WorldWideScience

Sample records for 40-mhz focused transducer

  1. Stress wave focusing transducers

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  2. Focused intravascular ultrasonic probe using dimpled transducer elements.

    Science.gov (United States)

    Chen, Y; Qiu, W B; Lam, K H; Liu, B Q; Jiang, X P; Zheng, H R; Luo, H S; Chan, H L W; Dai, J Y

    2015-02-01

    High-frequency focused intravascular ultrasonic probes were fabricated in this study using dimple technique based on PMN-PT single crystal and lead-free KNN-KBT-Mn ceramic. The center frequency, bandwidth, and insertion loss of the PMN-PT transducer were 34 MHz, 75%, and 22.9 dB, respectively. For the lead-free probe, the center frequency, bandwidth, and insertion loss were found to be 40 MHz, 72%, and 28.8 dB, respectively. The ultrasonic images of wire phantom and vessels with good resolution were obtained to evaluate the transducer performance. The -6 dB axial and lateral resolutions of the PMN-PT probe were determined to be 58 μm and 131 μm, respectively. For the lead-free probe, the axial and lateral resolutions were found to be 44 μm and 125 μm, respectively. These results suggest that the mechanical dimpling technique has good potential in preparing focused transducers for intravascular ultrasound applications. PMID:25108608

  3. Using FOCUS to determine the radiation impedance for square transducers

    Science.gov (United States)

    Jennings, Matthew R.; McGough, Robert J.

    2012-10-01

    The power radiated by an ultrasound transducer is calculated with the radiation resistance, which is the real part of the radiation impedance. For circular transducers, an analytical solution for the radiation impedance is known, but an analytical expression for the radiation impedance is not available for rectangular or square transducers. To determine the radiation resistance in FOCUS, the pressure on the surface of a square transducer is computed with the fast nearfield method, and then the force on the transducer face is computed by integrating the pressure. Results using this approach are numerically evaluated for a range of ka values from 0.1 to 16. The pressure on the transducer face is also computed with the Rayleigh-Sommerfeld integral, and the results are compared. The numerical value of the radiation resistance computed with FOCUS and with the Rayleigh-Sommerfeld integral converge to the same value, although FOCUS calculates the same result in about one-quarter of the time.

  4. Focusing of ferroelectret air-coupled ultrasound transducers

    Science.gov (United States)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  5. Design and Fabrication of Double-Focused Ultrasound Transducers to Achieve Tight Focusing.

    Science.gov (United States)

    Jang, Jihun; Chang, Jin Ho

    2016-01-01

    Beauty treatment for skin requires a high-intensity focused ultrasound (HIFU) transducer to generate coagulative necrosis in a small focal volume (e.g., 1 mm³) placed at a shallow depth (3-4.5 mm from the skin surface). For this, it is desirable to make the F-number as small as possible under the largest possible aperture in order to generate ultrasound energy high enough to induce tissue coagulation in such a small focal volume. However, satisfying both conditions at the same time is demanding. To meet the requirements, this paper, therefore, proposes a double-focusing technique, in which the aperture of an ultrasound transducer is spherically shaped for initial focusing and an acoustic lens is used to finally focus ultrasound on a target depth of treatment; it is possible to achieve the F-number of unity or less while keeping the aperture of a transducer as large as possible. In accordance with the proposed method, we designed and fabricated a 7-MHz double-focused ultrasound transducer. The experimental results demonstrated that the fabricated double-focused transducer had a focal length of 10.2 mm reduced from an initial focal length of 15.2 mm and, thus, the F-number changed from 1.52 to 1.02. Based on the results, we concluded that the proposed double-focusing method is suitable to decrease F-number while maintaining a large aperture size. PMID:27509500

  6. Design and Fabrication of Double-Focused Ultrasound Transducers to Achieve Tight Focusing

    Science.gov (United States)

    Jang, Jihun; Chang, Jin Ho

    2016-01-01

    Beauty treatment for skin requires a high-intensity focused ultrasound (HIFU) transducer to generate coagulative necrosis in a small focal volume (e.g., 1 mm3) placed at a shallow depth (3–4.5 mm from the skin surface). For this, it is desirable to make the F-number as small as possible under the largest possible aperture in order to generate ultrasound energy high enough to induce tissue coagulation in such a small focal volume. However, satisfying both conditions at the same time is demanding. To meet the requirements, this paper, therefore, proposes a double-focusing technique, in which the aperture of an ultrasound transducer is spherically shaped for initial focusing and an acoustic lens is used to finally focus ultrasound on a target depth of treatment; it is possible to achieve the F-number of unity or less while keeping the aperture of a transducer as large as possible. In accordance with the proposed method, we designed and fabricated a 7-MHz double-focused ultrasound transducer. The experimental results demonstrated that the fabricated double-focused transducer had a focal length of 10.2 mm reduced from an initial focal length of 15.2 mm and, thus, the F-number changed from 1.52 to 1.02. Based on the results, we concluded that the proposed double-focusing method is suitable to decrease F-number while maintaining a large aperture size. PMID:27509500

  7. Endoscopic Therapeutic Device Using Focused Ultrasonic Small Transducer

    Science.gov (United States)

    Yasui, Akihiro; Haga, Yoichi; Chen, Jiun-Jie; Iseki, Hiroshi; Esashi, Masayoshi; Wada, Hiroshi

    In this research, an ultrasonic probe (5.5 mm in diameter), which has a concave PZT transducer at its tip, was fabricated for ultrasonic treatments such as sonoporation and sonodynamic therapy in the human body using a catheter and/or endoscope. Ultrasound has the potential to enhance cytotoxicity of drugs such as porphyrins, a process referred to as sonodynamic therapy, and also to deliver macromolecules such as plasmid DNA, a process referred to as sonoporation. The fabricated probe was then experimentally characterized by measuring the acoustic intensity distribution around the focal point, using a PVDF needle-type ultrasonic hydrophone. When the PZT transducer was driven by a 120 Volts peak-to-peak AC signal at 1.83 MHz, the ultrasound output was successfully focused at the focal point, with a peak intensity of 24.9 W/cm2 (0.87 MPa). Using the fabricated probe, cultured Chinese Hamster Ovary (CHO) cells were exposed to ultrasound (1.83 MHz, continuous wave, peak acoustic pressure of 0.5 MPa) for 2 s in the presence of microbubbles MB-3 and Green Fluorescent Protein (GFP) plasmid DNA. As a result of sonication, the expression of GFP was observed in CHO cells.

  8. High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique.

    Science.gov (United States)

    Chen, Y; Lam, K H; Zhou, D; Cheng, W F; Dai, J Y; Luo, H S; Chan, H L W

    2013-02-01

    High frequency (∼30MHz and ∼80MHz) focusing ultrasound transducers were fabricated using a PMN-0.28PT single crystal by a mechanical dimpling technique. The dimpled single crystal was used as an active element for the focusing transducer. Compared with a plane transducer, the focusing transducer fabricated with a dimpled active element exhibits much broader bandwidth and higher sensitivity. Besides, a high quality image can be obtained by the 30MHz focusing transducer, in which the -6dB axial and lateral resolution is 27μm and 139μm, respectively. These results prove that the dimpling technique is capable to fabricate the high frequency focusing transducers with excellent performance for imaging applications. PMID:22944074

  9. Techniques and physical properties of 10MHz short pulse focused ultrasonic transducer

    Institute of Scientific and Technical Information of China (English)

    ZHU Guozhen; YANG Yong; LU Kean

    2004-01-01

    A focused ultrasonic transducer used for biomedical purposes with a fundamental frequency of 10MHz and a pulse width of one and a half periods is described in this paper. Its physical properties are given including (1) focused acoustic field recorded by an optical means, (2) electric waveform for triggering the transducer and the corresponding waveform of the wave received by another transducer, and (3) result of tests on a sample object.

  10. Linear synthetic aperture focusing using ultrasonic contact transducers

    International Nuclear Information System (INIS)

    Synthetic aperture processing performed on linear scans with contact ultrasonic transducers can yield useful improvements in lateral resolution of deeply buried defects. Degradation in resolution caused by adverse surface conditions can be minimised by a simple pre-processing normalisation technique. (author)

  11. Free Field Reciprocity Calibration in a Convergent Spherical Acoustic Wave of a Focusing Transducer

    Institute of Scientific and Technical Information of China (English)

    寿文德; 严加勇; 王鸿樟; 钱德初

    2002-01-01

    Based on the reciprocity theorem of the acoustic field, we derive the formula of the reciprocity coefficient of a convergent spherical acoustic wave and we calculate a series of diffraction corrective factor curves of the reciprocity coefficient of transducers. Using these formulae and corrective factors, we calibrate the free field transmitting current response and the free field voltage sensitivity of a focusing transducer using the self-reciprocity method.The experimental results of the reciprocity calibration of the focusing transducer in the frequency range of 2 MHz to 5.4 MHz are presented.

  12. Focusing Modeling of OPFC Linear Array Transducer by Using Distributed Point Source Method

    Directory of Open Access Journals (Sweden)

    Ziping Wang

    2014-01-01

    Full Text Available The improvement of ultrasonic phased array detection technology is a major concern of engineering community. Orthotropic piezoelectric fiber composite (OPFC can be constructed to multielement linear array which may be applied conveniently to actuators and sensors. The phased array transducers can generate special directional strong actuator power and high sensitivity for its orthotropic performance. Focusing beam of the linear phased array transducer is obtained simply only by adjusting a parabolic time delay. In this work, the distributed point source method (DPSM is used to model the ultrasonic field. DPSM is a newly developed mesh-free numerical technique that has been developed for solving a variety of engineering problems. This work gives the basic theory of this method and solves the problems from the application of new OPFC phased array transducer. Compared with traditional transducer, the interaction effect of two OPFC linear phased array transducers is also modeled in the same medium, which shows that the pressure beam produced by the new transducer is narrower or more collimated than that produced by the conventional transducer at different angles. DPSM can be used to analyze and optimally design the OPFC linear phased array transducer.

  13. Distribution of temperature elevation caused by moving high-intensity focused ultrasound transducer

    Science.gov (United States)

    Kim, Jungsoon; Jung, Jihee; Kim, Moojoon; Ha, Kanglyeol; Lee, Eunghwa; Lee, Ilkwon

    2015-07-01

    Ultrasonic thermal treatment for dermatology has been developed using a small high-intensity focused ultrasound (HIFU) transducer. The transducer moves horizontally at a constant while it emits focused ultrasound because the treatment needs a high-temperature area in skin tissue over a wide range of depths. In this paper, a tissue-mimicking phantom made of carrageenan and a thermochromic film were adopted to examine the temperature distribution in the phantom noninvasively when the focused ultrasound was irradiated from the moving transducer. The dependence of the high-temperature area on the irradiated acoustic energy and on the movement interval of the HIFU was analyzed experimentally. The results will be useful in ensuring safety and estimating the remedial value of the treatment.

  14. Dual-focus therapeutic ultrasound transducer for production of broad tissue lesions.

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan M; Shung, K Kirk

    2010-11-01

    In noninvasive high-intensity focused ultrasound (HIFU) treatment, formation of a large tissue lesion per sonication is desirable for reducing the overall treatment time. The goal of this study is to show the feasibility of enlarging tissue lesion size with a dual-focus therapeutic ultrasound transducer (DFTUT) by increasing the depth-of-focus (DOF). The proposed transducer consists of a disc- and an annular-type element of different radii of curvatures to produce two focal zones. To increase focal depth and to maintain uniform beamwidth of the elongated DOF, each element transmits ultrasound of a different center frequency: the inner element at a higher frequency for near field focusing and the outer element at a lower frequency for far field focusing. By activating two elements at the same time with a single transmitter capable of generating a dual-frequency mixed signal, the overall DOF of the proposed transducer may be extended considerably. A prototype transducer composed of a 4.1 MHz inner element and a 2.7 MHz outer element was fabricated to obtain preliminary experimental results. The feasibility the proposed technique was demonstrated through sound field, temperature and thermal dose simulations. The performance of the prototype transducer was verified by hydrophone measurements and tissue ablation experiments on a beef liver specimen. When several factors affecting the length and the uniformity of elongated DOF of the DFTUT are optimized, the proposed therapeutic ultrasound transducer design may increase the size of ablated tissues in the axial direction and, thus, decreasing the treatment time for a large volume of malignant tissues especially deep-seated targets. PMID:20870346

  15. Numerical simulation of the transient temperature field from an annular focused ultrasonic transducer.

    Science.gov (United States)

    Zhang, Qiang; Li, Faqi; Feng, Ruo; Xu, Jianyi; Bai, Jin; Wang, Zhibiao; Wang, Yaojun

    2003-04-01

    Knowledge of the extent of the "heated necrosis element" from a single exposure in target tissue created by an ultrasonic beam is critical for the application of focal ultrasound (US) surgery (FUS). This study uses the O'Nell and Pennes formulas to simulate the heated necrosis element from an annular focused transducer and to examine its dependence on exposure dosage, as well as some design parameters of the transducer. Several conclusions may be drawn from our numerical results: 1. With increasing exposure, the heated necrosis element increases, but its contour becomes plumper and the influence of sound intensity I is found to be greater than that of the exposure time t. 2. To get a similar heated necrosis element, the exposure approximately satisfies a relation: It(0. 4 3)=constant. 3. Increasing the US frequency or the outer-radius of the annular transducer leads to a decrease in the heated necrosis volume. PMID:12749928

  16. Three-Dimensional Synthetic Aperture Focusing Using a Rocking Convex Array Transducer

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Pedersen, Mads Møller;

    2010-01-01

    synthetic aperture focusing for enhancing the elevation focus for a convex rocking array. The method uses a virtual source (VS) for defocused multi-element transmit, and another VS in the elevation focus point. This allows a direct time-of-flight to be calculated for a given 3-D point. To avoid artifacts....... An evaluation of how a change in transducer design will affect the resolution improvement shows a potential for using a modified transducer for 3-D imaging with improved elevation focusing and contrast....... and increase SNR at the elevation VS, a plane-wave VS approach has been implemented. Simulations and measurements using an experimental scanner with a convex rocking array show an average improvement in resolution of 26% and 33%, respectively. This improvement is also seen in in vivo measurements...

  17. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  18. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-02-01

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  19. Non-contact optoacoustic imaging with focused air-coupled transducers

    International Nuclear Information System (INIS)

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics

  20. Non-contact optoacoustic imaging with focused air-coupled transducers

    Energy Technology Data Exchange (ETDEWEB)

    Deán-Ben, X. Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Pang, Genny A.; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); School of Medicine, Technische Universität München (TUM), Munich (Germany); Montero de Espinosa, Francisco [CSIC, Institute of Physics and Communication Technologies, Madrid (Spain)

    2015-08-03

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  1. Nonlinear Effect on Focusing Gain of a Focusing Transducer with a Wide Aperture Angle

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-He; ZHANG Dong; GONG Xiu-Fen

    2007-01-01

    @@ Nonlinear effect on focusing gain of acoustic field radiated from a 1-MHz focusing transmitter with a wide aperture angle of 35° is theoretically and experimentally investigated. With the enhancement of nonlinearity, the focusing gains of both intensity and peak positive pressure show non-monotonic behaviour. There exist the same saturated levels at which the maximum outputs are reached and their spatial distributions are more localized. In contrast,the peak negative pressure always decreases monotonically and its spatial distribution is less localized.

  2. Single-element focused ultrasound transducer method for harmonic motion imaging.

    Science.gov (United States)

    Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa E

    2006-07-01

    The harmonic motion imaging (HMI) technique for simultaneous monitoring and generation of ultrasound therapy using two separate focused ultrasound transducer elements was previously demonstrated. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force using a single focused-ultrasound element. A wave propagation simulation model first indicated that, unlike in the two-beam configuration, the amplitude-modulated beam produced a stable focal zone for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were performed on gelatin phantoms and ex vivo tissues. The radiation force was generated by a 4.68 MHz focused ultrasound (FUS) transducer using a 50 Hz amplitude-modulated wave. A 7.5 MHz pulse-echo transducer was used to acquire rf echoes during the application of the harmonic radiation force. Consecutive rf echoes were acquired with a pulse repetition frequency (PRF) of 6.5 kHz and 1D cross-correlation was performed to estimate the resulting axial tissue displacement. The HMI technique was shown capable of estimating stiffness-dependent displacement amplitudes. Finally, taking advantage of the real-time capability of the HMI technique, temperature-dependent measurements enabled monitoring ofHIFU sonication in ex vivo tissues. The new HMI method may thus enable a highly-localized force and stiffness-dependent measurements as well as real-time and low-cost HIFU monitoring.

  3. Numerical simulation of ultrasound thermotherapy of brain with a scanned focus transducer

    Science.gov (United States)

    Behnia, Sohrab; Ghalichi, Farzan; Jafari, Amin; Bonabi, Ashkan

    2005-04-01

    Brain tumors are one of the most difficult ones to treat. The margin between destruction of the tumor and damage to the surrounding tissue is narrow in the brain. Ultrasound could be an effective treatment because of its ability to propagate deep in tissue and induce temperature rise at the focus while leaving the surrounding tissue intact. This study investigates whether using a fix-focus transducer could destroy brain tumor cells, in a cost effective manner which reduces the treatment time significantly. In this work an appropriate fix-focus transducer was designed considering effective parameters and limitations which are dominant in this case. Then a real 2-D brain model was constructed from a MR image. A piece of the skull bone has been removed to allow ultrasound to propagate into the brain. The resultant pressure field and the temperature rise were calculated by Rayleigh integral and bio-heat equation on the model. The obtained results were promising indicating that toxic temperatures could be obtained in short treatment times. This could be of great advantage especially in treating primary brain tumors.

  4. Non-Planar Pad-Printed Thick-Film Focused High-Frequency Ultrasonic Transducers for Imaging and Therapeutic Applications

    OpenAIRE

    Lethiecq, Marc; Lou-Moeller, Rasmus; Ketterling, Jeffrey A.; Levassort, Franck; Tran-Huu-Hue, Louis Pascal; Filoux, Erwan; Silverman, Ronald H.; Wolny, Wanda W.

    2012-01-01

    Pad-printed thick-film transducers have been shown to be an interesting alternative to lapped bulk piezoceramics, because the film is deposited with the required thickness, size, and geometry, thus avoiding any subsequent machining to achieve geometrical focusing. Their electromechanical properties are close to those of bulk ceramics with similar composition despite having a higher porosity. In this paper, pad-printed high-frequency transducers based on a low-loss piezoceramic composition are...

  5. A scanned, focused, multiple transducer ultrasonic system for localized hyperthermia treatments. 1987.

    Science.gov (United States)

    Hynynen, K; Roemer, R; Anhalt, D; Johnson, C; Xu, Z X; Swindell, W; Cetas, T

    2010-02-01

    A commercial diagnostic ultrasound scanner (Octoson) was modified for performing hyperthermia treatments. The temperature elevations were induced in tissues by four large, focused ultrasonic transducers whose common focal zone was scanned along a computer controlled path as determined from B-scan images. The system is described and the results of preliminary tests demonstrating some of its capabilities are given. Extensive tests with canine thighs and kidneys were performed. The blood flow to the kidneys was controllable, and thus tumours having different blood perfusion rates could be simulated. The results showed that the system is capable of inducing a local temperature maximum deep in tissues (up to 10 cm was tested) and that tissues with high perfusion rates could be heated. PMID:20100046

  6. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer.

    Science.gov (United States)

    Hu, Jiwen; Qian, Shengyou; Ding, Yajun

    2010-05-01

    Temperature control of hyperthermia treatments is generally implemented with multipoint feedback system comprised of phased-array transducer, which is complicated and high cost. Our simulations to the acoustic field induced by a self-focused concave spherical transducer (0.5MHz, 9cm aperture width, 8.0cm focal length) show that the distribution of temperature can keep the same "cigar shape" in the focal region during ultrasound insonation. Based on the characteristic of the temperature change, a two-dimensional model of a "cigar shape" tumor is designed and tested through numerical simulation. One single-point on the border of the "cigar shape" tumor is selected as the control target and is controlled at the temperature of 43 degrees C by using a self-tuning regulator (STR). Considering the nonlinear effects of biological medium, an accurate state-space model obtained via the finite Fourier integral transformation to the bioheat equation is presented and used for calculating temperature. Computer simulations were performed with the perfusion rates of 2.0kg/(m(3)s) and 4.5kg/(m(3)s) to the different targets, it was found that the temperatures on the border of the "cigar shape" tumor can achieve the desired temperature of 43 degrees C by control of one single-point. A larger perfusion rate requires a higher power output to obtain the same temperature elevation under the same insonation time and needs a higher cost for compensating the energy loss carried away by blood flow after steady state. The power output increases with the controlled region while achieving the same temperature at the same time. Especially, there is no overshoot during temperature elevation and no oscillation after steady state. The simulation results demonstrate that the proposed approach may offers a way for obtaining a single-point, low-cost hyperthermia system. PMID:20156630

  7. Development of high-performance ultrasonic transducer for focusing of Rayleigh waves and imaging

    International Nuclear Information System (INIS)

    Intensive focusing of Rayleigh waves was realized by the fabrication of a new shape of a curved PZT (Pb(Zr,Ti)O3) piezoelectric element. Two and three dimensional images of beam profiles were obtained by a modified contact C-scan of a steel block with flat-bottom-holes(FBH's). The beam intensity was about 35 dB higher at focal distance and the signal-to-noise ratio was 17 dB higher than that employing a flexible PVDF(polyvinylidene fluoride) film used in the early study. The lateral -6 and -3 dB widths at the focal point were 0.61 and 0.46 mm, and the axial -6 and -3 dB widths were about 5.5 and 4.0 mm, respectively, Its axial stress field showed a good agreement with the overall pattern estimated by our simplified model. The ratio of the detected smallest flaw size to the wavelength of Rayleigh waves for the center frequency was about 0.29. As an application, by a single time scan at the focal distance, an image with the peaks corresponding to the FBH's was obtained with a good lateral resolution. The focusing transducer had the characteristics of a narrow lateral resolution, high energy, and high signal-to-noise ratio, and was practical for the detection of surface flaws smaller than wavelength.

  8. Manipulation of acoustic focusing with an active and configurable planar metasurface transducer.

    Science.gov (United States)

    Zhao, Jiajun; Ye, Huapeng; Huang, Kun; Chen, Zhi Ning; Li, Baowen; Qiu, Cheng-Wei

    2014-01-01

    It has a pivotal role in medical science and in industry to concentrate the acoustic energy created with piezoelectric transducers (PTs) into a specific area. However, previous researches seldom consider the focal resolution, whose focal size is much larger than one wavelength. Furthermore, there is to date no such design method of PTs that allows a large degree of freedom to achieve designed focal patterns. Here, an active and configurable planar metasurface PT prototype is proposed to manipulate the acoustic focal pattern and the focal resolution freely. By suitably optimized ring configurations of the active metasurface PT, we demonstrate the manipulation of focal patterns in acoustic far fields, such as the designed focal needle and multi foci. Our method is also able to manipulate and improve the cross-sectional focal resolution from subwavelength to the extreme case: the deep sub-diffraction-limit resolution. Via the acoustic Rayleigh-Sommerfeld diffraction integral (RSI) cum the binary particle swarm optimization (BPSO), the free manipulation of focusing properties is achieved in acoustics for the first time. Our approach may offer more initiatives where the strict control of acoustic high-energy areas is demanding. PMID:25174409

  9. Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs

    Science.gov (United States)

    Xin, Wang; Jiexing, Lin; Xiaozhou, Liu; Jiehui, Liu; Xiufen, Gong

    2016-04-01

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the Fund from State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), China Postdoctoral Science Foundation (Grant No. 2013M531313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and SRF for ROCS, SEM.

  10. Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs

    Science.gov (United States)

    Xin, Wang; Jiexing, Lin; Xiaozhou, Liu; Jiehui, Liu; Xiufen, Gong

    2016-04-01

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the Fund from State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), China Postdoctoral Science Foundation (Grant No. 2013M531313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and SRF for ROCS, SEM.

  11. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  ‑6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  ‑3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  ‑8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  12. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia.

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W

    2016-07-21

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery. PMID:27353347

  13. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  14. A 40 MHz Trigger-free Readout Architecture for the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F; Guzik, Z

    2009-01-01

    LHCb is considering an upgrade towards a full 40 MHz readout. In this paper we investigate possibilities for a new Timing and Fast Control (TFC) system based on completely new technologies, and the consequences for the readout electronics. We define the requirements and propose an architecture allowing partitioning, complete readout control and event management. The backbone is based on bidirectional high-speed optical links using the latest FPGA transceivers. For the Front-End Electronics we advocate exploiting the bidirectional capability of the CERN GigaBit Transceiver to make the Readout Boards the TFC and the Control System interface to the Front-End

  15. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    CERN Document Server

    Abba, A; Citterio, M; Caponio, F; Cusimano, A; Geraci, A; Marino, P; Morello, M J; Neri, N; Punzi, G.; Piucci, A; Ristori, L; Spinella, F; Stracka, S; Tonelli, D

    2015-01-01

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40MHz. The detailed geometry and charged-particle activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. Excellent performances have been found for the retina pattern-recognition algorithm, comparable with the full LHCb reconstruction algorithm.

  16. Reflection-mode photoacoustic microscopy using a hollow focused ultrasound transducer for in vivo imaging of blood vessels

    Institute of Scientific and Technical Information of China (English)

    Yuan Yi; Yang Si-Hua

    2012-01-01

    A reflection-mode photoacoustic microscope using a hollow focused ultrasound transducer is developed for highresolution in vivo imaging.A confocal structure of the laser and the ultrasound is used to improve the system resolution.The axial and lateral resolutions of the system are measured to be~32 μm and~58 μm,respectively.Ex vivo and in vivo modes are tested to validate the imaging capability of the photoacoustic microscope.The adjacent vein and artery can be seen clearly from the reconstructed photoacoustic images.The results demonstrate that the reflectionmode photoacoustic microscope can be used for high-resolution imaging of micro-blood vessels,which would be of great benefit for monitoring the neovascularization in tumor angiogenesis.

  17. Simulation study of a chaotic cavity transducer based virtual phased array used for focusing in the bulk of a solid material.

    Science.gov (United States)

    Delrue, Steven; Van Den Abeele, Koen; Matar, Olivier Bou

    2016-04-01

    In acoustic and ultrasonic non-destructive testing techniques, it is sometimes beneficial to concentrate sound energy at a chosen location in space and at a specific instance in time, for example to improve the signal-to-noise ratio or activate the nonlinearity of damage features. Time Reversal (TR) techniques, taking advantage of the reversible character of the wave equation, are particularly suited to focus ultrasonic waves in time and space. The characteristics of the energy focusing in solid media using principles of time reversed acoustics are highly influenced by the nature and dimensions of the medium, the number of transducers and the length of the received signals. Usually, a large number of transducers enclosing the domain of interest is needed to improve the quality of the focusing. However, in the case of highly reverberant media, the number of transducers can be reduced to only one (single-channel TR). For focusing in a non-reverberant medium, which is impossible when using only one source, an adaptation of the single-channel reciprocal TR procedure has been recently suggested by means of a Chaotic Cavity Transducer (CCT), a single element transducer glued on a cavity of chaotic shape. In this paper, a CCT is used to focus elastic energy, at different times, in different points along a predefined line on the upper surface of a thick solid sample. Doing so, all focusing points can act as a virtual phased array transducer, allowing to focus in any point along the depth direction of the sample. This is impossible using conventional reciprocal TR, as you need to have access to all points in the bulk of the material for detecting signals to be used in the TR process. To asses and provide a better understanding of this concept, a numerical study has been developed, allowing to verify the basic concepts of the virtual phased array and to illustrate multi-component time reversal focusing in the bulk of a solid material.

  18. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    Science.gov (United States)

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  19. Observation of solar radio bursts using swept-frequency radiospectrograph in 20 - 40 MHz band

    International Nuclear Information System (INIS)

    A new station for the observation of solar decametric radio bursts has been developed at Miyagi Vocational Training College in Tsukidate, Miyagi, Japan. Using the swept frequency radiospectrograph covering a frequency range from 20 MHz to 40 MHz within 200 msec, with bandwidth of 30 kHz, the radio outbursts from the sun have been currently monitored with colored dynamic spectrum display. After July 1982, successful observations provide the data which include all types of solar radio bursts such as type I, II, III, IV and V in the decametric wavelength range. In addition to these typical radio bursts, rising tone bursts with fast drift rate followed by strong type III bursts and a series of bursts repeating rising and falling tone bursts with slow drift rate have been observed. (author)

  20. A 14-bit 40-MHz analog front end for CCD application

    Science.gov (United States)

    Jingyu, Wang; Zhangming, Zhu; Shubin, Liu

    2016-06-01

    A 14-bit, 40-MHz analog front end (AFE) for CCD scanners is analyzed and designed. The proposed system incorporates a digitally controlled wideband variable gain amplifier (VGA) with nearly 42 dB gain range, a correlated double sampler (CDS) with programmable gain functionality, a 14-bit analog-to-digital converter and a programmable timing core. To achieve the maximum dynamic range, the VGA proposed here can linearly amplify the input signal in a gain range from -1.08 to 41.06 dB in 6.02 dB step with a constant bandwidth. A novel CDS takes image information out of noise, and further amplifies the signal accurately in a gain range from 0 to 18 dB in 0.035 dB step. A 14-bit ADC is adopted to quantify the analog signal with optimization in power and linearity. An internal timing core can provide flexible timing for CCD arrays, CDS and ADC. The proposed AFE was fabricated in SMIC 0.18 μm CMOS process. The whole circuit occupied an active area of 2.8 × 4.8 mm2 and consumed 360 mW. When the frequency of input signal is 6.069 MHz, and the sampling frequency is 40 MHz, the signal to noise and distortion (SNDR) is 70.3 dB, the effective number of bits is 11.39 bit. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033), the National High-Tech Program of China (No. 2013AA014103), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory (No. ZHD201302).

  1. The 40 MHz trigger-less DAQ for the LHCb Upgrade

    Science.gov (United States)

    Campora Perez, D. H.; Falabella, A.; Galli, D.; Giacomini, F.; Gligorov, V.; Manzali, M.; Marconi, U.; Neufeld, N.; Otto, A.; Pisani, F.; Vagnoni, V. M.

    2016-07-01

    The LHCb experiment will undergo a major upgrade during the second long shutdown (2018-2019), aiming to let LHCb collect an order of magnitude more data with respect to Run 1 and Run 2. The maximum readout rate of 1 MHz is the main limitation of the present LHCb trigger. The upgraded detector, apart from major detector upgrades, foresees a full read-out, running at the LHC bunch crossing frequency of 40 MHz, using an entirely software based trigger. A new high-throughput PCIe Generation 3 based read-out board, named PCIe40, has been designed for this purpose. The read-out board will allow an efficient and cost-effective implementation of the DAQ system by means of high-speed PC networks. The network-based DAQ system reads data fragments, performs the event building, and transports events to the High-Level Trigger at an estimated aggregate rate of about 32 Tbit/s. Different architecture for the DAQ can be implemented, such as push, pull and traffic shaping with barrel-shifter. Possible technology candidates for the foreseen event-builder under study are InfiniBand and Gigabit Ethernet. In order to define the best implementation of the event-builder we are performing tests of the event-builder on different platforms with different technologies. For testing we are using an event-builder evaluator, which consists of a flexible software implementation, to be used on small size test beds as well as on HPC scale facilities. The architecture of DAQ system and up to date performance results will be presented.

  2. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...

  3. 开口柱面换能器声场分析%Study of Focused Ultrasonic Field of Cylindrical Transducer with a Hole

    Institute of Scientific and Technical Information of China (English)

    赵泉洲; 惠春; 余立立; 胡振林

    2011-01-01

    Objective: Focused ultrasound treatment of superficial tissue disease, gynecological there focused transducer placed at the same time and location of the probe problems in the actual design of the treatment must be considered in the first place the B-probe the impact of the sound field of focus, This relates to a cylindrical opening focused ultrasound transducer sound field of numerical calculation and simulation, calculated by three-dimensional sound field distribution, while the self-focusing of cylindrical transducer in different opening shapes, location, size of the sound field impact, to guide the opening of the actual transducer design. Methods: hi this paper, three-dimensional Cartesian coordinate system, the application of variable-step method of Simpson double integral focused ultrasound on the open cylinder transducer sound field for a numerical calculation and simulation, draw three-dimensional sound field distribution. Results: Openings of different shapes, sizes, location of the sound field distribution simulation results show that: different shape of the opening pressure will cause the amplitude of the focus area decreased, opening the radius increases, the pressure showed a downward trend, Z axis of the sound pressure in the exchange can control the edge of the large middle small. With the open center of the greater distance from the origin, Z axis of the sound pressure distribution more uneven, but has little effect on the focus position.Conclusions: We can see from the effects on the distribution of the three-dimensional sound field of different parameters: cylindrical ultrasound transducer opening shape,location, size of the focus areas of sound pressure are significantly affected. Compared with the given conditions, selected centrally located, smaller, transducers, focusing performance can be improved, and the opening shape of the transducer little effect on the focus.%目的:聚焦超声治疗妇科浅表组织疾病中存在聚焦换能器和

  4. The readout of the LHC beam luminosity monitor: accurate shower energy measurements at a 40 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Manfredi, P.F. E-mail: pfmanfredi@lbl.gov; Ratti, L.; Speziali, V.; Traversi, G.; Manghisoni, M.; Re, V.; Denes, P.; Placidi, M.; Ratti, A.; Turner, W.C.; Datte, P.S.; Millaud, J.E

    2004-02-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  5. The readout of the LHC beam luminosity monitor Accurate shower energy measurements at a 40 MHz repetition rate

    CERN Document Server

    Manfredi, P F; Speziali, V; Traversi, G; Manghisoni, M; Re, V; Denes, P; Placidi, Massimo; Ratti, A; Turner, W C; Datte, P S; Millaud, J E

    2004-01-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  6. Annular and Cylindrical Phased Array Geometries for Transrectal High-Intensity Focused Ultrasound (HIFU) using PZT and Piezocomposite Materials

    Science.gov (United States)

    Seip, Ralf; Chen, Wohsing; Carlson, Roy; Frizzell, Leon; Warren, Gary; Smith, Nadine; Saleh, Khaldon; Gerber, Gene; Shung, Kirk; Guo, Hongkai; Sanghvi, Narendra T.

    2005-03-01

    This paper presents engineering progress and the latest in-vitro and in-vivo results obtained with a 4.0 MHz, 20 element, PZT annular transrectal HIFU array and several 4.0 MHz, 211 element, PZT and piezocomposite cylindrical transrectal HIFU arrays for the treatment of prostate cancer. The geometries of both arrays were designed and analyzed to steer the HIFU beams to the desired sites in the prostate volume using multi-channel electronic drivers, with the intent to increase treatment efficiency and reliability for the next generation of HIFU systems. The annular array is able to focus in depth from 25 mm to 50 mm, generate total acoustic powers in excess of 60W, and has been integrated into a modified Sonablate®500 HIFU system capable of controlling such an applicator through custom treatment planning and execution software. Both PZT- and piezocomposite cylindrical arrays were constructed and their characteristics were compared for the transrectal applications. These arrays have been installed into appropriate transducer housings, and have undergone characterization tests to determine their total acoustic power output, focusing range (in depth and laterally), focus quality, efficiency, and comparison tests to determine the material and technology of choice (PZT or piezocomposite) for intra-cavity HIFU applications. Array descriptions, characterization results, in-vitro and in-vivo results, and an overview of their intended use through the application software is shown.

  7. Ultrasonic transducer

    International Nuclear Information System (INIS)

    A description is given of an ultrasonic transducer capable of operating at high temperature and comprising a transducer crystal and a coupling piece. This coupling piece is composed of several thin plates, generally triangular in shape, in a material withstanding corrosion and high temperatures, these plates being applied one against the other by pressure. One of the edges of the coupling piece is designed so as to direct towards the junction surfaces of the various plates the ultrasonic waves reflected from the junction between the coupling piece and the piece to which the ultrasonic waves must be transmitted

  8. 聚焦型热声转换装置的特性%Characteristics of a Focusing-type Thermo-acoustic Transducer

    Institute of Scientific and Technical Information of China (English)

    万广通; 董卫; 王红星; 吴仲武; 姚丽

    2012-01-01

    A new type of focusing thermo-acoustic transducer, which is composed of a heating surface, an insulation layer and a thermal storage substrate, was designed. When alternative voltage signal is input to the heating surface, due to the Joule heating effect and thermodynamic characteristic of material in each layer, the pressure of the air near the heating surface will oscillate, and the radiation sound will be focused in a small region by the concave spherically heating surface. Through numerical simulation and experimental study of the device, the variations of the focusing area and the sound pressure at the focusing point with acoustic frequency were given. The device can be used as a new type of acoustic-focusing and energy-exchanging device. It can radiate sound in the audible and ultrasonic regions without resonances and moving components. This study has a practical significance and an application prospect.%设计了一种新型的聚焦型热声转换装置,主要由加热层、绝缘层和储热层三层结构构成.当加热层输入交变电信号时,由于焦耳热效应及各层材料的热力学特性,其表面附近区域内气体压力产生交变的振荡,加热层的凹球表面会使产生的声波在某一区域聚焦.通过对装置进行数值模拟与实验研究,得出声波聚焦区域及聚焦点声压强度随声波频率的变化情况.装置可作为一种新型的声学聚焦换能装置,工作频率涉及可听及超声频域,无共振,无运动部件.这一研究具有一定的应用价值.

  9. Ultrasonic transducer

    International Nuclear Information System (INIS)

    An ultrasonic transducer suitable for use up to a temperature of about 6000C comprises a stainless steel casing containing a lithium niobate piezoelectric element and a backing material of a powder which provides a partial pressure of oxygen and thereby prevents deterioration of the element by oxygen loss or contamination. The powder might be of lithium niobate or magnesia. (author)

  10. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  11. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...

  12. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    CERN Document Server

    Ryser, Manuel; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2014-01-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063nm. The diode was driven at a repetition rate of 40MHz and delivered 13$\\mu$W of fiber-coupled average output power. For the low output pulse energy of 0.33pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40MHz repetition rate to 1MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72dBs to an output pulse energy of 5.7$\\mu$J, pulse duration of 11ps and peak power of >0.6MW.

  13. 基于脉冲响应的高强度聚焦超声换能器电阻抗测量方法%Electrical Impedance Measurement Method Based on Impulse Response for High Intensity Focused Ultrasound Transducer

    Institute of Scientific and Technical Information of China (English)

    廖瑞金; 谭坚文; 王华; 曾德平; 李龙; 强生泽

    2012-01-01

    High intensity focused ultrasound transducer (HIFU) is a key part of HIFU therapeutic system, and its electrical impedance characteristics determine the important system parameters and transducer performance. It is difficult to realize online measurement by adopting current impedance analyzer and frequency domain measurement method. Consequently, we studied the time-domain measurement method for electrical impedance of high intensity focused ultrasound transducer based on impulse response. Firstly, the principle of measurement was theoretically analyzed and verified through simulation. Then, the measurement platform was experimentally established, and the measurement results of impedance analyzer and impulse response method were compared. Finally, the factors affecting the measurement result were analyzed. The results show that, the impulse response measurement method can obtain good measurement accuracy after current sample resistance correcting and wavelet denoising; the measurement method is cost-effective and convenient for integrating in equipment to realize online measurement. This measurement method also provides an effective means of researching electrical impedance characteristic of high intensity focused ultrasound transducer.%高强度聚焦超声(HIFU)换能器是HIFU治疗系统的关键部件,其电阻抗特性是决定各系统参数和换能器工作特性的重要参数。目前采用的阻抗分析仪和频域测量方法成本较高,且难以实现在线测量。为此,对基于脉冲响应的超声换能器电阻抗时域测量方法进行了研究,对测量原理进行了理论分析和仿真验证,并组建了脉冲响应测量实验平台,通过实际测量,比较了脉冲响应法和阻抗分析仪的测量结果,分析了影响测量结果的因素。研究结果表明:在通过电流取样电阻校正和小波去噪后,基于脉冲响应的电阻抗测量方法能取得较高的测量准确度,且测量成本低,可

  14. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...... resolution it is however necessary to develop new fabrication methods that allows fabrication of transducer elements with smaller dimensions. By using microfabrication technology it is possible to push the dimensions down and provide higher design flexibility. This project is part of a large ultrasound...... project and collaboration with a lot of partners to improve medical ultrasound imaging. The focus in this part of the project is to design, fabricate and characterize 1D CMUT arrays. Two versions of 1D transducers are made, one at Stanford University and one at DTU. Electrical and acoustical...

  15. Image-Guided Ultrasound Characterization of Volatile Sub-Micron Phase-Shift Droplets in the 20-40 MHz Frequency Range.

    Science.gov (United States)

    Sheeran, Paul S; Daghighi, Yasaman; Yoo, Kimoon; Williams, Ross; Cherin, Emmanuel; Foster, F Stuart; Burns, Peter N

    2016-03-01

    Phase-shift perfluorocarbon droplets are designed to convert from the liquid to the gas state by the external application of acoustic or optical energy. Although droplet vaporization has been investigated extensively at ultrasonic frequencies between 1 and 10 MHz, few studies have characterized performance at the higher frequencies commonly used in small animal imaging. In this study, we use standard B-mode imaging sequences on a pre-clinical ultrasound platform to both image and activate sub-micron decafluorobutane droplet populations in vitro and in vivo at center frequencies in the range of 20-40 MHz. Results show that droplets remain stable against vaporization at low imaging pressures but are vaporized at peak negative pressures near 3.5 MPa at the three frequencies tested. This study also found that a small number of size outliers present in the distribution can greatly influence droplet performance. Removal of these outliers results in a more accurate assessment of the vaporization threshold and produces free-flowing microbubbles upon vaporization in the mouse kidney. PMID:26725168

  16. Handbook of force transducers

    CERN Document Server

    Stefanescu, Dan Mihai

    2011-01-01

    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  17. Lead-free KNLNT piezoelectric ceramics for high-frequency ultrasonic transducer application.

    Science.gov (United States)

    Wu, D W; Chen, R M; Zhou, Q F; Shung, K K; Lin, D M; Chan, H L W

    2009-03-01

    This paper presents the latest development of a lead-free piezoelectric ceramic and its application to transducers suitable for high-frequency ultrasonic imaging. A lead-free piezoelectric ceramic with formula of (K(0.5)Na(0.5))(0.97)Li(0.03)(Nb(0.9) Ta(0.1))O(3) (abbreviated as KNLNT-0.03/0.10) was fabricated and characterized. The material was found to have a clamped dielectric constant epsilon(33)(S)/epsilon(0)=890, piezoelectric coefficient d(33)=245 pC/N, electromechanical coupling factor k(t)=0.42 and Curie temperature T(c)>300 degrees C. High-frequency (40 MHz) ultrasound transducers were successfully fabricated with the lead-free material. A representative lead-free transducer had a bandwidth of 45%, two-way insertion loss of -18 dB. This performance is comparable to reported performances of popular lead-based transducers. The comparison results suggest that the lead-free piezoelectric material may serve as an alternative to lead-based piezoelectric materials for high-frequency ultrasonic transducer applications. PMID:19121835

  18. Crossflow force transducer

    International Nuclear Information System (INIS)

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related

  19. Pressure Transducer Locations

    Data.gov (United States)

    National Aeronautics and Space Administration — Files are located here, defining the locations of the pressure transducers on the HIRENASD model. These locations also correspond to the locations that analysts...

  20. Circular PVDF Airborne Transducer

    Institute of Scientific and Technical Information of China (English)

    JIAO Li-hua; XU Li-mei; HONG Hu

    2007-01-01

    With the required increased audio pressure of the parametric ultrasonic transducer array and the difficulty to theoretically analyse the complex ultrasonic structure in audio beam application, an computafionally efficient model is desired to describe the characteristic of the parametric ultrasonic transducer array for the system design and optimization. By applying the symmetry boundary conditions at the mid-plane in the thickness direction, a finite element model based on the half thickness simplification is presented to analyze the parametric circular transducer which is designed by gluing the poly Vinylidene fluoride film (PVDF). The validity of the proposed model is confirmed by a comparison of finite element aalysis results with the theoretical value and experimental data, which show that they are making a good agreement with each other.

  1. Konstruktion af transducer

    DEFF Research Database (Denmark)

    Henriksen, Lars; Nielsen, Martin Pram

    Formålet med dette midtvejsprojekt er at udarbejde en transducer til måling af pressers stivhed. Dette er gjort på baggrund af en gennemgang af både presse- og stativ-typer samtidig med at udbøjningssituationen beskrives. Der introduceres en ide, der udgør grundkonceptet for opmålingsproceduren o...... færdige transducer – Load cellen. Strain gauge sørger for dataopsamlingen fra load cellen. Disse kalibreres således at transduceren er klar til de videre målinger der ligger i forlængelse af dette projekt....

  2. Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate

    Science.gov (United States)

    Ohlin, Mathias; Christakou, Athanasia E.; Frisk, Thomas; Önfelt, Björn; Wiklund, Martin

    2013-03-01

    We characterize and quantify the performance of ultrasonic particle aggregation and positioning in a 100-well microplate. We analyze the result when operating a planar ultrasonic ring transducer at different single actuation frequencies in the range 2.20-2.40 MHz, and compare with the result obtained from different schemes of frequency-modulated actuation. Compared to our previously used wedge transducer design, the ring transducer has a larger contact area facing the microplate, resulting in lower temperature increase for a given actuation voltage. Furthermore, we analyze the dynamics of acoustic streaming occurring simultaneously with the particle trapping in the wells of the microplate, and we define an adaptive ultrasonic actuation scheme for optimizing both efficiency and robustness of the method. The device is designed as a tool for ultrasound-mediated cell aggregation and positioning. This is a method for high-resolution optical characterization of time-dependent cellular processes at the level of single cells. In this paper, we demonstrate how to operate our device in order to optimize the scanning time of 3D confocal microscopy with the aim to perform high-resolution time-lapse imaging of cells or cell-cell interactions in a highly parallel manner.

  3. Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate

    International Nuclear Information System (INIS)

    We characterize and quantify the performance of ultrasonic particle aggregation and positioning in a 100-well microplate. We analyze the result when operating a planar ultrasonic ring transducer at different single actuation frequencies in the range 2.20–2.40 MHz, and compare with the result obtained from different schemes of frequency-modulated actuation. Compared to our previously used wedge transducer design, the ring transducer has a larger contact area facing the microplate, resulting in lower temperature increase for a given actuation voltage. Furthermore, we analyze the dynamics of acoustic streaming occurring simultaneously with the particle trapping in the wells of the microplate, and we define an adaptive ultrasonic actuation scheme for optimizing both efficiency and robustness of the method. The device is designed as a tool for ultrasound-mediated cell aggregation and positioning. This is a method for high-resolution optical characterization of time-dependent cellular processes at the level of single cells. In this paper, we demonstrate how to operate our device in order to optimize the scanning time of 3D confocal microscopy with the aim to perform high-resolution time-lapse imaging of cells or cell–cell interactions in a highly parallel manner. (paper)

  4. Nano-optomechanical transducer

    Science.gov (United States)

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  5. Numerical transducer modelling

    DEFF Research Database (Denmark)

    Cutanda, Vicente

    1999-01-01

    Numerical modelling is of importance for the design, improvement and study of acoustic transducers such as microphones and accelerometers. Techniques like the boundary element method and the finite element method are the most common supplement to the traditional empirical and analytical approaches...... errors and instabilities in the computations of numerical solutions. An investigation to deal with this narrow-gap problem has been carried out....

  6. Transducers for ultrasonic limb plethysmography

    Science.gov (United States)

    Nickell, W. T.; Wu, V. C.; Bhagat, P. K.

    1983-01-01

    The design, construction, and performance characteristics of ultasonic transducers suitable for limb plethysmography are presented. Both 3-mm-diameter flat-plate and 12-mm-diameter hemispheric ceramic transducers operating at 2 MHz were fitted in 1-mm thick epoxy-resin lens/acoustic-coupling structures and mounted in exercie-EKG electrode housings for placement on the calf using adhesive collars. The effects of transducer directional characteristics on performance under off-axis rotation and the electrical impedances of the transducers were measured: The flat transducer was found to be sensitive to rotation and have an impedance of 800 ohms; the hemispheric transducer, to be unaffected by rotation and have an impedance of 80 ohms. The use of hemispheric transducers as both transmitter and receiver, or of a flat transducer as transmitter and a hemispheric transducer as receiver, was found to produce adequate dimensional measurements, with minimum care in transducer placement, in short-term physiological experiments and long-term (up to 7-day) attachment tests.

  7. Optically transduced MEMS magnetometer

    Science.gov (United States)

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  8. Numerical Transducer Modeling

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... that are allowable in this case: linear variations, absence of flow, harmonic time variation, thermodynamical equilibrium and physical dimensions much larger than the molecular mean free path. A formulation of the BEM is also developed with an improvement designed to cope with the numerical difficulty associated...... with very close surfaces, as found in condenser microphones, where the membrane has a backplate very close behind. This improvement could be useful for many other problems where the BEM is applied. The numerical implementation that includes both viscous and thermal effects is then worked out. Some numerical...

  9. Optimization of ultrasonic transducers for selective guided wave actuation

    Science.gov (United States)

    Miszczynski, Mateusz; Packo, Pawel; Zbyrad, Paulina; Stepinski, Tadeusz; Uhl, Tadeusz; Lis, Jerzy; Wiatr, Kazimierz

    2016-04-01

    The application of guided waves using surface-bonded piezoceramic transducers for nondestructive testing (NDT) and Structural Health Monitoring (SHM) have shown great potential. However, due to difficulty in identification of individual wave modes resulting from their dispersive and multi-modal nature, selective mode excitement methods are highly desired. The presented work focuses on an optimization-based approach to design of a piezoelectric transducer for selective guided waves generation. The concept of the presented framework involves a Finite Element Method (FEM) model in the optimization process. The material of the transducer is optimized in topological sense with the aim of tuning piezoelectric properties for actuation of specific guided wave modes.

  10. Calibration of Underwater Sound Transducers

    Directory of Open Access Journals (Sweden)

    H.R.S. Sastry

    1983-07-01

    Full Text Available The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  11. Flat HIFU transducer with a sawtooth-shaped ultrasound radiation face

    Science.gov (United States)

    Son, Keon-Ho; Cho, Young-Ki; Kim, Dae-Seung; Kim, Myung-Deok; Kang, Kook-Jin

    2013-10-01

    High-intensity focused ultrasound (HIFU) transducers are spherically-curved in order to obtain a high intensity gain of the converged ultrasound energy at the geometrical focus. Ultrasound imaging devices monitor the procedure of HIFU treatment in ultrasound-guided HIFU systems where the image probe is positioned at the apex of the HIFU transducer, which has a spherical surface. However, the remote image probe's location yields a poor image quality compared to that obtained using conventional ultrasound imaging where the image probe is in direct contact with the surface. A phased array HIFU transducer with a new structure is suggested to overcome this limitation. The centers of the array elements are distributed over the flat surface of the transducer. However, the elements are tilted to form a geometrical focus, like a transducer with a spherically-curved surface, to obtain a high focal gain. The cross-section of the ultrasound radiation face of the transducer resembles the teeth of a saw. The acoustic field emitted from this transducer was simulated in order to design and produce the transducer. The simulation was compared with the measured sound field to verify that the transducer was correctly manufactured and designed; subsequently, the acoustic power was measured, and ultrasound images were obtained through the installation of an image probe on the transducer, which confirmed the application of this transducer to HIFU treatment.

  12. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  13. Amperometric biosensors based on carbon composite transducers

    Science.gov (United States)

    Lu, Fang

    1998-12-01

    Much current work in analytical chemistry is devoted to design of biosensors. One particular area in this field is the development of enzyme-based amperometric biosensors for the quantitative determination of a series of substrates in clinical, environmental, industrial and agricultural significance. This dissertation focuses on the design of improved amperometric biosensors based on carbon composite transducers. The use of metallized carbons as transducer materials results in remarkably selective amperometric biosensors. Such enzyme-based transducers eliminate major electroactive interferences, and hence circumvent the need for mediators or membrane barriers. The remarkable selectivity of metal-dispersed carbons is attributed to their strong, preferential, electrocatalytic capacity towards the reductive detection of biologically-generated hydrogen peroxide. Such electrocatalytic activity allows metal-dispersed biosensors to be operated at the optimal potential region between +0.1 and -0.2 V, where the unwanted reactions are neglected resulting in the lowest noise level. Several new materials (e.g., ruthenium on carbon, rhodium on carbon, etc.) and constructions (e.g., carbon fiber, electrochemical co-deposition transducer, etc.) were applied in the development of novel enzyme-based transducers in order to improve the selectivity and applicability of amperometric biosensors. The susceptibility of first-generation oxidase amperometric biosensing to oxygen fluctuations can be improved by using oxygen-rich fluorocarbons as the pasting binders in carbon paste enzyme transducers. Such binders provide an internal supply of oxygen resulting in efficient detection in oxygen-deficit conditions. In particular, the use of poly-chlorotrifluorethylene (Kel-F) oil as carbon paste binder results in a well-defined response and an identical signal up to 40 mM glucose in both the presence and absence of oxygen. Comparing with mediated or wired enzyme-based transducers, such internal

  14. The influence of roughness, angle, range, and transducer type on the echo signal from planar interfaces

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, Peter C.; Jacobsen, Søren Mehl

    2001-01-01

    The received electrical echo signal from a pulse-echo system insonifying a planar interface was measured for varying degrees of rms roughness [0 to 0.29 mm (0 to 1.7 /spl lambda/)], angles of incidence, /spl theta/, (-7/spl deg/ to 7/spl deg/), and ranges to a planar or focused transducer......B/(Rq//spl lambda/) for planar and focused transducers, respectively. The characteristic nulls present in the normalized spectra of the echo signal at non-normal incidence tend to vanish with increasing R/sub q/ when using planar transducers. For focused transducers, the normalized spectra change from relatively...

  15. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...

  16. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...

  17. Transducer Field Imaging Using Acoustography

    Directory of Open Access Journals (Sweden)

    Jaswinder S. Sandhu

    2012-01-01

    Full Text Available A common current practice for transducer field mapping is to scan, point-by-point, a hydrophone element in a 2D raster at various distances from the transducer radiating surface. This approach is tedious, requiring hours of scanning time to generate full cross-sectional and/or axial field distributions. Moreover, the lateral resolution of the field distribution image is dependent on the indexing steps between data points. Acoustography is an imaging process in which an acousto-optical (AO area sensor is employed to record the intensity of an ultrasound wavefield on a two-dimensional plane. This paper reports on the application of acoustography as a simple but practical method for assessing transducer field characteristics. A case study performed on a commercial transducer is reported, where the radiated fields are imaged using acoustography and compared to the corresponding quantities that are predicted numerically.

  18. Pressure Transducer Has Long Service Life

    Science.gov (United States)

    Prout, R. E.; Chaves, A. J.

    1982-01-01

    Differential-pressure transducer includes a piston, helical springs, and a linear variable-differential transformer concentric with piston. Transducer senses motion of piston in response to changes in pressure differential. Eight seals within the transducer prevent fluid leakage from one pressure line to the other. Reliability and operating life of the new unit are superior to many conventional transducers.

  19. Characterization of Dielectric Electroactive Polymer transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah;

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide guideli...

  20. Ultrasonic Transducer Irradiation Test Results

    International Nuclear Information System (INIS)

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  1. Ultrasonic Transducer Irradiation Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Joe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Paul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States); Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States); Rempe, Joy [Rempe and Associates, Idaho Falls, ID (United States)

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  2. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    Science.gov (United States)

    Li, H.; Jung, K. W.; Deng, Z. D.

    2015-11-01

    Implantable acoustic transmitters have been used in the last 20 years to track fish movement for fish survival and migration behavior studies. However, the relatively large weights and sizes of commercial transmitters limit the populations of studied fish. The surgical implantation procedures may also affect fish adversely and incur a significant amount of labor. Therefore, a smaller, lighter, and injectable transmitter was needed, and similar or better acoustic performance and service life over those provided by existing commercial transmitters was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. Our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the signal was not blocked by the transmitter body. We found that a novel off-center tube transducer improved the average source level by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 1.3 dB. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. Lastly, a tuning inductor in series with the transducer was used to help optimize the source level. The findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.

  3. Analysis of eigenfrequencies in piezoelectric transducers using the finite element method

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1988-01-01

    It is noted that the finite-element method is a valuable supplement to the traditional methods for design of novel transducer types because it can determine the vibrational pattern of piezoelectric transducers and is applicable to any geometry. Computer programs for analysis of axisymmetric...... in an efficient way. Examples ranging from a freely vibrating disk to a real focused transducer with a conical backing are presented...

  4. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    NARCIS (Netherlands)

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  5. Pressure transducers for cryogenic liquids

    OpenAIRE

    Pavlovskyy I. V.; Kutrakov A. P.; Maryamova I. I.; Druzhinin A. A.

    2007-01-01

    The developed universal construction of tensoresistive pressure transducer for cryogenic liquids (liquid nitrogen and liquid helium) is described. The study of strain gauges characteristics on the basis of p-type Si whiskers with different boron concentration, mounted on the invar spring elements (beams), in the wide ranges of strain ε=±1,2·10-3 and temperature 4,2-300 К for transducers simulation were carried out. It was shown that using heavily doped silicon strain gages gives the possibili...

  6. Proceedings of transducer 84 conference

    International Nuclear Information System (INIS)

    In the broad and varied field of sensors this conference reviews thermal sensors for temperature measurements, gas sensors for gas analysis (for example analysis of exhaust gases from vehicles), optical fiber sensors, applications for optics, mechanics, robotics and signal processing. In particular one of the applications concerns acoustical transducers operating in liquid sodium for LMFBR reactors

  7. Calculations for Piezoelectric Ultrasonic Transducers

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1986-01-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a boay which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation...

  8. Echo signal from rough planar interfaces influence of roughness, angle, range and transducer type

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P.C.; Jacobsen, S.M.;

    1998-01-01

    The received electrical signal from a pulse-echo system insonifying a planar acoustical interface was measured for varying degrees of rms roughness (0-0.16 mm), angle of incidence (typically +/-7°) and range to the transducer. A planar and a focused 5 MHz transducer was used. When insonifying...

  9. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  10. Irradiation Testing of Ultrasonic Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  11. Safety Issues for HIFU Transducer Design

    Science.gov (United States)

    Fleury, Gérard; Berriet, Rémi; Chapelon, Jean Yves; ter Haar, Gail; Lafon, Cyril; Le Baron, Olivier; Chupin, Laurent; Pichonnat, Fabrice; Lenormand, Jérôme

    2005-03-01

    In contrast with most ultrasound modalities for medical applications, (especially ultrasound imaging), High Intensity Focused Ultrasound (HIFU) involves technologies and procedures which may present risk to the patient. These risks, resulting from the high power levels required for effective therapy, should be taken into account at the earliest stages in the design of a system dedicated to HIFU treatment. An understanding of these risks must thus be shared amongst the many players in the field of therapy using high power ultrasound. Moreover, since the number of applications of HIFU has increased appreciably over recent years and the technology is ready to move from the research to the industrial level, it is worth now considering solutions that should be put in place to guarantee the safety of the patient during HIFU treatment. This paper reports thoughts on this, identifies some risks to the patient that must be taken into consideration in the design of HIFU transducers, and proposes some solutions that could prevent the deleterious consequences of transducer misuse or failure. For the main risks identified, such as exceeding the desired acoustic power or poor control of tissue targeting, a description of transducer performance that could potentially result in problems is systematically sought. This allows proposals for precautions to be taken during operation to be made. Parameters which should be monitored to ensure safe use are also suggested. This type of approach, which should be undertaken for the different components of a therapeutic system, highlights the challenges that must be faced in the immediate future for the development and safe exploitation of HIFU systems. The necessity for standard definitions of the parameters to be checked or monitored during HIFU treatments is crucial in this approach, as is the availability of reliable dedicated measurement devices. Co-ordinated action on these topics in the HIFU community would contribute to the

  12. Transducers and Arrays for Underwater Sound

    CERN Document Server

    Sherman, Charles H

    2007-01-01

    This book is concerned with the theory, development and design of electroacoustic transducers for underwater applications, and is more comprehensive than any existing book in this field. It includes the basics of the six major types of electroacoustic transducers, with emphasis on the piezoelectric ceramic transducers that are currently most widely used. It presents the basic acoustics, as well as specific acoustic data, needed in transducer design and includes analysis of nonlinear effects in transducers. A large number of specific transducer designs, including both projectors and hydrophones, are described in detail as well as methods of modeling, evaluation and measurement. Analysis of transducer arrays, including the effects of mutual radiation impedance, as well as numerical models for transducers and arrays are also covered. The book contains an extensive Appendix of useful current information, including data on the latest transduction materials, and numerous diagrams that will facilitate its use by stu...

  13. Measuring Thicknesses With In Situ Ultrasonic Transducers

    Science.gov (United States)

    Dunn, Daniel E.; Cerino, Joseph R.

    1995-01-01

    Several pulsed ultrasonic transducers attached to workpiece for measurement of changes in thicknesses of workpiece at transducer locations during grinding and polishing, according to proposal. Once attached, each transducer remains attached at original position until all grinding and polishing operations complete. In typical application, workpiece glass or ceramic blank destined to become component of optical system.

  14. Spatial filters for focusing ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gori, Paola

    2001-01-01

    Traditionally focusing is done by taking out one sample in the received signal from each transducer element and then sum these signals. This method does not take into account the temporal or spatial spread of the received signal from a point scatterer and does not make an optimal focus of the data......, but the approach always yields point spread functions better or equal to a traditional dynamically focused image. Finally, the process was applied to in-vivo clinical images of the liver and right kidney from a 28 years old male. The data was obtained with a single element transducer focused at 100 mm...... for beamforming the received RF signals from the individual transducer elements. The matched filter is applied on RF signals from individual transducer elements, thus properly taking into account the spatial spread of the received signal. The method can be applied to any transducer and can also be used...

  15. Power Generation Using Piezoelectric Transducer

    Directory of Open Access Journals (Sweden)

    Tanu Chouhan

    2016-05-01

    Full Text Available The most basic need of today’s world is energy which is non-renewable source of energy available on earth. The need is increasing day by day, to overcome this there is requirement of energy harvesting. This paper attempts to show how man has been utilizing and optimizing kinetic energy. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal. “The idea of energy harvesting is applicable to sensors as well as transducers that are placed and operated on some entities for a long time to replace the sensor module batteries. Such sensors are commonly called self-powered sensors.” Embarked piezoelectric transducer, which is an electromechanical converter, undergoes mechanical vibrations therefore produce electricity. This power source has many applications as in agriculture, home application and street lighting and as energy source for sensors in remote locations.

  16. High temperature ultrasonic transducers: review

    OpenAIRE

    Kažys, R.; Voleišis, A.; Voleišienė, B.

    2008-01-01

    The problems of development of high-temperature ultrasonic transducers for modern science and technology applications are analysed. More than 10 piezoelectric materials suitable for operation at high temperatures are overviewed. It is shown that bismuth titanate based piezoelectric elements are most promisable. Bonding methods of piezoelectric elements to a protector and backing are discussed. Thermosonic gold-to-gold bonding is most modern and possesses unique features. Our achievements in t...

  17. Elongation Transducer For Tensile Tests

    Science.gov (United States)

    Roberts, Paul W.; Stokes, Thomas R.

    1994-01-01

    Extensometer transducer measures elongation of tensile-test specimen with negligible distortion of test results. Used in stress-versus-strain tests of small specimens of composite materials. Clamping stress distributed more evenly. Specimen clamped gently between jaw and facing surface of housing. Friction force of load points on conical tips onto specimen depends on compression of spring, adjusted by turning cover on housing. Limp, light nylon-insulated electrical leads impose minimal extraneous loads on measuring elements.

  18. Transducers

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    stream_size 27 stream_content_type text/plain stream_name Encycl_Microcomputers_18_335.pdf.txt stream_source_info Encycl_Microcomputers_18_335.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  19. High intensity ultrasound transducer used in gene transfection

    Science.gov (United States)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  20. Radiation-resistant pressure transducers

    International Nuclear Information System (INIS)

    Full text : The sensitive element of vibrofrequency tensor converter (VTC) is an electromechanical resonator of string type with electrostatic excitation of longitudinal mechanical vibrations. The string is made from tensosensitive thread-like monocrystal n-Ge1-x Six (length 1-5 mm, diameter 8-12 mcm) with current outlet and strictly fixed by ends at plate or deformable surface (in elastic element) at 50 mcm apartheid. With increasing Si atomic percent in n-Ge1-x Six the converter tens sensitivity increases. There has been shown the scheme of pressure transducer which contains monocrystalline silicon membrane and string tens converter from thread-like monocrystal Ge-Si. Using method, when crystal position on membrane while it deforms by pressure, corresponds to free (uptight) state, allowed to obtain the maximum sensitivity in measurement of pressure fluctuation. The transducers of absolute and pressure differential of this type can be used in automated systems of life activity. The high sensitivity of string transducers to pressure exceeding 100 hertz/mm (water column) permits to use them in devices for measuring gas concentration. The combination of optical and deformation methods of measurements forms the basis of their operation. The pressure change occurs due to the fact that gas molecules absorbing the quanta of incident light, become at excited state and then excitation energy of their vibrational-rotatory degrees of freedom converts to the energy of translational motion of molecules, i.e. to heat appropriate to pressure increase. Using these tens converters of high pressure one can prevent the possible accidents on oil pipe-like Baku-Tibilisi-Ceyhan

  1. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L

    2016-01-01

    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  2. Analog circuit for controlling acoustic transducer arrays

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas S. (Cedar Crest, NM)

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  3. Mechanical and electrical characteristics of cymbal transducer

    Institute of Scientific and Technical Information of China (English)

    WANG Guangcan; ZHANG Jin; TIAN Wenjie; LIN Guoguang; LIAN Guandong; ZHANG Fuxue

    2005-01-01

    The electromechanical of Cymbal transducer has been researched. Under simple supporting condition, the mechanical and electrical characteristics have been analyzed by using Piezoelectric-elastic theory, Kirchhoff's thin shell vibration theory, Rayleigh-Ritz's theory and equivalent circuit method. The approximate solution and series resonance frequency equation have been given. Under no load, equivalent circuit, correlation parameters of cymbal transducer and the relations between the ratio of cavity depth to radius of Cymbal transducer with resonance frequency, electromechanical coupling coefficient of cymbal transducer have been researched. The best electromechanical coupling coefficient of cymbal transducer has been gained from the results of numerical analysis. It offers a valid theoretical foundation for optimum design of cymbal transducer.

  4. Silicon Integrated Cavity Optomechanical Transducer

    Science.gov (United States)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  5. Lithium niobate transducers for MRI-guided ultrasonic microsurgery.

    Science.gov (United States)

    Kotopoulis, Spiros; Wang, Han; Cochran, Sandy; Postema, Michiel

    2011-08-01

    Focused ultrasound surgery (FUS) is usually based on frequencies below 5 MHz-typically around 1 MHz. Although this allows good penetration into tissue, it limits the minimum lesion dimensions that can be achieved. In this study, we investigate devices to allow FUS at much higher frequencies, in principle, reducing the minimum lesion dimensions. Furthermore, FUS can produce deep-sub-millimeter demarcation between viable and necrosed tissue; high-frequency devices may allow this to be exploited in superficial applications which may include dermatology, ophthalmology, treatment of the vascular system, and treatment of early dysplasia in epithelial tissue. In this paper, we explain the methodology we have used to build high-frequency high-intensity transducers using Y-36°-cut lithium niobate. This material was chosen because its low losses give it the potential to allow very-high-frequency operation at harmonics of the fundamental operating frequency. A range of single-element transducers with center frequencies between 6.6 and 20.0 MHz were built and the transducers' efficiency and acoustic power output were measured. A focused 6.6-MHz transducer was built with multiple elements operating together and tested using an ultrasound phantom and MRI scans. It was shown to increase phantom temperature by 32°C in a localized area of 2.5 x 3.4 mm in the plane of the MRI scan. Ex vivo tests on poultry tissue were also performed and shown to create lesions of similar dimensions. This study, therefore, demonstrates that it is feasible to produce high-frequency transducers capable of high-resolution FUS using lithium niobate. PMID:21859576

  6. Evaluation of pressure transducers. Dynamic tests

    International Nuclear Information System (INIS)

    The evaluation of a pressure transducer consists in checking its specifications. The tests of rapidity with a shock tube are important because they allow to find out transducer response time under a pressure step and also its natural frequency and damping. These last two data define the whole dynamic work of a fast transducer as the accuracy of the amplitude versus frequency function, the phase rotation, limit of use, overload. Several tests carried out on ETCA shock tube are described

  7. Transducer combination for high-quality ultrasound tomography based on speed of sound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hun; Park, Kwan Kyu [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-02-15

    The type of ultrasound transducer used influences the quality of a reconstructed ultrasound image. This study analyzed the effect of transducer type on ultrasound computed tomography (UCT) image quality. The UCT was modeled in an ultrasound simulator by using a 5 cm anatomy model and a ring-shape 5 MHz 128 transducer array, which considered attenuation, refraction, and reflection. Speed-of-sound images were reconstructed by the Radon transform as the UCT image modality. Acoustic impedance images were also reconstructed by the delayand-sum (DAS) method, which considered the speed of sound information. To determine the optimal combination of transducers in observation, point-source, flat, and focused transducers were tested in combination as trasmitters and receivers; UCT images were constructed from each combination. The combination of point-source/flat transducer as transmitting and receiving devices presented the best reconstructed image quality. In UCT implementation, the combination of a flat transducer for transmitting and a point transducer for receiving permitted acceptable image quality.

  8. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.

  9. Digital objects as "transducers" in scientific web publishing

    OpenAIRE

    Koltzenburg, Claudia

    2007-01-01

    Scientific web publishing offers an attractive bundle of phenomena for feminist technoscientific investigation. This article focuses on research articles in scientific journals and aims at identifying a range of exclusionary practices in the current publishing system, which need to be critically addressed. For this purpose, the functionalities of digital objects are studied using the analogy of a piezoelectric crystal as a transducer in obstetric ultrasonography (Karen Barad 2001). This is em...

  10. Linearization of resistance thermometers and other transducers

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1970-01-01

    Given a resistive transducer which responds directly or indirectly to a physical quantity x, it is shown that the relationship may be linearized by linear methods if and only if both the resistance and conductance of the transducer are concave upward as functions of x. This result applies to eith...

  11. Pushdown machines for the macro tree transducer

    NARCIS (Netherlands)

    Engelfriet, Joost; Vogler, Heiko

    1986-01-01

    The macro tree transducer can be considered as a system of recursive function procedures with parameters, where the recursion is on a tree (e.g., the syntax tree of a program). We investigate characterizations of the class of tree (tree-to-string) translations which is induced by macro tree transduc

  12. Electromechanically active polymer transducers: research in Europe

    Science.gov (United States)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  13. Glass-windowed ultrasound transducers.

    Science.gov (United States)

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  14. Glass-windowed ultrasound transducers.

    Science.gov (United States)

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  15. Simulating arbitrary-geometry ultrasound transducers using triangles

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1996-01-01

    -echo field. The spatial impulse response has only been determined analytically for a few geometries and using apodization over the transducer surface generally makes it impossible to find the response analytically. A popular approach to find the general field is thus to split the aperture into small...... number of transducers can be defined and their properties manipulated. The program can calculate all types of ultrasound fields, and can also be used for simulating B-mode and color flow images. Both the focusing and apodization can be set to be dynamic with respect to time, and it is thus possible to......-field response of a rectangle, as the triangle equations are far more complicated. This approach is therefore best suited for accurate modeling of fields, whereas the rectangle program is better suited to make fast simulated images, since contributions from many scatterers are summed here and the error is...

  16. Electrical modeling of dielectric elastomer stack transducers

    Science.gov (United States)

    Haus, Henry; Matysek, Marc; Moessinger, Holger; Flittner, Klaus; Schlaak, Helmut F.

    2013-04-01

    Performance of dielectric elastomer transducers (DEST) depends on mechanical and electrical parameters. For designing DEST it is therefore necessary to know the influences of these parameters on the overall performance. We show an electrical equivalent circuit valid for a transducer consisting of multiple layers and derive the electrical parameters of the circuit depending on transducers geometry and surface resistivity of the electrodes. This allows describing the DESTs dynamic behavior as a function of fabrication (layout, sheet and interconnection resistance), material (breakdown strength, permittivity) and driving (voltage) parameters. Using this electrical model transfer function and cut-off frequency are calculated, describing the influence of transducer capacitance, resistance and driving frequency on the achievable actuation deflection. Furthermore non ideal boundary effects influencing the capacitance value of the transducer are investigated by an electrostatic simulation and limits for presuming a simple plate capacitor model for calculating the transducer capacitance are derived. Results provide the plate capacitor model is a valid assumption for typical transducer configurations but for certain aspect ratios of electrode dimensions to dielectric thickness -- arising e.g. in the application of tactile interfaces -- the influence of boundary effects is to be considered.

  17. Compact Orthomode Transducers Using Digital Polarization Synthesis

    CERN Document Server

    Morgan, Matthew A; Boyd, Tod A

    2010-01-01

    In this paper we present a novel class of compact orthomode transducers which use digital calibration to synthesize the desired polarization vectors while maintaining high isolation and minimizing mass and volume. These digital orthomode transducers consist of an arbitrary number of planar probes in a circular waveguide, each of which is connected to an independent receiver chain designed for stability of complex gain. The outputs of each receiver chain are then digitized and combined numerically with calibrated, complex coefficients. Measurements on two prototype digital orthomode transducers, one with three probes and one with four, show better than 50 dB polarization isolation over a 10 C temperature range with a single calibration.

  18. Hybrid piezoelectric energy harvesting transducer system

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  19. Ultrasonic wave transducer for high temperature barrier

    International Nuclear Information System (INIS)

    This transducer is made by a metallic body pivoting on a support fixed to the barrier and an internal vitroceramic waveguide in contact on the barrier and on the other end on a piezoelectric ceramic element

  20. Performance of Honeywell silicon pressure transducers

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Nagvekar, S.; Prabhudesai, S.; Damodaran, V.

    Simultaneous calibration of three Honeywell pressure transducers (PPTR) at four ambient temperatures have been carried out using a novel static calibration system developed in-house. Calibration results indicated that differing PPTRs exhibited...

  1. Nondestructive Evaluation of Double Bevel T-Joint by Tandem Array Ultrasonic Transducer

    Science.gov (United States)

    Shirahata, H.; Miki, C.; Yamaguchi, R.

    2003-03-01

    The double bevel T-joint is one of the most fundamental joints of steel bridges. Double bevel T-joint can be seen at beam-column connection of bridge pier. In the Japanese specifications, the welding should be full penetration. However, weld defect of incomplete penetration could be left in the joint due to the lack of quality control in welding. Fatigue cracks can be propagated from the weld defects. The authors developed a tandem array transducer. The tandem array transducer consists of 10 elements aligned in the same direction. Tandem scanning can be simulated by the transducer. Image reconstruction of incomplete penetration by synthetic aperture focusing technique was carried out. The test results showed sufficient detectability of incomplete penetration by the tandem array transducer. Height of incomplete of penetration could be estimated.

  2. Development of High Frequency Miniature Ultrasound Transducers

    OpenAIRE

    Manh, Tung

    2013-01-01

    Small, high frequency (≥ 10MHz) broadband ultrasound transducers are required in modern medical imaging systems to provide short range, high resolution images for studying of microstructures in soft tissues, such as the composition of small tumors or a vessel wall. The manufacturing of these probes using conventional methods, i.e. lapping and dicing, becomes difficult and expensive for high frequency applications and there is a need to produce small ultrasound transducers with low cost and hi...

  3. Piezoelectric and acoustic materials for transducer applications

    CERN Document Server

    Safari, Ahmad

    2008-01-01

    Discusses the underlying physical principles of piezoelectric materials, important properties of ferroelectric/piezoelectric materials used in today's transducer technology, and the principles used in transducer designIncludes examples of a wide range of applications of such materials along with the appertaining rationalesProvides a comprehensive, yet concise, reference to all the pertinent aspects of piezoelectric materialsContains contributions from a select-group of distinguished researchers

  4. Design considerations for piezoelectric polymer ultrasound transducers.

    Science.gov (United States)

    Brown, L F

    2000-01-01

    Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.

  5. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  6. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. PMID:26585023

  7. Development of an omnidirectional SH0 piezoceramic transducer

    Science.gov (United States)

    Belanger, Pierre; Boivin, Guillaume

    2016-02-01

    Ultrasonic guided waves are now routinely used in non-destructive evaluation. In plate-like structures, three fundamental modes can propagate, namely A0, S0 and SH0. Most of the guided wave literature has thus far focused on the use of A0 and/or S0 because these modes are easy to generate in plate-like structures using standard piezoceramic transducers. Yet, at low frequency, A0 and S0 are dispersive. The consequence of dispersion is that signal processing becomes complex for long propagation distances. SH0, on the other hand, has the particularity of being the only non-dispersive guided wave mode. Omnidirectional transduction of SH0 requires a rotational surface stress which cannot be easily generated using standard piezoceramic transducers. This project investigated the use of piezoceramic shear plates cut into six trapezoids bonded to a plate in order to form a discretized circle. The individual elements of the hexagonal shaped transducer were synchronized to generate shear surface stress simultaneously. The external diameter of the discretized circle was chosen to be half the SH0 wavelength at the desired centre frequency. Finite element simulations using the Comsol Multiphysics environment showed that in a 1.6 mm aluminium plate the modal selectivity of the transducer was more than 30 dB at 100 kHz. The concept was then validated experimentally on a 1.6 mm aluminium plate. The 3D experimental displacement field was measured using a laser Doppler vibrometer system. The experimental modal selectivity was 20 dB.

  8. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    Energy Technology Data Exchange (ETDEWEB)

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing 401121 (China); Song, Dan; Lei, Guangrong [National Engineering Research Center of Ultrasound Medicine, Chongqing 401121 (China); Lin, Zhou; Zhang, Dong, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [Institute of Acoustics, Key Laboratory of Modern Acoustics, MOE, Nanjing University, Nanjing 210093 (China); Wu, Junru [Department of Physics, University of Vermont, Burlington, VT 05405 (United States)

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  9. [Inductance transducers for borderline localization of metallic foreign bodies].

    Science.gov (United States)

    Pudov, V I; Reutov, Iu Ia; Korotkikh, S A

    1996-01-01

    The paper outlines the advantages and disadvantages of a ferroprobe inductance transducer used in the borderline localization of a foreign ferromagnetic body. To eliminate the ferroprobe transducer-inherent disadvantages, a whirl-current inductance transducer has been developed. The transducer localizes a foreign nonferromagnetic and ferromagnetic body in its borderline localization in the eye and in the whole body.

  10. Speech recognition algorithms based on weighted finite-state transducers

    CERN Document Server

    Hori, Takaaki

    2013-01-01

    This book introduces the theory, algorithms, and implementation techniques for efficient decoding in speech recognition mainly focusing on the Weighted Finite-State Transducer (WFST) approach. The decoding process for speech recognition is viewed as a search problem whose goal is to find a sequence of words that best matches an input speech signal. Since this process becomes computationally more expensive as the system vocabulary size increases, research has long been devoted to reducing the computational cost. Recently, the WFST approach has become an important state-of-the-art speech recogni

  11. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  12. Development of high temperature ultrasonic transducers

    International Nuclear Information System (INIS)

    Structural health monitoring (SHM) techniques are needed to maintain the reliability of power plants for long term operation. The high temperature transducers are necessary to realize SHM (monitor wall thickness of the pipings, crack growth in the materials and material evaluation) under the working condition of power plants. We have evaluated lithium niobate (LiNbO3) single crystal which is well known as a high Curie temperature piezoelectric material to develop high temperature ultrasonic transducers. The LiNbO3 was bonded onto a stainless steel substrate. The experimental transducer was heated in an electric furnace while measuring the bottom echoes from the substrate. We confirmed that the experimental high temperature transducer could work up to 1000degC. Thermal and chemical stability of LiNbO3 were confirmed using TG measurement up to 1260degC (melting point). Additionally, we have developed single and array transducers for high temperature ultrasonic measurement based on those experimental data. (author)

  13. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  14. Ultrasonic comb transducer for smart materials

    Science.gov (United States)

    Rose, J. L.

    1998-04-01

    Installation of a small multi-element comb type ultrasonic transducer is proposed as a component of a smart structure. It can be used in either an active or passive mode in carrying out ultrasonic bulk or guided wave nondestructive evaluation. Theoretical methods are developed and experimental results are presented for guided wave generation and mode control with this very efficient and versatile novel comb type ultrasonic transducer. Excitation and probe design is crucial in mode selection. The comb transducer generates waves that are influenced by such parameters as number of elements, spacing between elements, dimension, pulsing sequence, and pressure distribution. The excited elastic field depends on the excitation frequency, plate thickness, and elastic properties. Techniques are studied to optimize the applied loading and the comb transducer design parameters so that only modes that are most sensitive to particular material characteristics can be generated. Complete understanding of the comb transducer parameters and their impact on the elastic field allows us to efficiently generate higher order modes as well as low phase velocity modes which are valuable in composite material characterization. Sample experiments are presented for various plate and tube like structures.

  15. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  16. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  17. Focus on focusing

    International Nuclear Information System (INIS)

    The discovery and impact of the principle of strong focusing was celebrated at a history Symposium at Stanford on 25 July in the course of the 1985 US Summer School on Particle Accelerators. Burt Richter, Stanford Linac Director, who introduced all the speakers with well chosen reminders about their various contributions related to the theme of the symposium, remarked that it was an appropriate time to be lauding the great contributions of accelerator physicists following the Nobel Prize award to Simon van der Meer for outstanding achievements in accelerator physics

  18. Ultrasound thermotherapy of breast. Theoretical design of transducer and numerical simulation of procedure

    International Nuclear Information System (INIS)

    The absorbed ultrasound energy is changed into heat in a dissipative medium. This could be of great advantage in treating tumors in a noninvasive manner, by raising their temperature to cytotoxic levels. In this study we investigated whether using a fixed-focus transducer can destroy breast tumor cells, especially in early stages, in a cost-effective manner and reduce treatment time significantly. An appropriate fixed-focus transducer was designed, and the resultant acoustic pressure was calculated by solving the Rayleigh integral. A two-dimensional breast model was constructed from the magnetic resonance image (MRI) of a cancerous breast. Then, the induced temperature elevation was calculated using the bioheat equation and applying the finite element method (FEM) to the model. Results demonstrate that this transducer can generate a temperature of up to 61 deg C in 3s, which is sufficient to destroy cancer cells, particularly in early stages. (author)

  19. Mechano-electric optoisolator transducer with hysteresis

    Science.gov (United States)

    Ciuruş, I. M.; Dimian, M.; Graur, A.

    2011-01-01

    This article presents a theoretical and experimental study of designing a mechano-electric optoisolator transducer with hysteresis. Our research is centred upon designing transducers on the basis of optical sensors, as photoelectric conversions eliminate the influence of electromagnetic disturbances. Conversion of the rotation/translation motions into electric signals is performed with the help of a LED-photoresistor Polaroid optocoupler. The driver of the optocoupler's transmitter module is an independent current source. The signal conditioning circuit is a Schmitt trigger circuit. The device is designed to be applied in the field of automation and mechatronics.

  20. Quantum limit in resonant vacuum tunneling transducers

    CERN Document Server

    Onofrio, Roberto

    2010-01-01

    We propose an electromechanical transducer based on a resonant-tunneling configuration that, with respect to the standard tunneling transducers, allows larger tunneling currents while using the same bias voltage. The increased current leads to an increase of the shot noise and an increase of the momentum noise which determine the quantum limit in the system under monitoring. Experiments with micromachined masses at 4.2 K could show dominance of the momentum noise over the Brownian noise, allowing observation of the quantum-mechanical noise at the mesoscopic scale.

  1. A general digital linearising method for transducers

    NARCIS (Netherlands)

    Bolk, W.T.

    1985-01-01

    A practical three-point interpolation algorithm is presented which corrects for manufacturing tolerances, zero offset, scaling errors and nonlinearity of transducers and signal conditioners. The algorithm is applicable to data-acquisition systems which make use of a microprocessor. Each measuring ch

  2. Broadband, High-Temperature Ultrasonic Transducer

    Science.gov (United States)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  3. Ferroelectret non-contact ultrasonic transducers

    Science.gov (United States)

    Bovtun, V.; Döring, J.; Bartusch, J.; Beck, U.; Erhard, A.; Yakymenko, Y.

    2007-09-01

    Dielectric and electromechanical properties of the cellular polypropylene ferroelectret films (EMFIT), combining strong piezoelectric response with a low density and softness, evidence their high potential for the air-coupled ultrasonic applications. The disadvantage of the low coupling factor is compensated by the extremely low acoustic impedance, which provides excellent matching to air and promises efficient sound transmission through the air transducer interface. The influence of the electrodes on the electromechanical properties was investigated. Electron beam evaporation technology was adapted to the EMFIT films, and films with both-sided Au and Al electrodes were prepared without reducing or suppressing of the electromechanical properties. Finally, prototype transducers based on the EMFIT films were developed. In spite of the simple construction and absence of matching layers, high sensitivity of the EMFIT transducers was proved in the air-coupled ultrasonic experiment. Amplitude and delay time scanned images of the polyethylene step wedge with holes, obtained in both pulse-echo and transmission modes, demonstrate that non-contact ultrasonic imaging and testing with EMFIT transducers is possible.

  4. Micromachined Ultrasonic Transducers for 3-D Imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann

    Real-time ultrasound imaging is a widely used technique in medical diagnostics. Recently, ultrasound systems offering real-time imaging in 3-D has emerged. However, the high complexity of the transducer probes and the considerable increase in data to be processed compared to conventional 2-D ultr...

  5. Parameter sensitivity study of a Field II multilayer transducer model on a convex transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2009-01-01

    A multilayer transducer model for predicting a transducer impulse response has in earlier works been developed and combined with the Field II software. This development was tested on current, voltage, and intensity measurements on piezoceramics discs (Bæk et al. IUS 2008) and a convex 128 element...... is a quantitative calibrated model for a complete ultrasound system. This includes a sensitivity study aspresented here.Statement of Contribution/MethodsThe study alters 35 different model parameters which describe a 128 element convex transducer from BK Medical Aps. The changes are within ±20 % of the values...... supplied by the manufacturer, which are considered the zero reference (ZR). Simulations of a system consisting of a transmit unit, a five material layer transducer, and the FIELD II predicted pressure are performed by altering in turn the value of a single parameter in steps of 2 %. The remaining...

  6. Development of ultrasonic transducer for nondestructive testing of fruit

    International Nuclear Information System (INIS)

    In this study, the ultrasonic transducers for contact measurement of whole fruits were developed. The design parameters for ultrasonic transducer such as acoustical impedance of fruits, kinds of piezoelectric materials, ultrasonic wave frequency, and transducer diameter were investigated. In order to match the impedance between piezoelectric material and fruit, various wear plates were fabricated and evaluated. And to control the bandwidth of ultrasonic wave of the transducer, various backing materials were fabricated and evaluated. The wear plate of the transducer was specially designed and fabricated considering the curvature of fruit. Two kinds of transducers such as 100 kHz of central frequency with 40 mm of transducer diameter and 200 kHz of central frequency with 20 mm diameter were developed. Nondestructive evaluation of the fruit will be possible with the developed ultrasonic transducers.

  7. Mounting technique for pressure transducers minimizes measurement interferences

    Science.gov (United States)

    Lanham, R. N.; Taylor, C. E.; Balmer, C. E.; Hwang, C.

    1975-01-01

    Miniaturized transducers are fabricated from commercially available four-arm semiconductor gages; transducers are connected as bridge circuit and mounted on internal face of small diaphragm. Jacket made of conductive plastic may be needed to avoid buildup or static charges.

  8. Application of different spatial sampling patterns for sparse-array transducer design

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2000-01-01

    In the last years the efforts of many researchers have been focused ondeveloping 3D real-time scanners. The use of 2D phased-array transducers makes it possible to steer the ultrasonicbeam in all directions in the scanned volume. An unacceptably large amount oftransducer channels (more than $4000...... of the ultrasound fields show a decrease of the grating-lobe level of 10 dB for the diagonally optimized 2D array transducers compared to the the previuosly designed 2D arrays which didn't consider the diagonals....

  9. Rational Tree Morphisms and Transducer Integer Sequences: Definition and Examples

    Science.gov (United States)

    ŠUnić, Zoran

    2007-04-01

    The notion of transducer integer sequences is considered through a series of examples (the chosen examples are related to the Tower of Hanoi problem on 3 pegs). By definition, transducer integer sequences are integer sequences produced, under a suitable interpretation, by finite transducers encoding rational tree morphisms (length and prefix preserving transformations of words that have only finitely many distinct sections).

  10. An Ultrasonic Imaging System Using a Matrix-Type Transducer Array

    Science.gov (United States)

    Noguchi, Michitoshi; Mizutani, Koichi; Nagai, Keinosuke; Yamashita, Yoshinari

    1999-05-01

    We propose a method for imaging an object's surface using a matrix-type transducer array. The matrix-type transducer array has a simple structure with some line-electrode fingers on both sides of a piezoelectric ceramic plate. By a combination of electrical-mechanical scanning, we image of an object's surface using data of distance between the transducer and the object. The ultrasonic probe used in the present system requires without beam forming and no signal processing for focusing. We measure two objects: one has a multilayered structure consisting of three differently sized aluminum plates, the biggest plate having an area of 150 mm × 80 mm and 0.8 1.5 mm thickness; and the other is a radio-wave-absorbent block 100.5 mm × 100.5 mm × 18.5 mm in size with 5 × 5 holes in a grid made of ferrite. The ultrasonic probe operates at a frequency of 3.5 MHz and the sensing distance between the transducer and the measured object is about 80 mm. At this distance, the diameter of the ultrasonic beam launched from the transducer is about 13 mm. We obtained a height resolution of ±0.2 mm and a spatial resolution of about 3.0 mm.

  11. Development of ultrasonic two-dimensional arrayed transducer for visual inspection under high temperature sodium in FBR

    International Nuclear Information System (INIS)

    An under sodium imaging technique has been developed by means of the synthetic aperture focusing technique (SAFT) using a single ultrasonic transducer with mechanical scanning. Mechanical scanning imaging, however, might have some practical difficulties such as shortening a data sampling time and so precise requirements a scanning mechanism. This paper describes a newly developed two-dimensional arrayed ultrasonic transducer (Undersodium multiple transducer; Multi-Transducer) which consists of piezoelectric ceramics for visual inspection under high temperature sodium in FBR. Effects of parameters such as number of piezoelectric ceramic tips, locational arrangements of tips and acoustic properties of materials, on imaging were studied by a computer simulation. Fundamental specifications of Multi-transducer were also examined and a conceptual design was obtained through some cases of computer simulation. As a result, about 400 piezoelectric ceramic tips might be needed for the full model of Multi-Transducer to satisfy a required resolution of imaging. A Multi-Transducer section model was designed and manufactured, which consisted of 25 piezoelectric ceramics, and acoustic experiment were made to confirm required performances under water and silicon oil (at 230degC). (author)

  12. Ultrasonic transducer design for uniform insonation

    International Nuclear Information System (INIS)

    Techniques used in transducer development for acoustical imaging have been evaluated for the purpose of producing broad, uniform ultrasonic fields from planar radiators. Such fields should be useful in hyperthermia, physical therapy, and ultrasonic bioeffects studies. Fourier inversion of the circ function yielded a source velocity distribution proportional to (P/r) exp ((-ik/2Z) (2Z/sup 2/+r/sup 2/)) J/sub 1/(krP/Z), where r is the radial source coordinate, k is the wave number, and P is the desired radius of uniform insonation at a depth Z in water. This source distribution can be truncated without significantly degrading the solution. A simpler solution consists of exponentially shading the edge of an otherwise uniformly excited disk transducer. This approach was successfully approximated experimentally

  13. Orbital angular momentum-entanglement frequency transducer

    CERN Document Server

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the information carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 nm to 525 nm for OAM qubits, OAMpolarization hybrid entangled states, and OAM entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link betwe...

  14. Electromechanical transducer for acoustic telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas S. (Cedar Crest, NM)

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  15. Electromechanical transducer for acoustic telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  16. Optomechanical transducers for quantum-information processing

    Energy Technology Data Exchange (ETDEWEB)

    Stannigel, K.; Zoller, P. [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Rabl, P. [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Soerensen, A. S. [QUANTOP, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen O (Denmark); Lukin, M. D. [Physics Department, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2011-10-15

    We discuss the implementation of optical quantum networks where the interface between stationary and photonic qubits is realized by optomechanical transducers [K. Stannigel et al., Phys. Rev. Lett. 105, 220501 (2010)]. This approach does not rely on the optical properties of the qubit and thereby enables optical quantum communication applications for a wide range of solid-state spin- and charge-based systems. We present an effective description of such networks for many qubits and give a derivation of a state transfer protocol for long-distance quantum communication. We also describe how to mediate local on-chip interactions by means of the optomechanical transducers that can be used for entangling gates. We finally discuss experimental systems for the realization of our proposal.

  17. A symmetrical low temperature pressure transducer

    Science.gov (United States)

    Helvensteijn, B. P. M.; VanSciver, S. W.

    1990-03-01

    The design and operating characteristics of a fully differential pressure transducer are described. The device is intended for use with He II heat transfer experiments where it operates in vacuum and at low temperatures (Tcapacitance change to an ac output voltage. The sensitivity is roughly 5 μV/Pa. For the present application, the capacitor and electronics have acceptable performance, with a mean noise level of ±5 Pa.

  18. Orbital angular momentum-entanglement frequency transducer

    OpenAIRE

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the ...

  19. Language of Transducer Manipulation: Codifying Terms for Effective Teaching.

    Science.gov (United States)

    Bahner, David P; Blickendorf, J Matthew; Bockbrader, Marcia; Adkins, Eric; Vira, Amar; Boulger, Creagh; Panchal, Ashish R

    2016-01-01

    There is a need for consistent, repetitive, and reliable terminology to describe the basic manipulations of the ultrasound transducer. Previously, 5 basic transducer motions have been defined and used in education. However, even with this effort, there is still a lack of consistency and clarity in describing transducer manipulation and motion. In this technical innovation, we describe an expanded definition of transducer motions, which include movements to change the transducer's angle of insonation to the target as well as the location on the body to optimize the ultrasound image. This new terminology may allow for consistent teaching and improved communication in the process of image acquisition. PMID:26679204

  20. Language of Transducer Manipulation: Codifying Terms for Effective Teaching.

    Science.gov (United States)

    Bahner, David P; Blickendorf, J Matthew; Bockbrader, Marcia; Adkins, Eric; Vira, Amar; Boulger, Creagh; Panchal, Ashish R

    2016-01-01

    There is a need for consistent, repetitive, and reliable terminology to describe the basic manipulations of the ultrasound transducer. Previously, 5 basic transducer motions have been defined and used in education. However, even with this effort, there is still a lack of consistency and clarity in describing transducer manipulation and motion. In this technical innovation, we describe an expanded definition of transducer motions, which include movements to change the transducer's angle of insonation to the target as well as the location on the body to optimize the ultrasound image. This new terminology may allow for consistent teaching and improved communication in the process of image acquisition.

  1. Research on recognition of ramp angle based on transducer

    Directory of Open Access Journals (Sweden)

    Wenhao GU

    2015-12-01

    Full Text Available Focusing on the recognition of ramp angle, the relationship between the signal of vehicle transducer and real ramp angle is studied. The force change of vehicle on the ramp, and the relationship between the body tilt angle and front and rear suspension scale is discussed. According to the suspension and tire deformation, error angle of the ramp angle is deduced. A mathematical model is established with Matlab/Simulink and used for simulation to generate error curve of ramp angle. The results show that the error angle increases with the increasing of the ramp angle, and the limit value can reach 6.5%, while the identification method can effectively eliminate this error, and enhance the accuracy of ramp angle recognition.

  2. Small, fast, and tough: Shrinking down integrated elastomer transducers

    Science.gov (United States)

    Rosset, Samuel; Shea, Herbert R.

    2016-09-01

    We review recent progress in miniaturized dielectric elastomer actuators (DEAs), sensors, and energy harvesters. We focus primarily on configurations where the large strain, high compliance, stretchability, and high level of integration offered by dielectric elastomer transducers provide significant advantages over other mm or μm-scale transduction technologies. We first present the most active application areas, including: tunable optics, soft robotics, haptics, micro fluidics, biomedical devices, and stretchable sensors. We then discuss the fabrication challenges related to miniaturization, such as thin membrane fabrication, precise patterning of compliant electrodes, and reliable batch fabrication of multilayer devices. We finally address the impact of miniaturization on strain, force, and driving voltage, as well as the important effect of boundary conditions on the performance of mm-scale DEAs.

  3. Fabrication and evaluation of a single-element Bi0.5Na0.5TiO3-based ultrasonic transducer.

    Science.gov (United States)

    Hejazi, M Mehdi; Jadidian, Bahram; Safari, Ahmad

    2012-08-01

    This paper discusses the fabrication and characterization of a single-element ultrasonic transducer with a lead-free piezoelectric active element. A piezoelectric ceramic with composition of 0.88Bi(0.5)Na(0.5)TiO(3)-0.08Bi(0.5)K(0.5)TiO(3)- 0.04Bi(0.5)Li(0.5)TiO(3) was chosen as the active element of the transducer. This composition exhibited a thickness coupling coefficient (kt) of 0.45, a dielectric constant of 440 (at 1 kHz), and a longitudinal piezoelectric coefficient (d(33)) of 84 pC·N(-1). To make the transducer, the ceramic was sandwiched between an epoxy-tungsten backing layer and a silver epoxy matching layer. An epoxy lens was also incorporated into the transducer's design to focus the ultrasound beam. The focused transducer with a center frequency of about 23 MHz demonstrated a -6-dB bandwidth of 55% and an insertion loss of -32 dB; the -20-dB pulsed length was measured to be 150 ns. A phantom made of copper wires (30 μm in diameter) was utilized to investigate the imaging capability of the transducer. The results indicated that the fabricated transducer, with a lateral resolution of 260 μm and a relatively high depolarization temperature, could be considered as a candidate for replacement of lead-based ultrasonic transducers. PMID:22899131

  4. The Effects of Piezoelectric Ceramic Dissipation Factor on the Performance of Ultrasonic Transducers

    Science.gov (United States)

    DeAngelis, D. A.; Schulze, G. W.

    The dissipation factor (DF) is an important material property of piezoceramics that governs the amount of self-heating under resonant conditions; it essentially quantifies a particular material type for either an actuator or resonator application: high DF materials with typically higher output (d33) are better for actuators, whereas low DF materials with typically lower d33 are better for resonators. Transducer designers must often compromise between mechanical output and DF in the selection of piezoceramics for power ultrasonic applications, and abnormally high DF is one of the main causes of production stoppages. In theory DF is simply the current/voltage phase deviation from an ideal capacitor at 90° (a.k.a. tan(δ) or dielectric loss). Abnormally high DF is typically caused by moisture absorption due to poor ceramic porosity, which causes voltage leakage effects; e.g., seen in transducer production when setting piezo stack preload. Corresponding large increases in capacitance can also be associated with poor porosity, which is counterintuitive unless there is moisture absorption or electrode wicking. This research investigates the mechanisms for abnormally high DF in peizoceramics, and its corresponding effect on transducer performance. It investigates if DF is only affected by the bulk dielectric properties of the piezoceramics (e.g. porosity), or is also influenced by non-uniform electric field effects from electrode wicking. It explores if higher DF ceramics can affect transducer displacement/current gain stability via moisture expulsion at higher drive levels. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Transducers are built with both normal DF peizoceramics, and those with abnormally high DF ceramics which caused production stoppages. Several metrics are investigated such as impedance, displacement gain and capacitance. The experimental and theoretical research

  5. A high-temperature wideband pressure transducer

    Science.gov (United States)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  6. Electromechanically active polymer transducers: research in Europe

    DEFF Research Database (Denmark)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin;

    2013-01-01

    in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical...... flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also...

  7. Embedded ultrasonic transducers for active and passive concrete monitoring.

    Science.gov (United States)

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer's axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  8. Bulk Shear-Wave Transduction Experiments Using Magnetostrictive Transducers with a Thin Fe-Co Alloy Patch

    International Nuclear Information System (INIS)

    Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed: this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity

  9. Polyvinylidene fluoride - a polymer as transducer material

    International Nuclear Information System (INIS)

    Polyvinylidene fluoride or PVDF is a flexible, thin piezo film and long chain semicrystalline polymer containing repeated of CH/sub 2/ - CH/sub 2/. In order to obtain desired piezoelectric properties PVDF is poled by subjecting it to high electric field. In poled PVDF piezoelectric constants have different values for each axis and one constant per axis. PVDF polymer exhibits generator and motor action. Usually 1000 A /sup o/ thick vacuum-deposited aluminum electrodes are formed on both sides of the sheet. Polymer material of PVDF can be used as a sensing element with temperature range of -40 /sup 0/ C to 100 /sup 0/C and a frequency range of 10/sup -3/ to 10/sup -9/ Hz. This paper includes as experimental observation of exciting aluminium open-ended tube at its resonance using PVDF transducer and maintained in this condition using phase lock loop or PLL. The tube is free to resonate when 9-micrometer thin polyvinylidene fluoride transducer is energized. It is observed that a film of such material can easily be used to produced the requisite vibrations in the tube. (author)

  10. Biomolecular detection with a thin membrane transducer.

    Science.gov (United States)

    Cha, Misun; Shin, Jaeha; Kim, June-Hyung; Kim, Ilchaek; Choi, Junbo; Lee, Nahum; Kim, Byung-Gee; Lee, Junghoon

    2008-06-01

    We present a thin membrane transducer (TMT) that can detect nucleic acid based biomolecular reactions including DNA hybridization and protein recognition by aptamers. Specific molecular interactions on an extremely thin and flexible membrane surface cause the deflection of the membrane due to surface stress change which can be measured by a compact capacitive circuit. A gold-coated thin PDMS membrane assembled with metal patterned glass substrate is used to realize the capacitive detection. It is demonstrated that perfect match and mismatch hybridizations can be sharply discriminated with a 16-mer DNA oligonucleotide immobilized on the gold-coated surface. While the mismatched sample caused little capacitance change, the perfectly matched sample caused a well-defined capacitance decrease vs. time due to an upward deformation of the membrane by a compressive surface stress. Additionally, the TMT demonstrated the single nucleotide polymorphism (SNP) capabilities which enabled a detection of mismatching base pairs in the middle of the sequence. It is intriguing that the increase of capacitance, therefore a downward deflection due to tensile stress, was observed with the internal double mismatch hybridization. We further present the detection of thrombin protein through ligand-receptor type recognition with 15-mer thrombin aptamer as a receptor. Key aspects of this detection such as the effect of concentration variation are investigated. This capacitive thin membrane transducer presents a completely new approach for detecting biomolecular reactions with high sensitivity and specificity without molecular labelling and optical measurement. PMID:18497914

  11. Orbital Angular Momentum-Entanglement Frequency Transducer

    Science.gov (United States)

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-09-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.

  12. Instantaneous crack detection using dual PZT transducers

    Science.gov (United States)

    Kim, Seung Bum; Sohn, Hoon

    2008-03-01

    A new guided wave based nondestructive testing (NDT) technique is developed to detect crack damage in metallic plates commonly used in aircraft without using prior baseline data or a predetermined decision boundary. In conventional guided wave based techniques, damage is often identified by comparing the "current" data obtained from a potentially damaged condition of a structure with the "past" baseline data collected at the pristine condition of the structure. However, it has been reported that this type of pattern comparison with the baseline data can lead to increased false alarms due to its susceptibility to varying operational and environmental conditions of the structure. In order to tackle this issue, a reference-free damage detection technique is previously developed using two pairs of collocated lead zirconate titanate transducers (PZTs) placed on both sides of a plate. In this study, this reference-free technique is further advanced so that the PZT transducers can be placed only on one side of the specimen. Crack formation creates Lamb wave mode conversion due to a sudden change in the thickness of the structure. Then, the proposed technique instantly detects the appearance of the crack by extracting this mode conversion from the measured Lamb waves. This study suggests a reference-free statistical approach that enables damage classification using only the current data set. Numerical and experimental results are presented to demonstrate the applicability of the proposed technique to instantaneous crack detection.

  13. Automatically-focusing microscope system for live tissue observation

    Science.gov (United States)

    Mansour, M. N.; Chapman, C. P.; Wayland, H. J.

    1975-01-01

    System includes focus-sensing arrangement which controls servo to keep microscope constantly focused on target. Microscope objective is moved along optical axis. System includes two video cameras that are used as transducers for sensing focus. Incoming visual image is split by beam splitter so that one-half of information is fed to each camera.

  14. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    OpenAIRE

    Ernst Niederleithinger; Julia Wolf; Frank Mielentz; Herbert Wiggenhauser; Stephan Pirskawetz

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequen...

  15. Highly reproducible Bragg grating acousto-ultrasonic contact transducers

    Science.gov (United States)

    Saxena, Indu Fiesler; Guzman, Narciso; Lieberman, Robert A.

    2014-09-01

    Fiber optic acousto-ultrasonic transducers offer numerous applications as embedded sensors for impact and damage detection in industrial and aerospace applications as well as non-destructive evaluation. Superficial contact transducers with a sheet of fiber optic Bragg gratings has been demonstrated for guided wave ultrasound based measurements. It is reported here that this method of measurement provides highly reproducible guided ultrasound data of the test composite component, despite the optical fiber transducers not being permanently embedded in it.

  16. Long-Term Stability of the NIST Conical Reference Transducer

    OpenAIRE

    Fick, Steven E.; Proctor, Thomas M.

    2011-01-01

    The National Institute of Standards and Technology (NIST) Conical Reference Transducer (CRT) is designed for purposes requiring frequency response characteristics much more uniform than those attainable with ultrasonic transducers conventionally used for acoustic emission (AE) nondestructive testing. The high performance of the CRT results from the use of design elements radically different from those of conventional transducers. The CRT was offered for sale for 15 years (1985 to 2000). Each ...

  17. Modeling of multilayered piezoelectric transducers with ultrasonic welding application

    Science.gov (United States)

    Güney, Murat; Eskinat, Esref

    2007-04-01

    Mechanical components of sandwiched piezoelectric transducers are modeled using one-dimensional wave transmission and piezoelectric equations. Using the impedance method, resonance frequencies, stress and displacement distributions along the multilayered piezoelectric transducers of different dimensions and materials are obtained. The calculated resonance frequencies and the impedances are experimentally verified. For ultrasonic welding of plastics, the effect of the parts to be welded on the resonance frequency of the whole system is investigated regarding both material damping and piezoelectric losses. Using the methods developed, several piezoelectric transducers are analysed for different designs. The obtained results can be used to better understand the qualitative relations between the design variables of ultrasonic piezoelectric transducers.

  18. Radiation endurance of piezoelectric ultrasonic transducers--a review.

    Science.gov (United States)

    Sinclair, A N; Chertov, A M

    2015-03-01

    A literature survey is presented on the radiation endurance of piezoelectric ultrasonic transducer components and complete transducer assemblies, as functions of cumulative gamma dose and neutron fluence. The most extensive data on this topic has been acquired in CANDU electrical generating stations, which use piezoelectric ultrasonic transducers manufactured commercially with minor accommodation for high radiation fields. They have been found to be reliable for cumulative gamma doses of up to approximately 2 MegaGrays; a brief summary is made of the associated accommodations required to the transducer design, and the ultimate expected failure modes. Outside of the CANDU experience, endurance data have been acquired under a diverse spectrum of operating conditions; this can impede a direct comparison of the information from different sources. Much of this data is associated with transducers immersed in liquid metal coolants associated with advanced reactor designs. Significant modifications to conventional designs have led to the availability of custom transducers that can endure well over 100 MegaGrays of cumulative gamma dose. Published data on transducer endurance against neutron fluence are reviewed, but are either insufficient, or were reported with inadequate description of test conditions, to make general conclusions on transducer endurance with high confidence. Several test projects are planned or are already underway by major laboratories and research consortia to augment the store of transducer endurance data with respect to both gamma and neutron radiation.

  19. High Temperature Ultrasonic Transducer for Real-time Inspection

    Science.gov (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  20. Method and results of studying conduction measuring transducers

    Energy Technology Data Exchange (ETDEWEB)

    Dunaevskii, I.G.; Korotkov, B.N.; Povkh, I.L.; Cheplyukov, V.G.

    1977-01-01

    The method and results are given for determining the sensitivity of conduction measuring transducers with a local magnetic field. The results were obtained by frequency-dependent gradation on a model pulsation velocity gauge--a thermoanemometer. The effect of measuring a transducer's diameter, inter-electrode distance and nose line forms on its spatial resolution capacity was estimated. Adjustment functions were obtained for these transducers. A concept was formulated for measuring transducers belonging to the same class. 5 references, 5 figures.

  1. Monitoring Method for the Electrical Properties of Piezoelectric Transducer

    Institute of Scientific and Technical Information of China (English)

    李文; 朱泽琪

    2012-01-01

    The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasonic elliptic vibration cutting is monitored using the electrical properties of transducer was proposed by studying on the relationship of cutting force, transducer electric impedance and load. A measurement system was designed for the electrical properties of transducer. The feasibility of cutting force monitoring method based on the electrical properties of piezoelectric transducer was proved by the cutting experiments.

  2. Evaluation of several ultrasonic flowmeter transducers in cryogenic environment

    Science.gov (United States)

    Moughon, W. C.

    1981-04-01

    Eighteen piezoelectric ultrasonic flowmeter transducers were laboratory tested to determine their suitability and long range reliability for use by the National Transonic Facility (NTF) to measure the flow rate of 450 Kg/sec of liquid nitrogen (LN2). Tests included thermally cycling each transducer 50 to 150 times over a temperature range of 295 K (ambient) to 77 K (LN2). The transducers were submerged in liquid nitrogen for 1 to 4 hours and the signal strength and quality noted. Results disclose that the current state-of-the-art ultrasonic flow transducers are very reliable and will meet the stringent requirements of the NTF.

  3. An optimized ultrasound digital beamformer with dynamic focusing implemented on FPGA.

    Science.gov (United States)

    Almekkawy, Mohamed; Xu, Jingwei; Chirala, Mohan

    2014-01-01

    We present a resource-optimized dynamic digital beamformer for an ultrasound system based on a field-programmable gate array (FPGA). A comprehensive 64-channel receive beamformer with full dynamic focusing is embedded in the Altera Arria V FPGA chip. To improve spatial and contrast resolution, full dynamic beamforming is implemented by a novel method with resource optimization. This was conceived using the implementation of the delay summation through a bulk (coarse) delay and fractional (fine) delay. The sampling frequency is 40 MHz and the beamformer includes a 240 MHz polyphase filter that enhances the temporal resolution of the system while relaxing the Analog-to-Digital converter (ADC) bandwidth requirement. The results indicate that our 64-channel dynamic beamformer architecture is amenable for a low power FPGA-based implementation in a portable ultrasound system. PMID:25570695

  4. Infrared mapping of ultrasound fields generated by medical transducers: Feasibility of determining absolute intensity levels

    OpenAIRE

    Khokhlova, Vera A.; Shmeleva, Svetlana M.; Gavrilov, Leonid R.; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-01-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distrib...

  5. Linear ultrasonic motor using quadrate plate transducer

    Institute of Scientific and Technical Information of China (English)

    Jiamei JIN; Chunsheng ZHAO

    2009-01-01

    A linear ultrasonic motor using a quadrate plate transducer was developed for precision positioning. This motor consists of two pairs of Pb(Zr, Ti)O3 piezo-electric ceramic elements, which are piezoelectrically excited into the second-bending mode of the motor stator's neutral surface in two orthogonal directions, on which the tops of four projections move along an elliptical trajectory, which in turn drives a contacted slider into linear motion via frictional forces. The coincident frequency of the stator is easily obtained for its coincident characteristic dimen-sion in two orthogonal directions. The performance characteristics achieved by the motor are: 1) a maximum linear speed of more than 60 mm/s; 2) a stroke of more than 150 mm; 3) a driving force of more than 5.0 N; and 4) a response time of about 2 ms.

  6. Magnetoelastic Transducer Materials - a Plateable Possibility

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Møller, Per

    2001-01-01

    A short presentation of the magnetostriction theory as well as a series of possible applications for magnetoelastic transducers are given. A review of the present state of development for these materials is discussed with relation to the various ways of manufacture. The paper is concluded...... as the reference material Terfenol-D were obtained, but reproduction of exact magnetic properties is still critical with the new plating technique....... with the presentation of a method for making magnetoelastic materials by electrochemical deposition (electroless) as tried by the authors in collaboration with the Daimler-Chrysler research centre in Ulm, Germany. First results of this work are both promising and intriguing: Sensitivities of the same order...

  7. Development of piezoelectric composites for transducers

    Science.gov (United States)

    Safari, A.

    1994-07-01

    For the past decade and a half, many different types of piezoelectric ceramic-polymer composites have been developed intended for transducer applications. These diphasic composites are prepared from non-active polymer, such as epoxy, and piezoelectric ceramic, such as PZT, in the form of filler powders, elongated fibers, multilayer and more complex three-dimensional structures. For the last four years, most of the efforts have been given to producing large area and fine scale PZT fiber composites. In this paper, processing of piezoelectric ceramic-polymer composites with various connectivity patterns are reviewed. Development of fine scale piezoelectric composites by lost mold, injection molding and the relic method are described. Research activities of different groups for preparing large area piezocomposites for hydrophone and actuator applications are briefly reviewed. Initial development of electrostrictive ceramics and composites are also

  8. Multilayer Array Transducer for Nonlinear Ultrasound Imaging

    Science.gov (United States)

    Owen, Neil R.; Kaczkowski, Peter J.; Li, Tong; Gross, Dan; Postlewait, Steven M.; Curra, Francesco P.

    2011-09-01

    The properties of nonlinear acoustic wave propagation are known to be able to improve the resolution of ultrasound imaging, and could be used to dynamically estimate the physical properties of tissue. However, transducers capable of launching a wave that becomes nonlinear through propagation do not typically have the necessary bandwidth to detect the higher harmonics. Here we present the design and characterization of a novel multilayer transducer for high intensity transmit and broadband receive. The transmit layer was made from a narrow-band, high-power piezoceramic (PZT), with nominal frequency of 2.0 MHz, that was diced into an array of 32 elements. Each element was 0.300 mm wide and 6.3 mm in elevation, and with a pitch of 0.400 mm the overall aperture width was 12.7 mm. A quarter-wave matching layer was attached to the PZT substrate to improve transmit efficiency and bandwidth. The overlaid receive layer was made from polyvinylidene fluoride (PVDF) that had gold metalization on one side. A custom two-sided flex circuit routed electrical connections to the PZT elements and patterned the PVDF elements; the PZT and PVDF elements had identical apertures. A low viscosity and electrically nonconductive epoxy was used for all adhesion layers. Characterization of electrical parameters and acoustic output were performed per standard methods, where transmit and receive events were driven by a software-controlled ultrasound engine. Echo data, collected from ex vivo tissue and digitized at 45 MS/s, exhibited frequency content up to the 4th harmonic of the 2 MHz transmit frequency.

  9. AXIAL DEFFLECTION STUDIES OF RING SHAPED FORCE TRANSDUCER: A REVIEW

    Directory of Open Access Journals (Sweden)

    SUDHIR KUMAR,

    2011-01-01

    Full Text Available The ring shaped force transducers are widely used in practice and are available in varying capacities from few hundred newtons to mega newtons. The present paper discusses the deflection studies of thering shaped force transducers under action of axial forces. Various methods leading to the measurement of deflection have been discussed and compared here.

  10. Quality assurance with measuring transducers through EMP planning

    International Nuclear Information System (INIS)

    Measuring transducers in industrial application are subjected to various interferences. These are discussed as well as possible protection measures. The described measuring transducers are of modular design. Thus in individual cases it is possible to prevent the interference there where it occurs through special interference protection modules. The required measuring means for the testing of the EMP are introduced. (orig.)

  11. Metal cap flexural transducers for air-coupled ultrasonics

    Science.gov (United States)

    Eriksson, T. J. R.; Dixon, S.; Ramadas, S. N.

    2015-03-01

    Ultrasonic generation and detection in fluids is inefficient due to the large difference in acoustic impedance between the piezoelectric element and the propagation medium, leading to large internal reflections and energy loss. One way of addressing the problem is to use a flexural transducer, which uses the bending modes in a thin plate or membrane. As the plate bends, it displaces the medium in front of it, hence producing sound waves. A piezoelectric flexural transducer can generate large amplitude displacements in fluid media for relatively low excitation voltages. Commercially available flexural transducers for air applications operate at 40 kHz, but there exists ultrasound applications that require significantly higher frequencies, e.g. flow measurements. Relatively little work has been done to date to understand the underlying physics of the flexural transducer, and hence how to design it to have specific properties suitable for particular applications. This paper investigates the potential of the flexural transducer and its operating principles. Two types of actuation methods are considerd: piezoelectric and electrodynamic. The piezoelectrically actuated transducer is more energy efficient and intrinsically safe, but the electrodynamic transducer has the advantage of being less sensitive to high temperature environments. The theory of vibrating plates is used to predict transducer frequency in addition to front face amplitude, which shows good correlation with experimental results.

  12. Thermal dispersion method for an ultrasonic phased-array transducer

    Science.gov (United States)

    Choi, Euna; Lee, Wonseok; Roh, Yongrae

    2016-07-01

    When the driving voltage of an ultrasonic transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer, which can burn the patient’s skin and degrade transducer performance. In this study, the method to disperse the heat inside an ultrasonic phased-array transducer has been examined. The mechanism of temperature rise due to heat generation inside the transducer was investigated by numerical analysis and the effects of the thermal properties of the components of the transducer such as specific heat and thermal conductivity on the temperature rise were analyzed. On the basis of the results, a heat-dispersive structure was devised to reduce the temperature at the surface of the acoustic lens of the transducer. Prototype transducers were fabricated to check the efficacy of the heat-dispersive structure. By experiments, we have confirmed that the new heat-dispersive structure can reduce the internal temperature by as much as 50% in comparison with the conventional structure, which confirms the validity of the thermal dispersion mechanism developed in this work.

  13. Broadband tonpilz underwater acoustic transducers based on multimode optimization

    DEFF Research Database (Denmark)

    Yao, Qingshan; Jensen, Leif Bjørnø

    1997-01-01

    Head flapping has often been considered to be deleterious for obtaining a tonpilz transducer with broadband, high power performance. In the present work, broadband, high power tonpilz transducers have been designed using the finite element (FE) method. Optimized vibrational modes including the fl...

  14. A Force Transducer from a Junk Electronic Balance

    Science.gov (United States)

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  15. Micro-stereolithography as a transducer design method.

    Science.gov (United States)

    Ho, K S; Bradley, R J; Billson, D R; Hutchins, D A

    2008-03-01

    This paper investigates the use of micro-stereolithography, a rapid prototyping technique, in the manufacture of transducers. It is illustrated for the production of electromagnetic acoustic transducer (EMATs) coils in both meander-line and spiral configurations. A synthetic aperture focussing technique (SAFT) has been applied to the ultrasonic signals from these devices to reconstruct images in metallic objects.

  16. Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.

    Science.gov (United States)

    Toda, Minoru

    2002-03-01

    A new matching layer design concept has been proposed for narrowband continuous wave (CW) devices. Analysis has shown that the mechanical impedance of a resonant-type transducer in thickness mode CW operation does not equal its acoustic impedance rhoVs but roughly equals rhoVs/Q, where p is density, Vs is acoustic velocity, and Q is the mechanical quality factor. The value of rhoVs/Q is much lower than the acoustic impedance of water for any transducer material, including lead zirconium titanate (PZT), single crystals, or polyvinylidene fluoride (PVDF). With this new approach, the impedance of the matching layer must also be between water and pVs/Q, but there are few such practical low impedance materials. To realize equivalent low impedance structure, a novel double layer design is presented: a relatively low impedance material (such as polyethylene or polyurethane) on the inside and a relatively high impedance material (such as polyester or metal) on the outside. A high power CW transducer structure was designed and fabricated with PVDF-TrFE (polyvinylidene fluoride trifluoroethylene) to operate at 1.4 MHz. The basic quarter wavelength resonator structure is 0.7-mm alumina/0.2-mm piezo-polymer/0.25-mm polyester, and the matching section is 0.2-mm polyurethane and 0.25-mm polyester. A maximum power output of 6 to 9 W/cm2 with conversion efficiency of 30 to 35% was observed. For the transducer without matching section, the observed power was 3 to 4 W/cm2. Mason's model analyses (1) predict that the traditional matching layer is for broadband purposes and reduces output power both for PZT and PVDF-TrFE (2); this new matching scheme can be applied to PZT high power transducer. This high efficiency technique has application in various CW systems, such as Doppler sensors, interferometry, phase-sensitive imaging, or high energy focused beam systems. PMID:12322878

  17. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    Directory of Open Access Journals (Sweden)

    Ernst Niederleithinger

    2015-04-01

    Full Text Available Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, … as well as damages in an early state or the detection of acoustic events (e.g., crack opening. Besides application in civil engineering our setups can also be used for model studies in geosciences.

  18. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    Science.gov (United States)

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  19. Flexible ultrasonic array transducer for thickness measurement of curved pipes

    International Nuclear Information System (INIS)

    The feeder pipes in a Pressurized Heavy Water Reactor (PHWR) has a very complicated form with bent pipes. In this study, we have fabricated the Polyvinylidene fluoride (PVDF) array transducer to meet the dimension requirement passing smoothly along the pipe and have evaluated the signals in order to increase the accuracy of measurement. A contact array transducer was fabricated using commercially available PVDF film samples. Each pulse echo signals were acquired and analyzed using the pulser/receiver, The array transducer was demonstrated to show a serviceable performance as a contact transducer. Pulse echo reflections from a back-wall of feeder pipe were shown as a typical wideband signal. Ultrasonic signals were analyzed by considering the center frequency, band width and waveform. PVDF array transducer for thickness measurement can be applied to monitor the integrity of feeder pipes in PHWR.

  20. Piezoelectric single crystals for ultrasonic transducers in biomedical applications.

    Science.gov (United States)

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K Kirk

    2014-10-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state-of-art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN-PT and PIN-PMN-PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single-element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  1. Calibration of Field II using a Convex Ultrasound Transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    BK-Medical (Herlev, Denmark). As input waveform for the Field model we measured the output voltage of the research amplifier, which peak voltage was limited to 31 V to avoid too high non linear effects. We measured the hydrophone output from three transducer front elements by averaging 40 shoot......Field II is an ultrasound simulation program capable of simulating the pressure scattering from inhomogeneous tissue. The simulations are based on a convolution between spatial impulse responses from the field in front of the transducer and the volt-to-surface acceleration impulse response...... of the transducer. For such simulations to reflect actual measured intensities and pressure levels, the transducer impulse response is to be known. This work presents the results of combining a modified form of a 1D linear transducer model originally suggested by Willatzen with the Field II program to calibrate...

  2. Design of matching layers for high-frequency ultrasonic transducers

    Science.gov (United States)

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-09-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its -6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers.

  3. Ultrasound surgery with a toric transducer allows the treatment of large volumes over short periods of time

    Science.gov (United States)

    Melodelima, David; N'Djin, William A.; Parmentier, Hubert; Chesnais, Sabrina; Rivoire, Michel; Chapelon, Jean-Yves

    2007-11-01

    Thermal ablation by physical agents is widely used in clinical settings, but it generally results in a small coagulated volume. Here, we report that a technologically advanced high intensity focused ultrasound transducer can significantly enlarge the coagulated volume over short periods of time. Eight ultrasound emitters were created by sectioning a single toric piezocomposite transducer. A single thermal lesion is created when the eight emitters perform alternative and consecutive 5s ultrasound exposures. This paper presents in vivo evidence that the coagulated volume obtained from a 40s total exposure in the liver was 8.6±4.8cm3.

  4. Infrared mapping of ultrasound fields generated by medical transducers: feasibility of determining absolute intensity levels.

    Science.gov (United States)

    Khokhlova, Vera A; Shmeleva, Svetlana M; Gavrilov, Leonid R; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-08-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm(2) to at least 50 W/cm(2). Significantly higher intensities could be measured simply by reducing the duty cycle. PMID:23927199

  5. Focus: Digital

    DEFF Research Database (Denmark)

    Technology has been an all-important and defining element within the arts throughout the 20th century, and it has fundamentally changed the ways in which we produce and consume music. With this Focus we investigate the latest developments in the digital domain – and their pervasiveness and rapid...... technology affects our habits of consumption. Risto Holopainen presents a notion of autonomous instruments and automated composition that, in the end, cannot escape the human while Jøren Rudi reflects on aesthetic elements and artistic approaches to sound in computer games. This focus is edited by Sanne...

  6. Design of advanced ultrasonic transducers for welding devices.

    Science.gov (United States)

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  7. Miniature, high efficiency transducers for use in ultrasonic flow meters

    Science.gov (United States)

    Saikia, Meghna

    This thesis is concerned with the development of a new type of miniature, high efficiency transducer for use in ultrasonic flow meters. The proposed transducer consists of a thin plate of a suitable piezoelectric material on which an inter-digital transducer is fabricated for the generation and detection of plate acoustic waves. When immersed in a fluid medium, this device can convert energy from plate acoustic waves (PAWs) into bulk acoustic waves (BAWs) and vice versa. It is shown that this mode coupling principle can be used to realize efficient transducers for use in ultrasonic flow meters. This transducer can be mounted flush with the walls of the pipe through which fluid is flowing, resulting in minimal disturbance of fluid flow. A prototype flow cell using these transducers has been designed and fabricated. The characteristics of this device have been measured over water flow rates varying from 0 to 7.5 liters per minute and found to be in good agreement with theory. Another attractive property of the new transducers is that they can be used to realize remotely read, passive, wireless flow meters. Details of methods that can be used to develop this wireless capability are described. The research carried out in this thesis has applications in several other areas such as ultrasonic nondestructive evaluation (NDE), noncontact or air coupled ultrasonics, and for developing wireless capability in a variety of other acoustic wave sensors.

  8. Flexible ultrasonic transducers for structural health monitoring

    International Nuclear Information System (INIS)

    Flexible ultrasonic transducers (FUTs) which have on-site installation capability are presented for non-destructive evaluation (NDE) and structural health monitoring (SHM) purposes. These FUTs typically consist of a 70 μm thick piezoelectric lead-zirconate-titanate (PZT) composite (PZT-c) coated by a sol-gel spray technique on a 75 μm thick titanium (Ti) membrane. Such an FUT was glued onto a steel pipe of 101 mm in diameter and 4.5 mm in wall thickness and heated at up to 200oC with the glue serving as a high temperature ultrasonic couplant. The pipe thickness measurement accuracy at 200oC is estimated to be 13 μm. FUTs were also glued onto the end edge of a 2 mm thick aluminum (Al) plate to generate and receive predominantly shear-horizontal (SH) plate acoustic waves (PAWs) to detect simulated line defects at temperatures of up to 100oC. FUTs, glued onto a graphite/epoxy (Gr/Ep) composite plate, were also used for the detection of an artificial disbond. An induction type non-contact method for the evaluation of Al plates and Gr/Ep composites using FUTs is also demonstrated. (author)

  9. Without 'Focus'

    Directory of Open Access Journals (Sweden)

    Aldo Sevi

    2010-12-01

    Full Text Available It is widely accepted that a notion of 'focus', more or less as conceived of in Jackendoff (1972, must be incorporated into our theory of grammar, as a means of accounting for certain observed correlations between prosodic facts and semantic/pragmatic facts. In this paper, we put forth the somewhat radical idea that the time has come to give up this customary view, and eliminate 'focus' from our theory of grammar. We argue that such a move is both economical and fruitful.Research over the years has revealed that the correlations between prosody, 'focus', and the alleged semantic/pragmatic effects of focus are much less clear and systematic than we may have initially hoped. First we argue that this state of affairs detracts significantly from the utility of our notion of 'focus', to the point of calling into question the very motivation for including it in the grammar. Then we look at some of the central data, and show how they might be analyzed without recourse to a notion of 'focus'. We concentrate on (i the effect of pitch accent placement on discourse congruence, and (ii the choice of 'associate' for the so-called 'focus sensitive' adverb only. We argue that our focus-free approach to the data improves empirical coverage, and begins to reveal patterns that have previously been obscured by preconceptions about 'focus'.ReferencesBeaver, D. & Clark, B. 2008. Sense and Sensitivity: How Focus Determines Meaning. Blackwell.Beaver, D., Clark, B., Flemming, E., Jaeger, T. F. & Wolters, M. 2007. ‘When semantics meets phonetics: Acoustical studies of second occurrence focus’. Language 83.2: 245–76.http://dx.doi.org/10.1353/lan.2007.0053Beckman, M. & Hirschberg, J. 1994. ‘The ToBI Annotation Conventions’. Ms.,http://www.cs.columbia.edu/~julia/files/conv.pdf.Bolinger, D. 1972. ‘Accent is predictable (if you are a mind-reader’. Language 48.3: 633–44.http://dx.doi.org/10.2307/412039Büring, D. 2006. ‘Focus projection and default

  10. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  11. Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers

    Institute of Scientific and Technical Information of China (English)

    葛立峰

    1999-01-01

    A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.

  12. Inter Digital Transducer Modelling through Mason Equivalent Circuit Model

    DEFF Research Database (Denmark)

    Mishra, Dipti; Singh, Abhishek; Hussain, Dil muhammed Akbar;

    2016-01-01

    by Simulation program with Integrated Circuit Emphasis (HSPICE), a well-liked electronic path simulator. The acoustic wave devices are not suitable to simulation through circuit simulator.In this paper, an electrical model of Mason’s Equivalent electricalcircuit for an inter-digital transducer (IDT......The frequency reliance of inter-digital transducer is analyzed with the help of MASON’s Equivalent circuit which is based on Smith’s Equivalent circuit which is further based on Foster’sNetwork. An inter-digital transducer has been demonstratedas a RLC network. The circuit is simulated...

  13. A thermal insulation method for a piezoelectric transducer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study deals with the sources of signal distortion of a piezoelectric transducer heated by measured gas flow. These signal distortions originate from both unloading of preload on a piezocrystal because of expansion of a diaphragm in the test apparatus and the pyroelectric effect of a heated piezoelectric crystal. A plastic film on the diaphragm of the transducer can effectively insulate the diaphragm and the piezocrystal within transducer from heating by gas flow, eliminating the sources of distortion. A method for evaluating the thickness of the film is proposed.

  14. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  15. Tsunami focusing

    Science.gov (United States)

    Spillane, M. C.; Titov, V. V.; Moore, C. W.; Aydin, B.; Kanoglu, U.; Synolakis, C. E.

    2010-12-01

    Tsunamis are long waves generated by impulsive disturbances of the seafloor or coastal topography caused by earthquakes, submarine/subaerial mass failures. They evolve substantially through three dimensional - 2 spatial+1 temporal - spreading as the initial surface deformation propagates. This is referred to as its directivity and focusing. A directivity function was first defined by Ben-Menahem (1961, Bull. Seismol. Soc. Am. 51, 401-435) using the source length and the rupture velocity. Okal (2003, Pure Appl. Geophys. 160, 2189-2221) discussed the details of the analysis of Ben-Menahem (1961) and demonstrated the distinct difference between the directivity patterns of landslide and earthquake generated tsunamis. Marchuk and Titov (1989, Proc. IUGG/IOC International Tsunami Symposium, July 31 - August 3, 1989, Novosibirsk, USSR. p.11-17) described the process of tsunami focusing for a rectangular initial deformation combining positive and negative surface displacements. They showed the existence of a focusing point where abnormal tsunami wave height can be registered. Here, first, we describe and quantify numerically tsunami focusing processes for a combined positive and negative - N-wave type - strip source representing the 17 July 1998 Papua New Guinea and 17 July 2006 Java events. Specifically, considering field observations and tsunami focusing, we propose a source mechanism for the 17 July 2006 Java event. Then, we introduce a new analytical solution for a strip source propagating over a flat bottom using the linear shallow-water wave equation. The analytical solution of Carrier and Yeh (2005, Computer Modeling In Engineering & Sciences, 10(2), 113-121) appears to have two drawbacks. One, the solution involves singular complete elliptic integral of the first kind which results in a self-similar approximate solution for the far-field at large times. Two, only the propagation of Gaussian shaped finite-crest wave profiles can be modeled. Our solution is not only

  16. A tubular focused sonochemistry reactor

    Institute of Scientific and Technical Information of China (English)

    ZHOU GuangPing; LIANG ZhaoFeng; LI ZhengZhong; ZHANG YiHui

    2007-01-01

    This paper presents a new sonochemistry reactor, which consists of a cylindrical tube with a certain length and piezoelectric transducers at tube's end with the longitudinal vibration. The tube can effectively transform the longitudinal vibration into the radial vibration and thereby generates ultrasound. Furthermore, ultrasound can be focused to form high-intensity ultrasonic field inside tube. The reactor boasts of simple structure and its whole vessel wall can radiate ultrasound so that the electroacoustic transfer efficiency is high. The focused ultrasonic field provides good condition for sonochemical reaction. The length of the reactor can be up to 2 meters, and liquids can pass through it continuously, so it can be widely applied in liquid processing such as sonochemistry.

  17. Stress Distribution on the Fe Based Amorphous Toroidal Transducer Core

    Directory of Open Access Journals (Sweden)

    Mustafa Göktepe

    2014-01-01

    Full Text Available The basic principles of sensors are the transmission of energy from one system to another. In general, an electrical signal is produced by the change of a physical property induced by the applied change of a second parameter. In the case of magnetic transducers either the property or the parameter would have a magnetic context. For example, in magnetoelastic toroidal transducers, the induced changes of a physical property, that is, the variation of permeability caused by the applied external force are used to produce a variation in output signal. The linearity, magnitude, sensitivity, and repeatability of the relationship between the output signal of the transducer and the physical property define the quality of the transducer.

  18. Diode-quad bridge for reactive transducers and FM discriminators

    Science.gov (United States)

    Harrison, D. R.; Dimeff, J.

    1972-01-01

    Diode-quad bridge circuit was developed for use with pressure-sensitive capacitive transducers, liquid-level measuring devices, proximity deflection sensors, and inductive displacement sensors. It may also be used as FM discriminator and as universal impedance bridge.

  19. Transducer for Tension Force Measuring of Strip Materials

    Directory of Open Access Journals (Sweden)

    Emad S. Addasi

    2005-01-01

    Full Text Available In winding-up motor drive systems, such as that used in textile industry, it is very important to get a constant tension force for the winding strip material (thread and to reduce its oscillations. This study recommends a transducer with a special design to be used in the mentioned motor drive systems. By using a piston damper, spring, levers, slider and other simple components the suggested sensor (transducer can be used to control the motor speed for getting the required thread tension force. Also the suggested transducer avoids the disadvantage of other used conventional transducer: the parasitic (detrimental oscillations of the thread tension force, which affect the quality of the produced strip material.

  20. Analytical model of a giant magnetostrictive resonance transducer

    Science.gov (United States)

    Sheykholeslami, M.; Hojjat, Y.; Ansari, S.; Cinquemani, S.; Ghodsi, M.

    2016-04-01

    Resonance transducers have been widely developed and studied, as they can be profitably used in many application such as liquid atomizing and sonar technology. The active element of these devices can be a giant magnetostrictive material (GMM) that is known to have significant energy density and good performance at high frequencies. The paper introduces an analytical model of GMM transducers to describe their dynamics in different working conditions and to predict any change in their performance. The knowledge of the transducer behavior, especially in operating conditions different from the ideal ones, is helpful in the design and fabrication of highly efficient devices. This transducer is design to properly work in its second mode of vibration and its working frequency is around 8000 Hz. Most interesting parameters of the device, such as quality factor, bandwidth and output strain are obtained from theoretical analysis.

  1. High-temperature acoustic transducers for use in LMFBR

    International Nuclear Information System (INIS)

    Progress made in the development of piezo-electric and capacitance transducers for acoustic measurements in fast reactors is described. Lithium niobate, because of its high Curie temperature, was the piezo-electric material selected for a study of response to exposure of reactor conditions of temperature, chemistry and irradiation. Potential applications include microphones and pulse-echo ultrasonic transducers. 7Li NbO3 showed greater irradiation tolerance than LiNbO3. Design considerations, details and manufacturing and calibration techniques are described for a range of piezo-electric devices. Several have been tested in air and sodium and have been used in reactor experiments. Capacitance transducers of a type used in sodium rigs and reactors for years are described. Made from irradiation resistant material, they are unaffected by temperature up to 6000C. Smaller transducers are being developed for work in confined spaces. (U.K.)

  2. Piezoelectric and electrostrictive effects in ferroelectret ultrasonic transducers

    Science.gov (United States)

    Döring, Joachim; Bovtun, Viktor; Gaal, Mate; Bartusch, Jürgen; Erhard, Anton; Kreutzbruck, Marc; Yakymenko, Yuriy

    2012-10-01

    Electromechanical response of polypropylene ferroelectret transducers under application of high-voltage pulses was measured by laser Doppler vibrometry and compared with results of ultrasonic through-air transmission between two ferroelectret transducers. The electromechanical response was completely explained by piezoelectric and electrostrictive effects. The electrostrictive effect dominates at high voltages and provides significant enlargement of the transducer constant, up to factor of 2.5. The induced strain of 1.7% was achieved at -2000 V. The nonlinear ultrasonic transmission was shown to be well described by the piezoelectric and electrostrictive response of transmitter, except in the range of high negative exciting voltages where some limitation of the transmitted signal was observed. This limitation seems not to be a fundamental one and does not abolish the advantages of high-voltage excitation of polypropylene ferroelectret transducers.

  3. Intravitreal Injection of AAV2 Transduces Macaque Inner Retina

    OpenAIRE

    Yin, Lu; Greenberg, Kenneth; Hunter, Jennifer J.; Dalkara, Deniz; Kolstad, Kathleen D; Masella, Benjamin D.; Wolfe, Robert; Visel, Meike; Stone, Daniel; Libby, Richard T.; DiLoreto, David; Schaffer, David; Flannery, John; Williams, David R.; Merigan, William H.

    2011-01-01

    Intravitreally injected AAV2 transduced inner retinal cells in a restricted region at the macaque fovea. Because macaque and human eyes are similar, the results suggest a need to improve transduction methods in gene therapy for the human inner retina.

  4. Wideband Single Crystal Transducer for Bone Characterization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS proposes to develop a simple-to-use, launch capable, ultrasound transducer that is capable of producing the necessary bandwidth to accurately determine in vivo...

  5. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  6. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  7. Thermal properties photonic crystal fiber transducers with ferromagnetic nanoparticles

    Science.gov (United States)

    Przybysz, N.; Marć, P.; Kisielewska, A.; Jaroszewicz, L. R.

    2015-12-01

    The main aim of the research is to design new types of fiber optic transducers based on filled photonic crystal fibers for sensor applications. In our research we propose to use as a filling material nanoparticles' ferrofluids (Fe3O4 NPs). Optical properties of such transducers are studied by measurements of spectral characteristics' changes when transducers are exposed to temperature and magnetic field changes. From synthesized ferrofluid several mixtures with different NPs' concentrations were prepared. Partially filled commercially available photonic crystal fiber LMA 10 (NKT Photonics) was used to design PCF transducers. Their thermo-optic properties were tested in a temperature chamber. Taking into account magnetic properties of synthetized NPs the patch cords based on a partially filled PM 1550 PCF were measured.

  8. Traceable dynamic calibration of force transducers by primary means

    Science.gov (United States)

    Vlajic, Nicholas; Chijioke, Ako

    2016-08-01

    We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton’s second law, F  =  ma. The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1.2%. We give an account of all significant sources of uncertainty, including a detailed consideration of the effects of dynamic tilting (rocking), which is a leading source of uncertainty in such harmonic force calibration systems.

  9. Capacitive Ultrasonic Transducer Development for Acoustic Anemometry on Mars

    Science.gov (United States)

    Leonard-Pugh, Eurion; Wilson, C.; Calcutt, S.; Davis, L.

    2012-10-01

    Previous Mars missions have used either mechanical or thermal anemometry techniques. The moving parts of mechanical anemometers are prone to damage during launch and landing and their inertia makes them unsuited for turbulence studies. Thermal anemometers have been used successfully on Mars but are difficult to calibrate and susceptible to varying ambient temperatures. In ultrasonic anemometry, wind speed and sound speed are calculated from two-way time-of-flight measurements between pairs of transducers; three pairs of transducers are used to return a 3-D wind vector. These high-frequency measurements are highly reliable and immune from drift. Piezo-electric ultrasonic anemometers are widely used on Earth due to their full-range accuracy and high measurement frequency. However these transducers have high acoustic impedances and would not work on Mars. We are developing low-mass capacitive ultrasonic transducers for Mars missions which have significantly lower acoustic impedances and would therefore have a much stronger coupling to the Martian atmosphere. These transducers consist of a metallised polymer film pulled taught against a machined metal backplane. The film is drawn towards the backplane by a DC bias voltage. A varying signal is used on top of the DC bias to oscillate the film; generating acoustic waves. This poster will look at the operation of such sensors and the developments necessary to operate the devices under Martian conditions. Transducer performance is determined primarily by two elements; the front film and the backplane. The sensitivity of the transducer is affected by the thickness of the front film; as well as the diameter, curvature and roughness of the metal backplane. We present data on the performance of the sensors and instrument design considerations including signal shapes and transducer arrangements.

  10. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer

    OpenAIRE

    Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H.; Kupnik, Mario; Khuri-Yakub, Butrus Thomas

    2010-01-01

    The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as poly...

  11. Finite-State Complexity and the Size of Transducers

    Directory of Open Access Journals (Sweden)

    Cristian Calude

    2010-08-01

    Full Text Available Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.

  12. Home Automation System Based on Intelligent Transducer Enablers

    Directory of Open Access Journals (Sweden)

    Manuel Suárez-Albela

    2016-09-01

    Full Text Available This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers, which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  13. Design of a Smart Ultrasonic Transducer for Interconnecting Machine Applications

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2009-06-01

    Full Text Available A high-frequency ultrasonic transducer for copper or gold wire bonding has been designed, analyzed, prototyped and tested. Modeling techniques were used in the design phase and a practical design procedure was established and used. The transducer was decomposed into its elementary components. For each component, an initial design was obtained with simulations using a finite elements model (FEM. Simulated ultrasonic modules were built and characterized experimentally through the Laser Doppler Vibrometer (LDV and electrical resonance spectra. Compared with experimental data, the FEM could be iteratively adjusted and updated. Having achieved a remarkably highly-predictive FEM of the whole transducer, the design parameters could be tuned for the desired applications, then the transducer is fixed on the wire bonder with a complete holder clamping was calculated by the FEM. The approach to mount ultrasonic transducers on wire bonding machines also is of major importance for wire bonding in modern electronic packaging. The presented method can lead to obtaining a nearly complete decoupling clamper design of the transducer to the wire bonder.

  14. Volumetric loss quantification using ultrasonic inductively coupled transducers

    Science.gov (United States)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Oppenheim, Irving J.

    2015-03-01

    The pulse-echo method is widely used for plate and pipe thickness measurement. However, the pulse echo method does not work well for detecting localized volumetric loss in thick-wall tubes, as created by erosion damage, when the morphology of volumetric loss is irregular and can reflect ultrasonic pulses away from the transducer, making it difficult to detect an echo. In this paper, we propose a novel method using an inductively coupled transducer to generate longitudinal waves propagating in a thick-wall aluminum tube for the volumetric loss quantification. In the experiment, longitudinal waves exhibit diffraction effects during the propagation which can be explained by the Huygens-Fresnel principle. The diffractive waves are also shown to be significantly delayed by the machined volumetric loss on the inside surface of the thick-wall aluminum tube. It is also shown that the inductively coupled transducers can generate and receive similar ultrasonic waves to those from wired transducers, and the inductively coupled transducers perform as well as the wired transducers in the volumetric loss quantification when other conditions are the same.

  15. Characterization of noncontact piezoelectric transducer with conically shaped piezoelement

    Science.gov (United States)

    Williams, James H., Jr.; Ochi, Simeon C. U.

    1988-01-01

    The characterization of a dynamic surface displacement transducer (IQI Model 501) by a noncontact method is presented. The transducer is designed for ultrasonic as well as acoustic emission measurements and, according to the manufacturer, its characteristic features include a flat frequency response range which is from 50 to 1000 kHz and a quality factor Q of less than unity. The characterization is based on the behavior of the transducer as a receiver and involves exciting the transducer directly by transient pulse input stress signals of quasi-electrostatic origin and observing its response in a digital storage oscilloscope. Theoretical models for studying the response of the transducer to pulse input stress signals and for generating pulse stress signals are presented. The characteristic features of the transducer which include the central frequency f sub o, quality factor Q, and flat frequency response range are obtained by this noncontact characterization technique and they compare favorably with those obtained by a tone burst method which are also presented.

  16. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers

    Science.gov (United States)

    Eriksson, Tobias J. R.; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N.; Dixon, Steve

    2016-01-01

    Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio (SNR)≃15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart. PMID:27571075

  17. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    Science.gov (United States)

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  18. Software for Correcting the Dynamic Error of Force Transducers

    Directory of Open Access Journals (Sweden)

    Naoki Miyashita

    2014-07-01

    Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.

  19. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers.

    Science.gov (United States)

    Eriksson, Tobias J R; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N; Dixon, Steve

    2016-01-01

    Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio ( SNR ) ≃ 15 dB in transmit-receive mode, with transmitter and receiver 40 cm apart. PMID:27571075

  20. Dual Orientation 16-MHz Single-Element Ultrasound Needle Transducers for Image-Guided Neurosurgical Intervention.

    Science.gov (United States)

    Jiang, Yun; Qiu, Zhen; McPhillips, Rachael; Meggs, Carl; Mahboob, Syed Osama; Wang, Han; Duncan, Robyn; Rodriguez-Sanmartin, Daniel; Zhang, Ye; Schiavone, Giuseppe; Eisma, Roos; Desmulliez, Marc P Y; Eljamel, Sam; Cochran, Sandy; Button, Tim W; Demore, Christine E M

    2016-02-01

    Image-guided surgery is today considered to be of significant importance in neurosurgical applications. However, one of its major shortcomings is its reliance on preoperative image data, which does not account for brain deformations and displacements that occur during surgery. In this work, we propose to tackle this issue through the incorporation of an ultrasound device within the type of biopsy needles commonly used as an interventional tool to provide immediate feedback to neurosurgeons during surgical procedures. To identify the most appropriate path to access a targeted tissue site, single-element transducers that look either forward or sideways have been designed and fabricated. Micromolded 1-3 piezocomposites were adopted as the active materials for feasibility tests and epoxy lenses have been applied to focus the ultrasound beam. Electrical impedance analysis, pulse-echo testing, and wire phantom scanning have been carried out, demonstrating the functionality of the needle transducers at [Formula: see text]. The capabilities of these transducers for intraoperative image guidance were demonstrated by imaging within soft-embalmed cadaveric human brain and fresh porcine brain. PMID:26672034

  1. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    Science.gov (United States)

    Boubenia, R.; Rosenkrantz, E.; Despetis, F.; P, P.; Ferrandis, J.-Y.

    2016-03-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten).

  2. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    Science.gov (United States)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  3. Measurement of focused ultrasonic fields based on colour edge detection and curve fitting

    Science.gov (United States)

    Zhu, H.; Chang, S.; Yang, P.; He, L.

    2016-03-01

    This paper utilizes firstly both a scanning device and an optic fiber hydrophone to establish a measurement system, and then proposes the parameter measurement of the focused transducer based on edge detection of the visualized acoustic data and curve fitting. The measurement system consists of a water tank with wedge absorber, stepper motors driver, system controller, a focused transducer, an optic fiber hydrophone and data processing software. On the basis of the visualized processing for the original scanned data, the -3 dB beam width of the focused transducer is calculated using the edge detection of the acoustic visualized image and circle fitting method by minimizing algebraic distance. Experiments on the visualized ultrasound data are implemented to verify the feasibility of the proposed method. The data obtained from the scanning device are utilized to reconstruct acoustic fields, and it is found that the -3 dB beam width of the focused transducer can be predicted accurately.

  4. A top-crossover-to-bottom addressed segmented annular array using piezoelectric micromachined ultrasonic transducers

    Science.gov (United States)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Hong, Hyeryung; Yuen Song, Hi; Oh, Inn-yeal; Park, Chul Soon; Choi, Hongsoo

    2015-11-01

    We design and fabricate segmented annular arrays (SAAs) using piezoelectric micromachined ultrasonic transducers (pMUTs) to demonstrate the feasibility of acoustic focusing of ultrasound. The fabricated SAAs have 25 concentric top-electrode signal lines and eight bottom-electrodes for grounding to enable electronic steering of selectively grouped ultrasonic transducers from 2393 pMUT elements. Each element in the array is connected by top-crossover-to-bottom metal bridges, which reduce the parasitic capacitance. Circular-shaped pMUT elements, 120 μm in diameter, are fabricated using 1 μm-thick sol-gel lead zirconate titanate on a silicon wafer. To utilize the high-density pMUT array, a deep reactive ion etching process is used for anisotropic silicon etching to realize the transducer membranes. The resonant frequency and effective coupling coefficient of the elements, measured with an impedance analyzer, yields 1.517 MHz and 1.29%, respectively, in air. The SAAs using pMUTs are packaged on a printed circuit board and coated with parylene C for acoustic intensity measurements in water. The ultrasound generated by each segmented array is focused on a selected point in space. When a 5 Vpp, 1.5 MHz square wave is applied, the maximum spatial peak temporal average intensity ({{I}\\text{spta}} ) is found to be 79 mW cm-2 5 mm from the SAAs’ surface without beamforming. The beam widths (-3 dB) of ultrasonic radiation patterns in the elevation and azimuth directions are recorded as 3 and 3.4 mm, respectively. The results successfully show the feasibility of focusing ultrasound on a small area with SAAs using pMUTs.

  5. Ultrasonic flowmeters: temperature gradients and transducer geometry effects.

    Science.gov (United States)

    Willatzen, M

    2003-03-01

    Ultrasonic flowmeter performance is addressed for the case of cylindrically shaped flowmeters employing two reciprocal ultrasonic transducers A and B so as to measure time-of-flight differences between signals transmitted from transducer A towards B followed by an equivalent signal transmitted from transducer B towards A. In the case where a liquid flows through the flowmeter's measuring section ("spoolpiece"), the arrival times of the two signals differ by an amount related to the flow passing between the two transducers. Firstly, a detailed study of flow measurement errors with mean flow in the laminar flow regime is carried out as a function of the mode index and the transducer diameter/cylinder diameter ratio in the case where no temperature gradients are present in the flowmeter sensor. It is shown that all modes except the fundamental mode overestimate the mean flow by a factor of 33.33% while excitation of the fundamental mode solely give error-free measurements. The immediate consequences are that the flowmeter error decreases as the transducer diameter/cylinder diameter ratio approaches 1 from 0 reflecting the fact that the excitation level of the fundamental mode increases from almost 0 to 1 as this ratio approaches 1 from 0. Secondly, the effect on flowmeter performance due to flow-induced temperature gradients is examined. It is shown that the presence of temperature gradients leads to flowmeter errors at the higher-flow values even in the case where the fundamental mode is the only mode excited. It is also deduced that flowmeter errors in general depend on the distance between transducers A and B whether temperature gradients exist or not. This conclusion is not reflected in the usual definition of flowmeter errors given by the so-called mode-dependent deviation of measurement introduced in earlier works. PMID:12565074

  6. Prostate Focused Ultrasound Therapy.

    Science.gov (United States)

    Chapelon, Jean-Yves; Rouvière, Olivier; Crouzet, Sébastien; Gelet, Albert

    2016-01-01

    The tremendous progress in engineering and computing power coupled with ultrasound transducer technology and imaging modalities over the past 20 years have encouraged a revival of clinical interest in ultrasound therapy, mainly in High-Intensity Focused Ultrasound (HIFU). So far, the most extensive results from HIFU obtained in urology involve transrectal prostate ablation, which appears to be an effective therapeutic alternative for patients with malignant prostate tumors. Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men. Several treatment options with different therapeutic approaches exist, including HIFU for localized PCa that has been in use for over 15 years. Since the early 2000s, two systems have been marketed for this application, and other devices are currently in clinical trials. HIFU treatment can be used either alone or in combination with (before- or after-) external beam radiotherapy (EBRT) (before or after HIFU) and can be repeated multiple times. HIFU treatment is performed under real-time monitoring with ultrasound or guided by MRI. Two indications are validated today: Primary care treatment and EBRT failure. The results of HIFU for primary care treatment are similar to standard conformal EBRT, even though no randomized comparative studies have been performed and no 10-year follow up data is yet available for HIFU. Salvage HIFU after EBRT failure is increasing with oncological outcomes, similar to those achieved with surgery but with the advantage of fewer adverse effects. HIFU is an evolving technology perfectly adapted for focal treatment. Thus, HIFU focal therapy is another pathway that must be explored when considering the accuracy and reliability for PCa mapping techniques. HIFU would be particularly suited for such a therapy since it is clear that HIFU outcomes and toxicity are relative to the volume of prostate treated. PMID:26486330

  7. Design of a saturated analogue and digital current transducer

    International Nuclear Information System (INIS)

    This project describes the development of a new analogue and digital current transducer, providing a range of new theoretical design methods for these novel devices. The main control feature is the limit cycling operation, and the novel use of the embedded sigma-delta modulator sensor structure to derive a low component count digital sensor. The research programme was initiated into the design, development and evaluation of a novel non-Hall sensing analogue and digital current transducer. These transducers are used for measurement of high currents in power systems applications. The investigation is concerned with a new design which uses a magnetic ferrite core without an air gap for current measurement. The motivation for this work was to design a new control circuit which provides a low component count, and utilises the non-linear properties of the magnetic ferrite core to transmit direct current. The use of a limit cycle control circuit was believed to be particularly suitable for the analogue and digital transducers, for two main reasons: the low component count, and the output signal is directly digital. In line with the motivations outlined above, the outcome of the research has witnessed the design, development and evaluation of a practically realisable analogue and digital current transducer. The design procedure, which is documented in this thesis, is considered to be a major contribution to the field of transducers design and development using a control systems approach. Mathematical models for both analogue and digital transducers were developed and the resulting model based predictions were found to be in good agreement with measured results. Simplification of the new model sensing device was achieved by approximating the non-linear ferrite core using FFT analysis. This is also considered to be a significant contribution. The development analogue and digital current censors employed a sampled data control systems design and utilised limit cycling

  8. 1-3 Piezocomposite transducers for AUV applications

    Science.gov (United States)

    Pazol, Brian; Lannaman, Ken; Doust, Barry

    2001-05-01

    Sonar systems on board AUVs present interesting challenges to the transducer designer because of their small size, low weight requirements, and limited available power. 1-3 piezocomposite transducers offer many performance characteristics which make them ideal for deployment in AUVs. Piezocomposite transducers are light weight, have broad bandwidth, have high efficiency, and can be conformed to fit the curvature of the vehicle. The broad bandwidths and low sidelobes made possible by piezocomposites result in sharper images with less distortion. The piezocomposite material is mechanically robust and can survive the rigors of normal operations as well as AUV deployment and retrieval. In addition, the conformal configuration substantially reduces hydrodynamic drag. As a conformal array, there is nothing to get knocked off during deployment and retrieval operations, or entangled with natural or man-made objects suspended in the water column. This contributes directly to improving the operational endurance of the AUV system, thereby enhancing overall system utility. MSI has produced and tested a variety of piezocomposite transducers for use in obstacle avoidance, mine hunting, and acoustic communications. An overview of piezocomposites and recent results of piezocomposite transducers will be presented.

  9. Design of Capacitance to Voltage Converter for Capacitive Sensor Transducer

    Directory of Open Access Journals (Sweden)

    A. H.M.Z. Alam

    2010-01-01

    Full Text Available Problem statement: The design of Capacitance to Voltage Converter (CVC for capacitive sensor transducer was presented. The proposed design will reduce the size, power consumption and supply voltage of the circuit and can be used in high frequency band transducer. Approach: The design was implemented using the Operational amplifier (Op amp and capacitive network. The circuit was simulated using the PSPICE model parameters based on standard 0.13 μm CMOS process. Results: The design was able to measure a wide range of capacitance variations for the capacitive transducer. The performance analysis of the design showed desirable performance parameters in terms of response, low power consumption and a linear output voltage within the wide range of capacitive transducer capacitance variation for the power supply voltage of 1.2 V was achieved. Conclusion/Recommendations: The output voltage of the circuit varied linearly with the variation of capacitive transducer capacitance variation. The improved converter was compact and robust for integration into capacitive measuring systems and suitable for use in environment that making use of higher frequency band.

  10. Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kang Lyeol; Cao, Yanggang [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2012-10-15

    PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Furthermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

  11. Long-Term Stability of the NIST Conical Reference Transducer.

    Science.gov (United States)

    Fick, Steven E; Proctor, Thomas M

    2011-01-01

    The National Institute of Standards and Technology (NIST) Conical Reference Transducer (CRT) is designed for purposes requiring frequency response characteristics much more uniform than those attainable with ultrasonic transducers conventionally used for acoustic emission (AE) nondestructive testing. The high performance of the CRT results from the use of design elements radically different from those of conventional transducers. The CRT was offered for sale for 15 years (1985 to 2000). Each CRT was furnished with data which expressed, as a function of frequency, the transducer sensitivity in volts per micrometer of normal displacement on the test block. Of the 22 transducers constructed, eight were reserved for long term research and were stored undisturbed in a laboratory with well controlled temperature and humidity. In 2009, the sensitivities of these eight units were redetermined. The 2009 data have been compared with data from similar tests conducted in 1985. The results of this comparison verify the claim "Results of tests of the long term stability of CRT characteristics indicate that, if proper care is taken, tens of years of service can reasonably be expected." made in the CRT specifications document furnished to prospective customers. PMID:26989602

  12. Characterization of Transducers and Resonators under High Drive Levels

    Science.gov (United States)

    Sherrit, Stewart; Bao, X.; Sigel, D. A.; Gradziel, M. J.; Askins, S. A.; Dolgin, B. P.; Bar-Cohen, Y.

    2001-01-01

    In many applications, piezoelectric transducers are driven at AC voltage levels well beyond the level for which the material was nominally characterized. In this paper we describe an experimental setup that allows for the determination of the main transducer or resonator properties under large AC drive. A sinusoidal voltage from a waveform generator is amplified and applied across the transducer/resonator in series with a known high power resistor. The amplitude of applied voltage and the amplitude and the relative phase of the current through the resistor are monitored on a digital scope. The frequency of the applied signal is swept through resonance and the voltage/current signals are recorded. After corrections for the series resistance and parasitic elements the technique allows for the determination of the complex impedance spectra of the sample as a function of frequency. In addition, access to the current signal allows for the direct investigation of non-linear effects through the application of Fourier transform techniques on the current signal. Our results indicate that care is required when interpreting impedance data at high drive level due to the frequency dependence of the dissipated power. Although the transducer/resonator at a single frequency and after many cycles may reach thermal equilibrium, the spectra as a whole cannot be considered an isothermal measurement due to the temperature change with frequency. Methods to correct for this effect will be discussed. Results determined from resonators of both soft and hard PZT and a ultrasonic horn transducer are presented.

  13. Ultrasonic array of thick film transducers for biological tissue characterization.

    Science.gov (United States)

    Gwirc, Sergio N; Negreira, Carlos A; Marino, Nestor R

    2010-01-01

    The initial motivation for this work was to accomplish an easy way to manufacture different geometries of ultrasonic transducers and arrays using a PZT powder, combined with a standard process to have repetitive series of them. The piezoelectric thick film was obtained using a PZT paste and applying it by screen printing on an alumina substrate. Then, the film was drying and sintered with a temperature-time profile determined by the paste characteristics. Each transducer is composed by three layers, one by PZT and two acting as electrodes. The active element of the paste is a PZT powder which is dispersed in a commercial vehicle to obtain rheological properties suitable for use the screen printing process. The connection between PZT particles is improved by adding a lead borosilicate frit glass that also helps to attach the film to the substrate due to the relatively low temperature of sintered that has been used in this process. The PZT film has low density that is generated by internal porosity, so its acoustic impedance is lower than for a bulk ceramic transducer and so is well adapted to testing human tissues. At the same time the thick film technology is well suited to make medium size transducers and also arrays performed with tiny ultrasonic transducers. PMID:21097177

  14. Delimitation of the lung region with distributed ultrasound transducers

    Science.gov (United States)

    Cardona Cárdenas, Diego Armando; Furuie, Sérgio Shiguemi

    2016-04-01

    One technique used to infer and monitor patient's respiratory conditions is the electrical impedance tomography (EIT). This provides images with information about lung function. The EIT image contrast is dependent on the variation of electrical impedance, therefore, this image does not provide anatomical details in border regions of several organs. To contribute to a clinical solution, we propose a new method to delimit regions of interest such as the pulmonary region and to improve the reconstruction quality of the EIT. Using a Matlab Toolbox k-wave, the ultrasound propagation phenomenon in homogeneous medium without patient (Reference) and with thoracic models were simulated, separately via a set of several ultrasound transducers distributed around the chest. After pulse emission by a transducer (TR), all received signals were compared considering the two sets of signals. If the energy relation between parts of the signals does not exceed an empirical threshold (30% in this study), a partial mask is generated between the transmitter and the receptor. This process was repeated until all 128 transducers are considered as TR-emitters. The 128 transducers (150kHz) are uniformly distributed. The evaluation was made by visually comparing the resulting images with the respective simulated object. A simple approach was presented to delimit high contrast organs with ultrasound transducers distributed around the patient. This approach allows other lower contrast objects to become invisible by varying the threshold limit. The investigation, based on numerical simulations of ultrasonic propagation, has shown promising results in the delimitation of the pulmonary region.

  15. Reducing the Effect of Transducer Mount Induced Noise on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

    Science.gov (United States)

    Herron, A. J.; Reed, D. K.; Nance, D. K.

    2015-01-01

    Characterization of launch vehicle unsteady aerodynamics is a field best studied through experimentation, which is often carried out in the form of large scale wind tunnel testing. Measurement of the fluctuating pressures induced by the boundary layer noise is customarily made with miniature pressure transducers installed into a model of the vehicle of interest. Literature shows that noise level increases between two to five decibels (dB referenced to 20 micropascal) can be induced when the transducer surface is not mounted perfectly flush with the model outer surface. To reduce this artificially induced noise, special transducer holders have been used for aeroacoustic wind tunnel testing by NASA. This holder is a sleeve into which the transducer fits, with a cap that allows it to be mounted in a recessed hole in the model. A single hole in the holder allows the transport of the tunnel medium so the transducer can discriminate the fluctuating pressure due to the turbulent boundary layer noise. The holder is first dry fitted into the model and any difference in height between the holder and the model surface can be sanded flush. The holder is then removed from the model, the transducer glued inside the holder, and the holder replaced in the model, secured also with glue, thus eliminating the problem of noise level increases due to lack of flushness. In order to work with this holder design, special transducers have been ordered with their standard screen removed and the diaphragm moved as close to the top of the casing as possible to minimize any cavity volume. Although this greatly reduces induced noise due to the transducers being out of flush, the holders can also induce a cavity resonance that is usually at a very high frequency. This noise is termed transducer mount induced noise (XMIN). The peak of the mode can vary with the cavity depth, boundary layer noise that can excite the mode, tunnel flow medium, and the build of the transducers. Because the boundary

  16. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  17. Energy harvesting with a slotted-cymbal transducer

    Institute of Scientific and Technical Information of China (English)

    Jiang-bo YUAN; Xiao-biao SHAN; Tao XIE; Wei-shan CHEN

    2009-01-01

    A cymbal transducer is made up of a piezoceramic disk sandwiched between two dome-shaped metal endcaps. High circumferential stresses caused by flexural motion of the metal endcaps can induce the loss of mechanical input energy. Finite element analysis shows that the radial slots fabricated in metal endcaps can release the circumferential stresses, and reduce the loss of mechanical input energy that could be converted into electrical energy. In this letter, the performance of a slotted-cymbal transducer in energy harvesting was tested. The results show that the output voltage and power of the cymbal are improved. A maximum output power of around 16 mW could be harvested from a cymbal with 18 cone radial slots across a 500kΩ resistive load, which is approximately 0.6 times more than that of the original cymbal transducer.

  18. Ultrasonic waveguide transducer for high temperature testing of ceramic honeycomb

    Science.gov (United States)

    Wang, N.; An, C. P.; Nickerson, S. T.; Gunasekaran, N.; Shi, Z.

    2013-01-01

    This paper describes the development of a practical ultrasonic waveguide transducer designed for in situ material property characterization of ceramic honeycomb at high temperatures (>1200°C) and under fast thermal cycles (>1000°C/min). The low thermal conductivity MACOR waveguide allows the use of conventional transducer (max temp. 50°C) at one end and guides ultrasonic waves into the high temperature region where the characterization is carried out. The impact of time, temperature, and heating/cooling rates on the material behavior was studied. It was demonstrated that the same transducer could also be used for in-situ crack detection during the thermal shock testing of ceramic honeycomb.

  19. Improved capacitive stress transducers for high-field superconducting magnets

    Science.gov (United States)

    Benson, Christopher Pete; Holik, Eddie Frank, III; Jaisle, Andrew; McInturff, A.; McIntyre, P.

    2012-06-01

    High-field (12-18 Tesla) superconducting magnets are required to enable an increase in the energy of future colliders. Such field strength requires the use of Nb3Sn superconductor, which has limited tolerance for compressive and shear strain. A strategy for stress management has been developed at Texas A&M University and is being implemented in TAMU3, a short-model 14 Tesla stress-managed Nb3Sn block dipole. The strategy includes the use of laminar capacitive stress transducers to monitor the stresses within the coil package. We have developed fabrication techniques and fixtures, which improve the reproducibility of the transducer response both at room temperature and during cryogenic operation. This is a report of the status of transducer development.

  20. Apparent transducer non-reciprocity in an ultrasonic flow meter.

    Science.gov (United States)

    van Deventer, Jan; Delsing, Jerker

    2002-05-01

    This paper investigates the effects of non-identical ultrasonic transducers on reciprocity and zero-flow calibration in transit time flow meters. According to the theorem of reciprocity, there should not be any difference between the up- and downstream acoustic times of flight in a zero-flow situation. This would thus eliminate zero-flow estimation drifts. The flow meter is modeled as a one dimensional system with equivalent electrical circuits and simulated with simulation program with integrated circuits emphasis. The work shows that variations between the two transducers cause false estimates of flow and indicate which parameters have the largest influence. It indicates that reciprocity holds only for identical transducers. PMID:12159974

  1. Novice performance of ultrasound-guided needle advancement: standard 38-mm transducer vs 25-mm hockey stick transducer.

    Science.gov (United States)

    Davies, T; Townsley, P; Jlala, H; Dowling, M; Bedforth, N; Hardman, J G; McCahon, R A

    2012-08-01

    The optimal method to develop expertise in ultrasound-guided regional anaesthesia is unknown. Studies of laryngoscopic expertise in novices demonstrate that the choice of laryngoscope affects performance. In this study, we aimed to compare the effect of two different linear array transducers (38-mm standard vs 25-mm hockey stick) on novice performance of ultrasound-guided needle advancement. Following randomisation, participants watched a video model of expert performance of ultrasound-guided needle advancement. Recruits performed the modelled task on a turkey breast model. The median (IQR [range]) composite error score was statistically significantly larger for participants in the hockey stick transducer group compared with the standard transducer group; 10.0 (7.3-14.3 [2.5-29.0]) vs 7.5 (4.5-10.0 [2.0-28.0]) respectively, (p = 0.01). This study has demonstrated that performance of ultrasound-guided needle advancement by novice operators after simple video instruction is better (as assessed using a composite error score) with a standard 38-mm transducer than with a 25-mm hockey stick transducer. PMID:22506607

  2. A Low Frequency Broadband Flextensional Ultrasonic Transducer Array.

    Science.gov (United States)

    Savoia, Alessandro Stuart; Mauti, Barbara; Caliano, Giosuè

    2016-01-01

    In this paper, we propose the design and the fabrication of a multicell, piezoelectrically actuated, flextensional transducer array structure, characterized by a low mechanical impedance, thus allowing wideband and high-sensitivity immersion operation in the low ultrasonic frequency range. The transducer structure, consisting of a plurality of circular elementary cells orderly arranged according to a periodic hexagonal tiling, features a high flexibility in the definition of the active area shape and size. We investigate, by finite element modeling (FEM), the influence of different piezoelectric and elastic materials for the flexural plate, for the plate support and for the backing, on the transducer electroacoustic behavior. We carry out the dimensioning of the transducer components and cell layout, in terms of materials and geometry, respectively, by aiming at a circular active area of 80-mm diameter and broadband operation in the 30-100-kHz frequency range in immersion. PZT-5H ceramic disks and a calibrated thickness stainless steel plate are chosen for the vibrating structure, and FR-4 laminates and a brass plate, respectively, for the plate support and the backing. The diameter of the individual cells is set to 6 mm resulting in 121 cells describing a quasi-circular area, and the total thickness of the transducer is less than 10 mm. We report on the fabrication process flow for the accurate assembly of the transducer, based, respectively, on epoxy resin and wire bonding for the mechanical and electrical interconnection of the individual parts. The results of the electrical impedance and transmit pressure field characterization are finally reported and discussed. PMID:26540680

  3. Transducers for Sound and Vibration - FEM Based Design

    DEFF Research Database (Denmark)

    Liu, Bin

    2001-01-01

    for methods that can reduce the design time consumption and the number of itterations. The present work proposes to use finite element based programs for simulating the behaviour of a transducer with a given set of specifications. A simulation program for accelerometers was developed and has been tested......Design of transducers for measurement of vibration (piezoelectric accelerometers) and sound (condenser microphones) is a very labour intensive work. The design work is mostly based on experience and on simple analogies to electrical circuit design. Often a time consuming itterative loop is used...

  4. Thermal energy harvesters with piezoelectric or electrostatic transducer

    Science.gov (United States)

    Prokaryn, Piotr; Domański, Krzysztof; Marchewka, Michał; Tomaszewski, Daniel; Grabiec, Piotr; Puscasu, Onoriu; Monfray, Stéphane; Skotnicki, Thomas

    2014-08-01

    This paper describes the idea of the energy harvester which converts thermal gradient present in environment into electricity. Two kinds of such devices are proposed and their prototypes are shown and discussed. The main parts of harvesters are bimetallic spring, piezoelectric transducer or electrostatic transducer with electret. The applied piezomembrane was commercial available product but electrets was made by authors. In the paper a fabrication procedure of electrets formed by the corona discharge process is described. Devices were compared in terms of generated power, charging current, and the voltage across a storage capacitor.

  5. Qualification of indigenously developed sodium compatible ultrasonic transducers for PFBR

    International Nuclear Information System (INIS)

    PFBR core is immersed in a pool of optically opaque liquid sodium at high temperature. Ultrasonic technique is utilized to view the components immersed in sodium. An under sodium ultrasonic scanner (USUSS) with indigenously developed sodium compatible transducers are used to scan the core plenum before every fuel handling operation, when the temperature of sodium is around 180℃. There are two different types of transducers, one for the measurement of bowing and the other is used for the protrusion measurement of any fuel sub assembly (FSA). (author)

  6. Wideband Single-Crystal Transducer for Bone Characterization

    Science.gov (United States)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an

  7. Simulating Capacitive Micromachined Ultrasonic Transducers (CMUTs) using Field II

    DEFF Research Database (Denmark)

    Bæk, David; Oralkan, Omer; Kupnik, Mario;

    2010-01-01

    Field II has been a recognized simulation tool for piezoceramic medical transducer arrays for more than a decade. The program has its strength in doing fast computations of the spatial impulse response (SIR) from array elements by dividing the elements into smaller mathematical elements (ME)s from...... which it calculates the SIR responses. The program features predefined models for classical transducer geometries, but currently none for the fast advancing CMUTs. This work addresses the assumptions required for modeling CMUTs with Field II. It is shown that rectangular array elements, populated...

  8. Transverse Oscillation Vector Velocity Estimation using a Phased Array Transducer

    DEFF Research Database (Denmark)

    Marcher, Jønne; Pihl, Michael Johannes; Seerup, Gert;

    2012-01-01

    The Transverse Oscillation method has shown its commercial feasibility, providing the user with 2D velocity information. Todays implementation on commercial ultrasound platforms only support linear array transducers and are limited in depth. Extending the implementation to a phased array transduc...... leaves room for optimization. Despite the bias, the method has shown to work and produce reliable results, and 2D velocity estimates are provided within the entire color-box down to a depth of more than 100 mm making vector velocity imaging possible in the entire heart....

  9. Capacitive Micromachined Ultrasonic Transducer Arrays for Integrated Diagnostic/Therapeutic Catheters

    Science.gov (United States)

    Wong, Serena H.; Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Bayram, Baris; Kupnik, Mario; Oralkan, Omer; Ergun, A. Sanli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2006-05-01

    In recent years, medical procedures have become increasingly non-invasive. These include endoscopic procedures and intracardiac interventions (e.g., pulmonary vein isolation for treatment of atrial fibrillation and plaque ablation for treatment of arteriosclerosis). However, current tools suffer from poor visualization and difficult coordination of multiple therapeutic and imaging devices. Dual-mode (imaging and therapeutic) ultrasound arrays provide a solution to these challenges. A dual-mode transducer can provide focused, noncontact ultrasound suitable for therapy and can be used to provide high quality real-time images for navigation and monitoring of the procedure. In the last decade, capacitive micromachined ultrasonic transducers (CMUTs), have become an attractive option for ultrasonic imaging systems due to their fabrication flexibility, improved bandwidth, and integration with electronics. The CMUT's potential in therapeutic applications has also been demonstrated by surface output pressures as high as 1MPa peak to peak and continuous wave (CW) operation. This paper reviews existing interventional CMUT arrays, demonstrates the feasibility of CMUTs for high intensity focused ultrasound (HIFU), and presents a design for the next-generation CMUTs for integrated imaging and HIFU endoscopic catheters.

  10. Platform based design of EAP transducers in Danfoss PolyPower A/S

    Science.gov (United States)

    Sarban, Rahimullah; Gudlaugsson, Tómas V.

    2013-04-01

    Electroactive Polymer (EAP) has gained increasing focus, in research communities, in last two decades. Research within the field of EAP has, so far, been mainly focused on material improvements, characterization, modeling and developing demonstrators. As the EAP technology matures, the need for a new area of research namely product development emerges. Product development can be based on an isolated design and production for a single product or platform design where a product family is developed. In platform design the families of products exploits commonality of platform modules while satisfying a variety of different market segments. Platform based approach has the primary benefit of being cost efficient and short lead time to market when new products emerges. Products development based on EAP technology is challenging both technologically as well as from production and processing point of view. Both the technological and processing challenges need to be addressed before a successful implementation of EAP technology into products. Based on this need Danfoss PolyPower A/S has, in 2011, launched a EAP platform project in collaboration with three Danish universities and three commercial organizations. The aim of the project is to develop platform based designs and product family for the EAP components to be used in variety of applications. This paper presents the structure of the platform project as a whole and specifically the platform based designs of EAP transducers. The underlying technologies, essential for EAP transducers, are also presented. Conceptual design and solution for the concepts are presented as well.

  11. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    Science.gov (United States)

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. PMID:24246149

  12. Determination of the response time of pressure transducers using the direct method

    International Nuclear Information System (INIS)

    The available methods to determine the response time of nuclear safety related pressure transducers are discussed, with emphasis to the direct method. In order to perform the experiments, a Hydraulic Ramp Generator was built. The equipment produces ramp pressure transients simultaneously to a reference transducer and to the transducer under test. The time lag between the output of the two transducers, when they reach a predetermined setpoint, is measured as the time delay of the transducer under test. Some results using the direct method to determine the time delay of pressure transducers (1 E Class Conventional) are presented. (author). 18 refs, 35 figs, 12 tabs

  13. Cantilever deflection measurement and actuation by an nterdigitated transducer

    NARCIS (Netherlands)

    Strambini, E.; Piazza, V.; Pingue, P.; Biasiol, G.; Sorba, L.; Beltram, F.

    2010-01-01

    A scheme that allows all-electrical high-bandwidth readout of a cantilever deflection by means of an integrated interdigitated transducer is presented. The present approach takes advantage of the piezoelectricity of the chosen cantilever substrate material to generate and detect surface-acoustic-wav

  14. Finite element analysis of underwater capacitor micromachined ultrasonic transducers.

    Science.gov (United States)

    Roh, Yongrae; Khuri-Yakub, Butrus T

    2002-03-01

    A simple electro-mechanical equivalent circuit model is used to predict the behavior of capacitive micromachined ultrasonic transducers (cMUT). Most often, cMUTs are made in silicon and glass plates that are in the 0.5 mm to 1 mm range in thickness. The equivalent circuit model of the cMUT lacks important features such as coupling to the substrate and the ability to predict cross-talk between elements of an array of transducers. To overcome these deficiencies, a flnite element model of the cMUT is constructed using the commercial code ANSYS. Calculation results of the complex load impedance seen by single capacitor cells are presented, then followed by a calculation of the plane wave real load impedance seen by a parallel combination of many cells that are used to make a transducer. Cross-talk between 1-D array elements is found to be due to two main sources: coupling through a Stoneley wave propagating at the transducer-water interface and coupling through Lamb waves propagating in the substrate. To reduce the cross-talk level, the effect of structural variations of the substrate are investigated, which includes a change of its thickness and etched trenches or polymer walls between array elements. PMID:12322877

  15. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  16. Fabrication and integration of permanent magnet materials into MEMS transducers

    Science.gov (United States)

    Wang, Naigang

    Microscale permanent magnets (PM) are a key building block for magnetically based microelectromechanical systems (MEMS), such as sensors, actuators, and energy converters. However, the inability to concurrently achieve good magnetic properties and an integrated magnet fabrication process hinders the development of magnetic MEMS. To address this need, this dissertation develops methods for wafer-level microfabrication of thick (10--500+ microm), high-performance, permanent magnets using low-temperature (electrodynamic transducer prototypes. A cantilever-type microtransducer achieves a 2.7 microm vertical deflection at a driving current of 5.5 mArms at 100 Hz. A piston-type transducer with elastomeric membrane obtains a 2.2 microm vertical displacement at a driving current of 670 mArms at 200 Hz. These devices demonstrate the integrability of wax-bonded Nd-Fe-B powder magnets into microscale electromechanical transducers. Electromechanical lumped element models are then developed for the piston-type electrodynamic actuators. The models enable prediction of the device performance as an electroacoustic actuator (microspeaker) and as a mechanoelectrical generator (vibrational energy harvester). Then, both the acoustic and energy harvesting performance of the prototype transducers are experimentally measured to verify the LEM models. The validated models provide a design tool for further design and development of these types of micromagnetic MEMS devices.

  17. High Temperature Ultrasonic Transducers : Material Selection and Testing

    Science.gov (United States)

    Bar-Cohen, Yoseph; Bruno, Alessandro

    2012-01-01

    The task of my two-months internship was to test different materials to be used to build an high temperature transducer, to develop some prototypes and to test their performance, to assess the reliability of commercial product rated for such a temperature, as well as to collaborate in developing the signal processing code to measure the condensed water levels.

  18. Multilayer piezoelectric transducer models combined with Field II

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten; Jensen, Jørgen Arendt

    2012-01-01

    One-dimensional and three-dimensional axisymmetric transducer model have been compared to determine their feasibility to predict the volt-to-surface impulse response of a circular Pz27 piezoceramic disc. The ceramic is assumed mounted with silver electrodes, bounded at the outer circular boundary...

  19. Multilayer pieozoelectric transducer models combined with Field II

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2009-01-01

    boundary with a polymer ring, and submerged into water. The transducer models are developed to account for any external electrical loading impedance in the driving circuit. The models are adapted to calculate the impulse surface acceleration needed by the Field II software in predicting pressure pulses at...

  20. Breast ultrasound tomography with two parallel transducer arrays

    Science.gov (United States)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Gao, Kai; Intrator, Miranda; Hanson, Kenneth

    2016-03-01

    Breast ultrasound tomography is an emerging imaging modality to reconstruct the sound speed, density, and ultrasound attenuation of the breast in addition to ultrasound reflection/beamforming images for breast cancer detection and characterization. We recently designed and manufactured a new synthetic-aperture breast ultrasound tomography prototype with two parallel transducer arrays consisting of a total of 768 transducer elements. The transducer arrays are translated vertically to scan the breast in a warm water tank from the chest wall/axillary region to the nipple region to acquire ultrasound transmission and reflection data for whole-breast ultrasound tomography imaging. The distance of these two ultrasound transducer arrays is adjustable for scanning breasts with different sizes. We use our breast ultrasound tomography prototype to acquire phantom and in vivo patient ultrasound data to study its feasibility for breast imaging. We apply our recently developed ultrasound imaging and tomography algorithms to ultrasound data acquired using our breast ultrasound tomography system. Our in vivo patient imaging results demonstrate that our breast ultrasound tomography can detect breast lesions shown on clinical ultrasound and mammographic images.

  1. Nonlinear behaviour of power ultrasonic transducers for food processing

    Science.gov (United States)

    Riera, E.; Cardoni, A.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    Power ultrasonic systems at laboratory and semi-industrial scale are currently investigated to demonstrate the suitability of ultrasonic waves of high-intensity to industrial applications. It has been shown that intense ultrasonic fields trigger a series of mechanisms in the irradiated media that may enhance and/or accelerate a variety of processes in the food sector. Ultrasonic radiators driven by piezoelectric vibrators have been specifically developed for assisting in drying and extraction operations. Successful industrial scale-up of such tuned systems significantly depends on the control of their nonlinear vibration behaviour at high operational power levels. In this paper we investigated experimentally the nonlinear dynamics of two power ultrasonic transducers: a grooved-plate transducer and a cylindrical radiator transducer. Nonlinear mechanisms affecting the dynamic behaviour of both assemblies such as the appearance of harmonics, combination of resonances, or modal interactions, and response saturation are presented. In particular, energy transfers among system modes that may produce the excitation of nontuned resonant frequencies causing heating, noise and even failures of the transducers are identified and characterised.

  2. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  3. Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Nicolás Peréz Alvarez

    2015-11-01

    Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.

  4. Multilevel inverter based class D audio amplifier for capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The reduced semiconductor voltage stress makes the multilevel inverters especially interesting, when driving capacitive transducers for audio applications. A ± 300 V flying capacitor class D audio amplifier driving a 100 nF load in the midrange region of 0.1-3.5 kHz with Total Harmonic Distortion...

  5. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  6. Platform based design of EAP transducers in Danfoss PolyPower A/S

    DEFF Research Database (Denmark)

    Sarban, Rahimullah; Guðlaugsson, Tómas Vignir

    2013-01-01

    for a new area of research namely product development emerges. Product development can be based on an isolated design and production for a single product or platform design where a product family is developed. In platform design the families of products exploits commonality of platform modules while...... organizations. The aim of the project is to develop platform based designs and product family for the EAP components to be used in variety of applications. This paper presents the structure of the platform project as a whole and specifically the platform based designs of EAP transducers. The underlying......Electroactive Polymer (EAP) has gained increasing focus, in research communities, in last two decades. Research within the field of EAP has, so far, been mainly focused on material improvements, characterization, modeling and developing demonstrators. As the EAP technology matures, the need...

  7. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    Science.gov (United States)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  8. Effect of stimuli, transducers and gender on acoustic change complex

    Directory of Open Access Journals (Sweden)

    Hemanth N. Shetty

    2012-08-01

    Full Text Available The objective of this study was to investigate the effect of stimuli, transducers and gender on the latency and amplitude of acoustic change complex (ACC. ACC is a multiple overlapping P1-N1-P2 complex reflecting acoustic changes across the entire stimulus. Fifteen males and 15 females, in the age range of 18 to 25 (mean=21.67 years, having normal hearing participated in the study. The ACC was recorded using the vertical montage. The naturally produced stimuli /sa/ and /si/ were presented through the insert earphone/loud speaker to record the ACC. The ACC obtained from different stimuli presented through different transducers from male/female participants were analyzed using mixed analysis of variance. Dependent t-test and independent t-test were performed when indicated. There was a significant difference in latency of 2N1 at the transition, with latency for /sa/ being earlier; but not at the onset portions of ACC. There was no significant difference in amplitude of ACC between the stimuli. Among the transducers, there was no significant difference in latency and amplitude of ACC, for both /sa/ and /si/ stimuli. Female participants showed earlier latency for 2N1 and larger amplitude of N1 and 2P2 than male participants, which was significant. ACC provides important insight in detecting the subtle spectral changes in each stimulus. Among the transducers, no difference in ACC was noted as the spectra of stimuli delivered were within the frequency response of the transducers. The earlier 2N1 latency and larger N1 and 2P2 amplitudes noticed in female participants could be due to smaller head circumference. The findings of this study will be useful in determining the capacity of the auditory pathway in detecting subtle spectral changes in the stimulus at the level of the auditory cortex.

  9. Thin-Profile Transducers for Intraoperative Hemostasis

    Science.gov (United States)

    Zderic, Vesna; Mera, Thomas; Vaezy, Shahram

    2005-03-01

    Our goal has been to develop thin-profile HIFU applicators for intraoperative hemostasis. The HIFU device consisted of a concave PZT element encased in a spoon-shaped aluminum housing with the diameter of 4 cm and thickness of 1 cm. The housing front surface had a thickness of 3/4 ultrasound wavelength in aluminum (0.92 mm) to provide acoustic matching. The device had a resonant frequency of 6.26 MHZ, and efficiency of 42%. The ultrasound field was observed using hydrophone field mapping and radiation force balance. The full-width half-maximum (FWHM) dimensions of the focal region were 0.6 mm and 2.2 mm in lateral and axial direction, respectively. The maximal intensity at the focus was 9,500 W/cm2 (in water). The device was tested using BSA-polyacrylamide gel phantom and rabbit kidney in vivo. HIFU application for 10 s produced lesions in the gel phantom (lesion width of 3 mm), and rabbit kidney in vivo (lesion width of 8 mm). A thin-profile HIFU applicator has advantages of high efficiency, simple design, and small dimensions.

  10. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    Science.gov (United States)

    Song, Junho; Hynynen, Kullervo

    2009-04-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100×100×80 mm3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  11. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    International Nuclear Information System (INIS)

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  12. Six-Axis Force-Torque Transducer for Mars 2018 Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A transducer element that is hearty enough for a Mars lander mission needs to be developed so that a six-axis force and torque transducer is possible. The technical...

  13. Eddy Current Transducer Dedicated for Sigma Phase Evaluation in Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Grzegorz Psuj

    2012-01-01

    Full Text Available The paper describes a new transducer dedicated for evaluation of a duplex stainless steel (DSS. Different phases which exist in DSS have influence on mechanical as well as on electrical properties. Therefore, an eddy current transducer was utilized. In order to achieve high sensitivity, a differential type of the transducer was selected. The performance of the transducer was verified by utilizing the samples which had a different amount of sigma phase.

  14. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    International Nuclear Information System (INIS)

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  15. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Science.gov (United States)

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  16. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Brian; Tittmann, Bernhard [The Pennsylvania State University (United States); Rempe, Joy; Daw, Joshua [Idaho National Laboratory (United States); Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov [Massachusetts Institute of Technology (United States); Ramuhalli, Pradeep; Montgomery, Robert [Pacific Northwest National Laboratory (United States); Chien, Hualte [Argonne National Laboratory (United States); Wernsman, Bernard [Bechtel Marine Propulsion Corp (United States)

    2015-03-31

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  17. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    International Nuclear Information System (INIS)

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  18. Investigation of Microopto-eletromechanical Angular Velocity and Acceleration Transducers based on Optical Tunneling Effect

    Science.gov (United States)

    Busurin, V. I.; Lwin, Naing Htoo; Tuan, Pham Anh

    In this paper the possibility of microopto-electromechanical (MOEM) angular velocity and acceleration transducers based on optical tunneling effect (OTE) is considered. The generalized model of MOEM transducers with various types of sensing elements (SE) is developed, transfer functions are investigated, and the errors with various design parameters of transducers are estimated.

  19. Detection of Rotor Forced Response Vibrations Using Stationary Pressure Transducers in a Multistage Axial Compressor

    Directory of Open Access Journals (Sweden)

    William L. Murray

    2015-01-01

    Full Text Available Blade row interactions in turbomachinery can lead to blade vibrations and even high cycle fatigue. Forced response conditions occur when a forcing function (such as impingement of stator wakes occurs at a frequency that matches the natural frequency of a blade. The objective of this research is to develop the data processing techniques needed to detect rotor blade vibration in a forced response condition from stationary fast-response pressure transducers to allow for detection of rotor vibration from transient data and lead to techniques for vibration monitoring in gas turbines. This paper marks the first time in the open literature that engine-order resonant response of an embedded bladed disk in a 3-stage intermediate-speed axial compressor was detected using stationary pressure transducers. Experiments were performed in a stage axial research compressor focusing on the embedded rotor of blisk construction. Fourier waterfall graphs from a laser tip timing system were used to detect the vibrations after applying signal processing methods to uncover these pressure waves associated with blade vibration. Individual blade response was investigated using cross covariance to compare blade passage pressure signatures through resonance. Both methods agree with NSMS data that provide a measure of the exact compressor speeds at which individual blades enter resonance.

  20. Integratable high temperature ultrasonic transducers for NDT of metals and industrial process monitoring

    International Nuclear Information System (INIS)

    Thick (> 40 μm) piezoelectric ceramic films have been successfully deposited on metallic substrates by a sol-gel spray technique as HTUTs. Our novel approach focuses on the fabrication techniques of these HTUTs at the test site with handheld equipment and no furnaces. These HTUTs can be integrated onto large metallic structures such as pipes and molds for real-time and on-line automate NDT and process monitoring at the sensor location. The characteristics of these ultrasonic transducers are that they (1) can be fabricated directly onto the desired planar or curved metallic substrate such as large pipe at the NDT site; (2) do not need couplant; (3) can operate in the pulse/echo mode with a signal to noise ratio more than 30 dB at 10 MHz; (4) can operate up to more than 400oC. These HTUTs can be made onto thin metallic membranes as flexible transducers that can be wrapped around samples of cylindrical surfaces for NDT applications. The capability of these thick film UTs for NDT applications at temperatures up to 440oC and real-time non-intrusive and nondestructive process monitoring of polymer injection molding has been demonstrated. (author)

  1. Synthetic aperture imaging for multilayer cylindrical object using an exterior rotating transducer

    Science.gov (United States)

    Wu, Shiwei; Skjelvareid, Martin H.; Yang, Keji; Chen, Jian

    2015-08-01

    The synthetic aperture focusing technique (SAFT) with significant improvements in lateral resolution has been adapted for ultrasound imaging of multilayer objects. To apply SAFT to imaging of cylindrical objects such as solid axles or pipes with small diameter, exterior cylindrical scan is much preferred. In this paper, a frequency-domain algorithm is proposed for such cylindrical scan performed with an exterior rotating transducer. The algorithm is derived from Fourier-domain solutions to the waveequation in cylindrical coordinates, and then extended to the multilayer case. A simulation model for multilayer structure is established, and the algorithm is demonstrated for both simulated and experimental data. Compared with the raw images, the reconstructed images with proposed algorithm attain better lateral resolution for multilayer objects. It is shown that the attainable angular resolution for each layer is approximately consistent with that achieved in the single-layer case, as long as the transmission factors are approximately uniform within the divergence angle of the transducer. The performance of proposed algorithm is verified with experimental C-scan image and demonstrates that it is capable of improving the lateral resolution in both scanning directions.

  2. Cladding flaw detection and sizing by horizontally polarized shear wave ultrasonic EMAT transducers

    International Nuclear Information System (INIS)

    Further experimental work was done within the framework of the current research contract on the employment of the EMAT technique in the ultrasonic inspection of reactor vessel cladding. This year's activity focused on the study of the space distribution of the ultrasonic beam generated by the flexible transducers developed during the course of the previous year, and on the inspection of the cladding of the JRC-ISPRA PWR vessel 1:5 scale model. Two transducer pairs were used to make laboratory measurements on the clad and unclad test block sides for the purpose of studying ultrasonic beam distribution. It emerged that the cladding tended to confine the beam. If however the wavelength was equal to or greater than the cladding thickness the confinement was not complete and became less and less evident with increasing wavelength. It was consequently possible to pick up echoes produced by flaws located both within the cladding and in the underlaying layers. The PWR vessel model cladding was then inspected in the neighbourhood of the welds and a large number of flaws was found. The EMAT technique has proved to be suitable for the detection and rough location of flaws but less so for their sizing, although in some cases it was possible to assess the distance between the flaw and the cladding top

  3. Non-contact optoacoustic imaging by raster scanning a piezoelectric air-coupled transducer

    Science.gov (United States)

    Deán-Ben, X. Luís.; Pang, Genny A.; Montero de Espinosa, Francisco; Razansky, Daniel

    2016-03-01

    Optoacoustic techniques rely on ultrasound transmission between optical absorbers within tissues and the measurement location. Much like in echography, commonly used piezoelectric transducers require either direct contact with the tissue or through a liquid coupling medium. The contact nature of this detection approach then represents a disadvantage of standard optoacoustic systems with respect to other imaging modalities (including optical techniques) in applications where non-contact imaging is needed, e.g. in open surgeries or when burns or other lesions are present in the skin. Herein, non-contact optoacoustic imaging using raster-scanning of a spherically-focused piezoelectric air-coupled ultrasound transducer is demonstrated. When employing laser fluence levels not exceeding the maximal permissible human exposure, it is shown possible to attain detectable signals from objects as small as 1 mm having absorption properties representative of blood at near-infrared wavelengths with a relatively low number of averages. Optoacoustic images from vessel-mimicking tubes embedded in an agar phantom are further showcased. The initial results indicate that the air-coupled ultrasound detection approach can be potentially made suitable for non-contact biomedical imaging with optoacoustics.

  4. Amplifier for optimal reflection Coefficient of ultrasound transducer : A study of op amp based circuits for ultrasound transducers, targeted for low reflection Coefficient, high gain, and low noise

    OpenAIRE

    Mainou Gomez, José Francisco

    2012-01-01

    Reverberation is defined as equally-spaced, bright linear echoes resulting from reflection from specular-type interfaces. They are provoked by the acoustic Impedance change between the tissue and transducer front surface. B. Angelsen developed a mathematical approach to correct this ultrasound artifact by coupling the ultrasound transducer with an ideal electrical load in order to obtain zero reflection coefficients on the transducer from face [1]. However, when analyzing Impedance spectrosco...

  5. The Current State of Silicone-Based Dielectric Elastomer Transducers.

    Science.gov (United States)

    Madsen, Frederikke B; Daugaard, Anders E; Hvilsted, Søren; Skov, Anne L

    2016-03-01

    Silicone elastomers are promising materials for dielectric elastomer transducers (DETs) due to their superior properties such as high efficiency, reliability and fast response times. DETs consist of thin elastomer films sandwiched between compliant electrodes, and they constitute an interesting class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material development is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower driving voltages. In this review, the current state of silicone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects of the elastomer are taken into account, namely dielectric losses, lifetime and the very often ignored polymer network integrity and stability. PMID:26773231

  6. Determination of Precise Instantaneous Height at Multibeam Transducer

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jianhu; ZHANG Hongmei; John E. Hughes Clarke

    2007-01-01

    To overcome the shortcomings of the traditional multibeam survey and data processing, a new method is presented for the precise determination of the instantaneous height at the multibeam transducer by the blend of GPS height and heave signals. Before signal blend, GPS height and heave signals need to be corrected first to the transducer center by attitude correction. Second, the GPS height needs to be checked and modified by heave check and modification itself. Butterworth and FFT (fast Fourier transformation) were used in the signal blend. Finally, FFT is thought to be appropriate in signal processing. The new method efficiently overcomes the shortcomings of the traditional method, and this is proven well by the MBS (multibeam bathymetric system) experiment.

  7. A vibration energy harvester using magnet/piezoelectric composite transducer

    Science.gov (United States)

    Qiu, Jing; Chen, Hengjia; Wen, Yumei; Li, Ping; Yang, Jin; Li, Wenli

    2014-05-01

    In this research, a vibration energy harvester employing the magnet/piezoelectric composite transducer to convert mechanical vibration energy into electrical energy is presented. The electric output performance of a vibration energy harvester has been investigated. Compared to traditional magnetoelectric transducer, the proposed vibration energy harvester has some remarkable characteristic which do not need binder. The experimental results show that the presented vibration energy harvester can obtain an average power of 0.39 mW for an acceleration of 0.6g at frequency of 38 Hz. Remarkably, this power is a very encouraging power figure that gives the prospect of being able to power a widely range of wireless sensors in wireless sensor network.

  8. Force transducers based on the stress dependence of coercive force

    Science.gov (United States)

    Garshelis, I. J.

    1993-05-01

    An alternative measurement regime for magnetoelastic force transducers, based on variations in coercive field, is described. Hc is shown to be more directly related to the primary magnetic influence of stress, namely, the orientation of effective anisotropy, than conventionally used magnetization related parameters. The stress dependence of Hc is shown to generally reflect opposing factors associated with rotational and wall displacement magnetization reversal processes. In materials wherein Hc≪K/Ms wall motion dominates and if the product of λs/K and yield stress is high enough, large monotonic reductions of Hc with positive (tensile) stress are shown to be possible. A more complex variation of Hc with increasing compression is similarly expected. Experimental results from a transducer having an 18% Ni maraging steel core support these expectations.

  9. Broadband electrostatic acoustic transducer for ultrasonic measurements in liquids.

    Science.gov (United States)

    Cantrell, J H; Heyman, J S; Yost, W T; Torbett, M A; Breazeale, M A

    1979-01-01

    A broadband capacitive electrostatic acoustic transducer (ESAT) has been developed for use in a liquid environment at megahertz frequencies. The ESAT basically consists of a thin conductive membrane stretched over a metallic housing. The membrane functions as the ground plate of a parallel plate capacitor, the other plate being a dc biased electrode recessed approximately 10 mum from the electrically grounded membrane. An ultrasonic wave incident on the membrane varies the membrane-electrode gap spacing and generates an electrical signal proportional to the wave amplitude. The entire assembly is sealed for immersion in a liquid environment. Calibration of the ESAT with incident ultrasonic waves of constant displacement amplitude from 1 to 15 MHz reveals a decrease in signal response with increasing frequency independent of membrane tension. The use of the ESAT as a broadband ultrasonic transducer in liquids with a predictable frequency response is promising.

  10. The Current State of Silicone-Based Dielectric Elastomer Transducers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren;

    2016-01-01

    Silicone elastomers are promising materials for dielectric elastomer transducers (DETs) due to their superior properties such as high efficiency, reliability and fast response times. DETs consist of thin elastomer films sandwiched between compliant electrodes, and they consti- tute an interesting...... class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material devel- opment is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower...... of the elastomer are taken into account, namely dielectric losses, life- time and the very often ignored polymer network integrity and stability....

  11. Development of pressure transducer re-instrumentating technique (II)

    International Nuclear Information System (INIS)

    Development of FP gas pressure transducer re-instrumentating technique have been conducted since 1985. The initial stage, the followings have been made : design and fabrication of re-instrumentation device and in pile performance test ; development of remote welding and fabrication technique of re-instrumentating device to irradiated fuel rod in the hot cell ; and remote inserting technique of fuel rod into capsule. In 1990, a power ramping test was carried out instrumentating two irradiated fuel rod with re-instrumentated devices respectively. As a result of performance test, it was fond that FP gas pressure transducer had been successively indicating the inner pressure corresponding to linear heat rate of fuels. At present, the power ramping test adopting these techniques acquired is on-going in JMTR (Japan Materials Testing Reactor). (author)

  12. Comprehensive helicopter rotor instrumentation - A retrofit approach using miniature transducers

    Science.gov (United States)

    Jacklin, Stephen A.; Mort, Ray; Morrison, Dwayne

    1992-01-01

    This paper reports an approach used to retrofit a set of full-scale main rotor blades with 290 miniature pressure transducers, 46 strain gages, and 24 miniature accelerometers. Normally, in order to avoid disturbing the aerodynamics of the rotor flow field, the pressure instrumentation must be integrally built into the body of the rotor blades. However, using a method developed with NASA, miniature pressure transducers are mounted to the blade exterior surface without degrading the quality of the blade aerodynamics. Moreover, it is estimated that this approach reduced costs by more than 50 percent over building a set of pressure instrumented blades. The aerodynamic measurement objectives are presented as are instrumentation design considerations, type of instrumentation used, assembly process, and the installed instrumentation characteristics.

  13. Electrocaloric Response of Ferroelectric Material Applicable as Electrothermal Transducer

    Directory of Open Access Journals (Sweden)

    Saber Mohammadi

    2013-01-01

    Full Text Available Electrocaloric response of the PMN-10PT is measured experimentally and compared with the numerical results. Based on the compatibility of the experimental and numerical results, feasibility of using ferroelectric materials as an electrothermal transducer has been investigated. In this study, electrocaloric response of three different ferroelectric capacitors (PMN-10PT, PMN-25PT, and PZN-4.5PT under an applied periodic electric field have been investigated. Alternative switching of the electrocaloric elements with specific boundary conditions generates a directed heat flux. It can be concluded that each ferroelectric material can be used as a transducer in a special temperature range that in which it has good electrocaloric response.

  14. Fiber optic ultrasound transducers with carbon/PDMS composite coatings

    Science.gov (United States)

    Mosse, Charles A.; Colchester, Richard J.; Bhachu, Davinder S.; Zhang, Edward Z.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2014-03-01

    Novel ultrasound transducers were created with a composite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) that was dip coated onto the end faces of optical fibers. The CNTs were functionalized with oleylamine to allow for their dissolution in xylene, a solvent of PDMS. Ultrasound pulses were generated by illuminating the composite coating with pulsed laser light. At distances of 2 to 16 mm from the end faces, ultrasound pressures ranged from 0.81 to 0.07 MPa and from 0.27 to 0.03 MPa with 105 and 200 μm core fibers, respectively. Using an optical fiber hydrophone positioned adjacent to the coated 200 µm core optical fiber, ultrasound reflectance measurements were obtained from the outer surface of a sheep heart ventricle. The results of this study suggest that ultrasound transducers that comprise optical fibers with CNT-PDMS composite coatings may be suitable for miniature medical imaging probes.

  15. Optimization of large-scale fabrication of dielectric elastomer transducers

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager

    Polypower A/S employs a large-scale process for manufacturing DE films with one-sided corrugated surfaces. The DEs are manufactured by coating an elastomer mixture to a corrugated carrier web, thereby imprinting the corrugations onto the elastomer. The corrugated elastomer is then sputtered with metal...... electrodes on the corrugated surface, and due to these corrugated surfaces the metal electrodes maintain conductivities up to more than 100% strain of the elastomer film. The films are then laminated in multiple layers to fabricate DE transducers. However, the current manufacturing process is not trouble......-free, and two issues in particular have great influence on the performance of DE transducers. The first issue is the release of the corrugated elastomer film from the carrier web, due to the large surface area and flexible nature of the elastomer film, while the second issue relates to the lamination of DE...

  16. Local Area Damage Detection in Composite Structures Using Piezoelectric Transducers

    OpenAIRE

    Lichtenwalner, Peter F.; Sofge, Donald A.

    2007-01-01

    An integrated and automated smart structures approach for structural health monitoring is presented, utilizing an array of piezoelectric transducers attached to or embedded within the structure for both actuation and sensing. The system actively interrogates the structure via broadband excitation of multiple actuators across a desired frequency range. The structure's vibration signature is then characterized by computing the transfer functions between each actuator/sensor pair, and compared t...

  17. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States). Dept. of Engineering Science and Mechanics; Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States). Dept. of Engineering Science and Mechanics; Rempe, Joy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Carpenter, David [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Ames, Micheal [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Ostrovsky, Yakov [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hualte [Argonne National Lab. (ANL), Argonne, IL (United States); Wernsman, Bernard [Bettis Atomic Power Lab. (BAPL), West Mifflin, PA (United States). Bechtel Marine Propulsion Corp.

    2014-07-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) provide harsh environments in and near the core that can severely test material performance and limit their operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration radiation performance of fuels and materials. In To reduce the amount of Material and Test Reactor (MTR) irradiations required, DOE is also funding development of enhanced instrumentation that will be able to obtain data, with unprecedented accuracy and resolution, that are required to validate new multi-scale multiphysics modeling tools . It is not feasible to obtain such data with the current state of instrumentation technology. To address this need, PSU and collaborators have started an experiment to test the potential for utilizing ultrasonic instruments in-pile. Ultrasonic sensors must be resistant to high neutron flux, high gamma radiation, and high temperature. PSU and collaborators have designed, fabricated, and started to irradiate piezoelectric and magnetostrictive transducers designed to perform in such harsh environments. Three piezoelectric transducers were fabricated with aluminum nitride, zinc oxide, and bismuth titanate as the active element. The transducers are coupled kovar and aluminum waveguides of which pulse-echo ultrasonic measurements are made in-situ. Two magnetostrictive transducers were fabricated with Remendur and Arnokrome as the active elements. These devices will be pulsed and monitored in-situ. (1) Selection of candidate sensor materials as well as optimization of test assembly parameters (2) High temperature benchmark testing and (3) initial data from the irradiation will be reported.

  18. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    International Nuclear Information System (INIS)

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) provide harsh environments in and near the core that can severely test material performance and limit their operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration radiation performance of fuels and materials. In To reduce the amount of Material and Test Reactor (MTR) irradiations required, DOE is also funding development of enhanced instrumentation that will be able to obtain data, with unprecedented accuracy and resolution, that are required to validate new multi-scale multiphysics modeling tools . It is not feasible to obtain such data with the current state of instrumentation technology. To address this need, PSU and collaborators have started an experiment to test the potential for utilizing ultrasonic instruments in-pile. Ultrasonic sensors must be resistant to high neutron flux, high gamma radiation, and high temperature. PSU and collaborators have designed, fabricated, and started to irradiate piezoelectric and magnetostrictive transducers designed to perform in such harsh environments. Three piezoelectric transducers were fabricated with aluminum nitride, zinc oxide, and bismuth titanate as the active element. The transducers are coupled kovar and aluminum waveguides of which pulse-echo ultrasonic measurements are made in-situ. Two magnetostrictive transducers were fabricated with Remendur and Arnokrome as the active elements. These devices will be pulsed and monitored in-situ. (1) Selection of candidate sensor materials as well as optimization of test assembly parameters (2) High temperature benchmark testing and (3) initial data from the irradiation will be reported.

  19. Differential scanning calorimetry of superelastic Nitinol for tunable cymbal transducers

    OpenAIRE

    Feeney, Andrew; Lucas, Margaret

    2015-01-01

    Recent research has shown that estimations of the transformation temperatures of superelastic Nitinol using differential scanning calorimetry can be inaccurate, in part, due to the residual stress in the material. Superelastic Nitinol is selected as the end-cap material in a tunable cymbal transducer. The differential scanning calorimetry accuracy is initially probed by comparing transformation temperature measurements of cold-worked superelastic Nitinol with the same material after an anneal...

  20. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    OpenAIRE

    Jeff Bird; Cheng-Kuei Jen; Zhigang Sun; Pierre Sammut; Brian Galeote; Makiko Kobayashi; Kuo-Ting Wu; Nezih Mrad

    2011-01-01

    The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs) made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and...

  1. Forward and Backward Application of Symbolic Tree Transducers

    OpenAIRE

    Fülöp, Zoltán; Vogler, Heiko

    2012-01-01

    We consider symbolic tree automata (sta) and symbolic tree transducers (stt). We characterize s-recognizable tree languages (which are the tree languages recognizable by sta) in terms of (classical) recognizable tree languages and relabelings. We prove that sta and the recently introduced variable tree automata are incomparable with respect to their recognition power. We define symbolic regular tree grammars and characterize s-regular tree languages in terms of regular tree languages and rela...

  2. Differential Pressure Transducer for Corrosion Monitoring of Iron

    OpenAIRE

    Amar Prasad Yadav

    2014-01-01

    In this study, differential pressure transducer (DPT) has been applied as an alternate corrosion monitoring device for monitoring corrosion of iron in atmospheric environment by measuring very small changes in the amount of oxygen. The result of corrosion current obtained from DPT method has been compared with that obtained from AC impedance method. The difference in the value of corrosion current obtained from these two methods was attributed to the error in choosing the value of proportiona...

  3. Ultrasonic Heat Transfer Enhancement Using a Horn-Type Transducer

    Science.gov (United States)

    Nomura, Shinfuku; Yamamoto, Akira; Murakami, Koichi

    2002-05-01

    The purpose of this study is to clarify experimentally the influence of streaming induced by ultrasonic vibration on heat transfer using a horn-type ultrasonic vibrator. A horn tip of 6 mm diameter and 60.7 kHz resonant frequency was used as the ultrasonic transducer. Heat transfer experiments for a downward-facing horizontal heating surface with ultrasonic vibration from below were carried out in a natural convection region. The acoustic jet in the water from the horn tip of the transducer regarded as a nozzle exit was induced by this transducer, and as a result, up to a ten-fold increase in heat transfer coefficient was obtained by application of 20 W in both tap water and degassed water. It was found that the mechanism of heat transfer enhancement by ultrasonic vibration in tap water can be classified into four categories. In degassed water, heat transfer enhancement is influenced not by the acoustic jet, but by small-scale perturbations by cavitation microjets.

  4. MEMS ultrasonic transducer for monitoring of steel structures

    Science.gov (United States)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2002-06-01

    Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.

  5. An Analysis of Transducer Mass Loading Effect Inshaker Testing

    Directory of Open Access Journals (Sweden)

    A. D. Karle

    2014-06-01

    Full Text Available Modal Analysis has been a developing science in the experimental evaluation of the dynamic properties of the structures. Frequency Response Function (FRF is one of the major steps in modal analysis. Measured frequency response functions (FRFs are used to extract modal parameters. It is also known that the accuracy and the reliability of various analyses using the measured FRFs depend strongly on the quality of measured data. It is well known that the quality of measured frequency response functions (FRFs is adversely affected by many factors, most significant sources being noise and systematic errors like mass loading effects of transducers. A transducer mounted on a vibrating system changes the dynamics of the structure due to the addition of extra mass and introduces errors into measured FRFs. One problem with this is the production of unrealistic results, which cause the measured resonant frequencies to be less than the correct values. These errors also lead to incorrect prediction of modal parameters. In many situations, the mass loading effect is ignored in the analytical and experimental process, based on a usual assumption that the transducer mass is negligible compared to that of the structure under test. However, when light-weighted structures are investigated, this effect can be significant.

  6. Deconvolution based photoacoustic reconstruction for directional transducer with sparsity regularization

    Science.gov (United States)

    Moradi, Hamid; Tang, Shuo; Salcudean, Septimiu E.

    2016-03-01

    We define a deconvolution based photoacoustic reconstruction with sparsity regularization (DPARS) algorithm for image restoration from projections. The proposed method is capable of visualizing tissue in the presence of constraints such as the specific directivity of sensors and limited-view Photoacoustic Tomography (PAT). The directivity effect means that our algorithm treats the optically-generated ultrasonic waves based on which direction they arrive at the transducer. Most PA image reconstruction methods assume that sensors have omni-directional response; however, in practice, the sensors show higher sensitivity to the ultrasonic waves coming from one specific direction. In DPARS, the sensitivity of the transducer to incoming waves from different directions are considered. Thus, the DPARS algorithm takes into account the relative location of the absorbers with respect to the transducers, and generates a linear system of equations to solve for the distribution of absorbers. The numerical conditioning and computing times are improved by the use of a sparse Discrete Fourier Transform (DCT) representation of the distribution of absorption coefficients. Our simulation results show that DPARS outperforms the conventional Delay-and-Sum reconstruction method in terms of CNR and RMS errors. Experimental results confirm that DPARS provides images with higher resolution than DAS.

  7. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    K. Heath Martin

    2014-11-01

    Full Text Available For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.

  8. Analyzing a Vibrating Wire Transducer using Coupled Resonator Circuits

    Directory of Open Access Journals (Sweden)

    POP, S.

    2015-08-01

    Full Text Available This paper intends to be an approach on the vibrating wire transducer from the perspective of the necessary rules used for a correct measurement procedure. There are several studies which analyze the vibrating wire transducer as a mechanical system. However, a comparative time-domain analysis between the mechanical and the electrical model is lacking. The transducer analysis is based on a theoretical analysis of the equivalent circuit, on both excitation and response time intervals. The electrical model consists of two magnetic coupled resonating circuits. When connected to an excitation source, there will be an energy transfer from the coil to the wire. The maximum energy transfer will occur at the vibrating wire's frequency of resonance. Using the transient regime analysis, it has been proven that, in the response time interval - when the wire vibrates freely, the current through the circuit that models the wire describes the oscillating movement of the wire. A complex signal is obtained, that contains both coil's and wire's frequencies of resonance, strongly dependent with theirs parasitic elements. The mathematical analysis highlights the similarity between mechanical and electrical model and the procedures in order to determine the wire frequency of resonance from the output signal.

  9. Development of ultrasonic testing equipment incorporating electromagnetic acoustic transducer

    International Nuclear Information System (INIS)

    This paper describes an automatic flaw detection equipment and heat-resistant ultrasonic transducer for plate thickness measurement. The automatic flaw detection equipment is used during in-service inspection. It comprises an angle-beam electromagnetic acoustic transducer (EMAT), mounted on a vehicle, for scanning the pipe surface to be inspected. The EMAT functions without direct contact with the pipe surface through a coupling liquid, the vehicle does not require a guide track installed on the pipe surface, since it is equipped with magnetic wheels that adhere to the pipe, permitting it to travel along the circumferential weld joint of a carbon steel pipe. Another heat-resistant ultrasonic transducer is a normal beam EMAT and is used during plant operation. As a result, the automatic flaw detection equipment could detect a 1 mm deep notch cut on a test piece of 25 mm thick carbon steel plate. The vehicle location accuracy on the piping was ±2 mm. The normal beam EMAT could measure the plate thickness, within ±0.3 mm accuracy for the range of plate thickness 4 mm to 12 mm at 300degC. (author)

  10. Development of smart piezoelectric transducer self-sensing, self-diagnosis and tuning schemes for structural health monitoring applications

    Science.gov (United States)

    Lee, Sang Jun

    Autonomous structural health monitoring (SHM) systems using active sensing devices have been studied extensively to diagnose the current state of aerospace, civil infrastructure and mechanical systems in near real-time and aims to eventually reduce life-cycle costs by replacing current schedule-based maintenance with condition-based maintenance. This research develops four schemes for SHM applications: (1) a simple and reliable PZT transducer self-sensing scheme; (2) a smart PZT self-diagnosis scheme; (3) an instantaneous reciprocity-based PZT diagnosis scheme; and (4) an effective PZT transducer tuning scheme. First, this research develops a PZT transducer self-sensing scheme, which is a necessary condition to accomplish a PZT transducer self-diagnosis. Main advantages of the proposed self-sensing approach are its simplicity and adaptability. The necessary hardware is only an additional self-sensing circuit which includes a minimum of electric components. With this circuit, the self-sensing parameters can be calibrated instantaneously in the presence of changing operational and environmental conditions of the system. In particular, this self-sensing scheme focuses on estimating the mechanical response in the time domain for the subsequent applications of the PZT transducer self-diagnosis and tuning with guided wave propagation. The most significant challenge of this self-sensing comes from the fact that the magnitude of the mechanical response is generally several orders of magnitude smaller than that of the input signal. The proposed self-sensing scheme fully takes advantage of the fact that any user-defined input signals can be applied to a host structure and the input waveform is known. The performance of the proposed self-sensing scheme is demonstrated by theoretical analysis, numerical simulations and various experiments. Second, this research proposes a smart PZT transducer self-diagnosis scheme based on the developed self-sensing scheme. Conventionally, the

  11. Flexible PVDE comb transducers for excitation of axisymmetric guided waves in pipe

    International Nuclear Information System (INIS)

    Flexible PVDF pipe comb transducers are easy to install by wrapping around any size pipe. It is possible to mechanically couple these transducers to the pipe thereby eliminating the need to bond electrodes to the film and couple the transducer to the pipe. The simple fabrication process, installation, and affordability of these transducers makes them realistic candidates for condition based monitoring of some critical pipeline applications. These transducers are capable of exciting lower order axisymmetric modes with minimal radial displacement and maximum axial displacement as well as modes with both surface displacement components. This versatility is extremely important since under certain loading conditions modes with significant radial displacement are almost completely attenuated.

  12. Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip

    DEFF Research Database (Denmark)

    Iranmanesh, I.; Barnkob, Rune; Bruus, Henrik;

    2013-01-01

    coupling angle, and transducer actuation method (single-frequency actuation or frequency-modulation actuation). The energy-density analysis is based on measuring the transmitted light intensity through a microfluidic channel filled with a suspension of 5 µm diameter beads and the results with the tunable...... uniform particle patterns with average acoustic energy densities comparable to those obtained using single-frequency actuation.......We present a tunable-angle wedge ultrasound transducer for improved control of microparticle acoustophoresis in a microfluidic chip. The transducer is investigated by analyzing the pattern of aligned particles and induced acoustic energy density while varying the transducer geometry, transducer...

  13. Analytical modeling and experimental validation of a V-shape piezoelectric ultrasonic transducer

    Science.gov (United States)

    Li, Xiaoniu; Yao, Zhiyuan

    2016-07-01

    In this paper, an analytical model of a V-shape piezoelectric ultrasonic transducer is presented. The V-shape piezoelectric ultrasonic transducer has been widely applied to the piezoelectric actuator (ultrasonic motor), ultrasonic aided fabrication, sensor, and energy harvesting device. The V-shape piezoelectric ultrasonic transducer consists of two Langevin-type transducers connected together through a coupling point with a certain coupling angle. Considering the longitudinal and lateral movements of a single beam, the symmetrical and asymmetrical modals of the V-shape piezoelectric ultrasonic transducer are calculated. By using Hamilton–Lagrange equations, the electromechanical coupling model of the V-shape piezoelectric ultrasonic transducer is proposed. The influence of the coupling angle and cross-section on modal characteristics and electromechanical coupling coefficient are analyzed by the analytical model. A prototype of the V-shape piezoelectric ultrasonic transducer is fabricated, and the results of the experiments are in good agreement with the analytical model.

  14. Transducer models in the ultrasound simulation program FIELD II and their accuracy

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Bæk, David

    2010-01-01

    The FIELD II simulation program can be used for simulating any kind of linear ultrasound fields. The program is capable of describing multi-element transducers used with any kind of excitation, apodization, and focusing. The program has been widely used in both academia and by commercial ultrasound...... through the choice of the fundamental elements. The rectangular elements use a far-field approximation, whereas the two other methods use the full analytic solution, leading to a higher precision at the price of a slower simulation time. The talk will describe the different compromises and solutions to...... obtain a fast simulation and still attain a high precision including a newly developed semi-analytic solution for a convex surface elements....

  15. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    International Nuclear Information System (INIS)

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  16. Ultrasonic weld defect sizing using the synthetic aperture focusing technique

    International Nuclear Information System (INIS)

    The synthetic aperture focusing technique (SAFT) has been shown to increase lateral resolution of appropriately acquired B-scan images. The requirements of very accurate transducer position information and a well understood divergent ultrasonic beam can make it difficult to incorporate the technique into conventional inspections or to use it on previously acquired data. By using a reference reflector and an echo locus matching procedure it is possible to ease the latter requirement so that data acquired using conventional focused or flat transducers can be enhanced using the SAFT process. One current application of the SAFT technique is the accurate sizing and monitoring of known defects in a nuclear generating station boiler manway weld. Testing on laboratory samples which duplicate the manway geometry indicate the potential for improved resolution using SAFT

  17. An Air-Coupled Multiple Moving Membrane Micromachined Ultrasonic Transducer With Inverse Biasing Functionality.

    Science.gov (United States)

    Emadi, Arezoo; Buchanan, Douglas A

    2016-08-01

    A novel air-coupled multiple moving membrane-capacitive micromachined ultrasonic transducer ( [Formula: see text]-CMUT) with individually biased deflectable plates has been developed. Unlike the conventional capacitive micromachined ultrasonic transducer, this device cell structure includes an additional deflectable plate that is suspended underneath the transducer top plate. This added flexible plate contributes to the device signal transmission and reception. It is demonstrated that due to the presence of this added moving plate, the transducer is capable of operating under inverse bias condition, where the driving voltage is sandwiched between two grounded electrodes. COMSOL electromechanical simulations were conducted to investigate the influence of the transducer additional moving plate. A set of three individuals and an array of [Formula: see text]-CMUT transducers were fabricated using a sacrificial technique and with resonant frequencies ranging from 0.8 to 2.1 MHz. Electrical, optical, and pitch-catch acoustic measurements were performed to characterize the transducers properties under inverse bias condition. The experimental results are shown to be in good agreement with the simulation results for all of the fabricated transducers. It is shown that these transducers are fully functional under both normal and inverse bias conditions without any degradation in the transducer performance. PMID:27254861

  18. Electromechanical coupling factor of capacitive micromachined ultrasonic transducers

    Science.gov (United States)

    Caronti, Alessandro; Carotenuto, Riccardo; Pappalardo, Massimo

    2003-01-01

    Recently, a linear, analytical distributed model for capacitive micromachined ultrasonic transducers (CMUTs) was presented, and an electromechanical equivalent circuit based on the theory reported was used to describe the behavior of the transducer [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 159-168 (2002)]. The distributed model is applied here to calculate the dynamic coupling factor kw of a lossless CMUT, based on a definition that involves the energies stored in a dynamic vibration cycle, and the results are compared with those obtained with a lumped model. A strong discrepancy is found between the two models as the bias voltage increases. The lumped model predicts an increasing dynamic k factor up to unity, whereas the distributed model predicts a more realistic saturation of this parameter to values substantially lower. It is demonstrated that the maximum value of kw, corresponding to an operating point close to the diaphragm collapse, is 0.4 for a CMUT single cell with a circular membrane diaphragm and no parasitic capacitance (0.36 for a cell with a circular plate diaphragm). This means that the dynamic coupling factor of a CMUT is comparable to that of a piezoceramic plate oscillating in the thickness mode. Parasitic capacitance decreases the value of kw, because it does not contribute to the energy conversion. The effective coupling factor keff is also investigated, showing that this parameter coincides with kw within the lumped model approximation, but a quite different result is obtained if a computation is made with the more accurate distributed model. As a consequence, keff, which can be measured from the transducer electrical impedance, does not give a reliable value of the actual dynamic coupling factor.

  19. A Integrated Circuit for a Biomedical Capacitive Pressure Transducer

    Science.gov (United States)

    Smith, Michael John Sebastian

    Medical research has an urgent need for a small, accurate, stable, low-power, biocompatible and inexpensive pressure sensor with a zero to full-scale range of 0-300 mmHg. An integrated circuit (IC) for use with a capacitive pressure transducer was designed, built and tested. The random pressure measurement error due to resolution and non-linearity is (+OR-)0.4 mmHg (at mid-range with a full -scale of 300 mmHg). The long-term systematic error due to falling battery voltage is (+OR-)0.6 mmHg. These figures were calculated from measurements of temperature, supply dependence and non-linearity on completed integrated circuits. The sensor IC allows measurement of temperature to (+OR-)0.1(DEGREES)C to allow for temperature compensation of the transducer. Novel micropower circuit design of the system components enabled these levels of accuracy to be reached. Capacitance is measured by a new ratiometric scheme employing an on -chip reference capacitor. This method greatly reduces the effects of voltage supply, temperature and manufacturing variations on the sensor circuit performance. The limits on performance of the bandgap reference circuit fabricated with a standard bipolar process using ion-implanted resistors were determined. Measurements confirm the limits of temperature stability as approximately (+OR-)300 ppm/(DEGREES)C. An exact analytical expression for the period of the Schmitt trigger oscillator, accounting for non-constant capacitor charging current, was formulated. Experiments to test agreement with theory showed that prediction of the oscillator period was very accurate. The interaction of fundamental and practical limits on the scaling of the transducer size was investigated including a correction to previous theoretical analysis of jitter in an RC oscillator. An areal reduction of 4 times should be achievable.

  20. Vibration control via stiffness switching of magnetostrictive transducers

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-04-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magneto-strictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magneto-strictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magneto-strictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magneto-strictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magneto-strictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  1. Hot pressed piezo-electric ceramic elements for ultrasonic transducers

    International Nuclear Information System (INIS)

    Piezoelectric ceramics (PZT4, PZT5, PZT7 and SPN) were investigated for development of high frequency (30-100 MHz) normal and focussed transducers. Hot pressed piezoelectric materials with a controlled grain size of ∼ 2 μm and approaching theoretical density can be lapped down to 30 μm thickness without structural damage whereas conventional sintered piezoelectric material with gram sizes ranging from 2-15 μm and at least 3% porosity can only be lapped down to 100 μm. Hot pressed piezoelectric ceramics when compared with conventional piezoelectric ceramics, show higher values of coupling coefficient (10-20%), elastic compliance ∼ 12% and moderate increases in mechanical quality factor (Qm) and dielectric constant. The compressional sound velocity measured along the poling direction is very sensitive to the switching of dipoles other than 180o ones. The velocity increases as the polarization increases and this constitutes a useful method for quality control of the piezoelectric ceramic as it gives the correct thickness resonant frequency. By accurately measuring the change by a comparison method, the dipole behaviour can be better understood and the degree of polarization and depolarization can be established. Temperature dependent polarization and depolarization is also discussed in the light of dipole switching. Hot pressed SPN and PZT5 are sufficiently transparent to be considered for use in opto-ultrasonic applications such as in medicine. Because of the high value of the thickness-frequency constant and low Qm, SPN seems a better choice as a high frequency transducer material. The signal spectra of a high frequency transducer constructed from these materials is presented

  2. Electrical excitation and optical detection of ultrasounds in PZT based piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Babilotte, P; Diallo, O; Hue, L-P Tran Hu; Feuillard, G [University Francois Rabelais de Tours, Laboratory Imaging and Brain, Team Ultrasonic Characterisation and Piezoelectricity, ENIVL, Rue de la Chocolaterie, 41034 BLOIS CEDEX (France); Kosec, M; Kuscer, D, E-mail: philippe.babilotte@univ-tours.fr [Josef Stefan Institute, Jamova cesta 39, 1000 LJUBLJANA (Slovenia)

    2011-01-01

    The displacement response of piezoelectric PZT thick films fabricated by means of electrophoretic deposition and laid down an alumina substrate is investigated using coherent optical detection. According to thickness properties determined by electrical impedance measurements, the film presents a resonance around 40 MHz. Other resonance peaks are observed that correspond to eigen modes of the film substrate couple structure. Uniformity of the response of the integrated structure is studied across the surface of the sample when excited by either a continuous or impulse electrical voltage. Results on the amplitude of the detected signal versus the frequency and the input excitation voltage are reported. The optical detection used in these experiments is complementary to conventional techniques of characterization of piezoelectric devices such as electrical impedance measurements and allows getting information on the displacement response of the device.

  3. Local Area Damage Detection in Composite Structures Using Piezoelectric Transducers

    CERN Document Server

    Lichtenwalner, Peter F

    1998-01-01

    An integrated and automated smart structures approach for structural health monitoring is presented, utilizing an array of piezoelectric transducers attached to or embedded within the structure for both actuation and sensing. The system actively interrogates the structure via broadband excitation of multiple actuators across a desired frequency range. The structure's vibration signature is then characterized by computing the transfer functions between each actuator/sensor pair, and compared to the baseline signature. Experimental results applying the system to local area damage detection in a MD Explorer rotorcraft composite flexbeam are presented.

  4. Quantum acousto-optic transducer for superconducting qubits

    CERN Document Server

    Shumeiko, V S

    2015-01-01

    We propose theory for reversible quantum transducer connecting superconducting qubits and optical photons using acoustic waves in piezoelectrics. The proposed device consists of integrated acousto-optic resonator that utilizes stimulated Brillouin scattering for phonon-photon conversion, and piezoelectric e?ect for coupling of phonons to qubits. We evaluate the phonon-photon coupling rate, and show that the required power of optical pump as well as the other device parameters providing full and faithful quantum conversion are feasible for implementation with the state of the art integrated acousto-optics.

  5. On the general governing equations of electromagnetic acoustic transducers

    CERN Document Server

    Saxena, Prashant

    2013-01-01

    In this paper, we present the general governing equations of electrodynamics and continuum mechanics that need to be considered while mathematically modelling the behaviour of electromagnetic acoustic transducers (EMATs). We consider the existence of finite deformations for soft materials and the possibility of electric currents, temperature gradients, and internal heat generation due to dissipation. Starting with Maxwell's equations of electromagnetism and balance laws of nonlinear elasticity, we present the governing equations and boundary conditions in incremental form in order to solve wave propagation problems of boundary value type.

  6. A distributed transducer system for functional electrical stimulation

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Nielsen, Jannik Hammel; Bruun, Erik;

    2001-01-01

    Implanted transducers for functional electrical stimulation (FES) powered by inductive links are subject to conflicting requirements arising from low link efficiency, a low power budget and the need for protection of the weak signals against strong RF electromagnetic fields. We propose a solution...... likely to be affected by the inductive link. Neural stimulators are affected to a lesser degree, but still benefit from the partitioning. As a test case, we have designed a transceiver and a sensor chip which implement this partitioning policy. The transceiver is designed to operate in the 6.78 MHz ISM...

  7. Development of a transducer for MiniGrail

    CERN Document Server

    Gottardi, L; Frossati, G

    2002-01-01

    We are developing a two-mode inductive resonant transducer for MiniGrail. We report several quality factor measurements, down to 4.2 K, performed on a scaled size resonator in different conditions: when suspended from a wire and when clamped, by thermal contraction techniques, into a hole of a sphere of 150 mm diameter and 14 kg mass. Q-factor measurements of a first resonator prototype at 4.2 K for MiniGrail are also presented. Finally, a fabrication process for a Nb film pick-up coil is described.

  8. Excitability of guided waves in composites with PWAS transducers

    Science.gov (United States)

    Shen, Yanfeng; Giurgiutiu, Victor

    2015-03-01

    Piezoelectric Wafer Active Sensors (PWAS) are convenient enablers for generating and receiving ultrasonic guided waves. The wide application of composite structures has put new challenges for the Structural Health Monitoring (SHM) and Nondestructive Evaluation (NDE) community due to the general anisotropic behaviors and complicated guided wave features in composites. The excitability of guided waves in composite structures directly influences the implementation of active sensing systems to achieve the best interrogation of certain sensing directions. This paper presents a hybrid modeling technique for studying the excitably of guided waves in composite structures with PWAS transducers. This hybrid technique comprehensively covers local finite element model (FEM), semi-analytical finite element (SAFE) method, and analytical guided wave solutions. Harmonic analysis of a small-size local FEM with non-reflective boundaries (NRB) was carried out for obtaining guided wave generation features in plate structures. The PWAS transducers were modeled with coupled filed elements. Thus, the FEM can fully capture the geometry and material property effects of PWAS transducers and their influence on the guided wave excitation. SAFE method was used to obtain the complicated guided wave features in composites such as dispersion curves and modeshapes. The SAFE procedure was coded into MATLAB Graphical User Interface (GUI), and the software SAFE-DISPERSION was developed. To study the excitability of each wave mode, we considered all the possible wave modes being generated simultaneously and propagating independently. The analytical wave expressions based on the exact guided wave solution with Hankel functions were used to join the SAFE method and the local FEM. Formulated in frequency domain, the hybrid model is highly efficient, providing an over determined equation system for the calculation of mode participation factors. Case studies were carried out: (1) the Lamb wave excitability

  9. Shaft transducer having dc output proportional to angular velocity

    Science.gov (United States)

    Handlykken, M. B. (Inventor)

    1984-01-01

    A brushless dc tachometer is disclosed that includes a high strength toroidal permanent magnet for providing a uniform magnetic field in an air gap, an annular pole piece opposite the magnet, and a pickup coil wound around the pole piece and adapted to rotate about the axis of the pole piece. The pickup coil is rotated by an input shaft to which the coil is coupled with the friction clip. The output of the coil is conducted to circuitry by a twisted wire pair. The input shaft also activates a position transducing potentiometer.

  10. Differential Pressure Transducer for Corrosion Monitoring of Iron

    Directory of Open Access Journals (Sweden)

    Amar Prasad Yadav

    2014-03-01

    Full Text Available In this study, differential pressure transducer (DPT has been applied as an alternate corrosion monitoring device for monitoring corrosion of iron in atmospheric environment by measuring very small changes in the amount of oxygen. The result of corrosion current obtained from DPT method has been compared with that obtained from AC impedance method. The difference in the value of corrosion current obtained from these two methods was attributed to the error in choosing the value of proportionality constant k of the Stern-Geary equation.

  11. Class D audio amplifiers for high voltage capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis

    with the low level of acoustical output power and complex amplifier requirements, have limited the commercial success of the technology. Horn or compression drivers are typically favoured, when high acoustic output power is required, this is however at the expense of significant distortion combined......, the DEAP (Dielectric ElectroActive Polymer) one. DEAP based loudspeakers work on the principle of the electrostatic forces, and possess some of the ii same characteristics as the electrostatic loudspeaker. However, the DEAP transducer is constructed by printing compliant, corrugated electrodes...

  12. Design theory and experimental investigation of the low frequency and high power rare earth magnetostrictive flextensional transducer (I). Theoretical part

    Institute of Scientific and Technical Information of China (English)

    HE Xiping; SUN Jincai; LI Bin

    2001-01-01

    The energy relationships among all the elements, by which the magnetostrictive transducers are manufactured, in Finite Element Method (FEM) are analyzed, then the expressions of FEM dynamics equations and performances formulas for magnetostrictive transducers are derived. The vibrating modes of the class VII transducer and its shell vibration are calculated theoretically and the results point out that there is a breathing mode and if the transducer works at this mode, the transducer will vibrate with a greater volume speed and source level.

  13. Performance of transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient

    CERN Document Server

    Thompson, Stephen C; Markley, Douglas C

    2013-01-01

    Underwater acoustic transducers often include a stack of thickness polarized piezoelectric material pieces of alternating polarity interspersed with electrodes, bonded together and electrically connected in parallel. The stack is normally much shorter than a quarter wavelength at the fundamental resonance frequency, so that the mechanical behavior of the transducer is not affected by the segmentation. When the transducer bandwidth is less than a half octave, as has conventionally been the case, stack segmentation has no significant effect on the mechanical behavior of the device. However, when a high coupling coefficient material such as PMN-PT is used to achieve a wider bandwidth, the difference between a segmented stack and a similar piezoelectric section with electrodes only at the two ends can be significant. This paper investigates the effects of stack segmentation on the performance of wideband underwater acoustic transducers, particularly tonpilz transducer elements. Included is discussion of transduce...

  14. Variances and covariances in the Central Limit Theorem for the output of a transducer

    Science.gov (United States)

    Heuberger, Clemens; Kropf, Sara; Wagner, Stephan

    2015-01-01

    We study the joint distribution of the input sum and the output sum of a deterministic transducer. Here, the input of this finite-state machine is a uniformly distributed random sequence. We give a simple combinatorial characterization of transducers for which the output sum has bounded variance, and we also provide algebraic and combinatorial characterizations of transducers for which the covariance of input and output sum is bounded, so that the two are asymptotically independent. Our results are illustrated by several examples, such as transducers that count specific blocks in the binary expansion, the transducer that computes the Gray code, or the transducer that computes the Hamming weight of the width-w non-adjacent form digit expansion. The latter two turn out to be examples of asymptotic independence. PMID:27087727

  15. Use of Macro Fibre Composite Transducers as Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Mark Eaton

    2009-04-01

    Full Text Available The need for ever lighter and more efficient aerospace structures and components has led to continuous optimization pushing the limits of structural performance. In order to ensure continued safe operation during long term service it is desirable to develop a structural health monitoring (SHM system. Acoustic emission (AE offers great potential for real time global monitoring of aerospace structures, however currently available commercial sensors have limitations in size, weight and adaptability to complex structures. This work investigates the potential use of macro-fibre composite (MFC film transducers as AE sensors. Due to the inhomogeneous make-up of MFC transducers their directional dependency was examined and found to have limited effect on signal feature data. However, signal cross-correlations revealed a strong directional dependency. The sensitivity and signal attenuation with distance of MFC sensors were compared with those of commercially available sensors. Although noticeably less sensitive than the commercial sensors, the MFC sensors still had an acceptable operating range. Furthermore, a series of compressive carbon fiber coupon tests were monitored in parallel using both an MFC sensor and a commercially available sensor for comparison. The results showed good agreement of AE trends recorded by both sensors.

  16. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D.; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with “pancake” directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  17. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  18. Folding and Function of Proteorhodopsins in Photoenergy Transducing Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Spudich, John L

    2012-08-10

    The overall research objectives are to develop proteorhodopsin (PR) proteins as a model system for {alpha}-helical membrane protein insertion and folding, and to advance understanding of the diversity and mechanisms of PRs, a large family of photoenergy transducers (~4000 identified) abundant in the world’s oceans. Specific aims are: (1) To develop a highefficiency genetic selection procedure for light-driven proton-pumping in E. coli cells. Such a procedure would provide a positive selection method for proper folding and function of PRs in the E. coli membrane. (2) Characterize flash-induced absorption changes and photocurrents in PR variants in organisms from various environments, and their expression level and function when expressed in E. coli. Subaims are to: (a) elucidate the relationship of the transport mechanism to mechanisms of other microbial rhodopsins, some of which like PRs function as ion transporters and some of which use light energy to activate signaling pathways (sensory rhodopsins); and (b) identify important residues and chemical events in light-driven proton transport by PRs. In addition to their importance to the energy of the biosphere PRs have attracted interest for their potential for use in making photoenergy-transducing membranes for bioengineering applications.

  19. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer.

    Science.gov (United States)

    Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H; Kupnik, Mario; Khuri-Yakub, Butrus Thomas

    2010-12-01

    The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs. PMID:21170294

  20. Nonlinear electromechanical response of the ferroelectret ultrasonic transducers

    Science.gov (United States)

    Döring, Joachim; Bovtun, Viktor; Bartusch, Jürgen; Erhard, Anton; Kreutzbruck, Marc; Yakymenko, Yuriy

    2010-08-01

    The ultrasonic transmission between two air-coupled polypropylene (PP) ferroelectret (FE) transducers in dependence on the amplitude of the high-voltage exciting pulse revealed a strongly nonlinear electromechanical response of the FE transmitter. This phenomenon is described by a linear increase of the inverse electromechanical transducer constant t_{33}^{(1)} of the PP FE film with an increase of the exciting electrical pulse amplitude. Enlargement of t_{33}^{(1)} by a factor of 4 was achieved by application of 3500 V exciting pulses. The electrostriction contribution to t_{33}^{(1)} can be attributed to the electrostatic force between electrodes and the Maxwell stress effect. The nonlinear electromechanical properties of the PP FE result in a strong increase of its air-coupled ultrasonic (ACUS) figure of merit ( FOM) under the high-voltage excitation, which exceeds results of the PP FE technological optimization. The FOM increase can be related to the increase of PP FE coupling factor and/or to the decrease of its acoustic impedance. A significant enhancement of the ACUS system transmission (12 dB) and signal-to-noise ratio (32 dB) was demonstrated by the increase of excitation voltage up to 3500 V. The nonlinear electromechanical properties of the PP FEs seem to be very important for their future applications.

  1. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

  2. Numerical modeling of piezoelectric transducers using physical parameters.

    Science.gov (United States)

    Cappon, Hans; Keesman, Karel J

    2012-05-01

    Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and experimental data can be used to acquire valid estimates of the material parameters. In our design application, a finite element (FE) model of an ultrasonic particle separator, driven by an ultrasonic transducer in thickness mode, is required. A limited set of material parameters for the piezoelectric transducer were obtained from the manufacturer, thus preserving prior physical knowledge to a large extent. The remaining unknown parameters were estimated from impedance analysis with a simple experimental setup combined with a numerical optimization routine using 2-D and 3-D FE models. Thus, a full set of physically interpretable material parameters was obtained for our specific purpose. The approach provides adequate accuracy of the estimates of the material parameters, near 1%. These parameter estimates will subsequently be applied in future design simulations, without the need to go through an entire series of characterization experiments. Finally, a sensitivity study showed that small variations of 1% in the main parameters caused changes near 1% in the eigenfrequency, but changes up to 7% in the admittance peak, thus influencing the efficiency of the system. Temperature will already cause these small variations in response; thus, a frequency control unit is required when actually manufacturing an efficient ultrasonic separation system.

  3. High-resolution diffraction grating interferometric transducer of linear displacements

    Science.gov (United States)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  4. A stable, sensitive, low-compliance capacitance force transducer.

    Science.gov (United States)

    Hamrell, B B; Panaanan, R; Trono, J; Alpert, N R

    1975-01-01

    The measurement of active and passive force levels in heart muscle requires short-and long-term base-line stability. The capacitance force transducer described here represents an optimization of the relationship between sensitivity, compliance, and frequency response in a design that minimizes long-term base-line drift related to thermal gradients within the apparatus. Thermal stability of the instrument is obtained with the use of quartz and Invar in the construction of the variable capacitor, the maintenance of internal transducer temperature at a constant level well above ambient, and the use of thermally insulating air gaps. Sensitivity ranges from 1.0 to 2.0 V/g wt in the several instruments tested, the output is linear, compliance is negligible with static loads up to 6 g wt, hysteresis is not significant with transient loading with 20 g wt, and long-term drift is greater than or equal to 0.050 g wt. These instruments are designed for use with myocardial preparations but can be adapted for skeletal muscle experiments. PMID:1110237

  5. Advantage analysis of PMN-PT material for free-flooded ring transducers

    Institute of Scientific and Technical Information of China (English)

    He Zheng-Yao; Ma Yuan-Liang

    2011-01-01

    The acoustic radiation characteristics of free-flooded ring transducers made of PZT4 and PMN-PT materials are calculated and compared.First,the theoretical formulae for free-flooded ring transducers are studied.The resonant frequencies of a transducer made of PZT4 and PMN-PT materials are calculated. Then,the transmitting voltage responses of the free-flooded ring transducers are calculated using the finite element method.Finally,the acoustic radiation characteristics of the free-flooded ring transducers are calculated using the boundary element method.The calculated results show that the resonant frequencies of the free-flooded ring transducer made of PMN-PT are greatly reduced compared with those made of PZT4 with the same size.The transmitting voltage response of the transducer made of PMN-PT is much higher than that of the transducer made of PZT4.The calculated 3-dB beamwidth of the acoustic radiated far-field directivity of the free-flooded ring transducer made of PZT4 at the resonant frequency 1900 Hz is 63.6° and that of the transducer made of PMN-PT at the resonant frequency 1000 Hz is 64.6°.The comparison results show that the free-flooded ring transducer made of PMN-PT material has many advantages over that made of PZT4.The PMN-PT is a promising material for improving the performance of free-flooded ring transducers.

  6. Technology trends in high temperature pressure transducers: The impact of micromachining

    Science.gov (United States)

    Mallon, Joseph R., Jr.

    1992-01-01

    This paper discusses the implications of micromachining technology on the development of high temperature pressure transducers. The introduction puts forth the thesis that micromachining will be the technology of choice for the next generation of extended temperature range pressure transducers. The term micromachining is defined, the technology is discussed and examples are presented. Several technologies for high temperature pressure transducers are discussed, including silicon on insulator, capacitive, optical, and vibrating element. Specific conclusions are presented along with recommendations for development of the technology.

  7. Temperature and pressure transducer based on FBG for large diameter water pipes

    OpenAIRE

    Quintela Incera, Antonio; Pallol Pérez, María José; Shokry Girgis Roufael, Hany; Martínez García, Óscar; San Emeterio Diego, José Domingo; López Higuera, José MIguel

    2014-01-01

    A specific temperature and pressure optical fiber transducer is presented in this paper. By using a customized fiber reinforced plastic membrane with embedded Fiber Bragg Gratings, the fluid pressure and temperatures changes are converted in optical wavelength displacements. The membrane and the transducer custom design allows a suitable measurand discrimination. The transducer is implemented, characterized and calibrated. Its feasibility to be used on large diameter water pipes has been succ...

  8. Cryogenic Clamp-on Ultrasonic Flowmeters using Single Crystal Piezoelectric Transducers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clamp-on ultrasound cryogenic flowmeters using single crystal piezoelectric transducers are proposed to enable reliable, accurate cryogenic instrumentation needs in...

  9. An absolute method for determination of misalignment of an immersion ultrasonic transducer.

    Science.gov (United States)

    Narayanan, M M; Singh, Narender; Kumar, Anish; Babu Rao, C; Jayakumar, T

    2014-12-01

    An absolute methodology has been developed for quantification of misalignment of an ultrasonic transducer using a corner-cube retroreflector. The amplitude based and the time of flight (TOF) based C-scans of the reflector are obtained for various misalignments of the transducer. At zero degree orientation of the transducer, the vertical positions of the maximum amplitude and the minimum TOF in the C-scan coincide. At any other orientation of the transducer with the horizontal plane, there is a vertical shift in the position of the maximum amplitude with respect to the minimum TOF. The position of the minimum (TOF) remains the same irrespective of the orientation of the transducer and hence is used as a reference for any misalignment of the transducer. With the measurement of the vertical shift and the horizontal distance between the transducer and the vertex of the reflector, the misalignment of the transducer is quantified. Based on the methodology developed in the present study, retroreflectors are placed in the Indian 500MWe Prototype Fast Breeder Reactor for assessment of the orientation of the ultrasonic transducer prior to the under-sodium ultrasonic scanning for detection of any protrusion of the subassemblies. PMID:25041979

  10. New improvement of the combined optical fiber transducer for landslide monitoring

    Science.gov (United States)

    Zhu, Z.-W.; Yuan, Q.-Y.; Liu, D.-Y.; Liu, B.; Liu, J.-C.; Luo, H.

    2014-08-01

    Landslide monitoring is important in predicting the behavior of landslides, thereby ensuring environmental, life, and property safety. On the basis of our previous studies, we conducted the double shear test by using a third-generation optical fiber transducer that uses expandable polystyrene (EPS) as base material. However, the third-generation transducer has poor performance when cohesive force is present between the grout and capillary stainless steel pipe of the transducer. Thus, the fourth-generation optical fiber transducer was invented. Similar to the third-generation transducer, the fourth-generation transducer also used EPS as its base material. Single shear test was conducted on the fourth-generation transducer after being grouted with cement mortar (1 : 1 mix ratio). The micro-bend loss mechanism of the optical fiber was considered, and the optical time domain reflectometry instrument was used. The fact that the loss sequence of optical fibers subjected to loading is different at various locations is found. The relationship of the loading-point displacement vs. optical fiber sliding distance and optical loss were measured. Results show that the maximum initial measurement precision of the newly proposed device is 1 mm, the corresponding sliding distance is 21 mm, and the dynamic range is 0-20 mm. The fourth-generation transducer can measure the movement direction of loadings, thus making this transducer applicable for landslide monitoring.

  11. Principle of adaptive optical current transducer on independent variables and its test

    Institute of Scientific and Technical Information of China (English)

    LU Zhong-feng; GUO Zhi-zhong

    2008-01-01

    In order to improve the measurement precision of the optical current transducer (OCT), the adaptive optical transducing principle on independent variables is presented in this paper. And one of the adaptive opti-cal current transducer(AOCT) on the independent variables of the output of the electricmegnet current trans-ducer is introduced. According to IEC660044-8, the performance of AOCT was examined roundly applying the standard testing system authenticated by the state authority. The results indicate that the measurement precision of the AOCT has already reached 0.2 class under the temperature from -40℃ to 60℃,which proves the feasi-bility of the method.

  12. Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip

    DEFF Research Database (Denmark)

    Iranmanesh, I.; Barnkob, Rune; Bruus, Henrik;

    2012-01-01

    coupling angle, and transducer actuation method (single-frequency actuation or frequency-modulation actuation). The energy-density analysis is based on measuring the transmitted light intensity through a microfluidic channel filled with a suspension of 5-μm-diameter beads and the results with the tunable...... particle patterns with average acoustic energy densities comparable to those obtained using single-frequency actuation.......We present a tunable-angle wedge ultrasound transducer for improved control of microparticle acoustophoresis in a microfluidic chip. The transducer is investigated by analyzing the pattern of aligned particles and induced acoustic energy density while varying the system geometry, transducer...

  13. The design and calibration of particular geometry piezoelectric acoustic emission transducer for leak detection and localization

    Science.gov (United States)

    Yalcinkaya, Hazim; Ozevin, Didem

    2013-09-01

    Pipeline leak detection using an acoustic emission (AE) method requires highly sensitive transducers responding to less attenuative and dispersive wave motion in order to place the discrete transducer spacing in an acceptable approach. In this paper, a new piezoelectric transducer geometry made of PZT-5A is introduced to increase the transducer sensitivity to the tangential direction. The finite element analysis of the transducer geometry is modeled in the frequency domain to identify the resonant frequency, targeting 60 kHz, and the loss factor. The numerical results are compared with the electromechanical characterization tests. The transducer response to wave motion generated in different directions is studied using a multiphysics model that couples mechanical and electrical responses of structural and piezoelectric properties. The directional dependence and the sensitivity of the transducer response are identified using the laser-induced load function. The transducer response is compared with a conventional thickness mode AE transducer under simulations and leak localization in a laboratory scale steel pipe.

  14. OPTIMAL DESIGN OF A 6-AXIS FORCE TRANSDUCER BASED ON STEWART PLATFORM RELATED TO SENSITIVITY ISOTROPY

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The design method of a 6-axis force robot's transducer based on the Stewart platform is detailed.For this purpose, the sensitivity isotropy evaluation criteria of the transducer are defined, and by the aid of computer, the relationships between the criteria and the parameters of all the transducers based on the Stewart platform are investigated within the geometric model of the solution space, which can provide the theoretical background for the optimal construction design of the 6-axis force transducer related to the sensitivity isotropy.

  15. A High-Voltage Class D Audio Amplifier for Dielectric Elastomer Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Dielectric Elastomer (DE) transducers have emerged as a very interesting alternative to the traditional electrodynamic transducer. Lightweight, small size and high maneuverability are some of the key features of the DE transducer. An amplifier for the DE transducer suitable for audio applications...... is proposed and analyzed. The amplifier addresses the issue of a high impedance load, ensuring a linear response over the midrange region of the audio bandwidth (100 Hz – 3.5 kHz). THD+N below 0.1% are reported for the ± 300 V prototype amplifier producing a maximum of 125 Var at a peak efficiency of 95 %....

  16. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Auboiroux, Vincent [Inserm, U556, Lyon, F-69003 (France); Dumont, Erik [Image Guided Therapy, Pessac, Bordeaux (France); Petrusca, Lorena; Salomir, Rares [Faculty of Medicine, University of Geneva (Switzerland); Viallon, Magalie, E-mail: vincent.auboiroux@unige.ch [Radiology Department, University Hospital of Geneva, Geneva (Switzerland)

    2011-06-21

    A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm{sup -2} CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.

  17. Piezoelectric polymer foams: transducer mechanism and preparation as well as touch-sensor and ultrasonic-transducer properties

    Science.gov (United States)

    Wegener, M.

    2010-04-01

    Different materials provide a mechanical-electrical energy conversion and are thus interesting candidates for piezoelectric sensors and actuators. Beside ferroelectric ceramics and polymers, also polymer foams, so-called ferroelectrets, are developed as piezoelectric active materials. Their piezoelectricity originates from optimized structural and elastic-foam properties accompanied with an optimized charge trapping at the polymer layers within the foam structure. The piezoelectric activity arises if mechanical stimuli lead to a thickness variation of the electrically charged voids which results in an electrical signal between the connected electrodes on the film surfaces due to the change of internal electric fields. The concept of such a piezoelectric transducer was developed by investigating cellular polypropylene films with different foam structures and thus different elastic properties. Recently, ferroelectrets were prepared from other polymers following the same concept. Different kind of new foaming procedures are developed in order to broaden the range of usable materials as well as to optimize the adjustment of piezoelectric and ultrasonictransducer properties. The paper provides an overview about ferroelectrets, their underlying working mechanism as well as their preparation possibilities. In detail, piezoelectric properties of polypropylene ferroelectrets are described which are usable for pushbutton or touch-pad applications as well as in ultrasonic-transducer applications.

  18. On-chip RF-to-optical transducer (Conference Presentation)

    Science.gov (United States)

    Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S.

    2016-04-01

    techniques. We will furthermore present ongoing work to couple our transducer to an RF or microwave antenna, for low-noise detection of electromagnetic signals, including sensitive measurements of magnetic fields in an MRI detector. Suppression of thermomechanical noise is a key feature of electro-optomechanical transducers, and, more generally, hybrid systems involving mechanical degrees of freedom. We have shown that engineering of the phononic density of states allows improved isolation of the relevant mechanical modes from their thermal bath [2], enabling coherence times sufficient to realize quantum-coherent optomechanical coupling. This proves the potential of the employed platform for complex transducers all the way into the quantum regime. References: [1] Bagci et al, Nature 507, 81-85, (06 March 2014) [2] Tsaturyan, et al., Optics Express, Vol. 22, Issue 6, pp. 6810-6821 (2014)

  19. Synthetic Aperture Focusing Technique in Ultrasonic Inspection of Coarse Grained Materials

    International Nuclear Information System (INIS)

    Experience from the ultrasonic inspection of nuclear power plants has shown that large focused transducers are relatively effective in suppressing grain (structure) noise. Operation of a large focused transducer can be thought of as an integration (coherent summation) of individual beams reflected from the target and received by individual points at the transducer surface. Synthetic aperture focusing technique (SAFT), in its simplest version mimics an acoustic lens used for focusing beams at a desired point in the region of interest. Thus, SAFT should be able to suppress the grain noise in the similar way as the focused transducer does. This report presents the results of investigation of SAFT algorithms applied for post-processing of ultrasonic data acquired in inspection of coarse grained metals. The performance of SAFT in terms of its spatial (cross-range) resolution and grain noise suppression is studied. The evaluation is made based on the experimental data obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). SAFT algorithms for both contact and immersion mode are introduced and experimentally verified

  20. Feasibility test of NaK filled pressure transducers for sodium test facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngil; Kim, Jong-Man; Ko, Yungju; Kim, Hyungmo; Lee, Dongwon; Cho, Chungho; Jung, Min-Hwan; Lee, Jewhan; Gam, Da-Young; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, feasibility tests of NaK filled pressure transduces in a relatively low pressure level were performed for a sodium test facility. In the test, model KE pressure transducers made by GEFRAN were tested in a pressure range (i.e., up to 200 kPa) which usually expected for a sodium test facility. The validation of using in a low pressure level was confirmed by the feasibility tests as well as high pressure. Most of the sodium experiments are performed at the high temperature condition. And on account of the strong chemical reactivity of sodium and solidification in a room temperature, many pressure transducers cannot be adapted directly. To use existing pressure transducers without any intermediate medium, it must be equipped by heaters, valves and safety devices to avoid solidification and to prevent chemical reaction of sodium. The pressure transducer filled NaK (Sodiumpotassium alloy is generally referred to as NaK.) is selected as pressure transducers for sodium test facility. The advantage of NaK over sodium is a lower melting point than a room temperature. The lower melting point can make a pressure transducer can be directly used without additional parts such as heaters and valves. NaK filled pressure transducer will be validated at high temperature and robustness in long term uses and repetition in our sodium test facility at KAERI. The lower melting point of NaK can make a pressure transducer simple without many devices such as heater, valve, leak detector and many electronic measuring points. In this paper, application of pressure transducers filled NaK (KE) to sodium test facility (SELFA) was described. In an expected pressure range, the linearity is still represented considerably. In the near future, the pressure transducer with NaK will be adapted to a sodium test facility.

  1. A RF superconducting electromechanical transducer for gravitational wave antennae

    Science.gov (United States)

    Bocko, Mark F.; Johnson, Warren W.; Iafolla, Valerio

    1989-03-01

    An electromechanical transducer based on a superconducting radio-frequency bridge circuit has been developed for use on a gravitational radiation detector. The low electrical loss of superconductors has made it possible to achieve electrical quality factors of several thousand in a lumped-element circuit which operates at 4 MHz. The bridge could be remotely balanced to one part in 50,000, which led to a displacement noise level of 10-15 m/sq rt Hz. It should be useful in measuring any physical quantity which can be made to change a capacitance. At the present stage of development, capacitance changes of 10-20 F could be detected in a 1-s integration time. One straightforward improvement, namely, the use of a low-phase-noise quartz crystal oscillator as the bridge excitation source, will reduce the noise to 10-17 m/sq rt Hz.

  2. Optical detection of radio waves through a nanomechanical transducer

    CERN Document Server

    Bagci, T; Schmid, S; Villanueva, L G; Zeuthen, E; Appel, J; Taylor, J M; Sørensen, A; Usami, K; Schliesser, A; Polzik, E S

    2013-01-01

    Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and microwave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of quantum states. Efficient upconversion of rf-signals to an optical carrier would allow transmitting them via optical fibers dramatically reducing losses, and give access to the mature toolbox of quantum optical techniques, routinely enabling quantum-limited signal detection. Research in the field of cavity optomechanics has shown that nanomechanical oscillators can couple very strongly to either microwave or optical fields. An oscillator accommodating both functionalities would bear great promise as the intermediate platform in a radio-to-optical transduction cascade. Here, we demonstrate such an opto-electro-mechanical transducer utilizing a high-Q nanomembrane. A moderate voltage bias (<10V) is sufficient to induce strong coupling between the voltage fluct...

  3. New Soft Polymeric Materials Applicable as Elastomeric Transducers

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Skov, Anne Ladegaard

    An elastomer is a material characterized by the capability to regain its original size and shape after being deformed (stretched or distorted). An ideal elastomer for electroactive polymer (EAP) applications is a system characterized by high extensibility, flexibility and a good mechanical fatigue...... between two compliant electrodes will reduce its thickness and expand its area. The electrical energy transformed into mechanical energy is called actuation and it is studied in the technology of elastomeric transducers. While DEs deform under high voltage, the actuation varies for different materials...... presents new soft polymeric materials based on silicone with improved mechanical properties. Silicone elastomers exhibit good characteristics including biocompatibility, oxidation resistance, thermal stability, fast mechanical response with good reproducibility and stable mechanical behaviour over a wide...

  4. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...... intrinsically. The time-dependent Ginzburg-Landau theory is used in the parameter identification involving hysteresis effects. We use the Chebyshev collocation method in the numerical simulations. The elastic field is assumed to be coupled linearly with other fields, and the nonlinearity is in the E-D coupling...

  5. Optical detection of radio waves through a nanomechanical transducer

    DEFF Research Database (Denmark)

    Bagci, Tolga; Simonsen, A; Schmid, Silvan;

    2013-01-01

    Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and microwave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of quantum states. Efficient upconversion of rf......] has shown that nanomechanical oscillators can couple very strongly to either microwave [3–5] or optical fields [6, 7]. An oscillator accommodating both these functionalities would bear great promise as the intermediate platform in a radio-to-optical transduction cascade. Here, we demonstrate such an...... opto-electro-mechanical transducer following a recent proposal [8] utilizing a high-Q nanomembrane. A moderate voltage bias (Vdc < 10V) is sufficient to induce strong coupling [4, 6, 7] between the voltage fluctuations in a radio-frequency resonance circuit and the membrane’s displacement, which is...

  6. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    Science.gov (United States)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  7. Signal processing for all fiber optical current transducer

    Institute of Scientific and Technical Information of China (English)

    裴焕斗; 祖静; 陈鸿

    2008-01-01

    The work principle of all fiber optical current transducer (AFOCT) was introduced. By analyzing the characteristic of photo-detector’s output, a measurement and signal processing scheme based on sine wave modulation and demodulation was put forward for eliminating the influence of light intensity change and modulation degree change. A digital signal processing system and a calibration scheme were also advanced. The experimental data show that the mean ratio error is 0.016 74% for direct current and 0.035% for alternating current, and the correlation coefficient of linearity is up to 0.999 982 4, meeting the precision requirement of 0.2 grade. Stability experiments and temperature drift experiments show the AFOCT has a better stable capability.

  8. Steerable vertical to horizontal energy transducer for mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Spletzer, Barry L. (Albuquerque, NM); Fischer, Gary J. (Albuquerque, NM); Feddema, John T. (Albuquerque, NM)

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  9. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    Science.gov (United States)

    Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.

    2015-10-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

  10. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    Energy Technology Data Exchange (ETDEWEB)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Cunitz, B.; Kreider, W.; Bailey, M. [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40" t" h Street, Seattle, WA 98105 (United States); Yuldashev, P.; Andriyakhina, Y. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Sapozhnikov, O.; Khokhlova, V. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40" t" h Street, Seattle, WA 98105 (United States)

    2015-10-28

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

  11. Optical detection of radio waves through a nanomechanical transducer

    Science.gov (United States)

    Bagci, T.; Simonsen, A.; Schmid, S.; Villanueva, L. G.; Zeuthen, E.; Appel, J.; Taylor, J. M.; Sørensen, A.; Usami, K.; Schliesser, A.; Polzik, E. S.

    2014-03-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics has shown that nanomechanical oscillators can couple strongly to either microwave or optical fields. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal using a high-quality nanomembrane. A voltage bias of less than 10 V is sufficient to induce strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be when balanced by choosing an electromechanical cooperativity of with an optical power of 1 mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of , this leads to a projected noise temperature of 40 mK and a sensitivity limit of . Our approach to all-optical, ultralow-noise detection of classical

  12. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  13. Reliability and validity assessment of a linear position transducer.

    Science.gov (United States)

    Garnacho-Castaño, Manuel V; López-Lastra, Silvia; Maté-Muñoz, José L

    2015-03-01

    The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key pointsThis study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducerThe Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300

  14. Static and dynamic characteristics of angular velocity and acceleration transducers based on optical tunneling effect

    Science.gov (United States)

    Busurin, V. I.; Korobkov, V. V.; Htoo Lwin, Naing; Tuan, Phan Anh

    2016-08-01

    Theoretical and experimental analysis of quasi-linear conversion function of angular velocity and acceleration microoptoelectromechnical (MOEM) transducers based on optical tunneling effect (OTE) are conducted. Equivalent oscillating circuit is developed and dynamic characteristics of angular velocity and acceleration MOEM-transducers are investigated.

  15. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed in the...

  16. Design, development and metrological characterization of a low capacity precision industrial force transducer.

    Science.gov (United States)

    Kumar, Harish; Sharma, Chitra; Kumar, Anil; Arora, P K; Kumar, S

    2015-09-01

    The paper discusses the development of the ring shaped force transducers for measurement of force in lower capacity to meet the industrial requirements with the increasing technological developments. A 50 N ring shaped force transducer for tension mode has been developed by studying the analytical and computational methods. The force transducer developed has been metrologically studied according to the calibration procedure based on the standard ISO 376 and uncertainty of measurement of the force transducer is found to be±0.10% (k=2), while taking into account the relative uncertainty contribution due to necessary factors like repeatability, reproducibility, zero offset, interpolation, resolution and reversibility. The force transducer developed may further be studied for improvement of metrological performance and may suitably be developed for other lower capacities like 10 N, 20 N etc. The force transducer developed offers very economical alternative of complex shaped force transducers with simple design and manufacturing features. The force transducer developed may be proved very helpful in providing traceability to the user industries and calibration laboratories in the lower range of force measurement and serve as force transfer standard.

  17. First measurements on a novel type of optical micro-machined ultrasound transducer (OMUT)

    NARCIS (Netherlands)

    Leinders, S.M.; Dongen, K.W.A. van; Jong, N. de; Verweij, M.D.; Westerveld, W.J.; Urbach, H.P.; Neer, P.L.M.J. van; Pozo Torres, J.M.

    2014-01-01

    Several types of ultrasound sensors have been developed and are used in the field of medical imaging. Conventional transducers are made of piezo-electric material and show good practical performance. However, when the piezo-electric elements need to be small (below 100 μm × 100 μm), these transducer

  18. Effects of size and arrangement of virtual transducer on photoacoustic tomography

    Institute of Scientific and Technical Information of China (English)

    Wang Shao-Hua; Tao Chao; Liu Xiao-Jun

    2013-01-01

    In this paper,we investigate the effects of the relative size and arrangement of a virtual transducer on the image quality in limited-view photoacoustic tomography.A virtual transducer refers to the acoustic scatterers used to reflect photoacoustic waves and improve the images reconstructed from incomplete PA signal.Size and spatial arrangement determine the performance of the virtual transducer.In this study,the scatterers utilized as virtual transducers are arranged in different manners,such as on a straight line or on an arc line.We find that virtual transducers with a big distributing angle can provide more significant image improvement than with a small distributing angle,which is similar to the true transducers.We also change the size of virtual transducer and study its influence on image quality.It is found that the bigger scatterers provide better images than the smaller ones.Especially,when the size of scatterers is reduced to the wavelength of photoacoustic wave,the image quality observably decreases,owing to the strong diffraction effect.Thus,it is suggested that the size of the acoustical scatterers should be much larger than the photoacoustic wavelength.The simulations are conducted,and the results could be helpful for the application and further study of virtual transducer theory in limited-view photoacoustic tomography.

  19. Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration

    International Nuclear Information System (INIS)

    A sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is studied. The transducer consists of front and back metal masses, and coaxially segmented, thickness polarized piezoelectric ceramic thin rings. For this kind of sandwich piezoelectric transducers in thickness vibration, it is required that the lateral dimension of the transducer is sufficiently large compared with its longitudinal dimension so that no lateral displacements in the transducer can occur (laterally clamped). In this paper, the thickness vibration of the piezoelectric ceramic stack consisting of a number of identical piezoelectric ceramic thin rings is analysed and its electro-mechanical equivalent circuit is obtained. The resonance frequency equation for the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is derived. Based on the frequency equation, two sandwich piezoelectric ceramic ultrasonic transducers are designed and manufactured, and their resonance frequencies are measured. It is shown that the measured resonance frequencies are in good agreement with the theoretical results. This kind of sandwich piezoelectric ultrasonic transducer is expected to be used in megasonic ultrasonic cleaning and sonochemistry where high power and high frequency ultrasound is needed

  20. Air-coupled piezoelectric transducers with active polypropylene foam matching layers.

    Science.gov (United States)

    Gómez Alvarez-Arenas, Tomás E

    2013-05-10

    This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1-3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (polypropylene foam ferroelectret film (0.35 MHz), then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers) are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range.

  1. Directivity calculation with experimental verification for a conformal array of underwater acoustic transducers

    Institute of Scientific and Technical Information of China (English)

    HE Zhengyao; MA Yuanliang

    2008-01-01

    The radiation directivity of a complicated conformal array of underwater acoustic transducers is presented based on the boundary 'element method. It includes the element directivity of each transducer, the natural beam pattern and the controlled beam pattern of the transducer array. At first, the boundary element model of the conformal array is built up, and then the boundary condition is exerted on the model according to the design and environment in which the transducer array is used, and the radiation directivity of the conformal array is calculated. An experiment has been done to measure the directivity in an anechoic water tank.The calculated and the experimental results are compared and analyzed. They are consistentto each other. It is shown that the boundary element method together with the detailed calculations is successful to simulate and predict the radiation directivity of an underwater acoustic transducer array.

  2. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    Science.gov (United States)

    Arpaia, P.; Girone, M.; Liccardo, A.; Pezzetti, M.; Piccinelli, F.

    2015-12-01

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

  3. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, P., E-mail: pasquale.arpaia@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Girone, M., E-mail: mario.girone@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Department of Engineering, University of Sannio, Benevento (Italy); Liccardo, A., E-mail: annalisa.liccardo@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Pezzetti, M., E-mail: marco.pezzetti@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Piccinelli, F., E-mail: fabio.piccinelli@cern.ch [Department of Mechanical Engineering, University of Brescia, Brescia (Italy)

    2015-12-15

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

  4. Loss effects on adhesively-bonded multilayer ultrasonic transducers by self-heating.

    Science.gov (United States)

    Wu, Zhengbin; Cochran, Sandy

    2010-04-01

    Multilayer ultrasonic transducers are widely being used for high power applications. In these applications, typical Langevin/Tonpilz structures without any adhesive bondings however have the disadvantage of limited bandwidth. Therefore adhesively-bonded structures are still a potential solution for this issue. In this paper, two-layer piezoelectric ceramic ultrasonic transducers with two different adhesive bondlines were investigated comparing to a single-layer transducer in terms of loss effects during operation with excitation signals sufficient to cause self-heating. The theoretical functions fitted to the measured time-temperature dependency data are compared with experimental results of different piezoelectric transducers. Theoretical analysis of loss characteristics at various surface displacements and the relationship with increasing temperature are reported. The effects of self-heating on the practical performance of multilayer ultrasonic transducers with adhesive bondlines are discussed. PMID:19942247

  5. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    International Nuclear Information System (INIS)

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified

  6. Application of PMN-32PT Piezoelectric Crystals for Novel Air-coupled Ultrasonic Transducers

    Science.gov (United States)

    Kazys, Rymantas Jonas; Sliteris, Reimondas; Sestoke, Justina

    Due to very high piezoelectric properties of PMN-PT crystals they may significantly improve performance of air-coupled ultrasonic transducers. For these purpose vibrations of PMN-PT rectangular plates and strips were investigated. An air-coupled ultrasonic transducer and array consisting of 8 single piezoelectric strips were designed. Operation of the transducer was simulated by the finite element method using ANSYS Mechanical APDL Product Launcher software. Spatial distributions of displacements inside piezoelectric elements and matching strip were obtained. Experimental investigations were carried out by the laser Doppler vibrometer Polytec OFV-5000 and the Bruel&Kjaer microphone 4138 with the measurement amplifier NEXUS WH 3219. It was found that performance of the ultrasonic transducer with PMN-32PT crystals was a few times better than of a PZT based ultrasonic transducer.

  7. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F. J., E-mail: wangfujun@tju.edu.cn; Liang, C. M.; Tian, Y. L.; Zhao, X. Y.; Zhang, D. W. [Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhang, H. J. [Tianjin Key Laboratory of Modern Mechatronics Equipment Technology, School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2015-12-15

    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  8. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium.

    Science.gov (United States)

    Arpaia, P; Girone, M; Liccardo, A; Pezzetti, M; Piccinelli, F

    2015-12-01

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

  9. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... as well as pressure and intensity measurements in front of a 128 element commercial convex medical transducer are compared to the simulations. Results show that the models can predict the pressure from the piezoceramic disks with a root mean square (rms) error of 11.2% to 36.2% with a 2 dB amplitude...

  10. Effects of boundary conditions on vibrating mode of acoustic logging dipole transducer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Acoustic transducer is an important part of acoustic well logging tool. In this paper,ANSYS software package is used to design acoustic dipole transducer and simulate vibrating mode of the dipole transducer in different mechanical boundary conditions. The results show that boundary conditions influence the number of vibrating mode in the same frequency band and the frequency value of the same vibrating mode. Several acoustic dipole transducers are designed according to the results of numerical simulation and laboratory measurements. The basic frequency of vibrating mode of experi-ment has good agreement with that of simulation. The numerical simulation plays a good guidance role in designing,producing and correctly installing the acoustic dipole transducer.

  11. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer

    Science.gov (United States)

    Wang, Dansheng; Li, Zhi; Zhu, Hongping

    2016-07-01

    In the past twenty years, the electromechanical (EM) impedance technique has been investigated extensively in the mechanical, aviation and civil engineering fields. Many different EM impedance models have been proposed to characterize the interaction between the surface-bonded PZT transducer and the host structure. This paper formulates a new three-dimensional EM impedance model characterizing the interaction between an embedded circle dual-PZT transducer and the host structure based on the effective impedance concept. The proposed model is validated by experimental results from a group of smart cement cubes, in which three circle dual-PZT transducers are embedded respectively. In addition, a new EM impedance measuring method for the dual-PZT transducer is also introduced. In the measuring method, only a common signal generator and an oscilloscope are needed, by which the exciting and receiving voltage signals are obtained respectively. Combined with fast Fourier transform the EM impedance signatures of the dual-PZT transducers are obtained.

  12. An image-guided high intensity focused ultrasound device for uterine fibroids treatment

    International Nuclear Information System (INIS)

    A high intensity focused ultrasound (HIFU) device was developed for treating uterine fibroid tumors. This prototype device enables image-guided therapy by aligning a commercially available abdominal ultrasound image probe to a vaginal HIFU transducer so the HIFU focus is in the image plane. The device was designed based on anatomical constraints of the female pelvic structures. HIFU was generated using a 3.5 MHz PZT-8 crystal, 25.4 mm in diameter, bonded to an aluminum lens. Computer simulations were performed to ensure that effective focusing was achievable at a fixed focal depth of 40 mm. Transducer efficiency was empirically determined to be 58%, and the half pressure maximum focal dimensions were 11 mm in length and 1.2 mm in width. A water-filled latex condom surrounding the transducer provided acoustic coupling, a stand-off, and allowed water circulation for transducer cooling. In vitro experiments in a tissue-mimicking gel phantom and in turkey breast demonstrated ultrasound image-guided lesion formation, or tissue necrosis, at the focus due to HIFU induced thermal and cavitation effects. The HIFU treatment site appeared as a hyperechoic spot on the ultrasound image at intensities above 1250 W/cm2. The results of in vitro experiments and in vivo ergonomic testing in six human volunteers indicated that the device has the potential of providing a nonsurgical approach for uterine fibroid treatment. Future in vivo studies in large animal models and fibroids patients are planned

  13. Volume measurements of the cell destruction zone and thermal decomposition zone in the focus of a shock wave transducer

    Science.gov (United States)

    Mastikhin, Igor; Teslenko, Vyacheslav; Nikolin, Valery

    2001-05-01

    Evaluation of the volume of the cell destruction zone is of interest in biomedical applications of shock waves (SW). The volume depends on mechanical properties of the cell membranes and is different for different cell types. In this work, we evaluated the cell destruction volume for two different cell types, tumor cells Crebs-2 and red blood cells. We used 0 70 0.5-s SW pulses with 45-MPa pressure in the focal zone. The concentration of destroyed cells was counted by dyeing in the case of tumor cells, and by spectrometry of released hemoglobin in the case of RBC. The cell destruction volume was calculated from destruction versus pulse number data and measured as 0.0135 ml for tumor cells. For RBC, the volume was 0.021 ml. To evaluate the effective volume of thermal zone, we used EPR signal of stable disulphide biradicals. Under SW action, S-S bonds of the biradicals rupture. The volume measurements were 0.003 ml. Since for that biradical, S-S bonds rupture at temperatures >80°C, and concentration of free radicals was an order lower (measured by spin traps) than of the produced monoradical, the rupture was caused by thermal decomposition. Thermal effects can play a significant role in SW action.

  14. Partitioning mechanisms of masking: contrast transducer versus divisive inhibition

    Science.gov (United States)

    Barghout-Stein, Lauren; Tyler, Christopher W.; Klein, Stanley A.

    1997-06-01

    noise that intrudes on the detecting mechanism from neighboring mechanisms. A detailed review of this debate is provided by the paper by Klein et al., 3016-02 in this Proceedings. Threshold elevation functions that show the relationship between mask spatial frequency and masking magnitude cannot illuminate this debate, as we demonstrated at ARVO (1994). For that study, we generated threshold elevation functions (the ratio of unmasked versus masked target threshold) for multi-channel systems using computational models that invoked either divisive inhibition, a set of transducer nonlinearities or multiplicative noise. Threshold elevation functions were indistinguishable when each masking process was assumed to have similar strength. These results led us to design the experiment presented here, which attempts to compare the effects of two of these masking processes, lateral divisive inhibition and nonlinear transducer compression.

  15. Contribution to the development and the modelling of an ultrasonic conformable phased array transducer for the contact inspection of 3D complex geometry components

    International Nuclear Information System (INIS)

    With the difficulties encountered for the exploration of complex shape surfaces, particularly in nuclear industry, the ultrasonic conformable phased array transducer allows a non destructive evaluation of parts with 3D complex parts. For this, one can use the Smart Contact Transducer principle to generate an ultrasonic field by adaptive dynamic focalisation, with a matrix array composed of independent elements moulded in a soft resin. This work deals with the electro-acoustic conception, with the realization of such a prototype and with the study of it's mechanical and acoustic behaviour. The array design is defined using a radiation model adapted to the simulation of contact sources on a free surface. Once one have defined the shape of the radiating elements, a vibratory analysis using finite elements method allows the determination of the emitting structure with 1-3 piezocomposite, witch leads to the realization of emitting-receiving elements. With the measurement of the field transmitted by such elements, we deduced new hypothesis to change the model of radiation. Thus one can take into account normal and tangential stresses calculated with finite element modelling at the interface between the element and the propagation medium, to use it with the semi-analytical model. Some vibratory phenomena dealing with fluid coupling of contact transducers have been studied, and the prediction of the transverse wave radiation profile have been improved. The last part of this work deals with the realization of the first prototype of the conformable phased array transducer. For this a deformation measuring system have been developed, to determine the position of each element on real time with the displacement of the transducer on complex shape surfaces. With those positions, one can perform the calculation of the a delay law intended for the adaptive dynamic focusing of the desired ultrasonic field. The conformable phased array transducer have been characterized in

  16. Focus Intonation in Bengali

    Science.gov (United States)

    Hasan, Md. Kamrul

    2015-01-01

    This work attempts to investigate the role of prosody in the syntax of focus in Bangla. The aim of this study is to show the intonation pattern of Bangla in emphasis and focus. In order to do that, the author has looked at the pattern of focus without-i/o as well as with the same. Do they really pose any different focus intonation pattern from…

  17. Phased annular array transducers for omnidirectional guided wave mode control in isotropic plate like structures

    International Nuclear Information System (INIS)

    Ultrasonic guided waves are fast emerging as a reliable tool for continuous structural health monitoring. Their multi-modal nature along with their long range propagation characteristics offer several possibilities for interrogating structures. Transducers commonly used to generate guided waves in structures excite multiple modes at any frequency; their complex scattering and reflection from defects and boundaries often complicates the extraction of useful information. Often it is desirable to control the guided wave modes propagating in a structure to take advantage of their unique properties for different applications. Earlier attempts at guided wave mode control involved developing fixed wavelength linear and annular array transducers. Their only disadvantage is that the transducer is limited to a particular wavelength and a change in wavelength necessitates a change in the transducer. In this paper, we propose the development of an annular array transducer that can generate mode controlled omnidirectional guided waves by independently controlling the amplitude and phase of the array elements. A simplified actuator model that approximates the transducer loading on the structure to a constant pressure load under the array elements is assumed and an optimization problem is set up to compute the excitation voltage and phase of the elements. A five element annular array transducer is designed utilizing 1–3 type piezocomposite materials. The theoretical computations are experimentally verified on an aluminum plate like structure by exciting A0 and S0 guided wave modes. (paper)

  18. Design and Development of a Pressure Transducer for High Hydrostatic Pressure Measurements up to 200 MPa

    Science.gov (United States)

    Kumar, Anuj; Yadav, Sanjay; Agarwal, Ravinder

    2016-06-01

    A number of pressure transducers, based on strain gauge, capacitance/inductance type, frequency resonators, are commercially available and are being used for sensing and producing an electrical output proportional to applied pressure. These sensors have their own advantages and limitations due to operational ease, measurement uncertainty and the costs. Strain gauge type transducers are now well established devices for accurate and precise measurement of pressure within measurement uncertainty up to 0.1 % of full scale. In the present research work, an indigenous strain gauge pressure transducer has been designed, developed, tested and calibrated for pressure measurement up to 200 MPa. The measurement uncertainty estimated using the pressure transducer was found better than 0.1 % of full scale. This transducer was developed using four foil type strain gauges, bonded, two in axial direction while other two in radial direction, to the controlled stress zones of a tubular maraging steel active cylinder working also as diaphragm. The strain gages were then connected to a Wheatstone bridge arrangement to measure stress generated strains. The pressure was applied through matching connector designed in the same tubular transducer active element. The threaded unique design in a single piece through collar, ferule and tubing arrangement provides leak proof pressure connections with external devices without using additional seals. The calibration and performance checking of the pressure transducer was carried out using dead weight type national pressure standard using the internationally accepted calibration procedure.

  19. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-07-01

    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  20. High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications.

    Science.gov (United States)

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L W; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  1. Influence of resonant transducer variations on long range guided wave monitoring of rail track

    Science.gov (United States)

    Loveday, Philip W.; Long, Craig S.

    2016-02-01

    The ability of certain guided wave modes to propagate long distances in continuously welded rail track is exploited in permanently installed monitoring systems. Previous work demonstrated that reflections from thermite welds could be measured at distances of the order of 1 km from a transducer array. The availability of numerous thermite welds is useful during the development of a monitoring system as real defects are not available. Measurements of reflections from welds were performed over an eleven month period with two permanently installed transducers. Phased array processing was performed and the true location of a weld is indicated by a strong reflection but there is generally also a smaller, spurious replica reflection, at the same distance but in the incorrect direction. In addition, the relative reflection from different welds appears to change over time. The influence of differences between the two resonant transducers was investigated using a model. It was found that estimating the attenuation in either direction and scaling the reflections in either direction decreased the variability in the reflection measurements. Transducer interaction effects, where the transducer closer to the weld records a greater reflection than the second transducer were observed and can be used to determine the direction of a weld. This feature was used to demonstrate a simple alternative to phased array processing that can be used with resonant transducers.

  2. Research on the Low Frequency Broadband Piezoelectric-Magnetostrictive Hybrid Transducer

    Directory of Open Access Journals (Sweden)

    Duo Teng

    2016-01-01

    Full Text Available The effective ways for underwater transducer to lower its operating frequency, to broaden its bandwidth, and to develop its miniaturization are investigated. According to the theory of coupled multimode vibrations, a novel Hybrid transducer is developed. Different from the traditional Hybrid transducer, the improved point is the low frequency vibration controlled by the zigzag piezoelectric section and the high frequency vibration controlled by the one-dimensional magnetostrictive section. Through building the equivalent circuit model and finite element model, the performances of transducer will be predicted. The analysis shows that FEM is suitable for analyzing such a Hybrid underwater transducer within 5% deviation. The corresponding tests show that the volume and weight of the Hybrid transducer undergo a sharp drop after improvement. The novel Hybrid transducer has a distinct advantage in low frequency, bandwidth, and miniaturization. The prototype has the resonance at 1.82 kHz and 3.76 kHz. It can be used effectively in the bandwidth of 1.5 kHz to 5 kHz. Its main body has an external diameter of 54 mm. The whole prototype is 235 mm long and weighs 2.61 kg.

  3. Ultrasound Doppler measurements inside a diaphragm valve using novel transducer technologies

    Science.gov (United States)

    Kotzé, Reinhardt; Wiklund, Johan

    2014-10-01

    In this project, velocity profiles were measured in a diaphragm valve using an ultrasonic velocity profiling (UVP) technique. A non-Newtonian CMC model fluid was tested in this highly complex geometry and velocity profiles were measured at four different positions at the centre (contraction) of a specially manufactured 50% open diaphragm valve. The coordinates of the complex geometry and velocity magnitudes were analysed and compared to the bulk flow rate measured using an electromagnetic flow meter. Two different ultrasonic transducers (standard and delay line) were used and results were compared in order to assess velocity data close to wall interfaces as well as the accuracy and magnitude of measured velocities. The difference between calculated and measured flow rates was 32% when using the standard ultrasonic transducers. The error difference decreased to 18% when delay line transducers were introduced to the measurements. The velocity data obtained in the diaphragm valve showed a significant improvement close to the wall interfaces when using the delay line transducers. The main limitation when using delay line transducers is that beam refraction can significantly complicate measurements in a highly complex geometry such as a diaphragm valve. A new delay line transducer with no beam refraction could provide a solution. The introduction of delay line transducers showed that UVP can be used as a powerful tool for detailed flow behaviour measurements in complex geometries.

  4. Language Model Combination and Adaptation Using Weighted Finite State Transducers

    Science.gov (United States)

    Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.

    2010-01-01

    In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences

  5. Multiaxial motorcycle wheel load transducer; Mehrkomponenten-Motorradmessnabe

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, M.; Schrupp, R. [BMW AG, Muenchen (Germany)

    2001-07-01

    Knowing the loads between road and wheel is one of the elementary inputs during the virtual CAE-based motorcycle design process and the real hardware test in the laboratory and on the track. Up to now, load measurements have been done by expensive strain gage applications on chassis components of the motorcycle, which forced extensive and time-wasting calibrations and calculations. The solution to that problem was the development of the worldwide unique multiaxial wheel load transducer for motorcycles, a joint project of the fatigue strength division and the motorcycle measuring division. (orig.) [German] Die Kenntnis der Kraefte zwischen Rad und Strasse ist eine der wesentlichen Eingangsgroessen sowohl fuer den CAE-gestuetzten virtuellen Produktentstehungsprozess als auch fuer die Versuche im Labor und auf der Teststrecke. In der Vergangenheit wurden die Lasten im Fahrbetrieb durch teuere Dehnungsmessstreifen-Applikationen an Fahrwerksbauteilen ermittelt, die umfangreiche und zeitaufwaendige Kalibrierungen und Signalverrechnungen erforderten. Die Loesung dieses Problems war die Entwicklung der weltweit ersten Mehrkomponenten-Motorradmessnabe, einem Gemeinschaftsprojekt der Abteilung Betriebsfestigkeit und der Motorradmesstechnik. (orig.)

  6. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  7. Modal characterization of composite flat plate models using piezoelectric transducers

    Science.gov (United States)

    Oliveira, É. L.; Maia, N. M. M.; Marto, A. G.; da Silva, R. G. A.; Afonso, F. J.; Suleman, A.

    2016-10-01

    This paper aims to estimate the modal parameters of composite flat plate models through Experimental Modal Analysis (EMA) using piezoelectric transducers. The flat plates are composed of three ply carbon-epoxy fibers oriented in the same direction. Five specimens with different unidirectional fiber nominal orientations θk (0o, 30o, 45o, 60o and 90o) were tested. These models were instrumented with one PZT (Lead Zirconate Titanate) actuator and one PVDF (Polyvinylidene Fluoride) sensor and an EMA was performed. The natural frequencies and damping factors estimated using only a single PVDF response were compared with the estimated results using twelve measurement points acquired by laser doppler vibrometry. For comparison purposes, the percentage error of each natural frequency estimation and the percentage error of the damping factor estimations were computed, as well as their averages. Even though the comparison was made between a SISO (Single-Input, Single-Output) and a SIMO (Single-Input, Multiple-Output) techniques, both results are very close. The vibration modes were estimated by means of laser measurements and were used in the modal validation. In order to verify the accuracy of the modal parameters, the Modal Assurance Criterion (MAC) was employed and a high correlation among mode shapes was observed.

  8. Simulation of the transient electromechanical behaviour of dielectric elastomer transducers

    Science.gov (United States)

    Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2016-04-01

    To design systems utilizing dielectric elastomer transducers (DET) models are necessary to describe the behaviour of the DET and assess the system performance in advance. For basic set-ups simple analytical models or lumped parameter models are available and provide reasonable results. For more complex set-ups these models only allow a rough estimation of the system performance, not accurate enough to achieve an optimal system design. Therefore system designers typically resort to numerical simulation tools. Commercially available tools and models specialize on either electrical or mechanical domain thus simplifying or even neglecting effects in the other domain respectively. In this work we present a simulation tool taking into account the transient electrical and mechanical behaviour of DET under different mechanical load conditions and electrical driving frequencies. Our model can describe transient electrical and mechanical behaviour, such as electrical resistance, mechanical hyperelastic and viscosity of the electrodes and dielectric material. Model parameters are derived from measurements of the dielectric and the electrode resistance as well as e.g. the materials Young's modulus. The results from the simulation are compared to simple lumped parameter based models.

  9. The Evolution of Energy-Transducing Systems. Studies with Archaebacteria

    Science.gov (United States)

    Stan-Lotter, Helga

    1996-01-01

    The dicyclohexyl carbodiimide (DCCD)- binding site of the membrane ATPase from Halobacterium saccharovorum was investigated during earlier periods of this Cooperative Agreement and was localized to a cyanogen bromide fragment of subunit 2 from amino acids 379 (Glu) to 442 (Met). Although the exact position of the reactive amino acid (probably a glutamic acid) has not yet been determined, the data, together with recently obtained immuno reactions and sequences of Cyanogen Bromide (CNBr) fragments from E.coli F-ATPase, suggested subunit interactions in the halobacterial ATPase which had not been recognized before. They also provided evidence for the presence of a gamma subunit in the halobacterial ATPase, and for a stretch of a amino acids similar to the 'catch' between beta and gamma in bovine F-ATPase. The evolutionary implications of these findings are twofold: first, halobacterial (or archaebacterial) ATPases appear as complex as those from higher organisms - no simpler versions of these membrane enzymes are known to date; second, a monophyletic origin of the energy-transducing ATPases is becoming more apparent, and - together with other data - the split into V- and F-ATPases may have occurred much later than had been previously thought (i.e., after the split into Archaea and Bacteria). Other work included the characterization of an extremely halophilic isolate (Halococcus salifodinae ) from Permian salt sediments. This organism appeared to be an autotrophic halobacterium; its incorporation of C02 was investigated.

  10. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Seong-Won Choi

    2014-01-01

    Full Text Available This paper presents the experimental results of active-sensing structural health monitoring (SHM techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrant further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  11. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Jeff Bird

    2011-01-01

    Full Text Available The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and sump lines were measured during engine operation. Results have shown that the amplitude of the ultrasonic waves is sensitive to the presence of air bubbles in the oil and that the ultrasound velocity is linearly dependent on oil temperature. In the second part of the work, the sensitivity of ultrasound to engine lubricant oil degradation was investigated by using an ultrasonically equipped and thermally-controlled laboratory testing cell and lubricant oils of different grades. The results have shown that at a given temperature, ultrasound velocity decreases with a decrease in oil viscosity. Based on the results obtained in both parts of the study, ultrasound velocity measurement is proposed for monitoring oil degradation and transient oil temperature variation, whereas ultrasound amplitude measurement is proposed for monitoring air bubble content.

  12. Study on heavy matching layer transducer towards producing second harmonics

    Science.gov (United States)

    Zaini, Zulfadhli; Osuga, Masamizu; Jimbo, Hayato; Yasuda, Jun; Takagi, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Cavitation bubbles are microbubbles which can be incepted by highly negative pressure. Producing such highly negative pressure exceeding the cavitation threshold is difficult to accomplish due to nonlinear propagation followed by focal phase shift. By superimposing the second harmonic to fundamental is a way to significantly reduce the problem. However, the conventional design for an air-backed transducer is not suitable to generate both the second harmonic and fundamental at the same time. In order to overcome this problem, we propose a high impedance matching layer approach. Furthermore, we also construct a study to foresee the impact by adjusting the thickness ratio towards fundamental and second harmonic. Numerical simulation and experimental measurement have shown that by using a high impedance matching layer, efficiently generation of both the second harmonic (2 MHz) and fundamental (1 MHz) at the same time is possible. Besides, by adjusting the thickness ratio between piezocomposite and heavy matching layer will influence the amplitude of acoustic power over squared of voltage of the fundamental and second harmonic.

  13. Multiple facets of tightly coupled transducer-transistor structures

    Science.gov (United States)

    Heidari, Hadi; Dahiya, Ravinder

    2015-12-01

    The ever increasing demand for data processing requires different paradigms for electronics. Excellent performance capabilities such as low power and high speed in electronics can be attained through several factors including using functional materials, which sometimes acquire superior electronic properties. The transduction-based transistor switching mechanism is one such possibility, which exploits the change in electrical properties of the transducer as a function of a mechanically induced deformation. Originally developed for deformation sensors, the technique is now moving to the centre stage of the electronic industry as the basis for new transistor concepts to circumvent the gate voltage bottleneck in transistor miniaturization. In issue 37 of Nanotechnology, Chang et al show the piezoelectronic transistor (PET), which uses a fast, low-power mechanical transduction mechanism to propagate an input gate voltage signal into an output resistance modulation. The findings by Chang et al will spur further research into piezoelectric scaling, and the PET fabrication techniques needed to advance this type of device in the future.

  14. Bio-applications of ionic polymer metal composite transducers

    Science.gov (United States)

    Aw, K. C.; McDaid, A. J.

    2014-07-01

    Traditional robotic actuators have advanced performance which in some aspects can surpass that of humans, however they are lacking when it comes to developing devices which are capable of operating together with humans. Bio-inspired transducers, for example ionic polymer metal composites (IPMC), which have similar properties to human tissue and muscle, demonstrate much future promise as candidates for replacing traditional robotic actuators in medical robotics applications. This paper outlines four biomedical robotics applications, an IPMC stepper motor, an assistive glove exoskeleton/prosthetic hand, a surgical robotic tool and a micromanipulation system. These applications have been developed using mechanical design/modelling techniques with IPMC ‘artificial muscle’ as the actuation system. The systems are designed by first simulating the performance using an IPMC model and dynamic models of the mechanical system; the appropriate advanced adaptive control schemes are then implemented to ensure that the IPMCs operate in the correct manner, robustly over time. This paper serves as an overview of the applications and concludes with some discussion on the future challenges of developing real-world IPMC applications.

  15. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers

    International Nuclear Information System (INIS)

    Singulation of MEMS is a critical step in the transition from wafer-level to die-level devices. As is the case for capacitive micromachined ultrasound transducer (CMUT) ring arrays, an ideal singulation must protect the fragile membranes from the processing environment while maintaining a ring array geometry. The singulation process presented in this paper involves bonding a trench-patterned CMUT wafer onto a support wafer, deep reactive ion etching (DRIE) of the trenches, separating the CMUT wafer from the support wafer and de-tethering the CMUT device from the CMUT wafer. The CMUT arrays fabricated and singulated in this process were ring-shaped arrays, with inner and outer diameters of 5 mm and 10 mm, respectively. The fabricated CMUT ring arrays demonstrate the ability of this method to successfully and safely singulate the ring arrays and is applicable to any arbitrary 2D shaped MEMS device with uspended microstructures, taking advantage of the inherent planar attributes of DRIE. (technical note)

  16. Resonant gravimetric immunosensing based on capacitive micromachined ultrasound transducers

    KAUST Repository

    Viržonis, Darius

    2014-04-08

    High-frequency (40 MHz) and low-frequency (7 MHz) capacitive micromachined ultrasound transducers (CMUT) were fabricated and tested for use in gravimetric detection of biomolecules. The low-frequency CMUT sensors have a gold-coated surface, while the high-frequency sensors have a silicon nitride surface. Both surfaces were functionalized with bovine leukemia virus antigen gp51 acting as the antigen. On addition of an a specific antibody labeled with horseradish peroxidase (HRP), the antigen/antibody complex is formed on the surface and quantified by HRP-catalyzed oxidation of tetramethylbenzidine. It has been found that a considerably smaller quantity of immuno complex is formed on the high frequency sensor surface. In parallel, the loading of the surface of the CMUT was determined via resonance frequency and electromechanical resistance readings. Following the formation of the immuno complexes, the resonance frequencies of the low-frequency and high-frequency sensors decrease by up to 420 and 440 kHz, respectively. Finite element analysis reveals that the loading of the (gold-coated) low frequency sensors is several times larger than that on high frequency sensors. The formation of the protein film with pronounced elasticity and stress on the gold surface case is discussed. We also discuss the adoption of this method for the detection of DNA using a hybridization assay following polymerase chain reaction.

  17. Development of capacitive micromachined ultrasonic transducer for noncontact ultrasonic detection

    International Nuclear Information System (INIS)

    In this study, the capacitive micromachined ultrasonic transducer (cMUT) was developed. Theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) of the cMUT were performed. The design parameters of the cMUT were estimated and are the dimension and thickness of membrane, thickness of sacrificial layer, thickness and size of electrode, size of active element and so on. With the micro-fabrication process, the cMUT was fabricated on the silicon wafer. To measure the membrane displacement of cMUT, the Michelson phase modulation fiber interferometer was constructed. The measured membrane displacement was good agreed with the result of finite element analysis. To estimate the ultrasonic wave generated by the cMUT, the ultrasonic transceiver system was constructed. The developed cMUT shows a good performance and hence will be widely used to the filed of non-contact ultrasonic application.

  18. Polyimide-etalon all-optical ultrasound transducer for high frequency applications

    Science.gov (United States)

    Sheaff, Clay; Ashkenazi, Shai

    2014-03-01

    We have enhanced our design for an all-optical high frequency ultrasound transducer consisting of a UV-absorbing polyimide film integrated into an etalon receiver operating in the NIR range. A dielectric stack having high NIR reflectivity and high UV transmittance was chosen as the first mirror for increased sensitivity and the allowance of polyimide as the etalon medium. A 13 ns, 0.7 μJ optical pulse at 355 nm and a continuous-wave NIR laser were focused onto the structure with a spot diameter of 120 and 35 μm, respectively. In receive mode the etalon had a noise-equivalent pressure of 4.1 kPa over a bandwidth of 5 - 50 MHz (0.61 Pa/√Hz ). The device generated a pressure of 270 kPa at a depth of 200 μm, and the -3 dB bandwidth of the emission extended from 27 to 60 MHz. In transmit/receive mode, the pulse-echo had a center frequency of 35 MHz with a -6 dB bandwidth of 49 MHz (140 %). Lastly, wire targets were imaged by scanning the UV spot to create a synthetic aperture of transmitters centered upon a single receiver.

  19. A review of piezoelectric polymers as functional materials for electromechanical transducers

    Science.gov (United States)

    Ramadan, Khaled S.; Sameoto, D.; Evoy, S.

    2014-03-01

    Polymer based MEMS and microfluidic devices have the advantages of mechanical flexibility, lower fabrication cost and faster processing over silicon based ones. Also, many polymer materials are considered biocompatible and can be used in biological applications. A valuable class of polymers for microfabricated devices is piezoelectric functional polymers. In addition to the normal advantages of polymers, piezoelectric polymers can be directly used as an active material in different transduction applications. This paper gives an overview of piezoelectric polymers based on their operating principle. This includes three main categories: bulk piezoelectric polymers, piezocomposites and voided charged polymers. State-of-the-art piezopolymers of each category are presented with a focus on fabrication techniques and material properties. A comparison between the different piezoelectric polymers and common inorganic piezoelectric materials (PZT, ZnO, AlN and PMN-PT) is also provided in terms of piezoelectric properties. The use of piezopolymers in different electromechanical devices is also presented. This includes tactile sensors, energy harvesters, acoustic transducers and inertial sensors.

  20. EXPRESSION OF rhBMP-7 GENE IN TRANSDUCED BONE MARROW DERIVED STROMAL CELLS

    Institute of Scientific and Technical Information of China (English)

    段德宇; 杜靖远; 王洪; 刘勇; 郭晓东

    2002-01-01

    Objective. To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells(BMSCs). Methods. The marker gene , pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. Results. The exogenous gene could be expressed efficiently in transduced BMSCs. Conculsion. The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.

  1. Development of high-temperature ultrasonic transducers for under-sodium viewing applications

    International Nuclear Information System (INIS)

    PZT type immersion transducers, bonded using pure lead, can be manufactured and operated satisfactorily in sodium at temperatures up to 2800C. A satisfactory technique of braze bonding lithium niobate Z-cut crystal to stainless steel diaphragms has been developed. The bonded diaphragms can be assembled into transducers which are then capable of operation at temperatures up to 6000C. Sealed transducers which had been pre-oxidised, maintained sensitivity for about 70 days when operated at temperatures between 3000C and 5000C. There was subsequently a slow fall in sensitivity with time at temperature. (Author)

  2. Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers.

    Science.gov (United States)

    Sun, Ping; Zhou, Qifa; Zhu, Benpeng; Wu, Dawei; Hu, Changhong; Cannata, Jonathan M; Tian, Jin; Han, Pengdi; Wang, Gaofeng; Shung, K Kirk

    2009-12-01

    High-frequency PIN-PMN-PT single crystal ultrasound transducers at center frequencies of 35 MHz and 60 MHz were successfully fabricated using lead indium niobate-lead magnesium niobate-lead titanate (0.23PIN- 0.5PMN-0.27PT) single crystal. The new PIN-PMN-PT single crystal has higher coercivity (6.0 kV/cm) and higher Curie temperature (160 degrees C) than PMN-PT crystal. Experimental results showed that the PIN-PMN-PT transducers have similar performance but better thermal stability compared with the PMN-PT transducers. PMID:20040413

  3. Development of ultrasonic transducer with high resistance to temperature and radiation

    International Nuclear Information System (INIS)

    Ordinary ultrasonic transducers cannot be used to inspect equipment at a high radiation facility such as vitrification facility or fusion reactor. IHI has developed an ultrasonic transducer with high resistance to temperature and radiation and confirmed the radiation tolerance up to 10 MGy. IHI has applied the ultrasonic transducer to lid welding inspection of vitrification packages, and obtained good results such as clear detection of an artificial 0.5 mm diameter hole penetrating the stainless steel lid welding. This technology could be applied to ISI (In-Service Inspection) of nuclear plants, ensuring safe operation of nuclear plants. (author)

  4. Effect of Thermal Degradation on High Temperature Ultrasonic Transducer Performance in Small Modular Reactors

    Science.gov (United States)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    Prototype ultrasonic NDT transducers for use in immersion in coolants for small modular reactors have shown low signal to noise ratio. The reasons for the limitations in performance at high temperature are under investigation, and include changes in component properties. This current work seeks to quantify the issue of thermal expansion and degradation of the piezoelectric material in a transducer using a finite element method. The computational model represents an experimental set up for an ultrasonic transducer in a pulse-echo mode immersed in a liquid sodium coolant. Effect on transmitted and received ultrasonic signal due to elevated temperature (∼200oC) has been analysed.

  5. A lightweight push-pull acoustic transducer composed of a pair of dielectric elastomer films.

    Science.gov (United States)

    Sugimoto, Takehiro; Ando, Akio; Ono, Kazuho; Morita, Yuichi; Hosoda, Kosuke; Ishii, Daisaku; Nakamura, Kentaro

    2013-11-01

    A lightweight push-pull acoustic transducer using dielectric elastomer films was proposed for use in advanced audio systems in homes. The push-pull structure consists of two dielectric elastomer films developed to serve as an electroactive polymer. The transducer utilizes the change in the surface area of the dielectric elastomer film, induced by an electric-field-induced change in the thickness, for sound generation. The resonance frequency of the transducer was derived from modeling the push-pull configuration to estimate the lower limit of the frequency range. Measurement results presented an advantage of push-pull driving in the suppression of harmonic distortion. PMID:24181987

  6. Fluctuating surface pressure measurements on USB wing using two types of transducers

    Science.gov (United States)

    Reed, J. B.

    1975-01-01

    Measurements of the fluctuating pressures on the wing surface of an upper-surface-blown powered-lift model and a JT15 engine were obtained using two types of pressure transducers. The pressures were measured using overall-fluctuating pressures and power spectral density analyses for various thrust settings and two jet impingement angles. Comparison of the data from the two transducers indicate that similar results are obtained in the lower frequency ranges for both transducers. The data also indicate that for this configuration, the highest pressure levels occur at frequencies below 2000 Hz.

  7. Design of sonar transducer based on the laser-induced sound

    Institute of Scientific and Technical Information of China (English)

    WANG Yuhong; WANG Jiangan; ZONG Siguang; WU Ronghua

    2009-01-01

    A design of a kind of sonar transducers was presented. An experimental system was developed for producing the sound signal based on the laser-induced breakdown and bubble oscillation. The power spectrum and the ambiguity function were analyzed. The range resolu-tion and the Doppler resolution constant of the sound signal were determined. It is basically proved in theory that both the range resolution and directivity of the sonar transducer are very high. The transducer can be a sound source of high-resolution sonars.

  8. Focusing of Surface Acoustic Wave on a Piezoelectric Crystal

    Institute of Scientific and Technical Information of China (English)

    QIAO Dong-Hai; WANG Cheng-Hao; WANG Zuo-Qing

    2006-01-01

    @@ We investigate the focusing phenomena of a surface acoustic wave (SAW) field generated by a circular-arc interdigital transducer (IDT) on a piezoelectric crystal. A rigorous vector field theory of surface excitation on the crystal we developed previously is used to evaluate the convergent SAW field instead of the prevalent scalar angular spectrum used in optics. The theoretical results show that the anisotropy of a medium has great impact on the focusing properties of the acoustic beams, such as focal length and symmetrical distributions near the focus. A dark field method is used in experiment to observe the focusing of the SAW field optically. Although the convergent phenomena of SAW field on the anisotropic media or piezoelectric crystals are very complicated,the experimental data are in agreement with those from the rigorous theory.

  9. Study of different ultrasonic focusing methods applied to non destructive testing; Etude de differentes methodes de focalisation ultrasonore appliquees au controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    El Amrani, M.

    1995-11-17

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends.

  10. Genitive focus in Supyire

    OpenAIRE

    Carlson, Robert,

    2006-01-01

    Supyire has two distinct genitive constructions, one consisting of juxtaposed nouns, and the other marked with a particle. This study demonstrates that the marked genitive correlates significantly in natural discourse with contrastive focus as operationally defined in Myhill and Xing (1996). The method used avoids the vicious circularity of many discourse-based studies of focus. Contrastive focus, rather than being "coded", is a pragmatic construal which is dependent on other elements in the ...

  11. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    Science.gov (United States)

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  12. Investigation of bulk acoustic microwaves excited by an interdigital transducer

    Directory of Open Access Journals (Sweden)

    Reshotka O. G.

    2015-12-01

    Full Text Available Excitation of bulk and surface acoustic waves with the interdigital transducer (IDT, which is deposited on the surface of piezoelectric crystal, is widely used in the development of devices in acoustoelectronics and in the design of the microwave acousto-optic deflectors. Excitation of bulk acoustic waves by IDT in the devices on surface acoustic waves leads to the appearance of spurious signals. At the same time excitation of bulk acoustic waves with IDT from the surface of lithium niobate crystals allows creating high frequency acousto-optic deflectors, which makes possible to significantly simplify the technology of their production. Therefore, significant attention is paid to the task of excitation and distribution of bulk acoustic waves with IDT including recent times by the method of simulation of their excitation and distribution. The obtained theoretical results require experimental verification. This paper documents the visualization of acoustic beams excited with IDT from the XY-surface of lithium niobate crystals. The Bragg cells with LiNbO3 crystals coated with IDT with a different period of electrodes were manufactured for the experimental research of excitation and distribution of bulk acoustic waves. Visualization results have shown that the acoustic waves excited with IDT distribute in both the Fresnel zone and the Fraunhofer zone. The length of these zones is caused by individual elementary emitters of which consists the IDT (by their size. At the same time the far zone for IDT is located at distances much greater than the actual size of the LiNbO3 crystals. This peculiarity is not always taken into account when calculating diffraction. The achieved results can be used to design high-frequency acousto-optic devices, as well as in the development of devices based on surface acoustic waves.

  13. Reliability and Validity Assessment of a Linear Position Transducer

    Directory of Open Access Journals (Sweden)

    Manuel V. Garnacho-Castaño

    2015-03-01

    Full Text Available The objectives of the study were to determine the validity and reliability of peak velocity (PV, average velocity (AV, peak power (PP and average power (AP measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain during two resistance exercises, bench press (BP and full back squat (BS, performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2. Intraclass correlation coefficients (ICCs indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W. Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W. Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP make this device a useful tool for monitoring resistance training.

  14. Experimental Analysis of Bisbenzocyclobutene Bonded Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Manwar, Rayyan; Chowdhury, Sazzadur

    2016-01-01

    Experimental measurement results of a 1.75 mm × 1.75 mm footprint area Capacitive Micromachined Ultrasonic Transducer (CMUT) planar array fabricated using a bisbenzocyclobutene (BCB)-based adhesive wafer bonding technique has been presented. The array consists of 40 × 40 square diaphragm CMUT cells with a cavity thickness of 900 nm and supported by 10 µm wide dielectric spacers patterned on a thin layer of BCB. A 150 µm wide one µm thick gold strip has been used as the contact pad for gold wire bonding. The measured resonant frequency of 19.3 MHz using a Polytec™ laser Doppler vibrometer (Polytec™ MSA-500) is in excellent agreement with the 3-D FEA simulation result using IntelliSuite™. An Agilent ENA5061B vector network analyzer (VNA) has been used for impedance measurement and the resonance and anti-resonance values from the imaginary impedance curve were used to determine the electromechanical coupling co-efficient. The measured coupling coefficient of 0.294 at 20 V DC bias exhibits 40% higher transduction efficiency as compared to a measured value published elsewhere for a silicon nitride based CMUT. A white light interferometry method was used to measure the diaphragm deflection profiles at different DC bias. The diaphragm center velocity was measured for different sub-resonant frequencies using a Polytec™ laser Doppler vibrometer that confirms vibration of the diaphragm at different excitation frequencies and bias voltages. Transmit and receive operations of CMUT cells were characterized using a pitch-catch method and a -6 dB fractional bandwidth of 23% was extracted from the received signal in frequency domain. From the measurement, it appears that BCB-based CMUTs offer superior transduction efficiency as compared to silicon nitride or silicon dioxide insulator-based CMUTs, and provide a very uniform deflection profile thus making them a suitable candidate to fabricate highly energy efficient CMUTs. PMID:27347955

  15. Alternative material study for heat assisted magnetic recording transducer application

    Science.gov (United States)

    Xu, B. X.; Cen, Z. H.; Hu, J. F.; Tsai, J. W. H.

    2015-05-01

    In heat assisted magnetic recording (HAMR), optical near field transducer (NFT) is a key component. Au is currently used as NFT material because of its strong surface plasmon effect. Due to the soft property of Au material, reliability of Au NFT becomes a key issue for realizing HAMR production. In this paper, the possibility of alternative materials, including transition metal nitrides (TMNs) and transparent conducting oxides (TCOs) to replace Au is studied. The results show that all of the listed TMN and TCO materials can meet the mechanical requirements at room temperature in terms of hardness and thermal expansion. An optical model, which includes optical waveguide, NFT and FePt media, is used to simulate NFT performances. The results indicate that the resonant wavelengths for NFT with TCO materials are longer than 1500 nm, which is not suitable for HAMR application. TMN materials are suitable for NFT application at wavelength band of around 800 nm. But the NFT efficiency is very low. ZrN is the best material among TMN materials and the efficiency of ZrN NFT is only 13% of the Au NFT's efficiency. Reducing refractive index (n) and increasing extinction coefficient (k) will both lead to efficiency increase. Increasing k contributes more in the efficiency increase, while reducing n has a relatively low NFT absorption. For materials with the same figure of merit, the NFT with larger k material has higher efficiency. Doping materials to increase the material conduction electron density and growing film with larger size grain may be the way to increase k and reduce n.

  16. Dynamic mode tuning of ultrasonic guided wave using an array transducer

    International Nuclear Information System (INIS)

    Ultrasonic guided waves have been widely employed for the long range inspection of structures such as plates, rods and pipes. In ultrasonic guided waves, however, there are numerous modes with different wave velocities, so that the generation and detection of the appropriate wave mode of the guided wave is one of key techniques in the application of guided waves. In the present work, phase tuning using an array transducer was applied to generate ultrasonic guided waves in a seamless stainless steel pipe. for this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. Eight transducers were fabricated in order to generate guided waves by using an array transducer. The selective tuning of wave mode can be achieved by changing the interval between elements of an array transducer.

  17. Thickness effects of the metallic and the insulating membranes of a cylindrical electromagnetic shock wave transducer

    International Nuclear Information System (INIS)

    The study was to experimentally investigate how shock wave production was related to the thickness of the metallic and the insulating membranes encompassing the solenoid of a cylindrical electromagnetic shock wave transducer. The thicknesses considered were 30, 50, 100, 150, and 200 μm in the metallic foil, and 50, 100, 150, 200, 300, and 500 μm in the insulator. A total of 30 shock wave transducers covering all thickness combinations of the pair of membranes were constructed and tested. The results showed that the shock wave production was maximized when the metallic foil had a particular thickness of 50 μm and the insulator was as thin as possible. The conditions are that the inductance of the shock wave transducer is close to the lower bound of its minimum and that the current flow through the transducer is slightly smaller than its maximum.

  18. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    Science.gov (United States)

    Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin

    2010-09-21

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-

  19. Driving frequency optimization of a piezoelectric transducer and the power supply development

    Science.gov (United States)

    Dong, Xiaoxiao; Yuan, Tao; Hu, Minqiang; Shekhani, Husain; Maida, Yuichi; Tou, Tonshaku; Uchino, Kenji

    2016-10-01

    Piezoelectric transducers are commonly operated at their resonance frequency. However, from a power dissipation standpoint, this is not the ideal driving frequency. In this paper, an optimized driving frequency in between the resonance and antiresonance frequencies is proposed for the piezo-transducer. First, the optimum driving frequency is characterized using a constant vibration velocity measurement method. The actual input power reveals the lowest power dissipation frequency between the resonance and the antiresonance frequencies, where the transducer behaves inductive. The electrical parameters of the transducer are then determined by an equivalent circuit formulation, which is useful for the electrical circuit analysis of the driver design. A Class E resonant inverter is used to design a capacitive output impedance driver at the optimized frequency by utilizing a series capacitor. Compared with the traditional resonance drive, driving at the optimized frequency reduces the required power by approximately half according to the measurements performed.

  20. Investigation of An Acoustic Temperature Transducer and its Application for Heater Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Mohammad A.K. Alia

    2007-01-01

    Full Text Available Recent developments in temperature measurement have encouraged researchers to develop low-cost, simple structure, computerized generic transducers for environmental monitoring and industrial process control. The research presents a computerized technique which allows to measure temperature according to the variation of acoustic velocity (frequency in a closed waveguide. Signal conditioning and processing was carried out using labVIEW (G Language VIs. In order to evaluate the time characteristic of the transducer its response was compared with that of a reference detector (PT 100 for the same step input. Static characteristics of the transducer show a quasi-linear relationship between the measured temperature and the resonance frequency. Results of practical experiments show that in order to improve the response curve of the transducer and decrease the rising time interval it is advisable to implement thin-wall glass tubes or another material with lower thermal impedance.

  1. Analysis and design of piezocomposite ultrasonic transducers using finite element technique and surface displacement profiles

    CERN Document Server

    Reynolds, P

    2000-01-01

    Ultrasonic transducers have found extensive applications in the fields of non-destructive testing, biomedicine, and SONAR. Piezocomposite ultrasonic transducers can offer significant advantages over their pure ceramic counterparts, but at the expense of increased manufacturing complexity and the introduction of additional resonant modes that may reduce transducer efficiency if the device is not carefully designed. Extensive work has been carried out over the last twenty years to characterise the behaviour of piezocomposite devices, resulting in many design guidelines, some of which are only applicable in a limited range of device structures. This Thesis presents a new theory of the generation of inter-pillar modes that is based upon the generation of Lamb waves in the piezocomposite plate. Through the use of finite element analysis and a scanning laser interferometer, the resonant mode displacement shapes of piezocomposite transducers are studied and analysed. Excellent correlation between modelled and experi...

  2. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Oden L; Asif, Syed Amanula Syed; Cyrankowski, Edward; Kounev, Kalin

    2013-06-04

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.

  3. An Ultrasonic Motor Using a Titanium Transducer for a Cryogenic Environment

    Science.gov (United States)

    Takeda, Dai; Yamaguchi, Daisuke; Kanda, Takefumi; Suzumori, Koichi; Noguchi, Yuya

    2013-07-01

    We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense magnetic field. Titanium has low magnetic permeability and a thermal expansion coefficient close to that of lead zirconate titanate (PZT). These features mean that a transducer made of titanium has good properties for use in such an environment. We have fabricated and evaluated the ultrasonic motor in a cryogenic environment and an intense magnetic field. We have simulated the thermal stress applied to PZT in consideration of nonlinear material properties in the cryogenic environment. The thermal stress of the titanium transducer is smaller than that of the SUS304 transducer. Moreover, we have achieved driving of the ultrasonic motor at 4.5 K. Additionally, we have confirmed that there is little effect of the intense magnetic field on the driving of the motor.

  4. Theoretical model and optimal design of silicon micromachined ultrasonic imaging transducers

    Institute of Scientific and Technical Information of China (English)

    GE; LiFeng

    2007-01-01

    A theoretical model and mathematical description for silicon micromachined electrostatic or capacitive ultrasonic imaging transducers have been developed. According to the model the basic performance parameters of such a transducer, such as natural frequencies, eigenfunctions, resonance and anti-resonance frequencies, and the mechanical impedance of the diaphragm can be predicted from the geometry of the transducer and property parameters of materials used. The paper reveals that this type of transducers has two basic operation modes, corresponding to the resonance of a mass-spring oscillator comprised of the diaphragm and the air cushion, and the first-order bending mode of the diaphragm itself respectively, and presents an optimal method for extending the bandwidth by making the two modes coupled, and thereby provides a theoretical basis for the optimal design.

  5. Hysteretic self-oscillating bandpass current mode control for Class D audio amplifiers driving capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    A hysteretic self-oscillating bandpass current mode control (BPCM) scheme for Class D audio amplifiers driving capacitive transducers are presented. The scheme provides excellent stability margins and low distortion over a wide range of operating conditions. Small-signal behavior of the amplifier...... the rules of electrostatics have been known as very interesting alternatives to the traditional inefficient electrodynamic transducers. When driving capacitive transducers from a Class D audio amplifier the high impedance nature of the load represents a key challenge. The BPCM control scheme ensures a flat...... is analysis through transfer function based linear control methodology. Measurements are performed on a single-ended ± 300 V half-bridge amplifier driving a capacitive load of 100 nF. Total Harmonic Distortion plus noise (THD+N) below 0.1 % are reported. Transducers representing a capacitive load and obeying...

  6. Study on Evaluating Damage of CFRP Using the PVDF Comb Transducer

    International Nuclear Information System (INIS)

    Recently, fiber reinforced plastic (FRP) materials become to be used more in producing airplanes because of high specific strength and low weight. However, there can be delamination caused from unexpected impact during the service flight. Since strength reduce comes with these delamination defects, defects in the composite materials should be monitored for safety of the airplane. A PVDF transducer can be used for on-line health monitoring economically. In this study, comb type of PVDF transducer was fabricated for generating and receiving of the guided wave at specific wavelength and was applied to evaluate natural delamination defect with the guided wave. Natural delamination in CFRP was produced with free dropping weight on CFRP surface between the transmitter and the receiver transducers. At every impacts, guided wave was generated and received in the pitch-catch way with the PVDF(Polyvinylidene fluoride) comb transducer and variation of the guided wave signal was compared according to accumulation of impact damage.

  7. A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-01-01

    Full Text Available This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.

  8. Evaluation of Near/Far Field and Directivity of Ultrasonic Transducer for Turbine Rotor Disc

    International Nuclear Information System (INIS)

    Near/far field length and directivity of transducers were investigated for the improvement and evaluation of the detectability of flaws in a disc. The reference block is fabricated for the disc of stage 6 in Yonggwang unit 1. The near/far field and directivity of an ultrasonic transducer with the center frequency of 5MHz were calculated for the inspection of the disc. These values showed good agreements with the experimental results. In the system composed of a wedge and a disc, those are evaluated theoretically and experimentally for the specimen with the artificial flaws of the size 2mm and 4mm and an ultrasonic transducer with the center frequency 5MHz and diameter 0.5 inch. The detectability of keyway-flaw and detectable region for inspection were evaluated by using both tangential 45 .deg. and 90 .deg. transducers located at the distance of 53mm and 75mm from the disc hub, respectively

  9. A position transducer for studying parabolic motion and rolling down a grooved track

    Science.gov (United States)

    Basta, M.; Di Gennaro, M.; Picciarelli, V.

    1994-09-01

    We describe a computerized system based on a position transducer on-line and discuss its applications in two experiments (parabolic motion and rolling down a grooved track) performed in an introductory physics laboratory course.

  10. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    Science.gov (United States)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  11. Thickness effects of the metallic and the insulating membranes of a cylindrical electromagnetic shock wave transducer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Joo [Jeju National University, Jeju (Korea, Republic of); Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Cho, Sung Chan; Paeng, Dong Guk [Jeju National University, Jeju (Korea, Republic of); Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Coleman, Andrew [Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom)

    2011-12-15

    The study was to experimentally investigate how shock wave production was related to the thickness of the metallic and the insulating membranes encompassing the solenoid of a cylindrical electromagnetic shock wave transducer. The thicknesses considered were 30, 50, 100, 150, and 200 {mu}m in the metallic foil, and 50, 100, 150, 200, 300, and 500 {mu}m in the insulator. A total of 30 shock wave transducers covering all thickness combinations of the pair of membranes were constructed and tested. The results showed that the shock wave production was maximized when the metallic foil had a particular thickness of 50 {mu}m and the insulator was as thin as possible. The conditions are that the inductance of the shock wave transducer is close to the lower bound of its minimum and that the current flow through the transducer is slightly smaller than its maximum.

  12. Adhesive defect detection in composite adhesive joints using phased array transducers

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2015-03-01

    Composite materials are widely used in aircraft structures due to their high specific stiffness and strength. The laminated nature of composite structures makes them subject to disbond and delamination. These types of defects will compromise the integrity of the structure and therefore need to be monitored. To monitor aircraft structures, light weight transducers capable of large area coverage are beneficial. Ultrasonic guided waves are able to travel long distance and are sensitive to localized defects. The multi-modal characteristic of propagating guided waves requires optimal mode selection and excitation. Phased array transducers provide good versatility for optimal mode excitation since they can excite different guided wave modes preferentially. Phased array transducers designed for structural health monitoring (SHM) applications are employed in this work to study the interaction between adhesive defects and guided wave modes. Amplitude ratios and wave packet composition are utilized as defect indicators that are uniquely available due to the phased array transducers.

  13. Pressure transducer used for measuring close-in shock waves of nuclear explosions in the atmosphere

    International Nuclear Information System (INIS)

    This paper introduces a variable reluctance pressure transducer. It has been successfully used for the measurement of close-in shock waves of nuclear explosions in the atmosphere. This transducer's highest pressure range is 100kg/cm2 and its response rise time for all ranges is lms. It uses a specially made oil-filled pressure which allows the transducer to be able to realize underground installation. In this way, it can endure the intense nuclear radiation of nuclear explosions without losing its fast speed response characteristics. This transducer has undergone a series of environmental tests and dynamic standardizations. Therefore, it was used to measure the complete waveform of shock wave overpressure in areas near the fire ball of nuclear explosions. This paper lists the test data of a group of nuclear explosion tests

  14. On the use of giant magnetostrictive materials in sonic transducers for liquid atomizers

    Science.gov (United States)

    Sheykholeslami, M.; Ghodsi, M.; Hojjat, Y.; Sadeghian, H.; Cinquemani, S.

    2016-04-01

    Liquid atomization has many applications such as car fuel injector, heat dissipation, coating, medical use, etc. The most common way in atomization is to exploit high frequency and high vibration amplitudes of piezoelectric devices. This paper investigates the effectiveness of a giant magnetostrictive transducer for atomizing liquids. Effect of vibration amplitudes on output parameters such as atomization size and output Dubai have been investigated so as the frequency response of the transducer when plunged into the water. Droplet size particles have been measured through high speed camera. Results show that using giant magnetostrictive transducer leads to uniformity that is considered a key factor in many applications. Results demonstrates that sonic transducers based on giant magnetostrictive material can be profitably used as liquid atomizers.

  15. Microfabricated particle focusing device

    Energy Technology Data Exchange (ETDEWEB)

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  16. Comparisons of electromagnetic and piezoelectric floating-mass transducers in human cadaveric temporal bones☆

    OpenAIRE

    Park, Il-Yong; Shimizu, Yoshitaka; O’Connor, Kevin N.; Puria, Sunil; Cho, Jin-Ho

    2010-01-01

    Electromagnetic floating-mass transducers for implantable middle-ear hearing devices (IMEHDs) afford the advantages of a simple surgical implantation procedure and easy attachment to the ossicles. However, their shortcomings include susceptibility to interference from environmental electromagnetic fields, relatively high current consumption, and a limited ability to output high-frequency vibrations. To address these limitations, a piezoelectric floating-mass transducer (PFMT) has recently bee...

  17. Interstitial thermal ablation with a fast rotating dual-mode transducer.

    Science.gov (United States)

    Bouchoux, Guillaume; Owen, Neil; Chavrier, Francoise; Berriet, Rémi; Fleury, Gérard; Chapelon, Jean-Yves; Lafon, Cyril

    2010-05-01

    Interstitial ultrasound applicators can be a minimally invasive alternative for treating targets that are unresectable or are inaccessible by extracorporeal methods. Dual-mode transducers for ultrasound imaging and therapy were developed to address the constraints of a miniaturized applicator and real-time treatment monitoring. We propose an original treatment strategy that combines ultrasound imaging and therapy using a dual-mode transducer rotating at 8 revolutions per second. Real-time B-mode imaging was interrupted to emit high-intensity ultrasound over a selected therapy aperture. A full 360 degrees image was taken every 8th rotation to image the therapy aperture. Numerical simulations were performed to study the effect of rotation on tissue heating, and to study the effect of the treatment sequence on transducer temperature. With the time-averaged transducer surface intensity held at 12 W/cm(2) to maintain transducer temperature below 66 degrees C, higher field intensities and deeper lesions were produced by narrower therapy apertures. A prototype system was built and tested using in vitro samples of porcine liver. Lesions up to 8 mm were produced using a time-averaged transducer surface intensity of 12 W/cm(2) applied for a period of 240 s over a therapy aperture of 40 degrees. Apparent strain imaging of the therapy aperture improved the contrast between treated and spared tissues, which could not be differentiated on B-mode images. With appropriate limits on the transducer output, real-time imaging and deep thermal ablation are feasible and sustainable using a rotating dual-mode transducer. PMID:20442018

  18. Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound

    Science.gov (United States)

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A.; Jiang, Xiaoning

    2015-03-01

    In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.

  19. Comparative Analysis of Selected Eddy Current Transducers for Titanium Alloy Evaluation

    Science.gov (United States)

    Chady, T.; Sikora, R.; Baniukiewicz, P.; Lopato, P.; Kowalczyk, J.; Psuj, G.; Caryk, M.

    2010-02-01

    Titanium alloy based details due to their mechanical properties continue to be in extensive use in various structures (mainly aerospace, automotive and petro-chemical industrial applications). In this paper comparative study of various types of eddy current NDT transducers for testing titanium elements was done. Probes of absolute, differential and array configurations were constructed and analyzed. Two and three dimensional numerical analysis (FEM) were done in order to find the best type and configuration of the proposed transducers.

  20. Design and Functional Validation of a Complex Impedance Measurement Device for Characterization of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    This paper presents the design and practical implementation of a complex impedance measurement device capable of characterization of ultrasonic transducers. The device works in the frequency range used by industrial ultrasonic transducers which is below the measurement range of modern high end network analyzers. The device uses the Goertzel algorithm instead of the more common FFT algorithm to calculate the magnitude and phase component of the impedance under test. A theoretical overview is given followed by a practical approach and measurement results. (authors)

  1. Beam Steering of Electrically Segmented Piezo-Ceramic Ultrasonic Transducers Using Normal Mode Coupling

    OpenAIRE

    Eslambolchi, Hossein

    1984-01-01

    It is well known that normal mode coupling in large diameter piezoelectric plates causes serious difficulties when attempting to operate over wide frequency bands. As a consequence transducers are commonly constructed as a mosaic of elemental resonators, each of which has a predominant single mode of mechanical oscillation at the frequency of interest. Such transducer arrays may be electrically steered to angles other than normal by applying different phases of driving voltages to different e...

  2. Measurement of reflected second harmonics and nonlinearity parameter using a transducer with complex structure

    Institute of Scientific and Technical Information of China (English)

    MA Qingyu; LU Rongrong; ZHANG Dong; GONG Xiufen; LIU Xiaozhou

    2003-01-01

    Measurement of nonlinearity parameter using the second-harmonic reflective model is studied. A new kind of compound transducer is designed and fabricated for this purpose. With this transducer and the finite amplitude insert-substitution method, an experimental system to measure the nonlinearity parameter using reflective model is developed. B/A values of some liquids and biological tissues are obtained and results coincide well with those presented in the literatures.

  3. Production of Lentiviral Vectors for Transducing Cells from the Central Nervous System

    OpenAIRE

    Li, Mingjie; Husic, Nada; Lin, Ying; Snider, B. Joy

    2012-01-01

    Efficient gene delivery in the central nervous system (CNS) is important in studying gene functions, modeling neurological diseases and developing therapeutic approaches. Lentiviral vectors are attractive tools in transduction of neurons and other cell types in CNS as they transduce both dividing and non-dividing cells, support sustained expression of transgenes, and have relatively large packaging capacity and low toxicity 1-3. Lentiviral vectors have been successfully used in transducing ma...

  4. The Transducer Function: An Introduction to a Theoretical Typology in Electronic Literature and Digital Art

    OpenAIRE

    Álvaro Seiça

    2012-01-01

    In this essay I introduce the notion of transducer function in the fields of electronic literature and digital art. Firstly, I survey the transduction concept throughout its history in such domains as physics, genetics, microbiology, biochemistry, physiology, psychology, philosophy, logic and computer science. Secondly, I discuss the relevance of a transduction theory versus the advantage of a transducer function. I migrate the transduction concept into the fields of electronic literature and...

  5. Efficiency Investigation of Switch Mode Power Amplifier Drving Low Impedance Transducers

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Schneider, Henrik; Knott, Arnold;

    2015-01-01

    The typical nominal resistance span of an electro dynamic transducer is 4 Ω to 8 Ω. This work examines the possibility of driving a transducer with a much lower impedance to enable the amplifier and loudspeaker to be directly driven by a low voltage source such as a battery. A method for estimating...... performance leap in terms of efficiency compared to a conventional battery driven sound system. Future optimization of low voltage, high current amplifiers for low impedance loudspeaker drivers are discussed....

  6. Air-Coupled Piezoelectric Transducers with Active Polypropylene Foam Matching Layers

    Directory of Open Access Journals (Sweden)

    Tomás E. Gómez Alvarez-Arenas

    2013-05-01

    Full Text Available This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1–3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl. These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the l/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz, then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range.

  7. Time delay controlled annular array transducers for omnidirectional guided wave mode control in plate like structures

    International Nuclear Information System (INIS)

    Guided waves in plate like structures offer several modes with unique characteristics that can be taken advantage for nondestructive inspection applications. Conditions relating to the structure under inspection like the surrounding media, liquid loading, coatings etc require the use of special modes for successful inspection. Therefore, transducers that can excite mode controlled guided waves are essential for defect detection and discrimination in structures. Array transducers with annular elements can generate omnidirectional guided waves in plate like structures. However, the wave modes excited are limited to a particular wavelength governed by the element spacing. This limitation on the annular array transducers can be overcome by controlling the phase at each element relative to one another. In this work, annular array transducer construction techniques are theoretically examined and the optimum phase delays between the annular elements to excite a desired guided wave mode are calculated. A five element comb type annular array transducer is fabricated utilizing 1–3 type piezocomposite material. The mode control capability of the transducer is experimentally verified by selectively exciting the A0 and S0 guided wave modes in an aluminum plate like structure. (paper)

  8. An under-water experiment on the acoustic characteristic of high temperature ultrasonic transducers

    International Nuclear Information System (INIS)

    We have boon developing an Ultrasound Doppler Velocimetry technique (UDV), in order to apply thermo-hydraulic measurement in sodium. A feasibility study had been conducted to identify development subjects of sensor and signal processing. Thus, high temperature ultrasonic transducers were manufactured to use in water and sodium tests, which will be scheduled to optimize an algorithm of signal processing and to improve the characteristic of the transducer. In this report, we described the results of an experiment on the acoustic characteristic of transducer in water. The results are as follows: (1) The ultrasound beam profile of the transducer relating to the characteristic of velocity profile measurement using scattering ultrasound wave was obtained. The estimation of ultrasound beam profile in liquid and an ultrasound near-field region were introduced from those experimental data. (2) It was confirmed that the frequency 's spectrum of transducers are adequate for the design requirement of flow velocity range. The specifications of a transmitter and receiver for a transducer were identified, such as the amplitude gain for scattered ultrasound signal and the frequency resolution for Doppler sift signal. (3) The spatial resolution of the ultrasound beam was estimated to evaluate the accuracy of flow profile measurement on UDV system. (author)

  9. Investigation of factors affecting the calibration of strain gage based transducers ('Goodzeit gages') for SSC magnets

    International Nuclear Information System (INIS)

    These transducers are designed to measure stresses on SSC collared coils. They are individually calibrated with a bonded ten-stack of SSC inner coil cable by applying a known load and reading corresponding output from the gages. The transducer is supported by a notched 'backing plate' that allows for bending of the gage beam during calibration or in use with an actual coil. Several factors affecting the calibration and use of the transducers are: the number of times a 'backing plate' is used, the similarities or differences between bonded ten-stacks, and the differences between the ten-stacks and the coil they represent. The latter is probably the most important because a calibration curve is a model of how a transducer should react within a coil. If the model is wrong, the calibration curve is wrong. Information will be presented regarding differences in calibrations between Brookhaven National Labs (also calibrating these transducers) and Fermilab - what caused these differences, the investigation into the differences between coils and ten-stacks, and how they relate to transducer calibration, and some suggestions for future calibrations

  10. Investigation of factors affecting the calibration of strain gage based transducers (''Goodzeit gages'') for SSC magnets

    International Nuclear Information System (INIS)

    These transducers are designed to measure stresses on SSC collared coils. They are individually calibrated with a bonded ten-stack of SSC inner coil cable by applying a known load and reading corresponding output from the gages. The transducer is supported by a notched ''backing plate'' that allows for bending of the gage beam during calibration or in use with an actual coil. Several factors affecting the calibration and use of the transducers are: the number of times a ''backing plate'' is used, the similarities or difficulties between bonded ten-stacks, and the differences between the ten-stacks and the coil they represent. The latter is probably the most important because a calibration curve is a model of how a transducer should react within a coil. If the model is wrong, the calibration curve is wrong. Information will be presented regarding differences in calibrations between Brookhaven National Labs (also calibrating these transducers) and Fermilab -- what caused these differences, the investigation into the differences between coils and ten-stacks and how they relate to transducer calibration, and some suggestions for future calibrations

  11. New technology for the design of advanced ultrasonic transducers for high-power applications.

    Science.gov (United States)

    Parrini, Lorenzo

    2003-06-01

    A new high-frequency ultrasonic transducer for wire bonding has been conceived, designed, prototyped and tested. In the design phase an advanced approach was used and established. The method is based on the two basic principles of modularity and iteration. The transducer is decomposed to its elementary components. For each component an initial design is obtained with finite elements method (FEM) simulations. The simulated ultrasonic modules are then built and characterized experimentally through laser-interferometry measurements and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be iteratively adjusted and optimized. The achieved FEM simulations exhibit a remarkably high-predictive potential and allow full control on the vibration behavior of the ultrasonic modules and of the whole transducer. The new transducer is fixed on the wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the converter to be attached on the wire bonder not only in longitudinal nodes but also in radial nodes of the ultrasonic field excited in the horn. This leads to a nearly complete decoupling of the transducer to the wire bonder, which has not been previously obtained. The new approach to mount ultrasonic transducers on a welding-device is of major importance not only for wire bonding but also for all high-power ultrasound applications and has been patented.

  12. A flexible piezoelectric transducer design for efficient generation and reception of ultrasonic Lamb waves.

    Science.gov (United States)

    Gachagan, Anthony; Hayward, Gordon; Banks, Robert

    2005-07-01

    This paper describes the development of a flexible piezoelectric transducer for the generation and detection of ultrasonic symmetrical Lamb waves in plate-like structures. This piezoplatelet transducer structure comprises an array of miniature piezoceramic plates embedded within a soft setting polymer filler material, combining the efficiency of the active piezoceramic phase with a degree of flexibility, which is a function of the platelet/polymer dimensions. For many condition-monitoring applications, the generation of ultrasonic Lamb waves is often appropriate, and this was achieved by incorporating interdigital design techniques via the transducer electrode pattern. The performance of the piezoplatelet transducer structure was evaluated using a combination of linear systems and finite-element modeling, substantiated by experimental results. Importantly, the transducer is shown to operate as an ensemble of platelets, each operating in the thickness mode and well decoupled from neighboring piezoelectric elements. Using this transducer configuration, an unimodal s1 Lamb wave, at 1.45 MHz, has been generated and detected in a 3-mm thick steel plate. Furthermore, a propagation distance of almost 1 m was recorded for s0 Lamb wave generation/detection in a fiber-reinforced composite plate. PMID:16212257

  13. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography.

    Science.gov (United States)

    Ma, Jianguo; Martin, K Heath; Li, Yang; Dayton, Paul A; Shung, K Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers. PMID:25856384

  14. Twenty years of barrel-stave flextensional transducer technology in Canada

    Science.gov (United States)

    Jones, Dennis F.

    2005-04-01

    The barrel-stave flextensional transducer, a compact underwater sound source, was conceived at DRDC Atlantic in 1986 [G. W. McMahon and D. F. Jones, U.S. Patent No. 4,922,470 (1 May 1990); Canadian Patent No. 1,285,646 (2 July 1991)]. Over the years, five barrel-stave designs belonging to three flextensional classes were built and tested at DRDC Atlantic. Three Class I transducers with operating frequencies ranging from 800 to 1600 Hz were integrated into submarine communications buoys, low frequency active horizontal projector arrays, and a broadband sonar towbody. A high-power Class II and broadband (1-7 kHz) Class III transducer were deployed under the ice in the Lincoln Sea for research related to rapidly deployable surveillance systems. These barrel-stave flextensional transducers have also supported a variety of marine mammal studies including vocal mimicry in long-finned pilot whales, coda dialects in sperm whales, and the R&D of acoustic detection and tracking systems for endangered northern right whales. In August 2004 a barrel-stave transducer was used to lure a trapped juvenile humpback whale to the sluice gates of a tidal generating station on the Annapolis River in Nova Scotia by transmitting humpback whale calls underwater. The acoustic performance parameters for all 5 transducers will be presented.

  15. A spiral wave front beacon for underwater navigation: transducer prototypes and testing.

    Science.gov (United States)

    Dzikowicz, Benjamin R; Hefner, Brian T

    2012-05-01

    Transducers for acoustic beacons which can produce outgoing signals with wave fronts whose horizontal cross sections are circular or spiral are studied experimentally. A remote hydrophone is used to determine its aspect relative to the transducers by comparing the phase of the circular signal to the phase of the spiral signal. The transducers for a "physical-spiral" beacon are made by forming a strip of 1-3 piezocomposite transducer material around either a circular or spiral backing. A "phased-spiral" beacon is made from an array of transducer elements which can be driven either in phase or staggered out of phase so as to produce signals with either a circular or spiral wave front. Measurements are made to study outgoing signals and their usefulness in determining aspect angle. Vertical beam width is also examined and phase corrections applied when the hydrophone is out of the horizontal plane of the beacon. While numerical simulations indicate that the discontinuity in the physical-spiral beacon introduces errors into the measured phase, damping observed at the ends of the piezocomposite material is a more significant source of error. This damping is also reflected in laser Doppler vibrometer measurements of the transducer's surface velocity.

  16. Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements.

    Science.gov (United States)

    Loveday, Philip W

    2007-10-01

    A finite-element modeling procedure for computing the frequency response of piezoelectric transducers attached to infinite constant cross-section waveguides, as encountered in guided wave ultrasonic inspection, is presented. Two-dimensional waveguide finite elements are used to model the waveguide. Conventional three-dimensional finite elements are used to model the piezoelectric transducer. The harmonic forced response of the waveguide is used to obtain a dynamic stiffness matrix (complex and frequency dependent), which represents the waveguide in the transducer model. The electrical and mechanical frequency response of the transducer, attached to the waveguide, can then be computed. The forces applied to the waveguide are calculated and are used to determine the amplitude of each mode excited in the waveguide. The method is highly efficient compared to time integration of a conventional finite-element model of a length of waveguide. In addition, the method provides information about each mode that is excited in the waveguide. The method is demonstrated by modeling a sandwich piezoelectric transducer exciting a waveguide of rectangular cross section, although it could be applied to more complex situations. It is expected that the modeling method will be useful during the optimization of piezoelectric transducers for exciting specific wave propagation modes in waveguides.

  17. Damage Evaluation in Shear-Critical Reinforced Concrete Beam using Piezoelectric Transducers as Smart Aggregates

    Science.gov (United States)

    Chalioris, Constantin E.; Papadopoulos, Nikos A.; Angeli, Georgia M.; Karayannis, Chris G.; Liolios, Asterios A.; Providakis, Costas P.

    2015-10-01

    Damage detection at early cracking stages in shear-critical reinforced concrete beams, before further deterioration and their inevitable brittle shear failure is crucial for structural safety and integrity. The effectiveness of a structural health monitoring technique using the admittance measurements of piezoelectric transducers mounted on a reinforced concrete beam without shear reinforcement is experimentally investigated. Embedded "smart aggregate" transducers and externally bonded piezoelectric patches have been placed in arrays at both shear spans of the beam. Beam were tested till total shear failure and monitored at three different states; healthy, flexural cracking and diagonal cracking. Test results showed that transducers close to the critical diagonal crack provided sound and graduated discrepancies between the admittance responses at the healthy state and thedamage levels.Damage assessment using statistical indices calculated from the measurements of all transducers was also attempted. Rational changes of the index values were obtained with respect to the increase of the damage. Admittance responses and index values of the transducers located on the shear span where the critical diagonal crack formed provided cogent evidence of damage. On the contrary, negligible indication of damage was yielded by the responses of the transducers located on the other shear span, where no diagonal cracking occurred.

  18. Explosive Event in MON-3 Oxidizer System Resulting from Pressure Transducer Failure

    Science.gov (United States)

    Baker, David L.; Reynolds, Michael; Anderson, John

    2006-01-01

    In 2003, a Druck(Registered Trademark) pressure transducer failed catastrophically in a test system circulating nitrogen tetroxide at NASA Johnson Space Center White Sands Test Facility. The cause of the explosion was not immediately obvious since the wetted areas of the pressure transducer were constructed of materials compatible with nitrogen tetroxide. Chemical analysis of the resulting residue and a materials analysis of the diaphragm and its weld zones were used to determine the chain of events that led to the catastrophic failure. Due to excessive dynamic pressure loading in the test system, the diaphragm in the pressure transducer suffered cyclic failure and allowed the silicon oil located behind the isolation diaphragm to mix with the nitrogen tetroxide. The reaction between these two chemicals formed a combination of 2,4-di and 2,4,6-trinitrophenol, which are shock sensitive explosives that caused the failure of the pressure transducer. Further research indicated numerous manufacturers offer similar pressure transducers with silicone oil separated from the test fluid by a thin stainless steel isolation diaphragm. Caution must be exercised when purchasing a pressure transducer for a particular system to avoid costly failures and test system contamination.

  19. Noise in pressure transducer readings produced by variations in solar radiation

    Science.gov (United States)

    Cain, S. F., III; Davis, G.A.; Loheide, S.P., II; Butler, J.J., Jr.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  20. Investigation of Manipulation Technique of Microbubbles Using Focused Ultrasound.

    Science.gov (United States)

    Osaki, Taichi; Inoue, Kazuhito; Matsumoto, Yoichiro; Takagi, Shu; Azuma, Takashi; Ichiyanagi, Mitsuhisa

    2015-11-01

    Recently, it has been thought that the application of ultrasound and microbubbles(MB) is utility to the medical field. Should MB be manipulated contactlessly, it will contribute to the mechanism investigation on the drug delivery system using MB as drug carrier. However no technique has yet to be established that can trap MB at any desired position, manipulate them along any desired path. Accordingly in this research, we investigated whether it was possible to trap MB at desired position, manipulate them along desired paths through experiments aimed at the development of MB manipulation tools that utilize ultrasound. Moreover, we analyzed the microbubble behaviors in ultrasound field. Bubbles in the ultrasound wave field are subjected to the primary Bjerknes force. Our method aimed that MB are trapped at the antinode or the node and manipulated with moving the antinode or node. We fabricated a concave transducer which radiates focused ultrasound and used sonazoid as MB and they were trapped at the focus as a cluster. The transducer moves its own position to move its focus and manipulate MB. Besides, we observed the trapped cluster with several incident frequencies. MB were trapped and manipulated along a locus of alphabet ?M? about 100 µm. From this result, it is implied that MB can be manipulated along any desired path. Moreover, there was the inverse correlation between the trapped cluster size and the incident frequency.