to an arbitrary solid substrate. The computer programme using this model provides immediate predictions of electrical input impedance, acoustic response and pulse-echo response. A series of experiments and calculations have been performed in order to validate the model. This has enabled the degree of accuracy required for various parameters within the model, such as mutual inductance between the coils and self-inductance of coils, to be assessed. Once validated, the model can be used as a tool to predict the effect of physical parameters, such as distance, lateral misalignment between the coils, and the coil geometry on the performance of an inductively coupled system.

  9. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.

  10. An evaluation of conflation accuracy using finite-state transducers

    OpenAIRE

    Galvez, Carmen; De-Moya-Anegón, Félix

    2006-01-01

    Purpose – To evaluate the accuracy of conflation methods based on Finite-State Transducers (FSTs). Design/methodology/approach – Incorrectly lemmatized and stemmed forms may lead to the retrieval of inappropriate documents. Experimental studies to date have focused on retrieval performance, but very few on conflation performance. The process of normalization we used involved a linguistic toolbox that allowed us to construct, through graphic interfaces, electronic dictionaries represented i...

  11. On the Development of Focused Ultrasound Liquid Atomizers

    Directory of Open Access Journals (Sweden)

    Ahmed M. Al-Jumaily

    2017-01-01

    Full Text Available This paper reviews the evolution of focused ultrasonic transducers of various kinds for fluid atomization and vaporization. Ultrasonic transducers used for atomization purposes in biomedical, pharmaceutical, or industrial applications, such as surface acoustic wave (SAW transducers, array of micromachined nozzles, and Fourier horn micromachined nozzles with or without a central channel, are all presented and compared. For simplicity of manufacturing and low cost, we focus on plates and curved and corrugated structures for biomedical humidification.

  12. Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy

    Science.gov (United States)

    Deán-Ben, X. Luís.; Estrada, Hector; Kneipp, Moritz; Turner, Jake; Razansky, Daniel

    2014-03-01

    Acoustic resolution optoacoustic microscopy is a powerful modality allowing imaging morphology and function at depths up to a few centimeters in biological tissues. This optoacoustic configuration is based on a spherically-focused ultrasonic transducer raster scanned on an accessible side of the sample to be imaged. Volumetric images can then be formed by stacking up the recorded time-resolved signals at the measured locations. However, the focusing capacity of a spherically-focused transducer depends on its aperture and the acoustic spectrum of the collected signals, which may lead to image artifacts if a simplistic reconstruction approach is employed. In this work, we make use of a model-based reconstruction procedure developed in three dimensions in order to account for the shape of spherically focused transducers in acoustic resolution optoacoustic microscopy set-ups. By discretizing the transducer shape to a set of sub-sensors, the resulting model incorporates the frequency-dependent transducer sensitivity for acquisition of broadband optoacoustic signals. Inversion of the full model incorporating the effects of the transducer shape is then performed iteratively. The obtained results indicate good performance of the method for absorbers of different size emitting optoacoustic waves with different frequency spectra.

  13. Development of high frequency annular array ultrasound transducers

    Science.gov (United States)

    Gottlieb, Emanuel John

    The advantage of ultrasonic annular arrays over conventional single element transducers has been in the ability to transmit focus at multiple points throughout the depth of field, as well as receive dynamic focus. Today, annular, linear and multidimensional array imaging systems are not commercially available at frequencies greater than 20 MHz. The fabrication technology used to develop a high frequency (>50 MHz) annular array transducer is presented. A 9 mum P(VDF-TrFE) film was bonded to gold annuli electrodes on the top layer of a two sided polyimide flexible circuit. Each annulus was separated by a 30 mum kerf and had several electroplated micro vias that connected to electrode traces on the bottom side of the polyimide flexible circuit. The array's performance was evaluated by measuring the electrical impedance, pulse echo response and crosstalk measurement for each element in the array. In order to improve device sensitivity each element was electrically matched to an impedance magnitude of 50 O and 0° phase at resonance. The average round trip insertion loss measured for the array and compensated for diffraction effects was -33.5 dB. The measured average center frequency and bandwidth of an element was 55 MHz and 47 respectively. The measured crosstalk between adjacent elements remained below -29 dB at the center frequency in water. A vertical wire phantom was imaged using a single focus transmit beamformer and dynamic focusing receive beamformer. This image showed a significant improvement in lateral resolution over a range of 9 mm after the dynamic focusing receive algorithm was applied. These results correlated well with predictions from a Field II simulation. After beamforming the minimum lateral resolution (-6 dB) was 108 mum at the focus. Preliminary ultrasound B-mode images of the rabbit eye using this transducer were shown in conjunction with a multi-channel digital beamformer. A feasibility study of designing and fabricating tunable copolymer

  14. Linearization of resistance thermometers and other transducers

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1970-01-01

    Given a resistive transducer which responds directly or indirectly to a physical quantity x, it is shown that the relationship may be linearized by linear methods if and only if both the resistance and conductance of the transducer are concave upward as functions of x. This result applies to eith...

  15. 21 CFR 870.2880 - Ultrasonic transducer.

    Science.gov (United States)

    2010-04-01

    ... structures. This device includes phased arrays and two-dimensional scanning transducers. (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic...

  16. Characterization of Ultrasonic Transducers. Measurement report

    DEFF Research Database (Denmark)

    Wilhjelm, Jens Erik

    1996-01-01

    This report contains the first results of a field measurement program for characterizing ultrasonic transducers in use at the Department. Specifically, a number of Panametrics Inc, transducers are characterized by using a 0.1 mm point scatterer as target, which is moved in front of the transdcuer....

  17. Pushdown machines for the macro tree transducer

    NARCIS (Netherlands)

    Engelfriet, Joost; Vogler, Heiko

    1986-01-01

    The macro tree transducer can be considered as a system of recursive function procedures with parameters, where the recursion is on a tree (e.g., the syntax tree of a program). We investigate characterizations of the class of tree (tree-to-string) translations which is induced by macro tree transduc

  18. Ultrasound transducer selection in clinical imaging practice.

    Science.gov (United States)

    Szabo, Thomas L; Lewin, Peter A

    2013-04-01

    Many types of medical ultrasound transducers are used in clinical practice. They operate at different center frequencies, have different physical dimensions, footprints, and shapes, and provide different image formats. However, little information is available about which transducers are most appropriate for a given application, and the purpose of this article is to address this deficiency. Specifically, the relationship between the transducer, imaging format, and clinical applications is discussed, and systematic selection criteria that allow matching of transducers to specific clinical needs are presented. These criteria include access to and coverage of the region of interest, maximum scan depth, and coverage of essential diagnostic modes required to optimize a patient's diagnosis. Three comprehensive figures organize and summarize the imaging planes, scanning modes, and types of diagnostic transducers to facilitate their selection in clinical diagnosis.

  19. Electromechanically active polymer transducers: research in Europe

    Science.gov (United States)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  20. Pad-printed thick-film transducers for high-frequency and high-power applications

    Science.gov (United States)

    Wolny, Wanda W.; Ketterling, Jeffrey A.; Levassort, Franck; Lou-Moeller, Rasmus; Filoux, Erwan; Mamou, Jonathan; Silverman, Ronald H.; Lethiecq, Marc

    2011-03-01

    High-frequency-ultrasound transducers are widely used but are typically based either on planar piezoceramic sections that are lapped down to smaller thicknesses or on piezopolymers that may be deformed into more complex geometries. Piezoceramics then require dicing to obtain arrays or can be fractured into spherical geometries to achieve focusing. Piezopolymers are not as efficient for very small element sizes and are normally available only in discrete thicknesses. Thick-film (TF) transducers provide a means of overcoming these limits because the piezoelectric film is deposited with the required thickness, size and geometry, thus avoiding any subsequent machining. Thick-film transducers offer the potential of a wide range of geometries such as single-elements and annular or linear arrays. Here, a single-element focused transducer was developed using a piezoceramic composition adapted to high-power operation which is commonly used at standard MHz frequencies. After fabrication, the transducer was characterized. Using specific transmit-receive electronics and a water tank adapted to high-frequency devices, the transducer was excited using a short pulse to evaluate its bandwidth and imaging capabilities. Finally, it was excited by a one-period sine wave using several power levels to evaluate its capacity to produce high-intensity focused ultrasound at frequencies over 20 MHz.

  1. Glass-windowed ultrasound transducers.

    Science.gov (United States)

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  2. Electrical modeling of dielectric elastomer stack transducers

    Science.gov (United States)

    Haus, Henry; Matysek, Marc; Moessinger, Holger; Flittner, Klaus; Schlaak, Helmut F.

    2013-04-01

    Performance of dielectric elastomer transducers (DEST) depends on mechanical and electrical parameters. For designing DEST it is therefore necessary to know the influences of these parameters on the overall performance. We show an electrical equivalent circuit valid for a transducer consisting of multiple layers and derive the electrical parameters of the circuit depending on transducers geometry and surface resistivity of the electrodes. This allows describing the DESTs dynamic behavior as a function of fabrication (layout, sheet and interconnection resistance), material (breakdown strength, permittivity) and driving (voltage) parameters. Using this electrical model transfer function and cut-off frequency are calculated, describing the influence of transducer capacitance, resistance and driving frequency on the achievable actuation deflection. Furthermore non ideal boundary effects influencing the capacitance value of the transducer are investigated by an electrostatic simulation and limits for presuming a simple plate capacitor model for calculating the transducer capacitance are derived. Results provide the plate capacitor model is a valid assumption for typical transducer configurations but for certain aspect ratios of electrode dimensions to dielectric thickness -- arising e.g. in the application of tactile interfaces -- the influence of boundary effects is to be considered.

  3. Modeling of functionally graded piezoelectric ultrasonic transducers.

    Science.gov (United States)

    Rubio, Wilfredo Montealegre; Buiochi, Flávio; Adamowski, Julio Cezar; Silva, Emílio Carlos Nelli

    2009-05-01

    The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.

  4. Seismic transducer modeling using ABAQUS

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Novascone

    2004-05-01

    A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the media’s physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.

  5. Hybrid piezoelectric energy harvesting transducer system

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  6. Piezoelectric pressure transducer technique for oxidizing atmospheres

    Science.gov (United States)

    Roberts, Ted A.; Burton, Rodney L.

    1992-07-01

    The diaphragm sensing tip of a high-speed piezoelectric pressure transducer can be destroyed when measuring transient impulse pressures in hot oxidizing atmospheres, e.g., oxygen at 3000 K and 34 atm for times of tens of milliseconds. A technique is presented to preserve the transducer under these conditions, which uses a protective layer of 0.025-0.050-mm-thick brass foil, held in place with double-sided tape. The integrity of the transducer is preserved, and the response time to a shock wave is increased from 1 to 2-6/microsec using the technique.

  7. Compact Orthomode Transducers Using Digital Polarization Synthesis

    CERN Document Server

    Morgan, Matthew A; Boyd, Tod A

    2010-01-01

    In this paper we present a novel class of compact orthomode transducers which use digital calibration to synthesize the desired polarization vectors while maintaining high isolation and minimizing mass and volume. These digital orthomode transducers consist of an arbitrary number of planar probes in a circular waveguide, each of which is connected to an independent receiver chain designed for stability of complex gain. The outputs of each receiver chain are then digitized and combined numerically with calibrated, complex coefficients. Measurements on two prototype digital orthomode transducers, one with three probes and one with four, show better than 50 dB polarization isolation over a 10 C temperature range with a single calibration.

  8. Characteristics of Ultrasonic Linear Motor that Incorporates Two Transducers at an Acute Angle

    Science.gov (United States)

    Suzuki, Atsuyuki; Tsunoji, Masaki; Tsujino, Jiromaru

    2013-07-01

    In this study, we have developed an ultrasonic linear motor that incorporates two transducers at an acute angle. The two transducers are used to generate the vertical and horizontal vibration components. The complex vibration is excited using two electrical sources with a phase shift. Ultrasonic motors have unique characteristics such as silent motion and absence of magnetic noise. These characteristics are suitable for use in hospitals and so on. Therefore, we focus on developing actuators for use in a medical bed, specifically a bedsore prevention bed. A study of the vibration characteristics of the motor showed that the resonant frequencies of the transducers were appropriate, although the vibration amplitude of one transducer was less than that of the other. A study of the load characteristics showed that a no-load speed of 267 mm/s and a maximum thrust of 40 N were obtained.

  9. Nondestructive Evaluation of Double Bevel T-Joint by Tandem Array Ultrasonic Transducer

    Science.gov (United States)

    Shirahata, H.; Miki, C.; Yamaguchi, R.

    2003-03-01

    The double bevel T-joint is one of the most fundamental joints of steel bridges. Double bevel T-joint can be seen at beam-column connection of bridge pier. In the Japanese specifications, the welding should be full penetration. However, weld defect of incomplete penetration could be left in the joint due to the lack of quality control in welding. Fatigue cracks can be propagated from the weld defects. The authors developed a tandem array transducer. The tandem array transducer consists of 10 elements aligned in the same direction. Tandem scanning can be simulated by the transducer. Image reconstruction of incomplete penetration by synthetic aperture focusing technique was carried out. The test results showed sufficient detectability of incomplete penetration by the tandem array transducer. Height of incomplete of penetration could be estimated.

  10. Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin

    2002-01-01

    the plane located directly below the transducer, but also from neighboring planes. A complete dataset for all elements for the whole rotation is acquired and stored. The volume is then focused from this complete data set in order to obtain dynamic transmit and receive focusing in all directions....

  11. Portable high precision pressure transducer system

    Science.gov (United States)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  12. Conductometric transducers for enzyme-based biosensors.

    Science.gov (United States)

    Mikkelsen, S R; Rechnitz, G A

    1989-08-01

    The use of alternating current conductometric transducers in biosensing devices has been investigated for urea and D-amino acid sensors using the enzyme systems urease and D-amino acid oxidase/catalase. Transducers with copper and platinum electrodes were constructed and characterized, and two enzyme immobilization methods were tested. Detection limits of 1 x 10(-6)M and linear ranges of 2 orders of magnitude were routinely achieved for these model sensors with enzymes covalently immobilized on collagen films.

  13. Performance of Honeywell silicon pressure transducers

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Nagvekar, S.; Prabhudesai, S.; Damodaran, V.

    strain gauge, semiconductor strain gauge, and quartz crystal beam. In this paper we examine the laboratory performance of a few temperature-compensated Honeywell silicon strain gauge pressure transducers based on their static calibration. 2. Silicon... Thin-Diaphragm Strain Gauge Pressure Transducer Although semiconductor materials such as germanium and silicon exhibit substantial temperature-dependence, they possess pressure-sensitivities several times that of metallic strain gauges. Silicon...

  14. Piezoelectric and Electrostrictive Materials for Transducer Applications.

    Science.gov (United States)

    1985-05-01

    Structure Ferroelastic Silicates" Alan Hain, Jr. B.S. Engineering Science, May 1984. "New Bimorph Structures with High Flexural Resonance Frequency" Eric ...Applications of PZT/Polymer Composite Materials,’ Ferroelectrics 39, 1245-1248 (1981). 22. Erikson , K.R. ’Tone-Burst Testing of Pulse-Echo Transducer...burst pulse-echo method described by Erikson [2]. A schematic diagram of the experimental set up is shown in Figure 1. The composite transducer was

  15. Design considerations for piezoelectric polymer ultrasound transducers.

    Science.gov (United States)

    Brown, L F

    2000-01-01

    Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.

  16. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  17. Comparison of piezoresistive and capacitive ultrasonic transducers

    Science.gov (United States)

    Neumann, John J.; Greve, David W.; Oppenheim, Irving J.

    2004-07-01

    MEMS ultrasonic transducers for flaw detection have heretofore been built as capacitive diaphragm-type devices. A diaphragm forms a moveable electrode, placed at a short gap from a stationary electrode, and diaphragm movement has been detected by capacitance change. Although several research teams have successfully demonstrated that technology, the detection of capacitance change is adversely affected by stray and parasitic capacitances, limiting the sensitivity of such transducers and typically requiring relatively large diaphragm areas. We describe the design and fabrication of what to our knowledge is the first CMOS-MEMS ultrasonic phased array transducer using piezoresistive strain sensing. Piezoresistors have been patterned within the diaphragms, and diaphragm movement creates bending strain which is detected by a bridge circuit, for which conductor losses will be less significant. The prospective advantage of such piezoresistive transducers is that sufficient sensitivity may be achieved with very small diaphragms. We compare transducer response under fluid-coupled ultrasonic excitation and report the experimental gauge factor for the piezoresistors. We also discuss the phased array performance of the transducer in sensing the direction of an incoming wave.

  18. Iterative reconstruction of the transducer surface velocity.

    Science.gov (United States)

    Alles, Erwin; van Dongen, Koen

    2013-05-01

    Ultrasound arrays used for medical imaging consist of many elements placed closely together. Ideally, each element vibrates independently. However, because of mechanical coupling, crosstalk between neighboring elements may occur. To quantify the amount of crosstalk, the transducer velocity distribution should be measured. In this work, a method is presented to reconstruct the velocity distribution from far-field pressure field measurements acquired over an arbitrary surface. The distribution is retrieved from the measurements by solving an integral equation, derived from the Rayleigh integral of the first kind, using a conjugate gradient inversion scheme. This approach has the advantages that it allows for arbitrary transducer and pressure field measurement geometries, as well as the application of regularization techniques. Numerical experiments show that measuring the pressure field along a hemisphere enclosing the transducer yields significantly more accurate reconstructions than measuring along a parallel plane. In addition, it is shown that an increase in accuracy is achieved when the assumption is made that all points on the transducer surface vibrate in phase. Finally, the method has been tested on an actual transducer with an active element of 700 × 200 μm which operates at a center frequency of 12.2 MHz. For this transducer, the velocity distribution has been reconstructed accurately to within 50 μm precision from pressure measurements at a distance of 1.98 mm (=16λ0) using a 200-μm-diameter needle hydrophone.

  19. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    Energy Technology Data Exchange (ETDEWEB)

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing 401121 (China); Song, Dan; Lei, Guangrong [National Engineering Research Center of Ultrasound Medicine, Chongqing 401121 (China); Lin, Zhou; Zhang, Dong, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [Institute of Acoustics, Key Laboratory of Modern Acoustics, MOE, Nanjing University, Nanjing 210093 (China); Wu, Junru [Department of Physics, University of Vermont, Burlington, VT 05405 (United States)

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  20. Finite element analysis of hysteresis effects in piezoelectric transducers

    Science.gov (United States)

    Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard

    2000-06-01

    The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.

  1. Ultrasonic guided wave focusing by a generalized phased array

    Science.gov (United States)

    Zhang, Bixing; Xie, Fuli; Dong, Hefeng; Gong, Junjie

    2013-01-01

    Ultrasonic guided wave focusing by a generalized phased array is studied based on dispersion curves in a multi-layered medium. The different phase of the guided waves with different frequency is added on the excitation signal on each element of the transducer array for focusing. This can be realized by designing a proper excitation pulse based on the dispersion curves of the guided waves for each of the transducer array elements. The numerical simulation results show that the guided waves with different modes, different frequency components, and from different elements of the transducer array can all be focused at the target and focusing is achieved.

  2. [Inductance transducers for borderline localization of metallic foreign bodies].

    Science.gov (United States)

    Pudov, V I; Reutov, Iu Ia; Korotkikh, S A

    1996-01-01

    The paper outlines the advantages and disadvantages of a ferroprobe inductance transducer used in the borderline localization of a foreign ferromagnetic body. To eliminate the ferroprobe transducer-inherent disadvantages, a whirl-current inductance transducer has been developed. The transducer localizes a foreign nonferromagnetic and ferromagnetic body in its borderline localization in the eye and in the whole body.

  3. 21 CFR 870.2890 - Vessel occlusion transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vessel occlusion transducer. 870.2890 Section 870... transducer. (a) Identification. A vessel occlusion transducer is a device used to provide an electrical..., sound, and ultrasonic transducers. (b) Classification. Class II (performance standards). ...

  4. 21 CFR 870.2850 - Extravascular blood pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extravascular blood pressure transducer. 870.2850... blood pressure transducer. (a) Identification. An extravascular blood pressure transducer is a device... proximal end of the transducer is connected to a pressure monitor that produces an analog or digital...

  5. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transducer signal amplifier and conditioner. 870... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier and conditioner is a device used to provide the excitation energy for the transducer and to amplify or condition...

  6. 21 CFR 870.2860 - Heart sound transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heart sound transducer. 870.2860 Section 870.2860...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2860 Heart sound transducer. (a) Identification. A heart sound transducer is an external transducer that exhibits a change in...

  7. Speech recognition algorithms based on weighted finite-state transducers

    CERN Document Server

    Hori, Takaaki

    2013-01-01

    This book introduces the theory, algorithms, and implementation techniques for efficient decoding in speech recognition mainly focusing on the Weighted Finite-State Transducer (WFST) approach. The decoding process for speech recognition is viewed as a search problem whose goal is to find a sequence of words that best matches an input speech signal. Since this process becomes computationally more expensive as the system vocabulary size increases, research has long been devoted to reducing the computational cost. Recently, the WFST approach has become an important state-of-the-art speech recogni

  8. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 4

    Science.gov (United States)

    1992-01-31

    resonant mode structure of the-composites; A more refined focus upon th,- perforumance of piezoelectric ceramic transducers, particularly under high...program it has now become clear that the relaxor ferroelcctrics are in fact close analugucs of the magnetic spin glasses, so that the spin glass...8217C Tceratuf M’ (C) (4) Pipgm 3. The dlecc comms ad st lossa ss funtion o at mpa a four frequaencies, 100Hz, 1000Hz& 10.000Hz. 100.000Hz Figum I (a

  9. Simulating arbitrary-geometry ultrasound transducers using triangles

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1996-01-01

    -echo field. The spatial impulse response has only been determined analytically for a few geometries and using apodization over the transducer surface generally makes it impossible to find the response analytically. A popular approach to find the general field is thus to split the aperture into small...... focused at different zones. The time-integrated spatial impulse response is used in the program to minimize the effect of the sharp edges of the spatial impulse response in a sampled signal. Since the integrated response from a triangular element cannot be analytically evaluated, a simple numerical...

  10. Some Strip Contributions to Transducer Design and Analysis

    Science.gov (United States)

    1989-04-28

    19951116 110 14. SUBJECT TERMS Sonar transducers , Tonpilz transducers , ku-mode transducers , 15. NUMBER OF PAGES Piezoelectric ceramic, Ceramic stack...PRACTICAL ILLUSTRATIONS OF THE SGM ANALYSIS ................. 149 B.1 THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER M O D E L...150 B.2 THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER MODEL: VARIABLE mH, FIXED mTAND com

  11. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  12. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  13. The simulation model of planar electrochemical transducer

    Science.gov (United States)

    Zhevnenko, D. A.; Vergeles, S. S.; Krishtop, T. V.; Tereshonok, D. V.; Gornev, E. S.; Krishtop, V. G.

    2016-12-01

    Planar electrochemical systems are very perspective to build modern motion and pressure sensors. Planar microelectronic technology is successfully used for electrochemical transducer of motion parameters. These systems are characterized by an exceptionally high sensitivity towards mechanic exposure due to high rate of conversion of the mechanic signal to electric current. In this work, we have developed a mathematical model of this planar electrochemical system, which detects the mechanical signals. We simulate the processes of mass and charge transfer in planar electrochemical transducer and calculated its transfer function with different geometrical parameters of the system.

  14. High-intensity, focused ultrasonic fields

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1988-01-01

    distribution, etc. involving nonlinearity, diffraction, and absorption in the high-intensity focused ultrasonic fields produced by an ellipsoid as well as a spherical cap focusing geometry. Data from the development of an ESWL of the piezoelectric disk type are reported including demands to transducers...

  15. Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging

    Directory of Open Access Journals (Sweden)

    Congzhi Wang

    2016-11-01

    Full Text Available Plane-wave ultrasound imaging (PWUS has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT; the other one was a traditional elevation-focalized transducer (EFT. An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS.

  16. Applications of the Method for Transducer Transient Suppression to Various Transducer Types

    Science.gov (United States)

    1993-08-01

    previously. These types are (i) flexural disk, (ii) Helmholtz resonator, (iii) moving coil, (iv) inductor-tuned Tonpilz , and (v)a dual transducer array of...previously. These types are (i) flexural disk. (ii) Helmholtz resonator, (iii) moving coil, (iv) inductor-tuned Tonpilz , and (v) a dual transducer array of...cycle case, we findV(O -- t-- +i, R (t;>r. even number of half-cycles), (3) FIG. 2. Equivalent circuit for an inductor-tuned Tonpilz transducer . The

  17. Transducer-based evaluation of tremor.

    Science.gov (United States)

    Haubenberger, Dietrich; Abbruzzese, Giovanni; Bain, Peter G; Bajaj, Nin; Benito-León, Julián; Bhatia, Kailash P; Deuschl, Günther; Forjaz, Maria João; Hallett, Mark; Louis, Elan D; Lyons, Kelly E; Mestre, Tiago A; Raethjen, Jan; Stamelou, Maria; Tan, Eng-King; Testa, Claudia M; Elble, Rodger J

    2016-09-01

    The International Parkinson and Movement Disorder Society established a task force on tremor that reviewed the use of transducer-based measures in the quantification and characterization of tremor. Studies of accelerometry, electromyography, activity monitoring, gyroscopy, digitizing tablet-based measures, vocal acoustic analysis, and several other transducer-based methods were identified by searching PubMed.gov. The availability, use, acceptability, reliability, validity, and responsiveness were reviewed for each measure using the following criteria: (1) used in the assessment of tremor; (2) used in published studies by people other than the developers; and (3) adequate clinimetric testing. Accelerometry, gyroscopy, electromyography, and digitizing tablet-based measures fulfilled all three criteria. Compared to rating scales, transducers are far more sensitive to changes in tremor amplitude and frequency, but they do not appear to be more capable of detecting a change that exceeds random variability in tremor amplitude (minimum detectable change). The use of transducer-based measures requires careful attention to their limitations and validity in a particular clinical or research setting. © 2016 International Parkinson and Movement Disorder Society.

  18. Broadband, High-Temperature Ultrasonic Transducer

    Science.gov (United States)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  19. Pressure compensated transducer system with constrained diaphragm

    Science.gov (United States)

    Percy, Joseph L.

    1992-08-01

    An acoustic source apparatus has an acoustic transducer that is enclosed in a substantially rigid and watertight enclosure to resist the pressure of water on the transducer and to seal the transducer from the water. The enclosure has an opening through which acoustic signals pass and over which is placed a resilient, expandable and substantially water-impermeable diaphragm. A net stiffens and strengthens the diaphragm as well as constrains the diaphragm from overexpansion or from migrating due to buoyancy forces. Pressurized gas, regulated at slightly above ambient pressure, is supplied to the enclosure and the diaphragm to compensate for underwater ambient pressures. Gas pressure regulated at above ambient pressure is used to selectively tune the pressure levels within the enclosure and diaphragm so that diaphragm resonance can be achieved. Controls are used to selectively fill, as well as vent the enclosure and diaphragm during system descent and ascent, respectively. A signal link is used to activate these controls and to provide the driving force for the acoustic transducer.

  20. An IVUS Transducer for Microbubble Therapies

    Science.gov (United States)

    Kilroy, Joseph P.; Patil, Abhay V.; Rychak, Joshua J.; Hossack, John A.

    2014-01-01

    There is interest in examining the potential of modified intravascular ultrasound (IVUS) catheters to facilitate dual diagnostic and therapeutic roles using ultrasound plus microbubbles for localized drug delivery to the vessel wall. The goal of this study was to design, prototype, and validate an IVUS transducer for microbubble-based drug delivery. A 1-D acoustic radiation force model and finite element analysis guided the design of a 1.5-MHz IVUS transducer. Using the IVUS transducer, biotinylated microbubbles were displaced in water and bovine whole blood to the streptavidin-coated wall of a flow phantom by a 1.5-MHz center frequency, peak negative pressure = 70 kPa pulse with varying pulse repetition frequency (PRF) while monitoring microbubble adhesion with ultrasound. A fit was applied to the RF data to extract a time constant (τ). As PRF was increased in water, the time constant decreased (τ = 32.6 s, 1 kHz vs. τ = 8.2 s, 6 kHz), whereas in bovine whole blood an adhesion–no adhesion transition was found for PRFs ≥ 8 kHz. Finally, a fluorophore was delivered to an ex vivo swine artery using microbubbles and the IVUS transducer, resulting in a 6.6-fold increase in fluorescence. These results indicate the importance of PRF (or duty factor) for IVUS acoustic radiation force microbubble displacement and the potential for IVUS and microbubbles to provide localized drug delivery. PMID:24569249

  1. Eliminating transducer distortion in acoustic measurements

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Torras Rosell, Antoni; McWalter, Richard Ian

    2014-01-01

    This paper investigates the in uence of nonlinear components that contaminate the linear response of acoustic transducer, and presents a method for eliminating the in uence of nonlinearities in acoustic measurements. The method is evaluated on simulated as well as experimental data, and is shown...

  2. Pushdown machines for the macro tree transducer

    NARCIS (Netherlands)

    Engelfriet, Joost; Vogler, Heiko

    1986-01-01

    The macro tree transducer can be considered as a system of recursive function procedures with parameters, where the recursion is on a tree (e.g., the syntax tree of a program). We investigate characterizations of the class of tree (tree-to-string) translations which is induced by macro tree

  3. Analysis of multifrequency langevin composite ultrasonic transducers.

    Science.gov (United States)

    Lin, Shuyu

    2009-09-01

    The multimode coupled vibration of Langevin composite ultrasonic transducers with conical metal mass of large cross-section is analyzed. The coupled resonance and anti-resonance frequency equations are derived and the effective electromechanical coupling coefficient is analyzed. The effect of the geometrical dimensions on the resonance frequency, the anti-resonance frequency, and the effective electromechanical coupling coefficient is studied. It is illustrated that when the radial dimension is large compared with the longitudinal dimension, the vibration of the Langevin transducer becomes a multifrequency multimode coupled vibration. Numerical methods are used to simulate the coupled vibration; the simulated results are in good agreement with those from the analytical results. Some Langevin transducers of large cross-section are designed and manufactured and their resonance frequencies are measured. It can be seen that the resonance frequencies obtained from the coupled resonance frequency equations are in good agreement with the measured results. It is expected that by properly choosing the dimensions, multifrequency Langevin transducers can be designed and used in ultrasonic cleaning, ultrasonic sonochemistry, and other applications.

  4. Evolvable Cryogenics (ECRYO) Pressure Transducer Calibration Test

    Science.gov (United States)

    Diaz, Carlos E., Jr.

    2015-01-01

    This paper provides a summary of the findings of recent activities conducted by Marshall Space Flight Center's (MSFC) In-Space Propulsion Branch and MSFC's Metrology and Calibration Lab to assess the performance of current "state of the art" pressure transducers for use in long duration storage and transfer of cryogenic propellants. A brief historical narrative in this paper describes the Evolvable Cryogenics program and the relevance of these activities to the program. This paper also provides a review of three separate test activities performed throughout this effort, including: (1) the calibration of several pressure transducer designs in a liquid nitrogen cryogenic environmental chamber, (2) the calibration of a pressure transducer in a liquid helium Dewar, and (3) the calibration of several pressure transducers at temperatures ranging from 20 to 70 degrees Kelvin (K) using a "cryostat" environmental chamber. These three separate test activities allowed for study of the sensors along a temperature range from 4 to 300 K. The combined data shows that both the slope and intercept of the sensor's calibration curve vary as a function of temperature. This homogeneous function is contrary to the linearly decreasing relationship assumed at the start of this investigation. Consequently, the data demonstrates the need for lookup tables to change the slope and intercept used by any data acquisition system. This ultimately would allow for more accurate pressure measurements at the desired temperature range. This paper concludes with a review of a request for information (RFI) survey conducted amongst different suppliers to determine the availability of current "state of the art" flight-qualified pressure transducers. The survey identifies requirements that are most difficult for the suppliers to meet, most notably the capability to validate the sensor's performance at temperatures below 70 K.

  5. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging

    National Research Council Canada - National Science Library

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    .... Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays...

  6. Development of High-Performance BS-PT Based Piezoelectric Transducers for High-Temperature Applications

    OpenAIRE

    Li, Yu-Hung; Kim, Sang-Jong; Salowitz, Nathan; Chang, Fu-Kuo

    2014-01-01

    International audience; This paper focuses on developing new BiScO3-PbTiO3 (BS-PT) based piezoelectric ceramic transducers for high-temperature SHM applications. By controlling the PbO deficiency in the material system, we modify the lossy ferroelectric properties and enhance the piezoelectric responses from the intrinsic BS-PT. The new in-house fabricated piezoelectric transducers can maintain comparably high piezoelectric responses at temperatures up to 350ÁC continuously for at least 10 ho...

  7. A wideband combined transducer for measuring system in sound tube

    Institute of Scientific and Technical Information of China (English)

    PAN Yaozong; MO Xiping; LIU Yongping; CUI Zheng; ZHANG Tonggen

    2012-01-01

    A wideband transducer for sound tube system is presented, which combines longitudinal transducer and Class IV flextensional transducer to improve the performance at low frequency and broaden the working band. The equivalent circuit is obtained and used to analyze the coupling mechanism between longitudinal transducer and flextensional transducer. A prototype of the transducer is developed after optimizing the electro-acoustic performances by Finite Element Method. The standing wave in the sound tube stimulated by this transducer has been studied and the sound absorbing coefficients of two acoustic materials samples are measured using this sound tube, which shows that the transducer can meet the requirements of acoustic material measurement with the working band ranging from 1.4 kHz to 23 kHz.

  8. A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer.

    Science.gov (United States)

    Urban, Matthew W; Chalek, Carl; Haider, Bruno; Thomenius, Kai E; Fatemi, Mostafa; Alizad, Azra

    2013-03-01

    Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using 1-D linear-array transducers. In this article, we discuss VA beamforming and image formation using a 1.75-D array transducer. A 1.75-D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75-D array over a 1-D linear-array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75-D array transducer offers several advantages over scanning with a linear-array transducer, including improved image resolution and contrast resulting from better elevation focusing of the imaging point-spread function.

  9. A Beamforming Study for Implementation of Vibro-acoustography with a 1.75D Array Transducer

    Science.gov (United States)

    Urban, Matthew W.; Chalek, Carl; Haider, Bruno; Thomenius, Kai E.; Fatemi, Mostafa; Alizad, Azra

    2013-01-01

    Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using one-dimensional (1D) linear array transducers. In this article, we discuss VA beamforming and image formation using a 1.75D array transducer. A 1.75D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75D array over a 1D linear array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75D array transducer offers several advantages over scanning with a linear array transducer including improved image resolution and contrast due to better elevation focusing of the imaging point-spread function. PMID:23475919

  10. Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers

    OpenAIRE

    Nie, Liming; Guo, Zijian; Wang, Lihong V.

    2011-01-01

    A photoacoustic tomography system (PAT) using virtual point ultrasonic transducers was developed and applied to image a monkey brain. The custom-built transducers provide a 10-fold greater field-of-view (FOV) than finite-aperture unfocused transducers as well as an improved signal-to-noise ratio (SNR) and reduced artifacts rather than negative-lens transducers. Their tangential resolution, radial resolution, and (SNR) improvements were quantified using tissue phantoms. Our PAT system can achi...

  11. A parametric study of ultrasonic beam profiles for a linear phased array transducer.

    Science.gov (United States)

    Lee, J H; Choi, S W

    2000-01-01

    A numerical simulation model is presented to investigate the influences of design parameters of linear phased array transducers on beam focusing and steering performance. The characteristic of ultrasonic beam profiles has been simulated on the basis of the Huygen's superposition principle. For the simulation, a linear phased array is considered as the composition of finite number of elements separated by equidistance. Individual elements are considered as two-dimensional point sources. The waves generated from piezoelectric elements are considered as simplified transient ultrasonic waves that are constructed with the cosine function enveloped with a Hanning window. The characteristic of ultrasonic wave propagation into a medium from the phased array transducer is described. The effects of the number, the interelement spacing, steering angle, the focal length, and frequency bandwidth of the piezoelectric elements on beam directivity and ultrasonic pressure field in a linear phased array transducer are systematically discussed.

  12. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.

    Science.gov (United States)

    Zhao, Xinyu; Gang, Tie

    2009-01-01

    A nonparaxial multi-Gaussian beam model is proposed in order to overcome the limitation that paraxial Gaussian beam models lose accuracy in simulating the beam steering behavior of phased array transducers. Using this nonparaxial multi-Gaussian beam model, the focusing and steering sound fields generated by an ultrasonic linear phased array transducer are calculated and compared with the corresponding results obtained by paraxial multi-Gaussian beam model and more exact Rayleigh-Sommerfeld integral model. In addition, with help of this novel nonparaxial method, an ultrasonic measurement model is provided to investigate the sensitivity of linear phased array transducers versus steering angles. Also the comparisons of model predictions with experimental results are presented to certify the accuracy of this provided measurement model.

  13. Integrated ultrasonic transducers made by the sol gel spray technique for structural health monitoring

    Science.gov (United States)

    Kobayashi, M.; Jen, C.-K.; Moisan, J.-F.; Mrad, N.; Nguyen, S. B.

    2007-04-01

    Integrated piezoelectric-based ultrasonic transducers (UTs) have been developed for potential structural health monitoring. Fabrication techniques and performance evaluation of these transducers at selected monitoring sites are presented. Our novel transducer fabrication approach focuses on the use of handheld and readily accessible equipment to perform sol-gel spray coating, including the use of a heat gun or a torch, to carry out drying and firing, poling and electrode fabrication. The application of these integrated UTs for thickness measurement of graphite/epoxy composites, thickness monitoring of ice build up on aluminum plates at low temperatures, viscosity measurement of a cooling oil flow at temperatures up to 160 °C and monitoring metal debris in cooling oil engines is demonstrated.

  14. An ultrasonic--EMG transducer for biodynamic research.

    Science.gov (United States)

    Watkin, K L; Minifie, F D; Kennedy, J G

    1978-03-01

    This note describes a newly developed single-element muscle action potential/motion transducer. The transcuer was specially designed for speech research. Techniques for use of the transducer are described. Sample data are presented illustrating the capability of the transducer, and applications of the device are discussed.

  15. 21 CFR 890.1615 - Miniature pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Miniature pressure transducer. 890.1615 Section 890.1615 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Miniature pressure transducer. (a) Identification. A miniature pressure transducer is a device intended for...

  16. 21 CFR 868.2900 - Gas pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas pressure transducer. 868.2900 Section 868.2900...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2900 Gas pressure transducer. (a) Identification. A gas pressure transducer is a device intended for medical purposes that is used to convert gas...

  17. 21 CFR 868.2885 - Gas flow transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas flow transducer. 868.2885 Section 868.2885...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2885 Gas flow transducer. (a) Identification. A gas flow transducer is a device intended for medical purposes that is used to convert gas flow...

  18. 21 CFR 870.2870 - Catheter tip pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Catheter tip pressure transducer. 870.2870 Section 870.2870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pressure transducer. (a) Identification. A catheter tip pressure transducer is a device incorporated into...

  19. 21 CFR 870.2840 - Apex cardiographic transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Apex cardiographic transducer. 870.2840 Section 870.2840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... cardiographic transducer. (a) Identification. An apex cardiographic transducer is a device used to detect motion...

  20. 21 CFR 868.2875 - Differential pressure transducer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Differential pressure transducer. 868.2875 Section 868.2875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... transducer. (a) Identification. A differential pressure transducer is a two-chambered device intended for...

  1. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys

    2017-01-01

    Full Text Available Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  2. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    Science.gov (United States)

    Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina

    2017-01-01

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space. PMID:28067807

  3. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals.

    Science.gov (United States)

    Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina

    2017-01-06

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer -11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  4. Thickness design, fabrication, and evaluation of 100-MHz polyurea ultrasonic transducer.

    Science.gov (United States)

    Nakazawa, Marie; Tabaru, Masaya; Aoyagi, Takahiro; Nakamura, Kentaro; Ueha, Sadayuki

    2013-10-01

    In this paper, we present a polyurea transducer that works at 100 MHz under water. The transducer was designed using an equivalent circuit model so that an aluminum (top)-polyurea-aluminum (bottom)-polyimide layer had a resonant frequency of 100 MHz and output sound pressure became maximum at that frequency. The thicknesses of the top aluminum electrode, polyurea, and bottom aluminum electrode were determined to be 3.3, 3.5, and 1.7 μm, respectively. A 100-MHz polyurea transducer with the designed thickness was fabricated using deposition equipment. To evaluate the performance of the designed and fabricated polyurea transducer, transmission-reception experiments with pulsed and burst waves were carried out. The results show that transmitting and receiving ultrasounds at a frequency of 100 MHz are possible as expected with the thickness design. To evaluate actual use, B-mode imaging of an onion was also performed using the transducer, which was formed into a line-focused shape. The result shows that the outer layer of the onion, of 0.1 to 0.2 mm thickness, was successfully imaged.

  5. 线聚焦无镜头式聚偏氟乙烯超声探头的研制及V(f,z)分析法在表面波波速测量中的应用%Design, Fabrication of Line-focus Lens-less Polyvinylidene Fluoride Transducers and Applications on Measuring Surface Acoustic Waves with V(f, z) Analytical Method

    Institute of Scientific and Technical Information of China (English)

    何存富; 吕炎; 宋国荣; 吴斌; 李永春

    2011-01-01

    Line-focus-beam ultrasonic material property characterization system enables accurate measurements on the phase velocities of leaky surface acoustic waves(LSAW) or rayleigh-type leaky surface acoustic waves. But in view of the lens of the conventional acoustic microscopy is expensive and difficult to produce, new method of design and fabrication of two line-focus lens-less polyvinylidene fluoride(PVDF) transducers is presented for acoustic microscopy system utilizing a 40 urn thick piezoelectric PVDF film to construct the active element. The transducers introduced here centre around 5 MHz and 11 MHz respectively. Different from high cost of equipments and measuring the oscillation period △Z on an operation of tone-burst mode, an improved V(f, z) method based on tow-dimensional Fourier transform is developed for the broadband measurements. A defocusing system for measuring surface acoustic waves is established and a non-contact immersion experiment of a polished fused quartz is carried out. The LSAW velocity extracted by V(f, z) analytical technique is compared with the theoretical one and they both are in good agreement.%线聚焦式超声材料性质表征系统可以对水浸试样漏表面波或类漏表面波的相速度进行精确的测量,但鉴于传统超声显微镜镜头的材料昂贵且制作困难,采用厚度为40 μm的聚偏氟乙烯(Polyvinylidene fluoride,PVDF)压电薄膜作为激励/接收元件,设计、制作两个应用于声学显微系统的线聚焦无镜头式PVDF超声换能器,其中心频率分别为5 MHz和11 MHz.区别于传统超声显微镜高昂的设备费用与利用单频V(z)曲线测量空间振荡周期△z的方法,基于二维傅里叶变换开发出一种改进的适用于宽频的V(f,z)分析法,并发展建立一套成本较低的用于测量材料漏表面波波速的散焦试验系统.为测试换能器、算法和整体系统的性能,对抛光熔融石英进行非接触式水浸超声试验,利用V(f,z)分析法

  6. Optomechanical transducers for quantum information processing

    CERN Document Server

    Stannigel, K; Sørensen, A S; Lukin, M D; Zoller, P

    2011-01-01

    We discuss the implementation of optical quantum networks where the interface between stationary and photonic qubits is realized by optomechanical transducers [K. Stannigel et al., PRL 105, 220501 (2010)]. This approach does not rely on the optical properties of the qubit and thereby enables optical quantum communication applications for a wide range of solid-state spin- and charge-based systems. We present an effective description of such networks for many qubits and give a derivation of a state transfer protocol for long-distance quantum communication. We also describe how to mediate local on-chip interactions by means of the optomechanical transducers that can be used for entangling gates. We finally discuss experimental systems for the realization of our proposal.

  7. Electromechanical transducer for acoustic telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas S. (Cedar Crest, NM)

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  8. Electromechanical transducer for acoustic telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  9. Hybrid neural network models of transducers

    Science.gov (United States)

    Xie, Shilin; Zhang, Xinong; Chen, Shenglai; Zhu, Changchun

    2011-10-01

    A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input-single output and multi input-multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance.

  10. Orbital angular momentum-entanglement frequency transducer

    CERN Document Server

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the information carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 nm to 525 nm for OAM qubits, OAMpolarization hybrid entangled states, and OAM entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link betwe...

  11. Self-Aligned Interdigitated Transducers for Acoustofluidics

    Directory of Open Access Journals (Sweden)

    Zhichao Ma

    2016-11-01

    Full Text Available The surface acoustic wave (SAW is effective for the manipulation of fluids and particles at microscale. The current approach of integrating interdigitated transducers (IDTs for SAW generation into microfluidic channels involves complex and laborious microfabrication steps. These steps often require full access to clean room facilities and hours to align the transducers to the precise location. This work presents an affordable and innovative method for fabricating SAW-based microfluidic devices without the need for clean room facilities and alignment. The IDTs and microfluidic channels are fabricated using the same process and thus are precisely self-aligned in accordance with the device design. With the use of the developed fabrication approach, a few types of different SAW-based microfluidic devices have been fabricated and demonstrated for particle separation and active droplet generation.

  12. Transducer Arrays Suitable for Acoustic Imaging

    Science.gov (United States)

    1978-06-01

    extensional resonance of a thin plate. The stif- fened velocity and acoustic im.pedance of the transducer can be defined then as follows: ,,,D 1/2 󈧥 (3...finite radius performing rotaticnal oscillations about its center. Case (a) is identical to the cne evaluated in this pape-. The integrals in...Poisson’s ratio. For (k.L) > I , the impedance is essen- tially real and oscillates slowly about the longitudinal plane wave impedance. Below (k,L) = 1

  13. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  14. Transducer Analysis and ATILA++ Model Development

    Science.gov (United States)

    2016-10-10

    the ATILA finite element software package. This will greatly enhance the state-of-the-art in transducer performance prediction and provide a tool...The free dielectric constants for soft crystals show significant change with preload which affects device impedance and amplifier considerations...under Static Preload An apparatus and software control system have been fabricated and developed for evaluating the behavior of materials under high

  15. Characterization of transducer cavities to oscillatory inputs

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Hollingshead, J.R.

    1993-12-31

    The design and use of measurement systems must ensure that the data are not computed by the measurement system. A wide variety of sources can be responsible for compromising the integrity of test data. Among the sources of error are transducer calibration errors, signal conditioning problems, recording problems, and characteristics of the mechanical system which introduce errors. In this paper, the characteristics of an acoustic cavity are discussed as they apply to a pressure measurement problem.

  16. Micromachined capacitive transducer arrays for intravascular ultrasound

    Science.gov (United States)

    Degertekin, F. Levent; Guldiken, R. Oytun; Karaman, Mustafa

    2005-01-01

    Intravascular ultrasound (IVUS) imaging has become an essential imaging modality for the effective diagnosis and treatment of cardiovascular diseases during the past decade enabled by innovative applications of piezoelectric transducer technology. The limitations in the manufacture and performance of the same piezoelectric transducers have also impeded the improvement of IVUS for emerging clinically important applications such as forward viewing arrays for guiding interventions and high resolution imaging of arterial structure such as vulnerable plaque and fibrous cap, and also implementation of techniques such as harmonic imaging of the tissue and of the contrast agents. Capacitive micromachined ultrasonic transducer (CMUT) technology shows great potential for transforming IVUS not only to satisfy these clinical needs but also to open up possibilities for low-cost imaging devices integrated to therapeutic tools. We have developed manufacturing processes with a maximum process temperature of 250°C to build CMUTs on the same silicon chip with integrated electronics. Using these processes we fabricated CMUT arrays suitable for forward viewing IVUS in the 10-20MHz range. We characterized these array elements in terms of pulse-echo response, radiation pattern measurements and demonstrated its volumetric imaging capabilities on various imaging targets.

  17. Enhanced C-band Coaxial Orthomode Transducer

    Directory of Open Access Journals (Sweden)

    S. I. Piltyay

    2014-09-01

    Full Text Available Introduction. In this paper a novel configuration of wideband coherent coaxial OMT is presented. General Design of an Orthomode Transducer. The OMT consists of elements of 3 main types: a turnstile junction between coaxial quad-ridged waveguide and 4 coaxial transmission lines; 4 coaxial transmission lines of LMR400 type; 2 antiphase power combiners/dividers. A Turnstile Junction Optimization. The optimization of a turnstile junction has been performed. Its minimized reflection coefficient is less than −28 dB in the operation frequency band 3.4–5.4 GHz. A Wideband Antiphase Power Combiner/Divider. The optimization of an antiphase power combiner/divider has been performed. Its minimized reflection coefficient is less than −38 dB. Characteristics of Coaxial Orthomode Transducer Developed. The simulation of OMT characteristics has been performed using CST Design Studio software. Conclusions. A wideband coherent coaxial orthomode transducer has been developed for the operation frequency band 3.4–5.4 GHz. In this frequency band the reflection coefficient of OMT is less than −24 dB and its crosspolar isolation exceeds 38 dB. The wideband coaxial OMT developed can be used in dual-polarized multiband antennas for satellite telecommunications and for radioastronomy.

  18. Stress Sensors and Signal Transducers in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Sergey Kryazhov

    2010-03-01

    Full Text Available In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks, 12 genes for serine-threonine protein kinases (Spks, 42 genes for response regulators (Rres, seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress.

  19. Cross-fiber Bragg grating transducer

    Science.gov (United States)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  20. A Neoprene with Optimized Bondability for Sonar Transducer Applications

    Science.gov (United States)

    1987-06-05

    TR-317R TRANSDUCER The TR-317R is a tonpilz transducer mounted in a large spherical array on the front of U.S. Navy submarines of several classes... TRANSDUCER APPLICATIONS TASK NO. 59-0593-0 [SQ-ns«A-n WORK UNIT ACCESSION NO. )N880-326 12. PERSONAL AUTHOR(S) "^ ^Zl!l ^’ ’^’^°"’P"°" ^"i... Transducer Applications tX: C. M. Thompson Materials Section Transducer Branch Underwater Sound Reference Detachment Naval Research Laboratory P.O

  1. Language of Transducer Manipulation: Codifying Terms for Effective Teaching.

    Science.gov (United States)

    Bahner, David P; Blickendorf, J Matthew; Bockbrader, Marcia; Adkins, Eric; Vira, Amar; Boulger, Creagh; Panchal, Ashish R

    2016-01-01

    There is a need for consistent, repetitive, and reliable terminology to describe the basic manipulations of the ultrasound transducer. Previously, 5 basic transducer motions have been defined and used in education. However, even with this effort, there is still a lack of consistency and clarity in describing transducer manipulation and motion. In this technical innovation, we describe an expanded definition of transducer motions, which include movements to change the transducer's angle of insonation to the target as well as the location on the body to optimize the ultrasound image. This new terminology may allow for consistent teaching and improved communication in the process of image acquisition.

  2. Research on recognition of ramp angle based on transducer

    Directory of Open Access Journals (Sweden)

    Wenhao GU

    2015-12-01

    Full Text Available Focusing on the recognition of ramp angle, the relationship between the signal of vehicle transducer and real ramp angle is studied. The force change of vehicle on the ramp, and the relationship between the body tilt angle and front and rear suspension scale is discussed. According to the suspension and tire deformation, error angle of the ramp angle is deduced. A mathematical model is established with Matlab/Simulink and used for simulation to generate error curve of ramp angle. The results show that the error angle increases with the increasing of the ramp angle, and the limit value can reach 6.5%, while the identification method can effectively eliminate this error, and enhance the accuracy of ramp angle recognition.

  3. Ultrasonic characterization of a fluid layer using a broadband transducer.

    Science.gov (United States)

    Samet, Naïm; Maréchal, Pierre; Duflo, Hugues

    2012-03-01

    A measurement method is proposed for the ultrasonic characterization of a fluid layer, corresponding to the resin transfer molding (RTM) manufacturing process. The ultrasonic velocity and attenuation of the silicone oil are measured in three samples having different viscosities. The measurement method is established on the basis of the attenuation of ultrasonic waves in fluids. A correction of the beam diffraction is implemented to improve measurement precision. A single element transducer with central frequency of 15 MHz is used. The tested fluids simulate the industrial resin used to manufacture composite materials. When injecting this resin, its viscosity increases until it reaches a critical state of polymerization. In this paper we focus on ultrasonic characterization of three fluids representing three intermediate cases of fluid resin during its injection before reaching the polymerization state.

  4. Small, fast, and tough: Shrinking down integrated elastomer transducers

    Science.gov (United States)

    Rosset, Samuel; Shea, Herbert R.

    2016-09-01

    We review recent progress in miniaturized dielectric elastomer actuators (DEAs), sensors, and energy harvesters. We focus primarily on configurations where the large strain, high compliance, stretchability, and high level of integration offered by dielectric elastomer transducers provide significant advantages over other mm or μm-scale transduction technologies. We first present the most active application areas, including: tunable optics, soft robotics, haptics, micro fluidics, biomedical devices, and stretchable sensors. We then discuss the fabrication challenges related to miniaturization, such as thin membrane fabrication, precise patterning of compliant electrodes, and reliable batch fabrication of multilayer devices. We finally address the impact of miniaturization on strain, force, and driving voltage, as well as the important effect of boundary conditions on the performance of mm-scale DEAs.

  5. Fabricating Capacitive Micromachined Ultrasonic Transducers with Wafer Bonding Technique

    Directory of Open Access Journals (Sweden)

    Anil ARORA

    2008-06-01

    Full Text Available We report the fabrication of capacitive micromachined ultrasonic transducer by wafer bonding technique. Membrane is transferred from SOI wafer to the prime wafer having silicon dioxide cavity. The thickness of cavity height depends on silicon dioxide grown on prime wafer by dry/wet oxidation. Thinning of device wafer of SOI by oxidation, controls membrane thickness. Two wafers are bonded in vacuum under optimized controlled parameters. Using this method, we can get single crystal silicon as membrane, whose mechanical and electrical parameters are well known. Silicon membrane is free from stress and density variation. Focused Ion Beam etching and laser Doppler Vibrometer were used to do structural and electrical characterization respectively. The measured resonance frequency of fabricated device i.e. 2.24 MHz is much closer to the designed value i.e. 2.35 MHz.

  6. Scattering by single physically large and weak scatterers in the beam of a single-element transducer.

    Science.gov (United States)

    Kemmerer, Jeremy P; Oelze, Michael L; Gyöngy, Miklós

    2015-03-01

    Quantitative ultrasound techniques are generally applied to characterize media whose scattering sites are considered to be small compared to a wavelength. In this study, the backscattered response of single weakly scattering spheres and cylinders with diameters comparable to the beam width of a 2.25 MHz single-element transducer were simulated and measured in the transducer focal plane to investigate the impact of physically large scatterers. The responses from large single spherical scatterers at the focus were found to closely match the plane-wave response. The responses from large cylindrical scatterers at the focus were found to differ from the plane-wave response by a factor of f(-1). Normalized spectra from simulations and measurements were in close agreement: the fall-off of the responses as a function of lateral position agreed to within 2 dB for spherical scatterers and to within 3.5 dB for cylindrical scatterers. In both measurement and simulation, single scatterer diameter estimates were biased by less than 3% for a more highly focused transducer compared to estimates for a more weakly focused transducer. The results suggest that quantitative ultrasound techniques may produce physically meaningful size estimates for media whose response is dominated by scatterers comparable in size to the transducer beam.

  7. Parameter sensitivity study of a Field II multilayer transducer model on a convex transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2009-01-01

    .ResultsPredictions using the ZR give a pressure pulse error (PPE) and an intensity error (IE) of 32 % and 23 %, respectively, relative to the measured. Altering the piezoelectric permittivity +12 % from ZR decreases the PPE to 30 % and the IE to 2 % relative to the measured. Changing the stiffness constant of the lens -4......A multilayer transducer model for predicting a transducer impulse response has in earlier works been developed and combined with the Field II software. This development was tested on current, voltage, and intensity measurements on piezoceramics discs (Bæk et al. IUS 2008) and a convex 128 element...... ultrasound imaging transducer (Bæk et al. ICU 2009). The model benefits from its 1D simplicity and hasshown to give an amplitude error around 1.7‐2 dB. However, any prediction of amplitude, phase, and attenuation of pulses relies on the accuracy of manufacturer supplied material characteristics, which may...

  8. Spatial filters for focusing ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gori, Paola

    2001-01-01

    . A new method for making spatial matched filter focusing of RF ultrasound data is proposed based on the spatial impulse response description of the imaging. The response from a scatterer at any given point in space relative to the transducer can be calculated, and this gives the spatial matched filter...

  9. The Effects of Piezoelectric Ceramic Dissipation Factor on the Performance of Ultrasonic Transducers

    Science.gov (United States)

    DeAngelis, D. A.; Schulze, G. W.

    The dissipation factor (DF) is an important material property of piezoceramics that governs the amount of self-heating under resonant conditions; it essentially quantifies a particular material type for either an actuator or resonator application: high DF materials with typically higher output (d33) are better for actuators, whereas low DF materials with typically lower d33 are better for resonators. Transducer designers must often compromise between mechanical output and DF in the selection of piezoceramics for power ultrasonic applications, and abnormally high DF is one of the main causes of production stoppages. In theory DF is simply the current/voltage phase deviation from an ideal capacitor at 90° (a.k.a. tan(δ) or dielectric loss). Abnormally high DF is typically caused by moisture absorption due to poor ceramic porosity, which causes voltage leakage effects; e.g., seen in transducer production when setting piezo stack preload. Corresponding large increases in capacitance can also be associated with poor porosity, which is counterintuitive unless there is moisture absorption or electrode wicking. This research investigates the mechanisms for abnormally high DF in peizoceramics, and its corresponding effect on transducer performance. It investigates if DF is only affected by the bulk dielectric properties of the piezoceramics (e.g. porosity), or is also influenced by non-uniform electric field effects from electrode wicking. It explores if higher DF ceramics can affect transducer displacement/current gain stability via moisture expulsion at higher drive levels. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Transducers are built with both normal DF peizoceramics, and those with abnormally high DF ceramics which caused production stoppages. Several metrics are investigated such as impedance, displacement gain and capacitance. The experimental and theoretical research

  10. Ultrasound transducer function: annual testing is not sufficient.

    Science.gov (United States)

    Mårtensson, Mattias; Olsson, Mats; Brodin, Lars-Åke

    2010-10-01

    The objective was to follow-up the study 'High incidence of defective ultrasound transducers in use in routine clinical practice' and evaluate if annual testing is good enough to reduce the incidence of defective ultrasound transducers in routine clinical practice to an acceptable level. A total of 299 transducers were tested in 13 clinics at five hospitals in the Stockholm area. Approximately 7000-15,000 ultrasound examinations are carried out at these clinics every year. The transducers tested in the study had been tested and classified as fully operational 1 year before and since then been in normal use in the routine clinical practice. The transducers were tested with the Sonora FirstCall Test System. There were 81 (27.1%) defective transducers found; giving a 95% confidence interval ranging from 22.1 to 32.1%. The most common transducer errors were 'delamination' of the ultrasound lens and 'break in the cable' which together constituted 82.7% of all transducer errors found. The highest error rate was found at the radiological clinics with a mean error rate of 36.0%. There was a significant difference in error rate between two observed ways the clinics handled the transducers. There was no significant difference in the error rates of the transducer brands or the transducers models. Annual testing is not sufficient to reduce the incidence of defective ultrasound transducers in routine clinical practice to an acceptable level and it is strongly advisable to create a user routine that minimizes the handling of the transducers.

  11. Dynamics of receptor and protein transducer homodimerisation

    Directory of Open Access Journals (Sweden)

    Kolch Walter

    2008-10-01

    Full Text Available Abstract Background Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalling pathways. Several authors have suggested in recent times that dimerisation relates to a series of physical and biological outcomes used by the cell in the regulation of signal transduction. Results In this paper we investigate the role of homodimerisation in receptor-protein transducer interactions. Towards this end, mathematical modelling is used to analyse the features of such kind of interactions and to predict the behaviour of the system under different experimental conditions. A kinetic model in which the interaction between homodimers provokes a dual mechanism of activation (single and double protein transducer activation at the same time is proposed. In addition, we analyse under which conditions the use of a power-law representation for the system is useful. Furthermore, we investigate the dynamical consequences of this dual mechanism and compare the performance of the system in different simulated experimental conditions. Conclusion The analysis of our mathematical model suggests that in receptor-protein interacting systems with dual mechanism there may be a shift between double and single activation in a way that intense double protein transducer activation could initiate and dominate the signal in the short term (getting a fast intense signal, while single protein activation could control the system in the medium and long term (when input signal is weaker and decreases slowly. Our investigation suggests that homodimerisation and oligomerisation are mechanisms used to enhance and regulate the dynamic properties of the initial steps in signalling pathways.

  12. A Hail Size Distribution Impact Transducer

    CERN Document Server

    Lane, John E; Haskell, William D; Cox, Robert B

    2014-01-01

    An active impact transducer has been designed and tested for the purpose of monitoring hail fall in the vicinity of the Space Shuttle launch pads. An important outcome of this design is the opportunity to utilize frequency analysis to discriminate between the audio signal generated from raindrop impacts and that of hailstone impacts. The sound of hail impacting a metal plate is sub-tly but distinctly different than the sound of rain impacts. This useful characteristic permits application of signal processing algorithms that are inherently more robust than techniques relying on amplitude processing alone in the implementation of a hail disdrometer.

  13. An optimized ultrasound digital beamformer with dynamic focusing implemented on FPGA.

    Science.gov (United States)

    Almekkawy, Mohamed; Xu, Jingwei; Chirala, Mohan

    2014-01-01

    We present a resource-optimized dynamic digital beamformer for an ultrasound system based on a field-programmable gate array (FPGA). A comprehensive 64-channel receive beamformer with full dynamic focusing is embedded in the Altera Arria V FPGA chip. To improve spatial and contrast resolution, full dynamic beamforming is implemented by a novel method with resource optimization. This was conceived using the implementation of the delay summation through a bulk (coarse) delay and fractional (fine) delay. The sampling frequency is 40 MHz and the beamformer includes a 240 MHz polyphase filter that enhances the temporal resolution of the system while relaxing the Analog-to-Digital converter (ADC) bandwidth requirement. The results indicate that our 64-channel dynamic beamformer architecture is amenable for a low power FPGA-based implementation in a portable ultrasound system.

  14. Optimal ultrasonic array focusing in attenuative media.

    Science.gov (United States)

    Ganguli, A; Gao, R X; Liang, K; Jundt, J

    2011-12-01

    This paper presents a parametric study on the efficiency of ultrasound focusing in an attenuative medium, using phased arrays. Specifically, an analytical model of ultrasound wave focusing in a homogeneous, isotropic and attenuative fluid with point sources is presented. Calculations based on the model have shown that in an attenuative medium, an optimum frequency exists for the best focusing performance for a particular size of aperture and focal distance. The effect of different f numbers on the focusing performance in the attenuative medium is further investigated. The information obtained from the analytical model provides insights into the design and installation of a phased transducer array for energy efficient wave focusing.

  15. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    Science.gov (United States)

    Zalameda, Joseph N. (Inventor); Johnston, Patrick H. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  16. Orbital Angular Momentum-Entanglement Frequency Transducer

    Science.gov (United States)

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-09-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.

  17. Instantaneous crack detection using dual PZT transducers

    Science.gov (United States)

    Kim, Seung Bum; Sohn, Hoon

    2008-03-01

    A new guided wave based nondestructive testing (NDT) technique is developed to detect crack damage in metallic plates commonly used in aircraft without using prior baseline data or a predetermined decision boundary. In conventional guided wave based techniques, damage is often identified by comparing the "current" data obtained from a potentially damaged condition of a structure with the "past" baseline data collected at the pristine condition of the structure. However, it has been reported that this type of pattern comparison with the baseline data can lead to increased false alarms due to its susceptibility to varying operational and environmental conditions of the structure. In order to tackle this issue, a reference-free damage detection technique is previously developed using two pairs of collocated lead zirconate titanate transducers (PZTs) placed on both sides of a plate. In this study, this reference-free technique is further advanced so that the PZT transducers can be placed only on one side of the specimen. Crack formation creates Lamb wave mode conversion due to a sudden change in the thickness of the structure. Then, the proposed technique instantly detects the appearance of the crack by extracting this mode conversion from the measured Lamb waves. This study suggests a reference-free statistical approach that enables damage classification using only the current data set. Numerical and experimental results are presented to demonstrate the applicability of the proposed technique to instantaneous crack detection.

  18. Enhanced C-band Coaxial Orthomode Transducer

    Directory of Open Access Journals (Sweden)

    S. I. Piltyay

    2014-06-01

    Full Text Available Introduction. In this paper a novel configuration of wideband coherent coaxial OMT is presented. General Design of an Orthomode Transducer. The OMT consists of elements of 3 main types: a turnstile junction between coaxial quad-ridged waveguide and 4 coaxial transmission lines; 4 right-angle coaxial junctions for each polarization; 2 antiphase power combiners/dividers. A Turnstile Junction Optimization. The optimization of a turnstile junction has been performed. Its minimized reflection coefficient is less than −28 dB in the operation frequency band 3.4–5.4 GHz. An Optimized Right-Angle Coaxial Junction. A right-angle coaxial junction has been optimized to provide reflection coefficient, which is less than −42 dB in the operation frequency band 3.4–5.4 GHz. An Antiphase Power Combiner/Divider. The optimization of an antiphase power com-biner/divider has been performed. Its minimized reflection coefficient is less than −38 dB. Conclusions. A wideband coaxial orthomode transducer has been developed for the operation frequency band 3.4–5.4 GHz. In this frequency band the reflection coefficient is less than −27 dB.

  19. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    OpenAIRE

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO...

  20. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    OpenAIRE

    Zhou, Qifa; Lau, Sienting; WU, DAWEI; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the curr...

  1. Low-cost ultrasonic lamb-wave transducer

    Science.gov (United States)

    Kammerer, C. C.

    1978-01-01

    Transducer propagates Lamb wave through thin aluminum sheet material. Model includes two elements that measure effects of damping and loading which, in turn, are indirectly equated to bond integrity. Transducer has been used to evaluate bond integrity of aluminum facing adhesively bonded to aluminum facing. Because of versatility, it is now possible to inspect many objects of different configurations that could not be reached with earlier transducers.

  2. Broadband tonpilz underwater acoustic transducers based on multimode optimization

    OpenAIRE

    Yao, Qingshan; Jensen, Leif Bjørnø

    1997-01-01

    Head flapping has often been considered to be deleterious for obtaining a tonpilz transducer with broadband, high power performance. In the present work, broadband, high power tonpilz transducers have been designed using the finite element (FE) method. Optimized vibrational modes including the flapping mode of the head are effectively used to achieve the broadband performance. The behavior of the transducer in its longitudinal piston mode and in its flapping mode is analysed for in-air and in...

  3. An Algorithm for Selecting Transducer Element Array Positions

    Science.gov (United States)

    1988-06-01

    response. A lumped-parameter equivalent circuit of a tonpilz transducer is used to predict element amplitude and phase tolerances for different radiation...lumped-parameter equivalent circuit of a tonpilz transducer is used to predict element amplitude and phase tolerances for different radiation loadings...FIGURES p Figure Page : 2.1 A Tonpilz Type Transducer . . .............. . 6 % 2.2 The Equivalent Circuit .......... .................... 7 2.3 The

  4. Design and Test of Capacitive Micromachined Ultrasonic Transducer

    National Research Council Canada - National Science Library

    Hongliang Wang; Xiangjun Wang; Changde He; Chenyang Xue; Jijun Xiong; Wendong Zhang; Jing Miao; Yuping Li

    2014-01-01

      Currently, most capacitive micromachined ultrasound transducers, adopting surface sacrificial technology encounter various problems such as difficult cavity etch, low controllability of membrane thickness etc...

  5. MEMS acoustic emission transducers designed with high aspect ratio geometry

    Science.gov (United States)

    Saboonchi, H.; Ozevin, D.

    2013-09-01

    In this paper, micro-electro-mechanic systems (MEMS) acoustic emission (AE) transducers are manufactured using an electroplating technique. The transducers use a capacitance change as their transduction principle, and are tuned to the range 50-200 kHz. Through the electroplating technique, a thick metal layer (20 μm nickel + 0.5 μm gold) is used to form a freely moving microstructure layer. The presence of the gold layer reduces the potential corrosion of the nickel layer. A dielectric layer is deposited between the two electrodes, thus preventing the stiction phenomenon. The transducers have a measured quality factor in the range 15-30 at atmospheric pressure and are functional without vacuum packaging. The transducers are characterized using electrical and mechanical tests to identify the capacitance, resonance frequency and damping. Ultrasonic wave generation using a Q-switched laser shows the directivity of the transducer sensitivity. The comparison of the MEMS transducers with similar frequency piezoelectric transducers shows that the MEMS AE transducers have better response characteristics and sensitivity at the resonance frequency and well-defined waveform signatures (rise time and decay time) due to pure resonance behavior in the out-of-plane direction. The transducers are sensitive to a unique wave direction, which can be utilized to increase the accuracy of source localization by selecting the correct wave velocity at the structures.

  6. Radiation endurance of piezoelectric ultrasonic transducers--a review.

    Science.gov (United States)

    Sinclair, A N; Chertov, A M

    2015-03-01

    A literature survey is presented on the radiation endurance of piezoelectric ultrasonic transducer components and complete transducer assemblies, as functions of cumulative gamma dose and neutron fluence. The most extensive data on this topic has been acquired in CANDU electrical generating stations, which use piezoelectric ultrasonic transducers manufactured commercially with minor accommodation for high radiation fields. They have been found to be reliable for cumulative gamma doses of up to approximately 2 MegaGrays; a brief summary is made of the associated accommodations required to the transducer design, and the ultimate expected failure modes. Outside of the CANDU experience, endurance data have been acquired under a diverse spectrum of operating conditions; this can impede a direct comparison of the information from different sources. Much of this data is associated with transducers immersed in liquid metal coolants associated with advanced reactor designs. Significant modifications to conventional designs have led to the availability of custom transducers that can endure well over 100 MegaGrays of cumulative gamma dose. Published data on transducer endurance against neutron fluence are reviewed, but are either insufficient, or were reported with inadequate description of test conditions, to make general conclusions on transducer endurance with high confidence. Several test projects are planned or are already underway by major laboratories and research consortia to augment the store of transducer endurance data with respect to both gamma and neutron radiation.

  7. Monitoring Method for the Electrical Properties of Piezoelectric Transducer

    Institute of Scientific and Technical Information of China (English)

    李文; 朱泽琪

    2012-01-01

    The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasonic elliptic vibration cutting is monitored using the electrical properties of transducer was proposed by studying on the relationship of cutting force, transducer electric impedance and load. A measurement system was designed for the electrical properties of transducer. The feasibility of cutting force monitoring method based on the electrical properties of piezoelectric transducer was proved by the cutting experiments.

  8. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Science.gov (United States)

    2010-04-01

    ... that converts electrical signals into acoustic signals and acoustic signals into electrical signals and... include transmission media for acoustically coupling the transducer to the body surface, such as...

  9. Method and results of studying conduction measuring transducers

    Energy Technology Data Exchange (ETDEWEB)

    Dunaevskii, I.G.; Korotkov, B.N.; Povkh, I.L.; Cheplyukov, V.G.

    1977-01-01

    The method and results are given for determining the sensitivity of conduction measuring transducers with a local magnetic field. The results were obtained by frequency-dependent gradation on a model pulsation velocity gauge--a thermoanemometer. The effect of measuring a transducer's diameter, inter-electrode distance and nose line forms on its spatial resolution capacity was estimated. Adjustment functions were obtained for these transducers. A concept was formulated for measuring transducers belonging to the same class. 5 references, 5 figures.

  10. Experimental investigation of target and transducer effects on quantitative image reconstruction in photoacoustic tomography

    Science.gov (United States)

    Gamelin, John K.; Aguirre, Andres C.; Huang, Fei; Maurudis, Anastasios; Castillo, Diego; Wang, Lihong V.; Zhu, Quing

    2007-02-01

    In principle, absorbed energy profiles can be exactly reconstructed from photoacoustic measurements on a closed surface. Clinical applications, however, involve compromises due to transducer focus, frequency characteristics, and incomplete measurement apertures. These tradeoffs introduce artifacts and errors in reconstructed absorption distributions that affect quantitative interpretations as well as qualitative contrast between features. The quantitative effects of target geometry, limited measurement surfaces, and bandpass transducer frequency response have been investigated using a ring transducer system designed for small animal imaging. The directionality of photoacoustic radiation is shown to increase with target aspect ratio, producing proportionate overestimates of absorption values for two-dimension apertures less than approximately 150 degrees. For all target geometries and orientations, mean absorption values approach the full view values for hemicircular measurement surfaces although the true spatial uniformity is recovered only with the complete surface. The bandpass transducer frequency spectrum produces a peaked amplitude response biased toward spatial features ranging from 1 to 8 times the system resolution. We discuss the implications of these results for design of clinical systems.

  11. Adaptive acoustic energy delivery to near and far fields using foldable, tessellated star transducers

    Science.gov (United States)

    Zou, Chengzhe; Harne, Ryan L.

    2017-05-01

    Methods of guiding acoustic energy arbitrarily through space have long relied on digital controls to meet performance needs. Yet, more recent attention to adaptive structures with unique spatial configurations has motivated mechanical signal processing (MSP) concepts that may not be subjected to the same functional and performance limitations as digital acoustic beamforming counterparts. The periodicity of repeatable structural reconfiguration enabled by origami-inspired tessellated architectures turns attention to foldable platforms as frameworks for MSP development. This research harnesses principles of MSP to study a tessellated, star-shaped acoustic transducer constituent that provides on-demand control of acoustic energy guiding via folding-induced shape reconfiguration. An analytical framework is established to probe the roles of mechanical and acoustic geometry on the far field directivity and near field focusing of sound energy. Following validation by experiments and verification by simulations, parametric studies are undertaken to uncover relations between constituent topology and acoustic energy delivery to arbitrary points in the free field. The adaptations enabled by folding of the star-shaped transducer reveal capability for restricting sound energy to angular regions in the far field while also introducing means to modulate sound energy by three orders-of-magnitude to locations near to the transducer surface. In addition, the modeling philosophy devised here provides a valuable approach to solve general sound radiation problems for foldable, tessellated acoustic transducer constituents of arbitrary geometry.

  12. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  13. Optimization of acoustic emitted field of transducer array for ultrasound imaging.

    Science.gov (United States)

    He, Zhengyao

    2014-01-01

    A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.

  14. The influence of roughness, angle, range, and transducer type on the echo signal from planar interfaces

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, Peter C.; Jacobsen, Søren Mehl

    2001-01-01

    B width for a 25.4 mm diameter 5-MHz planar and focused transducer was approximately 0.5/spl deg/ and 4/spl deg/ (at the focal point), respectively. E(0/spl deg/) as a function of surface roughness, R/sub q/, was nearly linear on a decibel scale, with a slope of -109 dB/(R/sub q///spl lambda/) and -61 d...

  15. Photoacoustic imaging of early gastric cancer diagnosis based on long focal area ultrasound transducer

    Science.gov (United States)

    Wu, Huaqin; Li, Zuoran; Liu, Lantian; Li, Zhifang; Wu, Shulian; Li, Hui

    2017-06-01

    We illustrated a novel imaging method to diagnose gastric neoplasms via photoacoustic tomography (PAT). Depending on the structural characteristics of gastric cavity, we used column diffusion fiber to irradiate the stomach tissue through the esophagus, and the externally placed telecentric focus ultrasonic transducer detected photoacoustic signals from the gastric tissue. We reconstructed the distribution of light energy deposition of the simulated gastric tumor, and obtained the location and size information of gastric tumor.

  16. The Cavitation With Plate Transducer And Non Cavitation With Knob Transducer By Manihot Utilissima Fermentation The Potential Hydrogen Ph Method

    Directory of Open Access Journals (Sweden)

    Syamsul Arifin

    2015-08-01

    Full Text Available Abstract Manihot M. utilissima fermentation is popular foods and drinks for Indonesia people but it fermented foods 24 hours per day will breed fungi and anaerobic bacteriae so it will make it into acidic foods and alcoholic beverages. Ultrasonic 48 kHz 5 Vpp 1 VDC with functional generator and of the two models of transducers will have two different phenomena on M. utilissima fermentation. Methods Model-1. Radiation ultrasonic transducer plate or Flat of piezoelectric speakers2 were applied with transducers M. utilissima dipped in a test tube. Model-2. Knob or small ball ultrasonic transducer 12 balls were applied with transducers of tin knob which was connected to the copper wire2 and piezoelectricspeakers were dipped into the media M. utilissima in a test tube. After ultrasonic radiation fluid liquid from two models of transducers measured total acid in M. utilissima fermentation liquid by paper indicators of potential Hydrogen pH. The conclusion of this study can predict different phenomena namely the transducer plate of the initial pH value-acid fermentation M. utilissima can change increases the pH-value end of the base which means that the transducer plate has a cavitation phenomenon and media M. utilissima lead to the delicious food but on transducer knob that the initial pH value-acid fermentation M. utilissima will decrease more acid value so that have no phenomenon of cavitation and the media will lead M. utilissima to be alcoholic foods.

  17. Design optimization of embedded ultrasonic transducers for concrete structures assessment.

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2017-08-01

    In the last decades, the field of structural health monitoring and damage detection has been intensively explored. Active vibration techniques allow to excite structures at high frequency vibrations which are sensitive to small damage. Piezoelectric PZT transducers are perfect candidates for such testing due to their small size, low cost and large bandwidth. Current ultrasonic systems are based on external piezoelectric transducers which need to be placed on two faces of the concrete specimen. The limited accessibility of in-service structures makes such an arrangement often impractical. An alternative is to embed permanently low-cost transducers inside the structure. Such types of transducers have been applied successfully for the in-situ estimation of the P-wave velocity in fresh concrete, and for crack monitoring. Up to now, the design of such transducers was essentially based on trial and error, or in a few cases, on the limitation of the acoustic impedance mismatch between the PZT and concrete. In the present study, we explore the working principles of embedded piezoelectric transducers which are found to be significantly different from external transducers. One of the major challenges concerning embedded transducers is to produce very low cost transducers. We show that a practical way to achieve this imperative is to consider the radial mode of actuation of bulk PZT elements. This is done by developing a simple finite element model of a piezoelectric transducer embedded in an infinite medium. The model is coupled with a multi-objective genetic algorithm which is used to design specific ultrasonic embedded transducers both for hard and fresh concrete monitoring. The results show the efficiency of the approach and a few designs are proposed which are optimal for hard concrete, fresh concrete, or both, in a given frequency band of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Magnetoelastic Transducer Materials - a Plateable Possibility

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Møller, Per

    2001-01-01

    A short presentation of the magnetostriction theory as well as a series of possible applications for magnetoelastic transducers are given. A review of the present state of development for these materials is discussed with relation to the various ways of manufacture. The paper is concluded...... with the presentation of a method for making magnetoelastic materials by electrochemical deposition (electroless) as tried by the authors in collaboration with the Daimler-Chrysler research centre in Ulm, Germany. First results of this work are both promising and intriguing: Sensitivities of the same order...... as the reference material Terfenol-D were obtained, but reproduction of exact magnetic properties is still critical with the new plating technique....

  19. Linear ultrasonic motor using quadrate plate transducer

    Institute of Scientific and Technical Information of China (English)

    Jiamei JIN; Chunsheng ZHAO

    2009-01-01

    A linear ultrasonic motor using a quadrate plate transducer was developed for precision positioning. This motor consists of two pairs of Pb(Zr, Ti)O3 piezo-electric ceramic elements, which are piezoelectrically excited into the second-bending mode of the motor stator's neutral surface in two orthogonal directions, on which the tops of four projections move along an elliptical trajectory, which in turn drives a contacted slider into linear motion via frictional forces. The coincident frequency of the stator is easily obtained for its coincident characteristic dimen-sion in two orthogonal directions. The performance characteristics achieved by the motor are: 1) a maximum linear speed of more than 60 mm/s; 2) a stroke of more than 150 mm; 3) a driving force of more than 5.0 N; and 4) a response time of about 2 ms.

  20. Multilayer Array Transducer for Nonlinear Ultrasound Imaging

    Science.gov (United States)

    Owen, Neil R.; Kaczkowski, Peter J.; Li, Tong; Gross, Dan; Postlewait, Steven M.; Curra, Francesco P.

    2011-09-01

    The properties of nonlinear acoustic wave propagation are known to be able to improve the resolution of ultrasound imaging, and could be used to dynamically estimate the physical properties of tissue. However, transducers capable of launching a wave that becomes nonlinear through propagation do not typically have the necessary bandwidth to detect the higher harmonics. Here we present the design and characterization of a novel multilayer transducer for high intensity transmit and broadband receive. The transmit layer was made from a narrow-band, high-power piezoceramic (PZT), with nominal frequency of 2.0 MHz, that was diced into an array of 32 elements. Each element was 0.300 mm wide and 6.3 mm in elevation, and with a pitch of 0.400 mm the overall aperture width was 12.7 mm. A quarter-wave matching layer was attached to the PZT substrate to improve transmit efficiency and bandwidth. The overlaid receive layer was made from polyvinylidene fluoride (PVDF) that had gold metalization on one side. A custom two-sided flex circuit routed electrical connections to the PZT elements and patterned the PVDF elements; the PZT and PVDF elements had identical apertures. A low viscosity and electrically nonconductive epoxy was used for all adhesion layers. Characterization of electrical parameters and acoustic output were performed per standard methods, where transmit and receive events were driven by a software-controlled ultrasound engine. Echo data, collected from ex vivo tissue and digitized at 45 MS/s, exhibited frequency content up to the 4th harmonic of the 2 MHz transmit frequency.

  1. Ion focusing

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  2. Resonant acoustic transducer system for a well drilling string

    Science.gov (United States)

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  3. Thermal dispersion method for an ultrasonic phased-array transducer

    Science.gov (United States)

    Choi, Euna; Lee, Wonseok; Roh, Yongrae

    2016-07-01

    When the driving voltage of an ultrasonic transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer, which can burn the patient’s skin and degrade transducer performance. In this study, the method to disperse the heat inside an ultrasonic phased-array transducer has been examined. The mechanism of temperature rise due to heat generation inside the transducer was investigated by numerical analysis and the effects of the thermal properties of the components of the transducer such as specific heat and thermal conductivity on the temperature rise were analyzed. On the basis of the results, a heat-dispersive structure was devised to reduce the temperature at the surface of the acoustic lens of the transducer. Prototype transducers were fabricated to check the efficacy of the heat-dispersive structure. By experiments, we have confirmed that the new heat-dispersive structure can reduce the internal temperature by as much as 50% in comparison with the conventional structure, which confirms the validity of the thermal dispersion mechanism developed in this work.

  4. Inter Digital Transducer Modelling through Mason Equivalent Circuit Model

    DEFF Research Database (Denmark)

    Mishra, Dipti; Singh, Abhishek; Hussain, Dil muhammed Akbar

    2016-01-01

    The frequency reliance of inter-digital transducer is analyzed with the help of MASON’s Equivalent circuit which is based on Smith’s Equivalent circuit which is further based on Foster’sNetwork. An inter-digital transducer has been demonstratedas a RLC network. The circuit is simulated by Simulat...

  5. Inter digital transducer modelling through Mason equivalent circuit model

    DEFF Research Database (Denmark)

    Mishra, Dipti; Singh, Abhishek; Hussain, Dil muhammed Akbar

    2016-01-01

    The frequency reliance of inter-digital transducer is analyzed with the help of MASON's Equivalent circuit which is based on Smith's Equivalent circuit which is further based on Foster's Network. An inter-digital transducer has been demonstrated as a RLC network. The circuit is simulated by Simul...

  6. Metal cap flexural transducers for air-coupled ultrasonics

    Science.gov (United States)

    Eriksson, T. J. R.; Dixon, S.; Ramadas, S. N.

    2015-03-01

    Ultrasonic generation and detection in fluids is inefficient due to the large difference in acoustic impedance between the piezoelectric element and the propagation medium, leading to large internal reflections and energy loss. One way of addressing the problem is to use a flexural transducer, which uses the bending modes in a thin plate or membrane. As the plate bends, it displaces the medium in front of it, hence producing sound waves. A piezoelectric flexural transducer can generate large amplitude displacements in fluid media for relatively low excitation voltages. Commercially available flexural transducers for air applications operate at 40 kHz, but there exists ultrasound applications that require significantly higher frequencies, e.g. flow measurements. Relatively little work has been done to date to understand the underlying physics of the flexural transducer, and hence how to design it to have specific properties suitable for particular applications. This paper investigates the potential of the flexural transducer and its operating principles. Two types of actuation methods are considerd: piezoelectric and electrodynamic. The piezoelectrically actuated transducer is more energy efficient and intrinsically safe, but the electrodynamic transducer has the advantage of being less sensitive to high temperature environments. The theory of vibrating plates is used to predict transducer frequency in addition to front face amplitude, which shows good correlation with experimental results.

  7. Respiratory Belt Transducer Constructed Using a Singing Greeting Card Beeper

    Science.gov (United States)

    Bhaskar, Anand; Subramani, Selvam; Ojha, Rajdeep

    2013-01-01

    An article by Belusic and Zupancic described the construction of a finger pulse sensor using a singing greeting card beeper. These authors felt that this beeper made of piezoelectric material could be easily modified to function as a respiratory belt transducer to monitor respiratory movements. Commercially available respiratory belt transducers,…

  8. Transverse Oscillation Vector Velocity Estimation using a Phased Array Transducer

    DEFF Research Database (Denmark)

    Marcher, Jønne; Pihl, Michael Johannes; Seerup, Gert

    2012-01-01

    The Transverse Oscillation method has shown its commercial feasibility, providing the user with 2D velocity information. Todays implementation on commercial ultrasound platforms only support linear array transducers and are limited in depth. Extending the implementation to a phased array transducer...

  9. Respiratory Belt Transducer Constructed Using a Singing Greeting Card Beeper

    Science.gov (United States)

    Bhaskar, Anand; Subramani, Selvam; Ojha, Rajdeep

    2013-01-01

    An article by Belusic and Zupancic described the construction of a finger pulse sensor using a singing greeting card beeper. These authors felt that this beeper made of piezoelectric material could be easily modified to function as a respiratory belt transducer to monitor respiratory movements. Commercially available respiratory belt transducers,…

  10. A Force Transducer from a Junk Electronic Balance

    Science.gov (United States)

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  11. Ultrasonic transducer with thermomechanical excitation and piezoresistive detection

    NARCIS (Netherlands)

    Popescu, Dan S.; Dascalu, Dan C.; Elwenspoek, Michael Curt; Lammerink, Theodorus S.J.

    1996-01-01

    Ultrasonic transducer was fabricated from silicon buckled membrane using a thermo mechanical excitation and piezoresistive detection. The transducer has a 4 mm square silicon membrane, buckled with an initial deflection of 20μm, actuated by dynamically heating an aluminium ring layer, 3μm thick, wit

  12. A Force Transducer from a Junk Electronic Balance

    Science.gov (United States)

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  13. Top-down tree transducers with regular look-ahead

    NARCIS (Netherlands)

    Engelfriet, Joost

    1977-01-01

    Top-down tree transducers with regular look-ahead are introduced. It is shown how these can be decomposed and composed, and how this leads to closure properties of surface sets and tree transformation languages. Particular attention is paid to deterministic tree transducers.

  14. Micro-stereolithography as a transducer design method.

    Science.gov (United States)

    Ho, K S; Bradley, R J; Billson, D R; Hutchins, D A

    2008-03-01

    This paper investigates the use of micro-stereolithography, a rapid prototyping technique, in the manufacture of transducers. It is illustrated for the production of electromagnetic acoustic transducer (EMATs) coils in both meander-line and spiral configurations. A synthetic aperture focussing technique (SAFT) has been applied to the ultrasonic signals from these devices to reconstruct images in metallic objects.

  15. Energy Conversion Efficiency of Rainbow Shape Piezoelectric Transducer

    Institute of Scientific and Technical Information of China (English)

    LIU Xiangjian; CHEN Renwen; ZHU Liya

    2012-01-01

    With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer,an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory.It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and material properties from the analysis model.Simulation results show that there is an optimal length ratio to generate maximum energy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate transducer and steel substrate transducer are (0.65,2.21%) and (0.65,1.64%) respectively.The optimal thickness ratios and energy conversion efficiencies of beryllium bronze substrate transducer and steel substrate transducer are (1.16,2.56%) and (1.49,1.57%) respectively.With the increase of width ratio and initial curvature radius,both the energy conversion efficiencies decrease.Moreover,beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer.

  16. Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.

    Science.gov (United States)

    Toda, Minoru

    2002-03-01

    A new matching layer design concept has been proposed for narrowband continuous wave (CW) devices. Analysis has shown that the mechanical impedance of a resonant-type transducer in thickness mode CW operation does not equal its acoustic impedance rhoVs but roughly equals rhoVs/Q, where p is density, Vs is acoustic velocity, and Q is the mechanical quality factor. The value of rhoVs/Q is much lower than the acoustic impedance of water for any transducer material, including lead zirconium titanate (PZT), single crystals, or polyvinylidene fluoride (PVDF). With this new approach, the impedance of the matching layer must also be between water and pVs/Q, but there are few such practical low impedance materials. To realize equivalent low impedance structure, a novel double layer design is presented: a relatively low impedance material (such as polyethylene or polyurethane) on the inside and a relatively high impedance material (such as polyester or metal) on the outside. A high power CW transducer structure was designed and fabricated with PVDF-TrFE (polyvinylidene fluoride trifluoroethylene) to operate at 1.4 MHz. The basic quarter wavelength resonator structure is 0.7-mm alumina/0.2-mm piezo-polymer/0.25-mm polyester, and the matching section is 0.2-mm polyurethane and 0.25-mm polyester. A maximum power output of 6 to 9 W/cm2 with conversion efficiency of 30 to 35% was observed. For the transducer without matching section, the observed power was 3 to 4 W/cm2. Mason's model analyses (1) predict that the traditional matching layer is for broadband purposes and reduces output power both for PZT and PVDF-TrFE (2); this new matching scheme can be applied to PZT high power transducer. This high efficiency technique has application in various CW systems, such as Doppler sensors, interferometry, phase-sensitive imaging, or high energy focused beam systems.

  17. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.

    Science.gov (United States)

    Kujawska, Tamara; Secomski, Wojciech; Byra, Michał; Postema, Michiel; Nowicki, Andrzej

    2017-04-01

    A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals.

  18. Transducer hygiene: comparison of procedures for decontamination of ultrasound transducers and their use in clinical practice.

    Science.gov (United States)

    Häggström, Mikael; Spira, Jack; Edelstam, Greta

    2015-02-01

    To determine whether current hygiene practices are appropriate during sonographic examinations. Five major hospitals in Sweden were investigated with a survey. At each hospital, the departments corresponding to the main types of sonographic examination were chosen. Personnel who were responsible for or acquainted with the local hygiene procedures completed a standardardized questionnaire. The surveys were completed by 25 departments, where the total number of sonographic examinations was approximately 20,000 per month. For transvaginal and transrectal sonographic examinations, the most common method for decontamination of the transducer was barrier protection during the procedure followed by cleansing with alcohol. Latex was the predominant cover material, but one department used polyethylene gloves, and another department used nitrile gloves. Both of these involved transvaginal ultrasonography. In transcutaneous examinations, all hospitals were using alcohol and paper or cloth for decontamination at a minimum. Transesophageal examinations were carried out without barrier protection, and decontamination was performed with an alkylating substance. The hygiene practices appear to be appropriate at most hospitals, but there is a prevalence of transducer cover materials of unacceptable permeability, as well as use of gloves on transducers despite insufficient evidence of safety. © 2015 Wiley Periodicals, Inc.

  19. Durability investigation of a group of strain gage pressure transducers

    Science.gov (United States)

    Lederer, P. S.; Hilten, J. S.

    1972-01-01

    A durability investigation was conducted on a group of eighteen bonded-wire strain gage pressure transducers with ranges of 0 to 15 psig and 0 to 100 psig using an improved version of a previously developed technique. Some of the transducers were subjected to 40 million pressure cycles at a 5-Hz rate at laboratory ambient conditions, others were cycled at a temperature of 150 F (65.6 C). The largest change in sensitivity observed was 0.22% for a 100-psig transducer subjected to 40 million pressure cycles at 150 F. The largest change in zero pressure output observed was 0.91% FS for the same transducer. None of the transducers failed completely as a result of cycling at or below full scale pressure.

  20. Transducers for Sound and Vibration - FEM Based Design

    DEFF Research Database (Denmark)

    Liu, Bin

    2001-01-01

    Design of transducers for measurement of vibration (piezoelectric accelerometers) and sound (condenser microphones) is a very labour intensive work. The design work is mostly based on experience and on simple analogies to electrical circuit design. Often a time consuming itterative loop is used......: Specification of the transducer, production of a physical prototype, measurements on the prototype, changed specification of the transducer etc. Furthermore are many transducers made based on customer requirements which also increases the amount of required design work. For these reasons there is a need...... for methods that can reduce the design time consumption and the number of itterations. The present work proposes to use finite element based programs for simulating the behaviour of a transducer with a given set of specifications. A simulation program for accelerometers was developed and has been tested...

  1. Calibration of Field II using a Convex Ultrasound Transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    Field II is an ultrasound simulation program capable of simulating the pressure scattering from inhomogeneous tissue. The simulations are based on a convolution between spatial impulse responses from the field in front of the transducer and the volt-to-surface acceleration impulse response...... of the transducer. For such simulations to reflect actual measured intensities and pressure levels, the transducer impulse response is to be known. This work presents the results of combining a modified form of a 1D linear transducer model originally suggested by Willatzen with the Field II program to calibrate...... BK-Medical (Herlev, Denmark). As input waveform for the Field model we measured the output voltage of the research amplifier, which peak voltage was limited to 31 V to avoid too high non linear effects. We measured the hydrophone output from three transducer front elements by averaging 40 shoot...

  2. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Mohammad Saleh Salmanpour

    2016-12-01

    Full Text Available This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions.

  3. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  4. Study on the broadband tonpilz transducer with a single hole.

    Science.gov (United States)

    Xiping, He; Jing, Hu

    2009-05-01

    To get a wide-band transducer, the piezoelectric sandwiched transducer with a frustum hole in its head piece is presented in this paper. The equivalent circuit is derived, and the expressions of the equivalent mass and the equivalent impedance of the transducer are obtained by using one-dimensional (1D) design theory. Moreover, the expressions of the mechanical quality factor and the frequency bandwidth are obtained and the transmitting voltage response of the transducer is calculated by using finite element method. The theoretical results show that the frequency bandwidth of the transducer with a hole is wider than that without a hole when their resonant frequencies are almost equal. The tested results are in good agreement with the theoretical calculations.

  5. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    Science.gov (United States)

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  6. Ultrasound transducer positioning aid for fetal heart rate monitoring.

    Science.gov (United States)

    Hamelmann, Paul; Kolen, Alex; Schmitt, Lars; Vullings, Rik; van Assen, Hans; Mischi, Massimo; Demi, Libertario; van Laar, Judith; Bergmans, Jan

    2016-08-01

    Fetal heart rate (fHR) monitoring is usually performed by Doppler ultrasound (US) techniques. For reliable fHR measurements it is required that the fetal heart is located within the US beam. In clinical practice, clinicians palpate the maternal abdomen to identify the fetal presentation and then the US transducer is fixated on the maternal abdomen where the best fHR signal can be obtained. Finding the optimal transducer position is done by listening to the strength of the Doppler audio output and relying on a signal quality indicator of the cardiotocographic (CTG) measurement system. Due to displacement of the US transducer or displacement of the fetal heart out of the US beam, the fHR signal may be lost. Therefore, it is often necessary that the obstetrician repeats the tedious procedure of US transducer positioning to avoid long periods of fHR signal loss. An intuitive US transducer positioning aid would be highly desirable to increase the work flow for the clinical staff. In this paper, the possibility to determine the fetal heart location with respect to the transducer by exploiting the received signal power in the transducer elements is shown. A commercially available US transducer used for fHR monitoring is connected to an US open platform, which allows individual driving of the elements and raw US data acquisition. Based on the power of the received Doppler signals in the transducer elements, the fetal heart location can be estimated. A beating fetal heart setup was designed and realized for validation. The experimental results show the feasibility of estimating the fetal heart location with the proposed method. This can be used to support clinicians in finding the optimal transducer position for fHR monitoring more easily.

  7. Dynamics of electromagnetically-transduced microresonators

    Science.gov (United States)

    Sabater, Andrew B.

    Electromagnetic transduction is a means of actuating and sensing microelectromechanical systems (MEMS) through the interaction of electric and magnetic fields. Electromagnetically-transduced devices are Lorentz force actuated and sensed via an induced electromotive force (EMF). As such, transduction requires that the vibrations of one of these devices take place within a magnetic field. Provided one can leverage relatively recent advances with rare-earth magnets or complementary metal-oxide-semiconductor (CMOS) fabrication for magnetic field generation, electromagnetic transduction offers many distinct advantages over other methods of actuating and sensing MEMS. These advantages include the ability to generate large forces and moments that are linearly related to the supplied current, comparatively low power consumption metrics obtained with comparatively-low excitation voltages, and comparatively-simple device geometries that do not interfere with transduction. This type of transduction also facilitates operation in fluidic or harsh environments. In addition, an electromagnetically-transduced microresonator (ETM) could be used in the future for numerous applications which utilize a microresonator, such as electrical signal processing and resonant-based mass sensing, as well as self-sustaining oscillators. Other potential applications that are relatively unique to ETMs are a product of electromagnetic transduction, like magnetic field sensing. Arrays of electromagnetically-transduced devices could also be used to improve a sensor's throughput, or the total amount of sensed information, as it is comparatively-easy to electrically-couple multiple devices together. The efforts associated with the design, fabrication and characterization in both low-pressure and atmospheric conditions of one such array that has multiple, easily-tailored resonances with single-input, single-output (SISO) characteristics are documented in this dissertation. This type of electromagnetic

  8. Without 'Focus'

    Directory of Open Access Journals (Sweden)

    Aldo Sevi

    2010-12-01

    Full Text Available It is widely accepted that a notion of 'focus', more or less as conceived of in Jackendoff (1972, must be incorporated into our theory of grammar, as a means of accounting for certain observed correlations between prosodic facts and semantic/pragmatic facts. In this paper, we put forth the somewhat radical idea that the time has come to give up this customary view, and eliminate 'focus' from our theory of grammar. We argue that such a move is both economical and fruitful.Research over the years has revealed that the correlations between prosody, 'focus', and the alleged semantic/pragmatic effects of focus are much less clear and systematic than we may have initially hoped. First we argue that this state of affairs detracts significantly from the utility of our notion of 'focus', to the point of calling into question the very motivation for including it in the grammar. Then we look at some of the central data, and show how they might be analyzed without recourse to a notion of 'focus'. We concentrate on (i the effect of pitch accent placement on discourse congruence, and (ii the choice of 'associate' for the so-called 'focus sensitive' adverb only. We argue that our focus-free approach to the data improves empirical coverage, and begins to reveal patterns that have previously been obscured by preconceptions about 'focus'.ReferencesBeaver, D. & Clark, B. 2008. Sense and Sensitivity: How Focus Determines Meaning. Blackwell.Beaver, D., Clark, B., Flemming, E., Jaeger, T. F. & Wolters, M. 2007. ‘When semantics meets phonetics: Acoustical studies of second occurrence focus’. Language 83.2: 245–76.http://dx.doi.org/10.1353/lan.2007.0053Beckman, M. & Hirschberg, J. 1994. ‘The ToBI Annotation Conventions’. Ms.,http://www.cs.columbia.edu/~julia/files/conv.pdf.Bolinger, D. 1972. ‘Accent is predictable (if you are a mind-reader’. Language 48.3: 633–44.http://dx.doi.org/10.2307/412039Büring, D. 2006. ‘Focus projection and default

  9. Detection and monitoring of flexural cracks in reinforced concrete beams using mounted smart aggregate transducers

    Science.gov (United States)

    Taghavipour, S.; Kharkovsky, S.; Kang, W.-H.; Samali, B.; Mirza, O.

    2017-10-01

    Previous studies have successfully demonstrated the capability and reliability of the use of Smart Aggregate (SA) transducers to monitor reinforced concrete (RC) structures. However, they mainly focused on the applications of embedded SAs to new structural members, while no major attention was paid to the monitoring of existing RC members using externally mounted SAs. In this paper, a mounted SA-based approach is proposed for a real-time health monitoring of existing RC beams. The proposed approach is verified through monitoring of RC beams under flexural loading, on each of which SA transducers are mounted as an actuator and sensors. The experimental results show that the proposed SA-based approach effectively evaluates the cracking status of RC beams in terms of the peak of power spectral density and damage indexes obtained at multiple sensor locations. It is also shown that the proposed sensor system can also capture a precautionary signal for major cracking.

  10. Dual-frequency transducer for nonlinear contrast agent imaging.

    Science.gov (United States)

    Guiroy, Axel; Novell, Anthony; Ringgaard, Erling; Lou-Moeller, Rasmus; Grégoire, Jean-Marc; Abellard, André-Pierre; Zawada, Tomasz; Bouakaz, Ayache; Levassort, Franck

    2013-12-01

    Detection of high-order nonlinear components issued from microbubbles has emerged as a sensitive method for contrast agent imaging. Nevertheless, the detection of these high-frequency components, including the third, fourth, and fifth harmonics, remains challenging because of the lack of transducer sensitivity and bandwidth. In this context, we propose a new design of imaging transducer based on a simple fabrication process for high-frequency nonlinear imaging. The transducer is composed of two elements: the outer low-frequency (LF) element was centered at 4 MHz and used in transmit mode, whereas the inner high-frequency (HF) element centered at 14 MHz was used in receive mode. The center element was pad-printed using a lead zirconate titanate (PZT) paste. The outer element was molded using a commercial PZT, and curved porous unpoled PZT was used as backing. Each piezoelectric element was characterized to determine the electromechanical performance with thickness coupling factor around 45%. After the assembly of the two transducer elements, hydrophone measurements (electroacoustic responses and radiation patterns) were carried out and demonstrated a large bandwidth (70% at -3 dB) of the HF transducer. Finally, the transducer was evaluated for contrast agent imaging using contrast agent microbubbles. The results showed that harmonic components (up to the sixth harmonic) of the microbubbles were successfully detected. Moreover, images from a flow phantom were acquired and demonstrated the potential of the transducer for high-frequency nonlinear contrast imaging.

  11. Design of advanced ultrasonic transducers for welding devices.

    Science.gov (United States)

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  12. TRANSDUCER GENERATED ARRAYS OF ROBOTIC NANO-ARMS.

    Science.gov (United States)

    Dolzhenko, Egor; Jonoska, Nataša; Seeman, Nadrian C

    2010-06-01

    We consider sets of two-dimensional arrays, called here transducer generated languages, obtained by iterative applications of transducers (finite state automata with output). Each transducer generates a set of blocks of symbols such that the bottom row of a block is an input string accepted by the transducer and, by iterative application of the transducer, each row of the block is an output of the transducer on the preceding row. We show how these arrays can be implemented through molecular assembly of triple crossover DNA molecules. Such assembly could serve as a scaffold for arranging molecular robotic arms capable for simultaneous movements. We observe that transducer generated languages define a class of languages which is a proper subclass of recognizable picture languages, but it containing the class of all factorial local two-dimensional languages. By taking the average growth rate of the number of blocks in the language as a measure of its complexity, we further observe that arrays with high complexity patterns can be generated in this way.

  13. TRP channels: sensors and transducers of gasotransmitter signals

    Directory of Open Access Journals (Sweden)

    Nobuaki eTakahashi

    2012-08-01

    Full Text Available The transient receptor potential (trp gene superfamily encodes cation channels that act as multimodal sensors for a wide variety of stimuli from outside and inside the cell. Upon sensing, they transduce electrical and Ca2+ signals via their cation channel activities. These functional features of TRP channels allow the body to react and adapt to different forms of environmental changes. Indeed, members of one class of TRP channels have emerged as sensors of gaseous messenger molecules that control various cellular processes. Nitric oxide (NO, a vasoactive gaseous molecule, regulates TRP channels directly via cysteine S-nitrosylation or indirectly via cGMP/PKG-dependent phosphorylation. Recent studies have revealed that changes in the availability of molecular oxygen (O2 also control the activation of TRP channels. Anoxia induced by O2-glucose deprivation and severe hypoxia (1% O2 activates TRPM7 and TRPC6, respectively, whereas TRPA1 has recently been identified as a novel sensor of hyperoxia and mild hypoxia (15% O2 in vagal and sensory neurons. TRPA1 also detects other gaseous molecules such as hydrogen sulfide (H2S and carbon dioxide (CO2. In this review, we focus on how signaling by gaseous molecules is sensed and integrated by TRP channels.

  14. Octave Bandwidth Orthomode Transducers for the Expanded Very Large Array

    Science.gov (United States)

    Coutts, Gordon M.

    2011-06-01

    Quadruple-ridge orthomode transducers (OMTs) have been designed to operate over a full octave bandwidth for the expanded very large array (EVLA) project. The OMT separates linearly polarized signal components by matching a circular waveguide input to two orthogonal coaxial outputs. The OMT is used in conjunction with a quadrature hybrid to detect circularly polarized signal components. This paper focuses on the 1 GHz-2 GHz L-Band OMT design, which has better than 18.8 dB measured return loss across the band, with no evidence of trapped-mode resonances. The OMT is designed with an emphasis on performance, ease of tuning and manufacturability since a large number of units are needed for the array application. Extensive parametric analyses were carried out, and nominal dimensions have been set to ensure the devices exceed RF specifications provided the parts are machined to within specified tolerances. With excellent wideband performance and a simplified manufacturing process, the proposed OMT would be amenable to much larger future array projects.

  15. Design, analysis, and modeling of giant magnetostrictive transducers

    Science.gov (United States)

    Calkins, Frederick Theodore

    The increased use of giant magnetostrictive, Terfenol-D transducers in a wide variety of applications has led to a need for greater understanding of the materials performance. This dissertation attempts to add to the Terfenol-D transducer body of knowledge by providing an in-depth analysis and modeling of an experimental transducer. A description of the magnetostriction process related to Terfenol-D includes a discussion of material properties, production methods, and the effect of mechanical stress, magnetization, and temperature on the material performance. The understanding of the Terfenol-D material performance provides the basis for an analysis of the performance of a Terfenol-D transducer. Issues related to the design and utilization of the Terfenol-D material in the transducers are considered, including the magnetic circuit, application of mechanical prestress, and tuning of the mechanical resonance. Experimental results from two broadband, Tonpilz design transducers show the effects of operating conditions (prestress, magnetic bias, AC magnetization amplitude, and frequency) on performance. In an effort to understand and utlilize the rich performance space described by the experimental results a variety of models are considered. An overview of models applicable to Terfenol-D and Terfenol-D transducers is provided, including a discussion of modeling criteria. The Jiles-Atherton model of ferromagnetic hysteresis is employed to describe the quasi-static transducer performance. This model requires the estimation of only six physically-based parameters to accurately simulate performance. The model is shown to be robust with respect to model parameters over a range of mechanical prestress, magnetic biases, and AC magnetic field amplitudes, allowing predictive capability within these ranges. An additional model, based on electroacoustics theory, explains trends in the frequency domain and facilitates an analysis of efficiency based on impedance and admittance

  16. Bonding and impedance matching of acoustic transducers using silver epoxy.

    Science.gov (United States)

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles.

  17. A tubular focused sonochemistry reactor

    Institute of Scientific and Technical Information of China (English)

    ZHOU GuangPing; LIANG ZhaoFeng; LI ZhengZhong; ZHANG YiHui

    2007-01-01

    This paper presents a new sonochemistry reactor, which consists of a cylindrical tube with a certain length and piezoelectric transducers at tube's end with the longitudinal vibration. The tube can effectively transform the longitudinal vibration into the radial vibration and thereby generates ultrasound. Furthermore, ultrasound can be focused to form high-intensity ultrasonic field inside tube. The reactor boasts of simple structure and its whole vessel wall can radiate ultrasound so that the electroacoustic transfer efficiency is high. The focused ultrasonic field provides good condition for sonochemical reaction. The length of the reactor can be up to 2 meters, and liquids can pass through it continuously, so it can be widely applied in liquid processing such as sonochemistry.

  18. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  19. Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers

    Institute of Scientific and Technical Information of China (English)

    葛立峰

    1999-01-01

    A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.

  20. A thermal insulation method for a piezoelectric transducer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study deals with the sources of signal distortion of a piezoelectric transducer heated by measured gas flow. These signal distortions originate from both unloading of preload on a piezocrystal because of expansion of a diaphragm in the test apparatus and the pyroelectric effect of a heated piezoelectric crystal. A plastic film on the diaphragm of the transducer can effectively insulate the diaphragm and the piezocrystal within transducer from heating by gas flow, eliminating the sources of distortion. A method for evaluating the thickness of the film is proposed.

  1. Broadband tonpilz underwater acoustic transducers based on multimode optimization

    DEFF Research Database (Denmark)

    Yao, Qingshan; Jensen, Leif Bjørnø

    1997-01-01

    Head flapping has often been considered to be deleterious for obtaining a tonpilz transducer with broadband, high power performance. In the present work, broadband, high power tonpilz transducers have been designed using the finite element (FE) method. Optimized vibrational modes including...... the flapping mode of the head are effectively used to achieve the broadband performance. The behavior of the transducer in its longitudinal piston mode and in its flapping mode is analysed for in-air and in-water situations. For the 37.8% bandwidth of the center frequency from 28.5 to 41.8 kHz, the amplitude...

  2. Design and fabrication of a low frequency giant magnetostrictive transducer

    Energy Technology Data Exchange (ETDEWEB)

    Dhilsha, K.R. [Nat. Inst. of Ocean Technol, Madras (India); Markandeyulu, G.; Subrahmanyeswara Rao, B.V.P.; Rama Rao, K.V.S. [Magnetism and Magnetic Materials Laboratory, Department of Physics, Indian Institute of Technology, Madras 600 036 (India)

    1997-08-01

    A Tonpilz-type single ended transducer employing two rods of giant magnetostrictive materials has been fabricated and its underwater acoustic characteristics have been studied. The transducer resonated at a frequency of 3.1 kHz in air and at 2.65 kHz in water with a Q factor of 6. The TCR and RS at resonance in water have been measured to be 172.1 dB re 1 {mu}Pa/A at 1 m and -196.7 dB re 1 V/{mu}Pa respectively. The dimensions of the transducer are 60 mm in diameter and 110 mm long. (orig.)

  3. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  4. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  5. Focus: Digital

    DEFF Research Database (Denmark)

    Technology has been an all-important and defining element within the arts throughout the 20th century, and it has fundamentally changed the ways in which we produce and consume music. With this Focus we investigate the latest developments in the digital domain – and their pervasiveness and rapid...... production and reception of contemporary music and sound art. With ‘Digital’ we present four composers' very different answers to how technology impact their work. To Juliana Hodkinson it has become an integral part of her sonic writing. Rudiger Meyer analyses the relationships between art and design and how...

  6. Focusing horn

    CERN Multimedia

    Was used for the AA (antiproton accumulator). Making an antiproton beam took a lot of time and effort. Firstly, protons were accelerated to an energy of 26 GeV in the PS and ejected onto a metal target. From the spray of emerging particles, a magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet.For a million protons hitting the target, just one antiproton was captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 -, three hundred thousand million - antiprotons.

  7. Wideband Single Crystal Transducer for Bone Characterization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS proposes to develop a simple-to-use, launch capable, ultrasound transducer that is capable of producing the necessary bandwidth to accurately determine in vivo...

  8. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  9. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  10. Transducer for Tension Force Measuring of Strip Materials

    Directory of Open Access Journals (Sweden)

    Emad S. Addasi

    2005-01-01

    Full Text Available In winding-up motor drive systems, such as that used in textile industry, it is very important to get a constant tension force for the winding strip material (thread and to reduce its oscillations. This study recommends a transducer with a special design to be used in the mentioned motor drive systems. By using a piston damper, spring, levers, slider and other simple components the suggested sensor (transducer can be used to control the motor speed for getting the required thread tension force. Also the suggested transducer avoids the disadvantage of other used conventional transducer: the parasitic (detrimental oscillations of the thread tension force, which affect the quality of the produced strip material.

  11. Studies on coaxial circular array for underwater transducer applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    This thesis presents analytical methods to study important aspects of a coaxial circular array for wideband underwater transducer application. It begins with detailed theoretical study of a coaxial circular array of three turns and an analysis...

  12. Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers.

    Science.gov (United States)

    Nie, Liming; Guo, Zijian; Wang, Lihong V

    2011-07-01

    A photoacoustic tomography system (PAT) using virtual point ultrasonic transducers was developed and applied to image a monkey brain. The custom-built transducers provide a 10-fold greater field-of-view (FOV) than finite-aperture unfocused transducers as well as an improved signal-to-noise ratio (SNR) and reduced artifacts rather than negative-lens transducers. Their tangential resolution, radial resolution, and (SNR) improvements were quantified using tissue phantoms. Our PAT system can achieve high uniformity in both resolution (8) within a large FOV of 6 cm in diameter, even when the imaging objects are enclosed by a monkey skull. The cerebral cortex of a monkey brain was accurately mapped transcranially, through a skull ranging from 2 to 4 mm in thickness. This study demonstrates that PAT can overcome the optical and ultrasound attenuation of a relatively thick skull and can potentially be applied to human neonatal brain imaging.

  13. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate.

  14. Finite element analysis for acoustic characteristics of a magnetostrictive transducer

    Science.gov (United States)

    Kim, Jaehwan; Jung, Eunmi

    2005-12-01

    This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.

  15. Traceable dynamic calibration of force transducers by primary means

    Science.gov (United States)

    Vlajic, Nicholas; Chijioke, Ako

    2016-08-01

    We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton’s second law, F  =  ma. The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1.2%. We give an account of all significant sources of uncertainty, including a detailed consideration of the effects of dynamic tilting (rocking), which is a leading source of uncertainty in such harmonic force calibration systems.

  16. Tunable interdigital transducers made of piezoelectric macro-fiber composite

    Science.gov (United States)

    Mańka, Michał; Martowicz, Adam; Rosiek, Mateusz; Stepinski, Tadeusz; Uhl, Tadeusz

    2016-11-01

    The number of applications of Lamb waves (LWs) based structural health monitoring (SHM) has significantly increased in recent decades. The growth of interest results from several advantages of this diagnostic technique, that is, considerable mode selectivity and directivity that allow for the assessment of the technical condition of a monitored structure. Successful applications of LWs in the field of SHM stimulate continuous improvement of the transducers’ design to enable capturing more reliable diagnostic data. The paper introduces a new type of transducer that may be used in the LWs based SHM systems, namely tunable-interdigital transducer (T-IDT) based on macro-fiber composites (MFC). The authors provide a short overview on different types of transducers that may be used in SHM applications, followed by a detailed description of the structure of proposed T-IDT. Finally, the results of numerical and experimental tests carried out employing the proposed transducer are discussed and compared to those obtained with a traditional IDT.

  17. Phylocomposer and phylodirector: analysis and visualization of transducer indel models.

    Science.gov (United States)

    Holmes, Ian

    2007-12-01

    Finite-state string transducers are probabilistic tools similar to Hidden Markov Models that can be systematically extended to large number of sequences related by indel and substitution processes on phylogenetic trees. The number of states in such models grows exponentially with the number of nodes in the tree, with the consequence that even quite small trees can be difficult to analyze or visualize. Here, we present two tools, phylocomposer and phylodirector, for working with string transducers. The former tool implements previously described composition algorithms for extending transducers to arbitrary tree topologies, while the latter generates short animations for arbitrary input alignments and phylogenetic trees, illustrating the state path through the composed transducer. Phylocomposer and phylodirector are freely available at http://biowiki.org/PhyloComposer and http://biowiki.org/PhyloDirector

  18. Lead-Free Piezoelectric Transducers for Microelectronic Wirebonding Applications

    OpenAIRE

    Kwok, K.W.; T. Lee; Choy, S. H.; Chan, H.L.W.

    2010-01-01

    Lead-free KNLNTS and BNKLBT piezoelectric ceramic rings have been successfully prepared and used as the driving elements for fabricating ultrasonic wirebonding transducers. In order to improve the energy transfer between different parts of the transducer, titanium alloy has been used to fabricate the front and back plates. The dimensions of the ceramic rings and the titanium alloy plates have been optimized to give an operation frequency of 65 kHz. Because of the better matching of the acoust...

  19. Capacitive Ultrasonic Transducer Development for Acoustic Anemometry on Mars

    Science.gov (United States)

    Leonard-Pugh, Eurion; Wilson, C.; Calcutt, S.; Davis, L.

    2012-10-01

    Previous Mars missions have used either mechanical or thermal anemometry techniques. The moving parts of mechanical anemometers are prone to damage during launch and landing and their inertia makes them unsuited for turbulence studies. Thermal anemometers have been used successfully on Mars but are difficult to calibrate and susceptible to varying ambient temperatures. In ultrasonic anemometry, wind speed and sound speed are calculated from two-way time-of-flight measurements between pairs of transducers; three pairs of transducers are used to return a 3-D wind vector. These high-frequency measurements are highly reliable and immune from drift. Piezo-electric ultrasonic anemometers are widely used on Earth due to their full-range accuracy and high measurement frequency. However these transducers have high acoustic impedances and would not work on Mars. We are developing low-mass capacitive ultrasonic transducers for Mars missions which have significantly lower acoustic impedances and would therefore have a much stronger coupling to the Martian atmosphere. These transducers consist of a metallised polymer film pulled taught against a machined metal backplane. The film is drawn towards the backplane by a DC bias voltage. A varying signal is used on top of the DC bias to oscillate the film; generating acoustic waves. This poster will look at the operation of such sensors and the developments necessary to operate the devices under Martian conditions. Transducer performance is determined primarily by two elements; the front film and the backplane. The sensitivity of the transducer is affected by the thickness of the front film; as well as the diameter, curvature and roughness of the metal backplane. We present data on the performance of the sensors and instrument design considerations including signal shapes and transducer arrangements.

  20. Finite-State Complexity and the Size of Transducers

    Directory of Open Access Journals (Sweden)

    Cristian Calude

    2010-08-01

    Full Text Available Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.

  1. Ionic solvents used in ionic polymer transducers, sensors and actuators

    OpenAIRE

    2004-01-01

    Ionic liquids are incorporated into transducers, actuators or sensors which employ the ionic polymer membranes. The ionic liquids have superior electrochemical stability, low viscosity and low vapor pressure. The transducers, actuators and sensors which utilize ionic polymer membranes solvated with ionic liquids have long term air stability. Superior results are achieved when a conductive powder and ionomer mixture is applied to the ionic polymer membrane to form the electrodes during or afte...

  2. Method and apparatus for air-coupled transducer

    Science.gov (United States)

    Song, Junho (Inventor); Chimenti, Dale E. (Inventor)

    2010-01-01

    An air-coupled transducer includes a ultrasonic transducer body having a radiation end with a backing fixture at the radiation end. There is a flexible backplate conformingly fit to the backing fixture and a thin membrane (preferably a metallized polymer) conformingly fit to the flexible backplate. In one embodiment, the backing fixture is spherically curved and the flexible backplate is spherically curved. The flexible backplate is preferably patterned with pits or depressions.

  3. Micromachining of a piezocomposite transducer using a copper vapor laser.

    Science.gov (United States)

    Farlow, R; Galbraith, W; Knowles, M; Hayward, G

    2001-05-01

    A 1-3 piezocomposite transducer with front face dimensions of 2 x 2 mm has been micromachined using a copper vapor laser. The device consists of PZT5A piezoceramic pillars with a 65-micron pitch suspended in a low viscosity thermosetting polymer. The kerf width is 13 microns, and the transducer thickness is 170 microns, making the device suitable for ultrasonic reception at frequencies close to 10 MHz.

  4. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    Science.gov (United States)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  5. Online monitoring of cracking in concrete structures using embedded piezoelectric transducers

    Science.gov (United States)

    Dumoulin, C.; Karaiskos, G.; Sener, J.-Y.; Deraemaeker, A.

    2014-10-01

    Online damage detection is of great interest in the field of concrete structures and, more generally, within the construction industry. Current economic requirements impose the reduction of the operating costs related to such inspection while the security and the reliability of structures must constantly be improved. In this paper, nondestructive testing is applied using piezoelectric transducers embedded in concrete structures. These transducers are especially adapted for online ultrasonic monitoring, due to their low cost, small size, and broad frequency band. These recent transducers are called smart aggregates. The technique of health monitoring developed in this study is based on a ultrasonic pulse velocity test with an embedded ultrasonic emitter-receiver pair (pitch-catch). The damage indicator focuses on the early wave arrival. The Belgian company MS3 takes an interest in evaluating the quality of the concrete around the anchorage system of highway security barriers after important shocks. The failure mechanism can be viewed as a combination of a bending and the failure of the anchorages. Accordingly, the monitoring technique has been applied both on a three-points bending test and several pull-out tests. The results indicate a very high sensitivity of the method, which is able to detect the crack initiation phase and follow the crack propagation over the entire duration of the test.

  6. Anodic bonding using SOI wafer for fabrication of capacitive micromachined ultrasonic transducers

    Science.gov (United States)

    Bellaredj, M.; Bourbon, G.; Walter, V.; Le Moal, P.; Berthillier, M.

    2014-02-01

    In medical ultrasound imaging, mostly piezoelectric crystals are used as ultrasonic transducers. Capacitive micromachined ultrasonic transducers (CMUTs) introduced around 1994 have been shown to be a good alternative to conventional piezoelectric transducers in various aspects, such as sensitivity, transduction efficiency or bandwidth. This paper focuses on a fabrication process for CMUTs using anodic bonding of a silicon on insulator wafer on a glass wafer. The processing steps are described leading to a good control of the mechanical response of the membrane. This technology makes possible the fabrication of large membranes and can extend the frequency range of CMUTs to lower frequencies of operation. Silicon membranes having radii of 50, 70, 100 and 150 µm and a 1.5 µm thickness are fabricated and electromechanically characterized using an auto-balanced bridge impedance analyzer. Resonant frequencies from 0.6 to 2.3 MHz and an electromechanical coupling coefficient around 55% are reported. The effects of residual stress in the membranes and uncontrolled clamping conditions are clearly responsible for the discrepancies between experimental and theoretical values of the first resonance frequency. The residual stress in the membranes is determined to be between 90 and 110 MPa. The actual boundary conditions are between the clamped condition and the simply supported condition and can be modeled with a torsional stiffness of 2.10-7 Nm rad-1 in the numerical model.

  7. Home Automation System Based on Intelligent Transducer Enablers

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Dapena, Adriana; González-López, Miguel

    2016-01-01

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet. PMID:27690031

  8. An analytical model of a longitudinal-torsional ultrasonic transducer

    Science.gov (United States)

    Al-Budairi, Hassan; Lucas, Margaret

    2012-08-01

    The combination of longitudinal and torsional (LT) vibrations at high frequencies finds many applications such as ultrasonic drilling, ultrasonic welding, and ultrasonic motors. The LT mode can be obtained by modifications to the design of a standard bolted Langevin ultrasonic transducer driven by an axially poled piezoceramic stack, by a technique that degenerates the longitudinal mode to an LT motion by a geometrical alteration of the wave path. The transducer design is developed and optimised through numerical modelling which can represent the geometry and mechanical properties of the transducer and its vibration response to an electrical input applied across the piezoceramic stack. However, although these models can allow accurate descriptions of the mechanical behaviour, they do not generally provide adequate insights into the electrical characteristics of the transducer. In this work, an analytical model is developed to present the LT transducer based on the equivalent circuit method. This model can represent both the mechanical and electrical aspects and is used to extract many of the design parameters, such as resonance and anti-resonance frequencies, the impedance spectra and the coupling coefficient of the transducer. The validity of the analytical model is demonstrated by close agreement with experimental results.

  9. Exact series model of Langevin transducers with internal losses.

    Science.gov (United States)

    Nishamol, P A; Ebenezer, D D

    2014-03-01

    An exact series method is presented to analyze classical Langevin transducers with arbitrary boundary conditions. The transducers consist of an axially polarized piezoelectric solid cylinder sandwiched between two elastic solid cylinders. All three cylinders are of the same diameter. The length to diameter ratio is arbitrary. Complex piezoelectric and elastic coefficients are used to model internal losses. Solutions to the exact linearized governing equations for each cylinder include four series. Each term in each series is an exact solution to the governing equations. Bessel and trigonometric functions that form complete and orthogonal sets in the radial and axial directions, respectively, are used in the series. Asymmetric transducers and boundary conditions are modeled by using axially symmetric and anti-symmetric sets of functions. All interface and boundary conditions are satisfied in a weighted-average sense. The computed input electrical admittance, displacement, and stress in transducers are presented in tables and figures, and are in very good agreement with those obtained using atila-a finite element package for the analysis of sonar transducers. For all the transducers considered in the analysis, the maximum difference between the first three resonance frequencies calculated using the present method and atila is less than 0.03%.

  10. Software for Correcting the Dynamic Error of Force Transducers

    Directory of Open Access Journals (Sweden)

    Naoki Miyashita

    2014-07-01

    Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.

  11. Study of the compact fiber optic photoacoustic ultrasonic transducer

    Science.gov (United States)

    Wu, Nan; Tian, Ye; Zou, Xiaotian; Wang, Xingwei

    2012-04-01

    Recently, many studies have been exerted on developing ultrasonic transducers that can feature high frequencies for better resolutions and compact sizes for the limit space nondestructive testing applications. Conventional ultrasonic transducers, which are made by piezoelectric materials, suffer from issues such as low frequencies and bulky sizes due to the difficulty of dicing piezoelectric materials into smaller pieces. On the other hand, generating ultrasonic signals by photoacoustic principle is a promising way to generate a high frequency ultrasonic pulse. Optical fiber is a very compact material that can carry the light energy. By combining the photoacoustic principle and the optical fiber together, a novel ultrasonic transducer that features a high frequency and a compact size could be achieved. In this paper, an ultrasonic transducer using gold nanoparticles as the photoacoustic generation material is described. Gold nanoparticles are deposited on the end surface of an optical fiber acting as the ultrasonic generator. A cavity and a diaphragm are fabricated in the center of the fiber using as the ultrasonic receiver. A phase array technique is applied to the transducer to steer the direction of the acoustic beam. Simulation results demonstrated that the photoacoustic ultrasonic transducer is feasible.

  12. Home Automation System Based on Intelligent Transducer Enablers.

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M; Dapena, Adriana; González-López, Miguel

    2016-09-28

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  13. Characterization of noncontact piezoelectric transducer with conically shaped piezoelement

    Science.gov (United States)

    Williams, James H., Jr.; Ochi, Simeon C. U.

    1988-01-01

    The characterization of a dynamic surface displacement transducer (IQI Model 501) by a noncontact method is presented. The transducer is designed for ultrasonic as well as acoustic emission measurements and, according to the manufacturer, its characteristic features include a flat frequency response range which is from 50 to 1000 kHz and a quality factor Q of less than unity. The characterization is based on the behavior of the transducer as a receiver and involves exciting the transducer directly by transient pulse input stress signals of quasi-electrostatic origin and observing its response in a digital storage oscilloscope. Theoretical models for studying the response of the transducer to pulse input stress signals and for generating pulse stress signals are presented. The characteristic features of the transducer which include the central frequency f sub o, quality factor Q, and flat frequency response range are obtained by this noncontact characterization technique and they compare favorably with those obtained by a tone burst method which are also presented.

  14. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers

    Science.gov (United States)

    Eriksson, Tobias J. R.; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N.; Dixon, Steve

    2016-01-01

    Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio (SNR)≃15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart. PMID:27571075

  15. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    Science.gov (United States)

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  16. Analytical calibration of linear transducer arrays for photoacoustic tomography

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Fournelle, Marc

    2015-07-01

    Tomographic photoacoustic imaging (PAT) allows to overcome the anisotropic image resolution of conventional reflection mode imaging. In order to achieve high-resolution, tomographic images, precise information on the position of each detector element is required. PAT systems that acquire signals from rotating linear transducer arrays come with inevitable transducer misalignments. Up to now, transducer orientation (x/y-tilt) and radial distance uncertainty were measured experimentally or have not been considered. Uncalibrated, these systems suffer from characteristic artifacts yielding misinterpretations of anatomic structures. Herein, we derive the artifact mathematically and investigate an analytical calibration method that enables the calculation and compensation of important transducer positioning parameters: the rotational radius and in-plane tilt. We studied the approach theoretically and evaluated the performance of the developed algorithm both on numerical and experimental data. A PAT system based on a 5-MHz linear transducer array, a multichannel electronics platform with channel data access, a NIR-emitting laser system and a rotating samples is used to demonstrate the benefit of the transducer calibration method providing isotropic resolution of 160 μm.

  17. Home Automation System Based on Intelligent Transducer Enablers

    Directory of Open Access Journals (Sweden)

    Manuel Suárez-Albela

    2016-09-01

    Full Text Available This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers, which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  18. Design of a bullet beam pattern of a micro ultrasound transducer (Conference Presentation)

    Science.gov (United States)

    Roh, Yongrae; Lee, Seongmin

    2016-04-01

    Ultrasonic imaging transducer is often required to compose a beam pattern of a low sidelobe level and a small beam width over a long focal region to achieve good image resolution. Normal ultrasound transducers have many channels along its azimuth, which allows easy formation of the sound beam into a desired shape. However, micro-array transducers have no control of the beam pattern along their elevation. In this work, a new method is proposed to manipulate the beam pattern by using an acoustic multifocal lens and a shaded electrode on top of the piezoelectric layer. The shading technique split an initial uniform electrode into several segments and combined those segments to compose a desired beam pattern. For a given elevation width and frequency, the optimal pattern of the split electrodes was determined by means of the OptQuest-Nonlinear Program (OQ-NLP) algorithm to achieve the lowest sidelobe level. The requirement to achieve a small beam width with a long focal region was satisfied by employing an acoustic lens of three multiple focuses. Optimal geometry of the multifocal lens such as the radius of curvature and aperture diameter for each focal point was also determined by the OQ-NLP algorithm. For the optimization, a new index was devised to evaluate the on-axis response: focal region ratio = focal region / minimum beam width. The larger was the focal region ratio, the better was the beam pattern. Validity of the design has been verified through fabricating and characterizing an experimental prototype of the transducer.

  19. Ultrasonic Transducers for Air and Underwater Communication.

    Science.gov (United States)

    Koosha, Abdolrahim

    Available from UMI in association with The British Library. The performance of a novel radiator capable of producing ultrasonic waves in air and liquids has been investigated. For commercial transducers when operating in air or liquids, impedance matching is the necessary condition for maximum transfer of energy to the medium (thus no standing waves are involved). However, for this radiator the formation of the mechanical standing waves on it is the key condition for directional radiation of energy into the surrounding environment. Under this condition the radiator exhibits a practical conversion of electrical energy into ultrasound. To further improve the performance of the radiator the wavelength coincidence condition must be satisfied. This condition implies that the wavelength of the bending vibration developed on the blade to be the same as that in the medium to which it is coupled. Consequently, an end-fire radiation pattern is obtained. The theory of this when applied to water and also for a double blade configuration are presented. The main component of the radiator consists of a cantilever blade on which a pair of piezoelectric (PZT) ceramic bars are fixed. These the so called excitation gauges, are fixed on both sides of a thin rectangular metal blade near the clamped end. When wavelength coincidence condition is fulfilled, the radiator transmits ultrasonic wave in a highly directional pattern. The direction of propagation of ultrasound is solely steered by frequency of the applied signal. System imperfections such as inter modal coupling when used underwater are considered. An analytical approach is developed to investigate the performance of the radiator for transmission of digital signals in air as well as in water. This method is used to evaluate the efficiency of the device as a suitable means for communication between divers or a diver and an underwater stationary station. Amplitude modulation of speech signals demonstrated the capabilities of a new

  20. Ultrasonic transducer chip assembly, ultrasound probe, ultrasonic imaging system and ultrasound assembly and probe manufacturing methods

    NARCIS (Netherlands)

    Weekamp, J.W.; Henneken, V.A.; Groenland, A.W.; Louwerse, M.C.

    2015-01-01

    Disclosed is an ultrasonic transducer assembly comprising an ultrasonic transducer chip (100) having a main surface comprising a plurality of ultrasound transducer elements (112) and a plurality of first contacts (120) for connecting to said ultrasound transducer elements; a contact chip (400) havin

  1. Ultrasonic flowmeters: temperature gradients and transducer geometry effects.

    Science.gov (United States)

    Willatzen, M

    2003-03-01

    Ultrasonic flowmeter performance is addressed for the case of cylindrically shaped flowmeters employing two reciprocal ultrasonic transducers A and B so as to measure time-of-flight differences between signals transmitted from transducer A towards B followed by an equivalent signal transmitted from transducer B towards A. In the case where a liquid flows through the flowmeter's measuring section ("spoolpiece"), the arrival times of the two signals differ by an amount related to the flow passing between the two transducers. Firstly, a detailed study of flow measurement errors with mean flow in the laminar flow regime is carried out as a function of the mode index and the transducer diameter/cylinder diameter ratio in the case where no temperature gradients are present in the flowmeter sensor. It is shown that all modes except the fundamental mode overestimate the mean flow by a factor of 33.33% while excitation of the fundamental mode solely give error-free measurements. The immediate consequences are that the flowmeter error decreases as the transducer diameter/cylinder diameter ratio approaches 1 from 0 reflecting the fact that the excitation level of the fundamental mode increases from almost 0 to 1 as this ratio approaches 1 from 0. Secondly, the effect on flowmeter performance due to flow-induced temperature gradients is examined. It is shown that the presence of temperature gradients leads to flowmeter errors at the higher-flow values even in the case where the fundamental mode is the only mode excited. It is also deduced that flowmeter errors in general depend on the distance between transducers A and B whether temperature gradients exist or not. This conclusion is not reflected in the usual definition of flowmeter errors given by the so-called mode-dependent deviation of measurement introduced in earlier works.

  2. Transducer-binding and transducer-mutations modulate photoactive-site-deprotonation in sensory rhodopsin I.

    Science.gov (United States)

    Jung, K H; Spudich, E N; Dag, P; Spudich, J L

    1999-10-05

    Sensory rhodopsin I (SRI) is a seven-transmembrane helix retinylidene protein that mediates color-sensitive phototaxis responses through its bound transducer HtrI in the archaeon Halobacterium salinarum. Deprotonation of the Schiff base attachment site of the chromophore accompanies formation of the SRI signaling state, S(373). We measured the rate of laser flash-induced S(373) formation in the presence and absence of HtrI, and the effects of mutations in SRI or HtrI on the kinetics of this process. In the absence of HtrI, deprotonation occurs rapidly (halftime 10 micros) if the proton acceptor Asp76 is ionized (pK(a) = approximately 7), and only very slowly (halftime > 10 ms) when Asp76 is protonated. Transducer-binding, although it increases the pK(a) of Asp76 so that it is protonated throughout the range of pH studied, results in a first order, pH-independent rate of S(373) formation of approximately 300 micros. Therefore, the complexation of HtrI facilitates the proton-transfer reaction, increasing the rate approximately 50-fold at pH6. Arrhenius analysis shows that HtrI-binding accelerates the reaction primarily by an entropic effect, suggesting HtrI constrains the SRI molecule in the complex. Function-perturbing mutations in SRI and HtrI also alter the rate of S(373) formation and the lambda(max) of the parent state as assessed by laser flash-induced kinetic difference spectroscopy, and shifts to longer wavelength are correlated with slower deprotonation. The data indicate that HtrI affects electrostatic interactions of the protonated Schiff base and not only receives the signal from SRI but also optimizes the photochemical reaction process for SRI signaling.

  3. Flexural Fillet Geometry Optimization for Design of Force Transducers Used in Aeronautics Testing

    Science.gov (United States)

    Lynn, Keith C.; Dixon, Genevieve

    2015-01-01

    Force transducer designs used in the ground testing aeronautics community have seen minimal change over the last few decades. With increased focus on data quality and long-term performance capabilities over the life of these instruments, it is critical to investigate new methods that improve these designs. One area of focus in the past few years at NASA has been on the design of the flexural elements of traditional force balance transducers. Many of the heritage balances that have been heavily used over the last few decades have started to develop fatigue cracks. The recent focus on the flexural design of traditional single-piece force balances revolves around the design of these elements such that stress concentrations are minimized, with the overall goal of increasing the fatigue life of the balance. Recent research in the area of using conic shaped fillets in the highly stressed regions of traditional force balances will be discussed, with preliminary numerical and experimental data results. A case study will be presented which discusses integration of this knowledge into a new high-capacity semi-span force balance.

  4. 1-3 Piezocomposite transducers for AUV applications

    Science.gov (United States)

    Pazol, Brian; Lannaman, Ken; Doust, Barry

    2001-05-01

    Sonar systems on board AUVs present interesting challenges to the transducer designer because of their small size, low weight requirements, and limited available power. 1-3 piezocomposite transducers offer many performance characteristics which make them ideal for deployment in AUVs. Piezocomposite transducers are light weight, have broad bandwidth, have high efficiency, and can be conformed to fit the curvature of the vehicle. The broad bandwidths and low sidelobes made possible by piezocomposites result in sharper images with less distortion. The piezocomposite material is mechanically robust and can survive the rigors of normal operations as well as AUV deployment and retrieval. In addition, the conformal configuration substantially reduces hydrodynamic drag. As a conformal array, there is nothing to get knocked off during deployment and retrieval operations, or entangled with natural or man-made objects suspended in the water column. This contributes directly to improving the operational endurance of the AUV system, thereby enhancing overall system utility. MSI has produced and tested a variety of piezocomposite transducers for use in obstacle avoidance, mine hunting, and acoustic communications. An overview of piezocomposites and recent results of piezocomposite transducers will be presented.

  5. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).

  6. Delimitation of the lung region with distributed ultrasound transducers

    Science.gov (United States)

    Cardona Cárdenas, Diego Armando; Furuie, Sérgio Shiguemi

    2016-04-01

    One technique used to infer and monitor patient's respiratory conditions is the electrical impedance tomography (EIT). This provides images with information about lung function. The EIT image contrast is dependent on the variation of electrical impedance, therefore, this image does not provide anatomical details in border regions of several organs. To contribute to a clinical solution, we propose a new method to delimit regions of interest such as the pulmonary region and to improve the reconstruction quality of the EIT. Using a Matlab Toolbox k-wave, the ultrasound propagation phenomenon in homogeneous medium without patient (Reference) and with thoracic models were simulated, separately via a set of several ultrasound transducers distributed around the chest. After pulse emission by a transducer (TR), all received signals were compared considering the two sets of signals. If the energy relation between parts of the signals does not exceed an empirical threshold (30% in this study), a partial mask is generated between the transmitter and the receptor. This process was repeated until all 128 transducers are considered as TR-emitters. The 128 transducers (150kHz) are uniformly distributed. The evaluation was made by visually comparing the resulting images with the respective simulated object. A simple approach was presented to delimit high contrast organs with ultrasound transducers distributed around the patient. This approach allows other lower contrast objects to become invisible by varying the threshold limit. The investigation, based on numerical simulations of ultrasonic propagation, has shown promising results in the delimitation of the pulmonary region.

  7. Wideband Tonpilz Transducer with a Cavity Inside a Head Mass

    Science.gov (United States)

    Saosometh Chhith,; Yongrae Roh,

    2010-07-01

    A multimode Tonpilz transducer is well-known for providing a wider bandwidth than a single-mode transducer. In this paper, a new structure for the head mass of a multimode Tonpilz transducer was designed to further widen the bandwidth. The mechanical quality factor of a Tonpilz transducer is proportional to the weight of its head mass. In that sense, making the cavity inside the head mass will surely lead to a much lighter head mass, which can lead to a lower mechanical quality factor, thus a wider bandwidth. Through finite element analyses, the effects of the void head mass structure on the transducer performance were analyzed, and the dimension of the cavity to achieve the widest bandwidth was determined within given structural variation ranges. The variation ranges were selected as those in which the coefficient of determination in regression analyses was larger than 0.95 over all the ranges. The structure of a tail mass was also designed using the same method to match the new head mass.

  8. A hybrid transducer to magnetically and ultrasonically evaluate magnetic fluids.

    Science.gov (United States)

    Bruno, Alexandre Colello; Pavan, Théo Z; Baffa, Oswaldo; Carneiro, Antonio Adilton Oliveira

    2013-09-01

    Ultrasound, magnetic fields, and optical techniques have been explored for clinical diagnosis and therapy. However, these techniques have limitations. In this study, we constructed and characterized a transducer to magnetically and ultrasonically investigate samples labeled with magnetic particles. The transducer is a hybrid system consisting of an ac biosusceptometer (ACB) and an ultrasonic transducer. The basic operation principle consisted of measuring the magnetization and microvibrations of ferromagnetic particles (37 and 70 μm) mixed in yogurt and excited by an external alternating magnetic field generated by the ACB's excitation coils. The vibration of the ferromagnetic particles was measured in phantoms using a Doppler ultrasonic transducer; we verified the sensitivity to detecting the vibrations at low concentrations of ferromagnetic material (~1%). The responses of the susceptometer and Doppler ultrasound linearly depended on the voltage level applied to the magnetizing coils at low ferromagnetic particle concentrations (⩽ 5%). We also conducted a repeatability test on the prototype, which indicated a deviation of 0.94% and 0.25% in the Doppler and susceptometric measurements, respectively. We can conclude that the hybrid transducer technique has potential clinical applications.

  9. A highly sensitive fiber Bragg grating diaphragm pressure transducer

    Science.gov (United States)

    Allwood, Gary; Wild, Graham; Lubansky, Alex; Hinckley, Steven

    2015-10-01

    In this work, a novel diaphragm based pressure transducer with high sensitivity is described, including the physical design structure, in-depth analysis of optical response to changes in pressure, and a discussion of practical implementation and limitations. A flat circular rubber membrane bonded to a cylinder forms the body of the transducer. A fiber Bragg grating bonded to the center of the diaphragm structure enables the fractional change in pressure to be determined by analyzing the change in Bragg wavelength of the reflected spectra. Extensive evaluation of the physical properties and optical characteristics of the transducer has been performed through experimentation, and modeling using small deformation theory. The results show the transducer has a sensitivity of 0.116 nm/kPa, across a range of 15 kPa. Ultra-low cost interrogation of the optical signal was achieved through the use of an optically mismatched Bragg grating acting as an edge filter to convert the spectral change into an intensity change. A numerical model of the intensity based interrogation was implemented in order to validate the experimental results. Utilizing this interrogation technique and housing both the sensing and reference Bragg gratings within the main body of the transducer means it is effectively temperature insensitive and easily connected to electronic systems.

  10. A numerical study on the oblique focus in MR-guided transcranial focused ultrasound

    Science.gov (United States)

    Hughes, Alec; Huang, Yuexi; Pulkkinen, Aki; Schwartz, Michael L.; Lozano, Andres M.; Hynynen, Kullervo

    2016-11-01

    Recent clinical data showing thermal lesions from treatments of essential tremor using MR-guided transcranial focused ultrasound shows that in many cases the focus is oblique to the main axis of the phased array. The potential for this obliquity to extend the focus into lateral regions of the brain has led to speculation as to the cause of the oblique focus, and whether it is possible to realign the focus. Numerical simulations were performed on clinical export data to analyze the causes of the oblique focus and determine methods for its correction. It was found that the focal obliquity could be replicated with the numerical simulations to within 23.2+/- {{13.6}\\circ} of the clinical cases. It was then found that a major cause of the focal obliquity was the presence of sidelobes, caused by an unequal deposition of power from the different transducer elements in the array at the focus. In addition, it was found that a 65% reduction in focal obliquity was possible using phase and amplitude corrections. Potential drawbacks include the higher levels of skull heating required when modifying the distribution of power among the transducer elements, and the difficulty at present in obtaining ideal phase corrections from CT information alone. These techniques for the reduction of focal obliquity can be applied to other applications of transcranial focused ultrasound involving lower total energy deposition, such as blood-brain barrier opening, where the issue of skull heating is minimal.

  11. Initial Validation of Ballistic Shock Transducers

    Science.gov (United States)

    2017-06-05

    to 100 mega samples per second with at least 12 bit resolution is required. (2) Must be able to provide usable data output for post-test...measurement of shock, and this TOP will focus only on accelerometers. Engineering judgement can be used to adapt portions of the TOP to various other...LDV. Each was sampled at 5 MHz and digitally filtered at 100 kHz. This process should be repeated until all test levels are met. Figure 18

  12. Reducing the Effect of Transducer Mount Induced Noise on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

    Science.gov (United States)

    Herron, A. J.; Reed, D. K.; Nance, D. K.

    2015-01-01

    Characterization of launch vehicle unsteady aerodynamics is a field best studied through experimentation, which is often carried out in the form of large scale wind tunnel testing. Measurement of the fluctuating pressures induced by the boundary layer noise is customarily made with miniature pressure transducers installed into a model of the vehicle of interest. Literature shows that noise level increases between two to five decibels (dB referenced to 20 micropascal) can be induced when the transducer surface is not mounted perfectly flush with the model outer surface. To reduce this artificially induced noise, special transducer holders have been used for aeroacoustic wind tunnel testing by NASA. This holder is a sleeve into which the transducer fits, with a cap that allows it to be mounted in a recessed hole in the model. A single hole in the holder allows the transport of the tunnel medium so the transducer can discriminate the fluctuating pressure due to the turbulent boundary layer noise. The holder is first dry fitted into the model and any difference in height between the holder and the model surface can be sanded flush. The holder is then removed from the model, the transducer glued inside the holder, and the holder replaced in the model, secured also with glue, thus eliminating the problem of noise level increases due to lack of flushness. In order to work with this holder design, special transducers have been ordered with their standard screen removed and the diaphragm moved as close to the top of the casing as possible to minimize any cavity volume. Although this greatly reduces induced noise due to the transducers being out of flush, the holders can also induce a cavity resonance that is usually at a very high frequency. This noise is termed transducer mount induced noise (XMIN). The peak of the mode can vary with the cavity depth, boundary layer noise that can excite the mode, tunnel flow medium, and the build of the transducers. Because the boundary

  13. Energy harvesting with a slotted-cymbal transducer

    Institute of Scientific and Technical Information of China (English)

    Jiang-bo YUAN; Xiao-biao SHAN; Tao XIE; Wei-shan CHEN

    2009-01-01

    A cymbal transducer is made up of a piezoceramic disk sandwiched between two dome-shaped metal endcaps. High circumferential stresses caused by flexural motion of the metal endcaps can induce the loss of mechanical input energy. Finite element analysis shows that the radial slots fabricated in metal endcaps can release the circumferential stresses, and reduce the loss of mechanical input energy that could be converted into electrical energy. In this letter, the performance of a slotted-cymbal transducer in energy harvesting was tested. The results show that the output voltage and power of the cymbal are improved. A maximum output power of around 16 mW could be harvested from a cymbal with 18 cone radial slots across a 500kΩ resistive load, which is approximately 0.6 times more than that of the original cymbal transducer.

  14. A novel serrated columnar phased array ultrasonic transducer

    Science.gov (United States)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  15. The Use of Phononic Crystals to Design Piezoelectric Power Transducers

    Directory of Open Access Journals (Sweden)

    Silvia Ronda

    2017-03-01

    Full Text Available It was recently proposed that the lateral resonances around the working resonance band of ultrasonic piezoelectric sandwich transducers can be stopped by a periodic array of circular holes drilled along the main propagation direction (a phononic crystal. In this work, the performance of different transducer designs made with this procedure is tested using laser vibrometry, electric impedance tests and finite element models (FEM. It is shown that in terms of mechanical vibration amplitude and acoustic efficiency, the best design for physiotherapy applications is when both, the piezoceramic and an aluminum capsule are phononic structures. The procedure described here can be applied to the design of power ultrasonic devices, physiotherapy transducers and other external medical power ultrasound applications where piston-like vibration in a narrow band is required.

  16. Design, production and testing of PMN-PT electrostrictive transducers.

    Science.gov (United States)

    Coutte, J; Dubus, B; Debus, J C; Granger, C; Jones, D

    2002-05-01

    Lead magnesium niobate ceramics (PMN) are promising materials for application in the field of high power transducers. The advantage of PMN materials are the large strains generated under moderate electric field and the low hysteresis. The electrostrictive effect is non-linear, the corresponding physical constants depend on temperature and frequency and a DC electrical bias is required. These difficulties must be considered at the design stage. A finite element model has been developed and validated in the ATILA code for non-linear static and time-domain analyses. These numerical modelings are used to design and test two Langevin-type electrostrictive transducers. The first transducer is made of PMN-PT-La (90-10-1%) ceramics (TRS Ceramics), the second one of ESCI ceramics (Morgan Matroc). For given static mechanical prestresses, resonance frequencies and effective coupling coefficients are measured at different DC electric fields and temperatures.

  17. Inter Digital Transducer Modelling through Mason Equivalent Circuit Model

    DEFF Research Database (Denmark)

    Mishra, Dipti; Singh, Abhishek; Hussain, Dil muhammed Akbar

    2016-01-01

    by Simulation program with Integrated Circuit Emphasis (HSPICE), a well-liked electronic path simulator. The acoustic wave devices are not suitable to simulation through circuit simulator.In this paper, an electrical model of Mason’s Equivalent electricalcircuit for an inter-digital transducer (IDT......The frequency reliance of inter-digital transducer is analyzed with the help of MASON’s Equivalent circuit which is based on Smith’s Equivalent circuit which is further based on Foster’sNetwork. An inter-digital transducer has been demonstratedas a RLC network. The circuit is simulated......) is projected which is well-suitedwith a broadlycast-offuniversalresolution circuit simulator SPICE built-in out with the proficiency to simulatethenegative capacitances and inductances. The investigationis done to prove the straightforwardness of establishing the frequency and time domain physical...

  18. Phased annular array transducers for ultrasonic guided wave applications

    Science.gov (United States)

    Yan, Fei; Borigo, Cody; Liang, Yue; Koduru, Jaya P.; Rose, Joseph L.

    2011-04-01

    Mode and frequency control always plays an important role in ultrasonic guided wave applications. In this paper, theoretical understanding of guided wave excitations of axisymmetric sources on plate structures is established. It is shown that a wave number spectrum can be used to investigate the guided wave excitations of an axisymmetric source. The wave number spectrum is calculated from a Hankel transform of the axial source loading profile. On the basis of the theoretical understanding, phased annular array transducers are developed as a powerful tool for guided wave mode and frequency control. By applying appropriate time delays to phase the multiple elements of an annular array transducer, guided wave mode and frequency tuning can be achieved fully electronically. The phased annular array transducers have been successfully used for various applications. Example applications presented in this paper include phased annular arrays for guided wave beamforming and a novel ultrasonic vibration modal analysis technique for damage detection.

  19. Some design considerations for small piezo-electrical ceramic transducers

    Science.gov (United States)

    Rijnja, H. A. J.

    1989-07-01

    The design parameters and the characteristics of small omnidirectional transducers, to be applied under water as projectors in the frequency range of about 1 kHz to 100 kHz and as hydrophones from very low frequencies up to again 100kHz are described. The transducers are constructed with piezoelectrical ceramic materials in the shape of hollow spheres, end capped tubes or piston (Tonpilz) elements. The highest source levels are obtained with spherical transducers as single omnidirectional sound sources. If larger arrays of sources are applied the array should be composed of single ended Tonpilz elements. The most sensitive receivers (hydrophones) are obtained with tangentially polarized end-capped tubes.

  20. Finite element analysis of piezoelectric underwater transducers for acoustic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwan [Inha University, Incheon (Korea, Republic of); Kim, Heung Soo [Catholic University, Daegu (Korea, Republic of)

    2009-02-15

    This paper presents a simulation technique for analyzing acoustic characteristics of piezoelectric underwater transducers. A finite element method is adopted for modeling piezoelectric coupled problems including material damping and fluid-structure interaction problems by taking system matrices in complex form. For the finite element modeling of unbounded acoustic fluid, infinite wave envelope element (IWEE) is adopted to take into account the infinite domain. An in-house finite element program is developed and technical issues for implementing the program are explained. Using the simulation program, acoustic characteristics of tonpilz transducer are analyzed in terms of modal analysis, radiated pressure distribution, pressure spectrum, transmitting-voltage response and impedance analysis along with experimental comparison. The developed simulation technique can be used for designing ultrasonic transducers in the areas of nondestructive evaluation, underwater acoustics and bioengineering

  1. Actuators, transducers and motors based on giant magnetostrictive materials

    Energy Technology Data Exchange (ETDEWEB)

    Claeyssen, F.; Lhermet, N.; Le Letty, R. [Cedrat Recherche, Meylan (France); Bouchilloux, P. [Magsoft Corporation, 1223 People`s Avenue, New York 12180 (United States)

    1997-08-01

    Rare earth-iron magnetostrictive alloys, especially Terfenol-D, feature ``giant`` magnetostrains: static strains of 1000-2000 ppm and dynamic strains of 3500 ppm are reported. These strains permit building various actuating devices (actuators, transducers, motors) both at macro and micro scale. The object of the paper is to recall adapted design methods, especially finite element methods such as ATILA, and to review these different kinds of devices studied at Cedrat Recherche, providing both up-dated experimental and numerical results. The presented devices will include several large displacement longitudinal and shear actuators biased using permanent magnets and used either as characterisation devices or as electromechanical actuators (for active damping, for sonar transducers..), a 1 kHz 4 kW Tonpilz-type sonar transducer called the tripode, a 2 N m torque rotating multi-mode motor, a torsion based drift free micro actuator and a wireless linear micromotor. (orig.)

  2. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  3. Novice performance of ultrasound-guided needle advancement: standard 38-mm transducer vs 25-mm hockey stick transducer.

    Science.gov (United States)

    Davies, T; Townsley, P; Jlala, H; Dowling, M; Bedforth, N; Hardman, J G; McCahon, R A

    2012-08-01

    The optimal method to develop expertise in ultrasound-guided regional anaesthesia is unknown. Studies of laryngoscopic expertise in novices demonstrate that the choice of laryngoscope affects performance. In this study, we aimed to compare the effect of two different linear array transducers (38-mm standard vs 25-mm hockey stick) on novice performance of ultrasound-guided needle advancement. Following randomisation, participants watched a video model of expert performance of ultrasound-guided needle advancement. Recruits performed the modelled task on a turkey breast model. The median (IQR [range]) composite error score was statistically significantly larger for participants in the hockey stick transducer group compared with the standard transducer group; 10.0 (7.3-14.3 [2.5-29.0]) vs 7.5 (4.5-10.0 [2.0-28.0]) respectively, (p = 0.01). This study has demonstrated that performance of ultrasound-guided needle advancement by novice operators after simple video instruction is better (as assessed using a composite error score) with a standard 38-mm transducer than with a 25-mm hockey stick transducer. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  4. The planar silicon-based microelectronic technology for electrochemical transducers

    Science.gov (United States)

    Novikov, A. V.; Egorchikov, A. E.; Dolgov, A. N.; Gornev, E. S.; Popov, V. G.; Egorov, I. V.; Krishtop, V. G.

    2016-12-01

    We have developed the new technology for production of sensitive modules for electrochemical sensors of pressure and acceleration. The technology is applicable for mass production and scalable for high-volume production. In this work we demonstrate the new sensing module for electrochemical motion sensors, and its possibility of applying in geophones. We fabricated prototypes of electrochemical planar transducer chips, produced a laboratory prototype of a geophone based on our planar transducer chip, and tested them. This paper presents the preliminary results of the tests.

  5. Sensory TRP channels: the key transducers of nociception and pain.

    Science.gov (United States)

    Mickle, Aaron D; Shepherd, Andrew J; Mohapatra, Durga P

    2015-01-01

    Peripheral detection of nociceptive and painful stimuli by sensory neurons involves a complex repertoire of molecular detectors and/or transducers on distinct subsets of nerve fibers. The majority of such molecular detectors/transducers belong to the transient receptor potential (TRP) family of cation channels, which comprise both specific receptors for distinct nociceptive stimuli, as well as for multiple stimuli. This chapter discusses the classification, distribution, and functional properties of individual TRP channel types that have been implicated in various nociceptive and/or painful conditions.

  6. Wideband Single-Crystal Transducer for Bone Characterization

    Science.gov (United States)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an

  7. Simulating Capacitive Micromachined Ultrasonic Transducers (CMUTs) using Field II

    DEFF Research Database (Denmark)

    Bæk, David; Oralkan, Omer; Kupnik, Mario;

    2010-01-01

    Field II has been a recognized simulation tool for piezoceramic medical transducer arrays for more than a decade. The program has its strength in doing fast computations of the spatial impulse response (SIR) from array elements by dividing the elements into smaller mathematical elements (ME)s from...... which it calculates the SIR responses. The program features predefined models for classical transducer geometries, but currently none for the fast advancing CMUTs. This work addresses the assumptions required for modeling CMUTs with Field II. It is shown that rectangular array elements, populated...

  8. Electromechanically active polymer transducers: research in Europe

    DEFF Research Database (Denmark)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin

    2013-01-01

    usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research...... and end users. The ESNAM network has received financial support from the European COST (Cooperation in Science and Technology) programme (COST Action MP1003), leading to fruitful collaboration, of which some results are showcased in this issue. This focus issue deals with a number of relevant topics...

  9. Platform based design of EAP transducers in Danfoss PolyPower A/S

    Science.gov (United States)

    Sarban, Rahimullah; Gudlaugsson, Tómas V.

    2013-04-01

    Electroactive Polymer (EAP) has gained increasing focus, in research communities, in last two decades. Research within the field of EAP has, so far, been mainly focused on material improvements, characterization, modeling and developing demonstrators. As the EAP technology matures, the need for a new area of research namely product development emerges. Product development can be based on an isolated design and production for a single product or platform design where a product family is developed. In platform design the families of products exploits commonality of platform modules while satisfying a variety of different market segments. Platform based approach has the primary benefit of being cost efficient and short lead time to market when new products emerges. Products development based on EAP technology is challenging both technologically as well as from production and processing point of view. Both the technological and processing challenges need to be addressed before a successful implementation of EAP technology into products. Based on this need Danfoss PolyPower A/S has, in 2011, launched a EAP platform project in collaboration with three Danish universities and three commercial organizations. The aim of the project is to develop platform based designs and product family for the EAP components to be used in variety of applications. This paper presents the structure of the platform project as a whole and specifically the platform based designs of EAP transducers. The underlying technologies, essential for EAP transducers, are also presented. Conceptual design and solution for the concepts are presented as well.

  10. Capacitive Micromachined Ultrasonic Transducer Arrays for Integrated Diagnostic/Therapeutic Catheters

    Science.gov (United States)

    Wong, Serena H.; Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Bayram, Baris; Kupnik, Mario; Oralkan, Omer; Ergun, A. Sanli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2006-05-01

    In recent years, medical procedures have become increasingly non-invasive. These include endoscopic procedures and intracardiac interventions (e.g., pulmonary vein isolation for treatment of atrial fibrillation and plaque ablation for treatment of arteriosclerosis). However, current tools suffer from poor visualization and difficult coordination of multiple therapeutic and imaging devices. Dual-mode (imaging and therapeutic) ultrasound arrays provide a solution to these challenges. A dual-mode transducer can provide focused, noncontact ultrasound suitable for therapy and can be used to provide high quality real-time images for navigation and monitoring of the procedure. In the last decade, capacitive micromachined ultrasonic transducers (CMUTs), have become an attractive option for ultrasonic imaging systems due to their fabrication flexibility, improved bandwidth, and integration with electronics. The CMUT's potential in therapeutic applications has also been demonstrated by surface output pressures as high as 1MPa peak to peak and continuous wave (CW) operation. This paper reviews existing interventional CMUT arrays, demonstrates the feasibility of CMUTs for high intensity focused ultrasound (HIFU), and presents a design for the next-generation CMUTs for integrated imaging and HIFU endoscopic catheters.

  11. Analysis of eigenfrequencies in piezoelectric transducers using the finite element method

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1988-01-01

    It is noted that the finite-element method is a valuable supplement to the traditional methods for design of novel transducer types because it can determine the vibrational pattern of piezoelectric transducers and is applicable to any geometry. Computer programs for analysis of axisymmetric...... transducers, which include the complete set of piezoelectric equations, have been included. They can find eigenfrequencies for undamped transducers and perform forced-response analysis for transducers with internal and radiation damping. The superelement technique is used to model the transducer backing...

  12. Investigation of capacitively coupled ultrasonic transducer system for nondestructive evaluation.

    Science.gov (United States)

    Zhong, Cheng Huan; Wilcox, Paul D; Croxford, Anthony J

    2013-12-01

    Capacitive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory, feasibility, and optimization of such a capacitively coupled transducer system (CCTS) in the context of nondestructive evaluation (NDE) applications. The noncontact interface relies on an electric field formed between four metal plates-two plates are physically connected to the electrodes of a transducer, the other two are in a separate probing unit connected to the transmit/receive channel of the instrumentation. The complete system is modeled as an electric network with the measured impedance of a bonded piezoelectric ceramic disc representing a transducer attached to an arbitrary solid substrate. A transmission line model is developed which is a function of the physical parameters of the capacitively coupled system, such as the permittivity of the material between the plates, the size of the metal plates, and their relative positions. This model provides immediate prediction of electric input impedance, pulse-echo response, and the effect of plate misalignment. The model has been validated experimentally and has enabled optimization of the various parameters. It is shown that placing a tuning inductor and series resistor on the transmitting side of the circuit can significantly improve the system performance in terms of the signal-to-crosstalk ratio. Practically, bulk-wave CCTSs have been built and demonstrated for underwater and through-composite testing. It has been found that electrical conduction in the media between the plates limits their applications.

  13. High Temperature Ultrasonic Transducers : Material Selection and Testing

    Science.gov (United States)

    Bar-Cohen, Yoseph; Bruno, Alessandro

    2012-01-01

    The task of my two-months internship was to test different materials to be used to build an high temperature transducer, to develop some prototypes and to test their performance, to assess the reliability of commercial product rated for such a temperature, as well as to collaborate in developing the signal processing code to measure the condensed water levels.

  14. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  15. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  16. Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Nicolás Peréz Alvarez

    2015-11-01

    Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.

  17. Transverse Mode Multi-Resonant Single Crystal Transducer

    Science.gov (United States)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  18. A distributed transducer system for functional electrical stimulation

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Nielsen, Jannik Hammel; Bruun, Erik

    2001-01-01

    Implanted transducers for functional electrical stimulation (FES) powered by inductive links are subject to conflicting requirements arising from low link efficiency, a low power budget and the need for protection of the weak signals against strong RF electromagnetic fields. We propose a solution...

  19. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  20. Two methods for absolute calibration of dynamic pressure transducers

    Science.gov (United States)

    Swift, G. W.; Migliori, A.; Garrett, S. L.; Wheatley, J. C.

    1982-12-01

    Two techniques are described for absolute calibration of a dynamic pressure transducer from 0 to 400 Hz in 1-MPa helium gas. One technique is based on a comparison to a mercury manometer; the other is based on the principle of reciprocity. The two techniques agree within the instrumental uncertainties of 1%.

  1. Physical and chemical sensing using monolithic semiconductor optical transducers

    Science.gov (United States)

    Zappe, Hans P.; Hofstetter, Daniel; Maisenhoelder, Bernd; Moser, Michael; Riel, Peter; Kunz, Rino E.

    1997-09-01

    We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.

  2. Cooling method prolongs life of hot-wire transducer

    Science.gov (United States)

    Baldwin, L. V.; Sandborn, V. A.

    1964-01-01

    To cool a hot-wire transducer, the two ends of the wire are supported on thermally and electrically conductive rods, surrounded by a fluid cooling medium. By keeping the supporting rods at a substantially constant temperature, the probe is prevented from overheating.

  3. Neutron Irradiation Tests of Pressure Transducers in Liquid Helium

    CERN Document Server

    Amand, J F; Casas-Cubillos, J; Thermeau, J P

    1999-01-01

    The superconducting magnets of the future Large Hadron Collider (LHC) at CERN will operate in pressurised superfluid helium (1 bar, 1.9 K). About 500 pressure transducers will be placed in the liquid helium bath for monitoring the filling and the pressure transients after resistive transitions. Their precision must remain better than 100 mbar at pressures below 2 bar and better than 5% for higher pressures (up to 20 bar), with temperatures ranging from 1.8 K to 300 K. All the tested transducers are based on the same principle: the fluid or gas is separated from a sealed reference vacuum by an elastic membrane; its deformation indicates the pressure. The transducers will be exposed to high neutron fluence (2 kGy, 1014 n/cm2 per year) during the 20 years of machine operation. This irradiation may induce changes both on the membranes characteristics (leakage, modification of elasticity) and on gauges which measure their deformations. To investigate these effects and select the transducer to be used in the LHC, a...

  4. Acoustic impedance matching of piezoelectric transducers to the air.

    Science.gov (United States)

    Gómez Alvarez-Arenas, Tomás E

    2004-05-01

    The purpose of this work is threefold: to investigate material requirements to produce impedance matching layers for air-coupled piezoelectric transducers, to identify materials that meet these requirements, and to propose the best solution to produce air-coupled piezoelectric transducers for the low megahertz frequency range. Toward this end, design criteria for the matching layers and possible configurations are reviewed. Among the several factors that affect the efficiency of the matching layer, the importance of attenuation is pointed out. A standard characterization procedure is applied to a wide collection of candidate materials to produce matching layers. In particular, some types of filtration membranes are studied. From these results, the best materials are identified, and the better matching configuration is proposed. Four pairs of air-coupled piezoelectric transducers also are produced to illustrate the performance of the proposed solution. The lowest two-way insertion loss figure is -24 dB obtained at 0.45 MHz. This increases for higher frequency transducers up to -42 dB at 1.8 MHz and -50 at 2.25 MHz. Typical bandwidth is about 15-20%.

  5. Interdigitated interdigital transducer for surface elastometry of soft damping tissue.

    Science.gov (United States)

    Danicki, Eugene; Nowicki, Andrzej; Tasinkevych, Yuriy

    2013-06-01

    Measurement of the shear elastic constant of soft and highly damping tissue of high Poisson ratio is quite a challenging task. It is proposed to evaluate shear wave velocity and damping of tissue by measuring the shear skimming bulk waves using one interdigitated interdigital transducer on a piezoelectric layer, such as polyvinylidene fluoride, applied to the surface of the small tissue sample.

  6. Cantilever deflection measurement and actuation by an nterdigitated transducer

    NARCIS (Netherlands)

    Strambini, E.; Piazza, V.; Pingue, P.; Biasiol, G.; Sorba, L.; Beltram, F.

    2010-01-01

    A scheme that allows all-electrical high-bandwidth readout of a cantilever deflection by means of an integrated interdigitated transducer is presented. The present approach takes advantage of the piezoelectricity of the chosen cantilever substrate material to generate and detect surface-acoustic-wav

  7. Multilayer piezoelectric transducer models combined with Field II

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten; Jensen, Jørgen Arendt

    2012-01-01

    with a polymer ring, and submerged into water. The transducer models are developed to account for any external electrical loading impedance in the driving circuit. The models are adapted to calculate the surface acceleration needed by the Field II software in predicting pressure pulses at any location in front...

  8. Multilevel inverter based class D audio amplifier for capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The reduced semiconductor voltage stress makes the multilevel inverters especially interesting, when driving capacitive transducers for audio applications. A ± 300 V flying capacitor class D audio amplifier driving a 100 nF load in the midrange region of 0.1-3.5 kHz with Total Harmonic Distortion...

  9. Investigation of inductively coupled ultrasonic transducer system for NDE.

    Science.gov (United States)

    Zhong, Cheng Huan; Croxford, Anthony J; Wilcox, Paul D

    2013-06-01

    Inductive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory and feasibility of such an inductively coupled transducer system in the context of nondestructive evaluation (NDE) applications. The noncontact interface is based on electromagnetic coupling between three coils; one of the coils is physically connected to the transducer, the other two are in a separate probing unit, where they are connected to the transmit and receive channels of the instrumentation. The complete system is modeled as a three-port network with the measured impedance of a bonded piezoelectric ceramic disc representing a sensor attached to an arbitrary solid substrate. The developed transmission line model is a function of the physical parameters of the electromagnetic system, such as the number of turns and diameter of each coil, and their separation. This model provides immediate predictions of electrical input impedance and pulse-echo response. The model has been validated experimentally and a sensitivity analysis of the input parameters performed. This has enabled optimization of the various parameters. Inductively coupled transducer systems have been built for both bulk and guided wave examples. By using chirped excitation and baseline subtraction, inspection distance of up to 700 mm is achieved in single-shot, guided-wave pulse-echo mode measurements with a 5 mm separation between the probing coils and transducer coil on an aluminum plate structure. In the bulk wave example, a delamination in an 8.9-mm-thick carbon fiber composite specimen is successfully identified from the changes in the arrival time of a reflected pulse.

  10. A novel CMOS transducer for giant magnetoresistance sensors

    Science.gov (United States)

    Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong

    2017-02-01

    In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μ m CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.

  11. Thin-Profile Transducers for Intraoperative Hemostasis

    Science.gov (United States)

    Zderic, Vesna; Mera, Thomas; Vaezy, Shahram

    2005-03-01

    Our goal has been to develop thin-profile HIFU applicators for intraoperative hemostasis. The HIFU device consisted of a concave PZT element encased in a spoon-shaped aluminum housing with the diameter of 4 cm and thickness of 1 cm. The housing front surface had a thickness of 3/4 ultrasound wavelength in aluminum (0.92 mm) to provide acoustic matching. The device had a resonant frequency of 6.26 MHZ, and efficiency of 42%. The ultrasound field was observed using hydrophone field mapping and radiation force balance. The full-width half-maximum (FWHM) dimensions of the focal region were 0.6 mm and 2.2 mm in lateral and axial direction, respectively. The maximal intensity at the focus was 9,500 W/cm2 (in water). The device was tested using BSA-polyacrylamide gel phantom and rabbit kidney in vivo. HIFU application for 10 s produced lesions in the gel phantom (lesion width of 3 mm), and rabbit kidney in vivo (lesion width of 8 mm). A thin-profile HIFU applicator has advantages of high efficiency, simple design, and small dimensions.

  12. The measurement of tremor using a velocity transducer: comparison to simultaneous recordings using transducers of displacement, acceleration and muscle activity.

    Science.gov (United States)

    Norman, K E; Edwards, R; Beuter, A

    1999-10-15

    Precise kinematic measurements of tremor have historically been obtained using accelerometers. However, current technology permits precise measurements in velocity and displacement. The primary advantage of velocity recording is that only one step of integration or differentiation is required for either displacement or acceleration. A method is presented of measuring finger tremor using a laser system that transduces velocity precisely. Measurements of postural finger tremor thus obtained were compared to those simultaneously obtained from a laser system that transduces displacement, from an accelerometer and from surface electromyography (EMG) of the extensor digitorum communis. A range of amplitude and frequency content was obtained by testing control subjects and subjects with Parkinson's disease. The velocity transducer showed excellent correspondence of amplitude and frequency measurement with the displacement transducer. Measures of absolute and relative amplitude correlated well (r > or = 0.96 in amplitude measures in displacement, velocity and acceleration), and high coherence was found throughout the frequency range of interest. Measurements by the accelerometer generally showed poorer correspondence with those of the other instruments. EMG measurements showed good correspondence in some trials but poorer correspondence in others, attributed to the low level of muscle activity required in the task. Precise kinematic measurements appear to be highly sensitive to neuromotor impairment.

  13. Six-Axis Force-Torque Transducer for Mars 2018 Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A transducer element that is hearty enough for a Mars lander mission needs to be developed so that a six-axis force and torque transducer is possible. The technical...

  14. Directional properties of an 18-KHZ transducer: Proprietes directionnelles d'un transducteur 18 KHZ

    National Research Council Canada - National Science Library

    Foote, K.G

    1993-01-01

    Several theoretical measures of directivity are given for an 18-kHz transducer that is used in both single-beam and split- beam applications, namely the SIMRAD transducer type 18-11 in the single-beam variant...

  15. Wideband Single-Crystal Transducer for Bone Characterization

    Science.gov (United States)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an

  16. Note: Nanomechanical characterization of soft materials using a micro-machined nanoforce transducer with an FIB-made pyramidal tip.

    Science.gov (United States)

    Li, Z; Gao, S; Brand, U; Hiller, K; Wollschläger, N; Pohlenz, F

    2017-03-01

    The quantitative nanomechanical characterization of soft materials using the nanoindentation tech-nique requires further improvements in the performances of instruments, including their force resolution in particular. A micro-machined silicon nanoforce transducer based upon electrostatic comb drives featuring the force and depth resolutions down to ∼1 nN and 0.2 nm, respectively, is described. At the end of the MEMS transducer's main shaft, a pyramidal tip is fabricated using a focused ion beam facility. A proof-of-principle setup with this MEMS nanoindenter has been established to measure the mechanical properties of soft polydimethylsiloxane. First measurement results demonstrate that the prototype measurement system is able to quantitatively characterize soft materials with elastic moduli down to a few MPa.

  17. One-dimensional analysis of piezoelectric transducers based on Thevenin theorem

    OpenAIRE

    Arnold, FJ

    2009-01-01

    In this work, a method of analysis of piezoelectric transducers is shown. This method is based on the simplification of Mason's equivalent electric circuit. An adaptation of Thevenin theorem has been employed to study the behavior of piezoelectric transducers used as transmitters (electric into mechanic energy conversion). This study was restricted to transducers with a typical configuration employed in high power applications. The transducers were one-dimensionally modeled, considering only ...

  18. Eddy Current Transducer Dedicated for Sigma Phase Evaluation in Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Grzegorz Psuj

    2012-01-01

    Full Text Available The paper describes a new transducer dedicated for evaluation of a duplex stainless steel (DSS. Different phases which exist in DSS have influence on mechanical as well as on electrical properties. Therefore, an eddy current transducer was utilized. In order to achieve high sensitivity, a differential type of the transducer was selected. The performance of the transducer was verified by utilizing the samples which had a different amount of sigma phase.

  19. Ejection of small droplet from microplate using focused ultrasound

    Science.gov (United States)

    Tanaka, Hiroki; Mizuno, Yosuke; Nakamura, Kentaro

    2017-08-01

    We discussed an ultrasonic system for single-droplet ejection from a microplate, which is one of the basic and important procedures in the noncontact handling of droplets in air. In this system, a 1.5 MHz concave transducer located below the microplate is used for chasing the liquid surface through a pulse echo method, and also for the ejection of a 1 µL single droplet by the burst of focused ultrasound. We investigated the relationship between the droplet ejection characteristics, the distance from the transducer to the surface of liquid, the material property, and the excitation condition of the focused ultrasonic transducer. It was verified that the optimal position of the transducer was off the focal point of sound pressure by ±1 mm, because the sound intensity had to be controlled to eject a single droplet. Subsequently, we confirmed experimentally that the ejected droplet volume linearly depended on the surface tension of the liquid, and that the droplet volume and ejection velocity were determined by the Webber number, Reynolds number, and Ohnesolge number. In addition, by optimizing the duration of the burst ultrasound, the droplet volume and ejection velocity were controlled.

  20. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Science.gov (United States)

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  1. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Brian; Tittmann, Bernhard [The Pennsylvania State University (United States); Rempe, Joy; Daw, Joshua [Idaho National Laboratory (United States); Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov [Massachusetts Institute of Technology (United States); Ramuhalli, Pradeep; Montgomery, Robert [Pacific Northwest National Laboratory (United States); Chien, Hualte [Argonne National Laboratory (United States); Wernsman, Bernard [Bechtel Marine Propulsion Corp (United States)

    2015-03-31

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  2. Forced and free displacement characterization of ionic polymer transducers

    Science.gov (United States)

    Akle, Barbar J.; Duncan, Andrew; Akle, Etienne; Wallmersperger, Thomas; Leo, Donald J.

    2009-03-01

    Ionic polymer transducers (IPT), sometimes referred to as artificial muscles, are known to generate a large bending strain and a moderate stress at low applied voltages (transducers. In this study, extensional IPTs are characterized under forced and free displacement boundary condition as a function of transducer architecture. The electrode thickness is varied from 10 μm up to 40 μm while three extensional actuators with Lithium, Cesium, and tetraethylammonium (TEA) mobile cations are characterized. Three fixtures are built in order to characterize the extensional actuation response. The first fixture measures the free displacement of an IPT sample sandwiched between two aluminum plates glued using the electrically conductive silver paste. In the second fixture a spring is compressed against the test sample with variable amounts to generate different levels of pre-stress and prevents the bending of the IPT. In the third fixture dead weights are placed on top of the sample in order to prevent bending. In the spring loaded fixture a thermocouple is placed in the proximity of the actuator and temperature is measured. The different transducers are characterized using a step voltage input and an alternating current (AC) sine wave input. The step input resulted in a logarithmic rise like displacement curve, while the low frequency (wave displacement response with a strong first harmonic. The high frequency AC excitation generated a response similar to that of the step input. Comparing the measured temperature for step and AC response demonstrated that the sample is heating up when exited with a high frequency signal; which is leading to the expansion of the sample. Initial experimental results demonstrate a strong correlation between electrode architecture and the peak strain response. Strains on the order of 2% are observed with air stable ionic liquid based transducers. A correlation between the strain and charge buildup in the polymer is also characterized. Cesium

  3. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Science.gov (United States)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The

  4. 21 CFR 870.2900 - Patient transducer and electrode cable (including connector).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Patient transducer and electrode cable (including... § 870.2900 Patient transducer and electrode cable (including connector). (a) Identification. A patient transducer and electrode cable (including connector) is an electrical conductor used to transmit signals from...

  5. Detection of Rotor Forced Response Vibrations Using Stationary Pressure Transducers in a Multistage Axial Compressor

    Directory of Open Access Journals (Sweden)

    William L. Murray

    2015-01-01

    Full Text Available Blade row interactions in turbomachinery can lead to blade vibrations and even high cycle fatigue. Forced response conditions occur when a forcing function (such as impingement of stator wakes occurs at a frequency that matches the natural frequency of a blade. The objective of this research is to develop the data processing techniques needed to detect rotor blade vibration in a forced response condition from stationary fast-response pressure transducers to allow for detection of rotor vibration from transient data and lead to techniques for vibration monitoring in gas turbines. This paper marks the first time in the open literature that engine-order resonant response of an embedded bladed disk in a 3-stage intermediate-speed axial compressor was detected using stationary pressure transducers. Experiments were performed in a stage axial research compressor focusing on the embedded rotor of blisk construction. Fourier waterfall graphs from a laser tip timing system were used to detect the vibrations after applying signal processing methods to uncover these pressure waves associated with blade vibration. Individual blade response was investigated using cross covariance to compare blade passage pressure signatures through resonance. Both methods agree with NSMS data that provide a measure of the exact compressor speeds at which individual blades enter resonance.

  6. 2D sparse array transducer optimization for 3D ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Hoon; Park, Kwan Kyu [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

  7. Beam profile measurement on HITU transducers using a thermal intensity sensor technique

    Science.gov (United States)

    Wilkens, V.; Sonntag, S.; Jenderka, K.-V.

    2011-02-01

    Thermal intensity sensors based on the transformation of the incident ultrasonic energy into heat inside a small cylindrical absorber have been developed at PTB in the past, in particular to determine the acoustic output of medical diagnostic ultrasound equipment. Currently, this sensor technique is being expanded to match the measurement challenges of high intensity therapeutic ultrasound (HITU) fields. At the high acoustic power levels as utilized in the clinical application of HITU transducers, beam characterization using hydrophones is critical due to the possible damage of the sensitive and expensive measurement devices. Therefore, the low-cost and robust thermal sensors developed offer a promising alternative for the determination of high intensity output beam profiles. A sensor prototype with a spatial resolution of 0.5 mm was applied to the beam characterization of an HITU transducer operated at several driving amplitude levels. Axial beam plots and lateral profiles at focus were acquired. The absolute continuous wave output power was, in addition, determined using a radiation force balance.

  8. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled....... We present numerical results for the reciprocal-transducer system and identify the influence of nonlinearities on the system dynamics at high and low frequency as well as electrical impedance effects due to tuning by a series inductance. It is found that nonlinear effects are not important at high...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...

  9. Broadband electrostatic acoustic transducer for ultrasonic measurements in liquids.

    Science.gov (United States)

    Cantrell, J H; Heyman, J S; Yost, W T; Torbett, M A; Breazeale, M A

    1979-01-01

    A broadband capacitive electrostatic acoustic transducer (ESAT) has been developed for use in a liquid environment at megahertz frequencies. The ESAT basically consists of a thin conductive membrane stretched over a metallic housing. The membrane functions as the ground plate of a parallel plate capacitor, the other plate being a dc biased electrode recessed approximately 10 mum from the electrically grounded membrane. An ultrasonic wave incident on the membrane varies the membrane-electrode gap spacing and generates an electrical signal proportional to the wave amplitude. The entire assembly is sealed for immersion in a liquid environment. Calibration of the ESAT with incident ultrasonic waves of constant displacement amplitude from 1 to 15 MHz reveals a decrease in signal response with increasing frequency independent of membrane tension. The use of the ESAT as a broadband ultrasonic transducer in liquids with a predictable frequency response is promising.

  10. Force transducers based on the stress dependence of coercive force

    Science.gov (United States)

    Garshelis, I. J.

    1993-05-01

    An alternative measurement regime for magnetoelastic force transducers, based on variations in coercive field, is described. Hc is shown to be more directly related to the primary magnetic influence of stress, namely, the orientation of effective anisotropy, than conventionally used magnetization related parameters. The stress dependence of Hc is shown to generally reflect opposing factors associated with rotational and wall displacement magnetization reversal processes. In materials wherein Hc≪K/Ms wall motion dominates and if the product of λs/K and yield stress is high enough, large monotonic reductions of Hc with positive (tensile) stress are shown to be possible. A more complex variation of Hc with increasing compression is similarly expected. Experimental results from a transducer having an 18% Ni maraging steel core support these expectations.

  11. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications.

    Science.gov (United States)

    Lei, Ka-Meng; Mak, Pui-In; Law, Man-Kay; Martins, Rui P

    2016-09-21

    Complementary metal oxide semiconductor (CMOS) technology enables low-cost and large-scale integration of transistors and physical sensing materials on tiny chips (e.g., key functions of biosensors: transducing and signal processing. Recent CMOS biosensors unified different transducing mechanisms (impedance, fluorescence, and nuclear spin) and readout electronics have demonstrated competitive sensitivity for in vitro diagnosis, such as detection of DNA (down to 10 aM), protein (down to 10 fM), or bacteria/cells (single cell). Herein, we detail the recent advances in CMOS biosensors, centering on their key principles, requisites, and applications. Together, these may contribute to the advancement of our healthcare system, which should be decentralized by broadly utilizing point-of-care diagnostic tools.

  12. An Energy-Based Hysteresis Model for Magnetostrictive Transducers

    Science.gov (United States)

    Calkins, F. T.; Smith, R. C.; Flatau, A. B.

    1997-01-01

    This paper addresses the modeling of hysteresis in magnetostrictive transducers. This is considered in the context of control applications which require an accurate characterization of the relation between input currents and strains output by the transducer. This relation typically exhibits significant nonlinearities and hysteresis due to inherent properties of magnetostrictive materials. The characterization considered here is based upon the Jiles-Atherton mean field model for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. As demonstrated through comparison with experimental data, the magnetization model very adequately quantifies both major and minor loops under various operating conditions. The combined model can then be used to accurately characterize output strains at moderate drive levels. The advantages to this model lie in the small number (six) of required parameters and the flexibility it exhibits in a variety of operating conditions.

  13. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  14. A novel design of micromachined capacitive Lamb wave transducers

    Science.gov (United States)

    Ge, Lifeng

    2006-11-01

    A new design for micromachined capacitive Lamb wave transducers (mCLWT) has been developed. The design is based on a theoretical TDK model previously developed for groove ultrasonic transducers. By the investigation of the dynamic behavior of a rectangular high aspect ratio diaphragm of the mCLWTs, the second order bending mode of the diaphragm is exploited to excite and detect Lamb wave. The new exiting mechanism can minimize the energy of the acoustic radiation at the normal direction of the diaphragm so as to provide more energy coupled into the Lamb wave in the silicon substrate. Also, the natural frequencies and mode shapes of such a mCLWT can be determined accurately from its geometry and materials used, so the TDK model provides guidance for the optimal design of mCLWTs.

  15. New Soft Polymeric Materials Applicable as Elastomeric Transducers

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Skov, Anne Ladegaard

    between two compliant electrodes will reduce its thickness and expand its area. The electrical energy transformed into mechanical energy is called actuation and it is studied in the technology of elastomeric transducers. While DEs deform under high voltage, the actuation varies for different materials......). In the present study hyperswollen silicone networks are synthesized and rheologically characterized. Their viscoelastic properties make them good candidates for elastomeric transducers. Silicone networks are synthesized using a hydrosilylation reaction at room temperature between vinyl-terminated polydimethyl......An elastomer is a material characterized by the capability to regain its original size and shape after being deformed (stretched or distorted). An ideal elastomer for electroactive polymer (EAP) applications is a system characterized by high extensibility, flexibility and a good mechanical fatigue...

  16. The copying power of one-state tree transducers

    DEFF Research Database (Denmark)

    Engelfriet, Joost; Skyum, Sven

    1982-01-01

    One-state deterministic top-down tree transducers (or, tree homomorphisms) cannot handle “prime copying,” i.e., their class of output (string) languages is not closed under the operation L → {$(w$)f(n) short parallel w ε L, f(n) greater-or-equal, slanted 1}, where f is any integer function whose...... range contains numbers with arbitrarily large prime factors (such as a polynomial). The exact amount of nonclosure under these copying operations is established for several classes of input (tree) languages. These results are relevant to the extended definable (or, restricted parallel level) languages......, to the syntax-directed translation of context-free languages, and to the tree transducer hierarchy....

  17. FOULING DETECTION IN FOOD VESSELS USING INTERDIGITAL LAMB WAVE TRANSDUCER

    Institute of Scientific and Technical Information of China (English)

    JIAO Jingpin; GE Haiyan; WU Bin; HE Cunfu

    2007-01-01

    Lamb waves are used to detect fouling in food vessels. The propagation of the Lamb waves in plates exhibits many modes and dispersion characteristics, which have great influence on fouling detection. The relative distribution of the in-plane and out-of-plane displacement of the mode across the thickness of the plate will determine the sensitivity of the mode to a particular loading condition. By considering the dispersion and multi-mode characteristics of guided waves, an interdigital polyvinylidene fluoride (PVDF) transducer is designed to realize the mode selection of guided waves, and a single α0 mode is used for guided wave detection. Fouling detection experiments are conducted in the laboratory using epoxy adhesive on a thin plate. Using the interdigital PVDF transducer, three fouled areas are detected. Using one of the time-frequency analysis methods, the waveforms are further processed. This also demonstrates the validity of this method of fouling detection.

  18. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States). Dept. of Engineering Science and Mechanics; Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States). Dept. of Engineering Science and Mechanics; Rempe, Joy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Carpenter, David [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Ames, Micheal [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Ostrovsky, Yakov [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hualte [Argonne National Lab. (ANL), Argonne, IL (United States); Wernsman, Bernard [Bettis Atomic Power Lab. (BAPL), West Mifflin, PA (United States). Bechtel Marine Propulsion Corp.

    2014-07-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) provide harsh environments in and near the core that can severely test material performance and limit their operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration radiation performance of fuels and materials. In To reduce the amount of Material and Test Reactor (MTR) irradiations required, DOE is also funding development of enhanced instrumentation that will be able to obtain data, with unprecedented accuracy and resolution, that are required to validate new multi-scale multiphysics modeling tools . It is not feasible to obtain such data with the current state of instrumentation technology. To address this need, PSU and collaborators have started an experiment to test the potential for utilizing ultrasonic instruments in-pile. Ultrasonic sensors must be resistant to high neutron flux, high gamma radiation, and high temperature. PSU and collaborators have designed, fabricated, and started to irradiate piezoelectric and magnetostrictive transducers designed to perform in such harsh environments. Three piezoelectric transducers were fabricated with aluminum nitride, zinc oxide, and bismuth titanate as the active element. The transducers are coupled kovar and aluminum waveguides of which pulse-echo ultrasonic measurements are made in-situ. Two magnetostrictive transducers were fabricated with Remendur and Arnokrome as the active elements. These devices will be pulsed and monitored in-situ. (1) Selection of candidate sensor materials as well as optimization of test assembly parameters (2) High temperature benchmark testing and (3) initial data from the irradiation will be reported.

  19. Analytical and Experimental Issues in Ni-Mn-Ga Transducers

    Science.gov (United States)

    2003-01-01

    tests seen in Figure 10 can cause test repeatability problems due to heat issues in the sample, transducer, and amplifiers. However, with adequate...layered martensitic phase,” Appl. Phys. Let. 80, pp. 1746–1749, March 2002. 5. V. Pecharsky and J. K.A. Gshneidner, “Giant magnetocaloric effect in...giant magnetocaloric effect for magnetic refrigeration from 20 to 290 k,” Applied Physics Letters 70, pp. 3299–3301, June 1997. 7. A. Malla, M

  20. Detecting Casimir Forces through a Tunneling Electromechanical Transducer

    OpenAIRE

    Onofrio, Roberto; Carugno, Giovanni

    1995-01-01

    We propose the use of a tunneling electromechanical transducer to dynamically detect Casimir forces between two conducting surfaces. The maximum distance for which Casimir forces should be detectable with our method is around $1 \\mu$m, while the lower limit is given by the ability to approach the surfaces. This technique should permit to study gravitational forces on the same range of distances, as well as the vacuum friction provided that very low dissipation mechanical resonators are used.

  1. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    OpenAIRE

    Jeff Bird; Cheng-Kuei Jen; Zhigang Sun; Pierre Sammut; Brian Galeote; Makiko Kobayashi; Kuo-Ting Wu; Nezih Mrad

    2011-01-01

    The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs) made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and...

  2. Tonpilz Underwater Acoustic Transducer Integrating Lead-free Piezoelectric Material

    Science.gov (United States)

    Rouffaud, Rémi; Granger, Christian; Hladky-Hennion, Anne-Christine; Thi, Mai Pham; Levassort, Franck

    A Tonpilz transducer based on lead-free piezoelectric material was fabricated, modeled and characterized. The stack is composed of two rings of doped BaTiO3. This composition was initially chosen due to good electromechanical performance (kt at 40%) and high mechanical quality factor (Qm over 500). Comparison of the displacement at the center of the head mass was performed with a PZT-based Tonpilz with the same design for a center frequency at 22 kHz.

  3. Sensitivity limits of capacitive transducer for gravitational wave resonant antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bassan, M.; Pizzella, G. [Rome Tor Vergata Univ. (Italy). Dip. di Fisica

    1996-12-01

    It is analyzed the performance of a resonant gravitational wave antenna equipped with a resonant, d.c. biased capacitive transducer, an untuned superconducting matching circuit and a d.c. Squid. It is derived simple relations for the detector energy sensitivity that serve as guidelines for device development and it is shown that, with reasonable improvements in Squid technology, an effective temperature for burst detection of 2miK can be achieved.

  4. Short notes on electromagnetic acoustic transducers (EMATs design and modeling

    Directory of Open Access Journals (Sweden)

    Hocine Menana

    2017-03-01

    Full Text Available This paper gives short notes on the electromagnetic acoustic transducers (EMATs design and modeling. The principle of the electromagnetic-acoustic transduction as well as the various EMATs structures are described, highlighting the important characteristics of each structure. Analytical models are given in global quantities in order to quantify the electromagnetic-acoustic transduction efficiency. The numerical modeling of such structures is also addressed.

  5. Acoustic Radiation from Transducer in Semi-infinite Fluid Medium

    Science.gov (United States)

    2016-06-07

    IIIII v 841087 121CilN ACOUSTIC RADIATION F~ TRANSDUCER IN SFMI-INFINITE FLUID MEDIUM Date: June 19, 1984 Prepared by: Jay ant S. Patel...1. REPORT DATE 19 JUN 1984 2. REPORT TYPE Technical Memo 3. DATES COVERED 19-06-1984 to 19-06-1984 4. TITLE AND SUBTITLE Acoustic Radiation ...Technical Menorandum TM No. 841087 ACOUSTIC RADIATION FROM TRANSOOCER IN SEMI-INFINITE FliJID MEDIUM Date: June 19, 1984 Prepared by: Jayant s. Patel

  6. Radio-frequency plasma transducer for use in harsh environments.

    Science.gov (United States)

    May, Andrew; Andarawis, Emad

    2007-10-01

    We describe a compact transducer used to generate and modulate low-intensity radio-frequency atmospheric pressure plasma (RF-APP) for high temperature gap measurement and generation of air-coupled ultrasound. The new transducer consists of a quarter-wave transmission line where the ground return path is a coaxial solenoid winding. The RF-APP is initiated at the open end of the transmission line and stabilized by passive negative feedback between the electrical impedance of the plasma and the energy stored in the solenoid. The electrical impedance of the plasma was measured at the lower-voltage source end of the transducer, eliminating the need to measure kilovolt-level voltages near the discharge. We describe the use of a 7 MHz RF-APP prototype as a harsh-environment clearance sensor to demonstrate the suitability of plasma discharges for a common nondestructive inspection application. Clearance measurements of 0-5 mm were performed on a rotating calibration target with a measurement precision of 0.1 mm and a 20 kHz sampling rate.

  7. Stable 600 °C silicon carbide MEMS pressure transducers

    Science.gov (United States)

    Okojie, Robert S.

    2007-04-01

    This paper presents a review of recent results of silicon carbide (SiC) piezoresistive pressure transducers that have been demonstrated to operate up to 600 °C. The results offer promise to extend pressure measurement to higher temperatures beyond the capability of conventional semiconductor pressure transducers. The development also provides three immediate significant technological benefits: i) wider frequency bandwidth (overcomes acoustic attenuation associated with pitot tubes), ii) accuracy (improved stable output at high temperature), and iii) reduced packaging complexity (no package cooling required). Operation at 600 °C provides immediate applications in military and commercial jet engines in which critical static and dynamic pressure measurements are performed to improve engine performance (i.e., reduced emission and combustor instabilities) and improved CFD code validation. The pressure sensor is packaged by a novel MEMS direct chip attach (MEMS-DCA) technique that eliminates the need for wire bonding, thereby removing some reliability issues encountered at high temperature. Generally, at 600 °C the full-scale output (FSO) of these transducers drops by about 50-65 % of the room temperature values, which can be compensated for with external signal conditioning circuitry.

  8. Thermal safety of vibro-acoustography using a confocal transducer.

    Science.gov (United States)

    Chen, Shigao; Aquino, Wilkins; Alizad, Azra; Urban, Matthew W; Kinnick, Randall; Greenleaf, James F; Fatemi, Mostafa

    2010-02-01

    Vibro-acoustography (VA) is an imaging method that forms a two-dimensional (2-D) image by moving two cofocused ultrasound beams with slightly different frequencies over the object in a C-scan format and recording acoustic emission from the focal region at the difference frequency. This article studies tissue heating due to a VA scan using a concentric confocal transducer. The three-dimensional (3-D) ultrasound intensity field calculated by Field II is used with the bio-heat equation to estimate tissue heating due to ultrasound absorption. Results calculated with thermal conduction and with blood perfusion, with conduction and without perfusion and without conduction and without perfusion are compared. Maximum heating due to ultrasound absorption occurs in the transducer's near-field and maximum temperature rise in soft tissue during a single VA scan is below 0.05 degrees C for all three attenuation coefficients evaluated: 0.3, 0.5 and 0.7 dB/cm/MHz. Transducer self-heating during a single VA scan measured by a thermocouple is less than 0.27 degrees C. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Performance analysis of ultrasono-therapy transducer with contact detection.

    Science.gov (United States)

    Moreno, Eduardo; González, Gilberto; Leija, Lorenzo; Rodríguez, Orlando; Castillo, Martha; Fuentes, Martín

    2003-06-01

    The performance of ultrasono-therapy transducer with contact detection by using the impedance phase change is described. Usually a therapy transducer is designed with a lambda/2 frontal plate glued to a PZT-4 piezoceramic. This plate ensures a good mechanical protection of the piezoceramic with a corresponding high-transmission energy. Normally this transducer is operated at the minimum at the frequency of the impedance module of its input electric impedance, but this operation point is affected by the shift caused by the expected temperature increase. This shift could be higher than the narrow bandwidth presented. As a result we obtain a decrease in the power level for medical treatment. Usually it is designed electronic drivers with automatic control that follow the frequency change, but the relatively narrow bandwidth introduces difficulty in the design. Another frequency operation point is presented here and analyzed using the criteria of the maximum of the impedance phase with a wider bandwidth than in the previous case. Simulation with mechanical losses are presented with experimental results that show the convenience of this criteria for practical application.

  10. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    K. Heath Martin

    2014-11-01

    Full Text Available For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.

  11. Deconvolution based photoacoustic reconstruction for directional transducer with sparsity regularization

    Science.gov (United States)

    Moradi, Hamid; Tang, Shuo; Salcudean, Septimiu E.

    2016-03-01

    We define a deconvolution based photoacoustic reconstruction with sparsity regularization (DPARS) algorithm for image restoration from projections. The proposed method is capable of visualizing tissue in the presence of constraints such as the specific directivity of sensors and limited-view Photoacoustic Tomography (PAT). The directivity effect means that our algorithm treats the optically-generated ultrasonic waves based on which direction they arrive at the transducer. Most PA image reconstruction methods assume that sensors have omni-directional response; however, in practice, the sensors show higher sensitivity to the ultrasonic waves coming from one specific direction. In DPARS, the sensitivity of the transducer to incoming waves from different directions are considered. Thus, the DPARS algorithm takes into account the relative location of the absorbers with respect to the transducers, and generates a linear system of equations to solve for the distribution of absorbers. The numerical conditioning and computing times are improved by the use of a sparse Discrete Fourier Transform (DCT) representation of the distribution of absorption coefficients. Our simulation results show that DPARS outperforms the conventional Delay-and-Sum reconstruction method in terms of CNR and RMS errors. Experimental results confirm that DPARS provides images with higher resolution than DAS.

  12. An Analysis of Transducer Mass Loading Effect Inshaker Testing

    Directory of Open Access Journals (Sweden)

    A. D. Karle

    2014-06-01

    Full Text Available Modal Analysis has been a developing science in the experimental evaluation of the dynamic properties of the structures. Frequency Response Function (FRF is one of the major steps in modal analysis. Measured frequency response functions (FRFs are used to extract modal parameters. It is also known that the accuracy and the reliability of various analyses using the measured FRFs depend strongly on the quality of measured data. It is well known that the quality of measured frequency response functions (FRFs is adversely affected by many factors, most significant sources being noise and systematic errors like mass loading effects of transducers. A transducer mounted on a vibrating system changes the dynamics of the structure due to the addition of extra mass and introduces errors into measured FRFs. One problem with this is the production of unrealistic results, which cause the measured resonant frequencies to be less than the correct values. These errors also lead to incorrect prediction of modal parameters. In many situations, the mass loading effect is ignored in the analytical and experimental process, based on a usual assumption that the transducer mass is negligible compared to that of the structure under test. However, when light-weighted structures are investigated, this effect can be significant.

  13. Analyzing a Vibrating Wire Transducer using Coupled Resonator Circuits

    Directory of Open Access Journals (Sweden)

    POP, S.

    2015-08-01

    Full Text Available This paper intends to be an approach on the vibrating wire transducer from the perspective of the necessary rules used for a correct measurement procedure. There are several studies which analyze the vibrating wire transducer as a mechanical system. However, a comparative time-domain analysis between the mechanical and the electrical model is lacking. The transducer analysis is based on a theoretical analysis of the equivalent circuit, on both excitation and response time intervals. The electrical model consists of two magnetic coupled resonating circuits. When connected to an excitation source, there will be an energy transfer from the coil to the wire. The maximum energy transfer will occur at the vibrating wire's frequency of resonance. Using the transient regime analysis, it has been proven that, in the response time interval - when the wire vibrates freely, the current through the circuit that models the wire describes the oscillating movement of the wire. A complex signal is obtained, that contains both coil's and wire's frequencies of resonance, strongly dependent with theirs parasitic elements. The mathematical analysis highlights the similarity between mechanical and electrical model and the procedures in order to determine the wire frequency of resonance from the output signal.

  14. Measurement of trocar insertion force using a piezoelectric transducer.

    Science.gov (United States)

    Ng, Pui Shan; Sahota, Daljit Singh; Yuen, Pong Mo

    2003-11-01

    We attempted to establish a model to measure the force required for trocar insertion at laparoscopy. A 3-cm, circular transducer was constructed from piezoresistive material that changes its impedance as force is exerted on its surface. The transducer is connected by an interface box to a personal computer to record surface contact pressure digitally (pressure = force/area) profile continuously during trocar insertion. Each subject had three trocars inserted: a 10-mm trocar at the umbilicus after creation of pneumoperitoneum, and 5-mm trocars at corresponding sites on the left and right sides of the lower abdomen. All insertions were performed by the same operator using reusable trocar with a conical tip. Each subject acted as her own control. Recordings were successfully obtained from eight women. There was no instance of transducer failure. The mean (SE) peak contact surface pressure for the 10-mm and 5-mm left and right trocars were 5.3 (0.32), 6.4 (0.51), and 6.81 (0.27) pounds/square inch, respectively. Placement of the 10-mm trocar required less insertion force than placement of the 5-mm trocars. There was a strong negative correlation (r = -0.97, p trocar.

  15. A proposed magnetic digital temperature transducer, volume 1

    Science.gov (United States)

    Collier, T. E.; Tchernev, D. I.; Hartwig, W. H.

    1972-01-01

    A study has been made of the feasibility of using the discontinuous permeability versus temperature characteristics of some magnetic materials for a digital temperature transducer and a thermally controlled ON-OFF switch. Simple logic converts the number of output pulse to a digital word recognizable by the system. Efforts have been concentrated on materials with Curie temperatures between 0 and 100 C. One compound has the composition Mn(5-x)Fe(x)Ge3 where the amount of iron determines the transition temperature. The other compound is Ni-Zn ferrite and has the compositon Ni(1-x)Zn(x)Fe(1.95)O4 where the nickel: zinc ratio determines the transition temperature. A detailed report of materials prepared is presented. Toroidal inductors of the material have been constructed and the change in inductance with temperature measured. In view of these initial measurements, it is felt that a transducer utilizing the permeability versus temperature characteristics of these materials has promise as a reliable and sensitive solid state digital temperature transducer.

  16. Energy harvesting potential of tuned inertial mass electromagnetic transducers

    Science.gov (United States)

    Asai, Takehiko; Araki, Yoshikazu; Ikago, Kohju

    2017-02-01

    The demand for developing renewable energy technologies has been growing in today's society. As one of promising renewable energy sources, large-scale energy harvesting from structural vibrations employing electromagnetic transducers has recently been proposed and considerable effort has been devoted to increase the power generation capability. In this paper, we introduce the mechanism of a tuned inertial mass electromagnetic transducer (TIMET), which can absorb vibratory energy more efficiently by tuning the parameters to adjust the system. Then we propose a new vibratory energy harvester with the TIMET and determine the parameter values for the device with a simple static admittance (SA) control law to maximize the energy harvested from a stationary stochastic disturbance. To investigate the energy harvesting potential of the TIMET further, the performance-guaranteed (PG) control and the LQG control proposed in the literature are applied as well. Then the numerical simulation studies are carried out and the effectiveness of the proposed energy harvester is examined by comparing the traditional electromagnetic transducers.

  17. Test-Driven Development of IEEE 1451 Transducer Services and Application

    Directory of Open Access Journals (Sweden)

    S. Ranđić

    2012-06-01

    Full Text Available IEEE 1451 standard defines the methods of integrating smart transducers into communicating networks. Interface between a user application and a field of transducers, known as Transducer Services API is defined by standrad IEEE 1451.0. This paper presents the use of Test- Driven Design (TDD in developing methods for accessing transducer services using Transducer Services API and developing web applications which access this services over the network. The characteristics of TDD and its benefits are presented and the way of realization for one method is shown using Java and JUnit framework to run tests.

  18. Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip

    DEFF Research Database (Denmark)

    Iranmanesh, I.; Barnkob, Rune; Bruus, Henrik;

    2013-01-01

    coupling angle, and transducer actuation method (single-frequency actuation or frequency-modulation actuation). The energy-density analysis is based on measuring the transmitted light intensity through a microfluidic channel filled with a suspension of 5 µm diameter beads and the results with the tunable...... uniform particle patterns with average acoustic energy densities comparable to those obtained using single-frequency actuation.......We present a tunable-angle wedge ultrasound transducer for improved control of microparticle acoustophoresis in a microfluidic chip. The transducer is investigated by analyzing the pattern of aligned particles and induced acoustic energy density while varying the transducer geometry, transducer...

  19. Improved intercostal HIFU ablation using a phased array transducer based on Fermat's spiral and Voronoi tessellation: A numerical evaluation.

    Science.gov (United States)

    Ramaekers, Pascal; Ries, Mario; Moonen, Chrit T W; de Greef, Martijn

    2017-03-01

    A major complication for abdominal High Intensity Focused Ultrasound (HIFU) applications is the obstruction of the acoustic beam path by the thoracic cage, which absorbs and reflects the ultrasonic energy leading to undesired overheating of healthy tissues in the pre-focal area. Prior work has investigated the determination of optimized transducer apodization laws, which allow for a reduced rib exposure whilst (partially) restoring focal point intensity through power compensation. Although such methods provide an excellent means of reducing rib exposure, they generally increase the local energy density in the pre-focal area, which similarly can lead to undesired overheating. Therefore, this numerical study aimed at evaluating whether a novel transducer design could provide improvement for intercostal HIFU applications, in particular with respect to the pre-focal area. A combination of acoustic and thermal simulations was used to evaluate 2 mono-element transducers, 2 clinical phased array transducers, and 4 novel transducers based on Fermat's Spiral (FS), two of which were Voronoi-tessellated (VTFS). Binary apodizations were determined for the phased array transducers using a collision detection algorithm. A tissue geometry was modeled to represent an intercostal HIFU sonication in the liver at 30 and 50 mm behind the ribs, including subsequent layers of gel pad, skin, subcutaneous fat, muscle, and liver tissue. Acoustic simulations were then conducted using propagation of the angular spectrum of plane waves (ASPW). The results of these simulations were used to evaluate pre-focal intensity levels. Subsequently, a finite difference scheme based on the Pennes bioheat equation was used for thermal simulations. The results of these simulations were used to calculate both the energy density in the pre-focal skin, fat, and muscle layers, as well as the energy exposure of the ribs. The acoustic simulations showed that for a sonication in a single point without

  20. Analytical modeling and experimental validation of a V-shape piezoelectric ultrasonic transducer

    Science.gov (United States)

    Li, Xiaoniu; Yao, Zhiyuan

    2016-07-01

    In this paper, an analytical model of a V-shape piezoelectric ultrasonic transducer is presented. The V-shape piezoelectric ultrasonic transducer has been widely applied to the piezoelectric actuator (ultrasonic motor), ultrasonic aided fabrication, sensor, and energy harvesting device. The V-shape piezoelectric ultrasonic transducer consists of two Langevin-type transducers connected together through a coupling point with a certain coupling angle. Considering the longitudinal and lateral movements of a single beam, the symmetrical and asymmetrical modals of the V-shape piezoelectric ultrasonic transducer are calculated. By using Hamilton-Lagrange equations, the electromechanical coupling model of the V-shape piezoelectric ultrasonic transducer is proposed. The influence of the coupling angle and cross-section on modal characteristics and electromechanical coupling coefficient are analyzed by the analytical model. A prototype of the V-shape piezoelectric ultrasonic transducer is fabricated, and the results of the experiments are in good agreement with the analytical model.

  1. Development of an omni-directional shear-horizontal wave magnetostrictive patch transducer for plates.

    Science.gov (United States)

    Seung, Hong Min; Kim, Hoe Woong; Kim, Yoon Young

    2013-09-01

    As an effective tool to inspect large plates, omni-directional guided wave transducers have become more widely used to form phased-array inspection systems. While omni-directional Lamb wave transducers have been successfully utilized in the systems, omni-directional Shear-Horizontal (SH) wave transducers have not been investigated. In this paper, we propose an omni-directional SH magnetostrictive patch transducer that consists of an annular magnetostrictive patch, a toroidal coil and a permanent magnet. After presenting the unique configuration of the proposed transducer and its working principle, the omni-directivity of the developed transducer is verified through simulations and experiments conducted in an aluminum plate. The frequency characteristics of the proposed transducer depending on the patch size are also investigated as the underlying reference data for future construction of an SH phased-array system.

  2. Design of an Underwater Tonpilz Transducer with 1-3 Piezocomposite Materials

    Science.gov (United States)

    Pei, Da Lie; Roh, Yongrae

    2008-05-01

    An underwater Tonpilz transducer is designed with 1-3 piezocomposite materials to overcome the limitations of conventional piezoceramic transducers. With the finite element method (FEM), the variation of the resonance frequency, bandwidth and radiated sound pressure was analyzed in relation to the structural variables of the transducer. Through statistical multiple regression analysis of the finite element analysis (FEA) results, functional forms of the transducer performance are derived in terms of the design variables. Through the constrained minimization with the derived functions, the optimal structure of the transducer is determined to provide the highest sound pressure level at a given resonant frequency over a pre-determined frequency range. The validity of the optimization is confirmed by comparing the performance of the designed piezocomposite transducer with that of a conventional piezoceramic transducer.

  3. Analytical solutions describing the operation of a rotating magnetic field transducer

    Energy Technology Data Exchange (ETDEWEB)

    Savin, A.; Grimberg, R.; Mihalache, O. [Inst. of Technical Physics, Iasi (Romania). Dept. of NDT

    1997-01-01

    This work presents the analytical solutions describing the operation of a rotating magnetic field transducer used in the eddy current defectoscopy for detecting the long flaws situated parallelly to the inspected piece generatrix. The method uses the expanding of the real transducer`s three-phase system into an infinite sequence of axial and longitudinal currents whose intensity is given by a Fourier expansion, estimating the electromotive voltage induced in the transducer. By solving the equation of diffusion for the three media and considering the boundary conditions, the vector magnetic potential is determined for each medium. This work also presents the most important theoretical parameters of the transducer, as well as the experimental graphs obtained for concrete cases of the transducer`s applications.

  4. Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS).

    Science.gov (United States)

    Ekinci, K L

    2005-08-01

    Electromechanical devices are rapidly being miniaturized, following the trend in commercial transistor electronics. Miniature electromechanical devices--now with dimensions in the deep sub-micrometer range--are envisioned for a variety of applications as well as for accessing interesting regimes in fundamental physics. Among the most important technological challenges in the operation of these nanoelectromechanical systems (NEMS) are the actuation and detection of their sub-nanometer displacements at high frequencies. In this Review, we shall focus on this most central concern in NEMS technology: realization of electromechanical transducers at the nanoscale. The currently available techniques to actuate and detect NEMS motion are introduced, and the accuracy, bandwidth, and robustness of these techniques are discussed.

  5. Association of signaling transducers and activators of transcription 1 and systemic lupus erythematosus.

    Science.gov (United States)

    Liang, Yan; Xu, Wang-Dong; Yang, Xiao-Ke; Fang, Xin-Yu; Liu, Yan-Yan; Ni, Jing; Qiu, Li-Juan; Hui, Peng; Cen, Han; Leng, Rui-Xue; Pan, Hai-Feng; Ye, Dong-Qing

    2014-05-01

    Systemic lupus erythematosus (SLE) is complex autoimmune disease which involves various facets of the immune system. Signaling transducers and activators of transcription 1 (STAT1) belongs to the family of STAT transcription factors that mediate various biological responses. Recently, studies in both experimental animal models of lupus and patients with SLE have revealed expression and activation of STAT1 is closely associated with the pathogenesis of SLE. Moreover, increased production of interferons (IFNs) and aberrant activation of IFNs signaling, which is mechanistically linked to increased level of STAT1, are crucial for the development of SLE. Therefore, we will focus on the association of STAT1 and SLE based on recent understandings to render more information about the mechanisms of STAT1 might perform in. Hopefully, the information obtained will lead to a better understanding of the development and pathogenesis of systemic autoimmune diseases, as well as its clinical implications and therapeutic potential.

  6. Simulations and measurements of 3-D ultrasonic fields radiated by phased-array transducers using the westervelt equation.

    Science.gov (United States)

    Doinikov, Alexander A; Novell, Anthony; Calmon, Pierre; Bouakaz, Ayache

    2014-09-01

    The purpose of this work is to validate, by comparing numerical and experimental results, the ability of the Westervelt equation to predict the behavior of ultrasound beams generated by phased-array transducers. To this end, the full Westervelt equation is solved numerically and the results obtained are compared with experimental measurements. The numerical implementation of the Westervelt equation is performed using the explicit finite-difference time-domain method on a three-dimensional Cartesian grid. The validation of the developed numerical code is first carried out by using experimental data obtained for two different focused circular transducers in the regimes of small-amplitude and finite-amplitude excitations. Then, the comparison of simulated and measured ultrasonic fields is extended to the case of a modified 32-element array transducer. It is shown that the developed code is capable of correctly predicting the behavior of the main lobe and the grating lobes in the cases of zero and nonzero steering angles for both the fundamental and the second-harmonic components.

  7. Nonlinear Effects in Ultrasound Fields of Diagnostic-type Transducers Used for Kidney Stone Propulsion: Characterization in Water

    Science.gov (United States)

    Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.

    2016-01-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher transducer output to provide stronger pushing force; however, nonlinear acoustic saturation effect can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match low power pressure beam scans. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging. PMID:27087711

  8. Theoretical and Experimental Investigation of Ultrasonic Focusing with Annular Phased Array

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bi-Xing; WANG Cheng-Hao; LAI Pu-Xiang

    2006-01-01

    @@ The focused acoustic field generated by an annular array transducer and its reflection field on a solid-liquid interface are investigated theoretically and experimentally. Theoretically, the concise analytic expressions about the radiation and reflection acoustic fields of the annular phased array are obtained by the ray approach method (saddle-point method). In experiment, an annular transducer with 8 equal-area elements is designed and fabricated, and a series of experiments about the radiation acoustic field and its reflection on the liquid-solid interface are carried out. The experimental characteristics of the transducer are in good agreement with the numerical ones. It shows the correctness of the theoretical result and the feasibility of dynamic focusing of the experiment system. With the maximum amplitude and its emergence time of the reflection wave, we can acquire the information and the imaging of the reflection interface by the annular phased array dynamic focusing.

  9. Electrical excitation and optical detection of ultrasounds in PZT based piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Babilotte, P; Diallo, O; Hue, L-P Tran Hu; Feuillard, G [University Francois Rabelais de Tours, Laboratory Imaging and Brain, Team Ultrasonic Characterisation and Piezoelectricity, ENIVL, Rue de la Chocolaterie, 41034 BLOIS CEDEX (France); Kosec, M; Kuscer, D, E-mail: philippe.babilotte@univ-tours.fr [Josef Stefan Institute, Jamova cesta 39, 1000 LJUBLJANA (Slovenia)

    2011-01-01

    The displacement response of piezoelectric PZT thick films fabricated by means of electrophoretic deposition and laid down an alumina substrate is investigated using coherent optical detection. According to thickness properties determined by electrical impedance measurements, the film presents a resonance around 40 MHz. Other resonance peaks are observed that correspond to eigen modes of the film substrate couple structure. Uniformity of the response of the integrated structure is studied across the surface of the sample when excited by either a continuous or impulse electrical voltage. Results on the amplitude of the detected signal versus the frequency and the input excitation voltage are reported. The optical detection used in these experiments is complementary to conventional techniques of characterization of piezoelectric devices such as electrical impedance measurements and allows getting information on the displacement response of the device.

  10. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    Science.gov (United States)

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  11. Study of the feasible size of a bone conduction implant transducer in the temporal bone.

    Science.gov (United States)

    Reinfeldt, Sabine; Östli, Per; Håkansson, Bo; Taghavi, Hamidreza; Eeg-Olofsson, Måns; Stalfors, Joacim

    2015-04-01

    The aim was to assess the temporal bone volume to determine the suitable size and position of a bone conduction implant (BCI) transducer. A BCI transducer needs to be sufficiently small to fit in the mastoid portion of the temporal bone for a majority of patients. The anatomical geometry limits both the dimension of an implanted transducer and its positions in the temporal bone to provide a safe and simple surgery. Computed tomography (CT) scans of temporal bones from 22 subjects were virtually reconstructed. With an algorithm in MATLAB, the maximum transducer diameter as function of the maximum transducer depth in the temporal bone, and the most suitable position were calculated in all subjects. An implanted transducer diameter of 16 mm inserted at a depth of 4 mm statistically fitted 95% of the subjects. If changing the transducer diameter to 12 mm, a depth of 6 mm would fit in 95% of the subjects. The most suitable position was found to be around 20 mm behind the ear canal. The present BCI transducer casing, used in ongoing clinical trials, was designed from the results in this study, demonstrating that the present BCI transducer casing (largest diameter [diagonal]: 15.5 mm, height: 6.4 mm) will statistically fit more than 95% of the subjects. Hence, the present BCI transducer is concluded to be sufficiently small to fit most normal-sized temporal bones and should be placed approximately 20 mm behind the ear canal.

  12. A 3D time reversal cavity for the focusing of high-intensity ultrasound pulses over a large volume

    Science.gov (United States)

    Robin, J.; Arnal, B.; Tanter, M.; Pernot, M.

    2017-02-01

    Shock wave ultrasound therapy techniques, increasingly used for non-invasive surgery, require extremely high pressure amplitudes in precise focal spots, and large high-power transducers arranged on a spherical shell are usually used to achieve that. This solution allows limited steering of the beam around the geometrical focus of the device at the cost of a large number of transducer elements, and the treatment of large and moving organs like the heart is challenging or impossible. This paper validates numerically and experimentally the possibility of using a time reversal cavity (TRC) for the same purpose. A 128-element, 1 MHz power transducer combined with different multiple scattering media in a TRC was used. We were able to focus high-power ultrasound pulses over a large volume in a controlled manner, with a limited number of transducer elements. We reached sufficiently high pressure amplitudes to erode an Ultracal® target over a 10 cm2 area.

  13. Vibration control via stiffness switching of magnetostrictive transducers

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-04-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magneto-strictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magneto-strictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magneto-strictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magneto-strictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magneto-strictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  14. Development and modeling of novel extensional ionic polymer transducers

    Science.gov (United States)

    Akle, Barbar; Wallmersperger, Thomas; Leo, Donald

    2007-04-01

    Ionic polymer transducers (IPT), sometimes referred to as artificial muscles, are known to generate a large bending strain and a moderate stress at low applied voltages. Bending actuators have limited engineering applications due to the low forcing capabilities and the need for complicated external devices to convert the bending action into rotating or linear motion desired in most devices. Recently Akle and Leo (2006) reported extensional actuation in ionic polymer transducers. Model prediction indicates that such actuators can produce strain up to 10% and a blocked stress up to 20MPa under a +/- 2V applied electric potential. Compared to other smart materials, IPT is a flexible membrane and it has a reliability of over one million cycles. In this work novel extensional IPT actuators are developed for the purpose of increasing the overall displacement of the actuator. The electromechanical coupling is measured and a correlation of the experimental data with the active areas model by Akle and Leo (2006) and the numerical electromechanical model by Wallmersperger and Leo (2004) are presented. The coupling between each test case with the model parameters enables further understanding of the physical actuation phenomena as the role of diffusion of ions and diluents and the electrostatic forces between the charged species. In this study the displacement of an extensional ionic polymer transducer is measured and compared to the bending of the same IPT actuator. The bending strain is measured to be approximately 2.5%, while the extensional strain for the same ionomer is in the order of 17.5%. Finally an interesting behavior, reported for the first time is the steady expansion of the IPT sample due to the application of a symmetrical sine wave. This indicates that charge accumulation is occurring at the electrode.

  15. Advanced piezoelectric single crystal based transducers for naval sonar applications

    Science.gov (United States)

    Snook, Kevin A.; Rehrig, Paul W.; Hackenberger, Wesley S.; Jiang, Xiaoning; Meyer, Richard J., Jr.; Markley, Douglas

    2006-03-01

    Transducers incorporating single crystal piezoelectric Pb(Mg 1/3Nb 2/3) x-1Ti xO 3 (PMN-PT) exhibit significant advantages over ceramic piezoelectrics such as PZT, including both high electromechanical coupling (k 33 > 90%) and piezoelectric coefficients (d 33 > 2000 pC/N). Conventional orientation gives inherently larger bandwidth and output power than PZT ceramics, however, the anisotropy of the crystal also allows for tailoring of the performance by orienting the crystal along different crystallographic axes. This attribute combined with composition refinements can be used to improve thermal or mechanical stability, which is important in high power, high duty cycle sonar applications. By utilizing the "31" resonance mode, the high power performance of PMN-PT can be improved over traditional "33" mode single crystal transducers, due to an improved aspect ratio. Utilizing novel geometries, effective piezoelectric constants of -600 pC/N to -1200 pC/N have been measured. The phase transition point induced by temperature, pre-stress or field is close to that in the "33" mode, and since the prestress is applied perpendicular to the poling direction in "31" mode elements, they exhibit lower loss and can therefore be driven harder. The high power characteristics of tonpilz transducers can also be affected by the composition of the PMN-PT crystal. TRS modified the composition of PMN-PT to improve the thermal stability of the material, while keeping the loss as low as possible. Three dimensional modeling shows that the useable bandwidth of these novel compositions nearly equals that of conventional PMN-PT. A decrease in the source level of up to 6 dB was calculated, which can be compensated for by the higher drive voltages possible.

  16. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  17. Quantum acousto-optic transducer for superconducting qubits

    CERN Document Server

    Shumeiko, V S

    2015-01-01

    We propose theory for reversible quantum transducer connecting superconducting qubits and optical photons using acoustic waves in piezoelectrics. The proposed device consists of integrated acousto-optic resonator that utilizes stimulated Brillouin scattering for phonon-photon conversion, and piezoelectric e?ect for coupling of phonons to qubits. We evaluate the phonon-photon coupling rate, and show that the required power of optical pump as well as the other device parameters providing full and faithful quantum conversion are feasible for implementation with the state of the art integrated acousto-optics.

  18. Thermal Control of a Dual Mode Parametric Sapphire Transducer

    CERN Document Server

    Belfi, Jacopo; De Michele, Andrea; Gabbriellini, Gianluca; Mango, Francesco; Passaquieti, Roberto

    2010-01-01

    We propose a method to control the thermal stability of a sapphire dielectric transducer made with two dielectric disks separated by a thin gap and resonating in the whispering gallery (WG) modes of the electromagnetic field. The simultaneous measurement of the frequencies of both a WGH mode and a WGE mode allows one to discriminate the frequency shifts due to gap variations from those due to temperature instability. A simple model, valid in quasi equilibrium conditions, describes the frequency shift of the two modes in terms of four tuning parameters. A procedure for the direct measurement of them is presented.

  19. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer

    OpenAIRE

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L.; Shung, K. Kirk; Zhang, Hao F.; Jiao, Shuliang

    2012-01-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experimen...

  20. Piezoelectric and Electrostrictive Materials for Transducer Applications. Volume 1

    Science.gov (United States)

    1991-01-31

    thinking is the so-called sushi sensor, (ability to distinguish between two designed to monitor the freshness similar chemical species), specificity of fish...vol. 46, N2 I (part 1), p. 9 2 (1969). (61 [ lD. Rolt, " History of the Flextensional Electroacoustic Transducer," L Acou. S- Amer vol. 87, N2 3, pp...behavior of La-modified lead zirconate titanate relaxors has been investigated for various electrical and thermal histories . The field cooled and zero field