WorldWideScience

Sample records for 4-methylnitrosamino-1-3-pyridyl-1-butanone induce cyclooxygenase-2

  1. 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone Induces Circulating MicroRNA Deregulation in Early Lung Carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    WU Jian Jun; YANG Ti; LI Xun; XIA Yuan; ZHAO Yao; ZOU Fei; JIANG Yi Guo

    2014-01-01

    Objective To study the alteration of circulating microRNAs in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced early stage lung carcinogenesis. Methods A lung cancer model of male F344 rats was induced with systemic NNK and levels of 8 lung cancer-associated miRNAs in whole blood and serum of rats were measured by quantitative RT-PCR of each at weeks 1, 5, 10, and 20 following NNK treatment. Results No lung cancer was detected in control group and NNK treatment group at week 20 following NNK treatment. The levels of some circulating miRNAs were significantly higher in NNK treatment group than in control group. The miR-210 was down-regulated and the miR-206 was up-regulated in NNK treatment group. The expression level of circulating miRNAs changed from week 1 to week 20 following NNK treatment. Conclusion The expression level of circulating miRNAs is related to NNK-induced early stage lung carcinogenesis in rats and can therefore serve as its potential indicator.

  2. Grape seed proanthocyanidin suppression of breast cell carcinogenesis induced by chronic exposure to combined 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene.

    Science.gov (United States)

    Song, Xiaoyu; Siriwardhana, Nalin; Rathore, Kusum; Lin, Degui; Wang, Hwa-Chain Robert

    2010-05-01

    Breast cancer is the most common type of cancer among women in northern America and northern Europe; dietary prevention is a cost-efficient strategy to reduce the risk of this disease. To identify dietary components for the prevention of human breast cancer associated with long-term exposure to environmental carcinogens, we studied the activity of grape seed proanthocyanidin extract (GSPE) in suppression of cellular carcinogenesis induced by repeated exposures to low doses of environmental carcinogens. We used combined carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), at picomolar concentrations, to repeatedly treat noncancerous, human breast epithelial MCF10A cells to induce cellular acquisition of cancer-related properties of reduced dependence on growth factors, anchorage-independent growth, and acinar-conformational disruption. Using these properties as biological target endpoints, we verified the ability of GSPE to suppress combined NNK- and B[a]P-induced precancerous cellular carcinogenesis and identified the minimal, noncytotoxic concentration of GSPE required for suppressing precancerous cellular carcinogenesis. We also identified that hydroxysteroid-11-beta-dehydrogenase 2 (HSD11B2) may play a role in NNK- and B[a]P-induced precancerous cellular carcinogenesis, and its expression may act as a molecular target endpoint in GSPE's suppression of precancerous cellular carcinogenesis. And, the ability of GSPE to reduce gene expression of cytochrome-P450 enzymes CYP1A1 and CYP1B1, which can bioactivate NNK and B[a]P, possibly contributes to the preventive mechanism for GSPE in suppression of precancerous cellular carcinogenesis. Our model system with biological and molecular target endpoints verified the value of GSPE for the prevention of human breast cell carcinogenesis induced by repeated exposures to low doses of multiple environmental carcinogens. (c) 2010 Wiley-Liss, Inc.

  3. The regulation of 4-(methylnitrosamino-1-(3-pyridyl-1-butanone-induced lung tumor promotion by estradiol in female A/J mice.

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    Full Text Available Epidemiological studies indicate that women are at a higher risk developing lung cancer than men are. It is suggested that estrogen is one of the most important factors in lung cancer development in females. Additionally, cigarette smoke, and environmental pollutants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, may play salient roles in female lung carcinogenesis. However, the mechanisms responsible for the interaction of these factors in the promotion of lung cancer are still poorly understood. The present study was designed to explore two ideas: first, the synergistic lung tumorigenic effects of 4-(methylnitrosamino-1-(3-pyridyl-butanol (NNK combined with TCDD, 17β-estradiol (E2 or both through a long-term treatment experiment, and second, to identify early changes in the inflammatory and signaling pathways through short-term treatment experiments. The results indicate that A/J mice given E2 had strong effects in potentiating NNK-induced activation of MAPK signaling, NFκB, and COX-2 expression. In the long-term exposure model, E2 had a strong tumor promoting effect, whereas TCDD antagonized this effect in A/J mice. We conclude that treatment with NNK combined with either E2 or TCDD induces lung carcinogenesis and the promotion effects could be correlated with lung inflammation. E2 was shown to potentiate NNK-induced inflammation, cell proliferation, thereby leading to lung tumorigenesis.

  4. Inhibition of adenoma progression to adenocarcinoma in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model in A/J mice by tea polyphenols and caffeine.

    Science.gov (United States)

    Lu, Gang; Liao, Jie; Yang, Guangyu; Reuhl, Kenneth R; Hao, Xingpei; Yang, Chung S

    2006-12-01

    The present study investigated the inhibitory effects of Polyphenon E [a standardized green tea polyphenol preparation containing 65% (-)-epigallocatechin-3-gallate] and caffeine on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumor progression from adenoma to adenocarcinoma. Female A/J mice were treated with a single dose of NNK (103 mg/kg body weight, i.p.) and kept for 20 weeks for the mice to develop lung adenomas. The mice were then given a solution of 0.5% Polyphenon E or 0.044% caffeine as the sole source of drinking fluid until week 52. Both treatments significantly decreased the number of visible lung tumors. Histopathologic analysis indicated that Polyphenon E administration significantly reduced the incidence (by 52%) and multiplicity (by 63%) of lung adenocarcinoma. Caffeine also showed marginal inhibitory effects in incidence and multiplicity of adenocarcinoma (by 48% and 49%, respectively). Markers of cell proliferation, apoptosis, and related cell signaling were studied by immunohistochemistry, and the labeling index and staining intensity were quantified by the Image-Pro system. Polyphenon E and caffeine treatment inhibited cell proliferation (by 57% and 50%, respectively) in adenocarcinomas, enhanced apoptosis in adenocarcinomas (by 2.6- and 4-fold, respectively) and adenomas (both by 2.5-fold), and lowered levels of c-Jun and extracellular signal-regulated kinase (Erk) 1/2 phosphorylation. In the normal lung tissues, neither agent had a significant effect on cell proliferation or apoptosis. The results show that tea polyphenols (and perhaps caffeine) inhibit the progression of NNK-induced lung adenoma to adenocarcinoma. This effect is closely associated with decreased cell proliferation, enhanced apoptosis, and lowered levels of c-Jun and Erk1/2 phosphorylation.

  5. Phenotypic modification of human airway epithelial cells in air-liquid interface culture induced by exposure to the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK).

    Science.gov (United States)

    Carson, Johnny L; Brighton, Luisa E; Jaspers, Ilona

    2015-04-01

    The nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific carcinogen. We used an air-liquid interface epithelial cell culture system to model changes associated with NNK exposure relative to pathologies documented in human tobacco-related illnesses. Although in vitro systems exhibit certain limitations, they often offer accentuation of subtle pathologies. While the distribution of cell types in control cultures typically favors the ciliated cell phenotype, NNK-exposed cultures transitioned to non-ciliated cell phenotypes as well as reflecting features consistent with squamous metaplasia. We conclude that NNK impacts normal growth and differentiation of human airway epithelium in a short interval of time in vitro.

  6. Effects of cruciferous vegetable consumption on urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in singapore chinese.

    Science.gov (United States)

    Hecht, Stephen S; Carmella, Steven G; Kenney, Patrick M J; Low, Siew-Hong; Arakawa, Kazuko; Yu, Mimi C

    2004-06-01

    Vegetable consumption, including cruciferous vegetables, is protective against lung cancer, but the mechanisms are poorly understood. The purpose of this study was to investigate the effects of cruciferous vegetable consumption on the metabolism of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in smokers. The study was carried out in Singapore Chinese, whose mean daily intake of cruciferous vegetables is three times greater than that of people in the United States. Eighty-four smokers provided urine samples and were interviewed about dietary habits using a structured questionnaire, which included questions on consumption of nine commonly consumed cruciferous vegetables. Samples of these vegetables obtained in Singapore markets at three different times of year were analyzed for glucosinolates. Urine was analyzed for metabolites of NNK: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides (NNAL-Glucs). Glucobrassicins, which release indole-3-carbinols on chewing, were the major glucosinolates in seven of the nine cruciferous vegetables, accounting for 70.0% to 93.2% of all glucosinolates in these vegetables. There was a significant correlation (P = 0.01) between increased consumption of glucobrassicins and decreased levels of NNAL in urine after adjustment for number of cigarettes smoked per day; similar trends were observed for NNAL-Glucs (P = 0.08) and NNAL plus NNAL-Glucs (P = 0.03). These results are consistent with those of previous studies, which demonstrate that indole-3-carbinol decreases levels of urinary NNAL probably by inducing hepatic metabolism of NNK. The results are discussed with respect to the known chemopreventive activity of indole-3-carbinol against lung tumorigenesis by NNK in mice and the effects of isothiocyanates, which are also formed on consumption of cruciferous vegetables, on NNK metabolism. The results of this study demonstrate the complexities in assessing effects of

  7. Induction of lung lesions in Wistar rats by 4-(methylnitrosamino-1-(3-pyridyl-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate

    Directory of Open Access Journals (Sweden)

    Xia Dong

    2007-05-01

    Full Text Available Abstract Background The development of effective chemopreventive agents against cigarette smoke-induced lung cancer could be greatly facilitated by suitable laboratory animal models, such as animals treated with the tobacco-specific lung carcinogen 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. In the current study, we established a novel lung cancer model in Wistar rats treated with NNK. Using this model, we assessed the effects of two chemopreventive agents, aspirin and phenethyl isothiocyanate (PEITC, on tumor progression. Methods First, rats were treated with a single-dose of NNK by intratracheal instillation; control rats received iodized oil. The animals were then sacrificed on the indicated day after drug administration and examined for tumors in the target organs. PCNA, p63 and COX-2 expression were analyzed in the preneoplastic lung lesions. Second, rats were treated with a single-dose of NNK (25 mg/kg body weight in the absence or presence of aspirin and/or PEITC in the daily diet. The control group received only the vehicle in the regular diet. The animals were sacrificed on day 91 after bronchial instillation of NNK. Lungs were collected and processed for histopathological and immunohistochemical assays. Results NNK induced preneoplastic lesions in lungs, including 33.3% alveolar hyperplasia and 55.6% alveolar atypical dysplasia. COX-2 expression increased similarly in alveolar hyperplasia and alveolar atypical dysplasia, while PCNA expression increased more significantly in the latter than the former. No p63 expression was detected in the preneoplastic lesions. In the second study, the incidences of alveolar atypical dysplasia were reduced to 10%, 10% and 0%, respectively, in the aspirin, PEITC and aspirin and PEITC groups, compared with 62.5% in the carcinogen-treated control group. COX-2 expression decreased after dietary aspirin or aspirin and PEITC treatment. PCNA expression was significantly reduced in the aspirin and PEITC

  8. Facile Synthesis of CeO2-LaFeO3 Perovskite Composite and Its Application for 4-(Methylnitrosamino-1-(3-Pyridyl-1-Butanone (NNK Degradation

    Directory of Open Access Journals (Sweden)

    Kaixuan Wang

    2016-04-01

    Full Text Available A facile and environmentally friendly surface-ion adsorption method using CeCO3OH@C as template was demonstrated to synthesize CeO2-LaFeO3 perovskite composite material. The obtained composite was characterized by X-ray diffraction (XRD, fourier transform infrared spectra (FT-IR, field-emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, thermo-gravimetric analysis and differential scanning calorimetry (TG-DSC, N2 adsorption/desorption isotherms and X-ray photoelectron spectra (XPS measurements. The catalytic degradation of nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK was tested to evaluate catalytic activity of the CeO2-LaFeO3 composite. Much better activity was observed for the CeO2-LaFeO3 composite comparing with CeO2 and LaFeO3. These results suggested that perovskite composite materials are a promising candidate for the degradation of tobacco-specific nitrosamines (TSNAs.

  9. Matrix-bound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in tobacco: quantification and evidence for an origin from lignin-incorporated alkaloids.

    Science.gov (United States)

    Lang, Gerhard; Vuarnoz, Aline

    2015-01-23

    Substantial quantities of the carcinogenic tobacco-specific N-nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (1; NNK) are still found in the mainstream smoke of tobacco exhaustively extracted with water, indicating the presence of an insoluble, matrix-bound form. Soluble and matrix-bound concentrations of 1 in tobacco were determined by applying a new method using sequential aqueous extraction at room temperature and at 130 °C. On average, 77% and 53% of the total content of 1 were matrix-bound in air-cured (Burley type) and flue-cured tobaccos, respectively. Thermal release of 1 from its matrix-bound form above ca. 200 °C can account for a large fraction of its concentration in cigarette mainstream smoke. An already matrix-bound alkaloid precursor of matrix-bound 1 was identified in vascular tissue of green leaf midribs. The incubation of vascular cell-wall preparations with the lignin precursor coniferyl alcohol and isotopically labeled nicotine or pseudooxynicotine (2) led to the formation of labeled matrix-bound 1 after nitrosation, suggesting that incorporation of nicotine or its oxidized product 2 during lignin polymerization is the origin of the formation of matrix-bound 1.

  10. Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    Science.gov (United States)

    Kalscheuer, Stephen; Zhang, Xiaoxiao; Zeng, Yan; Upadhyaya, Pramod

    2008-12-01

    While numerous microRNAs (miRNAs) have been reported to alter their expression levels in human lung cancer tissues compared with normal tissues, the function of these miRNAs and their contribution to the long process of lung cancer development remains largely unknown. We applied a tobacco-specific carcinogen-induced cancer model to investigate the involvement of miRNAs in early lung cancer development, which could also provide information on potential, early biomarkers of lung cancers. Male F344 rats were first chronically treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a carcinogen present in tobacco products, for up to 20 weeks. The expression profiles of miRNAs in rat lungs were then determined. As measured by miRNA microarrays and confirmed by Northern blot and real-time polymerase chain reaction analyses, NNK treatment reduced the expression of a number of miRNAs, such as miR-101, miR-126*, miR-199 and miR-34. Significantly, these miRNAs overlap with previously published reports on altered miRNA expression in human lung cancer samples. These miRNAs might, therefore, represent early-response miRNAs that signify the molecular changes associated with pulmonary tumorigenesis. Moreover, we identified cytochrome P450 (CYP) 2A3, a critical enzyme in rat lungs that activates NNK to render it carcinogenic, as a potential target of miR-126*. NNK treatment in rats repressed miR-126* but induced CYP2A3 expression, a mechanism that may potentiate the oncogenic effects of NNK.

  11. Metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the patas monkey: pharmacokinetics and characterization of glucuronide metabolites.

    Science.gov (United States)

    Hecht, S S; Trushin, N; Reid-Quinn, C A; Burak, E S; Jones, A B; Southers, J L; Gombar, C T; Carmella, S G; Anderson, L M; Rice, J M

    1993-02-01

    The metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was examined in the patas monkey, in order to provide further information about NNK metabolic pathways in primates. Female patas monkeys were given i.v. injections of [5-3H]NNK, and metabolites in serum and urine were analyzed by HPLC. Metabolism by alpha-hydroxylation of NNK was rapid and extensive, and the products of this pathway, 4-hydroxy-4-(3-pyridyl)butyric acid and 4-oxo-4-(3-pyridyl) butyric acid, accounted for a relatively large proportion of serum and urinary metabolites at all time points. This is significant because the formation of these products is associated with modification of DNA by NNK. The other major metabolic pathway was carbonyl reduction to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which detected both unconjugated and diastereomeric O-glucuronides. One of these glucuronides had been previously identified in rat urine, but the other diastereomer, which was the more prevalent of the two in serum and urine, had not been observed in studies of NNK metabolism in rodents. It was characterized by its spectral properties, by enzymatic hydrolysis to NNAL, and by derivatization of the released NNAL enantiomer with (R)-(+)-alpha-methylbenzylisocyanate. The two NNAL glucuronides accounted for 15-20% of the urinary metabolites in monkeys given 0.1 micrograms/kg NNK, which is similar to a smoker's dose, suggesting their use as dosimeters of NNK exposure in humans. Pharmacokinetic parameters were consistent with those observed in previous studies of nitrosamines, and varied predictably with body weight of five species. The results of this study have provided new insights relevant to assessing human metabolism of NNK.

  12. Cloning and Characterization of a Hybridoma Secreting a 4-(Methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-Specific Monoclonal Antibody and Recombinant F(ab

    Directory of Open Access Journals (Sweden)

    Lawrence K. Silbart

    2013-03-01

    Full Text Available Smokeless tobacco products have been associated with increased risks of oro-pharyngeal cancers, due in part to the presence of tobacco-specific nitrosamines (TSNAs such as 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. These potent carcinogens are formed during tobacco curing and as a result of direct nitrosation reactions that occur in the oral cavity. In the current work we describe the isolation and characterization of a hybridoma secreting a high-affinity, NNK-specific monoclonal antibody. A structurally-related benzoyl derivative was synthesized to facilitate coupling to NNK-carrier proteins, which were characterized for the presence of the N-nitroso group using the Griess reaction, and used to immunize BALB/c mice. Splenocytes from mice bearing NNK-specific antibodies were used to create hybridomas. Out of four, one was selected for subcloning and characterization. Approximately 99% of the monoclonal antibodies from this clone were competitively displaced from plate-bound NNKB conjugates in the presence of free NNK. The affinity of the monoclonal antibody to the NNKB conjugates was Kd = 2.93 nM as determined by surface plasmon resonance. Free nicotine was a poor competitor for the NNKB binding site. The heavy and light chain antibody F(ab fragments were cloned, sequenced and inserted in tandem into an expression vector, with an FMDV Furin 2A cleavage site between them. Expression in HEK 293 cells revealed a functional F(ab with similar binding features to that of the parent hybridoma. This study lays the groundwork for synthesizing transgenic tobacco that expresses carcinogen-sequestration properties, thereby rendering it less harmful to consumers.

  13. Effect of the cigarette smoke component, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, on physiological and molecular parameters of thiamin uptake by pancreatic acinar cells.

    Directory of Open Access Journals (Sweden)

    Padmanabhan Srinivasan

    Full Text Available Thiamin is indispensable for the normal function of pancreatic acinar cells. These cells take up thiamin via specific carrier-mediated process that involves thiamin transporter-1 and -2 (THTR-1 and THTR-2; products of SLC19A2 and SLC19A3 genes, respectively. In this study we examined the effect of chronic exposure of pancreatic acinar cells in vitro (pancreatic acinar 266-6 cells and in vivo (wild-type and transgenic mice carrying the SLC19A2 and SLC19A3 promoters to the cigarette smoke component 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK on physiological and molecular parameters of the thiamin uptake process. The results show that chronic exposure of 266-6 cells to NNK (3 µM, 24 h leads to a significant inhibition in thiamin uptake. The inhibition was associated with a significant decrease in the level of expression of THTR-1 and -2 at the protein and mRNA levels as well as in the activity of SLC19A2 and SLC19A3 promoters. Similarly chronic exposure of mice to NNK (IP 10 mg/100 g body weight, three times/week for 2 weeks leads to a significant inhibition in thiamin uptake by freshly isolated pancreatic acinar cells, as well as in the level of expression of THTR-1 and -2 protein and mRNA. Furthermore, activity of the SLC19A2 and SLC19A3 promoters expressed in transgenic mice were significantly suppressed by chronic exposure to NNK. The effect of NNK on the activity of the SLC19A2 and SLC19A3 promoters was not mediated via changes in their methylation profile, rather it appears to be exerted via an SP1/GG and SP1/GC cis-regulatory elements in these promoters, respectively. These results demonstrate, for the first time, that chronic exposure of pancreatic acinar cells to NNK negatively impacts the physiological and molecular parameters of thiamin uptake by pancreatic acinar cells and that this effect is exerted, at least in part, at the level of transcription of the SLC19A2 and SLC19A3 genes.

  14. Identification of cytochrome P450 enzymes critical for lung tumorigenesis by the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK): insights from a novel Cyp2abfgs-null mouse.

    Science.gov (United States)

    Li, Lei; Megaraj, Vandana; Wei, Yuan; Ding, Xinxin

    2014-11-01

    Cytochrome P450 (P450) enzymes encoded by the mouse Cyp2abfgs gene cluster are preferentially expressed in the respiratory tract. Previous studies have demonstrated that pulmonary P450-mediated bioactivation is necessary for lung tumorigenesis induced by the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and that CYP2A5 mediates a noteworthy fraction, but not all, of NNK bioactivation in the lung. The aim of this study was to determine whether other P450s encoded by the Cyp2abfgs gene cluster also play significant roles in NNK lung tumorigenesis. A novel Cyp2abfgs-null mouse was generated, in which all Cyp2a, 2b, 2g, 2f and 2s genes are deleted. The Cyp2abfgs-null mouse was viable, fertile and without discernible physiological abnormalities or compensatory increases in the expression of other P450s. NNK bioactivation in vitro and NNK-induced DNA adduction and lung tumorigenesis in vivo were determined for wild-type (WT) and Cyp2abfgs-null mice; the results were compared with previous findings from Cyp2a5-null mice. The Cyp2abfgs-null mice exhibited significantly lower rates of NNK bioactivation in lung and liver microsomes, compared with either WT or Cyp2a5-null mice. The levels of lung O(6)-methyl guanine DNA adduct were also substantially reduced in Cyp2abfgs-null mice, compared with either WT or Cyp2a5-null mice. Moreover, the Cyp2abfgs-null mice were largely resistant to NNK-induced lung tumorigenesis at both low (50mg/kg) and high (200mg/kg) NNK doses, in contrast to the WT or Cyp2a5-null mice. These results indicate for the first time that, collectively, the CYP2A, 2B, 2F, 2G, and 2S enzymes are indispensable for NNK-induced lung tumorigenesis.

  15. Carcinogenicity and DNA adduct formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and enantiomers of its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in F-344 rats.

    Science.gov (United States)

    Balbo, Silvia; Johnson, Charles S; Kovi, Ramesh C; James-Yi, Sandra A; O'Sullivan, M Gerard; Wang, Mingyao; Le, Chap T; Khariwala, Samir S; Upadhyaya, Pramod; Hecht, Stephen S

    2014-12-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is metabolized to enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), found in the urine of virtually all people exposed to tobacco products. We assessed the carcinogenicity in male F-344 rats of (R)-NNAL (5 ppm in drinking water), (S)-NNAL (5 ppm), NNK (5 ppm) and racemic NNAL (10 ppm) and analyzed DNA adduct formation in lung and pancreas of these rats after 10, 30, 50 and 70 weeks of treatment. All test compounds induced a high incidence of lung tumors, both adenomas and carcinomas. NNK and racemic NNAL were most potent; (R)-NNAL and (S)-NNAL had equivalent activity. Metastasis was observed from primary pulmonary carcinomas to the pancreas, particularly in the racemic NNAL group. DNA adducts analyzed were O (2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O (2)-POB-dThd), 7-[4-(3-pyridyl)-4-oxobut-1-yl]guanine(7-POB-Gua),O (6)-[4-(3-pyridyl)-4-oxobut-1-yl]deoxyguanosine(O (6)-POB-dGuo),the 4-(3-pyridyl)-4-hydroxybut-1-yl(PHB)adductsO (2)-PHB-dThd and 7-PHB-Gua, O (6)-methylguanine (O (6)-Me-Gua) and 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB)-releasing adducts. Adduct levels significantly decreased with time in the lungs of rats treated with NNK. Pulmonary POB-DNA adducts and O (6)-Me-Gua were similar in rats treated with NNK and (S)-NNAL; both were significantly greater than in the (R)-NNAL rats. In contrast, pulmonary PHB-DNA adduct levels were greatest in the rats treated with (R)-NNAL. Total pulmonary DNA adduct levels were similar in (S)-NNAL and (R)-NNAL rats. Similar trends were observed for DNA adducts in the pancreas, but adduct levels were significantly lower than in the lung. The results of this study clearly demonstrate the potent pulmonary carcinogenicity of both enantiomers of NNAL in rats and provide important new information regarding DNA damage by these compounds in lung and pancreas.

  16. Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms.

    Science.gov (United States)

    Ge, Guang-Zhe; Xu, Tian-Rui; Chen, Ceshi

    2015-07-01

    Tobacco usage is a major risk factor in the development, progression, and outcomes for lung cancer. Of the carcinogens associated with lung cancer, tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is among the most potent ones. The oncogenic mechanisms of NNK are not entirely understood, hindering the development of effective strategies for preventing and treating smoking-associated lung cancers. Here, we introduce the NNK-induced lung cancer animal models in different species and its potential mechanisms. Finally, we summarize several chemopreventive agents developed from these animal models.

  17. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    Directory of Open Access Journals (Sweden)

    Kimura Shioko

    2012-12-01

    Full Text Available Abstract Background The CCAAT/enhancer binding proteins (C/EBPs play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. Results A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. Conclusions The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.

  18. Precancerous model of human breast epithelial cells induced by NNK for prevention.

    Science.gov (United States)

    Siriwardhana, Nalin; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2008-06-01

    Epidemiological investigations have suggested that exposure to tobacco and environmental carcinogens increase the risk of developing human breast cancer. In light of the chronic exposure of human breast tissues to tobacco and environmental carcinogens, we have taken an approach of analyzing cellular changes of immortalized non-cancerous human breast epithelial MCF10A cells during the acquisition of cancerous properties induced by repeated exposure to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at a low concentration of 100 pM. We found that accumulated exposures of MCF10A cells to NNK result in progressive development of cellular carcinogenesis from a stage of immortalization to precancerous sub-stages of acquiring a reduced dependence on growth factors and acquiring anchorage-independent growth. Using Matrigel for MCF10A cells to form size-restricted acini, we detected that exposures to NNK resulted in altered acinar conformation. Analysis of gene expression profiles by cDNA microarrays revealed up- and down-regulated genes associated with NNK-induced carcinogenesis. Using this cellular carcinogenesis model as a target system to identify anticancer agents, we detected that grape seed proanthocyanadin extract significantly suppressed NNK-induced carcinogenesis of MCF10A cells. Our studies provide a carcinogenesis-cellular model mimicking the accumulative exposure to carcinogens in the progression of human breast epithelial cells to increasingly acquire cancerous properties, as likely occurs in the development of precancerous human breast cells. Our cellular model also serves as a cost-efficient, in vitro system to identify preventive agents that inhibit human breast cell carcinogenesis induced by chronic exposures to carcinogens.

  19. Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens.

    Science.gov (United States)

    Rathore, Kusum; Wang, Hwa-Chain Robert

    2012-03-01

    Sporadic breast cancers are mainly attributable to long-term exposure to environmental factors, via a multi-year, multi-step, and multi-path process of tumorigenesis involving cumulative genetic and epigenetic alterations in the chronic carcinogenesis of breast cells from a non-cancerous stage to precancerous and cancerous stages. Epidemiologic and experimental studies have suggested that green tea components may be used as preventive agents for breast cancer control. In our research, we have developed a cellular model that mimics breast cell carcinogenesis chronically induced by cumulative exposures to low doses of environmental carcinogens. In this study, we used our chronic carcinogenesis model as a target system to investigate the activity of green tea catechin extract (GTC) at non-cytotoxic levels in intervention of cellular carcinogenesis induced by cumulative exposures to pico-molar 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P). We identified that GTC, at a non-cytotoxic, physiologically achievable concentration of 2.5 µg/mL, was effective in suppressing NNK- and B[a]P-induced cellular carcinogenesis, as measured by reduction of the acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth, increased cell mobility, and acinar-conformational disruption. We also detected that intervention of carcinogen-induced elevation of reactive oxygen species (ROS), increase of cell proliferation, activation of the ERK pathway, DNA damage, and changes in gene expression may account for the mechanisms of GTC's preventive activity. Thus, GTC may be used in dietary and chemoprevention of breast cell carcinogenesis associated with long-term exposure to low doses of environmental carcinogens.

  20. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway

    Directory of Open Access Journals (Sweden)

    Zhang Dong

    2011-11-01

    Full Text Available Abstract Background Smoking and stress, pancreatic cancer (PanCa risk factors, stimulate nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. Results The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. Conclusions The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  1. Chemopreventive Effects of the p53-Modulating Agents CP-31398 and Prima-1 in Tobacco Carcinogen-Induced Lung Tumorigenesis in A/J Mice

    Directory of Open Access Journals (Sweden)

    Chinthalapally V. Rao

    2013-09-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide. Expression of the p53 tumor suppressor protein is frequently altered in tobacco-associated lung cancers. We studied chemopreventive effects of p53-modulating agents, namely, CP-31398 and Prima-1, on 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung adenoma and adenocarcinoma formation in female A/J mice. Seven-week-old mice were treated with a single dose of NNK (10 µmol/mouse by intraperitoneal injection and, 3 weeks later, were randomized to mice fed a control diet or experimental diets containing 50 or 100 ppm CP-31398 or 150 or 300 ppm Prima-1 for either 17 weeks (10 mice/group or 34 weeks (15 mice/group to assess the efficacy against lung adenoma and adenocarcinoma. Dietary feeding of 50 or 100 ppm CP-31398 significantly suppressed (P < .0001 lung adenocarcinoma by 64% and 73%, respectively, after 17 weeks and by 47% and 56%, respectively, after 34 weeks. Similarly, 150 or 300 ppm Prima-1 significantly suppressed (P < .0001 lung adenocarcinoma formation by 56% and 62%, respectively, after 17 weeks and 39% and 56%, respectively, after 34 weeks. Importantly, these results suggest that both p53 modulators cause a delay in the progression of adenoma to adenocarcinoma. Immunohistochemical analysis of lung tumors from mice exposed to p53-modulating agents showed a significantly reduced tumor cell proliferation and increased accumulation of wild-type p53 in the nucleus. An increase in p21- and apoptotic-positive cells was also observed in lung tumors of mice exposed to p53-modulating agents. These results support a chemopreventive role of p53-modulating agents in tobacco carcinogen-induced lung adenocarcinoma formation.

  2. The effects of phenethyl isothiocyanate, N-acetylcysteine and green tea on tobacco smoke-induced lung tumors in strain A/J mice.

    Science.gov (United States)

    Witschi, H; Espiritu, I; Yu, M; Willits, N H

    1998-10-01

    Male and female strain A/J mice were exposed to a mixture of cigarette sidestream and mainstream smoke at a chamber concentration of total suspended particulates of 82.5 mg/m3. Exposure time was 6 h/day, 5 days/week for 5 months. The animals were allowed to recover for another 4 months in filtered air before sacrifice and lung tumor count. Male animals were fed either 0.2% N-acetylcysteine (NAC) or 0.05% phenethyl isothiocyanate (PEITC) in diet AIN-76A with 5% corn oil added. Female animals received normal laboratory chow and were given a 1.25% extract of green tea in the drinking water. Corresponding control groups were fed diets without NAC or PEITC or given plain tap water. Exposure to tobacco smoke increased lung tumor multiplicity to 1.1-1.6 tumors/lung, significantly higher than control values (0.5-1.0 tumors/lung). None of the putative chemopreventive agents (NAC, PEITC or green tea extract) had a protective effect. In positive control experiments, PEITC significantly reduced both lung tumor multiplicity and incidence in mice treated with the tobacco smoke-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In mice treated with three different doses of urethan and fed NAC in the diet, a significant reduction in lung tumor multiplicity was found only at one dose level. Green tea extract did not reduce lung tumor multiplicity in animals treated with a single dose of NNK. It was concluded that successful chemoprevention of tobacco smoke-induced lung tumorigenesis might require administration of several chemopreventive agents rather than just a single one.

  3. 4-(甲基亚硝胺基)-1-(3-吡啶基)-1-丁酮接触生物标志物的研究进展%Research Progress on Biomarkers of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) Exposure

    Institute of Scientific and Technical Information of China (English)

    王家俊; 蒋举兴; 者为; 范多青; 侯宏卫; 唐纲岭

    2011-01-01

    4-(methylnitrosamino)-l-(3-pyridyl)-l-butanone (NNK), a tobacco-specific nitrosamine (TSNA), is a potent lung carcinogen. In humans, rodents, and primates, NNK is extensively and rapidly metabolized to 4-(methylnitrosamino)-l-(3pyridyl)-l-butanol (NNAL), and its glycoside compounds (NNAL-O-Glucuronidec and NNAL-N-Glucuronide). NNAL is extremely useful biomarkers for metabolic activation or detoxification of NNK in an exposed individual. In this paper, the research progress of epidemiology, toxicology, metabolic pathways on NNK and exposure biomarker (NNAL) are summarized.%4-(甲基亚硝胺基)-1-(3-吡啶基)-1-丁酮(NNK)是烟草特有亚硝胺(TSNA)中具有强烈致癌性的物质之一,NNK在人体和动物体内产生的主要代谢物是4-(甲基亚硝胺基)-1-(3-吡啶基)-1-丁醇(NNAL)和它的糖苷化合物(NNAL-N-Glucuronidec和NNAL-O-Glucuronide).NNAL是一种研究NNK在人体内代谢过程中致毒与解毒机制有价值的接触生物标志物.该文对NNK的流行病学、毒理学、代谢途径及其接触生物标志物的研究进展进行综述.

  4. Increased chemoresistance via Snail–Raf kinase inhibitor protein signaling in colorectal cancer in response to a nicotine derivative

    OpenAIRE

    Lee, Tsai-Yu; Liu, Chia-Lin; Chang, Yun-Ching; Nieh, Shin; Lin, Yaoh-Shiang; Jao, Shu-Wen; Chen, Su-Feng; Liu, Tsung-Yun

    2016-01-01

    A tobacco-specific component, 4-methylnitrosamino-1-3-pyridyl-1-butanone (NNK), is a major risk factor for many cancers. Recent reports have demonstrated that NNK exposure may be associated with tumor progression and chemoresistance in certain cancers. However, the underlying NNK-induced mechanism contributing to the aggressiveness of colorectal cancer (CRC) has not been thoroughly studied. In this study, we used HT29 cells treated with NNK to simulate the long-term exposure of cigarette smok...

  5. Successful and not so successful chemoprevention of tobacco smoke-induced lung tumors.

    Science.gov (United States)

    Witschi, H

    2000-12-01

    Strain A/J mice underwent whole body exposure for 6 hours a day, 5 days a week, for 5 months to a mixture of cigarette sidestream and mainstream smoke (89%-11%; total suspended particulates 80-150 mg/m3), then were kept for another 4 months in air before being killed for scoring of lung tumors. In 7 independent experiments, lung tumor multiplicity was significantly increased in all 7 trials and lung tumor incidence in 5. When animals were kept for 9 months in smoke, lung tumor multiplicity was not significantly higher than in controls, although lung tumor incidence was. The following chemopreventive agents were evaluated: green tea, phenethyl isothiocyanate (PEITC), acetylsalicylic acid (ASA), N-acetylcysteine (NAC), p-XSC (1,4-phenylenebis[methylene]selenocyanate), d-limonene (DL), and a mixture of PEITC and BITC (benzyl isothiocyanate). In animals exposed to tobacco smoke, none of these agents reduced lung tumor multiplicity or incidence. As a control, the effects of the same agents were examined in A/J mice initiated with 4-(methylnitrosamino)-1-(3pyridyl)-1-butanone (NNK) or urethane. In mice injected with NNK, green tea and ASA did not reduce lung tumor multiplicities and NAC had no effect on urethane-induced lung tumors, whereas PEITC, p-XSC and DL reduced NNK-induced tumor multiplicities to 20% to 50% of control values. On the other hand, dietary mixture of myoinositol and dexamethasone was not only highly protective against NNK, but reduced lung tumor multiplicities and incidence in smoke-exposed animals to control values. This effect was also seen when the animals were fed the myo-inositol-dexamethasone mixture once they were removed from smoke. It is concluded that in animal studies it might be preferable to evaluate the effectiveness of putative chemopreventive agents against full tobacco smoke rather than against selected model compounds. The observations made with myo-inositol-dexamethasone suggest that people who have recently quit smoking might

  6. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger-Ziegelbauer, Heidrun [Bayer Healthcare AG, Department of Molecular and Genetic Toxicology, Aprather Weg 18a, 42096 Wuppertal (Germany)]. E-mail: heidrun.ellinger-ziegelbauer@bayerhealthcare.com; Stuart, Barry [Bayer Crop Science, Department of Toxicology, Stilwell, KS (United States); Wahle, Brad [Bayer Crop Science, Department of Toxicology, Stilwell, KS (United States); Bomann, Werner [Bayer Crop Science, Department of Toxicology, Stilwell, KS (United States); Ahr, Hans Juergen [Bayer Healthcare AG, Department of Molecular and Genetic Toxicology, Aprather Weg 18a, 42096 Wuppertal (Germany)

    2005-08-04

    Application of recently developed gene expression techniques using microarrays in toxicological studies (toxicogenomics) facilitate the interpretation of a toxic compound's mode of action and may also allow the prediction of selected toxic effects based on gene expression changes. In order to test this hypothesis, we investigated whether carcinogens at doses known to induce liver tumors in the 2-year rat bioassay deregulate characteristic sets of genes in a short term in vivo study and whether these deregulated genes represent defined biological pathways. Male Wistar rats were dosed with the four nongenotoxic hepatocarcinogens methapyrilene (MPy, 60 mg/kg/day), diethylstilbestrol (DES, 10 mg/kg/day), Wy-14643 (Wy, 60 mg/kg/day), and piperonylbutoxide (PBO, 1200 mg/kg/day). After 1, 3, 7, and 14 days, the livers were taken for histopathological evaluation and for analysis of the gene expression profiles on Affymetrix RG{sub U}34A arrays. The expression profile of the four nongenotoxic carcinogens were compared to the profiles of the four genotoxic carcinogens 2-nitrofluorene (2-NF), dimethylnitrosamine (DMN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and aflatoxin B1 (AB1) from a similar study reported previously. By using statistical and clustering tools characteristically deregulated genes were extracted and functionally classified. Distinct cellular pathways were affected by the nongenotoxic carcinogens compared to the genotoxic carcinogens which at least partly correlated with the two-stage model of carcinogenesis. Characteristic to genotoxic carcinogens were a DNA damage response and the activation of proliferative and survival signaling. Nongenotoxic carcinogens showed responses to oxidative DNA or protein damage, as well as cell cycle progression and signs of regeneration. Many of the gene alterations found with the nongenotoxic carcinogens imply compound-specific mechanisms. Although neither a single gene nor a single pathway will be

  7. TCDD Promotes Lung Tumors via Attenuation of Apoptosis through Activation of the Akt and ERK1/2 Signaling Pathways

    OpenAIRE

    2014-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant...

  8. Inhibition of Cyclooxygenase-2 Reduces Hypothalamic Excitation in Rats with Adriamycin-Induced Heart Failure

    OpenAIRE

    2012-01-01

    BACKGROUND: The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the progression of heart failure (HF). We investigated whether cyclooxygenase-2 (COX-2) inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS) and renin-angiotensin system (RAS) in rats with adriamycin-induced heart failure. METHODOLOGY/PRINCIPAL FINDING: Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg...

  9. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Jiaping [Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612 (United States); Yang, Suping; Seng, Seyha, E-mail: sseng@bidmc.harvard.edu [Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 (United States)

    2014-05-14

    Tobacco use is a major public health problem worldwide. Tobacco-related cancers cause millions of deaths annually. Although several tobacco agents play a role in the development of tumors, the potent effects of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are unique. Metabolically activated NNK and NNN induce deleterious mutations in oncogenes and tumor suppression genes by forming DNA adducts, which could be considered as tumor initiation. Meanwhile, the binding of NNK and NNN to the nicotinic acetylcholine receptor promotes tumor growth by enhancing and deregulating cell proliferation, survival, migration, and invasion, thereby creating a microenvironment for tumor growth. These two unique aspects of NNK and NNN synergistically induce cancers in tobacco-exposed individuals. This review will discuss various types of tobacco products and tobacco-related cancers, as well as the molecular mechanisms by which nitrosamines, such as NNK and NNN, induce cancer.

  10. Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization

    Science.gov (United States)

    Uddin, Md. Jashim; Moore, Chauca E.; Crews, Brenda C.; Daniel, Cristina K.; Ghebreselasie, Kebreab; McIntyre, J. Oliver; Marnett, Lawrence J.; Jayagopal, Ashwath

    2016-09-01

    Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated in vitro and by in vivo retinal imaging with nontargeted 5-carboxy-X-rhodamine dye, and by blockade of the COX-2 active site with nonfluorescent celecoxib prior to injection of fluorocoxib A. Fluorocoxib A can be utilized for imaging COX-2 expression in vivo for further validation as an imaging biomarker in retinal diseases.

  11. Cyclooxygenase-2 regulates TGFβ-induced cancer stemness in triple-negative breast cancer

    Science.gov (United States)

    Tian, Jun; Hachim, Mahmood Y.; Hachim, Ibrahim Y.; Dai, Meiou; Lo, Chieh; Raffa, Fatmah Al; Ali, Suhad; Lebrun, Jean Jacques

    2017-01-01

    Triple negative breast cancer (TNBC), an aggressive subtype of breast cancer, display poor prognosis and exhibit resistance to conventional therapies, partly due to an enrichment in breast cancer stem cells (BCSCs). Here, we investigated the role of the cyclooxygenase-2 (COX-2), a downstream target of TGFβ, in regulating BCSCs in TNBC. Bioinformatics analysis revealed that COX-2 is highly expressed in TNBC and that its expression correlated with poor survival outcome in basal subtype of breast cancer. We also found TGFβ-mediated COX-2 expression to be Smad3-dependent and to be required for BCSC self-renewal and expansion in TNBCs. Knocking down COX-2 expression strikingly blocked TGFβ-induced tumorsphere formation and TGFβ-induced enrichment of the two stem-like cell populations, CD24lowCD44high and ALDH+ BCSCs. Blocking COX-2 activity, using a pharmacological inhibitor also prevented TGFβ-induced BCSC self-renewal. Moreover, we found COX-2 to be required for TGFβ-induced expression of mesenchymal and basal breast cancer markers. In particular, we found that TGFβ-induced expression of fibronectin plays a central role in TGFβ-mediated breast cancer stemness. Together, our results describe a novel role for COX-2 in mediating the TGFβ effects on BCSC properties and imply that targeting the COX-2 pathway may prove useful for the treatment of TNBC by eliminating BCSCs. PMID:28054666

  12. Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2

    Institute of Scientific and Technical Information of China (English)

    Hua Jiang; Chang-Sheng Deng; Ming Zhang; Jian Xia

    2006-01-01

    AIM: To explore the possible mechanisms of curcumin in rat colitis induced by trinitrobenzene sulfonic (TNBS) acid. METHODS: Rats with TNBS acid-induced colitis were treated with curcumin (30 mg/kg or 60 mg/kg per day ip). Changes of body weight and histological scores as well as survival rate were evaluated. Leukocyte infiltration was detected by myeloperoxidase (MPO)activity assay. The expression of cyclooxygenase-2(COX-2) was detected by RT-PCR and Western blot.Inflammation cytokines were determined by RT-PCR.Local concentration of prostaglandin E2 (PGE2) in colon mucosa was determined by ELISA.RESULTS: Curcumin improved survival rate and histological image, decreased the macroscopic scores and MPO activity. Also curcumin reduced the expression of COX-2 and inflammation cytokines. In addition,treatment with curcumin increased the PGE2 level.CONCLUSION: Curcumin has therapeutic effects on TNBS acid-induced colitis, the mechanisms seem to be related to COX-2 inhibition and PGE2 improvement.

  13. Cyclooxygenase-2 inhibitor inhibits hippocampal synaptic reorganization in pilocarpine-induced status epilepticus rats

    Institute of Scientific and Technical Information of China (English)

    Hai-ju ZHANG; Ruo-peng SUN; Ge-fei LEI; Lu YANG; Chun-xi LIU

    2008-01-01

    Objective: To examine modulations caused by cyclooxygenase-2 (COX-2) inhibitors on altered microenvironments and overbalanced neurotransmitters in pilocarpine-induced epileptic status rats and to investigate possible mechanisms. Methods:Celecoxib (a COX-2 inhibitor) was administered 45 min prior to pilocarpine administration. The effects of COX-2 inhibitors on mIPSCs (miniature GABAergic inhibitory postsynaptic currents) of CA3 pyramidal cells in the hippocampus were recorded. Expressions of COX-2, c-Fos, newly generated neurons, and activated microgliosis wore analyzed by immunohistochemistry, and expressions of α-subunit of γ-amino butyric acid (GABAA) receptors and mitogen-activated protein kinase/extracellular sig-nal-regulated protein kinase (MAPK/ERK) activity were detected by Western blotting. Results: Pretreatment with celecoxib showed protection against pilocarpine-induced seizures. Celecoxib prevented microglia activation in the hilus and inhibited the abnormal neurogenesis and astrogliosis in the hippocampus by inhibiting MAPK/ERK activity and c-Fos transcription. Celecoxib also up-regulated the expression of GABAA receptors. NS-398 (N-2-cyclohexyloxy-4-nitrophenyl-methanesuifonamide), another COX-2 inhibitor, enhanced the frequency and decay time of mIPSCs. Conclusion: The COX-2 inhibitor celecoxib decreased neuronal excitability and prevented epileptogenesis in pilocarpine-induced status epilepticus rats. Celecoxib regulates synaptic reorganization by inhibiting astrogliosis and ectopic neurogenesis by attenuating MAPK/ERK signal activity, mediated by a GABAergic mechanism.

  14. Review: molecular pathology of cyclooxygenase-2 in cancer-induced angiogenesis.

    Science.gov (United States)

    Fosslien, E

    2001-10-01

    Cancer-induced angiogenesis is the result of increased expression of angiogenic factors, or decreased expression of anti-angiogenic factors, or a combination of both events. For instance, in colon cancer, the malignant cells, the stromal fibroblasts, and the endothelial cells all exhibit strong staining for cyclooxygenase-2 (COX-2), the rate-controlling enzyme in prostaglandin (PG) synthesis. In various cancer tissues, vascular endothelial growth factor (VEGF) and transforming growth factor beta (TGF-beta) co-localize with COX-2. Strong COX-2 and VEGF expression is highly correlated with increased tumor microvascular density (MCD); new vessels proliferate in areas of the tumor that express COX-2. Moreover, high MVD is a predictor of poor prognosis in breast and cervical cancers. COX-2 and VEGF expression are elevated in breast and prostate cancer tissues and their cell-lines. In vitro, PGE2 induces VEGE Supernatants of cultured cells from breast, prostate, and squamous cell cancers contain angiogenic proteins such as COX-2 and VEGF that induce in vitro angiogenesis. A selective COX-2 inhibitor, NS-398, restores tumor cell apoptosis, reduces microvascular density, and reduces tumor growth of PC-3 prostate carcinoma cells xenografted into nude mice. The COX-2 produced by a malignant tumor and COX-2 produced by the surrounding host tissue both contribute to new vessel formation, which explains how selective COX-2 inhibition reduces tumor growth where the tumor COX-2 gene has been silenced by methylation.

  15. Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects

    Science.gov (United States)

    Zhao, Y; de Toledo, S M; Hu, G; Hei, T K; Azzam, E I

    2014-01-01

    Background: Signalling events mediated by connexins and cyclooxygenase-2 (COX-2) have important roles in bystander effects induced by ionising radiation. However, whether these proteins mediate bystander effects independently or cooperatively has not been investigated. Methods: Bystander normal human fibroblasts were cocultured with irradiated adenocarcinoma HeLa cells in which specific connexins (Cx) are expressed in the absence of endogenous Cx, before and after COX-2 knockdown, to investigate DNA damage in bystander cells and their progeny. Results: Inducible expression of gap junctions composed of connexin26 (Cx26) in irradiated HeLa cells enhanced the induction of micronuclei in bystander cells (Pbystander response due to connexin expression. However, COX-2 knockdown resulted in enhanced micronucleus formation in the progeny of the bystander cells (P<0.001). COX-2 knockdown delayed junctional communication in HeLa Cx26 cells, and reduced, in the plasma membrane, the physical interaction of Cx26 with MAPKKK, a controller of the MAPK pathway that regulates COX-2 and connexin. Conclusions: Junctional communication and COX-2 cooperatively mediate the propagation of radiation-induced non-targeted effects. Characterising the mediating events affected by both mechanisms may lead to new approaches that mitigate secondary debilitating effects of cancer radiotherapy. PMID:24867691

  16. Interleukin-1β, cyclooxygenase-2, and hypoxia-inducible factor-1α in asthenozoospermia.

    Science.gov (United States)

    Salvolini, Eleonora; Buldreghini, Eddi; Lucarini, Guendalina; Vignini, Arianna; Giulietti, Alessia; Lenzi, Andrea; Mazzanti, Laura; Di Primio, Roberto; Balercia, Giancarlo

    2014-11-01

    Impaired male fertility may have a variety of causes, among which asthenozoospermia. In its etiology, several bioactive substances, such as cytokines may be involved. In this context, our aim was to evaluate the expression of interleukin-1β, cyclooxygenase-2, and hypoxia-inducible factor-1α, in spermatozoa isolated from normospermic fertile donors and asthenozoospermic infertile patients. We evaluated twenty-eight infertile patients affected by idiopathic asthenozoospermia and twenty-three normospermic fertile donors, age-matched. Sperm parameters were evaluated; immunohistochemical analysis and enzyme-linked immunosorbent assay were then performed in isolated spermatozoa. Spermatozoa from the asthenozoospermic group presented an increased expression of IL-1β, COX-2, and HIF-1α compared with the normospermic fertile subjects. Our results can lead us to speculate that the increased expression of these substances may influence sperm motility. Nevertheless, further studies are needed in order to assess whether these bioactive mediators have a potential relevance as targets in future therapeutic strategies for the treatment of male infertility.

  17. Cyclooxygenase-2 contributes to VX-induced cell death in cultured cortical neurons.

    Science.gov (United States)

    Tenn, Catherine C; Weiss, M Tracy; Beaup, Claire; Peinnequin, Andre; Wang, Yushan; Dorandeu, Frederic

    2012-04-05

    The link between cell death and increased cyclooxygenases-2 (COX-2) activity has not been clearly established. In this study, we examined whether COX-2 activation contributed to the mechanism of neurotoxicity produced by an organophosphorous nerve agent in cultured rat cortical neurons. Exposure of neuronal cells to the nerve agent, VX resulted in an increase in COX enzyme activity in the culture media. A concentration dependent increase in the activity levels of COX-2 enzyme was observed while there was little to no effect on COX-1. In addition, COX-2 mRNA and protein levels increased several hours post-VX exposure. Pre-treatment of the cortical cells with the COX-2 selective inhibitor, NS 398 resulted in a decrease in both the enzyme activity and prostaglandin (PGE(2) and PGF(2α)) release, as well as in a reduction in cell death. These findings indicate that the increase in COX-2 activity may contribute to the mechanism of VX-induced neurotoxicity in cultured rat cortical neuron.

  18. Effect of selective inhibition of cyclooxygenase-2 on lipopolysaccharide-induced hyperalgesia.

    Science.gov (United States)

    Satyanarayana, Padi S V; Jain, Naveen K; Singh, Sukhjeet; Kulkarni, Shrinivas K

    2004-01-01

    Lipopolysaccharide (LPS) is known to increase the expression and release of various pro-inflammatory mediators, including cyclooxygenase-2 (COX-2) and produce hyperalgesia. It is also well known that prostaglandins (PGs), synthesised both in the periphery and centrally by COX isoforms, play a key role in sensitisation of nociceptors and nociceptive processing. To investigate the role of COX-2 in LPS-induced hyperalgesia, parecoxib, a selective COX-2-inhibiting pro-drug, was injected intravenously 30 min before assessing hyperalgesia induced by intraperitoneal or subcutaneous administration of LPS (50 microg/mouse or 25 microg/paw of rat, respectively). Acetic acid-induced writhing and tail immersion assay in mice and paw withdrawal response to thermal and mechanical stimuli in rats were used to assess the effect of inhibition of COX-2 on LPSinduced hyperalgesia. Animals showed significant hyperalgesic behavior 8 h after LPS injection. Parecoxib (up to 20 mg/kg, i.v.) had no effect in the two acute nociceptive assays but showed marked antinociceptive activity in writhing and tail immersion assay in LPS-pretreated mice. Similarly, parecoxib reversed the hyperalgesia in the LPS-injected paw but not in the contralateral paw of rats. Pre-treatment with dexamethasone, an inhibitor of COX-2 expression before LPS injection significantly affected the development of hyperalgesia in both mice and rats. These findings suggest that inducible COX-2 derived PGs are involved in central nociceptive processing, which resulted in hyperalgesic behavior following LPS administration and inhibition of COX-2 or its expression attenuated LPS-induced hyperalgesia.

  19. Inhibition of cyclooxygenase-2 reduces hypothalamic excitation in rats with adriamycin-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Min Zheng

    Full Text Available BACKGROUND: The paraventricular nucleus (PVN of the hypothalamus plays an important role in the progression of heart failure (HF. We investigated whether cyclooxygenase-2 (COX-2 inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS and renin-angiotensin system (RAS in rats with adriamycin-induced heart failure. METHODOLOGY/PRINCIPAL FINDING: Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg/kg. On day 19, rats received intragastric administration daily with either COX-2 inhibitor celecoxib (CLB or normal saline. Treatment with CLB reduced mortality and attenuated both myocardial atrophy and pulmonary congestion in HF rats. Compared with the HF rats, ventricle to body weight (VW/BW and lung to body weight (LW/BW ratios, heart rate (HR, left ventricular end-diastolic pressure (LVEDP, left ventricular peak systolic pressure (LVPSP and maximum rate of change in left ventricular pressure (LV±dp/dtmax were improved in HF+CLB rats. Angiotensin II (ANG II, norepinephrine (NE, COX-2 and glutamate (Glu in the PVN were increased in HF rats. HF rats had higher levels of ANG II and NE in plasma, higher level of ANG II in myocardium, and lower levels of ANP in plasma and myocardium. Treatment with CLB attenuated these HF-induced changes. HF rats had more COX-2-positive neurons and more corticotropin releasing hormone (CRH positive neurons in the PVN than did control rats. Treatment with CLB decreased COX-2-positive neurons and CRH positive neurons in the PVN of HF rats. CONCLUSIONS: These results suggest that PVN COX-2 may be an intermediary step for PVN neuronal activation and excitatory neurotransmitter release, which further contributes to sympathoexcitation and RAS activation in adriamycin-induced heart failure. Treatment with COX-2 inhibitor attenuates sympathoexcitation and RAS activation in adriamycin-induced heart failure.

  20. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chaohui, E-mail: zuochaohui@vip.sina.com [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Qiu, Xiaoxin [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Liu, Nianli; Yang, Darong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Xia, Man [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Liu, Jingshi [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Wang, Xiaohong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  1. Selective Cyclooxygenase-2 Inhibitor Prevents Cisplatin-induced Tumorigenesis in A/J Mice

    Directory of Open Access Journals (Sweden)

    Okada,Toshiaki

    2012-06-01

    Full Text Available Cisplatin is used to treat lung cancer;however, it is also a known carcinogen. Cyclooxygenase-2 (COX-2 inhibitors have been shown to prevent carcinogen-induced experimental tumors. We investigated the effect of a COX-2 inhibitor, celecoxib, on cisplatin-induced lung tumors. One hundred twenty 4-week-old A/J mice were divided into 6 groups:group 1, no treatment;group 2, low-dose celecoxib (150mg/kg;group 3, high-dose celecoxib (1,500mg/kg;group 4, cisplatin alone;group 5, cisplatin plus low-dose celecoxib;and group 6, cisplatin plus high-dose celecoxib. Mice in groups 4-6 were administered cisplatin (1.62mg/kg, i.p. once a week for 10 weeks between 7 and 16 weeks of age. All mice were sacrificed at week 30. Tumor incidence was 15.8% in group 1, 25% in group 2, 26.3% in group 3, 60% in group 4, 50% in group 5, and 50% in group 6. Tumor multiplicity was 0.2, 0.3, 0.3, 1.3, 1.0, and 0.6 in groups 1-6, respectively. Tumor multiplicity in the cisplatin-treated mice was reduced by celecoxib treatment in a dose-dependent manner (p<0.05, group 4 vs. group 6. Celecoxib significantly reduced COX-2 expression in cisplatin-induced tumors (p<0.01, group 4 vs. group 6.

  2. Evaluation of anticonvulsant effect of celecoxib, a selective cyclooxygenase-2 inhibitor in experimentally induced convulsions in albino rats

    OpenAIRE

    Mohammed Naseeruddin Nadeem; Maliha Maqdoom

    2016-01-01

    Background: Cyclooxygenase-2 (COX-2) exists as the inducible form of the cyclooxygenase enzyme, the levels of which are elevated in inflammatory conditions. COX-2 is located in regions of brain like hippocampus and cerebral cortex. When induced, COX-2 forms prostaglandin E2 (PGE2), which is responsible for CNS excitation, in turn leading to generation of seizures. COX-2 inhibitors by preventing the formation of PGE2 may serve as effective anticonvulsants. Since none of the anti-epileptics in ...

  3. Celecoxib Inhibits Proliferation and Induces Apoptosis via Cyclooxygen-ase-2 Pathway in Human Pancreatic Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    WU Gaosong; YI Jilin; DI Fang; ZOU Shengquan; LI Xingrui

    2005-01-01

    In order to evaluate the effects and mechanisms of celecoxib in inhibiting proliferation and inducing apoptosis on human pancreatic carcinoma cells, the anti-proliferative effect was measured by using methabenzthiazuron (MTT) assay. Cell cycle and apoptosis were analyzed by using flow cytometry (FCM), and the PGE2 levels in the supernatant of cultured pancreatic carcinoma cells were quantitated by enzyme-linked immunoabsordent assay (ELISA). Our results showed that celecoxib suppressed the production of PGE2 and inhibited the growth of JF-305 cells, and the anti-proliferative effect of celecoxib could be abolished by addition of PGE2. FCM revealed that celecoxib could inhibit proliferation and induce apoptosis by G1-S cell cycle arrest. It was concluded that cyclooxygenase-2 specific inhibitor celecoxib could inhibit proliferation and induced apoptosis of human pancreatic carcinoma cells via suppression of PGE2 production in vitro.

  4. Progressive Metaplastic and Dysplastic Changes in Mouse Pancreas Induced by Cyclooxygenase-2 Overexpression

    Directory of Open Access Journals (Sweden)

    Jennifer K.L. Colby

    2008-08-01

    Full Text Available Cyclooxygenase-2 (COX-2 overexpression is an established factor linking chronic inflammation with metaplastic and neoplastic change in various tissues. We generated transgenic mice (BK5.COX-2 in which elevation of COX-2 and its effectors trigger a metaplasia-dysplasia sequence in exocrine pancreas. Histologic evaluation revealed a chronic pancreatitis-like state characterized by acinar-to-ductal metaplasia and a well-vascularized fibroinflammatory stroma that develops by 3 months. By 6 to 8 months, strongly dysplastic features suggestive of pancreatic ductal adenocarcinoma emerge in the metaplastic ducts. Increased proliferation, cellular atypia, and loss of normal cell/tissue organization are typical features in transgenic pancreata. Alterations in biomarkers associated with human inflammatory and neoplastic pancreatic disease were detected using immunohistochemistry. The abnormal pancreatic phenotype can be completely prevented by maintaining mice on a diet containing celecoxib, a well-characterized COX-2 inhibitor. Despite the high degree of atypia, only limited evidence of invasion to adjacent tissues was observed, with no evidence of distant metastases. However, cell lines derived from spontaneous lesions are aggressively tumorigenic when injected into syngeneic or nude mice. The progressive nature of the metaplastic/dysplastic changes observed in this model make it a valuable tool for examining the transition from chronic inflammation to neoplasia.

  5. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  6. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    Science.gov (United States)

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  7. Vasoactive intestinal peptide induces cyclooxygenase-2 expression through nuclear factor-κB in human prostate cell lines. Differential time-dependent responses in cancer progression

    OpenAIRE

    Fernández-Martínez, Ana B.; Collado, Beatriz; Bajo, Ana M.; Sánchez-Chapado, Manuel; Prieto,Juan C.; Carmena, María J.

    2007-01-01

    Vasoactive intestinal peptide induces cyclooxygenase-2 expression through nuclear factor-?B in human prostate cell lines. Differential time-dependent responses in cancer progression SPAIN (Fernandez-Martinez, Ana B.) SPAIN Received: 2006-09-11 Revised: 2007-01-11 Accepted: 2007-01-11

  8. Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea

    Science.gov (United States)

    Campillo, Noelia; Torres, Marta; Vilaseca, Antoni; Nonaka, Paula Naomi; Gozal, David; Roca-Ferrer, Jordi; Picado, César; Montserrat, Josep Maria; Farré, Ramon; Navajas, Daniel; Almendros, Isaac

    2017-01-01

    An adverse role for obstructive sleep apnea (OSA) in cancer epidemiology and outcomes has recently emerged from clinical and animal studies. In animals, intermittent hypoxia (IH) mimicking OSA promotes tumor malignancy both directly and via host immune alterations. We hypothesized that IH could potentiate cancer aggressiveness through activation of the cyclooxygenase-2 (COX-2) pathway and the concomitant increases in prostaglandin E2 (PGE2). The contribution of the COX-2 in IH-induced enhanced tumor malignancy was assessed using celecoxib as a COX-2 specific inhibitor in a murine model of OSA bearing Lewis lung carcinoma (LLC1) tumors. Exposures to IH accelerated tumor progression with a tumor associated macrophages (TAMs) shift towards a pro-tumoral M2 phenotype. Treatment with celecoxib prevented IH-induced adverse tumor outcomes by inhibiting IH-induced M2 polarization of TAMs. Furthermore, TAMs isolated from IH-exposed mice treated with celecoxib reduced the proliferation of LLC1 naïve cells, while the opposite occurred with placebo-treated IH-exposed mice. Finally, in vitro IH exposures of murine macrophages and LLC1 cells showed that both cell types increased PGE2 release in response to IH. These results suggest a crucial role for the COX-2 signaling pathway in the IH-exacerbated malignant processes, and designate macrophages and lung adenocarcinoma cells, as potential sources of PGE2. PMID:28300223

  9. Cyclooxygenase-2-dependent phosphorylation of the pro-apoptotic protein Bad inhibits tonicity-induced apoptosis in renal medullary cells.

    Science.gov (United States)

    Küper, Christoph; Bartels, Helmut; Beck, Franz-X; Neuhofer, Wolfgang

    2011-11-01

    During antidiuresis, cell survival in the renal medulla requires cyclooxygenase-2 (COX-2) activity. We have recently found that prostaglandin E2 (PGE2) promotes cell survival by phosphorylation and, hence, inactivation of the pro-apoptotic protein Bad during hypertonic stress in Madin-Darby canine kidney (MDCK) cells in vitro. Here we determine the role of COX-2-derived PGE(2) on phosphorylation of Bad and medullary apoptosis in vivo using COX-2-deficient mice. Both wild-type and COX-2-knockout mice constitutively expressed Bad in tubular epithelial cells of the renal medulla. Dehydration caused a robust increase in papillary COX-2 expression, PGE2 excretion, and Bad phosphorylation in wild-type, but not in the knockout mice. The abundance of cleaved caspase-3, a marker of apoptosis, was significantly higher in papillary homogenates, especially in tubular epithelial cells of the knockout mice. Knockdown of Bad in MDCK cells decreased tonicity-induced caspase-3 activation. Furthermore, the addition of PGE2 to cells with knockdown of Bad had no effect on caspase-3 activation; however, PGE2 caused phosphorylation of Bad and substantially improved cell survival in mock-transfected cells. Thus, tonicity-induced COX-2 expression and PGE2 synthesis in the renal medulla entails phosphorylation and inactivation of the pro-apoptotic protein Bad, thereby counteracting apoptosis in renal medullary epithelial cells.

  10. 15-lipoxygenase-1 mediates cyclooxygenase-2 inhibitor induced apoptosis in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It has been found that expression of 15-lipoxygenasc-1(15-LOX-1) and its main product,13-C-hydroxyoctadecadienoic acid (13-S-HODE),are decreased in human colorectal and esophageal cancers and that nonsteroidal anti-inflammatory drugs(NSAIDs) can therspeutically induce 15-LOC-1 expression to trigger apoptosis in those cancer cells independently COX-2.We found that a specific COX-2 inhibitor SC-236 similarly induce apoptosis in gastric cancer cells,although the mechanisms of these effects remain to be defined.In the present study,we tested whether SC-236 induced apoptosis through up-regulation of 15-LOX-1 in gastric cancer cells.We found that,(a) SC-236 inhibited growth of gastric cancer cells mainly by apoptosis induced;(b) SC-236 induced 15-LOX-1 expression and increased endogenous 13-S-HODE product,instead of 15-S-HETE during apoptosis in gastric cancer cells without 15-LOX-1 expression before treatment by SC-236;(c)sc-236 didn't effect expression of COX-1,COX-2,5-LOX and 12-LOX;and (d)15-LOX-1 inhibition suppressed SC-236 induced apoptosis.These findings demonstrated that SC-236 induced apoptosis in gastric cancer cells via up-regulation of 25-LOX-1.They also support the concept that the loss of the proapopotic role of 15-LOX-1 in epithelial cancers is not limited to human colorectal and esophageal cancers.

  11. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells.

    Science.gov (United States)

    Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J

    2003-12-01

    Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.

  12. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2014-01-01

    transiently after a 1-desamino-8-D-arginine vasopressin challenge. COX-2 inhibition did not reduce cortical lithium-induced cell proliferation and phosphorylation of glycogen synthase kinase-3β (GSK-3β). COX-1 protein abundance increased in rat kidney cortex in response to lithium. COX-1 immunoreactivity...

  13. Triptolide Inhibits Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression in Human Colon Cancer and Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    Xiangmin TONG; Shui ZHENG; Jie JIN; Lifen ZHU; Yinjun LOU; Hangping YAO

    2007-01-01

    Triptolide (TP), a traditional Chinese medicine, has been reported to be effective in the treatment of autoimmune diseases and exerting antineoplastic activity in several human tumor cell lines. This study investigates the antitumor effect of TP in human colon cancer cells (SW114) and myelocytic leukemia (K562), and elucidates the possible molecular mechanism involved. SW114 and K562 cells were treated with different doses of TP (0, 5, 10, 20, or 50 ng/ml). The cell viability was assessed by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyltetrazolium bromide (MTT). Results demonstrated that TP inhibited the proliferation of both tumor cell lines in a dose-dependent manner. To further investigate its mechanisms, the products prostaglandin E2 (PGE2) and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay (ELISA). Our data showed that TP strongly inhibited the production of NO and PGE2. Consistent with these results, the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was up-regulated both at the mRNA level and the protein expression level, as shown by real-time RT-PCR and Western blotting. These results indicated that the inhibition of the inflammatory factor COX-2 and iNOS activity could be involved in the antitumor mechanisms of TP.

  14. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells.

    Science.gov (United States)

    Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2012-01-01

    Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.

  15. Function of DNA methyltransferase 3a in lead (Pb(2+) )-Induced Cyclooxygenase-2 gene.

    Science.gov (United States)

    Tsai, Yao-Ting; Chang, Che-Mai; Wang, Jaw-Yuan; Hou, Ming-Feng; Wang, Ju-Ming; Shiurba, Robert; Chang, Wen-Chang; Chang, Wei-Chiao

    2015-09-01

    Lead ions (Pb(2+) ) are toxic industrial pollutants associated with chronic inflammatory diseases in humans and animals. Previously, we found that Pb(2+) ions induce COX-2 gene expression via the EGF receptor/nuclear factor-κB signal transduction pathway in epidermoid carcinoma cell line A431. In this study, to see whether Pb(2+) ions affect COX-2 expression by epigenetic mechanisms, we looked at the mRNAs of DNA methyltransferases (DNMTs) using real-time PCR of total RNA from these cells. Cells exposed to Pb(2+) had low levels of DNMT3a mRNA, whereas the levels of DNMT1 and DNMT3b mRNAs remained unchanged. Pretreatment of cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5 μM) followed by Pb(2+) (1 μM) significantly increased levels of COX-2 mRNA compared with cells treated with Pb(2+) alone. Overexpression of tumor suppressor gene Rb correlated with an increase in COX-2 mRNA and a decrease in DNMT3a mRNA. Conversely, overexpression of transcription factor E2F1 correlated with a decrease in COX-2 mRNA and an increase in DMNT3a mRNA. Pretreatment with EGFR inhibitors AG1478 and PD153035 significantly limited Pb(2+) -induced reduction in DNMT3a mRNA. In addition, gene knockdown of DNMT3a with short hairpin RNA correlated with increased COX-2 mRNA induced by Pb(2+) . Our findings suggest Pb(2+) ions induce COX-2 expression indirectly by reducing DNMT3a methylation of the COX-2 promoter via transcription factors Rb and E2F1. © 2014 Wiley Periodicals, Inc.

  16. Silkworm Thorn Stem Extract Targets RSK2 and Suppresses Solar UV-Induced Cyclooxygenase-2 Expression

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2015-10-01

    Full Text Available Excessive exposure to solar UV (sUV is associated with numerous human skin disorders, such as carcinogenesis, skin photoaging and skin inflammation. Silkworm Thorn (Cudraniatricuspidata, SW is a plant belonging to the Moraceae family and widely present throughout Korea, China, and Japan. Most parts of the tree (including the fruit, leaf, stem, root, and bark is consumable as a functional food or tea. In this study, we found that SW extract (SWE inhibited the elevated expression of sUV-induced cyclooxygenase (COX-2 levels in both HaCaT and JB6 cells. Levels of nuclear factor-κB and activator protein-1, two crucial transcription factors involved in COX-2 expression, were elevated by sUV treatment. Treatment with SWE abolished this activation. SWE also inhibited sUV-induced histone H3 phosphorylation. However, sUV-induced phosphorylation of Akt, c-Jun N-terminal kinase and p38 kinase remained unchanged in the presence of SWE. SWE inhibited RSK2 activity, and pull-down assays using SWE-Sepharose beads revealed that SWE binds directly with RSK2 in an ATP-competitive manner. These results suggest a potential for SWE to be developed as a cosmeceutical material and functional food constituent for the promotion of skin health.

  17. Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance.

    Science.gov (United States)

    Francés, Daniel E; Motiño, Omar; Agrá, Noelia; González-Rodríguez, Águeda; Fernández-Álvarez, Ana; Cucarella, Carme; Mayoral, Rafael; Castro-Sánchez, Luis; García-Casarrubios, Ester; Boscá, Lisardo; Carnovale, Cristina E; Casado, Marta; Valverde, Ángela M; Martín-Sanz, Paloma

    2015-05-01

    Accumulation evidence links obesity-induced inflammation as an important contributor to the development of insulin resistance, which plays a key role in the pathophysiology of obesity-related diseases such as type 2 diabetes and nonalcoholic fatty liver disease. Cyclooxygenase (COX)-1 and -2 catalyze the first step in prostanoid biosynthesis. Because adult hepatocytes fail to induce COX-2 expression regardless of the proinflammatory stimuli used, we have evaluated whether this lack of expression under mild proinflammatory conditions might constitute a permissive condition for the onset of insulin resistance. Our results show that constitutive expression of human COX-2 (hCOX-2) in hepatocytes protects against adiposity, inflammation, and, hence, insulin resistance induced by a high-fat diet, as demonstrated by decreased hepatic steatosis, adiposity, plasmatic and hepatic triglycerides and free fatty acids, increased adiponectin-to-leptin ratio, and decreased levels of proinflammatory cytokines, together with an enhancement of insulin sensitivity and glucose tolerance. Furthermore, hCOX-2 transgenic mice exhibited increased whole-body energy expenditure due in part by induction of thermogenesis and fatty acid oxidation. The analysis of hepatic insulin signaling revealed an increase in insulin receptor-mediated Akt phosphorylation in hCOX-2 transgenic mice. In conclusion, our results point to COX-2 as a potential therapeutic target against obesity-associated metabolic dysfunction. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. The role of cyclooxygenase-2/prostanoid pathway in visceral pain induced liver stress response in rats

    Institute of Scientific and Technical Information of China (English)

    PISTON Donald; WANG Shan; FENG Yi; YE Ying-jiang; ZHOU Jing; JIANG Ke-wei; XU Feng; ZHAO Yong; CUI Zhi-rong

    2007-01-01

    Background Cyclooxygenase (COX) is the rate-limiting enzyme in the production of prostanoids from arachidonic acid.COX-2 is the inducible enzyme in the COX family, together with the prostanoids forms the COX-2/prostanoid pathway.Research showed that the COX-2/prostanoid pathway is activated in hepatic diseases and liver stress reaction, such as fibrogenesis, portal hypertension, carcinogenesis, and ischemic/reperfusion injury. But there was no report on visceral pain induced liver stress. This study was to investigate the role of the COX-2/prostanoid pathway in liver stress response in rat acute colitis visceral pain liver stress model.Methods Fifty-three male SD rats were randomly divided into Naive, Model, NS398 treatment, and Morphine treatment groups. The rat acute colitis visceral pain liver stress model was established under anesthesia by the colonic administration of 0.5 ml of 6% acetic acid using a urethral catheter. NS398 and morphine were administrated 30 minutes prior to model establishment in NS398 and Morphine treatment groups respectively. Spontaneous activities and pain behavior were counted and the extent of colonic inflammation was assessed histologically. Liver tissue levels of Glutathione-S-Transferase (GST) activity, COX-2 mRNA, prostaglandin E2 (PGE2), thromboxane B2 (TXB2) and 6-Ketone-prostaglandin F1α (6-K-PGF1α) contents were assessed.Results Thirty minutes after the colonic administration of acetic acid, a significant decrease in spontaneous activities and an increase in pain behaviors were observed in Model group (P<0.01 and P<0.05 respectively), accompanied by colonic inflammation. Liver GST activity levels significantly dropped (P<0.05). Liver COX-2 mRNA expression significantly increased, accompanied by an increase in liver concentrations of PGE2 and TXB2, but no obvious change in 6-K-PGF1α concentrations. NS398 and morphine both ameliorated post-stress liver GST activity (P<0.05 and P<0.01respectively), decreased stress-induced

  19. Hypotonicity-induced Renin exocytosis from juxtaglomerular cells requires aquaporin-1 and cyclooxygenase-2

    DEFF Research Database (Denmark)

    Friis, Ulla G; Madsen, Kirsten; Svenningsen, Per

    2009-01-01

    The mechanism by which extracellular hypotonicity stimulates release of renin from juxtaglomerular (JG) cells is unknown. We hypothesized that osmotically induced renin release depends on water movement through aquaporin-1 (AQP1) water channels and subsequent prostanoid formation. We recorded...... membrane capacitance (C(m)) by whole-cell patch clamp in single JG cells as an index of exocytosis. Hypotonicity increased C(m) significantly and enhanced outward current. Indomethacin, PLA(2) inhibition, and an antagonist of prostaglandin transport impaired the C(m) and current responses to hypotonicity...

  20. Roles of cyclooxygenase-2 in microvascular endothelial cell proliferation induced by basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background The level of basic fibroblast growth factor (bFGF) increases rapidly after cerebral ischemia. However, the molecular mechanisms for the effects of bFGF on cerebral microvascular endothelial cells (cMVECs) have not yet been fully elucidated. In this study, a murine cMVEC line, bend.3, was employed to study the effects of bFGF on cyclooxygenase (COX) expression and its downstream effects in cMVECs. Methods After treatment with bFGF, RT-PCR and Western blotting analyses were carried out to evaluate the changes in COX-2 mRNA and protein expression, respectively. Ml-r assays were performed to measure cell proliferation. The prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) concentrations in the culture medium were measured by enzyme-linked immunosorbent assay (ELISA). Results COX-2 mRNA and protein expressions in bEnd.3 cells were induced by bFGF in time- and dose-dependent manners. The bFGF-induced COX-2 upregulation led to enhanced PGE2 production by bEnd.3 cells, and this effect was abolished by the selective COX-2 inhibitor NS-398. bFGF also increased VEGF production by bend.3 cells, and this effect was blocked by NS-398 and the EP1/2 (PGE2 receptors) antagonist AH6809. Furthermore, exogenous PGE2 increased VEGF production in bend.3 cells, and AH6809 blocked this effect. Conclusion bFGF increases VEGF production in an autocrine manner by increasing COX-2-generated PGE2 in cMVECs and subsequently stimulates MVEC proliferation and angiogenesis.

  1. Viscum album exerts anti-inflammatory effect by selectively inhibiting cytokine-induced expression of cyclooxygenase-2.

    Directory of Open Access Journals (Sweden)

    Pushpa Hegde

    Full Text Available Viscum album (VA preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2 and prostaglandin E2 (PGE2 play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2.

  2. Experimental Studies on Cyclooxygenase-2 Inhibitor Induced Cervical Cancer Hela Cell Apoptosis and Its Molecular Mechanism

    Institute of Scientific and Technical Information of China (English)

    Ling YIN; Li-bei WEI; Qiu-hong QU; Xiao-peng GUO

    2007-01-01

    Objective To investigate the Hela cells growth inhibition and apoptosis possible molecular mechanisms.Methods Hela cells were treated with various concentrations(100 μmol/L,200 μmol/L,300μmol/L,400 μmol/L) ofNS-398 (selective for COX-2 inhibition). Cell growth was measured by MTT (Thiazolyl blue).Apoptosis was detected by double staining flow cytomezry (FCM).Levels of PGE2 were measured by radioimmunoassay.The expressions of COX-2 protein were also examined by Western blot analysis.Results After treated with different concentrations ofNS-398,the growth of Hela cells was suppressed significantly in a dose-and time-dependent manner (P<0. 01).The NS-398 can induce apoptosis with the apoptosis rates at 8.53%-43.46% by FCM in a dose-dependent manner.The release of PGE2 was reduced in Hela cells with the values of 69.26 ±2.13, 47.46 ±2.18,28.15 ± 1.64 and 17.01 ± 1.12,respectively,there was significant difference compared with control group (83.78 ± 1.11)(P<0. 01).The NS-398 could inhibit the activity and expression of COX-2 in a dosedependent manner and down-regulated the expression of COX-2 protein greatly.Conclusion NS-398 could inhibit the proliferation and increase apoptosis in human Hela cells.These effects may be depended on the inhibition of the expression of COX-2 and PGE2 by NS-398.

  3. Overexpression of cyclooxygenase-2 in malignant peripheral nerve sheath tumor and selective cyclooxygenase-2 inhibitor-induced apoptosis by activating caspases in human malignant peripheral nerve sheath tumor cells.

    Directory of Open Access Journals (Sweden)

    Michiyuki Hakozaki

    Full Text Available BACKGROUND: Cyclooxygenase-2 (COX-2 is a key enzyme in the conversion of arachidonic acid to prostanoids, and its activation is associated with carcinogenesis as well as inflammation. The antitumor effect of selective COX-2 inhibitors has been noted in various malignancies. Malignant peripheral nerve sheath tumor (MPNST is a rare and aggressive soft tissue sarcoma for which effective treatments have not yet been established. The purpose of this study was to investigate a potential therapeutic role of COX-2 in MPNST. METHODS: We evaluated the expression of COX-2 in 44 cases of high-grade MPNST using immunohistochemical staining and compared the staining results with the characteristics and outcome of the patients. We also investigated the antitumor effect of etodolac, a selective COX-2 inhibitor, on MPNST cells in vitro using the MPNST cell line, FMS-1. RESULTS: Overexpression of COX-2 (≥50% positive cells was observed in 29 cases (65.9%, was significantly associated with a poor overall survival (P = 0.0495, and was considered an independent risk factor for a poor outcome by the results of both univariate and multivariate analysis. Etodolac induced apoptosis of FMS-1 cells through the activation of caspase-8, -9, and -3. Moreover, several caspase inhibitors significantly inhibited etodolac-induced apoptosis. CONCLUSIONS: Selective COX-2 inhibitors including etodolac had an antitumor effect on MPNST cells, and their use holds promise as a novel therapeutic strategy for patients with MPNST to improve their prognoses.

  4. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced cyclooxygenase-2 expression in mouse brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Yang Chuen-Mao

    2010-11-01

    Full Text Available Abstract Background Prostaglandin E2 (PGE2, an arachidonic acid metabolite converted by cyclooxygenase-2 (COX-2, plays important roles in the regulation of endothelial functions in response to bacterial infection. The enzymatic activity of COX-2 can be down-regulated by heme oxygenase-1 (HO-1 induction. However, the mechanisms underlying HO-1 modulating COX-2 protein expression are not known. Objective The aim of the present study was to investigate whether the up-regulation of HO-1 regulates COX-2 expression induced by lipopolysaccharide (LPS, an endotoxin produced by Gram negative bacteria, in mouse brain endothelial cells (bEnd.3 Methods Cultured bEnd.3 cells were used to investigate LPS-induced COX-2 expression and PGE2 production. Cobalt protoporphyrin IX (CoPP, an HO-1 inducer, infection with a recombinant adenovirus carried with HO-1 gene (Adv-HO-1, or zinc protoporphyrin (ZnPP, an HO-1 inhibitor was used to stimulate HO-1 induction or inhibit HO-1 activity. The expressions of COX-2 and HO-1 were evaluated by western blotting. PGE2 levels were detected by an enzyme-linked immunoassay. Hemoglobin (a chelator of carbon monoxide, CO, one of metabolites of HO-1 and CO-RM2 (a CO releasing molecule were used to investigate the mechanisms of HO-1 regulating COX-2 expression. Results We found that LPS-induced COX-2 expression and PGE2 production were mediated through NF-κB (p65 via activation of Toll-like receptor 4 (TLR4. LPS-induced COX-2 expression was inhibited by HO-1 induction by pretreatment with CoPP or infection with Adv-HO-1. This inhibitory effect of HO-1 was reversed by pretreatment with either ZnPP or hemoglobin. Pretreatment with CO-RM2 also inhibited TLR4/MyD88 complex formation, NF-κB (p65 activation, COX-2 expression, and PGE2 production induced by LPS. Conclusions We show here a novel inhibition of HO-1 on LPS-induced COX-2/PGE2 production in bEnd.3. Our results reinforce the emerging role of cerebral endothelium-derived HO-1

  5. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline.

    Directory of Open Access Journals (Sweden)

    Francesca Seta

    Full Text Available The aim of this study was to examine the role of cyclooxygenase-2 (COX-2 and downstream signaling of prostanoids in the pathogenesis of pulmonary hypertension (PH using mice with genetically manipulated COX-2 expression. COX-2 knockdown (KD mice, characterized by 80-90% suppression of COX-2, and wild-type (WT control mice were treated weekly with monocrotaline (MCT over 10 weeks. Mice were examined for cardiac hypertrophy/function and right ventricular pressure. Lung histopathological analysis was performed and various assays were carried out to examine oxidative stress, as well as gene, protein, cytokine and prostanoid expression. We found that MCT increased right ventricular systolic and pulmonary arterial pressures in comparison to saline-treated mice, with no evidence of cardiac remodeling. Gene expression of endothelin receptor A and thromboxane synthesis, regulators of vasoconstriction, were increased in MCT-treated lungs. Bronchoalveolar lavage fluid and lung sections demonstrated mild inflammation and perivascular edema but activation of inflammatory cells was not predominant under the experimental conditions. Heme oxygenase-1 (HO-1 expression and indicators of oxidative stress in lungs were significantly increased, especially in COX-2 KD MCT-treated mice. Gene expression of NOX-4, but not NOX-2, two NADPH oxidase subunits crucial for superoxide generation, was induced by ∼4-fold in both groups of mice by MCT. Vasodilatory and anti-aggregatory prostacyclin was reduced by ∼85% only in MCT-treated COX-2 KD mice. This study suggests that increased oxidative stress-derived endothelial dysfunction, vasoconstriction and mild inflammation, exacerbated by the lack of COX-2, contribute to the pathogenesis of early stages of PH when mild hemodynamic changes are evident and not yet accompanied by vascular and cardiac remodeling.

  6. Cyclooxygenase 2,pS2,inducible nitric oxide synthase and transforming growth factor alpha in gastric adaptation to stress

    Institute of Scientific and Technical Information of China (English)

    Shi-Nan Nie; Hai-Chen Sun; Xue-Hao Wu; Xiao-Ming Qian

    2004-01-01

    AIM: To determine the role of mucosal gene expression of cyclooxygenase 2 (COX-2), pS2 (belongs to trefoil peptides),inducible nitric oxide synthase (iNOS) and transforming growth factor alpha (TGFα) in gastric adaptation to water immersion and restraint stress (WRS) in rats.METHODS: Wistar rats were exposed to single or repeated WRS for 4 h every other day for up to 6 d. Gastric mucosal blood flow (GMBF) was measured by laser Doppler fiowmeter3. The extent of gastric mucosal lesions were evaluated grossly and histologically and expressions of COX-2, pS2,iNOS and TGFα were determined by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot.RESULTS: The damage to the surface of gastric epithelium with focal areas of deep haemorrhagic necrosis was induced by repeated WRS.The adaptative cytoprotection against stress was developed with activation of cell proliferation in the neck regions of gastric glands. The ulcer index (UI) in groups Ⅱ, Ⅲ and Ⅳ was markedly reduced as compared with group Ⅰ (Ⅰ: 47.23±1.20; Ⅳ: 10.39±1.18,P<0.01). GMBF significantly decreased after first exposure to WRS with an adaptive increasement of GMBF in experimental groups after repetitive challenges with WRS. After the 4th WRS,the value of GMBF almost restored to normal level (Ⅰ:321.87±8.85; Ⅳ: 455.95±11.81,P<0.01). First WRS significantly decreased the expression of pS2 and significantly increased the expressions of COX-2, iNOS and TGFα. After repeated WRS, pS2 and TGFα expressions gradually increased (pS2: Ⅰ: 0.37±0.02; Ⅳ: 0.77±0.01; TGFα: Ⅰ:0.86±0.01; Ⅳ: 0.93±0.03, P<0.05) with a decrease in the expressions of COX-2 and iNOS (COX-2: Ⅰ: 0.45±0.02; Ⅳ:0.22±0.01; iNOS: Ⅰ: 0.93±0.01; Ⅳ: 0.56±0.01, P<0.01).Expressions of pS2, COX-2, iNOS and TGFα showed regular changes with a good relationship among them.CONCLUSION: Gastric adaptation to WRS injury involves enhanced cell proliferation, increased expression of pS2 and

  7. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2.

    Science.gov (United States)

    Hsu, A L; Ching, T T; Wang, D S; Song, X; Rangnekar, V M; Chen, C S

    2000-04-14

    This study investigates the apoptotic activity of the cyclooxygenase-2 (COX-2) inhibitor celecoxib in prostate carcinoma cells. COX-2 is constitutively expressed in androgen-responsive LNCaP and androgen-nonresponsive PC-3 cells. Exposure of these cells to celecoxib induces characteristic features of apoptosis, including morphological changes, DNA laddering, and caspase-3 activation, whereas piroxicam, a COX-1-specific inhibitor, displays no appreciable effect on either cancer cell line even after prolonged exposure. Moreover, the potency of celecoxib in apoptosis induction is significantly higher than that of other COX-2 inhibitors examined despite the observation that these inhibitors exhibit similar IC(50) in COX-2 inhibition. It is noteworthy that normal human prostate epithelial cells, expressing a marginally detectable level of COX-2, are insensitive to the induction of apoptosis by celecoxib. These data suggest a correlation between COX-2 expression and sensitivity to the apoptotic effect of the COX-2 inhibitor. In an effort to delineate the underlying mechanism, we examined the effect of celecoxib on the expression of Bcl-2 as well as the activation of the key anti-apoptotic kinase Akt. In contrast to an earlier report that attributed the apoptotic activity of NS398 in LNCaP cells to Bcl-2 down-regulation, we provide evidence that the induction of apoptosis by celecoxib in LNCaP and PC-3 cells is independent of Bcl-2. First, treatment with celecoxib does not alter the cellular Bcl-2 level in both cell lines. Second, enforced Bcl-2 expression in PC-3 cells does not confer protection against the induction of apoptosis by celecoxib. Our data show that celecoxib treatment blocks the phosphorylation of Akt. This correlation is supported by studies showing that overexpression of constitutively active Akt protects PC-3 cells from celecoxib-induced apoptosis. Nevertheless, how celecoxib down-regulates Akt is not clear because the drug does not adversely affect

  8. Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2.

    Science.gov (United States)

    Dieffenbach, Paul B; Haeger, Christina Mallarino; Coronata, Anna Maria F; Choi, Kyoung Moo; Varelas, Xaralabos; Tschumperlin, Daniel J; Fredenburgh, Laura E

    2017-09-01

    Pulmonary arterial stiffness is an independent risk factor for mortality in pulmonary hypertension (PH) and plays a critical role in PH pathophysiology. Our laboratory has recently demonstrated arterial stiffening early in experimental PH, along with evidence for a mechanobiological feedback loop by which arterial stiffening promotes further cellular remodeling behaviors (Liu F, Haeger CM, Dieffenbach PB, Sicard D, Chrobak I, Coronata AM, Suárez Velandia MM, Vitali S, Colas RA, Norris PC, Marinković A, Liu X, Ma J, Rose CD, Lee SJ, Comhair SA, Erzurum SC, McDonald JD, Serhan CN, Walsh SR, Tschumperlin DJ, Fredenburgh LE. JCI Insight 1: e86987, 2016). Cyclooxygenase-2 (COX-2) and prostaglandin signaling have been implicated in stiffness-mediated regulation, with prostaglandin activity inversely correlated to matrix stiffness and remodeling behaviors in vitro, as well as to disease progression in rodent PH models. The mechanism by which mechanical signaling translates to reduced COX-2 activity in pulmonary vascular cells is unknown. The present work investigated the transcriptional regulators Yes-associated protein (YAP) and WW domain-containing transcription regulator 1 (WWTR1, a.k.a., TAZ), which are known drivers of downstream mechanical signaling, in mediating stiffness-induced changes in COX-2 and prostaglandin activity in pulmonary artery smooth muscle cells (PASMCs). We found that YAP/TAZ activity is increased in PAH PASMCs and experimental PH and is necessary for the development of stiffness-dependent remodeling phenotypes. Knockdown of YAP and TAZ markedly induces COX-2 expression and downstream prostaglandin production by approximately threefold, whereas overexpression of YAP or TAZ reduces COX-2 expression and prostaglandin production to near undetectable levels. Together, our findings demonstrate a stiffness-dependent YAP/TAZ-mediated positive feedback loop that drives remodeling phenotypes in PASMCs via reduced COX-2 and prostaglandin activity. The

  9. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2.

    Science.gov (United States)

    Maioli, N A; Zarpelon, A C; Mizokami, S S; Calixto-Campos, C; Guazelli, C F S; Hohmann, M S N; Pinho-Ribeiro, F A; Carvalho, T T; Manchope, M F; Ferraz, C R; Casagrande, R; Verri, W A

    2015-04-01

    It is currently accepted that superoxide anion (O2•-) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.

  10. Overexpression of cyclooxygenase-2 in human HepG2, Bel-7402 and SMMC-7721 hepatoma cell lines and mechanism of cyclooxygenase-2 selective inhibitor celecoxib-induced cell growth inhibition and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ning-Bo Liu; Tao Peng; Chao Pan; Yu-Yu Yao; Bo Shen; Jing Leng

    2005-01-01

    AIM: To investigate the cyclooxygenase-2 (COX-2)expression level in human HepG2, Bel-7402 and SMMC-7721hepatoma cell lines and the molecular mechanism of COX-2 selective inhibitor celecoxib-induced cell growth inhibition and cell apoptosis.METHODS: Hepatoma cells were cultured and treated with celecoxib. Cell in situ hybridization (ISH) and immunocytochemistry were used to detect COX-2 mRNA and protein expression. Proliferating cell nuclear antigen and phosphorylated Akt were also detected by immunocytochemistry assay. Cell growth rates were assessed by 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium (MTT) bromide colorimetric assay. Celecoxibinduced cell apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and flow cytometry (FCM). The phosphorylated Akt and activated fragments of caspase-9, caspase-3 were examined by Western blotting analysis.RESULTS: Increased COX-2 mRNA and protein expression were detected in all three hepatoma cell lines. Celecoxib could significantly inhibit cell growth and the inhibitory effect was in a dose- and time-dependent manner evidenced by MTr assays and morphological changes.The apoptotic index measured by TUNEL increased correspondingly with the increased concentration of celecoxib and the reaction time. With 50 μmol/L celecoxib treatment for 24 h, the apoptotic index of HepG2, BEL-7402and SMMC-7721 cells was 25.01±3.08%, 26.40±3.05%,and 30.60±2.89%, respectively. Western blotting analysis showed remarkable activation of caspase-9, caspase-3and dephosphorylation of Akt (Thr308). Immunocytochemistry also showed the reduction of PCNA expression and phosphorylation Akt (Thr308) after treatment with celecoxib.CONCLUSION: COX-2 mRNA and protein overexpression in HepG2, Bel-7402 and SMMC-7721 cell lines correlate with the increased cell growth rate. Celecoxib can inhibit proliferation and induce apoptosis of hepatoma cell strains in a dose- and time-dependent manner.

  11. TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    Full Text Available 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant tumor-promoting effect compared with TCDD or low-dose NNK alone. Resistance to apoptosis is a hallmark of cancer and is thought to be one of the tumor-promoting mechanisms regulated by TCDD. We performed an additional series of experiments in the normal human bronchial epithelial cell line Beas2B cells, in which TCDD was combined with the apoptosis inducer staurosporine. Our in vitro results confirmed that TCDD could rescue cells from apoptosis induced by staurosporine. The inhibition of apoptosis is likely mediated by the activation of the Akt and ERK1/2 pathways, as determined by the effectiveness of pathway-specific inhibitors in abrogating the anti-apoptotic activity of TCDD. In conclusion, we demonstrated that TCDD promoted NNK-induced lung tumorigenesis and revealed that TCDD inhibits staurosporine-induced apoptosis, at least in part, through the Akt and ERK1/2 signaling pathways.

  12. TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways.

    Science.gov (United States)

    Chen, Rong-Jane; Siao, Shih-He; Hsu, Chung-Huei; Chang, Chu-Yung; Chang, Louis W; Wu, Chih-Hsiung; Lin, Pinpin; Wang, Ying-Jan

    2014-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant tumor-promoting effect compared with TCDD or low-dose NNK alone. Resistance to apoptosis is a hallmark of cancer and is thought to be one of the tumor-promoting mechanisms regulated by TCDD. We performed an additional series of experiments in the normal human bronchial epithelial cell line Beas2B cells, in which TCDD was combined with the apoptosis inducer staurosporine. Our in vitro results confirmed that TCDD could rescue cells from apoptosis induced by staurosporine. The inhibition of apoptosis is likely mediated by the activation of the Akt and ERK1/2 pathways, as determined by the effectiveness of pathway-specific inhibitors in abrogating the anti-apoptotic activity of TCDD. In conclusion, we demonstrated that TCDD promoted NNK-induced lung tumorigenesis and revealed that TCDD inhibits staurosporine-induced apoptosis, at least in part, through the Akt and ERK1/2 signaling pathways.

  13. Tobacco specific N-nitrosamines: occurrence and bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.; Adams, J.D.; Brunnemann, K.D.; Rivenson, A.; Hecht, S.S.

    1982-01-01

    A new GC-TEA method for the analysis of tobacco-specific N-nitrosamines (TSNA) has been developed. Four TSNA have thus far been identified; these are N'-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N'-nitrosoanatabine (NAT) and N'-nitrosoanabasine (NAB). The method is currently being applied to the development of cigarette filter-tips which will selectively remove these carcinogens from cigarette smoke. Since recent epidemiological studies have established a correlation between snuff dipping and oral cancer, we have analysed leading snuff brands for TSNA. Snuff products from Sweden, Denmark, Bavaria and the USA contained 5-106 mg/kg of the TSNA and the saliva of snuff dippers had TSNA levels of 20-890 micrograms/kg. NNN, NNK and NAB induce benign and malignant tumours of the respiratory tract of mice and rats. We have shown that NNN and NNK induce tumours in the upper respiratory tract of hamsters and that NNK is the most active carcinogen of the TSNA, also inducing adenoma and adenocarcinoma in the hamster lung. The reported chemical analyses and bioassay results support the epidemiological findings on the causal association of tobacco use and cancer in man.

  14. Acute damage by naphthalene triggers expression of the neuroendocrine marker PGP9.5 in airway epithelial cells

    DEFF Research Database (Denmark)

    Poulsen, T.T.; Naizhen, X.; Linnoila, R.I.

    2008-01-01

    Protein Gene Product 9.5 (PGP9.5) is highly expressed in nervous tissue. Recently PGP9.5 expression has been found to be upregulated in the pulmonary epithelium of smokers and in non-small cell lung cancer, suggesting that it also plays a role in carcinogen-inflicted lung epithelial injury...... airways compared to controls, indicating that the rise in PGP9.5 in the airway epithelium is related to downregulation of p27(Kip1). This study is the first to specifically identify the carcinogen naphthalene as an inducer of PGP9.5 expression in non-neuroendocrine epithelium after acute lung injury...... and carcinogenesis. We investigated the expression of PGP9.5 in mice in response to two prominent carcinogens found in tobacco smoke: Naphthalene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). By immunostaining, we found that PGP9.5 protein was highly expressed throughout the airway epithelium in the days...

  15. Amygdalin suppresses lipopolysaccharide-induced expressions of cyclooxygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells.

    Science.gov (United States)

    Yang, Hye-Young; Chang, Hyun-Kyung; Lee, Jin-Woo; Kim, Young-Sick; Kim, Hong; Lee, Myoung-Hwa; Shin, Mal-Soon; Ham, Dae-Hyun; Park, Hun-Kuk; Lee, Hyejung; Kim, Chang-Ju

    2007-01-01

    Amygdalin (D-mandelonitrile-beta-D-gentiobioside) is a cynogenic compound found in sweet and bitter almonds, Persicae semen and Armeniacae semen. Amygdalin has been used for the treatment of cancers and for the relief of the pain. We made an aqueous extraction of amygdalin from Armeniacae semen. In this study, the effect of amygdalin on the lipopolysaccharide (LPS)-induced inflammation was investigated. The effects of amygdalin extracted from Armeniacae semen on the LPS-stimulated mRNA expressions of cyclooxygenase (COX)-1, COX-2 and inducible nitric oxide synthase (iNOS) in the mouse BV2 microglial cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR). The effects of amygdalin on the prostaglandins E(2) synthesis and the nitric oxide production were also studied by performing prostaglandins E(2) immunoassay and by detecting nitric oxide. The present results showed that amygdalin suppressed the prostaglandin E(2) synthesis and the nitric oxide production by inhibiting the LPS-stimulated mRNA expressions of COX-2 and iNOS in the mouse BV2 cells. These results show that amygdalin exerts anti-inflammatory and analgesic effects and it dose so probably by suppressing the mRNA expressions of COX-2 and iNOS.

  16. Gq protein mediates UVB-induced cyclooxygenase-2 expression by stimulating HB-EGF secretion from HaCaT human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, MiRan [Department of Biochemistry and Molecular Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr [Department of Biochemistry and Molecular Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2010-03-05

    Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the {alpha} subunit of Gq protein (G{alpha}q) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active G{alpha}q (G{alpha}qQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of G{alpha}q with shRNA in HaCaT human keratinocytes. G{alpha}q was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipase C (PLC), protein kinase C{delta} (PKC{delta}), and matrix metaloprotease-2 (MMP-2). Moreover, G{alpha}qQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that G{alpha}q mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKC{delta} and MMP-2 in HaCaT cells.

  17. Lysophosphatidic acid transactivates both c-Met and epidermal growth factor receptor, and induces cyclooxygenase-2 expression in human colon cancer LoVo cells

    Institute of Scientific and Technical Information of China (English)

    Dai Shida; Joji Kitayama; Hironori Yamaguchi; Hiroharu Yamashita; Ken Mori; Toshiaki Watanabe; Hirokazu Nagawa

    2005-01-01

    AIM: To examine whether lysophosphatidic acid (LPA)induces phosphorylation of c-Met and epidermal growth factor receptor (EGFR), both of which have been proposed as prognostic markers of colorectal cancer, and whether LPA induces cyclooxygenase-2 (COX-2) expression in human colon cancer cells.METHODS: Using a human colon cancer cell line, LoVo cells, we performed immunoprecipitation analysis,followed by Western blot analysis. We also examined whether LPA induced COX-2 expression, by Western blot analysis.RESULTS: Immunoprecipitation analysis revealed that 10 μmol/L LPA induced tyrosine phosphorylation of c-Met and EGFR in LoVo cells within a few minutes. We found that c-Met tyrosine phosphorylation induced by LPA was not attenuated by pertussis toxin or a matrix metalloproteinase inhibitor, in marked contrast to the results for EGFR. In addition, 0.2-40 μmol/L LPA induced COX-2 expression in a dose-dependent manner.CONCLUSION: Our results suggest that LPA acts upstream of various receptor tyrosine kinases (RTKs) and COX-2,and thus may act as a potent stimulator of colorectal cancer.

  18. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera.

    Science.gov (United States)

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P; Pezzuto, John M

    2011-01-01

    Moringa oleifera Lamarck is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential antiinflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC(50) = 0.96 ± 0.23 μM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC(50) = 2.86 ± 0.39 μM) and benzyl isothiocyanate (IC(50) = 2.08 ± 0.28 μM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal-regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB and subsequent binding to NF-κB cis-acting element was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating antiinflammatory or cancer chemopreventive activity.

  19. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation.

    Directory of Open Access Journals (Sweden)

    Kuan-Jen Chen

    Full Text Available Hepatitis C virus (HCV is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2 expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections.

  20. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation.

    Science.gov (United States)

    Chen, Kuan-Jen; Tseng, Chin-Kai; Chang, Fang-Rong; Yang, Jin-Iong; Yeh, Chi-Chen; Chen, Wei-Chun; Wu, Shou-Fang; Chang, Hsueh-Wei; Lee, Jin-Ching

    2013-01-01

    Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections.

  1. Acanthopanax koreanum roots inhibit the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 in RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Eun-Jin Yang

    2016-03-01

    Full Text Available Acanthopanax koreanum is a popular plant found on Jeju Island, Korea and is commonly used to prevent the side effects of consumption of alcoholic beverages. However, this plant has not been properly utilized as a medicinal material. In this study, we investigated the anti-inflammatory effects of the 70% ethanol extract of A. koreanum roots (AKR-E. The results indicated that the AKR-E (200 μg/mL inhibited the lipopolysaccharide (LPS-induced production of nitric oxide (NO and prostaglandin E2 (PGE2 in RAW 264.7 macrophages by 41.2% and 78.9%, respectively. These effects were accompanied by concentration-dependent decreases in the expression levels of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2 proteins. Additionally, the AKR-E inhibited the expression of pro-inflammatory cytokines, including interleukin (IL-6 (22.7% and IL-1β (74%. These data showed that the AKR-E had protective effects against the induction of LPS-induced inflammation in RAW 264.7 macrophages.

  2. Involvement of hypothalamic cyclooxygenase-2, interleukin-1β and melanocortin in the development of docetaxel-induced anorexia in rats.

    Science.gov (United States)

    Yamamoto, Kouichi; Asano, Keiko; Ito, Yui; Matsukawa, Naoki; Kim, Seikou; Yamatodani, Atsushi

    2012-12-16

    Docetaxel, a taxane derivative, is frequently used for the treatment of advanced breast cancer, non-small cell lung cancer, and metastatic prostate cancer. Clinical reports demonstrated that docetaxel-based chemotherapy often induces anorexia, but the etiology is not completely understood. To elucidate possible mechanisms, we investigated the involvement of central interleukin (IL)-1β, cyclooxygenase (COX)-2, and pro-opiomelanocortin (POMC) in the development of docetaxel-induced anorexia in rats. Rats received docetaxel (10mg/kg, i.p.) with or without pretreatment with selective COX-2 inhibitors, NS-398 (10 and 30 mg/kg, i.g.) or celecoxib (10 and 30 mg/kg, i.g.), and a non-selective COX inhibitor, indomethacin (10mg/kg, i.g.), then food intake was monitored for 24h after administration. We also examined expression of IL-1β, COX-2, and POMC mRNA in hypothalamus of docetaxel-treated rats and the effect of a COX-2 inhibitor on docetaxel-induced POMC mRNA expression. Food consumption in rats was significantly decreased 24h after administration of docetaxel and anorexia was partially reversed by all COX inhibitors. Administration of docetaxel increased IL-1β, COX-2, and POMC mRNA expression in the hypothalamus of rats. The time required to increase these gene expressions was comparable to the latency period of docetaxel-induced anorexia in rats. In addition, pretreatment with COX-2 inhibitors suppressed docetaxel-induced expression of POMC mRNA. These results suggest that IL-1β and COX-2 mRNA expression and subsequent activation of POMC in the hypothalamus may contribute to the development of docetaxel-induced anorexia in rats. Copyright © 2012. Published by Elsevier Ireland Ltd.

  3. The effects of nabumetone, a cyclooxygenase-2 inhibitor, on cisplatin-induced 5-hydroxytryptamine release from the isolated rat ileum.

    Science.gov (United States)

    Kudo, C; Minami, M; Hirafuji, M; Endo, T; Hamaue, N; Akita, K; Murakami, T; Kawaguchi, H

    2001-01-01

    In order to elucidate 5-HT release influenced by PGE2 in the background of the anticancer drug-induced emesis, the effect of nabumetone, a COX-2 inhibitor, on the release of 5-HT from the isolated rat ileum was investigated. PGE2 produced a concentration-dependent increase (10(-9) to 10 M) and decrease (10(-8) to 10(-6) M) in 5-HT release. Arachidonic acid also demonstrated a similar bell-shaped 5-HT release. The arachidonic acid-induced 5-HT release at 3 x 10(-6) M (313.04 +/- 25.90%) was significantly inhibited by the concomitant perfusion with BRL10720 (10(-6) M) (161.98 +/- 19.4%, pnabumetone, or indomethacin (3 x 10(-7) M)(190.01 +/- 16.19%, pnabumetone or BRL10720, but was not affected by the 3-day administration of dexamethasone. After 72 hours, however, the in vivo 3-days administration of nabumetone, BRL10720 or dexamethasone had no effect on the increase in ileal 5-HT levels induced by cisplatin. The use of COX-2 inhibitors to ameliorate delayed emesis induced by cisplatin-based anticancer chemotherapy has been proposed. On the other hand, there is a possibility that dexamethasone works through a mechanism other than 5-HT release in delayed emesis.

  4. Comparative study of vanadate- and phorbol ester-induced cyclo-oxygenase-2 expression in human endothelial cells.

    Science.gov (United States)

    Hirai, K; Ezumi, Y; Nishida, E; Uchiyama, T; Takayama, H

    1999-11-01

    Our previous study showed that vanadate, an inhibitor of protein tyrosine phosphatases, induced the expression of cyclo-oxygenase (COX)-2 in a protein-tyrosine-kinase (PTK)-dependent manner in human umbilical vein endothelial cells (HUVEC). Here, we further compared the actions of vanadate and phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC), on induction of COX-2 with special reference to mitogen-activated protein kinases (MAPKs) in HUVEC. Vanadate induced activation of three families of MAPKs, extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38, and c-Jun amino-terminal kinase (JNK) 1, while activation of ERK 1/2 alone was induced by PMA. The former activation by vanadate and the latter one by PMA were inhibited by tyrphostin-47, an inhibitor of PTKs, and by Ro31-8220, a PKC inhibitor, respectively. Either tyrphostin-47, PD98059, a specific inhibitor of the upstream kinase toward ERK1/2, or SB203580, a specific inhibitor of p38, completely suppressed vanadate-induction of COX-2 mRNA and protein. On the other hand, PMA-induction of COX-2 mRNA and protein was abolished by Ro31-8220 or PD98059 but not by SB203580. These data indicate that PMA-induced and PKC-dependent expression of COX-2 requires mainly activation of ERK 1/2 among MAPKs, while activation of both ERK1/2 and p38 or possibly of all three families of MAPKs is necessary for vanadate-induced and PTK-dependent expression of COX-2.

  5. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges.

    Science.gov (United States)

    Naglah, Ahmed M; Ahmed, Atallah F; Wen, Zhi-Hong; Al-Omar, Mohamed A; Amr, Abd El-Galil E; Kalmouch, Atef

    2016-04-15

    A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a-c. The chemical structures of the new Schiff bases (5b and 5d-h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%-42.2% ± 19.6% compared to the effect on COX-2 expression (bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a-c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  6. Rhizoma Paridis Saponins Suppresses Tumor Growth in a Rat Model of N-Nitrosomethylbenzylamine-Induced Esophageal Cancer by Inhibiting Cyclooxygenases-2 Pathway.

    Science.gov (United States)

    Yan, Shu; Tian, Shuxia; Kang, Qingwei; Xia, Yafei; Li, Caixia; Chen, Qing; Zhang, Shukun; Li, Zhigang

    2015-01-01

    Rhizoma Paridis Saponins (RPS), a natural compound purified from Rhizoma Paridis, has been found to inhibit cancer growth in vitro and in animal models of cancer. However, its effects on esophageal cancer remain unexplored. The purpose of this study was to investigate the effects of RPS on tumor growth in a rat model of esophageal cancer and the molecular mechanism underlying the effects. A rat model of esophageal cancer was established by subcutaneous injection of N-nitrosomethylbenzylamine (NMBA, 1 mg/kg) for 10 weeks. RPS (350 mg/kg or 100 mg/kg) was administered by oral gavage once daily for 24 weeks starting at the first NMBA injection. RPS significantly reduced the size and number of tumors in the esophagus of rats exposed to NMBA and inhibited the viability, migration, and invasion of esophageal cancer cells EC9706 and KYSE150 in a dose dependent manner (all P induced apoptosis and cell cycle G2/M arrest in the esophageal cancer cells. The expression of cyclooxygenases-2 (COX-2) and Cyclin D1 in rat esophageal tissues and the esophageal cancer cells were also significantly reduced by RPS (all P cancer development by promoting apoptosis and cell cycle arrest and inhibiting the COX-2 pathway. RPS might be a promising therapeutic agent for esophageal cancer.

  7. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer

    Science.gov (United States)

    Yu, Xiao-Juan; Sun, Kun; Tang, Xiao-He; Zhou, Cun-Jin; Sun, Hui; Yan, Zhe; Fang, Ling; Wu, Hong-Wen; Xie, Yi-Kui; Gu, Bin

    2016-01-01

    Cyclooxygenase-2 (COX-2) serves an important role in the carcinogenesis and progression of gastric cancer. Harmine (HM) and paclitaxel (PTX) are reported as promising drug candidates for cancer therapy, but whether a synergistic anti-tumor effect of HM combined with PTX exists in human gastric cancer remains unknown. The present study evaluated the effects of HM and/or PTX on cell proliferation and apoptosis in a gastric cancer cell line, SGC-7901. HM and PTX inhibited cell proliferation in a dose-dependent manner. Both HM and PTX alone induced apoptosis in gastric cancer cells. The combination of HM and PTX exerted synergistic effects on proliferation inhibition and apoptosis induction in SGC-7901 cells, with down-regulation of COX-2, PCNA and Bcl-2 and up-regulation of Bax expression. The results indicated that combination chemotherapy using HM with PTX exerts an anti-tumor effect for treating gastric cancer. The combination of the two drugs inhibits gastric cancer development more effectively than each drug alone through down-regulation of COX-2 expression. PMID:27446381

  8. Lipopolysaccharide Enhances the Production of Nicotine-Induced Prostaglandin E2 by an Increase in Cyclooxygenase-2 Expression in Osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Maiko SHOJI; Natsuko TANABE; Narihiro MITSUI; Naoto SUZUKI; Osamu TAKEICHI; Tomoko KATONO; Akira MOROZUMI; Masao MAENO

    2007-01-01

    Previous studies have indicated that lipopolysaccharide (LPS) from Gram-negative bacteria in plaque induces the release of prostaglandin E2 (PGE2),which promotes alveolar bone resorption in periodontitis,and that tobacco smoking might be an important risk factor for the development and severity of periodontitis.We determined the effect of nicotine and LPS on alkaline phosphatase (ALPase)activity,PGE2 production,and the expression of cyclooxygenase (COX-1,COX-2),PGE2 receptors Ep1-4,and macrophage colony stimulating factor(M-CSF)in human osteoblastic Saos-2 cells.The cells were cultured with 10-3 M nicotine in the presence of 0,1,or 10 μg/ml LPS,or with LPS alone.ALPase activity decreased in cells cultured with nicotine or LPS alone,and decreased further in those cultured with both nicotine and LPS,whereas PGE2 production significantly increased in the former and increased further in the latter.By itself,nicotine did not affect expression of COX-1,COX-2,any of the PGE2 receptors,or M-CSF,but when both nicotine and LPS were present,expression of COX-2,Ep3,Ep4,and M-CSF increased significantly.Simultaneous addition of 10-4 M indomethacin eliminated the effects of nicotine and LPS on ALPase activity,PGE2 production,and MCSF expression.Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS.These results suggest that LPS enhances the production of nicotine-induced PGE2 by an increase in COX-2 expression in osteoblasts,that nicotine-LPS-induced PGE2 interacts with the osteoblast Ep4 receptor primarily in autocrine or paracrine mode,and that the nicotine-LPS-induced PGE2 then decreases ALPase activity and increases M-CSF expression.

  9. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells.

    Science.gov (United States)

    Niu, Guomin; Yin, Songmei; Xie, Shuangfeng; Li, Yiqing; Nie, Danian; Ma, Liping; Wang, Xiuju; Wu, Yudan

    2011-01-01

    Quercetin is one of the naturally occurring dietary flavonol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.

  10. Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5'-AMP-activated protein kinase.

    Science.gov (United States)

    Lee, Sunyoung; Jeong, Seongkeun; Kim, Wooseong; Kim, Dohoon; Yang, Yejin; Yoon, Jeong-Hyun; Kim, Byung Joo; Min, Do Sik; Jung, Yunjin

    2017-01-29

    Rebamipide, an amino acid derivative of 2(1H)-quinolinone, has been used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. Induction of cyclooxygenase (COX)-2, a gastric mucosal protective factor, by rebamipide has been suggested as the major mechanism of the drug action. However, how rebamipide induces COX-2 at the molecular level needs further investigation. In this study, the molecular mechanism underlying the induction of COX-2 by rebamipide was investigated. In gastric carcinoma cells and macrophage cells, rebamipide induced phosphorylation of AMP-activated protein kinase (AMPK), leading to phosphorylation of acetyl-CoA carboxylase (ACC), a substrate of AMPK. The induction of COX-2 by rebamipide was dependent on AMPK activation because compound C, an AMPK inhibitor, abolished COX-2 induction by rebamipide. In a mouse ulcer model, rebamipide protected against hydrochloric acid/ethanol-induced gastric ulcer, and these protective effects were deterred by co-administration of compound C. In parallel, in the gastric tissues, rebamipide increased the phosphorylation AMPK, whereas compound C reduced the levels of COX-2 and phosphorylated ACC, which were increased by rebamipide. Taken together, the activation of AMPK by rebamipide may be a molecular mechanism that contributes to induction of COX-2, probably resulting in protection against gastric ulcers. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    Guomin Niu; Songmei Yin; Shuangfeng Xie; Yiqing Li; Danian Nie; Liping Ma; Xiuju Wang; Yudan Wu

    2011-01-01

    Quercetin is one of the naturally occurring dietary flavo-nol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.

  12. Expression of inducible nitric oxide synthase and cyclooxygenase-2 in pancreatic adenocarcinoma:Correlation with microvessel density

    Institute of Scientific and Technical Information of China (English)

    Hans U. Kasper; Hella Wolf; Uta Drebber; Helmut K. Wolf; Michael A. Kern

    2004-01-01

    AIM: Cyclooxygenases (COX) are key enzymes for conversion of arachidonic acid to prostaglandins. Nitric oxide synthase (NOS) is the enzyme responsible for formation of nitric oxide.Both have constitutive and inducible isoforms. The inducible isoforms (iNOS and COX-2) are of great interest as regulators of tumor angiogenesis, tumorigenesis and inflammatory processes. This study was to clarify their role in pancreatic adenocarcinomas.METHODS: We investigated the immunohistochemical iNOS and COX-2 expression in 40 pancreatic ducal adenocarcinomas of different grade and stage. The results were compared with microvessel density and clinicopathological data.RESULTS: Twenty-one (52.5%) of the cases showed iNOS expression, 15 (37.5%) of the cases were positive for COX-2.The immunoreaction was heterogeneously distributed within the tumors. Staining intensity was different between the tumors. No correlation between iNOS and COX-2 expression was seen. There was no relationship with microvessel density.However, iNOS positive tumors developed more often distant metastases and the more malignant tumors showed a higher COX-2 expression. There was no correlation with other clinicopathological data.CONCLUSION: Approximately half of the cases expressed iNOS and COX-2. These two enzymes do not seem to be the key step in angiogenesis or carcinogenesis of pancreatic adenocarcinomas. Due to a low prevalence of COX-2expression, chemoprevention of pancreatic carcinomas by COX-2 inhibitors can only achieve a limited success.

  13. Cyclooxygenase-2 inhibitors differentially attenuate pentylenetetrazol-induced seizures and increase of pro- and anti-inflammatory cytokine levels in the cerebral cortex and hippocampus of mice.

    Science.gov (United States)

    Temp, Fernanda Rossatto; Marafiga, Joseane Righes; Milanesi, Laura Hautrive; Duarte, Thiago; Rambo, Leonardo Magno; Pillat, Micheli Mainardi; Mello, Carlos Fernando

    2017-09-05

    Seizures increase prostaglandin and cytokine levels in the brain. However, it remains to be determined whether cyclooxygenase-2 (COX-2) derived metabolites play a role in seizure-induced cytokine increase in the brain and whether anticonvulsant activity is shared by all COX-2 inhibitors. In this study we investigated whether three different COX-2 inhibitors alter pentylenetetrazol (PTZ)-induced seizures and increase of interleukin-1β (IL-1β), interleukin-6 (IL-6), interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) levels in the hippocampus and cerebral cortex of mice. Adult male albino Swiss mice received nimesulide, celecoxib or etoricoxib (0.2, 2 or 20mg/kg in 0.1% carboxymethylcellulose (CMC) in 5% Tween 80, p.o.). Sixty minutes thereafter the animals were injected with PTZ (50mg/kg, i.p.) and the latency to myoclonic jerks and to generalized tonic-clonic seizures were recorded. Twenty minutes after PTZ injection animals were killed and cytokine levels were measured. PTZ increased cytokine levels in the cerebral cortex and hippocampus. While celecoxib and nimesulide attenuated PTZ -induced increase of proinflammatory cytokines in the cerebral cortex, etoricoxib did not. Nimesulide was the only COX-2 inhibitors that attenuated PTZ-induced seizures. This effect coincided with an increase of IL-10 levels in the cerebral cortex and hippocampus, constituting circumstantial evidence that IL-10 increase may be involved in the anticonvulsant effect of nimesulide. Copyright © 2017. Published by Elsevier B.V.

  14. CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.

    Science.gov (United States)

    Harizi, Hedi; Limem, Ilef; Gualde, Norbert

    2011-02-01

    We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).

  15. Piroxicam inhibits Masitinib-induced cyclooxygenase 2 expression in oral squamous cell carcinoma cells in vitro.

    Science.gov (United States)

    Rathore, Kusum; Alexander, Mary; Cekanova, Maria

    2014-08-01

    Development and characterization of animal models for human cancers is important for the improvement of diagnosis and therapy. The oral squamous cell carcinoma (OSCC) of domestic animals resembles human OSCC in many aspects; thus, cell lines derived from OSCC of cats and dogs are a valuable model for human OSCC. We characterized 1 feline OSCC (FeOSCC-Sidney) and 1 canine OSCC (K9OSCC-Abby) cell line and compared their characteristics with human OSCC cell line hSCC-25. We calculated the doubling time of the new OSCC cell lines and evaluated the expression profiles of cancer-related markers and cell-cycle proteins such as c-kit, platelet-derived growth factor receptor, vascular endothelial growth factor receptor, epidermal growth factor receptor, cyclooxygenase (COX)-1, COX-2, and p27 by immunocytochemistry and Western blot analysis. We evaluated the effects of novel receptor tyrosine kinase inhibitor (Masitinib, AB1010) and the nonsteroidal anti-inflammatory drug piroxicam on the previously mentioned OSCC cells. Interestingly, AB1010 increased expression levels of COX-2 in all tested OSCCs. Cotreatment of piroxicam with Masitinib significantly inhibited cell proliferation of OSCC as compared to either drug alone through the c-kit and AKT signaling pathways. Piroxicam inhibited Masitinib-induced COX-2 expression in all tested OSCCs. Therefore, targeting these two signaling pathways simultaneously was more efficient for inhibition of OSCCs across these species.

  16. Fetal fibronectin signaling induces matrix metalloproteases and cyclooxygenase-2 (COX-2) in amnion cells and preterm birth in mice.

    Science.gov (United States)

    Mogami, Haruta; Kishore, Annavarapu Hari; Shi, Haolin; Keller, Patrick W; Akgul, Yucel; Word, R Ann

    2013-01-18

    Fetal fibronectin (fFN) in cervical and vaginal secretions has been used as a predictor of preterm delivery. Here, we clarified the pathological function of fFN on cell type-specific matrix metalloproteinases (MMPs) and prostaglandin synthesis in fetal membranes. Treatment of amnion mesenchymal cells with fFN resulted in dramatic increases in MMP-1 and MMP-9 mRNA and enzymatic activity as well as COX-2 mRNA and prostaglandin E(2) synthesis, activating both NFκB and ERK1/2 signaling. Fetal FN-induced increases in MMPs and COX-2 were mediated through its extra domain A and Toll-like receptor 4 expressed in mesenchymal cells. Lipopolysaccharide and TNF-α increased the release of free FN in medium of amnion epithelial cells in culture. Finally, injection of fFN in pregnant mice resulted in preterm birth. Collectively, these results indicate that fFN is not only a marker of preterm delivery but also plays a significant role in the pathogenesis of preterm labor and premature rupture of fetal membranes.

  17. Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells.

    Science.gov (United States)

    Dandekar, Devendra S; Lopez, Monica; Carey, Robert I; Lokeshwar, Bal L

    2005-06-20

    Many tumors constitutively express high levels of the inducible form of proinflammatory enzyme, cyclooxygenase-2 (COX-2). Increased COX-2 expression is associated with tumor cell resistance to many cytotoxic chemotherapy drugs. Furthermore, increased resistance to cytotoxic antitumor drugs is also known to be dependent on associated stromal cells in many tumors. We investigated whether prostate tumor-associated stromal cells, marrow-derived osteoblasts, affect cytotoxicity of 2 antitumor drugs, COL-3 and docetaxel (TXTR), and whether it is dependent on COX-2 activity. We further examined whether inhibiting the activity of COX-2 negate the stroma-induced decrease in drug sensitivity in tumor cells. COX-2-specific inhibitor celecoxib (CXB) was used to inhibit COX-2 activity and associated alteration in cell death signaling was investigated. Coculturing PC-3ML cells with osteoblasts decreased the cytotoxicity of the tested antitumor drugs and was associated with increased COX-2 activity in PC-3ML cells. A significant decrease in drug-induced PGE(2) increase and an increase in cytotoxicity were observed when cells were treated with COL-3 or TXTR combined with CXB. Cytotoxicity of single or combination treatment increased apoptosis, which was associated with caspase-3 and -9 activation, PARP cleavage, increased BAD protein, but decreased protein levels of XIAP and BCL-(xL). Oral administration of CXB (40 mg/kg) to mice with PC-3ML tumors for 42 days increased tumor latency, decreased tumor growth and enhanced tumor control with COL-3 or TXTR. Overall, a synergistic enhancement of antitumor activity in combination treatment was observed in vitro and an additive effect in vivo. These observations suggest a potential clinical use of combined dosing of COX-2 inhibitors and cytotoxic drugs at lower, nontoxic dose than currently used to treat advanced prostate cancer.

  18. Divalent lead cations induce cyclooxygenase-2 gene expression by epidermal growth factor receptor/nuclear factor-kappa B signaling in A431carcinoma cells.

    Science.gov (United States)

    Chou, Yii-Her; Woon, Peng-Yeong; Huang, Wan-Chen; Shiurba, Robert; Tsai, Yao-Ting; Wang, Yu-Shiuan; Hsieh, Tusty-Jiuan; Chang, Wen-Chang; Chuang, Hung-Yi; Chang, Wei-Chiao

    2011-06-10

    Divalent lead cations (Pb²+) are toxic metal pollutants that may contribute to inflammatory diseases in people and animals. Human vascular smooth muscle cells in culture respond to low concentrations of Pb²+ ions by activating mediators of inflammation via the plasma membrane epidermal growth factor receptor (EGFR). These include cyclooxygenase-2 (COX-2) and cytosolic phospholipase A₂ as well as the hormone-like lipid compound prostaglandin E₂. To further clarify the mechanism by which Pb²+ induces such mediators of inflammation, we tested human epidermoid carcinoma cell line A431 that expresses high levels of EGFR. Reverse transcription PCR and western blots confirmed A431 cells treated with a low concentration (1 μM) of Pb²+ in the form of lead (II) nitrate increased expression of COX-2 mRNA and its encoded protein in a time-dependent manner. Promoter deletion analysis revealed the transcription factor known as nuclear factor-kappa B (NF-κB) was a necessary component of the COX-2 gene response. NF-κB inhibitor BAY 11-7082 suppressed Pb²+-induced COX-2 mRNA expression, and EGFR inhibitors AG1478 and PD153035 as well as EGFR small interfering RNA reduced the coincident nuclear translocation of NF-κB. Our findings support the hypothesis that low concentrations of Pb²+ ions incite inflammation by inducing COX-2 gene expression via the EGFR/NF-κB signal transduction pathway. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. VEGF gene expression in adult human thymus fat: a correlative study with hypoxic induced factor and cyclooxygenase-2.

    Directory of Open Access Journals (Sweden)

    Francisco Tinahones

    Full Text Available UNLABELLED: It is well known that the adult human thymus degenerates into fat tissue; however, it has never been considered as a potential source of angiogenic factors. Recently, we have described that this fat (TAT produces angiogenic factors and induces human endothelial cell proliferation and migration, indicating its potential angiogenic properties. DESIGN: Adult thymus fat and subcutaneous adipose tissue specimens were obtained from 28 patients undergoing cardiac surgery, making this tissue readily available as a prime source of adipose tissue. We focused our investigation on determining VEGF gene expression and characterizing the different genes, mediators of inflammation and adipogenesis, and which are known to play a relevant role in angiogenesis regulation. RESULTS: We found that VEGF-A was the isoform most expressed in TAT. This expression was accompanied by an upregulation of HIF-1alpha, COX-2 and HO-1 proteins, and by increased HIF-1 DNA binding activity, compared to SAT. Furthermore, we observed that TAT contains a high percentage of mature adipocytes, 0.25% of macrophage cells, 15% of endothelial cells and a very low percentage of thymocyte cells, suggesting the cellular variability of TAT, which could explain the differences in gene expression observed in TAT. Subsequently, we showed that the expression of genes known as adipogenic mediators, including PPARgamma1/gamma2, FABP-4 and adiponectin was similar in both TAT and SAT. Moreover the expression of these latter genes presented a significantly positive correlation with VEGF, suggesting the potential association between VEGF and the generation of adipose tissue in adult thymus. CONCLUSION: Here we suggest that this fat has a potential angiogenic function related to ongoing adipogenesis, which substitutes immune functions within the adult thymus. The expression of VEGF seems to be associated with COX-2, HO-1 and adipogenesis related genes, suggesting the importance that this new

  20. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death.

    Science.gov (United States)

    Järvelä, Juha T; Ruohonen, Saku; Kukko-Lukjanov, Tiina-Kaisa; Plysjuk, Anna; Lopez-Picon, Francisco R; Holopainen, Irma E

    2011-06-01

    In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by

  1. The effect of deletion of cyclooxygenase-2, prostaglandin receptor EP2, or EP4 in bone marrow cells on osteoclasts induced by mouse mammary cancer cell lines.

    Science.gov (United States)

    Ono, Katsuhiro; Akatsu, Takuhiko; Kugai, Nobuo; Pilbeam, Carol C; Raisz, Lawrence G

    2003-11-01

    The inducible prostaglandin (PG) synthesis enzyme, cyclooxygenase-2 (COX-2), is involved in osteoclast (OC) formation in cocultures of mouse mammary cancer cell lines (MMT060562 or BALB/c-MC) and bone marrow cells through production of PGE(2). There are four PGE(2) receptors but only the EP2 and EP4 receptors are reported to be important for OC formation. We have investigated the role of COX-2, EP2 receptor, and EP4 receptor in marrow cells for osteoclastogenesis in cocultures of cancer cells and bone marrow cells. We cocultured cancer cell lines with bone marrow cells from COX-2 knockout (-/-), EP2 -/- or EP4 -/- mice compared to wild-type mice. In addition, an EP4 receptor antagonist (EP4 RA) was added in some cocultures. Disruption of COX-2 gene in bone marrow cells had no effect on PGE(2) production and OC formation in cocultures with MMT060562, while it abrogated PGE(2) production and OC formation in cocultures with BALB/c-MC. Disruption of the EP2 gene in bone marrow cells had no effect on OC formation in the cocultures, while disruption of the EP4 gene in bone marrow cells abrogated OC formation in the cocultures. Furthermore, EP4 RA suppressed OC formation and prevented the increase in receptor activator of nuclear factor kappaB ligand (RANKL) mRNA levels in the cocultures. We conclude that COX-2 in cancer cells is responsible for PGE(2) and OC production in cocultures with MMT060562, while COX-2 in bone marrow cells, not cancer cells, is responsible for PGE(2) and OC production in cocultures with BALB/c-MC, and EP4 receptors are essential for OC formation in both cocultures.

  2. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges

    Directory of Open Access Journals (Sweden)

    Ahmed M. Naglah

    2016-04-01

    Full Text Available A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a–c. The chemical structures of the new Schiff bases (5b and 5d–h were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 in the lipopolysaccharide (LPS-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%–42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition at the same concentration (10 μM. The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a–c, and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  3. Involvement of cyclooxygenase-1 and cyclooxygenase-2 activity in the therapeutic effect of ghrelin in the course of ethanol-induced gastric ulcers in rats.

    Science.gov (United States)

    Warzecha, Z; Ceranowicz, P; Dembinski, M; Cieszkowski, J; Ginter, G; Ptak-Belowska, A; Dembinski, A

    2014-02-01

    Previous studies have shown that treatment with ghrelin exhibits protective and therapeutic effects in the gut. Aim of our present investigation was to examine the influence of ghrelin administration on the healing of ethanol-induced gastric ulcers and determine the role of cyclooxygenase-1 and cyclooxygenase-2 in this effect. Our studies were performed on male Wistar rats. Gastric ulcers were induced by intragastric administration of 75% ethanol. Ghrelin alone or in combination with cyclooxygenase inhibitors was administered twice, 1 and 13 hours after ethanol application. Cyclooxygenase-1 (COX-1) inhibitor (SC-560, 10 mg/kg/dose) or COX-2 inhibitor (celecoxib, 10 mg/kg/dose) were given 30 min prior to ghrelin. Twelve or 24 hours after administration of ethanol, rats were anesthetized and experiments were terminated. The study revealed that administration of ethanol induced gastric ulcers in all animals and this effect was accompanied by the reduction in gastric blood flow and mucosal DNA synthesis. Moreover induction of gastric ulcer by ethanol significantly increased mucosal expression of mRNA for COX-2, IL-1β and TNF-α. Treatment with ghrelin significantly accelerated gastric ulcer healing. Therapeutic effect of ghrelin was associated with significant reversion of the ulcer-evoked decrease in mucosal blood flow and DNA synthesis. Ghrelin administration also caused the reduction in mucosal expression of mRNA for IL-1β and TNF-α. Addition of SC-560 slightly reduced the therapeutic effect of ghrelin in the healing of ethanol-induced ulcer and the ulcer area in rats treated SC-560 plus ghrelin was significantly smaller than that observed in rats treated with saline or SC-560 alone. Pretreatment with celecoxib, a COX-2 inhibitor, abolished therapeutic effect of ghrelin. We concluded that treatment with ghrelin increases healing rate of gastric ulcers evoked by ethanol and this effect is related to improvement in mucosal blood flow, an increase in mucosal cell

  4. Chronic exposure to combined carcinogens enhances breast cell carcinogenesis with mesenchymal and stem-like cell properties.

    Directory of Open Access Journals (Sweden)

    Lenora Ann Pluchino

    Full Text Available Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and benzo[a]pyrene (B[a]P, and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens.

  5. Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6.

    Science.gov (United States)

    Shimada, Tsutomu; Takenaka, Shigeo; Kakimoto, Kensaku; Murayama, Norie; Lim, Young-Ran; Kim, Donghak; Foroozesh, Maryam K; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2016-06-20

    Naphthalene, phenanthrene, biphenyl, and their derivatives having different ethynyl, propynyl, butynyl, and propargyl ether substitutions were examined for their interaction with and oxidation by cytochromes P450 (P450) 2A13 and 2A6. Spectral interaction studies suggested that most of these chemicals interacted with P450 2A13 to induce Type I binding spectra more readily than with P450 2A6. Among the various substituted derivatives examined, 2-ethynylnaphthalene, 2-naphthalene propargyl ether, 3-ethynylphenanthrene, and 4-biphenyl propargyl ether had larger ΔAmax/Ks values in inducing Type I binding spectra with P450 2A13 than their parent compounds. P450 2A13 was found to oxidize naphthalene, phenanthrene, and biphenyl to 1-naphthol, 9-hydroxyphenanthrene, and 2- and/or 4-hydroxybiphenyl, respectively, at much higher rates than P450 2A6. Other human P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, and 3A4 had lower rates of oxidation of naphthalene, phenanthrene, and biphenyl than P450s 2A13 and 2A6. Those alkynylated derivatives that strongly induced Type I binding spectra with P450s 2A13 and 2A6 were extensively oxidized by these enzymes upon analysis with HPLC. Molecular docking studies supported the hypothesis that ligand-interaction energies (U values) obtained with reported crystal structures of P450 2A13 and 2A6 bound to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, indole, pilocarpine, nicotine, and coumarin are of use in understanding the basis of possible molecular interactions of these xenobiotic chemicals with the active sites of P450 2A13 and 2A6 enzymes. In fact, the ligand-interaction energies with P450 2A13 4EJG bound to these chemicals were found to relate to their induction of Type I binding spectra.

  6. Study on cow ghee versus soybean oil on 7,12-dimethylbenz(a)-anthracene induced mammary carcinogenesis & expression of cyclooxygenase-2 & peroxisome proliferators activated receptor-γ in rats.

    Science.gov (United States)

    Rani, Rita; Kansal, Vinod K

    2011-05-01

    Breast cancer is a leading cause of cancer death in women; dietary fat is the one of the factors that influences its incidence. In the present study we investigated the effect of feeding cow ghee versus soybean oil on 7,12-dimethylbenz(a)anthracene (DMBA) induced mammary cancer in rat and expression of cyclooxygenase-2 and peroxisome proliferators activated receptor-γ (PPAR-γ) in mammary gland. Two groups of 21 day old female rats (30 each) were fed for 44 wk diet containing cow ghee or soybean oil (10%). The animals were given DMBA (30 mg/kg body weight) through oral intubation after 5 wk feeding. Another two groups (8 each) fed similarly but not given DMBA served as control for the gene expression study. In DMBA treated groups, the animal fed soybean oil had higher tumour incidence (65.4%), tumour weight (6.18 g) and tumour volume (6285 mm3) compared to those fed cow ghee (26.6%, 1.67 g, 1925 mm3, respectively). Tumour latency period was 23 wk on soybean oil compared to 27 wk on cow ghee. Histological analysis of tumours showed that the progression of carcinogenesis was more rapid on soybean oil than on cow ghee. The expression of cyclooxygenase-2 was observed only in DMBA treated rats and it was significantly less on cow ghee than on soybean oil. The expression of PPAR-γ was significantly more on cow ghee than on soybean oil. Our results show that dietary cow ghee opposed to soybean oil attenuates mammary carcinogenesis induced by DMBA; and the effect is mediated by decreased expression of cyclooxygenase-2 and increased expression of PPAR-γ in the former group.

  7. Inhibition of lung tumorigenesis by tea.

    Science.gov (United States)

    Yang, Chung S; Liao, Jie; Yang, Guang-yu; Lu, Gary

    2005-01-01

    Tea and tea constituents have been shown by different investigators to inhibit lung tumorigenesis in different animal model systems. This includes lung tumorigenesis in A/J mice induced by 4-(methylnitrosamino)-1-(3pyridyl)-1-butanone (NNK), N-nitrosodiethylamine, benzo[a]pyrene, N-nitrosomethylurea, or cisplatin. Inhibition of lung tumorigenesis has also been demonstrated in C3H mice treated with N-nitrosodiethylamine. In most of these experiments, reduction in tumor number and tumor size has been observed in the tea-treated group, and in some experiments, decreased tumor incidence has also been observed. The green tea constituent, epigallocatechin-3-gallate (EGCG), and the black tea constituent, theaflavins, have also been shown to be effective. Black tea preparations have been shown to reduce the incidence and number of spontaneously generated lung adenocarcinomas and rhabdomyosarcoma in A/J mice, as well as inhibit the progression of lung adenoma to adenocarcinoma. The mechanisms for the inhibitory action have not been well elucidated. It may be related to the antiproliferative, proapoptotic, and antiangiogenic activities of tea constituents that have been demonstrated in some experiments. These activities may be a result of the inhibition of key protein kinases involved in signal transduction and cell cycle regulation. Tea catechins, such as EGCG, have been suggested to be the effective components. However, a study suggests that caffeine is the key effective constituent for the inhibitory activity of lung tumorigenesis in Fisher 344 rats by black tea. In many of the experiments, tea consumption resulted in the reduction of body fat and body weight; these factors may also contribute to the inhibition of tumorigenesis.

  8. It is time to regulate carcinogenic tobacco-specific nitrosamines in cigarette tobacco

    OpenAIRE

    Hecht, Stephen S.

    2014-01-01

    The Family Smoking Prevention and Tobacco Control Act gives the Food and Drug Administration power to regulate tobacco products. This commentary calls for immediate regulation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N’-nitrosonornicotine (NNN) in cigarette tobacco as a logical path to cancer prevention. NNK and NNN, powerful carcinogens in laboratory animals, have been evaluated as “carcinogenic to humans” by the International...

  9. Suppression of lipopolysaccharide-induced of inducible nitric oxide synthase and cyclooxygenase-2 by Sanguis Draconis, a dragon's blood resin, in RAW 264.7 cells.

    Science.gov (United States)

    Choy, Cheuk-Sing; Hu, Chien-Ming; Chiu, Wen-Ta; Lam, Carlos-Shu Kei; Ting, Yih; Tsai, Shin-Han; Wang, Tzu-Chien

    2008-02-12

    Sanguis Draconis (SD) is a kind of dragon's blood resin that is obtained from Daemomorops draco (Palmae). It is used in traditional medicine and has shown anti-inflammatory activity in some diseases. In this study, we examined the effects of Sanguis Dranonis ethanol extract (SDEE) on LPS-induced inflammation using RAW 264.7 cells. Our data indicated that SDEE inhibits LPS-stimulated NO, PGE2, IL-1 beta and TNF-alpha release, and iNOS and COX-2 expression. Furthermore, SDEE suppressed the LPS-induced p65 expression of NF-kappa B, which was associated with the inhibition of I kappa B-alpha degradation. We also found that the expression of HO-1 was significantly increased in RAW 264.7 cells by SDEE. These results suggest among possibilities of anti-inflammation that SDEE inhibits the production of NO and PGE2 by the down-regulation of iNOS and COX-2 gene expression via the suppression of NF-kappaB (p65) activation. SDEE can induce HO-1 over-expression in macrophage cells, which indicates that it may possess antioxidant properties. This result means that SEDD its anti-inflammatory effects in macrophages may be through a novel mechanism that involves the action of HO-1. Thus, SD could provide a potential therapeutic approach for inflammation-associated disorders.

  10. An Asp49 Phospholipase A2 from Snake Venom Induces Cyclooxygenase-2 Expression and Prostaglandin E2 Production via Activation of NF-κB, p38MAPK, and PKC in Macrophages

    Directory of Open Access Journals (Sweden)

    Vanessa Moreira

    2014-01-01

    Full Text Available Phospholipases A2 (PLA2 are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PGE2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2. Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

  11. Cyclooxygenase-2 and prostate carcinogenesis.

    Science.gov (United States)

    Hussain, Tajamul; Gupta, Sanjay; Mukhtar, Hasan

    2003-03-10

    In recent years a dramatic surge has occurred on studies defining to the role of cyclooxygenase (COX)-2 in causation and prevention of cancer. Prostaglandin (PG) endoperoxidase synthase also commonly referred to as COX is a key enzyme involved in the conversion of arachidonic acid to PGs and other eicosanoids. COX exists as two isoforms, namely COX-1 and COX-2 with distinct tissue distribution and physiological functions. COX-1 is constitutively expressed in many tissues and cell types and is involved in normal cellular physiological functions whereas COX-2 is pro-inflammatory in nature and is inducible by mitogens, cytokines, tumor promoters and growth factors. A large volume of data exists showing that COX-2 is overexpressed in a large number of human cancers and cancer cell lines. The possibility of COX-2 as a candidate player in cancer development and progression evolved from the epidemiological studies which suggest that regular use of aspirin or other non-steroidal anti-inflammatory drugs could significantly decrease the risk of developing cancers in experimental animals and in humans. In our recently published study (Prostate, 42 2000 73-78), we provided the first evidence that COX-2 is overexpressed in human prostate adenocarcinoma. Many other studies verified our initial observation and reported that compared to normal tissue, COX-2 is overexpressed in human prostate cancer. It should be noted that some recent work has suggested that COX-2 is only up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. In this scenario, COX-2 inhibitors could afford their effects against prostate carcinogenesis by modulating COX-2 activity in other cells in prostate. An exciting corollary to this ongoing work is that selective COX-2 inhibitors may exhibit chemopreventive and even chemotherapeutic effects against prostate carcinogenesis in humans.

  12. Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression.

    Science.gov (United States)

    Lamy, Sylvie; Ben Saad, Aroua; Zgheib, Alain; Annabi, Borhane

    2016-01-01

    The established causal relationship between the chronic inflammatory microenvironment, tumor development and cancer recurrence has provided leads for developing novel preventive strategies. Accumulating experimental, clinical and epidemiological data has provided support for the chemopreventive properties of olive oil compounds traditionally found within the Mediterranean diet. In this study, we investigated whether tyrosol (Tyr), hydroxytyrosol, oleuropein and oleic acid (OA), four compounds contained in extra virgin olive oil, can prevent tumor necrosis factor (TNF)-α-induced expression of cyclooxygenase (COX)-2 (an inflammation biomarker) in a human glioblastoma cell (U-87 MG) model. We found that Tyr and OA significantly inhibited TNF-α-induced COX-2 gene and protein expression, as well as PGE2 secretion. Both compounds also inhibited TNF-α-induced JNK and ERK phosphorylation, whereas only Tyr inhibited TNF-α-induced NF-κB phosphorylation. Paracrine-regulated migration of human brain microvascular endothelial cells (HBMECs) was assessed using growth factor-enriched conditioned media (CM) isolated from U-87 MG cells. We found that while PGE2 triggered HBMEC migration, the CM isolated from U-87 MG cells, where either COX-2 or NF-κB had been silenced or had been treated with Tyr or OA, exhibited decreased chemotactic properties. These observations demonstrate that olive oil compounds inhibit the effect of the chronic inflammatory microenvironment on glioblastoma progression through TNF-α actions and may be useful in cancer chemoprevention.

  13. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells.

    Science.gov (United States)

    Wang, Lei; Hitron, John Andrew; Wise, James T F; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development.

  14. Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma

    Directory of Open Access Journals (Sweden)

    Heewon Song

    2017-07-01

    Discussion: Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on PPARγ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly PPARγ and to identify the constituents responsible for this activity.

  15. Cyclooxygenase-2 suppresses hypoxia-induced apoptosis via a combination of direct and indirect inhibition of p53 activity in a human prostate cancer cell line.

    Science.gov (United States)

    Liu, Xin-Hua; Kirschenbaum, Alexander; Yu, Kang; Yao, Shen; Levine, Alice C

    2005-02-04

    Although p53-inactivating mutations have been described in the majority of human cancers, their role in prostate cancer is controversial as mutations are uncommon, particularly in early lesions. p53 is activated by hypoxia and other stressors and is primarily regulated by the Mdm2 protein. Cyclooxygenase (COX)-2, an inducible enzyme that catalyzes the conversion of arachidonic acid to prostaglandins and other eicosanoids, is also induced by hypoxia. COX-2 and resultant prostaglandins increase tumor cell proliferation, resistance to apoptosis, and angiogenesis. Previous reports indicate a complex, reciprocal relationship between p53 and COX-2. To elucidate the effects of COX-2 on p53 in response to hypoxia, we transfected the COX-2 gene into the p53-positive, COX-2-negative MDA-PCa-2b human prostate cancer cell line. The expression of functional p53 and Mdm2 was compared in COX-2+ versus COX-2- cells under normoxic and hypoxic conditions. Our results demonstrated that hypoxia increases both COX-2 protein levels and p53 transcriptional activity in these cells. Forced expression of COX-2 increased tumor cell viability and decreased apoptosis in response to hypoxia. COX-2+ cells had increased Mdm2 phosphorylation in either normoxic or hypoxic conditions. Overexpression of COX-2 abrogated hypoxia-induced p53 phosphorylation and promoted the binding of p53 to Mdm2 protein in hypoxic cells. In addition, COX-2-expressing cells exhibited decreased hypoxia-induced nuclear accumulation of p53 protein. Finally, forced expression of COX-2 suppressed both basal and hypoxia-induced p53 transcriptional activity, and this effect was mimicked by the addition of PGE2 to wild-type cells. These results demonstrated a role for COX-2 in the suppression of hypoxia-induced p53 activity via both direct effects and indirect modulation of Mdm2 activity. These data imply that COX-2-positive prostate cancer cells can have impaired p53 function even in the presence of wild-type p53 and that p53

  16. Advanced glycation end-products induce apoptosis in pancreatic islet endothelial cells via NF-κB-activated cyclooxygenase-2/prostaglandin E2 up-regulation.

    Directory of Open Access Journals (Sweden)

    Kuo-Cheng Lan

    Full Text Available Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF-κB-p65 phosphorylation and cyclooxygenase (COX-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor to inhibit prostaglandin E2 (PGE2 production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation.

  17. [Jianpi jiedu recipe inhibited Helicobacter pylori-induced the expression of cyclooxygenase-2 via p38MAPK/ATF-2 signal transduction pathway in human gastric cancer cells].

    Science.gov (United States)

    Liu, Ning-ning; Wang, Yan; Wu, Qiong

    2011-07-01

    To study the effect of Jianpi Jiedu Recipe (JJR) on the expression of cyclooxygenase (COX-2) in Helicobacter pylori (Hp) infected gastric cancer cell line MKN 45, and its regulatory mechanism of p38MAPK signal transduction. The expressions of COX-2 mRNA and protein in human gastric cancer cell line MKN 45 infected by Hp type strain NCTC 11637 and the regulatory effect of JJR containing serum were detected using Real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR) and Western blot. The effects of Hp on COX-2 mRNA and protein expressions in human gastric cancer cell line MKN 45 were observed using blocking p38MAPK signal transduction pathway by p38MAPK specific inhibitor SB203580. The effects of JJR on Hp-infection activated p38MAPK signal transduction pathway and its downstream activating transcription factor 2 (ATF-2) were observed. COX-2 mRNA and protein expressions were obviously higher after human gastric cancer cell line MKN 45 were infected by Hp (PATF-2. Hp infection induced COX-2 expressions of gastric cancer cells via p38MAPK signal transduction pathway. JJR inhibited Hp-induced the expression of COX-2 through regulating p38MAPK/ATF-2 signal transduction pathway, which may be one of its mechanisms in prevention and treatment of Hp-induced gastric cancer.

  18. Acanthopanax koreanum roots inhibit the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 in RAW 264.7 macrophages

    OpenAIRE

    2016-01-01

    Acanthopanax koreanum is a popular plant found on Jeju Island, Korea and is commonly used to prevent the side effects of consumption of alcoholic beverages. However, this plant has not been properly utilized as a medicinal material. In this study, we investigated the anti-inflammatory effects of the 70% ethanol extract of A. koreanum roots (AKR-E). The results indicated that the AKR-E (200 μg/mL) inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin ...

  19. Safrole oxide induces human umbilical vein endothelial cell transdifferentiation to 5-hydroxytryptaminergic neuron-like cells through tropomyosin receptor kinase A/cyclooxygenase 2/nuclear factor-kappa B/interleukin 8 signaling.

    Science.gov (United States)

    Su, Le; Zhao, Jing; Zhao, Bao Xiang; Zhang, Shang Li; Miao, Jun Ying

    2011-10-01

    The phenomenon of endothelial-neural transdifferentiation has been observed for a long time, but the mechanism is not clear. We previously found that safrole oxide induced human umbilical vein endothelial cell transdifferentiation into neuron-like cells. In this study, we first validated that these cells induced by safrole oxide were functional 5-hydroxytryptaminergic neuron-like cells. Then, we performed microarray analysis of safrole oxide-treated and -untreated human umbilical vein endothelial cells. Safrole oxide elevated the levels of cyclooxygenase 2 (COX-2), interleukin-8 (IL-8) and reactive oxygen species (ROS), which was accompanied by nuclear factor-kappa B (NF-κB) nuclear translocation during the transdifferentiation. Blockade of tropomyosin receptor kinase A (TrkA) by an inhibitor or short hairpin RNA inhibited the levels of COX-2/IL-8 and the nuclear translocation of NF-κB but did not suppress the increased ROS level. As a result, cells underwent apoptosis. Therefore, via TrkA, safrole oxide may induce endothelial cell transdifferentiation into functional neuron-like cells. During this process, the increased levels of COX-2/IL-8 and the subsequent elevation of ROS production induced NF-κB nuclear translocation and IL-8 secretion. With the activity of TrkA inhibited, the inactive NF-κB regulated the ROS level in a negative feedback manner. Finally, the transdifferentiation pathway was blocked and cells became apoptotic. The TrkA/COX-2/IL-8 signal pathway may have an important role in endothelial-neural transdifferentiation, and safrole oxide may trigger this process by activating TrkA.

  20. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagahama, Yu [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Obama, Takashi [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Usui, Michihiko [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Kanazawa, Yukari [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Iwamoto, Sanju [Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Suzuki, Kazushige [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Miyazaki, Akira [Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Yamaguchi, Tomohiro [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Itabe, Hiroyuki, E-mail: h-itabe@pharm.showa-u.ac.jp [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan)

    2011-10-07

    Highlights: {yields} OxLDL-induced responses in human gingival epithelial cells were studied. {yields} OxLDL enhanced the production of IL-8, IL-1{beta} and PGE{sub 2} in Ca9-22 cells. {yields} An NF-{kappa}B inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. {yields} Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E{sub 2} (PGE{sub 2}) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE{sub 2}-producing enzymes, cyclooxygenase-2 and microsomal PGE{sub 2} synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-{kappa}B) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-{kappa}B pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.

  1. DNA-hypomethylating agent, 5'-azacytidine, induces cyclooxygenase-2 expression via the PI3-kinase/Akt and extracellular signal-regulated kinase-1/2 pathways in human HT1080 fibrosarcoma cells.

    Science.gov (United States)

    Yu, Seon-Mi; Kim, Song-Ja

    2015-10-01

    The cytosine analogue 5'-azacytidine (5'-aza) induces DNA hypomethylation by inhibiting DNA methyltransferase. In clinical trials, 5'-aza is widely used in epigenetic anticancer treatments. Accumulated evidence shows that cyclooxygenase-2 (COX-2) is overexpressed in various cancers, indicating that it may play a critical role in carcinogenesis. However, few studies have been performed to explore the molecular mechanism underlying the increased COX-2 expression. Therefore, we tested the hypothesis that 5'-aza regulates COX-2 expression and prostaglandin E2 (PGE2) production. The human fibrosarcoma cell line HT1080, was treated with various concentrations of 5'-aza for different time periods. Protein expressions of COX-2, DNA (cytosine-5)-methyltransferase 1 (DNMT1), pAkt, Akt, extracellular signal-regulated kinase (ERK), and phosphorylated ERK (pERK) were determined using western blot analysis, and COX-2 mRNA expression was determined using RT-PCR. PGE2 production was evaluated using the PGE2 assay kit. The localization and expression of COX-2 were determined using immunofluorescence staining. Treatment with 5'-aza induces protein and mRNA expression of COX-2. We also observed that 5'-aza-induced COX-2 expression and PGE2 production were inhibited by S-adenosylmethionine (SAM), a methyl donor. Treatment with 5'-aza phosphorylates PI3-kinase/Akt and ERK-1/2; inhibition of these pathways by LY294002, an inhibitor of PI3-kinase/Akt, or PD98059, an inhibitor of ERK-1/2, respectively, prevents 5'-aza-induced COX-2 expression and PGE2 production. Overall, these observations indicate that the hypomethylating agent 5'-aza modulates COX-2 expression via the PI3-kinase/Akt and ERK-1/2 pathways in human HT1080 fibrosarcoma cells.

  2. Safety of selective cyclooxygenase-2 inhibitors and a basic non-steroidal anti-inflammatory drug (NSAID) in Japanese patients with NSAID-induced urticaria and/or angioedema: Comparison of meloxicam, etodolac and tiaramide.

    Science.gov (United States)

    Inomata, Naoko; Osuna, Hiroyuki; Yamaguchi, Junko; Onoda, Masahito; Takeshita, Yoshihiro; Chiba, Yoshiyuki; Kambara, Takeshi; Ikezawa, Zenro

    2007-03-01

    The identification of a safe and reliable alternative for patients with non-steroidal anti-inflammatory drug (NSAID)-induced urticaria/angioedema is a frequent problem for dermatologists and other practitioners. Cyclooxygenase-2 (COX-2) inhibitors have been reported to be safe for NSAID-intolerant patients from the US and Europe but not all of them have yet been approved for use in Japan. It was our objective to investigate the clinical manifestations of oral NSAID challenges in Japanese patients with histories of urticaria and/or angioedema after the intake of NSAIDs and to find safe alternative drugs, including COX-2 inhibitors and a basic anti-inflammatory drug. Twenty subjects suspected NSAID-induced urticaria/angioedema from histories were included in a double-blind or single-blind, placebo-controlled oral challenge protocol using NSAIDs. Skin prick tests using NSAIDs, which were dissolved in saline, were conducted. The mean age of the patients was 37.3 years; 14 patients were female. The results of other challenge tests showed that the most frequently intolerated drugs was loxoprofen (100%), followed by acetyl salicylic (94.4%), etodolac (53.3%), dicrofenac (50%), acetaminophen (38.5%), meloxicam (33%), and tiaramide (21.4%). Urticaria and angioedema were induced after aspirin intake in 83.3% and 22.2% of patients, respectively, whereas an asthmatic response was seen in 5.6%. Skin prick tests with NSAIDs were 100% negative. This study showed that among the NSAIDs that are available in Japan and that were investigated in this study, tiaramide, which does not inhibit COX, is the relatively safe alternative drug for Japanese patients with NSAID-induced urtiacaria and/or angioedema. Furthermore, meloxicam seems to be better tolerated than etodolac between two selective COX-2 inhibitors.

  3. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  4. Cyclooxygenase-2 immunoreactivity in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Rumessen, Jüri J; Csillag, Claudio

    2009-01-01

    Collagenous colitis (CC) is an inflammatory bowel disease of unknown aetiology and pathogenesis. In ulcerative colitis and Crohn's disease, prostaglandins may be involved in the pathogenesis of inflammation, and increased expression of cyclo-oxygenase-2 (COX-2) has been detected. The purpose...... with samples from eight normal controls, and samples from eight patients with ulcerative colitis or Crohn's disease. Specimens from patients with CC expressed COX-2 protein in increased amounts compared with controls, but similar to patients with ulcerative colitis and Crohn's disease. COX-2 expression...

  5. Antitumor Activity of Cytotoxic Cyclooxygenase-2 Inhibitors

    Science.gov (United States)

    Uddin, Md. Jashim; Crews, Brenda C.; Xu, Shu; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Banerjee, Surajit; Marnett, Lawrence J.

    2017-01-01

    Targeted delivery of chemotherapeutic agents to tumors has been explored as a means to increase the selectivity and potency of cytotoxicity. Most efforts in this area have exploited the molecular recognition of proteins highly expressed on the surface of cancer cells followed by internalization. A related approach that has received less attention is the targeting of intracellular proteins by ligands conjugated to anti-cancer drugs. An attractive target for this approach is the enzyme cyclooxygenase-2 (COX-2), which is highly expressed in a range of malignant tumors. Herein, we describe the synthesis and evaluation of a series of chemotherapeutic agents targeted to COX-2 by conjugation to indomethacin. Detailed characterization of compound 12, a conjugate of indomethacin with podophyllotoxin, revealed highly potent and selective COX-2 inhibition in vitro and in intact cells. Kinetics and X-ray crystallographic studies demonstrated that compound 12 is a slow, tight-binding inhibitor that likely binds to COX-2’s allosteric site with its indomethacin moiety in a conformation similar to that of indomethacin. Compound 12 exhibited cytotoxicity in cell culture similar to that of podophyllotoxin with no evidence of COX-2-dependent selectivity. However, in vivo, compound 12 accumulated selectively in and more effectively inhibited the growth of a COX-2-expressing xenograft compared to a xenograft that did not express COX-2. Compound 12, which we have named chemocoxib A, provides proof-of-concept for the in vivo targeting of chemotherapeutic agents to COX-2, but suggests that COX-2-dependent selectivity may not be evident in cell culture-based assays. PMID:27588346

  6. Role of cyclooxygenase-2 in breast cancer.

    Science.gov (United States)

    Singh, Balraj; Lucci, Anthony

    2002-11-01

    Cyclooxygenase-2 (COX-2), the enzyme that converts arachidonic acid to prostaglandin H2, is expressed in normal brain and kidney, activated macrophages, synoviocytes during inflammation, and malignant epithelial cells. COX-2 expression is stimulated by a number of inflammatory cytokines, growth factors, oncogenes, lipopolysaccharides, and tumor promoters. There is evidence that COX-2 plays a key role in tumorigenesis through stimulating epithelial cell proliferation, inhibiting apoptosis, stimulating angiogenesis, enhancing cell invasiveness, mediating immune suppression, and by increasing the production of mutagens. Results of several studies using mouse models of colon cancer and the results of clinical trials have shown COX-2 to be a useful target for the prevention and treatment of colon cancer. Studies with several other epithelial cancers involving different organ sites, e.g., breast, prostate, bladder, lung, and pancreas, suggest that COX-2 plays an important role in the pathogenesis of these cancers. In this review, we summarize the studies that pertain to the involvement of COX-2 in breast cancer. COX-2 overexpression affects the physiological processes at different organ sites in a similar manner, although specific effectors and targets of COX-2 may differ at different sites. Thus in reviewing the data on the involvement of COX-2 in breast cancer, we have also considered the findings regarding the role of COX-2 in other organ sites. Studies from mouse models of mammary tumorigenesis and from human breast cancer cell lines provide evidence that COX-2 overexpression plays an important role in the pathogenesis of malignant breast cancer in humans. Because of availability of effective and relatively safe COX-2 inhibitors, it should be soon possible to evaluate their effectiveness in the clinic for the prevention and treatment of breast cancer. It is likely that the COX-2 inhibitors will be effective in the treatment regimens involving combination

  7. Quantitative analysis of the relative mutagenicity of five chemical constituents of tobacco smoke in the mouse lymphoma assay.

    Science.gov (United States)

    Guo, Xiaoqing; Heflich, Robert H; Dial, Stacey L; Richter, Patricia A; Moore, Martha M; Mei, Nan

    2016-05-01

    Quantifying health-related biological effects, like genotoxicity, could provide a way of distinguishing between tobacco products. In order to develop tools for using genotoxicty data to quantitatively evaluate the risk of tobacco products, we tested five carcinogens found in cigarette smoke, 4-aminobiphenyl (4-ABP), benzo[a]pyrene (BaP), cadmium (in the form of CdCl2), 2-amino-3,4-dimethyl-3H-imidazo[4,5-f]quinoline (MeIQ) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in the mouse lymphoma assay (MLA). The resulting mutagenicity dose responses were analyzed by various quantitative approaches and their strengths and weaknesses for distinguishing responses in the MLA were evaluated. L5178Y/Tk (+/-) 3.7.2C mouse lymphoma cells were treated with four to seven concentrations of each chemical for 4h. Only CdCl2 produced a positive response without metabolic activation (S9); all five chemicals produced dose-dependent increases in cytotoxicity and mutagenicity with S9. The lowest dose exceeding the global evaluation factor, the benchmark dose producing a 10%, 50%, 100% or 200% increase in the background frequency (BMD10, BMD50, BMD100 and BMD200), the no observed genotoxic effect level (NOGEL), the lowest observed genotoxic effect level (LOGEL) and the mutagenic potency expressed as a mutant frequency per micromole of chemical, were calculated for all the positive responses. All the quantitative metrics had similar rank orders for the agents' ability to induce mutation, from the most to least potent as CdCl2(-S9) > BaP(+S9) > CdCl2(+S9) > MeIQ(+S9) > 4-ABP(+S9) > NNK(+S9). However, the metric values for the different chemical responses (i.e. the ratio of the greatest value to the least value) for the different chemicals ranged from 16-fold (BMD10) to 572-fold (mutagenic potency). These results suggest that data from the MLA are capable of discriminating the mutagenicity of various constituents of cigarette smoke, and that quantitative analyses are available

  8. Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea.

    Science.gov (United States)

    Liao, Jie; Yang, Guang-Yu; Park, Eon Sub; Meng, Xiaofeng; Sun, Yuhai; Jia, Dongxuan; Seril, Darren N; Yang, Chung S

    2004-01-01

    Oral administration of tea (Camellia sinensis) has been shown to inhibit the formation and growth of several tumor types in animal models. The present study investigated the effects of treatment with different concentrations of green tea on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Two days after a single dose of NNK (100 mg/kg body weight, i.p.), the mice were given 0.1, 0.2, 0.4, and 0.6% green tea solution (1, 2, 4, and 6 g of tea solids, respectively, dissolved in 1 l of water), 0.02% caffeine, or water as the sole source of drinking fluid until the termination of the experiment. Only the treatment with 0.6% tea preparation significantly reduced lung tumor multiplicity (mean +/- SE, 6.07 +/- 0.77 vs. 8.60 +/- 0.50 tumors per mouse, P = 0.018). Treatment with 0.6% tea also inhibited angiogenesis, as indicated by the lower microvessel density (number of blood vessels/mm2) based on immunostaining for the von Willebrand factor antigen (81.9 +/- 9.5 vs. 129.4 +/- 8.2, P = 0.0018) and anti-CD31 antibody staining (465.3 +/- 61.4 vs. 657.1 +/- 43.6, P = 0.0012). Significantly lower vascular endothelial growth factor immunostaining scores were also observed in the 0.6% tea-treated group (0.98 +/- 0.17 vs. 1.43 +/- 0.07, P = 0.006). The apoptosis index was significantly higher in lung adenomas from 0.6% tea-treated mice based on morphological analysis of cell apoptosis (2.51 +/- 0.18% vs. 1.57 +/- 0.11%, P = 0.00005), and the result was further confirmed using the TUNEL method. Inhibition of angiogenesis and the induction of apoptosis by green tea may be closely related to the inhibition of pulmonary carcinogenesis.

  9. ETORICOXIB IS A NEW SELECTIVE CYCLOOXYGENASE-2 INHIBITOR

    Directory of Open Access Journals (Sweden)

    A E Karateev

    2009-01-01

    Full Text Available The paper provides the clinical characteristics of etoricoxib (Arcoxia, a new selective cyclooxygenase-2 inhibitor having unique properties, which permits it to be distinguished among other nonsteroidal anti-inflammatory agents.

  10. ETORICOXIB IS A NEW SELECTIVE CYCLOOXYGENASE-2 INHIBITOR

    Directory of Open Access Journals (Sweden)

    A E Karateev

    2009-06-01

    Full Text Available The paper provides the clinical characteristics of etoricoxib (Arcoxia, a new selective cyclooxygenase-2 inhibitor having unique properties, which permits it to be distinguished among other nonsteroidal anti-inflammatory agents.

  11. The role of cyclooxygenase-2 in prostate cancer.

    Science.gov (United States)

    Kirschenbaum, A; Liu, X; Yao, S; Levine, A C

    2001-08-01

    Cyclooxygenase-2 (COX-2) is the inducible isozyme of COX, a key enzyme in the conversion of arachidonic acid to prostaglandins and other eicosanoids. COX-2 is highly expressed in a number of human cancers and cancer cell lines, including prostate cancer. We studied the immunohistochemical expression of COX-2 in the human prostate gland. The enzyme is strongly expressed in smooth muscle cells of both the normal and cancerous prostate. Its expression in noncancerous epithelial cells is limited to the basal cell layer. In prostatic inflammation, luminal epithelial cells surrounded by lymphocytes are induced to express the enzyme. COX-2 is expressed in the epithelial cells of high-grade prostatic intraepithelial neoplasia and cancer. We have demonstrated that treatment of human prostate-cancer cell lines with a selective COX-2 inhibitor induces apoptosis both in vitro and in vivo. The in vivo results also indicate that the COX-2 inhibitor decreases tumor microvessel density and angiogenesis. COX-2 inhibitors can prevent the hypoxic upregulation of a potent angiogenic factor, vascular endothelial growth factor. These results indicate that COX-2 inhibitors may, therefore, serve as effective chemopreventive and therapeutic agents in cancer of the prostate.

  12. Pathologic Cellular Events in Smoking-Related Pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, Edwin [Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520 (United States); Veterans Affairs Connecticut Healthcare, West Haven, CT 06516 (United States)

    2015-04-29

    Pancreatitis, a debilitating inflammatory disorder, results from pancreatic injury. Alcohol abuse is the foremost cause, although cigarette smoking has recently surfaced as a distinct risk factor. The mechanisms by which cigarette smoke and its toxins initiate pathological cellular events leading to pancreatitis, have not been clearly defined. Although cigarette smoke is composed of more than 4000 compounds, it is mainly nicotine and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which have been extensively studied with respect to pancreatic diseases. This review summarizes these research findings and highlights cellular pathways which may be of relevance in initiation and progression of smoking-related pancreatitis.

  13. Cyclooxygenase-2 Expression in Hamster and Human Pancreatic Neoplasia

    Directory of Open Access Journals (Sweden)

    Pamela L. Crowell

    2006-06-01

    Full Text Available Cyclooxygenase-2 (COX-2 has been implicated in the development of gastrointestinal malignancies. The aim of the present study was to determine COX-2 expression/activity throughout stages of experimental and human pancreatic neoplasia. COX-2 immunohistochemistry was performed in pancreata of hamsters subjected to the carcinogen N-nitrosobis-(2-oxopropylamine (BOP and in human pancreatic tumors. COX-2 activity was determined by prostaglandin E2 assay in tumor versus matched normal pancreatic tissues. The activity of the COX inhibitor sulindac was tested in the PC-1 hamster pancreatic cancer model. COX-2 expression was elevated in all pancreatic intraepithelial neoplasias (PanINs and adenocarcinomas. In BOP-treated hamsters, there were significant progressive elevations in COX-2 expression throughout pancreatic tumorigenesis. In human samples, peak COX-2 expression occurred in PanIN2 lesions and remained moderately elevated in PanIN3 and adenocarcinoma tissues. COX-2 activity was significantly elevated in hamster and human pancreatic cancers compared to pair-matched normal pancreas. Furthermore, hamster pancreatic tumor engraftment/formation in the PC-1 hamster pancreatic cancer model was reduced 4.9-fold by oral administration of sulindac. Increased COX-2 expression is an early event in pancreatic carcinogeneses. The BOP-induced hamster carcinogenesis model is a representative model used to study the role of COX-2 in well-differentiated pancreatic tumorigenesis. COX inhibitors may have a role in preventing tumor engraftment/formation.

  14. Polymorphisms in cyclooxygenase-2 gene in endometrial cancer patients.

    Science.gov (United States)

    Torricelli, Federica; Mandato, Vincenzo Dario; Farnetti, Enrico; Abrate, Martino; Casali, Bruno; Ciarlini, Gino; Pirillo, Debora; Gelli, Maria Carolina; Costagliola, Luigi; Nicoli, Davide; Palomba, Stefano; La Sala, Giovanni Battista

    2015-09-01

    The enzyme cyclooxygenase 2 is an inducible enzyme expressed at sites of inflammation and in a variety of malignant solid tumors such as endometrial cancer (EC). In EC patients, its over-expression is correlated with progressive disease and poor prognosis. The expression is encoded by a polymorphic gene, called PTGS2. The aim of the current study was to test the hypothesis that rs5275 polymorphism of PTGS2 influence the prognosis of EC patients. This paper is a retrospective cohort study. Clinical and pathological data were extrapolated and genotypes were assessed on formalin-fixed and paraffin-embedded non-tumor tissues. A total of 159 type I EC patients were included in the final analysis. Univariate analysis indicated that patients with rs5275 genotype CC have a lower risk to develop a grade (G) 2-3 endometrial cancer. rs5275 effect on EC grading was confirmed by multivariate analysis also after data adjusting for age, BMI, parity, hypertension, and diabetes. Adjusted odds ratio (OR) confirmed that patients with rs5275 genotype CC have a risk 80 % lower (OR = 0.20, P = 0.009) to develop a G2 and/or G3 EC in comparison with patients with TT or TC genotype. Differentiation of the type 1 EC is significantly and independently influenced by rs5275 polymorphism. rs5275 CC patients have a lower risk to present a G2-G3 EC.

  15. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis.

    Science.gov (United States)

    Hannan, Thomas J; Roberts, Pacita L; Riehl, Terrence E; van der Post, Sjoerd; Binkley, Jana M; Schwartz, Drew J; Miyoshi, Hiroyuki; Mack, Matthias; Schwendener, Reto A; Hooton, Thomas M; Stappenbeck, Thaddeus S; Hansson, Gunnar C; Stenson, William F; Colonna, Marco; Stapleton, Ann E; Hultgren, Scott J

    2014-11-01

    The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs). Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

  16. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis

    Directory of Open Access Journals (Sweden)

    Thomas J. Hannan

    2014-11-01

    Full Text Available The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs. Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

  17. Targeted deletions of cyclooxygenase-2 and atherogenesis in mice

    DEFF Research Database (Denmark)

    Hui, Yiqun; Ricciotti, Emanuela; Crichton, Irene;

    2010-01-01

    BACKGROUND: Although the dominant product of vascular Cyclooxygenase-2 (COX-2), prostacyclin (PGI(2)), restrains atherogenesis, inhibition and deletion of COX-2 have yielded conflicting results in mouse models of atherosclerosis. Floxed mice were used to parse distinct cellular contributions of C...

  18. Cyclooxygenase 2: its regulation, role and impact in airway inflammation.

    Science.gov (United States)

    Rumzhum, N N; Ammit, A J

    2016-03-01

    Cyclooxygenase 2 (COX-2: official gene symbol - PTGS2) has long been regarded as playing a pivotal role in the pathogenesis of airway inflammation in respiratory diseases including asthma. COX-2 can be rapidly and robustly expressed in response to a diverse range of pro-inflammatory cytokines and mediators. Thus, increased levels of COX-2 protein and prostanoid metabolites serve as key contributors to pathobiology in respiratory diseases typified by dysregulated inflammation. But COX-2 products may not be all bad: prostanoids can exert anti-inflammatory/bronchoprotective functions in airways in addition to their pro-inflammatory actions. Herein, we outline COX-2 regulation and review the diverse stimuli known to induce COX-2 in the context of airway inflammation. We discuss some of the positive and negative effects that COX-2/prostanoids can exert in in vitro and in vivo models of airway inflammation, and suggest that inhibiting COX-2 expression to repress airway inflammation may be too blunt an approach; because although it might reduce the unwanted effects of COX-2 activation, it may also negate the positive effects. Evidence suggests that prostanoids produced via COX-2 upregulation show diverse actions (and herein we focus on prostaglandin E2 as a key example); these can be either beneficial or deleterious and their impact on respiratory disease can be dictated by local concentration and specific interaction with individual receptors. We propose that understanding the regulation of COX-2 expression and associated receptor-mediated functional outcomes may reveal number of critical steps amenable to pharmacological intervention. These may prove invaluable in our quest towards future development of novel anti-inflammatory pharmacotherapeutic strategies for the treatment of airway diseases. © 2015 John Wiley & Sons Ltd.

  19. Crystallization of recombinant cyclo-oxygenase-2

    Science.gov (United States)

    Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.

    1999-01-01

    The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.

  20. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death

    Directory of Open Access Journals (Sweden)

    Rojas Monica A

    2010-04-01

    Full Text Available Abstract Background We previously found that cyclooxygenase 2 (COX-2 was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD model of multiple sclerosis (MS (Carlson et al. J.Neuroimmunology 2006, 149:40. This suggests that COX-2 may contribute to death of oligodendrocytes. Objective The goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination. Methods The potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes in vitro. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death. Results COX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death in vitro. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA. Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a

  1. [Cyclooxygenase 2 inhibitors and urologic and gynaecologic cancers].

    Science.gov (United States)

    Eschwege, Pascal

    2004-05-01

    PGE2 is one of the most important prostaglandin involved in the oncogenesis. PGE2 is found at high concentration level in the most of epithelial cancer. Urologic and gynaecologic cancer express the enzyme which are at the origin of PGE2: cyclooxygenase 2. Cox2 inhibitors present anticancer properties demonstrated in wide varieties of cellular and animal models. Human applications are currently tested in many clinical trials for bladder, prostate and uterine carcinomas.

  2. Expression of Cyclooxygenase-2 in Ovarian Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the expression of cyclooxygenase-2 (COX-2) in ovarian cancer cell lines,RT-PCR and immunocytochemistry were used to detect the expression of COX-2 in 5 ovarian cancer cell lines. The expression of COX-2 mRNA and protein was detected in all 5 cell lines. It is suggested that COX-2 is expressed in ovarian cancer cell lines, which provides a basis for the chemoprevention of ovarian cancer.

  3. Local osteogenic expression of cyclooxygenase-2 and systemic response in porcine models of osteomyelitis

    DEFF Research Database (Denmark)

    Johansen, Louise K.; Iburg, Tine M.; Nielsen, Ole L.;

    2012-01-01

    It is suggested that cyclooxygenase 2 (COX-2) derived prostaglandins contributes to the progressive bone loss seen in osteomyelitis lesions. In the present study we examined the expression of COX-2 in bones from 23 pigs with experimental osteomyelitis. Osteomyelitis was induced with Staphylococcus...... in vivo study showing an early wave of COX-2 mediated bone resorption during osteomyelitis. Therefore, treatment aiming to reduce the break down of bone tissue directed by the COX-2 pathway might be suggested early in the course of the disease....

  4. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors: clinical and histological correlation

    Directory of Open Access Journals (Sweden)

    Francisco Fontes Cintra

    2011-01-01

    Full Text Available OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course-as monitored by sequential imaging techniques-even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of proangiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase- 2 expression. RESULTS: The significant variables that were associated with poor outcome were 1 higher-grade chondrosarcomas, 2 tumors that developed in flat bones, and 3 over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields. Moreover, CD34 expression (measured using the Chalkley method revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain-at least in part-the more aggressive biological course that is taken by these tumors. CONCLUSIONS

  5. Ultraviolet C Irradiation Induces Different Expression of Cyclooxygenase 2 in NIH 3T3 Cells and A431 Cells: The Roles of COX-2 Are Different in Various Cell Lines

    Directory of Open Access Journals (Sweden)

    Ming-Hsiu Wu

    2012-04-01

    Full Text Available Ultraviolet C (UVC is a DNA damage inducer, and 20 J/m2 of UVC irradiation caused cell growth inhibition and induced cell death after exposure for 24–36 h. The growth of NIH 3T3 cells was significantly suppressed at 24 h after UVC irradiation whereas the proliferation of A431 cells was inhibited until 36 h after UVC irradiation. UVC irradiation increased COX-2 expression and such up-regulation reached a maximum during 3–6 h in NIH 3T3 cells. In contrast, UVC-induced COX-2 reached a maximum after 24–36 h in A431 cells. Measuring prostaglandin E2 (PGE2 level showed a biphasic profile that PGE2 release was rapidly elevated in 1–12 h after UVC irradiation and increased again at 24 h in both cell lines. Treatment with the selective COX-2 inhibitor, SC-791, during maximum expression of COX-2 induction, attenuated the UVC induced-growth inhibition in NIH 3T3 cells. In contrast, SC-791 treatment after UVC irradiation enhanced death of A431 cells. These data showed that the patterns of UVC-induced PGE2 secretion from NIH 3T3 cells and A431 cells were similar despite the differential profile in UVC-induced COX-2 up-regulation. Besides, COX-2 might play different roles in cellular response to UVC irradiation in various cell lines.

  6. Cyclooxygenase-2 inhibition attenuates abdominal aortic aneurysm progression in hyperlipidemic mice.

    Directory of Open Access Journals (Sweden)

    Sarbani Ghoshal

    Full Text Available Abdominal aortic aneurysms (AAAs are a chronic inflammatory disease that increase the risk of life-threatening aortic rupture. In humans, AAAs have been characterized by increased expression of cyclooxygenase-2 and the inactivation of COX-2 prior to disease initiation reduces AAA incidence in a mouse model of the disease. The current study examined the effectiveness of selective cyclooxygenase-2 (COX-2 inhibition on reducing AAA progression when administered after the initiation of AAA formation. AAAs were induced in hyperlipidemic apolipoprotein E-deficient mice by chronic angiotensin II (AngII infusion and the effect of treatment with the COX-2 inhibitor celecoxib was examined when initiated at different stages of the disease. Celecoxib treatment that was started 1 week after initiating AngII infusion reduced AAA incidence by 61% and significantly decreased AAA severity. Mice treated with celecoxib also showed significantly reduced aortic rupture and mortality. Treatment with celecoxib that was started at a late stage of AAA development also significantly reduced AAA incidence and severity. Celecoxib treatment significantly increased smooth muscle alpha-actin expression in the abdominal aorta and did not reduce expression of markers of macrophage-dependent inflammation. These findings indicate that COX-2 inhibitor treatment initiated after formation of AngII-induced AAAs effectively reduces progression of the disease in hyperlipidemic mice.

  7. Superantigen-induced collagenase gene expression in human IFN-{gamma}-treated fibroblast-like synoviocytes involves prostaglandin E{sub 2}: Evidence for a role of cyclooxygenase-2 and cytosolic phospholipase A{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mehindate, K; Al-Daccak, R.; Mourad, W. [Laval Univ., Ste-Foy, Quebec (Canada)] [and others

    1995-10-01

    MHC class II molecules expressed in lymphoid and nonlymphoid cells act as signal-transducer molecules. We demonstrate that engagement of MHC class II molecules on human IFN-{gamma}-treated fibroblast-like synoviocytes by their natural ligand, the staphylococcal enterotoxin A (SEA), selectively induces the production of interstitial collagenase over the expression of the tissue inhibitor of metalloproteinase (TIMP). Collagenase gene expression required de novo protein synthesis and was accompanied by high levels of PGE{sub 2} production, suggesting its implication in this response. Two inhibitors that affect prostaglandin biosynthesis, indomethacin and arachidonyl-trifluoromethyl-ketone, inhibited both PGE{sub 2} production and collagenase gene expression. The addition of exogenous PGE{sub 2} to inhibitor-treated cells partially restored the SEA-induced collagenase, indicating a role for PGE{sub 2} in this response. As cyclooxygenases (COX-1 and -2), cytosolic phospholipase A{sub 2} (cPLA{sub 2}), and secreted PLA{sub 2} (sPLA{sub 2}) are the enzymes potentially implicated in prostaglandin synthesis, their involvement in SEA-induced collagenase was investigated. The mRNA levels of COX-2 and cPLA{sub 2} rapidly increased following ligation of MHC class II molecules, while COX-1 and sPLA{sub 2} mRNA levels were unchanged and transiently depressed, respectively. SEA-induced COX-2 mRNA was translated adequately to protein, whereas cPLA{sub 2} protein level was not enhanced, but rapidly phosphorylated, a process previously linked to the enzyme activation. In conclusion, this work demonstrates a selective induction of collagenase gene expression over its natural inhibitor TIMP in human IFN-{gamma}-treated fibroblast-like synoviocytes mediated, at least in part, by PGE{sub 2}, and provides evidence that signaling via MHC class II molecules induces the production of PGE{sub 2} through enhanced production of COX-2 and possibly activation of the cPLA{sub 2}. 46 refs., 10 figs.

  8. Effects of the Geiji-Bokryung-Hwan on carrageenan-induced inflammation in mice and cyclooxygenase-2 in hepatoma cells of HepG2 and Hep3B.

    Science.gov (United States)

    Park, Won-Hwan; Joo, Shin-Tak; Park, Kwan-Kyu; Chang, Young-Chae; Kim, Cheorl-Ho

    2004-02-01

    We investigated the effects of a Korean traditional prescription, Geiji-Bokryung-Hwan (GBH) consisting of five herbs of Cinnamomi Ramulus (Korean name Geiji), Poria cocos (Bokryung), Moutan Cortex Radicis (Modanpi). Paeoniae Radix (Jakyak) and Persicae Semen (Doin) on tumor growth-inhibitory activity and cancer chemopreventive activity in assays representing three major stages of carcinogenesis. Effects of the GBH extracts on carrageenan-induced edema inflammation using female (C57BL/6XC3H) F1 (B6C3F1) mice and tumorigenesis were examined. Finally, cyclooxygenase metabolites were determined after extracts treatment. These data suggest that GBH extracts merits investigation as a potential cancer chemopreventive agent in humans.

  9. Role of mast cells and protease-activated receptor-2 in cyclooxygenase-2 expression in urothelial cells

    OpenAIRE

    Wang, Zun-Yi; Wang, Peiqing; Bjorling, Dale E.

    2009-01-01

    Mast cells have been shown to play a role in development and persistence of various inflammatory bladder disorders. Mast cell-derived tryptase specifically activates protease-activated receptor-2 (PAR-2), and PAR-2 is known to be involved in inflammation. We investigated whether mast cells participate in increase of cyclooxygenase-2 (COX-2) protein abundance in urothelium/suburothelium of bladders of mice subsequent to cyclophosphamide (CYP)-induced bladder inflammation. We also used primary ...

  10. CYCLOOXYGENASE-2 AND HEPATOCELLULAR CARCINOMA: THE PROTEOMICS OF ASSOCIATION

    Directory of Open Access Journals (Sweden)

    Jaya Gandhi

    2011-12-01

    Full Text Available Hepatocellular carcinoma represents one of the most common malignancies worldwide with a rising incidence in western countries. Chronic inflammation is recognised as a threat factor for cancer progression. Cyclooxygenase-2 is the major mediator of inflammation. Various studies on Cox-2 suggest its possible association with HCC differentiation. Sufficient genetic and pharmacologic evidences implicate its crucial role in neoplasia and it is also now clear that Cox-2 plays a crucial role in tumor progression. Cox-2 overexpression is associated with maintaining tumor microenvironment and has crucial implication for angiogenesis. Cox-2 operates in multifactorial fashion. Cox-2 selective inhibition has been reported as a successful tool in suppressing angiogenesis and metastasis. The pharmacological suppression of Cox-2 represents a bright future as a therapeutic tool for treatment of various malignancies. This review is an attempt to discuss the critical issue of overexpression of Cox-2 and its role in the development of HCC in particular and cancer in general.

  11. Targeting cyclooxygenase-2 in hematological malignancies: rationale and promise.

    Science.gov (United States)

    Bernard, M P; Bancos, S; Sime, P J; Phipps, R P

    2008-01-01

    There is much interest in the potential use of Cox-2 selective inhibitors in combination with other cancer therapeutics. Malignancies of hematopoietic and non-hematopoietic origin often have increased expression of cyclooxygenase-2 (Cox-2), a key modulator of inflammation. For example, hematological malignancies such as chronic lymphocytic leukemia, chronic myeloid leukemia, Hodgkin's lymphoma, non-Hodgkin's lymphoma and multiple myeloma often highly express Cox-2, which correlates with poor patient prognosis. Expression of Cox-2 enhances survival and proliferation of malignant cells, while negatively influencing anti-tumor immunity. Hematological malignancies expressing elevated levels of Cox-2 potentially avoid immune responses by producing factors that enhance angiogenesis and metastasis. Cellular immune responses regulated by natural killer cells, cytotoxic T lymphocytes, and T regulatory cells are also influenced by Cox-2 expression. Therefore, Cox-2 selective inhibitors have promising therapeutic potential in patients suffering from certain hematological malignancies.

  12. A STUDY ON CYCLOOXYGENASE -2 PROTEIN EXPRESSION IN ESOPHAGEAL CAICONOGENESIS

    Institute of Scientific and Technical Information of China (English)

    王立峰; 张伟; 王吾如; 王洪平; 韩双廷; 曲平; 刘义; 李茉; 刘伯齐; 林培中

    2001-01-01

    To investigate cyclooxygenase- 2(Cox-2) protein expression in esophageal cancer and precancerous lesions. Methods: One hundred twenty biopsy specimens from esophageal carcinoma and 113 from patients with esophageal premalingnant lesions, 27 from individuals with normal esophageal mucosa and 3 from Barrett's esophagus were examined for Cox-2 protein expression by immunohistochemistry. Results: Cox-2 protein was not observed in normal esophageal squamous and glandular epithelium, hyperplasia from mild to severe dysplasia lesions and carcinoma in situ. Positive Cox-2 protein expression was found in 4 of 60 specimens of invasive squamous-cell carcinomas, 21 of 30 specimens of esophageal adenocarcinomas and in 3 of 3 Barret's esophageal tissues. Conclusion: The Cox-2 protein expression may be associated with the development of the esophageal adenocarcinomas but not esophageal squamous-cell carcinomas.

  13. Expression of cyclooxygenase-2 in human esophageal squamous cell carcinomas

    Institute of Scientific and Technical Information of China (English)

    Jian-Gang Jiang; Dao-Wen Wang; Jiang-Bo Tang; Chun-Lian Chen; Bao-Xing Liu; Xiang-Ning Fu; Zhi-Hui Zhu; Wei Qu; Katherine Cianflone; Michael P. Waalkes

    2004-01-01

    AIM: To determine whether cyclooxygenase-2 (COX-2) was expressed in human esophageal squamous cell carcinoma.METHODS: Quantitative reverse transcription-polymerase chain reaction (RT-PCR), western blotting, immunohistochemistry and immunofluorescence were used to assess the expression level of COX-2 in esophageal tissue.RESULTS: COX-2 mRNA levels were increased by >80-fold in esophageal squamous cell carcinoma when compared to adjacent noncancerous tissue. COX-2 protein was present in 21 of 30 cases of esophageal squamous cell carcinoma tissues, but was undetectable in noncancerous tissue. Immunohistochemistry was performed to directly show expression of COX-2 in tumor tissue.CONCLUSION: These results suggest that COX-2 may be an important factor for esophageal cancer and inhibition of COX-2 may be helpful for prevention and possibly treatment of this cancer.

  14. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    Science.gov (United States)

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  15. TTF-1 action on the transcriptional regulation of cyclooxygenase-2 gene in the rat brain.

    Directory of Open Access Journals (Sweden)

    Chang Ho Yun

    Full Text Available We have recently found that thyroid transcription factor-1 (TTF-1, a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2, the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus. Promoter assays and electrophoretic mobility shift assays showed that TTF-1 inhibited COX-2 transcription by binding to specific binding domains in the COX-2 promoter. Furthermore, blocking TTF-1 synthesis by intracerebroventricular injection of an antisense oligomer induced an increase of COX-2 synthesis in non-neuronal cells of the rat hypothalamus, and resulted in animals' hyperthermia. These results suggest that TTF-1 is physiologically involved in the control of thermogenesis by regulating COX-2 transcription in the brain.

  16. The role of cyclooxygenase-2 inhibition for the prevention and treatment of prostate carcinoma.

    Science.gov (United States)

    Lin, Daniel W; Nelson, Peter S

    2003-09-01

    Experimental and epidemiologic studies have demonstrated that nonsteroidal antiinflammatory drugs (NSAIDs) are effective in the prevention of human cancers. Nonsteroidal antiinflammatory drugs inhibit the cyclooxygenase (COX) enzyme that functions to convert arachidonic acid to prostaglandins (PGs). Cyclooxygenase-2, a key COX isoenzyme, is rapidly induced in response to inflammatory stimuli, growth factors, cytokines, and promoters of neoplastic growth. Cyclooxygenase-2-catalyzed reactions may be involved in carcinogenesis via 2 distinct mechanisms: (1). DNA damage and (2). PG-mediated effects. Reactions mediated by COX-2 form reactive oxygen species that can directly induce the oxidation of DNA or instigate the bioactivation of carcinogens. Prostaglandin E2, a byproduct of COX-2-mediated arachidonic acid metabolism, exhibits several biologic actions that have been shown to promote tumorigenesis and tumor progression. These actions include increased cell proliferation, promotion of angiogenesis, and the elevated expression of the antiapoptotic protein Bcl-2. In addition, PGE2 decreases natural killer cell activity and alters immune surveillance. In vitro experimental studies find that COX-2 inhibitors decrease cellular proliferation, increase apoptosis, and modulate genes involved in cell cycle regulation. Evidence from animal studies supports a role for NSAIDs in prostate cancer (CaP) prevention. Population-based studies have observed a reduced incidence of CaP among men using NSAIDs. Because CaP evolves slowly and rarely strikes men before the sixth or seventh decade of life, any strategy to delay or lengthen the time to development of clinically evident CaP, such as chemoprevention strategies, would greatly impact the natural history of this disease. Recent progress and critical analyses in the roles of COX-2 inhibition on prostate carcinogenesis and CaP prevention will be presented.

  17. Prokaryotic expression, purification and characterization of human cyclooxygenase-2.

    Science.gov (United States)

    Liao, Xiangzhi; Wang, Wenhan; Fan, Chuanxi; Yang, Ning; Zhao, Jialiang; Zhang, Ying; Gao, Ruijuan; Shen, Guannan; Xia, Simin; Li, Guiying

    2017-07-01

    Cyclooxygenase-2 (COX-2) is a key enzyme which catalyzes the conversion of arachidonic acid (AA) into prostaglandins (PGs). It plays an important role in pathophysiological processes, such as tumorigenesis, angiogenesis, inflammation and tumor cell drug resistance. Therefore, COX-2 has been viewed as an important target for cancer therapy. The preparation of COX-2 protein is an important initial step for the subsequent development of COX-2 inhibitors. In this study, we report a strategy to heterologously express truncated human COX-2 (trCOX-2) in Escherichia coli (E. coli) BL21(DE3) host cells. Following denaturation, purification and renaturation, we successfully obtained enzymatically active trCOX-2 containing 257 residues of the C-terminus. Homology modeling and molecular docking analyses revealed that trCOX-2 retained the predicted 3D catalytic domain structure and AA could still bind to its hydrophobic groove. Western blot analysis and ELISA indicated that the trCOX-2 still retained its characteristic antigenicity and binding activity, while COX assays revealed that trCOX-2 maintained its enzyme activity. On the whole, in this study, we provided a novel method to isolate trCOX-2 possessing AA binding and catalytic activities. This study thus lays a foundation to facilitate further investigations of COX-2 and offers a valuable method with which to achieve the prokaryotic expression of a eukaryotic membrane protein.

  18. Cyclooxygenase 2 genotypes influence prostate cancer susceptibility in Japanese Men.

    Science.gov (United States)

    Sugie, Satoru; Tsukino, Hiromasa; Mukai, Shoichiro; Akioka, Takahiro; Shibata, Norihiko; Nagano, Masafumi; Kamoto, Toshiyuki

    2014-03-01

    This study aims to evaluate the relationship between the cyclooxygenase 2 (COX2) G1195A (rs689465) polymorphism and the risk of prostate cancer in a Japanese population and the associations between COX2 polymorphisms and clinicopathological characteristics, including Gleason grade and prostate-specific antigen (PSA) grade. We recruited 134 patients with prostate cancer and 86 healthy controls matched for age and smoking status. The COX2 G1195A polymorphism status was determined by polymerase chain reaction and restriction fragment length polymorphism analysis. Genotype distributions (p = 0.028) and allelic frequencies (p = 0.014) differed significantly between prostate cancer and control groups in terms of the COX2 G1195A polymorphism (Pearson's χ (2) test). Logistic regression analysis of case and control outcomes showed an odds ratio between the GG and AA genotypes of 3.15 (95% confidence interval = 1.27-8.08, p = 0.014), indicating an increased risk of prostate cancer associated with the AA genotype. Subset analysis revealed no significant associations between this polymorphism and clinicopathological characteristics of prostate cancer. This study demonstrated a relationship between the COX2 G1195A variant and prostate cancer risk. This polymorphism may merit further investigation as a potential genomic marker for the early detection of prostate cancer. Our results support the hypothesis that rs689465 influences susceptibility to prostate cancer; however, prostate cancer progression was not associated with rs689465 in a Japanese population.

  19. Novel selective inhibitors of hydroxyxanthone derivatives for human cyclooxygenase-2

    Institute of Scientific and Technical Information of China (English)

    Yu-chian CHEN; Kun-tze CHEN

    2007-01-01

    Aim: To screen the selective inhibitors for human cyclooxygenase-2 ((h)COX-2) utilizing molecular simulation. Methods: Eight xanthone derivatives, compounds A-H, were employed by the structure-based research methodology. Resveratrol and NS-398 were selected as the control compounds for COX-1 and COX-2, respectively. The docking results were scored and the interaction energies of the complexes were calculated by CHARMm forcefield. Results: NS-398 could not dock into the active site of COX-1. However, resveratrol, the specific selective compound for COX-1, gained lower interaction energy while docked in COX-1. The lower interaction energies were investigated, while compound B and F were docked into the catalytic sites of COX-1 and COX-2, respectively. Compound A, 1,3,6,7-tetrahydroxyxanthone, revealed high inhibitory potency to both COX-1 and COX-2. Conclusion: The conformations of the docking would influence the values of interaction energies. The hydrogen bond could also increase the stabi- lity of the whole complex, which might suggest that compound B had a suitable conformation in the tunnel-like active site of COX-1. Compound F, a potent agent for COX-2, revealed a strong hydrogen bond with Set516 in human COX-2 to form a stable complex.

  20. Crystal structure of rofecoxib bound to human cyclooxygenase-2

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, Benjamin J.; Malkowski, Michael G. (Buffalo)

    2016-10-26

    Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditions were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7- Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.

  1. Crystal structure of rofecoxib bound to human cyclooxygenase-2.

    Science.gov (United States)

    Orlando, Benjamin J; Malkowski, Michael G

    2016-10-01

    Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditions were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7 Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.

  2. Competition and allostery govern substrate selectivity of cyclooxygenase-2

    Science.gov (United States)

    Mitchener, Michelle M.; Hermanson, Daniel J.; Shockley, Erin M.; Brown, H. Alex; Lindsley, Craig W.; Reese, Jeff; Rouzer, Carol A.; Lopez, Carlos F.; Marnett, Lawrence J.

    2015-01-01

    Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid (AA) and its ester analog, 2-arachidonoylglycerol (2-AG), to prostaglandins (PGs) and prostaglandin glyceryl esters (PG-Gs), respectively. Although the efficiency of oxygenation of these substrates by COX-2 in vitro is similar, cellular biosynthesis of PGs far exceeds that of PG-Gs. Evidence that the COX enzymes are functional heterodimers suggests that competitive interaction of AA and 2-AG at the allosteric site of COX-2 might result in differential regulation of the oxygenation of the two substrates when both are present. Modulation of AA levels in RAW264.7 macrophages uncovered an inverse correlation between cellular AA levels and PG-G biosynthesis. In vitro kinetic analysis using purified protein demonstrated that the inhibition of 2-AG oxygenation by high concentrations of AA far exceeded the inhibition of AA oxygenation by high concentrations of 2-AG. An unbiased systems-based mechanistic model of the kinetic data revealed that binding of AA or 2-AG at the allosteric site of COX-2 results in a decreased catalytic efficiency of the enzyme toward 2-AG, whereas 2-AG binding at the allosteric site increases COX-2’s efficiency toward AA. The results suggest that substrates interact with COX-2 via multiple potential complexes involving binding to both the catalytic and allosteric sites. Competition between AA and 2-AG for these sites, combined with differential allosteric modulation, gives rise to a complex interplay between the substrates, leading to preferential oxygenation of AA. PMID:26392530

  3. Effect of cyclooxygenase-2 inhibition by meloxicam, on atrogin-1 and myogenic regulatory factors in skeletal muscle of rats injected with endotoxin.

    Science.gov (United States)

    Martin, A I; Nieto-Bona, M P; Castillero, E; Fernandez-Galaz, C; Lopez-Menduina, M; Gomez-Sanmiguel, A B; Gomez-Moreira, C; Villanua, M Angeles; Lopez-Calderon, A

    2012-12-01

    Cyclooxygenase-2-induction by inflammatory stimuli has been proposed as a mediator of inflammatory cachexia. We analyse whether cyclooxygenase-2 inhibition by meloxicam administration is able to modify the response of skeletal muscle to inflammation induced by lipopolysaccharide endotoxin (LPS). Male rats were injected with 1 mg kg(-1) LPS at 17:00 h and at 10:00 h the following day, and euthanized 4, 24 or 72 hours later. Atrogin-1, MuRF1, myogenic regulatory factors and cyclooxygenase-2 in the gastrocnemius were determined by real time-PCR (mRNA) and Western blot (protein). In a second experiment the effect of meloxicam administration (1 mg kg⁻¹) was analyzed. Meloxicam was administered either in a preventive manner, 1 hour before each endotoxin injection, or in a therapeutic manner, starting 2 hours after the second LPS injection and at 24 and 48 hours afterwards. There was a marked increase in MuRF1 mRNA (Pmeloxicam treatment blocked LPS-induced increase in atrogin-1. Preventive, but not therapeutic, meloxicam decreased myostatin (Pmeloxicam treatment decreased gastrocnemius myogenin. These data suggest that cyclooxygenase-2 inhibition by meloxicam administration can prevent the increase in atrogin-1 and the decrease in MyoD induced by LPS administration. However, prolonged therapeutic meloxicam treatment seems to be less effective, since it can inhibit myogenic regulatory factors.

  4. 低氧诱导因子-1α和环氧合酶-2在豚鼠银屑病样模型皮损中的表达及意义%Expression of hypoxia-inducible factor-1α and cyclooxygenase-2 in epidermis of guinea pig psoriasis-like animal model

    Institute of Scientific and Technical Information of China (English)

    于春水; 苏江维; 胡珍; 邓利丽; 熊芬

    2012-01-01

    Objective To study hypoxia-inducible factor-lα( HIF-1 ) and cyclooxygenase-2 ( Cox-2 ) expression in epidermis of guinea pig psoriasis-like animal model and their roles in the pathogenesis of psoriasis. Methods Psoriasis-like animal model was established by topical treatment with 5% propranolol emulsion on ear's back of guinea pig. We detected HIF-lα and Cox-2 in normal epidermal tissues from 20 normal guinea pig and the lesions of ear's back from guinea pig psoriasis-like animal model by in immunohistochemistry. Results Expression of HIF-1α and Cox-2 in lesions of treated group were significantly increased, while in normal epidermis there were no positive staining expression. Compared with the normal epidermis, the positive rate and the mean expression level of HIF-1α and Cox-2 in epidermis of guinea pig psoriasis-like animal model were significantly higher than those in the normal epidermal( P < 0. 05 ). Conclusions The expression of HIF-1α and Cox-2 in the epidermis of guinea pig psoriasis-like animal model were higher than normal epidermal. It has high concordance with human psoriatic lesions not only in histopathology, but also at molecular level.%目的 研究低氧诱导因子-1α(HIF-1α)和环氧合酶-2(COX-2)在豚鼠银屑病样动物模型皮损表皮中的表达,探讨其在银屑病发病机制的作用.方法 用5%普萘洛尔乳剂外涂豚鼠耳背部皮肤诱导银屑病样动物模型,应用免疫组化法检测正常豚鼠表皮和豚鼠银屑病样动物模型皮损表皮中HIF-1α和COX-2表达.结果 5%普萘洛尔外涂所致豚鼠银屑病样动物模型皮损中HIF-1α和COX-2表达水平较正常对照组明显增高,有显著性差异(P均<0.05).结论 HIF-1α和COX-2在豚鼠银屑病样动物模型皮损的表皮中表达明显增高,不仅在组织病理学而且在分子水平上与人类银屑病皮损基本一致.

  5. [Studies on tea and health].

    Science.gov (United States)

    Han, Chi

    2011-11-01

    Many studies, both national and international, have shown that tea has protective effects on many chronic diseases and their risk factors. In cancer prevention, our studies indicated that tea drinking could inhibit the carcinogenicity of various chemical carcinogens, including oral tumors induced by 7,12-dimethylbenz[a]anthracene (DMBA) in Golden hamsters, esophageal tumors in rats by blocking in vivo synthesis of N-Nitroso-methylbenzylamine (NMBzA), esophageal cancer induced by NMBzA in rats, precancerous liver lesions (r-GT and GST-P) induced by diethylnitrosamine (DENA) in rats, intestinal preneoplastic lesion (ACF) and intestinal tumors induced by 1,2-dimethyl-hydrazine (DMH) in rats, lung carcinoma induced by nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK) in A/J mice. Our studies have also shown that the protective effects of tea against cancer is a combined effects of various tea ingredients, among which the major ones are polyphenols and tea pigments. Based on animal studies, antioxidant properties, protection against DNA damage and modulation of immune functions were found to be the main mechanisms of anticancer effects of tea. In human trials, tea drinking showed protective effects against oxidative damage and DNA damage caused by cigarette smoking. Mixed tea drinking significantly blocked lesion progress in patients with oral mucosa leukoplakia, therefore, demonstrated its protective effects on oral cancer. Our studies have also shown effects of tea on prevention of cardiovascular diseases (CVD). For example, tea pigments was found to significantly inhibit LDL oxidation induced by Cu2+, Fe2+ in in vitro studies. In vivo studies showed that tea could prevent blood coagulation, facilitate fibrinogen dissolution, inhibit platelet aggregation, lower endothelin levels, enhance GSH-Px activities, protect against oxidated LDL-induced damage in endothelium cells, and prevent atherosclerosis of coronary arteries. The mechanisms of these protective

  6. Investigating Immunohistochemical Expression of cyclooxygenase-2 in oral lichen planus

    Directory of Open Access Journals (Sweden)

    Maryam Seyedmajidi

    2016-06-01

    Full Text Available Background and goal: (cox2 Cyclooxygenase -2 as an enzyme is not present in normal tissues and in fact is a type of inductive enzyme during pathological phenomena such as inflammation and cancer are significantly increased. Increased expression of cox-2 in gastric carcinoma, pancreatic, lung and oral squamous cell carcinoma has been shown and seems to be one of the performance mechanisms of the inhibition of apoptosis in tumor cells. Regarding the role of cox-2 in apoptosis mechanisms and the creation of dysplastic changes and malignant, the study aimed to evaluate the immunohistochemical expression of cox-2 in oral lichen planus and were compared with normal mucosa and gingivitis. Methods: The study was performed on 30 paraffin blocks related to patients referred to oral and maxillofacial pathology department in Dental School of Babol with confirmed diagnosis of oral lichen planus was done. The same number of samples of normal mucosa and samples of gingivitis were studied. Slices prepared from the above blocks bycoloring immunostaining cox-2 were stained and after reviewing the slides obtained, data using statistical software spss20 and x2 tests, Mann-Whitney and parametric tests such as T test was analyzed and P ˂0.05 was considered significant Results: In this study, significantly percentage of stained cells and staining intensity of cells in the basal layer of lichen planus was higher than normal mucosa (p <0.001. In parabasal layer the results were similar (p <0.001. This results in comparison to lichen planus and gingivitis in basal layer (p <0.001 and parabasal was seen (p <10.0. On the other hand, significantly the percentage of stained cells and staining intensity of cells in the basal layer of gingivitis was more than normal mucosa (p <0.001. In above comparison, similar result in the parabasal layer was seen (p <0.001. The percentage of stained cells and staining intensity of cells in lymphocytic infiltration was significantly higher

  7. Acceleration of cardiovascular disease by a dysfunctional prostacyclin receptor mutation - Potential implications for cyclooxygenase-2 inhibition

    NARCIS (Netherlands)

    Arehart, Eric; Stitham, Jeremiah; Asselbergs, Folkert W.; Douville, Karen; MacKenzie, Todd; Fetalvero, Kristina M.; Gleim, Scott; Kasza, Zsolt; Rao, Yamini; Martel, Laurie; Segel, Sharon; Robb, John; Kaplan, Aaron; Simons, Michael; Powell, Richard J.; Moore, Jason H.; Rimm, Eric B.; Martin, Kathleen A.; Hwa, John

    2008-01-01

    Recent increased adverse cardiovascular events observed with selective cyclooxygenase-2 inhibition led to the withdrawal of rofecoxib ( Vioxx) and valdecoxib ( Bextra), but the mechanisms underlying these atherothrombotic events remain unclear. Prostacyclin is the major end product of cyclooxygenase

  8. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages.

    Science.gov (United States)

    Herencia, F; Ferrándiz, M L; Ubeda, A; Guillén, I; Dominguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1999-06-18

    In a previous work, we tested a series of chalcone derivatives as possible anti-inflammatory compounds. We now investigate the effects of three of those compounds, CHI, CH8 and CH12, on nitric oxide and prostanoid generation in mouse peritoneal macrophages stimulated with lipopolysaccharide and in the mouse air pouch injected with zymosan, where they showed a dose-dependent inhibition with inhibitory concentration 50% values in the microM range. This effect was not the consequence of a direct inhibitory action on enzyme activities. Our results demonstrated that chalcone derivatives inhibited de novo inducible nitric oxide synthase and cyclooxygenase-2 synthesis, being a novel therapeutic approach for inflammatory diseases.

  9. DOCKING OF 1-PHENYLSULFONAMIDE-3-TRIFLUOROMETHYL-5-PARABROMOPHENYL-PYRAZOLE TO CYCLOOXYGENASE-2 USING PLANTS

    Directory of Open Access Journals (Sweden)

    Stefanus Layli Prasojo

    2010-12-01

    Full Text Available The docking protocols to virtually screen selective cyclooxygenase-2 (COX-2 ligands using PLANTS docking software were developed and validated. The crystal structure of 1-phenylsulfonamide-3-trifluoromethyl-5-parabromophenyl-pyrazole (S58 binds to cyclooxygenase-2 (COX-2 was used as the reference structure. The developed protocols could predict the binding pose of S58 to COX-2 accurately (RMSD is 1.2 Ǻ.

  10. DOCKING OF 1-PHENYLSULFONAMIDE-3-TRIFLUOROMETHYL-5-PARABROMOPHENYL-PYRAZOLE TO CYCLOOXYGENASE-2 USING PLANTS

    OpenAIRE

    Stefanus Layli Prasojo; Fajar Agung Dwi Hartanto; Nunung Yuniarti; Zullies Ikawati; Enade Perdana Istyastono

    2010-01-01

    The docking protocols to virtually screen selective cyclooxygenase-2 (COX-2) ligands using PLANTS docking software were developed and validated. The crystal structure of 1-phenylsulfonamide-3-trifluoromethyl-5-parabromophenyl-pyrazole (S58) binds to cyclooxygenase-2 (COX-2) was used as the reference structure. The developed protocols could predict the binding pose of S58 to COX-2 accurately (RMSD is 1.2 Ǻ).

  11. Changes in the Expression of Cyclooxygenase-2 in Polycystic Ovary Syndrome in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Karimzadeh L

    2011-12-01

    Full Text Available Background: Cyclooxygenase 2 is a key enzyme which converts arachidonic acid into prostaglandins. Cyclooxygenase 2 is triggered by inflammatory stimuli, such as cytokines. Its expression increases in tumors and Alzheimer's disease and ovarian hyperstimulation syndrome. Polycystic ovarian syndrome is a heterogeneous disease characterized by pathological angiogenesis and chronic anovulation. In the present study, the probable role of cyclooxygenase 2 in Wistar rats with polycystic ovarian syndrome was investigated.Methods: Thirty female Wistar rats (170-200 gr were equally divided into three groups: 2 mg estradiol valerate was intramuscularly administered to each rat in the experiment group or group 1; the rats in group 2 were regarded as the sham group and received sesame oil injections and group 3 or the control group received no injections. After 60 days of treatment, animals were anaesthetized with chloroform and killed by decapitation. Ovaries were collected for histological and immunohistochemical evaluations. All the experiments were repeated three times.Results: Morphologically, ovaries from the control group exhibited follicles in various stages of development and many fresh corpus luteum. In estradiol valerate group small follicles in early development were observed in addition to follicles showing evidence of atresia and many large cysts with thickened theca cell layer. Corpus luteum was rare or absent in group 2. The immunohistochemical analysis for cyclooxygenase 2 expression showed an increased expression of cyclooxygenase 2 enzyme in group 1.Conclusion: The results suggested the involvement of cyclooxygenase 2 in the progression to polycystic ovarian syndrome in a rat model.

  12. Exposure and Metabolic Activation Biomarkers of Carcinogenic Tobacco-Specific Nitrosamines.

    Science.gov (United States)

    Hecht, Stephen S; Stepanov, Irina; Carmella, Steven G

    2016-01-19

    Lung cancer is the leading cause of cancer death in the world, and cigarette smoking is its main cause. Oral cavity cancer is another debilitating and often fatal cancer closely linked to tobacco product use. While great strides have been made in decreasing tobacco use in the United States and some other countries, there are still an estimated 1 billion men and 250 million women in the world who are cigarette smokers and there are hundreds of millions of smokeless tobacco users, all at risk for cancer. Worldwide, lung cancer kills about three people per minute. This Account focuses on metabolites and biomarkers of two powerful tobacco-specific nitrosamine carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN), considered to be among the main causes of lung cancer and oral cavity cancer in people who use tobacco products. Three properties of NNK and NNN are critical for successful biomarker studies: they are present in all tobacco products, they are tobacco-specific and are not found in any other product, and they are strong carcinogens. NNK and NNN are converted in humans to urinary metabolites that can be quantified by mass spectrometry as biomarkers of exposure to these carcinogens. They are also metabolized to diazonium ions and related electrophiles that react with DNA to form addition products that can be detected and quantified by mass spectrometry. These urinary metabolites and DNA addition products can serve as biomarkers of exposure and metabolic activation, respectively. The biomarkers of exposure, in particular the urinary NNK metabolites 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides, have been extensively applied to document tobacco-specific lung carcinogen uptake in smokers and nonsmokers exposed to secondhand tobacco smoke. Highly sensitive mass spectrometric methods have been developed for quantitative analysis of these NNK metabolites as well as metabolites of NNN in human urine

  13. Exploring effect of cyclooxygenase-2 inhibitor on serum lipid profiles in collagen-induced arthritis model using shotgun lipidomics%基于鸟枪法脂质组学研究环氧酶-2抑制剂对关节炎模型血清脂代谢的干预作用

    Institute of Scientific and Technical Information of China (English)

    潘洁莉; 胡长锋; 韦双双; 陈娇; 周佳

    2016-01-01

    Rheumatoid arthritis( RA)is an inflammatory disease leading to joint swollen,pain and even deformity. Cardiovascular disease( CVD)is regarded as a major cause of morbidity in patients. Chronic systemic inflammation in patients is an independent CVD risk factor. Cycloox-ygenase-2( COX-2)inhibitor,a commonly used drug in the treatment of RA,can increase the risk of CVD. Lipid metabolic disorder is highly correlated with the occurrence of CVD,thus we investigated the serum lipid changes caused by RA and drug treatment to help to elucidate the mechanism of CVD in RA. Collagen-induced arthritis( CIA)is employed as a model of RA. After modeling,COX-2 inhibitor-meloxicam was orally administrated for three weeks,and the serum lipid profiles were analyzed by the multi-dimensional mass spectrometry-based shotgun lipido-mics(MDMS-SL). Totally 105 lipids were detected in serum,including 35 phosphatidylcholines ( PCs),18 lysophosphatidylcholines( LysoPCs),15 phosphatidyl inositols( PIs),3 phosphati-dyl glycerols( PGs),19 sphingomyelins( SMs)and 15 ceramides( Cers). In the principle com-ponent analysis,it was observed that the lipid profiles of CIA model rats were very different from those of the control rats,and the COX-2 inhibitor can improve the lipid metabolism partly. Further,ANOVA analysis revealed that 39 of the 105 identified lipids were up-regulated in CIA rats,including 7 PIs,15 SMs,5 Cers,10 PCs and 2 LysoPCs. Most of these lipids were down-regulated under the treatment of COX-2 inhibitor. In addition,the five PCs and one LysoPC were abnormally regulated by the drug. The MDMS-SL discovered lipid disturbance in CIA mod-el rats that might be related to risk factors of atherosclerosis;the COX-2 inhibitor can greatly repair the lipid disorder caused by modeling,while induce abnormal changes of some PCs and LysoPC which may cause side-effect.%心血管疾病( CVD)是类风湿关节炎( RA)患者死亡的重要原因之一,脂代谢紊乱与 CVD 发生有密

  14. Bryostatin-1 stimulates the transcription of cyclooxygenase-2: evidence for an activator protein-1-dependent mechanism.

    Science.gov (United States)

    De Lorenzo, Mariana S; Yamaguchi, Kentaro; Subbaramaiah, Kotha; Dannenberg, Andrew J

    2003-10-15

    Bryostatin-1 (bryostatin) is a macrocyclic lactone derived from Bugula neritina, a marine bryozoan. On the basis of the strength of in vitro and animal studies, bryostatin is being investigated as a possible treatment for a variety of human malignancies. Severe myalgias are a common dose-limiting side effect. Because cyclooxygenase-2 (COX-2)-derived prostaglandins can cause pain, we investigated whether bryostatin induced COX-2. Bryostatin (1-10 nM) induced COX-2 mRNA, COX-2 protein, and prostaglandin biosynthesis. These effects were observed in macrophages as well as in a series of human cancer cell lines. Transient transfections localized the stimulatory effects of bryostatin to the cyclic AMP response element of the COX-2 promoter. Electrophoretic mobility shift assays and supershift experiments revealed a marked increase in the binding of activator protein-1 (AP-1)(c-Jun/c-Fos) to the cyclic AMP response element of the COX-2 promoter. Pharmacological and transient transfection studies indicated that bryostatin stimulated COX-2 transcription via the protein kinase C-->mitogen-activated protein kinase-->AP-1 pathway. All-trans-retinoic acid, a prototypic AP-1 antagonist, blocked bryostatin-mediated induction of COX-2. Taken together, these results suggest that bryostatin-mediated induction of COX-2 can help to explain the myalgias that are commonly associated with treatment. Moreover, it will be worthwhile to evaluate whether the addition of a selective COX-2 inhibitor can increase the antitumor activity of bryostatin.

  15. Follicle-stimulating hormone enhances alveolar bone resorption via upregulation of cyclooxygenase-2

    Science.gov (United States)

    Zhu, Chunxia; Ji, Yaoting; Liu, Shengbo; Bian, Zhuan

    2016-01-01

    This study aimed to investigate whether follicle-stimulating hormone (FSH)-induced alveolar bone resorption was mediated by a cyclooxygenase 2 (COX-2) enzyme related mechanism. Experimental periodontitis was induced in bilateral ovariectomized (OVX) rats, some of which were injected with triptorelin, an FSH inhibitor. After mandibles were collected, we performed micro-computed tomography to evaluate alveolar bone loss and immunohistochemical staining to assess COX-2 expression. As well, human periodontal ligament cells (PDLCs) were treated with FSH (30 ng/ml), and the COX-2 mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blotting, respectively; prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay (ELISA). The results indicated that FSH significantly increased alveolar bone resorption and the expression of COX-2 in the bilateral OVX + Ligatured rats compared with the other treatment groups. FSH also increased the mRNA and protein expression of COX-2 and PGE2 (P < 0.01) in human PDLCs. Further, the analysis of signaling pathways revealed the activation of COX-2-mediated pathways including Erk, p38, and Akt. These data suggest that FSH aggravates alveolar bone loss via a COX-2-upregulation mechanism and that the Erk, p38, and Akt pathways are involved in this pathological process. PMID:27725865

  16. Induction of apoptosis by cyclooxygenase-2 inhibitors in prostate cancer cell lines.

    Science.gov (United States)

    Kamijo, T; Sato, T; Nagatomi, Y; Kitamura, T

    2001-07-01

    Prostaglandins are thought to play an important role in the proliferation of prostate cancer and are highly expressed in prostate cancer tissue. Cyclooxygenase-2 (COX-2), or prostaglandin endoperoxide synthase, is a key enzyme in the conversion of arachidonic acid into prostaglandin. In several cancers, COX-2 contributes to the proliferation and metastasis of cancer cells. To assess the role of COX-2 in prostate cancer, we investigated whether the inhibition of COX-2 affected the proliferation of prostate cancer cells. The human prostate cancer cell lines, LNCaP and PC 3, and a normal prostate stromal cell line (PrSC) were treated with COX-2 inhibitors NS 398 and Etodolac. The proliferation rate of the cell lines was examined using 3(4,5-dimethylethiazoly 1-2-) 2,5-diphonyl tetrazolium bromide (MTT) assays. A DNA fragmentation assay was also used for proof of apoptosis. COX-2 inhibitors could suppress the proliferation of LNCaP and PC 3 cells. In contrast, PrSC was not affected by COX-2 inhibitors. These suppressive effects occurred in a time- and dose-dependent manner. One of mechanisms responsible for cell death was apoptosis. COX-2 seems to play a significant role in the progression of prostate cancer. COX-2 may be a therapeutic target for prostate cancer. Since COX-2 inhibitors suppress proliferation and induce apoptosis in prostate cancer cells, and have no effect in normal prostate stromal cells, COX-2 inhibitors will be useful for the treatment of prostate cancer.

  17. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer.

    Science.gov (United States)

    Uotila, P; Valve, E; Martikainen, P; Nevalainen, M; Nurmi, M; Härkönen, P

    2001-02-01

    Cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase-2 (NOS-2) each have an important role in angiogenesis. The expression of these genes was investigated in human prostate cancer by immunohistochemistry, the expression of COX-1 and COX-2 being confirmed by mRNA analysis. Prostate cancer specimens from 12 patients were compared to control prostates from 13 patients operated on for bladder carcinoma. The intensity of COX-2 and NOS-2 immunostaining was significantly stronger in prostate cancer cells than in the non-malignant glandular epithelium of the control prostates. COX-2 and NOS-2 were clearly also expressed in the lesions of prostatic intraepithelial neoplasia (PIN) in control prostates. COX-2 was detected in the muscle fibres of the hyperplastic stroma of some control prostates. No significant difference was detected in COX-1 expression between control and cancer prostates. These results indicate that the expression of COX-2 and NOS-2 is elevated in prostatic adenocarcinoma and in PIN.

  18. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    Directory of Open Access Journals (Sweden)

    Lisa Y. Pang

    2016-01-01

    Full Text Available Cyclooxygenase-2 (COX-2 is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2, a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.

  19. Fluorocoxib A loaded nanoparticles enable targeted visualization of cyclooxygenase-2 in inflammation and cancer.

    Science.gov (United States)

    Uddin, Md Jashim; Werfel, Thomas A; Crews, Brenda C; Gupta, Mukesh K; Kavanaugh, Taylor E; Kingsley, Philip J; Boyd, Kelli; Marnett, Lawrence J; Duvall, Craig L

    2016-06-01

    Cyclooxygenase-2 (COX-2) is expressed in virtually all solid tumors and its overexpression is a hallmark of inflammation. Thus, it is a potentially powerful biomarker for the early clinical detection of inflammatory disease and human cancers. We report a reactive oxygen species (ROS) responsive micellar nanoparticle, PPS-b-POEGA, that solubilizes the first fluorescent COX-2-selective inhibitor fluorocoxib A (FA) for COX-2 visualization in vivo. Pharmacokinetics and biodistribution of FA-PPS-b-POEGA nanoparticles (FA-NPs) were assessed after a fully-aqueous intravenous (i.v.) administration in wild-type mice and revealed 4-8 h post-injection as an optimal fluorescent imaging window. Carrageenan-induced inflammation in the rat and mouse footpads and 1483 HNSCC tumor xenografts were successfully visualized by FA-NPs with fluorescence up to 10-fold higher than that of normal tissues. The targeted binding of the FA cargo was blocked by pretreatment with the COX-2 inhibitor indomethacin, confirming COX-2-specific binding and local retention of FA at pathological sites. Our collective data indicate that FA-NPs are the first i.v.-ready FA formulation, provide high signal-to-noise in inflamed, premalignant, and malignant tissues, and will uniquely enable clinical translation of the poorly water-soluble FA compound.

  20. Cyclooxygenase-2 inhibitor, celecoxib, inhibits leiomyoma cell proliferation through the nuclear factor κB pathway.

    Science.gov (United States)

    Park, Seung Bin; Jee, Byung Chul; Kim, Seok Hyun; Cho, Yeon Jean; Han, Myoungseok

    2014-09-01

    Our aim was to investigate whether celecoxib, a cyclooxygenase 2 (COX-2) inhibitor, decreases the in vitro proliferation of leiomyoma cells if the inflammatory pathway is blocked. Menstruation is an inflammation of uterus that produces cytokines and prostanoids, but the inflammatory mechanism underlying the growth of leiomyoma remains unexplained. Using in vitro cultures of leiomyoma cells obtained from 5 patients who underwent hysterectomy, cell proliferation, inflammatory signaling, transcription factors, growth factors, and extracellular matrix were examined by (4,5-dimethylthiaxol-2-yi)-2,5-diphenyltetraxolium bromide assay, immunoblotting, and quantitative polymerase chain reaction. Prostaglandin E2 was used to induce menstruation-like condition in the cells. We found that celecoxib inhibited COX-2 through the expression of nuclear factor κB in the cells. Celcoxib also decreased the gene expression of interleukin 6, tumor necrosis factor α, collagen A, fibronectin, platelet-derived growth factor, epidermal growth factor, and transforming growth factor β. In conclusion, the present study indicated that celecoxib could inhibit leiomyoma cell proliferation through blocking the inflammatory pathway that is probably one of the mechanisms underlying its pathogenesis.

  1. Induction of Cyclooxygenase 2 by Streptococcus pyogenes Is Mediated by Cytolysins.

    Science.gov (United States)

    Blaschke, Ulrike; Beineke, Andreas; Klemens, Johanna; Medina, Eva; Goldmann, Oliver

    2017-08-17

    Prostaglandin E2 (PGE2), an arachidonic acid metabolite regulating a broad range of physiological activities, is an important modulator of the severity of infection caused by Streptococcus pyogenes. Here, we investigated the role of streptococcal cytolysin S (SLS) and streptococcal cytolysin O (SLO) in the induction of cyclooxygenase-2 (COX-2), the rate-limiting enzyme in the synthesis of prostaglandins, in in vitro cultured macrophages and during in vivo infection. Macrophages were infected with S. pyogenes wild type or with the isogenic mutant strains deficient in SLS (ΔSLS), SLO (ΔSLO), or both (ΔSLS/ΔSLO), and the expression of COX-2 was determined at the transcriptional and the protein level. The results indicated that S. pyogenes induced expression of COX-2 and concomitant synthesis of PGE2 in macrophages mediated by the synergistic activity of both SLS and SLO, and involved calcium and the PKC/JNK signaling pathway. These results were validated using recombinant cytolysins. In a murine skin infection model, COX-2-positive cells were found more abundant at the site of S. pyogenes wild-type infection than at the site of infection with ΔSLS/ΔSLO mutant strain. These findings suggest that inhibitory targeting of SLS and SLO could ameliorate the adverse effects of high levels of prostaglandins during S. pyogenes infection. © 2017 S. Karger AG, Basel.

  2. Characterization of Eicosanoids Produced by Adipocyte Lipolysis: IMPLICATION OF CYCLOOXYGENASE-2 IN ADIPOSE INFLAMMATION.

    Science.gov (United States)

    Gartung, Allison; Zhao, Jiawei; Chen, Simon; Mottillo, Emilio; VanHecke, Garrett C; Ahn, Young-Hoon; Maddipati, Krishna Rao; Sorokin, Andrey; Granneman, James; Lee, Menq-Jer

    2016-07-29

    Excessive adipocyte lipolysis generates lipid mediators and triggers inflammation in adipose tissue. However, the specific roles of lipolysis-generated mediators in adipose inflammation remain to be elucidated. In the present study, cultured 3T3-L1 adipocytes were treated with isoproterenol to activate lipolysis and the fatty acyl lipidome of released lipids was determined by using LC-MS/MS. We observed that β-adrenergic activation elevated levels of approximately fifty lipid species, including metabolites of cyclooxygenases, lipoxygenases, epoxygenases, and other sources. Moreover, we found that β-adrenergic activation induced cyclooxygenase 2 (COX-2), not COX-1, expression in a manner that depended on activation of hormone-sensitive lipase (HSL) in cultured adipocytes and in the epididymal white adipose tissue (EWAT) of C57BL/6 mice. We found that lipolysis activates the JNK/NFκB signaling pathway and inhibition of the JNK/NFκB axis abrogated the lipolysis-stimulated COX-2 expression. In addition, pharmacological inhibition of COX-2 activity diminished levels of COX-2 metabolites during lipolytic activation. Inhibition of COX-2 abrogated the induction of CCL2/MCP-1 expression by β-adrenergic activation and prevented recruitment of macrophage/monocyte to adipose tissue. Collectively, our data indicate that excessive adipocyte lipolysis activates the JNK/NFκB pathway leading to the up-regulation of COX-2 expression and recruitment of inflammatory macrophages. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. 环氧化酶-2抑制剂帕瑞昔布对急性芬太尼诱导的大鼠痛觉过敏的抑制作用%The Inhibitant Effects Of Parecoxib, A Cyclooxygenase-2 Inhibitor, in Acute Fentanyl Induced Hyperalgesia in Rats

    Institute of Scientific and Technical Information of China (English)

    舒海华; 李桥波; 叶芳; 黄文起

    2015-01-01

    Objective To investigate the inhibitant effects of parecoxib, a cyclooxygenase-2 (COX-2) inhibitor, in acute fentanyl induced hyperalgesia in rats. Methods (1) Thirty SD rats (n=6 for each group) were subcutaneously injected with fentanyl (40 μg/kg × 4 times with a 15 min-interval) or saline to establish acute fentanyl induced hyperalgesia model, andparecoxib (5, 10 mg/kg) was administrated intraperitoneally in parecoxib group. Mechanical nociceptive thresholds were measured by the tail pressure test every hour during 1~4 hours and once a day during 1~5 days. (2) 24 SD rats (n = 6 foreach group) were subcutaneously injected with fentanyl as above described and randomly administrated intraperitoneally with parecoxib in 10 mg/kg in 15 min before and at the 4th hour and the 1st day after fentanyl injection except rats in the control group, mechanical nociceptive thresholds were measured by the tail pressure test at time points as above described. Results (1)Acute high dose fentanyl injection induced mechanical hyperalgesia and parecoxib (at 5 or 10 mg/kg)inhibited fentanyl induced hyperalgesia in rats. (2)Parecoxib inhibited fentanyl induced hyperalgesia at 15 min before and at the 4th hour after, but not on the 1st day after fentanyl injection. Conclusions This study provides the first evidence that subanalgesia doses of parecoxib had inhibitory effects on acute fentanyl induced hyperalgesia in time-dependent manners in rats.%目的:了解不同剂量和给药时间点下环氧化酶-2抑制剂帕瑞昔布对急性芬太尼诱导的大鼠机械痛觉过敏的作用。方法:(1)30只SD大鼠随机分为5组(n =6):生理盐水组、芬太尼组、芬太尼对照组、帕瑞昔布低剂量组和高剂量组,分别于皮下注射芬太尼或生理盐水,并在之前15 min腹腔内注射生理盐水或帕瑞昔布5或10 mg/kg,在芬太尼注射前、注射后第1~4小时每小时和第1~5天每天进行压尾测试

  4. Cyclooxygenase-2 and Ki67 Expression in Oral Leukoplakia: a Clinicopathological Study

    Directory of Open Access Journals (Sweden)

    Alper Sinanoglu

    2015-06-01

    Full Text Available Objectives: Oral leukoplakia is a precancerous lesion of the oral mucosa. The upregulation of Ki67 and cyclooxygenase-2 has been reported in both dysplastic and non-dysplastic tissues. The aim of this clinicopathological study was to investigate the prognostic value of Ki67 and cyclooxygenase-2 expression for oral leukoplakia. Material and Methods: A total of 50 samples were investigated and the study group consisted of 30 oral leukoplakia samples. Samples of 10 intact oral mucosa and 10 squamous cell carcinoma were included as negative and positive control groups, respectively. Epithelial dysplasia was defined as oral intraepithelial neoplasia (OIN and classified into subgroups 1 - 3. Tissue samples were assessed immunohistochemically for Ki67 and cyclooxygenase-2 expression. Clinicopathological correlations of oral leukoplakia patients were also investigated. Results: All OIN 3 patients were non-smokers (P < 0.05, and homogeneous oral leukoplakia lesions also presented OIN. Both cyclooxygenase-2 and Ki67 expression increased with the severity of lesions, which defined different subgroups (P < 0.05, except there was no significant difference between the hyperkeratosis and OIN groups for Ki67 expression. Conclusions: Cyclooxygenase-2 and Ki67 expression may have a prognostic value for the malignant transformation of oral leukoplakia.

  5. A novel gliotic P2 receptor mediating cyclooxygenase-2 induction in rat and human astrocytes.

    Science.gov (United States)

    Brambilla, R; Ceruti, S; Malorni, W; Cattabeni, F; Abbracchio, M P

    2000-07-01

    In astrocytic cultures maintained in vitro, a brief challenge with the ATP analog alpha,beta methyleneATP (alpha,betameATP) results, 3 days later, in marked elongation of astrocytic processes, an event that resembles the astrocytic hypertrophy known to occur in vivo during reactive astrogliosis. alpha,beta meATP-induced effects were observed in primary astrocytes obtained from both rat striatum and cortex (a brain area highly involved in chronic neurodegenerative pathologies), as well as in human astrocytoma cells (ADF cells). Purine-induced gliosis could be reversed by the non-selective P2X/P2Y receptor antagonist pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS), but not by oxidized ATP (an antagonist of the P2X(7) receptor), in line with previous studies of our laboratory suggesting the involvement of a P2Y receptor subtype. Induction of reactive gliosis was preceded by increased expression of cyclooxygenase-2 (COX-2), an enzyme whose excessive activation has been implicated in both acute and chronic neurodegenerative diseases. The selective COX-2 inhibitor NS-398 prevented both purine-induced astrogliosis and the associated COX-2 induction, suggesting that inhibition of the transcription of the COX-2 gene may also contribute to the anti-inflammatory properties of this agent. Significant blockade of both alpha,beta meATP-mediated reactive gliosis and COX-2 induction was also observed with PPADS. These data suggest that COX-2 mediates P2Y receptor-induced reactive astrogliosis, and that antagonists selective for this receptor subtype may represent a novel class of anti-inflammatory agents of potential interest in acute and chronic neurological disorders characterized by an inflammatory component and reactive gliosis.

  6. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours

    DEFF Research Database (Denmark)

    Wang, Jinmei; Wu, Yazhen; Heegaard, Steffen;

    2011-01-01

    using antibodies against COX-2 was performed on paraffin sections of normal human eyes and selected eye tumours arising from cells expressing COX-2. Results: Cyclooxygenase-2 expression was found in various structures of the normal eye. Abundant expression was seen in the cornea, iris, ciliary body......Purpose: Cyclooxygenase-2 (COX-2) is an enzyme involved in neoplastic processes. The purpose of the present study is to investigate COX-2 expression in the normal human eye and the expression pattern in selected eye tumours involving COX-2 expressing cells. Methods: Immunohistochemical staining...... and retina. The COX-2 expression was less in tumours deriving from the ciliary epithelium and also in retinoblastoma. Conclusion: Cyclooxygenase-2 is constitutively expressed in normal human eyes. The expression of COX-2 is much lower in selected eye tumours involving COX-2 expressing cells....

  7. Citronellol and geraniol, components of rose oil, activate peroxisome proliferator-activated receptor α and γ and suppress cyclooxygenase-2 expression.

    Science.gov (United States)

    Katsukawa, Michiko; Nakata, Rieko; Koeji, Satomi; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu

    2011-01-01

    We evaluated the effects of rose oil on the peroxisome proliferator-activated receptor (PPAR) and cyclooxygenase-2 (COX-2). Citronellol and geraniol, the major components of rose oil, activated PPARα and γ, and suppressed LPS-induced COX-2 expression in cell culture assays, although the PPARγ-dependent suppression of COX-2 promoter activity was evident only with citronellol, indicating that citronellol and geraniol were the active components of rose oil.

  8. The prostaglandin E2 receptor EP2 is required for cyclooxygenase 2-mediated mammary hyperplasia.

    Science.gov (United States)

    Chang, Sung-Hee; Ai, Youxi; Breyer, Richard M; Lane, Timothy F; Hla, Timothy

    2005-06-01

    Expression of cyclooxygenase 2 (COX-2) in breast cancer correlates with poor prognosis, and COX-2 enzyme inhibitors reduce breast cancer incidence in humans. We recently showed that COX-2 overexpression in the mammary gland of transgenic mice induced mammary cancer. Because prostaglandin E2 (PGE2) is the major eicosanoid and because the EP2 subtype of the PGE2 receptor is highly expressed in the mammary tumors, we tested if this G protein-coupled receptor is required for tumorigenesis. We crossed the MMTV-COX-2 transgenic mice with Ep2-/- mice and studied tumor development in bigenic mice. Lack of EP2 receptor strongly suppressed COX-2-induced effects such as precocious development of the mammary gland in virgins and the development of mammary hyperplasia in multiparous female mice. Interestingly, the expression of amphiregulin, a potent mammary epithelial cell growth factor was down regulated in mammary glands of Ep2-/- mice. Total cyclic AMP (cAMP) levels were reduced in Ep2-/- mammary glands suggesting that PGE2 signaling via the EP2 receptor activates the Gs/cAMP/protein kinase A pathway. In mammary tumor cell lines, expression of the EP2 receptor followed by treatment with CAY10399, an EP2-specific agonist, strongly induced amphiregulin mRNA levels in a protein kinase A-dependent manner. These data suggest that PGE2 signaling via the EP2 receptor in mammary epithelial cells regulate mammary gland hyperplasia by the cAMP-dependent induction of amphiregulin. Inhibition of the EP2 pathway in the mammary gland may be a novel approach in the prevention and/or treatment of mammary cancer.

  9. Peroxisome proliferator-activated receptor-gamma suppresses cyclooxygenase-2 expression in human prostate cells.

    Science.gov (United States)

    Sabichi, Anita L; Subbarayan, Vemparala; Llansa, Norma; Lippman, Scott M; Menter, David G

    2004-11-01

    Recent studies have found that cyclooxygenase-2 (COX-2) protein expression was low and inducible with cytokines in prostate cancer cells (in the absence of serum) and that, in contrast, COX-2 expression was high in normal prostate epithelial cells (EC). Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) was expressed at high levels in the prostate cancer cell line PC-3 but not in ECs. In contrast to previous findings by others, PPAR-gamma ligands did not induce PPAR-gamma expression in EC or PC-3. The present study examined the relationship between PPAR-gamma and COX-2 expression patterns in EC and PC-3 in the presence and absence of serum and/or the PPAR-gamma agonist 15-deoxy-Delta12,14-prostaglandin J(2) (15d-PGJ(2)). We also evaluated the effects that the forced expression of PPAR-gamma1 and PPAR-gamma2 had on COX-2 in ECs. We found that expression of PPAR-gamma and COX-2 protein was inversely correlated in ECs and PC-3. Low COX-2 expression in PC-3 was up-regulated by serum, and 15d-PGJ(2) blocked serum-induced COX-2 expression and activity in a dose-dependent manner. 15d-PGJ(2) had no effect on COX-2 expression in ECs or PPAR-gamma expression in either cell type. However, forced expression of PPAR-gamma1 or PPAR-gamma2 in ECs suppressed the high level of endogenous COX-2. This effect was not isoform specific and was augmented by 15d-PGJ(2). The present study showed that PPAR-gamma activation can be an important regulator of COX-2 in prostate cells and may be an important target for prostate cancer chemoprevention.

  10. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention.

    Science.gov (United States)

    Chun, Kyung-Soo; Surh, Young-Joon

    2004-09-15

    Expression of cyclooxygenase-2 (COX-2) has been reported to be elevated in human colorectal adenocarcinoma and other tumors, including those of breast, cervical, prostate, and lung. Genetic knock-out or pharmacological inhibition of COX-2 has been shown to protect against experimentally-induced carcinogenesis. Results from epidemiological and laboratory studies indicate that regular intake of selective COX-2 inhibitors reduces the risk of several forms of human malignancies. Thus, it is conceivable that targeted inhibition of abnormally or improperly elevated COX-2 provides one of the most effective and promising strategies for cancer chemoprevention. The COX-2 promoter contains a TATA box and binding sites for several transcription factors including nuclear factor-kappaB (NF-kappaB), nuclear factor for interleukin-6/CCAAT enhancer-binding protein (NF-IL6/C/EBP) and cyclic AMP response element (CRE) binding protein. Upregulation of COX-2 is mediated by a variety of stimuli including tumor promoters, oncogenes, and growth factors. Stimulation of either protein kinase C (PKC) or Ras signaling enhances mitogen-activated protein kinase (MAPK) activity, which, in turn, activates transcription of cox-2. Celecoxib, the first US FDA approved selective COX-2 inhibitor, initially developed for the treatment of adult rheumatoid arthritis and osteoarthritis, has been reported to reduce the formation of polyps in patients with familial adenomatous polyposis. This COX-2 specific inhibitor also protects against experimentally-induced carcinogenesis, but the underlying molecular mechanisms are poorly understood. The present review covers the signal transduction pathways responsible for regulating COX-2 expression as novel molecular targets of chemopreventive agents with celecoxib as a specific example.

  11. Identification of novel Cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo

    Directory of Open Access Journals (Sweden)

    Wiedenmann Bertram

    2009-03-01

    Full Text Available Abstract Background Helicobacter pylori is a crucial determining factor in the pathogenesis of benign and neoplastic gastric diseases. Cyclooxygenase-2 (Cox-2 is the inducible key enzyme of arachidonic acid metabolism and is a central mediator in inflammation and cancer. Expression of the Cox-2 gene is up-regulated in the gastric mucosa during H. pylori infection but the pathobiological consequences of this enhanced Cox-2 expression are not yet characterized. The aim of this study was to identify novel genes down-stream of Cox-2 in an in vivo model, thereby identifying potential targets for the study of the role of Cox- 2 in H. pylori pathogenesis and the initiation of pre- cancerous changes. Results Gene expression profiles in the gastric mucosa of mice treated with a specific Cox-2 inhibitor (NS398 or vehicle were analysed at different time points (6, 13 and 19 wk after H. pylori infection. H. pylori infection affected the expression of 385 genes over the experimental period, including regulators of gastric physiology, proliferation, apoptosis and mucosal defence. Under conditions of Cox-2 inhibition, 160 target genes were regulated as a result of H. pylori infection. The Cox-2 dependent subset included those influencing gastric physiology (Gastrin, Galr1, epithelial barrier function (Tjp1, connexin45, Aqp5, inflammation (Icam1, apoptosis (Clu and proliferation (Gdf3, Igf2. Treatment with NS398 alone caused differential expression of 140 genes, 97 of which were unique, indicating that these genes are regulated under conditions of basal Cox-2 expression. Conclusion This study has identified a panel of novel Cox-2 dependent genes influenced under both normal and the inflammatory conditions induced by H. pylori infection. These data provide important new links between Cox-2 and inflammatory processes, epithelial repair and integrity.

  12. Effects of cyclooxygenase-2 on sinusoidal capillarization in cirrhotic rats induced by carbon tetrachloride%环氧合酶-2在四氯化碳诱导肝硬化大鼠肝窦毛细血管化形成中的作用

    Institute of Scientific and Technical Information of China (English)

    涂传涛; 王吉耀; 郭津生

    2009-01-01

    目的 观察环氧合酶-2(COX-2)在实验性肝硬化大鼠肝窦毛细血管化形成中的作用.方法 腹腔注射CCl4每周2次共8周诱导雄性SD大鼠肝硬化模型.将SD大鼠分成3组:正常对照组(n=10)、模型对照组(n=15)和罗非昔布治疗组(10 mg·kg-1·d-1,n=15).光镜下观察肝组织标本,电镜观察肝窦超微结构改变.用Western印迹和免疫组化法检测基底膜蛋白主要成分层粘连蛋白(LN)和Ⅳ型胶原,同时通过Ⅷ因子相关抗原(vWF)免疫组化标记微血管牛成密度.结果 与模型对照组相比,罗非昔布干预治疗能减少肝纤维化面积(分别为30.7±8.9和23.5±6.5,P<0.05).光镜及电镜提示,在模型对照组可见肝窦内皮细胞窗孔减少、缩小,有完整的基底膜形成,Disse腔隙内有大量的胶原纤维沉积,罗非昔布组上述病变有所减轻.随着肝硬化的形成,肝组织微血管密度明显升高,罗非昔布组肝组织微血管密度(6.4±0.7)较模型对照组(11.3±1.6)明显降低(P<0.01).肝硬化时肝组织表达Ⅳ型胶原和LN蛋白明显增加(分别为3.8±0.4和3.7±0.5),罗非昔布能降低Ⅳ犁胶原和LN的表达(分别为3.0±0.5和3.0±0.5;与模型对照组相比两者均为Pcyclooxygenase-2 (COX-2) in sinusoidal capillarization in liver cirrhotic rats. Methods The SD rats were intraperitoneally injected with carbon tetrachloride (CCl4) twice a week for 8 weeks to induce liver cirrhosis. The rats were randomly divided into three groups: normal control group (n= 10), model control group (n= 15) and rofecoxib treated group (received 10 mg/kg of rofecoxib daily, n = 15). Liver histopathology was examined by light microscopy, and sinusoidal ultrastructure was observed by transmission electron microscopy. Furthermore, the level of basement membrane proteins (collagen type

  13. Aromatase, cyclooxygenase 2, HER-2/neu, and p53 as prognostic factors in endometrioid endometrial cancer

    NARCIS (Netherlands)

    Jongen, Vincent H. W. M.; Briet, Justine M.; de Jong, Renske A.; Joppe, Erna; ten Hoor, Klaske A.; Boezen, H. M.; Evans, Dean B.; Hollema, Harry; van der Zee, Ate G. J.; Nijman, Hans W.

    2009-01-01

    The prognostic value of aromatase, cyclooxygenase 2 (COX-2), HER-2/neu, and p53 expression was determined in endometrioid endometrial cancer. Tissue microarrays were constructed comprising samples from 315 endometrioid endometrial cancer patients. Expression of aromatase, COX-2, HER-2/neu, and p53 w

  14. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus

    Science.gov (United States)

    Rita Stanikunaite; Shabana I. Khan; James M. Trappe; Samir A. Ross

    2009-01-01

    The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inhibition of COX-2 activity at...

  15. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours

    DEFF Research Database (Denmark)

    Wang, Jinmei; Wu, Yazhen; Heegaard, Steffen;

    2011-01-01

    and retina. The COX-2 expression was less in tumours deriving from the ciliary epithelium and also in retinoblastoma. Conclusion: Cyclooxygenase-2 is constitutively expressed in normal human eyes. The expression of COX-2 is much lower in selected eye tumours involving COX-2 expressing cells....

  16. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling.

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xiao

    Full Text Available Quercetin, a polyphenolic bioflavonoid, possesses multiple pharmacological actions including anti-inflammatory and antitumor properties. However, the precise action mechanisms of quercetin remain unclear. Here, we reported the regulatory actions of quercetin on cyclooxygenase-2 (COX-2, an important mediator in inflammation and tumor promotion, and revealed the underlying mechanisms. Quercetin significantly suppressed COX-2 mRNA and protein expression and prostaglandin (PG E(2 production, as well as COX-2 promoter activation in breast cancer cells. Quercetin also significantly inhibited COX-2-mediated angiogenesis in human endothelial cells in a dose-dependent manner. The in vitro streptavidin-agarose pulldown assay and in vivo chromatin immunoprecipitation assay showed that quercetin considerably inhibited the binding of the transactivators CREB2, C-Jun, C/EBPβ and NF-κB and blocked the recruitment of the coactivator p300 to COX-2 promoter. Moreover, quercetin effectively inhibited p300 histone acetyltransferase (HAT activity, thereby attenuating the p300-mediated acetylation of NF-κB. Treatment of cells with p300 HAT inhibitor roscovitine was as effective as quercetin at inhibiting p300 HAT activity. Addition of quercetin to roscovitine-treated cells did not change the roscovitine-induced inhibition of p300 HAT activity. Conversely, gene delivery of constitutively active p300 significantly reversed the quercetin-mediated inhibition of endogenous HAT activity. These results indicate that quercetin suppresses COX-2 expression by inhibiting the p300 signaling and blocking the binding of multiple transactivators to COX-2 promoter. Our findings therefore reveal a novel mechanism of action of quercetin and suggest a potential use for quercetin in the treatment of COX-2-mediated diseases such as breast cancers.

  17. Prognostic relevance of cyclooxygenase-2 (COX-2) expression in Chinese patients with prostate cancer.

    Science.gov (United States)

    Bin, Wu; He, Wang; Feng, Zhang; Xiangdong, Lu; Yong, Chen; Lele, Kou; Hongbin, Zhang; Honglin, Guo

    2011-02-01

    Cyclooxygenase-2 (COX-2), an inducible isoform of cyclooxygenase, has been reported to be correlated with tumorigenesis, tumor progression and metastasis. The present study was designed to investigate the clinicopathological and prognostic significance of COX-2 in Chinese patients with prostate cancer. Firstly, RT-PCR and Western blot assays were performed to detect the expression of COX-2 mRNA and protein in prostate cancer cell lines and 20 tissue samples (tumor or corresponding non-tumor). Next, immunohistochemistry was performed to detect the expression of COX-2 protein in 88 prostate cancer tissue samples. Finally, the correlation between COX-2 expression and clinicopathological factors and patient survival was evaluated. We found that the expression levels of COX-2 mRNA and protein showed significant difference among four prostate cancer cell lines. Moreover, the levels of COX-2 mRNA and protein were significantly higher in prostate cancer tissues than in corresponding non-tumor tissues. COX-2 staining was positive in the cytoplasm of prostate cancer cells. High-COX-2 expression was correlated with the Gleason score (P=0.009), tumor stage (P=0.012), and lymph-node status (P=0.036). Furthermore, patients with high-COX-2 expression showed lower disease-free (P=0.014) and overall survival (P=0.047) rates than those with low-COX-2 expression. Univariate and multivariate analyses suggested that the status of COX-2 protein expression was an independent prognostic indicator for patients' survival. Taken together, higher COX-2 protein expression might provide an independent prognostic marker for Chinese patients with prostate cancer who have undergone surgery.

  18. The adverse effect of selective cyclooxygenase-2 inhibitor on random skin flap survival in rats.

    Directory of Open Access Journals (Sweden)

    Haiyong Ren

    Full Text Available BACKGROUND: Cyclooxygenase-2(COX-2 inhibitors provide desired analgesic effects after injury or surgery, but evidences suggested they also attenuate wound healing. The study is to investigate the effect of COX-2 inhibitor on random skin flap survival. METHODS: The McFarlane flap model was established in 40 rats and evaluated within two groups, each group gave the same volume of Parecoxib and saline injection for 7 days. The necrotic area of the flap was measured, the specimens of the flap were stained with haematoxylin-eosin(HE for histologic analysis. Immunohistochemical staining was performed to analyse the level of VEGF and COX-2 . RESULTS: 7 days after operation, the flap necrotic area ratio in study group (66.65 ± 2.81% was significantly enlarged than that of the control group(48.81 ± 2.33%(P <0.01. Histological analysis demonstrated angiogenesis with mean vessel density per mm(2 being lower in study group (15.4 ± 4.4 than in control group (27.2 ± 4.1 (P <0.05. To evaluate the expression of COX-2 and VEGF protein in the intermediate area II in the two groups by immunohistochemistry test .The expression of COX-2 in study group was (1022.45 ± 153.1, and in control group was (2638.05 ± 132.2 (P <0.01. The expression of VEGF in the study and control groups were (2779.45 ± 472.0 vs (4938.05 ± 123.6(P <0.01.In the COX-2 inhibitor group, the expressions of COX-2 and VEGF protein were remarkably down-regulated as compared with the control group. CONCLUSION: Selective COX-2 inhibitor had adverse effect on random skin flap survival. Suppression of neovascularization induced by low level of VEGF was supposed to be the biological mechanism.

  19. Guggulsterone of Commiphora mukul resin reverses drug resistance in imatinib-resistant leukemic cells by inhibiting cyclooxygenase-2 and P-glycoprotein.

    Science.gov (United States)

    Xu, Hong-Bin; Xu, Lu-Zhong; Mao, Xia-Ping; Fu, Jun

    2014-06-15

    The purpose of this study was to investigate the effects of guggulsterone on cyclooxygenase-2 and P-glycoprotein mediated drug resistance in imatinib-resistant K562 cells (K562/IMA). MTT cytotoxicity assay, flow cytometry, western blot analysis, and ELISA were performed to investigate the anti-proliferative effect, the reversal action of drug resistance, and the inhibitory effect on cyclooxygenase-2, P-glycoprotein, BCR/ABL kinase, and PGE2 release in K562/IMA cells by guggulsterone. The results showed that co-administration of guggulsterone resulted in a significant increase in chemo-sensitivity of K562/IMA cells to imatinib, compared with imatinib treatment alone. Rhodamine123 accumulation in K562/IMA cells was significantly enhanced after incubation with guggulsterone (60, 120 μM), compared with untreated K562/IMA cells (pP-glycoprotein and prostaglandin E2. However, guggulsterone had little inhibitory effect on the activity of BCR/ABL kinase. The present study indicates guggulsterone induces apoptosis by inhibiting cyclooxygenase-2 and down-regulating P-glycoprotein expression in K562/IMA cells.

  20. Entamoeba histolytica: inflammatory process during amoebic liver abscess formation involves cyclooxygenase-2 expression in macrophages and trophozoites.

    Science.gov (United States)

    Gutiérrez-Alarcón, A; Moguel-Torres, M; Mata-Leyva, O; Cuellar-Nevárez, G; Siqueiros-Cendón, T; Erosa, G; Ramos-Martínez, E; Talamás-Rohana, P; Sánchez-Ramírez, B

    2006-11-01

    It has been demonstrated that expression of cyclooxygenase-2 (COX-2) isoform is induced by Entamoeba histolytica in macrophages and polymorphonuclear cells during amoebic liver abscess (ALA) formation in hamsters. Trophozoites present in the lesion were also positive for COX-2 signal. However, no cross reactivity of the anti-COX-2 antibody with protein extract of cultivated trophozoites was found. To clarify if trophozoites are involved in PGE(2) production during ALA development, COX-2 expression was detected by in situ hybridization and RT-PCR in liver tissue from intrahepatically infected hamsters. COX-2 mRNA was in polymorphonuclear cells since 4h postinfection, and subsequently, local macrophages expressed COX-2 mRNA in a similar way. Additionally, a positive signal for COX-2 mRNA expression was detected in E. histolytica trophozoites, suggesting that, in vivo, parasite COX expression may be an important mechanism to promote inflammation.

  1. Cyclooxygenase-2 inhibitors in colorectal cancer prevention: point.

    Science.gov (United States)

    Arber, Nadir

    2008-08-01

    The limited success of current treatments for most advanced common malignancies highlights the importance of cancer prevention. Clinical trials on cyclooxygenase (COX) inhibitor drugs showed the potential of chemoprevention as a strategy for reducing cancer incidence, although not without associated side effects. The attractiveness of these drugs partly stems from an ability to engage multiple mechanisms of action by their potential to influence multiple components of the carcinogenesis pathway, from initiation to progression. There are two isoforms of the COX enzymes. COX-1 is constitutively expressed in normal tissues and serves as a "housekeeper" of mucosal integrity, whereas COX-2 is an immediate early response gene that is highly inducible by neoplastic and inflammatory stimuli. COX-2 is significantly overexpressed in colorectal neoplasms, making it an attractive therapeutic target. The drug market has been revolutionized by the development of preparations targeted selectively against COX-2, and a proof of concept has been achieved. Chemoprevention of colorectal cancer is already possible with celecoxib, but it is still not the ultimate drug of choice especially because of the cardiovascular risk associated with COX-2 inhibitors. Better patient selection and more effective and safer drugs are needed. Celecoxib is probably best used in a subset of individuals at moderate to high colorectal cancer risk and low risk of cardiovascular disease.

  2. The effects of cyclooxygenase-2 inhibitors on urological cancer cells.

    Science.gov (United States)

    Yoshimura, Rikio; Matsuyama, Masahide; Kawahito, Yutaka; Takemoto, Yoshiaki; Tsuchida, Kenji; Kuratsukuri, Katsuyuki; Segawa, Yoshihiro; Shinnka, Toshiaki; Sano, Hajime; Nakatani, Tatsuya

    2004-06-01

    Cyclooxygenase (COX)-2 plays an important role in the development of various cancers due to its angiogenic function. We have demonstrated that the expression of COX-2 was up-regulated in human renal cell carcinoma (RCC), bladder tumor (BT) and prostate cancer (PC). In this study, we examined the effects of COX-2 inhibitors on cell proliferation in RCC, BT and PC-derived cell lines using MTT assay and Hoechst staining. COX-2 inhibitors did not induce a reduction of cell viability with the half-maximal concentration of growth inhibition of RCC, BT and PC cell lines. Furthermore, counting cells at days 1, 2 and 3, showed no inhibition of cell proliferation using COX-2 inhibitors. COX-2 inhibitors could not stop the growth of RCC, BT and PC cells. Typical characteristics of apoptosis, i.e. chromatin condensation, cellular shrinkage, small membrane-bound bodies (apoptotic bodies) and cytoplasmic condensation, did not occur. Although the expression of COX-2 was up-regulated in human RCC, BT and PC tissues, COX-2 inhibitors have only slight anti-proliferative effects against RCC, BT and PC cells through differentiation. Thus, using only down-regulation of arachidonic acid (AA) metabolizing enzyme, COX may be an unsuccessful approach in providing new anti-cancer therapies.

  3. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors.

    Science.gov (United States)

    Masferrer, J L; Leahy, K M; Koki, A T; Zweifel, B S; Settle, S L; Woerner, B M; Edwards, D A; Flickinger, A G; Moore, R J; Seibert, K

    2000-03-01

    We provide evidence that cyclooxygenase (COX)-2-derived prostaglandins contribute to tumor growth by inducing newly formed blood vessels (neoangiogenesis) that sustain tumor cell viability and growth. COX-2 is expressed within human tumor neovasculature as well as in neoplastic cells present in human colon, breast, prostate, and lung cancer biopsy tissue. COX-1 is broadly distributed in normal, as well as in neoplastic, tissues. The contribution of COX-2 to human tumor growth was indicated by the ability of celecoxib, an agent that inhibits the COX-2 enzyme, to suppress growth of lung and colon tumors implanted into recipient mice. Mechanistically, celecoxib demonstrated a potent antiangiogenic activity. In a rat model of angiogenesis, we observe that corneal blood vessel formation is suppressed by celecoxib, but not by a COX-1 inhibitor. These and other data indicate that COX-2 and COX-2-derived prostaglandins may play a major role in development of cancer through numerous biochemical mechanisms, including stimulation of tumor cell growth and neovascularization. The ability of celecoxib to block angiogenesis and suppress tumor growth suggests a novel application of this anti-inflammatory drug in the treatment of human cancer.

  4. Effects of cyclooxygenase-2 on human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Li Zhang; Yong-Dong Wu; Peng Li; Jun Tu; Ying-Lin Niu; Cai-Min Xu; Shu-Tian Zhang

    2011-01-01

    AIM: To study the relationship between the cyclooxygenase (COX)-2 gene and the proliferation and apoptosis of esophageal squamous carcinoma EC109 cells.METHODS: The techniques of RNA interference (RNAi) and cell transfection, as well as the levels of oncogenicity in nude mice, were used to study the role of COX-2 in the esophageal squamous carcinoma cell (ESCC) line EC109. Following RNAi and transfection, Western blotting analysis was used to determine the expression of the COX-2 protein. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) reduction assay was used to evaluate cell growth, and flow cytometry was used to detect cell apoptosis.RESULTS: Western blotting analysis demonstrated that COX-2 expression was significantly reduced in EC109 cells treated with COX-2-specific short interfering RNA (siRNA) but was increased in EC109 cells transfected with COX-2. Furthermore, COX-2 siRNA treatment inhibited cell proliferation (P < 0.01) and induced apoptosis in EC109 cells, as determined by an MTT assay and by flow cytometry, respectively. In contrast, transfected COX-2 led to increased cell proliferation (P < 0.05) and decreased apoptosis in EC109 cells. In addition, combination treatment of cells with COX-2 siRNA and aspirin had a synergistic effect (P < 0.01). For experiments measuring tumorigenicity, xenograft tumors of a greater volume and weight were found in the COX-2 group compared with other groups (P < 0.05). A large dose of aspirin inhibited tumor growth in nude mice effectively (P < 0.05), and the rate of tumor suppression was 51.8% in the high-dose aspirin group.CONCLUSION: COX-2 plays a very critical role in ESCC carcinogenesis, and COX-2 siRNA combined with aspirin has the potential to be an anticancer therapy for the treatment of ESCC.

  5. 血栓素 A2受体通过介导环氧酶2的合成增强类风湿关节炎滑膜细胞的增殖作用%Thromboxane A2 receptor induces proliferation of rheumatoid arthritis synovial cells by up-regulation of cyclooxygenase-2

    Institute of Scientific and Technical Information of China (English)

    储永良; 黄清春; 黄闰月; 晏靖遥; 陈秀敏; 徐侦雄

    2014-01-01

    目的:研究血栓素A2受体(thromboxane A2 receptor, TXA2R)作为环氧酶2(cyclooxygenase-2, COX-2)下游产物对类风湿关节炎(rheumatoid arthritis,RA)滑膜细胞增殖力和COX-2表达的影响。方法:利用细胞增殖与毒性检测试剂盒(MTS)检测TXA2R拮抗剂SQ29548和激动剂U46619对RA关节滑膜细胞MH7A增殖力的影响作用,并用real-time PCR检测它们对COX-2 mRNA表达的影响;利用BrdU细胞增殖检测法观察MH7A细胞在转染COX-2小干扰RNA(small interfering RNA, siRNA)后细胞增殖受抑制的情况及额外施加U46619的可能影响。结果:SQ29548和U46619分别具有抑制和促进MH7A细胞增殖力与COX-2 mRNA表达的作用,且U46619可在一定程度上重建由COX-2 siRNA所抑制的MH7A细胞增殖力。结论:TXA2通过其受体TXA2 R既可控制COX-2的表达,又可介导COX-2的细胞增殖效应,有可能作为RA治疗较为理想的新靶标。%AIM:To examine the effects of thromboxane A 2 receptor ( TXA2 R) , the downstream product of cy-clooxygenase-2 (COX-2), on the proliferative ability and COX-2 expression in rheumatoid arthritis (RA) synovial cells. METHODS:The effects of TXA2 R antagonist SQ29548 and agonist U46619 on the proliferation of RA synovial cell line MH7A were detected by MTS cell proliferation assay , and their effects on COX-2 mRNA expression in MH7A cells were al-so examined by real-time PCR.In addition, the possible effect of U46619 on the proliferation of MH7A cells, when COX-2 was knocked down by siRNA , was determined by BrdU cell proliferation assay .RESULTS:SQ29548 inhibited the cell proliferation and the mRNA level of COX-2 while U46619 enhanced them.Moreover, U46619 reconstitute the proliferative ability of MH7A cells to some extent that inhibited by COX-2 siRNA.CONCLUSION: In RA synovial cells, TXA2R is able to control COX-2 expression, while it also mediates the effects of COX-2, suggesting that TXA2R might be an ideal

  6. PI-3K and p38MAPK Pathways Upregulate the Epidermal Growth Factor Induced Cyclooxygenase-2 Expression in PC-3 Cells%PI-3K和p38MAPK通路在EGF诱导PC-3细胞环氧化酶-2表达上调中的作用

    Institute of Scientific and Technical Information of China (English)

    贾瑞鹏; 林建中; 刘军; 苏江浩; 包卿兵; 朱佳庚

    2008-01-01

    目的:研究p38丝裂原激活蛋白激酶(p38MAPK)和磷脂酰肌醇-3激酶(PI/3K)通路在表皮生长因子(EGF)诱导的激素非依赖性前列腺癌(hormone-refractory prostate cancer,HRPC)PC-3细胞环氧化酶2(cyclooxygenase-2,COX-2)表达上调中的作用. 方法:MTT法检测EGF(0μg/L)、EGF(10 μg/L)、EGF(10μg/L)+PI-3K阻断剂(LY294002,20μmol/L)、EGF(10μg/L)+p38MAPK阻断剂(SC203580,20μmol/L)处理后的细胞增殖情况.RT-PCR和Western印迹测定上述处理24 h后PC-3细胞COX-2的表达变化,ELISA测定细胞培养液中前列腺素E2(PGE2)的变化. 结果:LY294002和SC203580明显抑制EGF刺激后的PC-3细胞增殖(P<0.05)及EGF诱导的COX-2上调和PGE2生成(P<0.05). 结论:PI-3K通路和p38MAPK通路可能参与了EGF诱导的PC-3细胞COX-2的表达上调.

  7. The relationship between angiogenesis and cyclooxygenase-2 expression in prostate cancer

    OpenAIRE

    Mukherjee, R.; Edwards, J; Underwood, M.A.; Bartlett, J M S

    2005-01-01

    OBJECTIVE: To test the hypothesis that angiogenesis in prostate cancer is associated with tumour invasion and metastasis, and that this is mediated through increased cyclooxygenase-2 (COX-2) expression.\\ud \\ud PATIENTS AND METHODS: Angiogenesis was assessed in 105 patients with either prostate cancer (79) or benign prostatic hyperplasia (BPH, 26) and these data correlated with levels of COX-2 expression in the same dataset. The mean microvessel density (MVD) was analysed as a marker of angiog...

  8. Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells

    OpenAIRE

    Ives Kirk; Chao Celia; Wen Xiaodong; Hellmich Mark R

    2011-01-01

    Abstract Background Cyclooxygenase-2 (COX-2) and the bombesin (BBS)-like peptide, gastrin-releasing peptide (GRP), have been implicated in the progression of hormone-refractory prostate cancer; however, a mechanistic link between the bioactive peptide and COX-2 expression in prostate cells has not been made. Results We report that BBS stimulates COX-2 mRNA and protein expression, and the release of prostaglandin E2 from the GRP receptor (GRPR)-positive, androgen-insensitive prostate cancer ce...

  9. Comparative analysis of clinicopathological correlations of cyclooxygenase-2 expression in resectable pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Marketa; Hermanova; Petr; Karasek; Jiri; Tomasek; Jiri; Lenz; Jiri; Jarkovsky; Petr; Dite

    2010-01-01

    AIM:To perform a comparative analysis of clinicopathological correlations of cyclooxygenase2 (COX2) expression in pancreatic cancer, examined by monoclonal and polyclonal antibodies.METHODS: The COX2 expression in 85 resection specimens of pancreatic ductal adenocarcinoma was immunohistochemically examined using both monoclonal and polyclonal antibodies. The final immunoscores were obtained by multiplying the percentage of positive cells with the numeric score reflecting the staining intensity.COX2 expressi...

  10. Selective cyclooxygenase-2 inhibition protects against myocardial damage in experimental acute ischemia

    Directory of Open Access Journals (Sweden)

    Alberto Carnieto Jr.

    2009-03-01

    Full Text Available BACKGROUND: Acute myocardial infarction is associated with tissue inflammation. Early coronary reperfusion clearly improves the outcome but may help propagate the inflammatory response and enhance tissue damage. Cyclooxygenase-2 is an enzyme that catalyzes the initial step in the formation of inflammatory prostaglandins from arachidonic acid. Cyclooxygenase-2 levels are increased when ischemic cardiac events occur. The overall function of COX-2 in the inflammatory process generated by myocardial ischemic damage has not yet been elucidated. GOAL: The objective of this study was to determine whether a selective cyclooxygenase-2 inhibitor (rofecoxib could alter the evolution of acute myocardial infarction after reperfusion. METHODS AND RESULTS: This study was performed with 48 mongrel dogs divided into two groups: controls and those treated with the drug. All animals were prepared for left anterior descending coronary artery occlusion. The dogs then underwent 180 minutes of coronary occlusion, followed by 30 minutes of reperfusion. Blood samples were collected from the venous sinus immediately before coronary occlusion and after 30 minutes of reperfusion for measurements of CPK-MB, CPK-MBm and troponin I. During the experiment we observed the mean blood pressure, heart rate and coronary flow. The coronary flow and heart rate did not change, but in the control group, there was blood pressure instability, in addition to maximal levels of CPK-MB post-infarction. The same results were observed for CPK-MBm and troponin I. CONCLUSION: In a canine model of myocardial ischemia-reperfusion, selective inhibition of Cyclooxygenase-2 with rofecoxib was not associated with early detrimental effects on the hemodynamic profile or the gross extent of infarction; in fact, it may be beneficial by limiting cell necrosis.

  11. COMPARISON OF SELECTIVE AND NON SELECTIVE CYCLO-OXYGENASE 2 INHIBITORS IN EXPERIMENTAL COLITIS EXACERBATION: role of leukotriene B4 and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    José Wander BREGANÓ

    2014-09-01

    Full Text Available Context Nonsteroidal anti-inflammatory drugs are considered one of the most important causes of reactivation of inflammatory bowel disease. With regard to selective cyclo-oxygenase 2 inhibitors, the results are controversial in experimental colitis as well as in human studies. Objectives The aim this study is to compare nonsteroidal anti-inflammatory drugs effects, selective and non selective cyclo-oxygenase 2 inhibitors, in experimental colitis and contribute to the understanding of the mechanisms which nonsteroidal anti-inflammatory drugs provoke colitis exacerbation. Methods Six groups of rats: without colitis, with colitis, and colitis treated with celecoxib, ketoprofen, indometacin or diclofenac. Survival rates, hemoglobin, plasmatic albumin, colonic tissue of interleukin-1ß, interleukin-6, tumor necrosis factor alpha, prostaglandin E2, catalase, superoxide dismutase, thiobarbituric acid-reactive substances, chemiluminescence induced by tert-butil hydroperoxides, and tissue and plasmatic leukotriene B4 were determined. Results The groups treated with diclofenac or indometacin presented lower survival rates, hemoglobin and albumin, higher tissue and plasmatic leukotriene B4 and tissue superoxide dismutase than the group treated with celecoxib. Ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib, concerning to survival rate and albumin. The groups without colitis, with colitis and with colitis treated with celecoxib showed leukotriene B4 and superoxide dismutase lower levels than the groups treated with nonselective cyclo-oxygenase 2 inhibitors. Conclusions Diclofenac and indometacin presented the highest degree of induced colitis exacerbation with nonsteroidal anti-inflammatory drugs, celecoxib did not show colitis exacerbation, and ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib. These results suggest that leukotriene B4 and superoxide dismutase can be

  12. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Jiang

    Full Text Available BACKGROUND: Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH. Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT-induced PAH via producing vasoprotective substances in a paracrine fashion. METHODS AND RESULTS: Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2 expression, prostacyclin (PGI2 and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. CONCLUSIONS: Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.

  13. Prolactin (PRL) induction of cyclooxygenase 2 (COX2) expression and prostaglandin (PG) production in hamster Leydig cells.

    Science.gov (United States)

    Matzkin, María Eugenia; Ambao, Verónica; Carino, Mónica Herminia; Rossi, Soledad Paola; González, Lorena; Turyn, Daniel; Campo, Stella; Calandra, Ricardo Saúl; Frungieri, Mónica Beatriz

    2012-01-02

    Serum prolactin (PRL) variations play a crucial role in the photoperiodic-induced testicular regression-recrudescence transition in hamsters. We have previously shown that cyclooxygenase 2 (COX2), a key enzyme in the biosynthesis of prostaglandins (PGs), is expressed mostly in Leydig cells of reproductively active hamsters with considerable circulating and pituitary levels of PRL. In this study, we describe a stimulatory effect of PRL on COX2/PGs in hamster Leydig cells, which is mediated by IL-1β and prevented by P38-MAPK and JAK2 inhibitors. Furthermore, by preparative isoelectric focusing (IEF), we isolated PRL charge analogues from pituitaries of active [isoelectric points (pI): 5.16, 4.61, and 4.34] and regressed (pI: 5.44) hamsters. More acidic PRL charge analogues strongly induced COX2 expression, while less acidic ones had no effect. Our studies suggest that PRL induces COX2/PGs in hamster Leydig cells through IL-1β and activation of P38-MAPK and JAK2. PRL microheterogeneity detected in active/inactive hamsters may be responsible for the photoperiodic variations of COX2 expression in Leydig cells.

  14. Down regulation of cyclooxygenase-2 is involved in delayed neuroprotec-tion by ischemic preconditioning in rats

    Institute of Scientific and Technical Information of China (English)

    Liang XIAO; Fei-li ZHAO; Xing-zu ZHU

    2005-01-01

    Aim: To examine whether the prostaglandins (PGs) pathway is involved in triggering delayed neuroprotection by ischemic preconditioning (IPC) and evaluate the effects of IPC on cyclooxygenase-2 (COX-2) expression following focal cerebral ischemia and reperfusion in rats. Methods: IPC was induced by 10 min of saline infusion into the left internal carotid artery with the right common carotid artery clamped at the same time. Middle cerebral artery occlusion (MCAO) and reperfusion model was produced using intraluminal filament method. Results: IPC 48 h prior to MCAO significantly reduced infarct area as compared with MCAO alone. A nonselective inhibitor of COX indomethacin (3 mg/kg ip) applied 1 h prior to or 1 h after IPC failed to affect its protective effects. IPC had no direct effect on the cortex COX-2 mRNA and protein expression 72 h later, but decreased the expres sion of COX-2 mRNA and protein following ischemia and reperfusion insult. Conclusion: PGs pathways was not involved in triggering delayed neuroprotection by IPC, and IPC induced down-regulation of COX-2 following focal cerebral ischemia and reperfusion in rats in vivo.

  15. Inhibition of cyclo-oxygenase 2 reduces tumor metastasis and inflammatory signaling during blockade of vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Fisher Jason C

    2011-10-01

    Full Text Available Abstract Vascular endothelial growth factor (VEGF blockade is an effective therapy for human cancer, yet virtually all neoplasms resume primary tumor growth or metastasize during therapy. Mechanisms of progression have been proposed to include genes that control vascular remodeling and are elicited by hypoperfusion, such as the inducible enzyme cyclooxygenase-2 (COX-2. We have previously shown that COX-2 inhibition by the celecoxib analog SC236 attenuates perivascular stromal cell recruitment and tumor growth. We therefore examined the effect of combined SC236 and VEGF blockade, using the metastasizing orthotopic SKNEP1 model of pediatric cancer. Combined treatment perturbed tumor vessel remodeling and macrophage recruitment, but did not further limit primary tumor growth as compared to VEGF blockade alone. However, combining SC236 and VEGF inhibition significantly reduced the incidence of lung metastasis, suggesting a distinct effect on prometastatic mechanisms. We found that SC236 limited tumor cell viability and migration in vitro, with effects enhanced by hypoxia, but did not change tumor proliferation or matrix metalloproteinase expression in vivo. Gene set expression analysis (GSEA indicated that the addition of SC236 to VEGF inhibition significantly reduced expression of gene sets linked to macrophage mobilization. Perivascular recruitment of macrophages induced by VEGF blockade was disrupted in tumors treated with combined VEGF- and COX-2-inhibition. Collectively, these findings suggest that during VEGF blockade COX-2 may restrict metastasis by limiting both prometastatic behaviors in individual tumor cells and mobilization of macrophages to the tumor vasculature.

  16. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats.

    Science.gov (United States)

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Jung, Eui-Man; Kang, Hong-Seok; Choi, In-Gyu; Park, Mi-Jin; Jeung, Eui-Bae

    2013-07-01

    Essential oils are concentrated hydrophobic liquids containing volatile aromatic compounds from plants. In the present study, the essential oil of Chamaecyparis obtusa (C. obtusa), which is commercially used in soap, toothpaste and cosmetics, was extracted. Essential oil extracted from C. obtusa contains several types of terpenes, which have been shown to have anti-oxidative and anti-inflammatory effects. In the present study, we examined the anti-inflammatory effects of C. obtusa essential oil in vivo and in vitro following the induction of inflammation by lipopolysaccharides (LPS) in rats. While LPS induced an inflammatory response through the production of prostaglandin E2 (PGE2) in the blood and peripheral blood mononuclear cells (PMNCs), these levels were reduced when essential oil was pre-administered. Additionally, the mechanism of action underlying the anti-inflammatory effects of C. obtusa essential oil was investigated by measuring the mRNA expression of inflammation‑associated genes. LPS treatment significantly induced the expression of transforming growth factor α (TNFα) and cyclooxygenase-2 (COX-2) in rats, while C. obtusa essential oil inhibited this effect. Taken together, our results demonstrate that C. obtusa essential oil exerts anti‑inflammatory effects by regulating the production of PGE2 and TNFα gene expression through the COX-2 pathway. These findings suggest that C. obtusa essential oil may constitute a novel source of anti-inflammatory drugs.

  17. DNA damage drives an activin a-dependent induction of cyclooxygenase-2 in premalignant cells and lesions.

    Science.gov (United States)

    Fordyce, Colleen; Fessenden, Tim; Pickering, Curtis; Jung, Jason; Singla, Veena; Berman, Hal; Tlsty, Thea

    2010-02-01

    Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in the synthesis of prostaglandins. Its overexpression induces numerous tumor-promoting phenotypes and is associated with cancer metastasis and poor clinical outcome. Although COX-2 inhibitors are promising chemotherapeutic and chemopreventative agents for cancer, the risk of significant cardiovascular and gastrointestinal complications currently outweighs their potential benefits. Systemic complications of COX-2 inhibition could be avoided by specifically decreasing COX-2 expression in epithelial cells. To that end, we have investigated the signal transduction pathway regulating the COX-2 expression in response to DNA damage in breast epithelial cells. In variant human mammary epithelial cells that have silenced p16 (vHMEC), double-strand DNA damage or telomere malfunction results in a p53- and activin A-dependent induction of COX-2 and continued proliferation. In contrast, telomere malfunction in HMEC with an intact p16/Rb pathway induces cell cycle arrest. Importantly, in ductal carcinoma in situ lesions, high COX-2 expression is associated with high gammaH2AX, TRF2, activin A, and telomere malfunction. These data show that DNA damage and telomere malfunction can have both cell-autonomous and cell-nonautonomous consequences and can provide a novel mechanism for the propagation of tumorigenesis.

  18. Constant expression of cyclooxygenase-2 gene in prostate and the lower urinary tract of estrogen-treated male rats.

    Science.gov (United States)

    Luo, C; Strauss, L; Ristimäki, A; Streng, T; Santti, R

    2001-01-01

    Expression of cyclooxygenase-2 (E. C. 1.14.99.1) in prostate and the lower urinary tract (LUT) of the neonatally estrogenized male rat has been studied by using a COX-2's PCR fragment of 724 nt spanning 3 introns and a 478nt internal standard for quantitative RT-PCR. The same fragment of 724 nt was used for RNA probe in Northern hybridization. Neonatal estrogenization (10 microg/day of diethylstilbestrol on days 1-5) had no effect on COX-2 expression in prostatic urethra, prostatic lobes, or bladder. Acute estrogen treatment of castrated animals did not induce COX-2 expression, either. In addition the differential expression of basal level of COX-2 in the different lobes of prostate in normal rat was demonstrated. Our results suggest a constant expression of COX-2 gene in prostate and the lower urinary tract of the neonatally estrogenized (neoDES) rats. The present study indicates that the increased expression of COX-2 is probably not essential for the estrogen-driven development of stromal inflammation or hyperplastic and dysplastic alterations in the prostate of neoDES rats.

  19. Cyclooxygenase 2 (rs2745557) Polymorphism and the Susceptibility to Benign Prostate Hyperplasia and Prostate Cancer in Egyptians.

    Science.gov (United States)

    Fawzy, Mohamed S; Elfayoumi, Abdel-Rahman; Mohamed, Randa H; Fatah, Ihab R Abdel; Saadawy, Sara F

    2016-06-01

    Cyclooxygenase-2 (COX-2), an inducible isoform of cyclooxygenase, has been reported to be correlated with tumorigenesis, tumor progression, and metastasis. We aimed to evaluate the association between COX-2 (rs2745557) polymorphism and prostate cancer (PCa), benign prostate hyperplasia (BPH) risk. We also assessed the influence of other risk factors such as obesity, smoking, diabetes in modulating the risk of PCa in Egyptian men. COX-2 (rs2745557) was genotyped in 112 PC patients, 111 BPH and 120 subjects as a control group. COX-2 and PSA levels were measured by ELISA. We found that GG genotype was associated with a 17-fold increased risk for PCa and 20-fold increased the risk for BPH more than AA genotype. Also, G allele carriers of COX-2 were associated with metastatic cancer (OR = 1.3, P < 0.05) and disease aggressiveness (OR = 3.5, P < 0.001). The coexistence of obesity, smoking, or diabetes with GG genotype may lead to increasing the risk of developing BPH (OR = 3.3, 4, and 2.7, respectively) and of developing PCa (OR = 2.9, 4.9, and 3.2, respectively). Our results showed evidence suggesting the involvement of the COX-2 (rs2745557) polymorphism and its protein in PCa or BPH initiation and progression. Also, the coexistence of COX-2 (rs2745557) and obesity, smoking, or diabetes may lead to the development of PCa or BPH.

  20. Suppression of cyclooxygenase-2 gene transcription by humulon of beer hop extract studied with reference to glucocorticoid.

    Science.gov (United States)

    Yamamoto, K; Wang, J; Yamamoto, S; Tobe, H

    2000-01-14

    In murine osteoblastic MC3T3-E1 cells which produced prostaglandin E2 as a bone resorption factor, the cyclooxygenase-2 induction by tumor necrosis factor alpha (TNFalpha) was suppressed by dexamethasone with an IC(50) of 1 nM. Humulon isolated from hop extract for beer brewing was reported previously as an inhibitor of bone resorption [Tobe, H. et al. (1997) Biosci. Biotech. Biochem. 61, 158-159]. We showed that the compound suppressed the TNFalpha-dependent cyclooxygenase-2 induction with an IC(50) of as low as about 30 nM as demonstrated experimentally by catalytic activity assay, Northern blot analysis and promoter analysis. Reporter gene experiments suggested that humulon blocked the cyclooxygenase-2 expression mediated by NFkappaB and NF-IL6, but the intracellular glucocorticoid receptor was not involved. The catalytic activity of cyclooxygenase-2 was inhibited by humulon with an IC(50) of as high as 1.6 microM. These results showed that humulon suppressed cyclooxygenase-2 induction at the step of transcription.

  1. Sphingosine 1-phosphate in amniotic fluid modulates cyclooxygenase-2 expression in human amnion-derived WISH cells.

    Science.gov (United States)

    Kim, Jung Im; Jo, Eun Jin; Lee, Ha-Young; Cha, Moon Seok; Min, Jung Kee; Choi, Chang Hwan; Lee, Yong Moon; Choi, Young-Ae; Baek, Suk-Hwan; Ryu, Sung Ho; Lee, Kyu Sup; Kwak, Jong-Young; Bae, Yoe-Sik

    2003-08-22

    The metabolism of arachidonic acid, in particular the generation of prostaglandins (PGs), has been proposed to play a key role in the regulation of labor. Moreover, several extracellular proteins have been reported to modulate PG synthesis in amnion cells. In this study, we found that lipid components dissolved in the amniotic fluid modulate PG synthesis in WISH human amnion cells and identified one of these components as a sphingosine 1-phosphate (S1P). WISH cells express several S1P receptors including S1P1, S1P2, and S1P3. When WISH cells were stimulated with S1P, PGE2 synthesis increased in a concentration-dependent manner, showing maximal activity at around 100 nM. S1P treatment also caused the up-regulation of cyclooxygenase-2 (COX-2) mRNA and protein, which was apparent within 3-12 h of stimulation. In terms of the intracellular signaling pathway of S1P-induced WISH cell activation, we found that S1P stimulated two kinds of MAPK, ERK, and p38 kinase. We examined the roles of these two MAPKs in S1P-induced COX-2 expression. S1P-induced COX-2 expression was blocked completely by PD-98059 but not by SB-203580, suggesting that ERK has a critical role in the process. Transfection of S1P1 or S1P3 but not of S1P2 antisense oligonucleotide inhibited S1P-induced COX-2 expression and PGE2 production in WISH cells, indicating the involvements of S1P1 and S1P3 in the processes. This study demonstrates the physiological role of S1P in amniotic fluid and its effect on the modulation of COX-2 expression and PGs synthesis in WISH cells.

  2. Prostacyclin production in rat aortic smooth muscle cells: role of protein kinase C, phospholipase D and cyclooxygenase-2 expression.

    Science.gov (United States)

    Frias, Miguel A; Dubouloz, Frédérique; Rebsamen, Michela C; Lang, Ursula

    2003-11-01

    The present study was designed to investigate the role of protein kinase C (PKC) and phospholipase D (PLD) in angiotensin II (AngII)- and phorbol ester (PMA)-induced cyclooxygenase-2 (COX-2) expression and prostacyclin (PGI(2)) production in rat aortic smooth muscle cells (VSMC). Prostacyclin production in cultured VSMC was determined by radioimmunoassay. PKC activity was examined by measuring the transfer of 32P from (gamma-32P)ATP to histone III-S. COX-2 expression was determined by Western blotting. To measure PLD activity, thin layer chromatography was used. AngII (50 nM) and PMA (100 nM) promoted the translocation of PKC activity from the cytosol to the membranes within 30 min, followed by a strong increase in PLD activity as well as COX-2 expression and PGI(2) production. After 48 h exposure to PMA, PKC was downregulated resulting in a complete suppression of its activity. PKC-downregulation and the PKC inhibitor CGP41251 abolished PMA- and AngII-induced PLD activation, suppressed the stimulatory effect of PMA on COX-2 expression and PGI(2) production and strongly inhibited that of AngII. Furthermore, AngII- and PMA-induced PGI(2) production depended on protein synthesis and COX-2 but not COX-1 activity. Inhibition of PLD-mediated phosphatidic acid (PA) formation by 1% 1-butanol abolished AngII-induced COX-2 expression and PGI(2) secretion, while dioctanoyl PA increased COX-2 expression and PGI(2) production in a time- and concentration-dependent manner. Our results indicate that in VSMC, AngII promotes PGI(2) production to a large extent through a rise in COX-2 expression which is mediated by PA generated from increased PKC-dependent PLD activity.

  3. Galphaq signaling is required for Rho-dependent transcriptional activation of the cyclooxygenase-2 promoter in fibroblasts.

    Science.gov (United States)

    Slice, Lee W; Han, Sang-Kyou; Simon, Melvin I

    2003-02-01

    Previously, we demonstrated that the gastrin releasing peptide (GRP) induces cyclooxygenase-2 (COX-2) expression through a Rho-dependent, protein kinase C (PKC)-independent signaling pathway in fibroblasts (Slice et al., 1999, J Biol Chem 274:27562-27566). However, the specific role of heterotrimeric guanine nucleotide binding regulatory proteins (G-proteins) that are coupled to the GRP receptor in Rho-dependent COX-2 expression has not been elucidated. In this report, we utilize embryonic fibroblasts from transgenic mice containing double gene knock-outs (DKO) for Galpha(q/11) and Galpha(12/13) to demonstrate that COX-2 promoter activation by GRP requires Galpha(q). Furthermore, we show that GRP-dependent COX-2 gene expression, as assessed by a COX-2 reporter luciferase assay, was induced in cells lacking Galpha(12/13) but was blocked in cells that did not express Galpha(q/11). GRP-dependent COX-2 promoter induction in Galpha(q/11) deficient cells was rescued by expression of wild type Galpha(q) but blocked by inhibition of calcium signaling in calcium-free media or in cells treated with 2-aminoethoxydiphenylborate (2-APB). Co-stimulation of transfected Galpha(q/11) deficient cells with GRP and thapsigargin (TG) induced the COX-2 promoter. Activation of endogenous Rho by expression of Onco-lbc or expression of Rho A Q63L resulted in COX-2 promoter activation in Galpha(q/11) deficient cells. Inhibition of Rho by Clostridium botulinum C3 toxin blocked COX-2 promoter induction. Expression of Galpha(q) Q209L in the well-characterized fibroblast cell line, NIH3T3, induced the COX-2 promoter which was blocked by expression of C3 toxin. These results demonstrate that calcium signaling mediated by Galpha(q) and Rho play critical roles in GRP-dependent COX-2 expression in fibroblasts.

  4. Immunoexpression of cyclooxygenase-2 in primary gastric carcinomas and lymph node metastases

    Institute of Scientific and Technical Information of China (English)

    Paulo RC Almeida; Francisco VA Ferreira; Cássio C Santos; Francisco D Rocha-Filho; Raul RP Feitosa; Esther AA Falc(a)o; Belise K Cavada; Roberto CP Lima-Júnior; Ronaldo A Ribeiro

    2012-01-01

    AIM:To evaluate immunoexpression of cyclooxygenase-2 (COX-2) in primary gastric carcinomas and respective lymph node metastases.METHODS:Immunohistochemistry to analyze COX-2 expression was performed on tissue microarray slices obtained from 36 specimens of gastrectomy and satellite lymph nodes from patients with gastric carcinoma.RESULTS:Immunostaining was seen in most cases,and COX-2 expression was higher in lymph node metastases than in corresponding primary gastric tumors of intestinal,diffuse and mixed carcinomas,with a statistically significant difference in the diffuse histotype (P=0.0108).CONCLUSION:COX-2 immunoexpression occurs frequently in primary gastric carcinomas,but higher expression of this enzyme is observed in lymph node metastases of the diffuse histotype.

  5. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    Science.gov (United States)

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  6. Cyclooxygenase-2 inhibitors and free flap complications after autologous breast reconstruction

    DEFF Research Database (Denmark)

    Bonde, Christian; Khorasani, Hoda; Højvig, Jens

    2017-01-01

    because of the well-known side effects of NSAID treatment (bleeding/gastrointestinal ulcers). However, COX-2 inhibitors have been suggested to increase flap failure rates. We report our experience in using COX-2 inhibitors as part of our post-operative MOSA after ABR using free flaps. MATERIALS......BACKGROUND: A key component of modern analgesics is the use of multimodal opioid-sparing analgesia (MOSA). In the past, our analgesic regime after autologous breast reconstruction (ABR) included either NSAID or a selective cyclooxygenase-2 (COX-2) inhibitor. COX-2 inhibitors are superior to NSAIDs...... focus on reoperations due to bleeding/haematomas and flap thrombosis/failure. Comparisons between the COX-2 inhibitor and NSAID were made. RESULTS: Median age, ischaemia time, blood loss and operating time were similar in the two periods. Significantly, more patients were re-operated because of post...

  7. Inhibitors of cyclo-oxygenase-2 and secretory phospholipase A2 preserve bone architecture following ovariectomy in adult rats.

    Science.gov (United States)

    Gregory, Laura S; Kelly, Wendy L; Reid, Robert C; Fairlie, David P; Forwood, Mark R

    2006-07-01

    Epidemiological evidence and in vitro data suggest that COX-2 is a key regulator of accelerated remodeling. Accelerated states of osteoblast and osteoclast activity are regulated by prostaglandins in vitro, but experimental evidence for specific roles of cyclooxygenase-2 (COX-2) and secretory phospholipase A2 (sPLA2) in activated states of remodeling in vivo is lacking. The aim of this study was to determine the effect of specific inhibitors of sPLA2-IIa and COX-2 on bone remodeling activated by estrogen deficiency in adult female rats. One hundred and twenty-four adult female Wistar rats were ovariectomized (OVX) or sham-operated. Rats commenced treatment 14 days after surgery with either vehicle, a COX-2 inhibitor (DFU at 0.02 mg/kg/day and 2.0 mg/kg/day) or a sPLA2-group-IIa inhibitor (KH064 at 0.4 mg/kg/day and 4.0 mg/kg/day). Treatment continued daily until rats were sacrificed at 70 days or 98 days post-OVX. The right tibiae were harvested, fixed and embedded in methylmethacrylate for structural histomorphometric bone analysis at the proximal tibial metaphysis. The specific COX-2 or sPLA2 inhibitors prevented ovariectomy-induced (OVX-induced) decreases in trabecular connectivity (Pbone resorption; and maintained bone turnover at SHAM levels following OVX in the rat. The sPLA2 inhibitor significantly suppressed increases in osteoclast surface induced by OVX (Pbone loss in the adult rat by conserving trabecular bone mass and architecture through reduced bone remodeling and decreased resorptive activity. Moreover, we report an important role of sPLA2-IIa in osteoclastogenesis that may be independent of the COX-2 metabolic pathway in the OVX rat in vivo.

  8. Prostaglandin receptor EP2 is responsible for cyclooxygenase-2 induction by prostaglandin E2 in mouse skin.

    Science.gov (United States)

    Ansari, Kausar M; Sung, You Me; He, Guobin; Fischer, Susan M

    2007-10-01

    The EP2 prostanoid receptor is one of the four subtypes of receptors for prostaglandin E2 (PGE2). We previously reported that deletion of EP2 led to resistance to chemically induced mouse skin carcinogenesis, whereas overexpression of EP2 resulted in enhanced tumor development. The purpose of this study was to investigate the underlying molecular mechanisms. We found that EP2 knockout mice had reduced cyclooxygenase-2 (COX-2) expression after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment compared with wild-type (WT) mice. Further, primary keratinocytes from EP2 transgenic mice had increased COX-2 expression after either TPA or PGE2 treatment and COX-2 expression was blocked by 10 microM SQ 22,536, an adenylate cyclase inhibitor. EP2 knockout mice had significantly decreased, whereas EP2 transgenic mice had significantly increased PGE2 production in response to a single treatment of TPA. Cyclic AMP response element-binding protein (CREB) phosphorylation was elevated to a greater extent in keratinocytes from EP2 transgenic mice compared with those of WT mice following PGE2 treatment. A protein kinase A (PKA) inhibitor reduced PGE2-mediated CREB phosphorylation in keratinocytes from EP2 transgenic mice. Furthermore, we found that there was no CREB phosphorylation in EP2 knockout mice following PGE2 treatment. PGE2-induced DNA synthesis (cell proliferation) was significantly decreased in keratinocytes from EP2 knockout mice following pretreatment with 10 microM SQ 22,536. Taken together, EP2 activation of the PKA/CREB-signaling pathway is responsible for keratinocyte proliferation and our findings reveal a positive feedback loop between COX-2 and PGE2 that is mediated by the EP2 receptor.

  9. Antitumor activity of the selective cyclooxygenase-2 inhibitor, celecoxib, on breast cancer in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Dai Zhi-Jun

    2012-12-01

    Full Text Available Abstract Background Cyclooxygenase-2(COX-2 promotes carcinogenesis, tumor proliferation, angiogenesis, prevention of apoptosis, and immunosuppression. Meanwhile, COX-2 over-expression has been associated with tumor behavior and prognosis in several cancers. This study investigated the antitumor effects of the selective COX-2 inhibitor, Celecoxib, on breast cancer in vitro and in vivo. Methods Human breast cancer MCF-7 and MDA-MB-231 cells were cultured with different concentration (10, 20, 40 μmol/L of celecoxib after 0-96 hours in vitro. MTT assay was used to determine the growth inhibition of breast cancer cells in vitro. The expression of COX-2 on mRNA was measured by real-time quantitive PCR analysis. Flow cytometry was performed to analyze the cell cycle of MCF-7 cells. Levels of PGE2 were measured by ELISA method. The in vivo therapeutic effects of celecoxib were determined using rat breast cancer chemically induced by 7,12-dimethylben anthracene (DMBA. Results The inhibition of proliferation of both MCF-7 and MDA-MB-231 cells in vitro by celecoxib was observerd in time and dose dependent manner. Celecoxib effectively down-regulated the expression of COX-2. The cell cycle was arrested at G0/G1, and rate of cells in S phase was obviously decreased. Levels of PGE2 were inhibited by Celecoxib. The tumor incidence rate of the celecoxib group was lower than that of the control group. In addition, the tumor latency period of the celecoxib group was longer than that of the control group. Conclusions Celecoxib inhibited the proliferation of breast cancer cell lines in vitro, and prevented the occurrence of rat breast cancer chemically induced by DMBA. Therefore, celecoxib exhibits an antitumor activity and seems to be effective in anti-tumor therapy.

  10. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma.

    Science.gov (United States)

    Zha, S; Gage, W R; Sauvageot, J; Saria, E A; Putzi, M J; Ewing, C M; Faith, D A; Nelson, W G; De Marzo, A M; Isaacs, W B

    2001-12-15

    Cyclooxygenase-2 (COX-2) is the inducible isoform of the rate-limiting enzymes that convert arachidonic acid to proinflammatory prostaglandins as well as a primary target for nonsteroidal anti-inflammatory drugs. Accumulating evidence suggests that up-regulation of COX-2 is associated with carcinogenesis in multiple organ systems including the large bowel, lung, breast, and prostate. In this report, we examine the expression of COX-2 protein and mRNA in prostate tissue containing various lesions and in prostate cancer cell lines. In the cell lines, LNCaP, DU145, PC-3, and TSU, COX-2 protein expression was undetectable under basal conditions but could be induced transiently by phorbol ester treatment in PC-3 and TSU cells, but not in DU145 and LNCaP cells. Immunohistochemical analysis of 144 human prostate cancer cases suggested that, in contrast to several previous reports, there was no consistent overexpression of COX-2 in established prostate cancer or high-grade prostatic intraepithelial neoplasia, as compared with adjacent normal prostate tissue. Positive staining was seen only in scattered cells (prostatic carcinogenesis. Staining was also seen at times in macrophages. Western blotting and quantitative RT-PCR analyses confirmed these patterns of expression. These results suggest that if nonsteroidal anti-inflammatory drugs are indeed chemopreventive and/or chemotherapeutic for prostate cancer, their effects are likely to be mediated by modulating COX-2 activity in non-PCa cells (either inflammatory cells or atrophic epithelial cells) or by affecting a COX-2-independent pathway.

  11. Antiproliferative crude soy saponin extract modulates the expression of IkappaBalpha, protein kinase C, and cyclooxygenase-2 in human colon cancer cells.

    Science.gov (United States)

    Kim, Hwa-Young; Yu, Rina; Kim, Jeong-Sang; Kim, Young-Kyoon; Sung, Mi-Kyung

    2004-07-08

    Frequent consumption of soy and soy-based products is associated with reduced cancer incidence particularly for breast, colon, and prostate cancer. In this study, we examined the effect of crude soy saponin extract on PMA (phorbol 12-myristate 13-acetate)-induced inflammatory responses. Human adenocarcinoma cells (HT-29) were treated with various concentrations of saponin extract for 72 h. Cell growth was measured at 24, 48 and 72 h of incubation, and the PMA-induced expressions of cyclooxygenase-2 (COX-2), protein kinase C (PKC), and IkappaBalpha were determined. The results indicate that crude saponin extract decreased cell growth in a dose- and time-dependent manner. Crude soy saponin extract suppressed the degradation of IkappaBalpha in PMA-stimulated cells, while COX-2 and PKC expressions were significantly down-regulated. These findings support the hypothesis that the soy saponins reduce the risk of colon tumorigenesis possibly by suppressing inflammatory responses.

  12. Vascular endothelial growth factor and not cyclooxygenase 2 promotes endothelial cell viability in the pancreatic tumor microenvironment.

    LENUS (Irish Health Repository)

    Toomey, Desmond P

    2010-07-01

    Cyclooxygenase 2 (COX-2) and vascular endothelial growth factor (VEGF), often coexpressed in cancer, are associated with poor prognosis. However, results from pancreatic cancer trials of their inhibitors were disappointing. This study delineated the role of COX-2 and nonsteroidal anti-inflammatory drugs in angiogenesis and VEGF regulation.

  13. Cyclo-oxygenase-2 inhibitors or nonselective NSAIDs plus gastroprotective agents: What to prescribe in daily clinical practice?

    NARCIS (Netherlands)

    G.M.C. Masclee (Gwen); V.E. Valkhoff (Vera); E.M. van Soest; R. Schade (René); G. Mazzaglia (Giampiero); M. Molokhia (Mariam); G. Trifiro (Gianluca); J.L. Goldstein; S. Hernández-Díaz (Sonia); E.J. Kuipers (Ernst); M.C.J.M. Sturkenboom (Miriam)

    2013-01-01

    textabstractBackground Two strategies for prevention of upper gastrointestinal (UGI) events for nonselective nonsteroidal anti-inflammatory drug (nsNSAID) users are replacement of the nsNSAID by a cyclo-oxygenase-2-selective inhibitor (coxib) or co-prescription of a gastroprotective agent (GPA). Aim

  14. NS-398, a selective cyclooxygenase-2 inhibitor, reduces experimental bladder carcinoma outgrowth by inhibiting tumor cell proliferation.

    NARCIS (Netherlands)

    Smakman, N.; Schaap, N.P.M.; Snijckers, C.M.; Rinkes, M.J.; Kranenburg, O.

    2005-01-01

    OBJECTIVES: To evaluate the efficacy of the selective cyclooxygenase-2 (COX-2) inhibitor NS-398 in treating experimental T24 bladder carcinoma, and to assess its effect on tumor cell proliferation and survival and tumor vascularization. COX-2 overexpression is frequently observed in bladder carcinom

  15. Cyclo-oxygenase-2 inhibitors or nonselective NSAIDs plus gastroprotective agents: What to prescribe in daily clinical practice?

    NARCIS (Netherlands)

    G.M.C. Masclee (Gwen); V.E. Valkhoff (Vera); E.M. van Soest; R. Schade (René); G. Mazzaglia (Giampiero); M. Molokhia (Mariam); G. Trifiro (Gianluca); J.L. Goldstein; S. Hernández-Díaz (Sonia); E.J. Kuipers (Ernst); M.C.J.M. Sturkenboom (Miriam)

    2013-01-01

    textabstractBackground Two strategies for prevention of upper gastrointestinal (UGI) events for nonselective nonsteroidal anti-inflammatory drug (nsNSAID) users are replacement of the nsNSAID by a cyclo-oxygenase-2-selective inhibitor (coxib) or co-prescription of a gastroprotective agent (GPA). Aim

  16. Exacerbation of inflammatory bowel disease by nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors:Fact or fiction?

    Institute of Scientific and Technical Information of China (English)

    Mario Guslandi

    2006-01-01

    The existence of a possible link between inflammatory bowel disease (IBD) and nonsteroidal anti-inflammatory drugs (NSAIDs) has been repeatedly suggested. Recently, a few studies have addressed the issue of a possible,similar effect by selective cyclooxygenase-2 inhibitors (COXIBs). The present article reviews the available scientific evidence for this controversial subject.

  17. Phosphorylation of STAT3 mediates the induction of cyclooxygenase-2 by cortisol in the human amnion at parturition.

    Science.gov (United States)

    Wang, Wangsheng; Guo, Chunming; Zhu, Ping; Lu, Jiangwen; Li, Wenjiao; Liu, Chao; Xie, Huiliang; Myatt, Leslie; Chen, Zi-Jiang; Sun, Kang

    2015-10-27

    The induction of cyclooxygenase-2 (COX-2) and subsequent production of prostaglandin E2 (PGE2) by cortisol in the amnion contrast with the effect of cortisol on most other tissues, but this proinflammatory effect of cortisol may be a key event in human parturition (labor). We evaluated the underlying mechanism activated by cortisol in primary human amnion fibroblasts. Exposure of the amnion fibroblasts to cortisol led to the activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, which induced the phosphorylation of the kinase SRC and STAT3 (signal transducer and activator of transcription 3). STAT3 interacted with the glucocorticoid receptor (GR) and the transcription factor CREB-1 (cAMP response element-binding protein 1) at the promoter of the gene encoding COX-2, which promoted the production of the secreted prostaglandin PGE2. PGE2 activates the prostaglandin receptors EP2 and EP4, which stimulate cAMP-PKA signaling. Thus, cortisol reinforced the activation of cAMP-PKA signaling through an SRC-STAT3-COX-2-PGE2-mediated feedback loop. Inhibiting STAT3, SRC, or the cAMP-PKA pathway attenuated the cortisol-stimulated induction of COX-2 and PGE2 production in amnion fibroblasts. In human amnion tissue, the amount of phosphorylated STAT3 correlated positively with that of cortisol, COX-2, and PGE2, and all were more abundant in tissue obtained after active labor than in tissue obtained from cesarean surgeries in the absence of labor. These results indicated that the coordinated recruitment of STAT3, CREB-1, and GR to the promoter of the gene encoding COX-2 contributes to the feed-forward induction of COX-2 activity and prostaglandin synthesis in the amnion during parturition.

  18. Cyclooxygenase-2 expression is dependent upon epidermal growth factor receptor expression or activation in androgen independent prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Rui-Peng Jia; Lu-Wei Xu; Qi Su; Jian-Hua Zhao; Wen-Cheng Li; Feng Wang; Zheng Xu

    2008-01-01

    Aim: To investigate the expression of cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) and the possible mechanism in the development in androgen independent prostate cancer (AIPC). Methods: Immunohis- tochemistry was performed on paraffin-embedded sections with goat polyclonal against COX-2 and mouse mono- clonal antibody against EGFR in 30 AIPC and 18 androgen dependent prostate cancer (ADPC) specimens. The effect of epidermal growth factor (EGF) treatments on the expression of COX-2 and signal pathway in PC-3 and DU-145 cells was studied using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. ELISA was used to measure prostaglandin E2 (PGE2) levels in the media of PC-3 and DU-145 incubated with EGF for 24 h. Results: COX-2 was positively expressed in AIPC and ADPC, which were predominantly in endochylema of prostate cancer (Pca) cells. Intense staining was seen in AIPC (80%) and in ADPC (55.5%), but there was no significant association between the two groups. EGFR expression was also positive in the two groups (61.8% in ADPC and 90% in AIPC, P < 0.01). A significant association was found between EGFR expression and a higher Gleason score (P < 0.05) or tumor stage (P < 0.05). The expression of PGE2 was increased in PC-3 and DU-145 cells after being incubated with EGF. Both p38MAPK and PI-3K pathway were involved in the PC-3 cell COX-2 upregulation course. In DU- 145, only p38MAPK pathway was associated with COX-2 upregulation. Conclusion: EGFR activation induces COX-2 expression through PI-3K and/or p38MAPK pathways. COX-2 and EGFR inhibitors might have a cooperative anti-tumor effect in Pca.

  19. Effect of etoricoxib, a cyclooxygenase-2 selective inhibitor on aberrant crypt formation and apoptosis in 1,2 dimethyl hydrazine induced colon carcinogenesis in rat model Efecto del etoricoxib, un inhibidor selectivo de la ciclooxigenasa-2, sobre la formación de criptas aberrantes y la apoptosis en un modelo murino de carcinogénesis de colon inducidad por 1,2-dimetilhidracina

    Directory of Open Access Journals (Sweden)

    P. Sharma

    2010-02-01

    Full Text Available Etoricoxib, a second generation selective cyclooxygenase-2 (COX-2 inhibitor had been studied for the chemopreventive response at its therapeutic anti-inflammatory dose in 1,2-dimethylhydrazine (DMH induced colon carcinogenesis in rat model. Eight to ten weeks old male rats of Sprague-Dawley strain were divided into four groups. While group 1 served as control and received the vehicle of the drugs, group 2 and 3 were administered freshly prepared DMH in 1mM EDTA-saline (pH 7.0 (30 mg/kg body wt/week, subcutaneously. Group 3 was also given a daily treatment of etoricoxib (0.6 mg/kg body wt orally while the group 4 received the same amount of etoricoxib only, prepared in 0.5% carboxymethyl cellulose. Animals were sacrificed at the end of 6 weeks, body weight recorded and the colons were subjected to macroscopic and histopathological studies. The maximum number of raised mucosal lesions called the multiple plaque lesions (MPL were found in the DMH group which significantly reverted back in the DMH + etoricoxib group, while very few MPLs were recorded in the control and etoricoxib only group. Similarly, the number of aberrant crypt foci (ACF, the point of future carcinogenic growth, was recorded more in the DMH group and significantly less in the DMH + etoricoxib group. The histopathological analysis showed the presence of severe hyperplasia, occasional dysplasia and aggregates of lymphoid cells in the localized regions. Etoricoxib group showed near normal histological features with the crypt architecture and the surrounding stromal tissue remaining intact. To ascertain the molecular mechanism of such anti-carcinogenic features the colonocytes were isolated and studied in primary culture for the evidence of apoptosis by fluorescent staining and genotoxic changes by single cell gel electrophoresis assay (comet assay which shows that the DMH treated animals produced much less apoptotic nuclei but more comet producing cell, while these features were

  20. Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer.

    Science.gov (United States)

    Moon, Chang Mo; Kwon, Ji-Hee; Kim, Ji Suk; Oh, Sun-Hee; Jin Lee, Kyoung; Park, Jae Jun; Pil Hong, Sung; Cheon, Jae Hee; Kim, Tae Il; Kim, Won Ho

    2014-02-01

    Cancer stem cells (CSCs) play a pivotal role in cancer relapse or metastasis. We investigated the CSC-suppressing effect of nonsteroidal anti-inflammatory drugs (NSAIDs) and the relevant mechanisms in colorectal cancer. We measured the effect of NSAIDs on CSC populations in Caco-2 or SW620 cells using colosphere formation and flow cytometric analysis of PROM1 (CD133)(+) CD44(+) cells after indomethacin treatment with/without prostaglandin E2 (PGE2) or peroxisome proliferator-activated receptor γ (PPARG) antagonist, and examined the effect of indomethacin on transcriptional activity and protein expression of NOTCH/HES1 and PPARG. These effects of indomethacin were also evaluated in a xenograft mouse model. NSAIDs (indomethacin, sulindac and aspirin), celecoxib, γ-secretase inhibitor and PPARG agonist significantly decreased the number of colospheres formation compared to controls. In Caco-2 and SW620 cells, compared to controls, PROM1 (CD133)(+) CD44(+) cells were significantly decreased by indomethacin treatment, and increased by 5-fluorouracil (5-FU) treatment. This 5-FU-induced increase of PROM1 (CD133)(+) CD44(+) cells was significantly attenuated by combination with indomethacin. This CSC-inhibitory effect of indomethacin was reversed by addition of PGE2 and PPARG antagonist. Indomethacin significantly decreased CBFRE and increased PPRE transcriptional activity and their relative protein expressions. In xenograft mouse experiments using 5-FU-resistant SW620 cells, the 5-FU treatment combined with indomethacin significantly reduced tumor growth, compared to 5-FU alone. In addition, treatment of indomethacin alone or combination of 5-FU and indomethacin decreased the expressions of PROM1 (CD133), CD44, PTGS2 (cyclooxygenase 2) and HES1, and increased PPARG expression. NSAIDs could selectively reduce the colon CSCs and suppress 5-FU-induced increase of CSCs via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1, and activating PPARG.

  1. Increased expression of cyclooxygenase-2 in first-degree relatives of gastric cancer patients

    Institute of Scientific and Technical Information of China (English)

    Jin-Ting Zhang; Ming-Wei Wang; Zhen-Long Zhu; Xiao-Hui Huo; Jian-Kun Chu; Dong-Sheng Cui; Liang Qiao; Jun Yu

    2005-01-01

    AIM: To study the expression of cyclooxygenase-2 (COX-2)in human gastric cancer tissues and their paired adjacent mucosa, as well as mucosa from gastric antrum and corpus of the first-degree relatives of the recruited cancer patients.METHODS: The expression of COX-2 mRNA in 38 patients with gastric cancer and their 29 first-degree relatives and 18 healthy controls was assessed by the real time RT-PCR.The expression of COX-2 protein was determined by Western blot.RESULTS: A marked increase in COX-2 mRNA expression was found in 20 of 37 (54%) cancerous tissues compared to their respective paired normal mucosa (P<0.001).Interestingly, increased COX-2 mRNA expression was also found in mucosa of the corpus (6/29) and antrum (13/29)of their first-degree relatives. Increased COX-2 mRNA expression was more frequently observed in the antrum biopsies from cancer patients than in the antrum biopsies from healthy controls (P<0.05). In addition, 3 of 23 (13%)patients with atrophic mucosa and 6 of 35 (17%) patients with intestinal metaplasia showed increased COX-2 mRNA expression. Furthermore, COX-2 expression increased in H pylori-positive tissues, especially in antrum mucosa.CONCLUSION: Increased COX-2 expression is involved in gastric carcinogenesis, and may be necessary for maintenance of the malignant phenotype and contribute to Helicobacterpylori-associated malignant transformation.

  2. Study of Osteoarthritis Treatment with Anti-Inflammatory Drugs: Cyclooxygenase-2 Inhibitor and Steroids

    Directory of Open Access Journals (Sweden)

    Hongsik Cho

    2015-01-01

    Full Text Available Patients with osteoarthritis (OA, a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs, and cyclooxygenase-2 (COX-2 selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM. To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2. The chondrocytes were then treated with either a steroid (prednisone, a nonspecific COX inhibitor NSAID (piroxicam, or a COX-2 selective NSAID (celecoxib. Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.

  3. New sterols with anti-inflammatory potentials against cyclooxygenase-2 and 5-lipoxygenase from Paphia malabarica.

    Science.gov (United States)

    Joy, Minju; Chakraborty, Kajal; Raola, Vamshi Krishna

    2017-06-01

    Marine bivalves occupy a leading share in the total edible molluscs at the coastline regions of south-eastern Asia, and are found to possess significant nutritional and biological potential. Various in vitro evaluation (antioxidant and anti-inflammatory) guided purification of ethyl acetate-methanol (EtOAc-MeOH) extract of bivalve clam, Paphia malabarica characterised two new sterol derivatives as 23-gem-dimethylcholesta-5-en-3β-ol (1) and (22E)-24(1),24(2)-methyldihomocholest-5,22-dien-3β-ol (2) collected from the south-west coast of Arabian Sea. Their structures were unambiguously assigned on the basis of 1D, 2D NMR spectroscopy and mass spectrometry. The antioxidant and anti-inflammatory activities of 2 as determined by DPPH/ABTS(+) radical scavenging and anti-cyclooxygenase-2/5-lipoxygenase assays were significantly greater (IC50  1 mg/mL). Structure-activity relationship analysis revealed that the bioactivities of these compounds were directly proportional to the electronic and lipophilic parameters. This is the first report of the occurrence and characterisation of 23-gem-dimethyl-3β-hydroxy-Δ(5)-cholestane nucleus and C-30 dihomosterol from marine organisms.

  4. Expression of the aryl hydrocarbon receptor pathway and cyclooxygenase-2 in dog tumors.

    Science.gov (United States)

    Giantin, M; Vascellari, M; Lopparelli, R M; Ariani, P; Vercelli, A; Morello, E M; Cristofori, P; Granato, A; Buracco, P; Mutinelli, F; Dacasto, M

    2013-02-01

    In humans, the aryl hydrocarbon receptor (AHR) gene battery constitutes a set of contaminant-responsive genes, which have been recently shown to be involved in the regulation of several patho-physiological conditions, including tumorigenesis. As the domestic dog represents a valuable animal model in comparative oncology, mRNA levels of cytochromes P450 1A1, 1A2 and 1B1 (CYP1A1, 1A2 and 1B1), AHR, AHR nuclear translocator (ARNT), AHR repressor (AHRR, whose partial sequence was here obtained) and cyclooxygenase-2 (COX2) were measured in dog control tissues (liver, skin, mammary gland and bone), in 47 mast cell tumors (MCTs), 32 mammary tumors (MTs), 5 osteosarcoma (OSA) and related surgical margins. Target genes were constitutively expressed in the dog, confirming the available human data. Furthermore, their pattern of expression in tumor biopsies was comparable to that already described in a variety of human cancers; in particular, both AHR and COX2 genes were up-regulated and positively correlated, while CYP1A1 and CYP1A2 mRNAs were generally poorly expressed. This work demonstrated for the first time that target mRNAs are expressed in neoplastic tissues of dogs, thereby increasing the knowledge about dog cancer biology and confirming this species as an useful animal model for comparative studies on human oncology.

  5. Cyclooxygenase-2 polymorphisms and the risk of esophageal adeno- or squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jón O Kristinsson; Paul van Westerveld; Rene HM te Morsche; Hennie MJ Roelofs; T Wobbes; Ben JM Witteman; Adriaan CITL Tan; Martijn GH van Oijen; Jan BMJ Jansen; Wilbert HM Peters

    2009-01-01

    AIM: To determine whether - 1195 A→ G and/or - 765 G→ C polymorphisms in Cyclooxygenase-2 ( COX-2) may have a risk modifying effect on the development of esophageal carcinoma in a Dutch Caucasian population. METHODS: Two study groups were recruited, 252 patients with esophageal carcinoma and 240 healthy controls, matched for race, age, gender and recruiting area. DNA was isolated from whole blood and used for genotyping. PCR products were digested with restriction enzymes and products were analyzed by agarose gel electrophoresis. Odds ratios (OR) and 95% confidence intervals (CI) were estimated. RESULTS: The dist r ibut ion of the - 1195 A→ G polymorphism was significantly different in esophageal cancer patients compared to controls. The - 1195 GG genotype resulted in a higher risk of developing esophageal adenocarcinoma (OR = 3.85, 95% CI: 1.45-10.3) compared with the - 1195 AA genotype as a reference. The - 765 G→ C genotype distribution was not different between the two groups. The GG/ GG haplotype was present more often in esophageal adenocarcinoma patients than in controls (OR = 3.45, 95% CI: 1.24-9.58; with AG/AG as a reference). The same trends were observed in patients with squamous cell carcinomas, however, the results did not reach statistical significance. CONCLUSION: Presence of the COX-2 -1195 GG genotype and of the GG/GG haplotype may result in a higher risk of developing esophageal carcinoma.

  6. Differential expression of cyclooxygenase-2 in metastatic melanoma affects progression free survival.

    Science.gov (United States)

    Panza, Elisabetta; De Cicco, Paola; Ercolano, Giuseppe; Armogida, Chiara; Scognamiglio, Giosuè; Anniciello, Anna Maria; Botti, Gerardo; Cirino, Giuseppe; Ianaro, Angela

    2016-08-30

    The possible correlation between cyclooxygenase-2 (COX-2) expression and disease progression in melanoma is still a matter of debate. Analysis of COX-2 expression in 45 lymph node melanoma metastases demonstrates a significant correlation between the percent of expression and progression free survival (PFS). A positive COX-2 expression ≥10% (COX-2high), as opposite to a positive expression ≤9% (COX-2low), translated into a striking significant reduction of PFS of about 3 years. The reduction in PFS correlated neither with BRAFV600E nor with NRASQ61 expression in the analyzed samples. This concept was reinforced by the finding that tumour development in COX-2-/- mice was almost blunted. Similarly, inhibition of COX-2 protein expression in human melanoma cell lines, by using siRNAs technology as well as selective inhibition of COX-2 activity by celecoxib, reduced cellular proliferation and invasiveness. In conclusion we show that COX-2high is a negative prognostic factor in metastatic melanoma. Our study also clarifies that the uncertainty about the role of COX-2 in metastatic malignant melanoma, found in the current relevant literature, is probably due to the fact that a threshold in COX-2 expression has to be reached in order to impact on cancer malignancy. Our findings suggest that COX-2 expression may become an useful diagnostic tool in defining melanoma malignancy as well as argue for a possible therapeutic use of NSAID as add on therapy in selected cases.

  7. Impact of Wines and Wine Constituents on Cyclooxygenase-1, Cyclooxygenase-2, and 5-Lipoxygenase Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Zsofia Kutil

    2014-01-01

    Full Text Available Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1 activity in the range of 63–94%, cyclooxygenase-2 (COX-2 activity in the range of 20–44% (tested at a concentration of 5 mL/L, and 5-lipoxygenase (5-LOX activity in the range of 72–84% (at a concentration of 18.87 mL/L. White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM, quercetin (IC50 = 3.29 μM, and myricetin (IC50 = 4.02 μM. trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM and COX-2 (IC50 = 3.40 μM. Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.

  8. Expression of p63 and Cyclooxygenase-2 and Their Correlation in Skin Tumors

    Institute of Scientific and Technical Information of China (English)

    WU Yan; LIU Houjun; LI Jiawen

    2007-01-01

    To study the expression of p63 and cyclooxygenase-2 (cox-2) in skin tumors and evaluate the correlation between p63 and cox-2, the expressions of cox-2 and p63 were measured by streptavidin-peroxidase complex immunohistochemical technique in 17 cases of skin squamous cell carcinoma (SCC), 19 cases of Bowen's disease(Bowen), 11 cases of actinic keratosis(AK), 12 cases of seborreic keratosis(SK) and 13 specimens of normal skin. Our results showed that the expression of p63 in skin squamous cell carcinoma, Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while the expression of p63 in seborreic keratosis was significantly higher than that in normal skin. The expression of cox-2 in skin squamous cell carcinoma,Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while no statistical difference was noted in the expression of cox-2 between seborreic keratosis and normal skin. Cox-2 expression was positively correlated with the high p63 expression in malignant skin tumors. The increased expression of cox-2 and p63 may play an important role in the development of skin tumors and work synergetically in malignant skin tumors.

  9. Chronic inhibition of cyclooxygenase-2 attenuates antibody responses against vaccinia infection.

    Science.gov (United States)

    Bernard, Matthew P; Bancos, Simona; Chapman, Timothy J; Ryan, Elizabeth P; Treanor, John J; Rose, Robert C; Topham, David J; Phipps, Richard P

    2010-02-01

    Generation of optimal humoral immunity to vaccination is essential to protect against devastating infectious agents such as the variola virus that causes smallpox. Vaccinia virus (VV), employed as a vaccine against smallpox, provides an important model of infection. Herein, we evaluated the importance cyclooxygenase-2 (Cox-2) in immunity to VV using Cox-2 deficient mice and Cox-2 selective inhibitory drugs. The effects of Cox-2 inhibition on antibody responses to live viruses such as vaccinia have not been previously described. Here, we used VV infection in Cox-2 deficient mice and in mice chronically treated with Cox-2 selective inhibitors and show that the frequency of VV-specific B cells was reduced, as well as the production of neutralizing IgG. VV titers were approximately 70 times higher in mice treated with a Cox-2 selective inhibitor. Interestingly, Cox-2 inhibition also reduced the frequency of IFN-gamma producing CD4(+) T helper cells, important for class switching. The significance of these results is that the chronic use of non-steroidal anti-inflammatory drugs (NSAIDs), and other drugs that inhibit Cox-2 activity or expression, blunt the ability of B cells to produce anti-viral antibodies, thereby making vaccines less effective and possibly increasing susceptibility to viral infection. These new findings support an essential role for Cox-2 in regulating humoral immunity.

  10. The prognostic importance of cyclooxygenase 2 and HER2 expression in epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, M; Jeppesen, U;

    2007-01-01

    Both cyclooxygenase 2 (COX2) and human epidermal growth factor receptor 2 (HER2, also called c-erbB-2) overexpression have been related to a worse prognosis in epithelial ovarian cancer (EOC), but the data are conflicting and the percentage of tumors with overexpression varies widely in different......) and immunohistochemistry (IHC) for evaluation of the HER2 status in EOC. Immunostaining was performed for COX2/HER2 together with FISH analysis for HER2 gene amplification in 160 patients with EOC, FIGO stages IIB-IV. Follow-up was more than 10 years. COX2 overexpression was found in 20.0% of the tumors. With HER2...... staining, 64.4% were scored as 0, 24.4% as 1+, 6.9% as 2+, and 4.4% as 3+. Median survival time for COX2-negative tumors was 21.6 versus 36 months for COX2-positive tumors. The longer survival for COX2 positive was significant by both univariate analysis (P= 0.015) and multivariate analysis (P= 0...

  11. Does uterine prolapse alter endometrial cyclooxygenase 2 expression and promote the development of premalignant lesions?

    Science.gov (United States)

    Genc, Mine; Sivrikoz, Oya Nermin; Sahin, Nur; Celik, Esin; Turan, Guluzar Arzu; Guclu, Serkan

    2015-01-01

    The aim of this study was to evaluate the expression of cyclooxygenase 2 (COX-2) and its association with the development of premalignant lesions in gland structures of the endometrium in patients with uterine prolapse, a condition which exposes the uterus to mechanical and infectious stress. The study included 102 patients who underwent hysterectomy to correct grade 3-4 uterine prolapse and 105 patients who underwent hysterectomy for other causes. Endometrial gland structures underwent immunohistochemical staining and COX-2 expression was graded. Grades 0 and 1 represent low expression; grades 2 and 3 correspond to high levels of COX-2 expression. The prevalence of grade 2-3 COX-2 expression was significantly higher in the endometrial gland structures of patients with prolapse and hyperplasia compared to the remaining patients (p = 0.014). Grade 0-1 COX-2 expression was significantly more common in the endometrial gland structures of patients without uterine prolapse or hyperplasia (p = 0.004). Among the patients without endometrial hyperplasia, COX-2 expression was elevated in the endometrial gland structures of those with uterine prolapse compared to those without prolapse. Elevated COX-2 expression may explain the presence of unexpected premalignant lesions of the endometrium in patients with uterine prolapse. © 2015 S. Karger AG, Basel.

  12. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  13. Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Terence C. Tang; Ronnie T. Poon; Cecilia P. Lau; Dan Xie; Sheung Tat Fan

    2005-01-01

    AIM: Recent studies suggested that cyclooxygenase-2(COX-2) enhances tumor angiogenesis via upregulationof vascular endothelial growth factor (VEGF). AlthoughCOX-2 expression has been demonstrated in hepatocellularcarcinoma (HCC), the significance of COX-2 in progressionof HCC remains unclear. This study evaluated the clinico-pathological correlation of COX-2 level and its relationshipwith VEGF level in HCC.METHODS: Fresh tumor tissues were obtained from 100patients who underwent resection of HCC. COX-2 proteinexpression was examined by immunohistochemistry, andquantitatively by an enzyme immunometric assay (EIA)of tumor cytosolic COX-2 levels. Tumor cytosolic VEGFlevels were measured by an ELISA.RESULTS: Immunostaining showed expression of COX-2in tumor cells. Tumor cytosolic COX-2 levels correlatedwith VEGF levels (r = 0.469, P<0.001). Correlation withclinicopathological features showed significantly highertumor cytosolic COX-2 levels in the presence of multipletumors (P = 0.027), venous invasion (P = 0.030),microsatellite lesions (P = 0.037) and advanced tumorstage (P = 0.008). Higher tumor cytosolic COX-2 levelswere associated with worse patient survival.CONCLUSION: This study shows that elevated tumorCOX-2 levels correlate with elevated VEGF levels andinvasiveness in HCC, suggesting that COX-2 plays a significantrole in the progression of HCC.

  14. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Aguado, Andrea [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Zhenyukh, Olha; Briones, Ana María [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Alonso, María Jesús [Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón (Spain); Vassallo, Dalton Valentim [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402 (Brazil); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain)

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  15. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Caracciolo

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  16. Inhibition of cyclooxygenase-2 prevents intra-abdominal adhesions by decreasing activity of peritoneal fibroblasts

    Directory of Open Access Journals (Sweden)

    Wei G

    2015-06-01

    Full Text Available Guangbing Wei,1 Xin Chen,2 Guanghui Wang,1 Pengbo Jia,1,3 Qinhong Xu,2 Gaofeng Ping,1 Kang Wang,1 Xuqi Li1 1Department of General Surgery, 2Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, 3Department of General Surgery, First People’s Hospital of Xianyang City, Xianyang, People’s Republic of China Background: Postoperative intra-abdominal adhesions are common complications after abdominal surgery. The exact molecular mechanisms that are responsible for these complications remain unclear, and there are no effective methods for preventing adhesion formation or reformation. The aim of the study reported here was to investigate the preventive effects and underlying potential molecular mechanisms of selective cyclooxygenase-2 (COX-2 inhibitors in a rodent model of postoperative intra-abdominal adhesions.Materials and methods: The expression of COX-2 in postoperative intra-abdominal adhesions and normal peritoneal tissue was examined by immunohistochemistry and Western blot analysis. Assays were performed to elucidate the effect of COX-2 inhibition on hypoxia-induced fibroblast activity in vitro and on intra-abdominal adhesion formation in vivo.Results: Hypoxia-induced COX-2 expression in peritoneal fibroblasts was increased in postoperative intra-abdominal adhesions. Inhibition of COX-2 attenuated the activating effect of hypoxia on normal peritoneal fibroblasts in vitro. Data indicate that selective COX-2 inhibitor prevents in vivo intra-abdominal adhesion by inhibition of basic fibroblast growth factor and transforming growth factor-beta expression, but not through an antiangiogenic mechanism. Furthermore, using selective COX-2 inhibitors to prevent intra-abdominal adhesions did not adversely affect the weight, bowel motility, or healing of intestinal anastomoses in a rat model.Conclusion: These results show that hypoxia-induced COX-2 expression in peritoneal

  17. Chronic elevation of IL-1β induces diuresis via a cyclooxygenase 2-mediated mechanism.

    Science.gov (United States)

    Boesen, E I

    2013-07-15

    Chronic renal inflammation is an increasingly recognized phenomenon in multiple disease states, but the impact of specific cytokines on renal function is unclear. Previously, we found that 14-day interleukin-1β (IL-1β) infusion increased urine flow in mice. To determine the mechanism by which this occurs, the current study tested the possible involvement of three classical prodiuretic pathways. Chronic IL-1β infusion significantly increased urine flow (6.5 ± 1 ml/day at day 14 vs. 2.3 ± 0.3 ml/day in vehicle group; P < 0.05) and expression of cyclooxygenase (COX)-2, all three nitric oxide synthase (NOS) isoforms, and endothelin (ET)-1 in the kidney (P < 0.05 in all cases). Urinary prostaglandin E metabolite (PGEM) excretion was also significantly increased at day 14 of IL-1β infusion (1.21 ± 0.26 vs. 0.29 ± 0.06 ng/day in vehicle-infused mice; P = 0.001). The selective COX-2 inhibitor celecoxib markedly attenuated urinary PGEM excretion and abolished the diuretic response to chronic IL-1β infusion. In contrast, deletion of NOS3, or inhibition of NOS1 with L-VNIO, did not blunt the diuretic effect of IL-1β, nor did pharmacological blockade of endothelin ETA and ETB receptors with A-182086. Consistent with a primary effect on water transport, IL-1β infusion markedly reduced inner medullary aquaporin-2 expression (P < 0.05) and did not alter urinary Na⁺ or K⁺ excretion. These data indicate a critical role for COX-2 in mediating the effects of chronic IL-1β elevation on the kidney.

  18. Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis.

    Science.gov (United States)

    Evans, Iona C; Barnes, Josephine L; Garner, Ian M; Pearce, David R; Maher, Toby M; Shiwen, Xu; Renzoni, Elisabetta A; Wells, Athol U; Denton, Christopher P; Laurent, Geoffrey J; Abraham, David J; McAnulty, Robin J

    2016-04-01

    Fibroblasts derived from the lungs of patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) produce low levels of prostaglandin (PG) E2, due to a limited capacity to up-regulate cyclooxygenase-2 (COX-2). This deficiency contributes functionally to the fibroproliferative state, however the mechanisms responsible are incompletely understood. In the present study, we examined whether the reduced level of COX-2 mRNA expression observed in fibrotic lung fibroblasts is regulated epigenetically. The DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5AZA) restored COX-2 mRNA expression by fibrotic lung fibroblasts dose dependently. Functionally, this resulted in normalization of fibroblast phenotype in terms of PGE2 production, collagen mRNA expression and sensitivity to apoptosis. COX-2 methylation assessed by bisulfite sequencing and methylation microarrays was not different in fibrotic fibroblasts compared with controls. However, further analysis of the methylation array data identified a transcriptional regulator, chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), which is hypermethylated and down-regulated in fibrotic fibroblasts compared with controls. siRNA knockdown of c8orf4 in control fibroblasts down-regulated COX-2 and PGE2 production generating a phenotype similar to that observed in fibrotic lung fibroblasts. Chromatin immunoprecipitation demonstrated that c8orf4 regulates COX-2 expression in lung fibroblasts through binding of the proximal promoter. We conclude that the decreased capacity of fibrotic lung fibroblasts to up-regulate COX-2 expression and COX-2-derived PGE2 synthesis is due to an indirect epigenetic mechanism involving hypermethylation of the transcriptional regulator, c8orf4.

  19. Expression of cyclooxygenase-2 is associated with p53 accumulation in premalignant and malignant gallbladder lesions

    Institute of Scientific and Technical Information of China (English)

    Mateja Legan; Bo(s)tjan Luzar; Vera Ferlan Marolt; Andrej C(o)r

    2006-01-01

    AIM: To examine the relationship between cyclooxygenase-2 (COX-2) overexpression and p53 accumulation in gallbladder carcinoma and its precursor lesions.METHODS: Sixty-eight gallbladder tissue samples comprising 14 cases of normal gallblader epithelium,27 cases of dysplasia (11 low-grade dyplasia and 16 high-grade dysplasia) and 27 adenocarcinomas were evaluated by immunohistochemistry for COX-2 expression and p53 accumulation. The relationship among COX-2 expression, p53 accumulation and clinicopathological characteristics was analysed.RESULTS: COX-2 was expressed in 14.3% of normal gallbladder epithelium, 70.3% of dysplastic epite hiium,and 59.2% of adenocarcinomas. When divided into low- and high-grade dysplasia, COX-2 was positive in 5 (45.4%) cases of low-grade and 14 (87.5%) of highgrade dysplasia (P = 0.019). Accumulation of p53 was detected in 5 (31.2%) cases of high-grade dysplasia and in 13 (48.1%) of carcinomas. No p53 accumulation was found in normal epithelium or low-grade dysplasia. COX-2 overexpression was observed in 17 of 18 (94.4%) cases with p53-accumulation in comparison with 20 (40.0%)out of 50 cases without p53 accumulation (P < 0.001).CONCLUSION: The significant differences in COX-2 expression among normal epithelium, low-grade dysplasia and high-grade dysplasia suggest that overexpression of COX-2 enzyme is an early event in gallbladder carcinogenensis. Furthermore, since accumulation of p53 correlates with COX-2 expression, COX-2 overexpression observed in gallbladder high-grade dysplasia and carcinoma might be partly due to the dysfunction of p53.

  20. Zoledronic acid cooperates with a cyclooxygenase-2 inhibitor and gefitinib in inhibiting breast and prostate cancer.

    Science.gov (United States)

    Melisi, Davide; Caputo, Rosa; Damiano, Vincenzo; Bianco, Roberto; Veneziani, Bianca Maria; Bianco, A Raffaele; De Placido, Sabino; Ciardiello, Fortunato; Tortora, Giampaolo

    2005-12-01

    Biphosphonates (BPs) are widely used to inhibit osteoclastic activity in malignant diseases such as bone metastatic breast and prostate carcinoma. Recent studies reported that BPs could also cause a direct antitumor effect, probably due to their ability to interfere with several intracellular signalling molecules. The enzyme cyclooxygenase-2 (COX-2) and the epidermal growth factor receptor (EGFR) play an important role in the control of cancer cell growth and inhibitors of COX-2 and EGFR have shown antitumor activity in vitro and in vivo in several tumor types. We, and others, have previously shown that EGFR and COX-2 may be directly related to each other and that their selective inhibitors may have a cooperative effect. In the present study we have evaluated the combined effect of zoledronic acid, the most potent nitrogen-containing BP, with the COX-2 inhibitor SC-236 and the selective EGFR-tyrosine kinase inhibitor gefitinib, on breast and prostate cancer models in vitro and in xenografted nude mice. We show that combination of zoledronic acid with SC-236 and gefitinib causes a cooperative antitumor effect accompanied by induction of apoptosis and regulation of the expression of mitogenic factors, proangiogenic factors and cell cycle controllers both in vitro and in xenografted nude mice. The modulatory effect on protein expression and the inhibitory effect on tumor growth is much more potent when the three agents are used together. Since studies are ongoing to explore the antitumor effect of zoledronic acid, our results provide new insights into the mechanism of action of these agents and a novel rationale to translate this feasible combination treatment strategy into a clinical setting.

  1. Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ives Kirk

    2011-07-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 and the bombesin (BBS-like peptide, gastrin-releasing peptide (GRP, have been implicated in the progression of hormone-refractory prostate cancer; however, a mechanistic link between the bioactive peptide and COX-2 expression in prostate cells has not been made. Results We report that BBS stimulates COX-2 mRNA and protein expression, and the release of prostaglandin E2 from the GRP receptor (GRPR-positive, androgen-insensitive prostate cancer cell line, PC-3. BBS-stimulated COX-2 expression is mediated, in part, by p38MAPK and PI3 kinase (PI3K/Akt pathways, and blocked by a GRPR antagonist. The PI3K/Akt pathway couples GRPR to the transcription factor, activator protein-1 (AP-1, and enhanced COX-2 promoter activity. Although BBS stimulates nuclear factor-kappaB (NF-κB in PC-3, NF-κB does not regulate GRPR-mediated COX-2 expression. The p38MAPK pathway increases BBS-stimulated COX-2 expression by slowing the degradation of COX-2 mRNA. Expression of recombinant GRPR in the androgen-sensitive cell line LNCaP is sufficient to confer BBS-stimulated COX-2 expression via the p38MAPK and PI3K/Akt pathways. Conclusions Our study establishes a mechanistic link between GRPR activation and enhanced COX-2 expression in prostate cancer cell lines, and suggests that inhibiting GRPR may, in the future, provide an effective therapeutic alternative to non-steroidal anti-inflammatory drugs for inhibiting COX-2 in patients with recurrent prostate cancer.

  2. Genetic ablation of cyclooxygenase-2 in keratinocytes produces a cell-autonomous defect in tumor formation

    Science.gov (United States)

    Langenbach, Robert

    2012-01-01

    Using a mouse skin tumor model, we reported previously that cyclooxygenase-2 (COX-2) deficiency reduced papilloma formation. However, this model did not differentiate between the effects of systemic COX-2-deficiency and keratinocyte-specific COX-2 deficiency on tumor formation. To determine whether keratinocyte-specific COX-2 deficiency reduced papilloma formation, v-H-ras-transformed COX-2+/+ and COX-2−/− keratinocytes were grafted onto nude mice and tumor development was compared. Transformed COX-2+/+ and COX-2−/− keratinocytes expressed similar levels of H-ras, epidermal growth factor receptor and phospho-extracellular signal-regulated kinase1/2 in vitro; and COX-2-deficiency did not reduce uninfected or v-H-ras infected keratinocyte replication. In contrast, tumors arising from grafted transformed COX-2+/+ and COX-2−/− keratinocytes expressed similar levels of H-ras, but COX-2 deficiency reduced phospho-extracellular signal-regulated kinase 1/2 and epidermal growth factor receptor levels 50–60% and tumor volume by 80% at 3 weeks. Two factors appeared to account for the reduced papilloma size. First, papillomas derived from COX-2−/− keratinocytes showed about 70% decreased proliferation, as measured by bromodeoxyuridine incorporation, compared with papillomas derived from COX-2+/+ keratinocytes. Second, keratin 1 immunostaining of papillomas indicated that COX-2−/− keratinocytes prematurely initiated terminal differentiation. Differences in the levels of apoptosis and vascularization did not appear to be contributing factors as their levels were similar in tumors derived from COX-2−/− and COX-2+/+ keratinocytes. Overall, the data are in agreement with our previous observations that decreased papilloma number and size on COX-2−/− mice resulted from reduced keratinocyte proliferation and accelerated keratinocyte differentiation. Furthermore, the data indicate that deficiency/inhibition of COX-2 in the initiated keratinocyte is an

  3. Quantitative analysis of cyclooxygenase 2 in the posterior longitudinal ligament of cervical spondylotic myelopathy

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-xing; Michael Scarpatetti; Wolfgang Kreil; SHEN Hui-liang; Koppany Bodo; Birgit Ebner; Heribert Schr(o)ttner; Michael Mokry

    2011-01-01

    Background Cervical spondylotic myelopathy (CSM), in part, results from degeneration of the posterior longitudinal ligament (PLL), which mechanically compresses the spinal cord. Much research was done on the ossification of PLL, but not concerning the non-ossifying degeneration of cervical PLL. The degeneration of cervical PLL may be related to inflammation. The aim of this study was to elucidate the pathological features of the PLL and the role of cyclooxygenase 2 (COX-2) in the degeneration of the PLL in CSM.Methods A total of 23 PLL specimens were collected during surgery from patients with CSM for the histological and immunohistochemical (type Ⅱ collagen and Ki-67) study. For the control group 14 cervical PLL autopsy specimens were investigated in the same manner. mRNA expression of COX-2 was quantitatively measured by real-time reverse transcription-polymerase chain reaction (RT-PCR) from 18 PLL specimens of patients with CSM and 18 PLL specimens of autopsy cases. Immunohistochemistry was used to evaluate the cellular location of COX-2 in PLL.Results A distinct amount of fibrotic area, chondrometaplastic tissue and calcification were found in the PLL of the patient group, compared with the control group. Type Ⅱ collagen was apparent around chondrometaplastic cells. Ki-67 positive reaction was less than 5%. A COX-2 positive reaction was found in 9 of the patient specimens (39.1%) in which the COX-2 was released from vascular endothelial cells in the PLL. However, such reactions were not found in the control group. Real-time PCR showed that the mRNA expression level of COX-2 in the patient group was significantly higher than that in the control group (P <0.01).Conclusions Chondrometaplastic tissue producing type Ⅱ collagen was identified as the most predominant pathological feature in the degenerative PLL. The higher expression of COX-2 might be related to degeneration of the PLL in CSM.

  4. Effects of aspirin on atherosclerosis and the cyclooxygenase-2 expression in atherosclerotic rabbits

    Institute of Scientific and Technical Information of China (English)

    GUO Yi; WANG Qi-zhang; TANG Bing-shan; ZUO Yan-fang; LI Fang-ming; JIANG Xin; WANG Ling; MA Ke-fu

    2006-01-01

    Background Atherosclerosis is a complex vascular inflammatory disease. Aspirin is a mainstay in the prevention of vascular complications of atherosclerosis. In this study, the effectiveness of aspirin in suppressing atherosclerosis and the inflammation process was evaluated in rabbits fed with a high fat diet.Methods Eighteen male New Zealand rabbits were randomly divided into 3 groups: control group, untreated cholesterol-fed group, aspirin treated cholesterol-fed group, which were fed for 12 weeks. After 12 weeks, the aorta was harvested for pathologic morphology observation. Immunohistochemical analysis of cyclooxygenase-2 (COX-2), macrophage and vascular smooth muscle cell (VSMC) was performed. The statistical analysis was performed by the statistical program SPSS 10.0.Results The aorta plaque/intima size (P/I) by pathologic morphology observation was 0%, (59.6± 13.7)% and (36.3± 16.5)% in the control, untreated cholesterol-fed group and aspirin treated group, respectively. The maximum plaque thickness, the degree of artery stenosis and the proportion of the intimal circumference occupied by atheroma of the 3 groups were significantly different from each other (P<0.01). The expression of COX-2 and macrophage in plaque of the aspirin treated group were decreased compared with that in untreated cholesterol-fed group. However, no difference was found in the expression of VSMC between the aspirin treated and the untreated cholesterol-fed group.Conclusion The mechanism of atherosclerosis suppression by aspirin in cholesterol-fed rabbits is related to the inhibition of COX-2 expression together with the reduced inflammation followed by, but not related to the hypolipidemic effects.

  5. Cyclooxygenase-2 expression as a predictor of outcome in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jaudah AI-Maghrabi; Abdelbaset Buhrneida; Eman Emam; Kari Syrj(a)nen; Abdulrahman Sibiany; Mohmmad AI-Qahtani; Mahmoud AI-Ahwal

    2012-01-01

    AIM:To correlate cyclooxygenase-2 (COX-2) expression profile with clinical and pathological variables to assess their prognostic/predictive value in colorectal carcinoma (CRC).METHODS:Archival tumor samples were analyzed using immunohistochemistry for COX-2 expression in 94patients with CRC.Patients were diagnosed and treated at the Departments of Surgery and Oncology,King Abdulaziz University Hospital,Saudi Arabia.RESULTS:Fifty-six percent of the tumors showed positive cytoplasmic COX-2 expression,whereas 44% of cases were completely COX-2-negative.There were no significant correlations between COX-2 expression and sex,age,grade or tumor location.However,COX-2 expression revealed a significant correlation with tumor stage (P =0.01) and distant metastasis (P =0.02),and a borderline association with lymph node involvement (P=0.07).Tumors with high COX-2 expression showed a higher recurrence rate than tumors with no expression (P < 0.009).In univariate Kaplan-Meier survival analysis,there was a significant (P =0.026) difference in disease-free survival between COX-2-positive and negative tumors in favor of the latter.COX-2 expression did not significantly predict disease-specific survival,which was much shorter for COX-2-positive tumors.In multivariate (COX) models,COX-2 did not appear among the independent predictors of disease-free survival or disease-specific survival.CONCLUSION:COX-2 expression seems to provide useful prognostic information in CRC,while predicting the patients at high risk for recurrent disease.

  6. Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2 inhibitors

    Directory of Open Access Journals (Sweden)

    Alshafie Galal A

    2006-01-01

    Full Text Available Abstract Background Epidemiologic and laboratory investigations suggest that nonsteroidal anti-inflammatory drugs (NSAIDs have chemopreventive effects against breast cancer due to their activity against cyclooxygenase-2 (COX-2, the rate-limiting enzyme of the prostaglandin cascade. Methods We conducted a case control study of breast cancer designed to compare effects of selective and non-selective COX-2 inhibitors. A total of 323 incident breast cancer patients were ascertained from the James Cancer Hospital, Columbus, Ohio, during 2003–2004 and compared with 649 cancer free controls matched to the cases at a 2:1 ratio on age, race, and county of residence. Data on the past and current use of prescription and over the counter medications and breast cancer risk factors were ascertained using a standardized risk factor questionnaire. Effects of COX-2 inhibiting agents were quantified by calculating odds ratios (OR and 95% confidence intervals. Results Results showed significant risk reductions for selective COX-2 inhibitors as a group (OR = 0.29, 95% CI = 0.14–0.59, regular aspirin (OR = 0.49, 95% CI = 0.26–0.94, and ibuprofen or naproxen (0.36, 95% CI = 0.18–0.72. Acetaminophen, a compound with negligible COX-2 activity and low dose aspirin (81 mg produced no significant change in the risk of breast cancer. Conclusion Selective COX-2 inhibitors (celecoxib and rofecoxib were only recently approved for use in 1999, and rofecoxib (Vioxx was withdrawn from the marketplace in 2004. Nevertheless, even in the short window of exposure to these compounds, the selective COX-2 inhibitors produced a significant (71% reduction in the risk of breast cancer, underscoring their strong potential for breast cancer chemoprevention.

  7. Cyclooxygenase-2 suppresses the anabolic response to PTH infusion in mice.

    Directory of Open Access Journals (Sweden)

    Shilpa Choudhary

    Full Text Available We previously reported that the ability of continuously elevated PTH to stimulate osteoblastic differentiation in bone marrow stromal cell cultures was abrogated by an osteoclastic factor secreted in response to cyclooxygenase-2 (Cox2-produced prostaglandin E2. We now examine the impact of Cox2 (Ptgs2 knockout (KO on the anabolic response to continuously elevated PTH in vivo. PTH (40 μg/kg/d or vehicle was infused for 12 or 21 days in 3-mo-old male wild type (WT and KO mice in the outbred CD-1 background. Changes in bone phenotype were assessed by bone mineral density (BMD, μCT and histomorphometry. PTH infusion for both 12 and 21 days increased femoral BMD in Cox2 KO mice and decreased BMD in WT mice. Femoral and vertebral trabecular bone volume fractions were increased in KO mice, but not in WT mice, by PTH infusion. In the femoral diaphysis, PTH infusion increased cortical area in Cox2 KO, but not WT, femurs. PTH infusion markedly increased trabecular bone formation rate in the femur, serum markers of bone formation, and expression of bone formation-related genes, growth factors, and Wnt target genes in KO mice relative to WT mice, and decreased gene expression of Wnt antagonists only in KO mice. In contrast to the differential effects of PTH on anabolic factors in WT and KO mice, PTH infusion increased serum markers of resorption, expression of resorption-related genes, and the percent bone surface covered by osteoclasts similarly in both WT and KO mice. We conclude that Cox2 inhibits the anabolic, but not the catabolic, effects of continuous PTH. These data suggest that the bone loss with continuously infused PTH in mice is due largely to suppression of bone formation and that this suppression is mediated by Cox2.

  8. Clinical pharmacokinetics of nabumetone. The dawn of selective cyclo-oxygenase-2 inhibition?

    Science.gov (United States)

    Davies, N M

    1997-12-01

    Nabumetone is a nonsteroidal anti-inflammatory drug (NSAID) of the 2,6-disubstituted naphthyl-alkanone class. Nabumetone is metabolised to an active metabolite 6-methoxy-2-napthylacetic acid (6-MNA) which is a relatively selective cyclo-oxygenase-2 inhibitor that has anti-inflammatory and analgesic properties. Nabumetone and its metabolites bind extensively to plasma albumin. Nabumetone is eliminated following biotransformation to 6-MNA, which does not undergo enterohepatic circulation and the respective glucoroconjugated metabolites are excreted in urine. Substantial concentrations of 6-MNA are attained in synovial fluid, which is he proposed site of action in chronic inflammatory arthropathies. A smaller area under the plasma concentration-time curve (AUC) is evident at steady state as compared with a single dose; this is possibly due to an increase in the volume of distribution and saturation of protein binding. Relationships between 6-MNA concentrations and the therapeutic and toxicological effects have yet to be elucidated for this NSAID. Renal failure significantly reduces 6-MNA elimination but steady-state concentrations of 6-MNA are not increased, possibly because of nonlinear protein binding. Elderly patients with osteoarthritis demonstrate decreased elimination and increased plasma concentrations of nabumetone as compared with young healthy volunteers. Rheumatic disease activity also influences 6-MNA plasma concentrations, as patients with more active disease and lower serum albumin concentrations demonstrate a lower area under the plasma concentration versus time curve. A reduced bioavailability of 6-MNA in patients with severe hepatic impairment is also evident. Dosage adjustment may be required in the elderly, patients with active rheumatic disease and those with hepatic impairment, but not in patients with mild-to-moderate renal failure.

  9. Cyclooxygenase-2 is a target of microRNA-16 in human hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Noelia Agra Andrieu

    Full Text Available Cyclooxygenase-2 (COX-2 expression has been detected in human hepatoma cell lines and in human hepatocellular carcinoma (HCC; however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a by binding directly to the microRNA response element (MRE in the COX-2 3'-UTR promoting translational suppression of COX-2 mRNA; b by decreasing the levels of the RNA-binding protein Human Antigen R (HuR. Furthermore, ectopic expression of miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2 expression.

  10. Immunohistochemical Expression of Cyclooxygenase-2 in Urinary Bladder Transitional Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    F Niki

    2012-07-01

    Full Text Available Background: Transitional Cell Carcinoma (TCC is the most common type of urinary bladder cancer. Cyclooxygenase-2 (COX-2, a key enzyme in prostaglandins biosynthesis, has been introduced as a new candidate for targeted therapy in this cancer. In this study, we investigated the expression of COX-2 in urinary bladder TCCs and its relationship with clinicopathological parameters such as tumor grade and stage. Methods: This cross-sectional study was performed in the Pathology department of Sina Hospital in Tehran, Iran during 2006-2011. Pathology reports of patients with definite diagnosis of urinary bladder TCCs who had undergone Transurethral Resection (TUR were reviewed and 40 cases were selected. Subsequently, COX-2 expression was assessed immunohistochemically by the examination of paraffin embedded tissue blocks. Staining in more than 5% of tumor cells was considered as positive expression. Results: COX-2 was expressed in 52.5% of the patients. High-grade tumors revealed a higher (87.5% COX-2 expression versus other grades of the lesions and there was a statistically significant difference in COX-2 expression between them (P<0.001. Patients age was also related to the expression of this marker (P=0.03. In contrast, this marker did not correlate with other characteristics including gender, lymphatic invasion or tumor stage. In addition, perineurial or vascular invasions were not detected in any of the patients. Conclusion: COX-2 expression was seen in more than half of our patients and it had a marked relation to tumor differentiation. Accordingly, this molecule may be a useful tumor marker in the assessment of urinary bladder cancers.

  11. Cyclooxygenase-2 (COX-2) Polymorphisms and Risk of Inflammatory Bowel Disease in a Scottish and Danish Case–Control Study

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Nimmo, Elaine; Krarup, Henrik B.;

    2011-01-01

    Background: Inflammatory bowel diseases (IBDs) are a result of interactions between luminal pathogens and the intestinal immune response. Cyclooxygenase-2 (COX-2) plays a key role in the regulation of the inflammatory response upon stimulation by luminal pathogens via Toll-like receptors. Methods...... among never-smokers, suggesting that low activity of COX-2 may predispose to UC. Our results suggest that inclusion of smoking status may be essential for the evaluation of the role of genetic predisposition to IBD....

  12. Aspirin inhibits the proliferation of tobacco-related esophageal squamous carcinomas cell lines through cyclooxygenase 2 pathway

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Zhi; LIU Hai-bo; DING Xin-chun; LI Peng; ZHANG Shu-tian; YU Zhong-lin

    2007-01-01

    Background Cigarette smoking has been verified as the risk factor of esophageal squamous cell carcinoma(ESCC).Overexpression of cyclooxygenase 2(COX-2)is shown in ESCC.The objective of this study was to investigate the effects of cigarette smoking ethanol extract(EE)on the proliferation of the human ESCC cell Iines,and to explore the correlation between the proliferation rate of human ESCC cell lines and the expression pattern of COX-2.Whether aspirin can inhibit the proliferation of the ESCC cell lines pretreated with EE.and regulate the mRNA expression levels of COX-2 are also examined.Methods Two human ESCC cell Iines were selected.EC109 was poorly differentiated and EC9706 was highly differentiated.EC109 and EC9706 were treated with EE and aspirin for different time course.The cell growth of ESCC was measured by MTT reduction assay and the expression of COX-2 was measured by RT-PCR and Western blot analysis.Results EE promoted the proliferation of EC109 and EC9706 in dose- and time-dependent manners.In the concentration range (10-100 μg/ml for EE)and in the time range(24-72 hours)after addition of EE,the cell proliferation was prominent in an up-scaled manner respectively.Aspirin could inhibit the proliferation of cell lines EC109 and EC9706.pretreated with EE for 5 hours,in a dose-dependent manner.In the concentration range (0.5-8.0 mmol/L for aspirin),the cell growth inhibition was prominent in an up-scaled manner accordingly (P<0.05).The effect of EE on cell proliferation was correlated with the up-regulation of COX-2 gene.However,the cell growth inhibition of aspirin was correlated with the down-regulation of COX-2 gene.Conclusions EE can stimulate the proliferation of human ESCC cell lines EC109 and EC9706,most likely through up-regulating the expression of COX-2.Aspirin can inhibit the proliferation of ESCC cell lines induced by EE,which suggests it may be advantageous in the chemoprevention and therapy of human tobacco-related ESCC.And its effect is

  13. Cardiovascular thrombotic events in arthritis trials of the cyclooxygenase-2 inhibitor celecoxib.

    Science.gov (United States)

    White, William B; Faich, Gerald; Borer, Jeffrey S; Makuch, Robert W

    2003-08-15

    To determine whether the cyclooxygenase-2 (COX-2) inhibitor celecoxib affects cardiovascular thrombotic risk, we analyzed the incidence of cardiovascular events for celecoxib, placebo, and nonsteroidal anti-inflammatory drugs (NSAIDs) in the entire controlled, arthritis clinical trial database for celecoxib. The primary analysis used the Antiplatelet Trialists' Collaboration end points, which include: (1) cardiovascular, hemorrhagic, and unknown deaths, (2) nonfatal myocardial infarction, and (3) nonfatal stroke. Other secondary thrombotic events were also examined. Separate analyses were performed for all patients and for those not taking aspirin. Data from all controlled, completed arthritis trials of > or =4 weeks duration, including 13 new drug application studies and 2 large post-marketing trials (CLASS and SUCCESS) were included for analyses. Patients were randomized to celecoxib at doses from 100 to 400 mg twice daily (18,942 patients; 5,668.2 patient-years of exposure), diclofenac 50 to 75 mg twice daily, ibuprofen 800 mg thrice daily, naproxen 500 mg twice daily (combined NSAID exposure of 11,143 patients; 3,612.2 patient-years), or placebo (1,794 subjects; 199.9 subject-years). Data from a long-term uncontrolled trial with 5,209 patients (6,950 patients-years) treated with celecoxib were included in a supplemental analysis. The entire 15-trial database was searched for possible serious thrombotic events as well as to identify all deaths. For these patients, detailed clinical data were obtained and reviewed by 2 of the investigators (WBW and JSB), who were independently and blinded to exposure, to classify the event as primary, secondary, or neither. All analyses were done using the intent-to-treat population, and time-to-event analyses were performed using per-patient data. To examine heterogeneity of results among studies, tests of interaction were performed using the Cox model. Incidences of the primary and secondary events were not significantly

  14. Role of cyclooxygenase-2 signaling pathway dysfunction in unexplained recurrent spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; ZHAO Ai-min; LIN Qi-de

    2010-01-01

    Background Experimental evidence indicates that cyclooxygenase-2 (COX-2) plays a critical role in blastocyst implantation; however, little is known of the role of COX-2 in unexplained recurrent spontaneous abortion (URSA).Methods We evaluated the expression level and potential signaling pathway of COX-2 in 30 cases of URSA who were excluded the abnormality of chromosomes, anatomy, endocrine, infectious, autoimmune diseases and in 30 normal pregnancies.Results The mRNA and the protein expression level of COX-2 in the URSA group (-0.238±0.848, 0.368±0.089,respectively) were significantly lower than that in the control group (1.943±3.845, 1.046±0.108, respectively) (both, P<0.01). The expression of prostaglandins PGF2a, PGD2, PGE2, and PGI2, in the URSA group ((2326.0±295.6) pg/ml,(2164.0±240.5) pg/ml, (238.7±26.4) pg/ml, (2337.0±263.0) pg/ml, respectively) were significantly lower than that in the control group ((3450.0±421.7) pg/ml, (3174.0±415.6) pg/ml, (323.5±43.8) pg/ml, (3623.0±460.4) pg/ml, respectively) (P<0.05). The mRNA expression level of PPARβ and RXRa (0.859±0.653, -0.172±0.752, respectively) in URSA group was significantly lower than that in the control group (1.554±1.735, 0.777±2.482, respectively) (both P <0.05). The mRNA and protein expression levels of vascular endothelial growth factor-A (VEGF-A) in the URSA group (2.010±1.522, 0.35±0.46)was significantly lower than that in the control group (4.569±2.430, 0.750±0.350) (both P <0.05).Conclusions COX-2 and the COX-2-derived PGI2 signaling pathway possibly play an important role in successful embryo implantation, and their decreased expression may result in URSA. The decreased expression may influence the expression of VEGF-A which interferes with placental angiogenesis causing failure of embryo implantation, leading to spontaneous abortion.

  15. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  16. Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma.

    Science.gov (United States)

    Shappell, S B; Manning, S; Boeglin, W E; Guan, Y F; Roberts, R L; Davis, L; Olson, S J; Jack, G S; Coffey, C S; Wheeler, T M; Breyer, M D; Brash, A R

    2001-01-01

    Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA) metabolizing enzymes in prostate adenocarcinoma (Pca) development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX) and cyclooxygenase-2 (COX-2) gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE) was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04) and 14/17 (P=.002), respectively. Under the same conditions, neither 5-HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX-2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7). In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but occurs in high

  17. [Cyclooxygenase 2 genetic variant interacting with tobacco smoking and the risk of lung cancer].

    Science.gov (United States)

    Zhang, Zhi; Liu, Rui; Yang, Zhao-huan; Wang, Guang-xia; Shao, Sha-sha; Song, Qin-qin; Zhang, Xue-mei

    2013-08-01

    To explore the association of -1195G > A genetic variant in the promoter region of cyclooxygenase 2 genetic (COX2) with the genetic susceptibility of lung cancer and its interaction with smoking. Totally, 956 lung cancer patients recruited between January 2000 and December 2008 at Cancer Hospital, Chinese Academy of Medical Science as the case group, and 994 frequency-matched controls were randomly selected from a pool of cancer-free subjects recruited from a nutritional survey. All subjects were ethnic Han Chinese. There was no sex, age restrictions. Case group and control group were matched. Informed consent was obtained and 2 ml peripheral blood was collected from each subject. All samples were genotyped by polymerase chain reaction-restriction fragment length polymorphism method, smoking status of the subjects was surveyed.While the OR and 95% CI were estimated by logistic regression to evaluate the relation of COX2 -1195G > A variant and the risk of lung cancer. The genetic allele COX2 -1195AA of control group and case group were 24.9% (247/994) and 28.3% (271/956) . Case-control analysis showed an increased risk of developing lung cancer for -1195AA genotype carriers (OR = 1.36, 95% CI: 1.03-1.79), compared with -1195GG carriers. When stratified by smoking status, the significant increased risk of lung cancer was found among smokers with COX2-1195AA genotype, with the OR (95%CI) was 1.56 (1.08-2.25); while among non-smokers, difference of lung cancer risk was not found among different genotypes (OR = 1.17; 95%CI: 0.77-1.61). Among heavy smokers (pack-year >20), -1195AA and -1195AG genotype carriers have significant increased risk of lung cancer with 1.85 (1.16-2.95) and 1.62(1.08-2.43) of OR (95%CI), respectively; among light smokers (pack-year ≤ 20), the OR (95%CI) of lung cancer risk in -1195AG and -1195AA genotype carriers were 0.78 (0.47-1.30) and 1.08 (0.60-1.94), respectively. Genetic polymorphism in the promoter of COX2 gene interacting with smoking

  18. Cyclooxygenase-2 inhibitor is a robust enhancer of anticancer agents against hepatocellular carcinoma multicellular spheroids

    Directory of Open Access Journals (Sweden)

    Cui J

    2014-02-01

    Full Text Available Jie Cui,1,2 Ya-Huan Guo,3 Hong-Yi Zhang,4 Li-Li Jiang,1 Jie-Qun Ma,1 Wen-Juan Wang,1 Min-Cong Wang,1 Cheng-Cheng Yang,1 Ke-Jun Nan,1 Li-Ping Song5 1Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, 2Department of Oncology, Yan'an University Affiliated Hospital, Yan'an, 3Department of Oncology, Shaanxi Province Cancer Hospital, Xi'an, 4Department of Urology, Yan'an University Affiliated Hospital, Yan'an, 5Department of Radiotherapy, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China Purpose: Celecoxib, an inhibitor of cyclooxygenase-2 (COX2, was investigated for enhancement of chemotherapeutic efficacy in cancer clinical trials. This study aimed to determine whether celecoxib combined with 5-fluorouracil or sorafenib or gefitinib is beneficial in HepG2 multicellular spheroids (MCSs, as well as elucidate the underlying mechanisms. Methods: The human hepatocellular carcinoma cell line HepG2 MCSs were used as in vitro models to investigate the effects of celecoxib combined with 5-fluorouracil or sorafenib or gefitinib treatment on cell growth, apoptosis, and signaling pathway. Results: MCSs showed resistance to drugs compared with monolayer cells. Celecoxib combined with 5-fluorouracil or sorafenib exhibited a synergistic action. Exposure to celecoxib (21.8 µmol/L plus 5-fluorouracil (8.1 × 10-3 g/L or sorafenib (4.4 µmol/L increased apoptosis but exerted no effect on COX2, phosphorylated epidermal growth-factor receptor (p-EGFR and phosphorylated (p-AKT expression. Gefitinib (5 µmol/L, which exhibits no growth-inhibition activity as a single agent, increased the inhibitory effect of celecoxib. Gefitinib (5 µmol/L plus celecoxib (21.8 µmol/L increased apoptosis. COX2, p-EGFR, and p-AKT were inhibited. Conclusion: Celecoxib combined with 5-fluorouracil or sorafenib or gefitinib may be superior to single-agent therapy in HepG2

  19. Efficacy of cyclo-oxygenase-2 inhibition by etoricoxib and naproxen on the axial manifestations of ankylosing spondylitis in the presence of peripheral arthritis

    OpenAIRE

    Gossec, L; van der Heijde, D.; Melian, A; Krupa, D.; James, M.; Cavanaugh, P; Reicin, A; Dougados, M.

    2005-01-01

    Objective: The combined efficacy of selective and non-selective cyclo-oxygenase-2 (COX-2) inhibition on the axial manifestations of ankylosing spondylitis (AS) in the presence or absence of chronic peripheral arthritis was evaluated.

  20. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    Science.gov (United States)

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...

  1. Virtual and in vitro bioassay screening of phytochemical inhibitors from flavonoids and isoflavones against xanthine oxidase and cyclooxygenase-2 for gout treatment.

    Science.gov (United States)

    Li, Yadi; Frenz, Christopher M; Li, Zhiwen; Chen, Mianhua; Wang, Yurong; Li, Fengjuan; Luo, Cheng; Sun, Jian; bohlin, Lars; Li, Zhenjing; Yang, Hua; Wang, Changlu

    2013-04-01

    Synthetic drugs such as allopurinol and benzbromarone are commonly used to treat the complex pathogenesis of gout, a metabolic disease that results from an inflammation of the joints caused by precipitation of uric acid. We seek to discover novel phytochemicals that could treat gout, by targeting the xanthine oxidase and cyclooxygenase-2 enzymes. In this study, we report the screening of nine compounds of flavonoids from the ZINC and PubChem databases (containing 2092 flavonoids) using the IGEMDOCK software tool against the xanthine oxidase and cyclooxygenase-2 3D protein structures. Each compound was also evaluated by an in vitro bioassay testing the inhibition of xanthine oxidase and cyclooxygenase-2. Myricetin and luteolin were found to be the potential dual inhibitors of xanthine oxidase and cyclooxygenase-2 as demonstrated by IC(50): 62.7 and 3.29 μg/mL (xanthine oxidase)/70.8 and 16.38 μg/mL (cyclooxygenase-2), respectively. In addition, structure-activity relationships and other important factors of the flavonoids binding to the active site of xanthine oxidase and cyclooxygenase-2 were discussed, which is expected for further rational drug design.

  2. Preparation of procyanidin B2 from apple pomace and its inhibitory effect on the expression of cyclooxygenase-2 in lipopolysaccharide-treated RAW264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2011-06-01

    Full Text Available Dimeric procyanidin B2 (PB2 is one of phenolic compounds in apple pomace, an agro-industrial byproduct in apple juice processing. This work focused on purification of PB2 from apple pomace using sephadex column chromatography and its potential effect on lipopolysaccharide (LPS-induced inflammation using RAW264.7 macrophages. PB2 with the purity of 72.28 ± 1.85% was successfully afforded using resin and gel column chromatographic technique. Anti-inflammatory tests suggested that the expression of cyclooxygenase-2 (COX-2 in LPS-induced murine RAW264.7 macrophages was suppressed in a PB2 concentration-dependent manner. PB2 at no less than 50 μg·mL-1 could significantly suppress inflammation in the LPS-induced cells. Moreover, this suppressive effect was not correlated with PB2 pretreating. However, the COX-2 expression was not reduced in LPS pretreatment way followed by PB2 exposure, which suggested that PB2 has no repairing function. The results showed that high pure PB2 prepared from apple pomace has a remarkable anti-inflammatory property.

  3. Clinical Implication of Cyclooxygenase-2 Expression for Rectal Cancer Patients with Lymph Node Involvement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Sik; Choi, Young Min; Hur, Won Joo; Kim, Su Jin; Kim, Dae Cheol; Roh, Mee Sook; Hong, Young Seoub; Park, Ki Jae [Dona-A University School of Medicine, Busan (Korea, Republic of)

    2009-12-15

    To assess the influence of cyclooxygenase-2 (COX-2) expression on the survival of patients with a combination of rectal cancer and lymph node metastasis. The study included rectal cancer patients treated by radical surgery and postoperative radiotherapy at the Dong-A university hospital from 1998 to 2004. A retrospective analysis was performed on a subset of patients that also had lymph node metastasis. After excluding eight of 86 patients, due to missing tissue samples in three, malignant melanoma in one, treatment of gastric cancer around one year before diagnosis in one, detection of lung cancer after one year of diagnosis in one, liver metastasis in one, and refusal of radiotherapy after 720 cGy in one, 78 patients were analyzed. The immunohistochemistry for COX-2 was conducted with an autostainer (BenchMark; Ventana, Tucson, AZ, USA). An image analyzer (TissueMine; Bioimagene, Cupertino, CA, USA) was used for analysis after scanning (ScanScope; Aperio, Vista, CA, USA). A survival analysis was performed using the Kaplan Meier method and significance was evaluated using the log rank test. COX-2 was stained positively in 62 patients (79.5%) and negatively in 16 (20.5%). A total of 6 (7.7%), 15 (19.2%), and 41 (52.6%) patients were of grades 1, 2, and 3, respectively for COX-2 expression. No correlation was found between being positive of COX-2 patient characteristics, which include age (<60-year old vs. {>=}60), sex, operation methods (abdominoperineal resection vs. lower anterior resection), degrees of differentiation, tumor size (<5 cm vs. {>=}5 cm), T stages, N stages, and stages (IIIa, IIIb, IIIc). The 5-year overall and 5-year disease free survival rates for the entire patient population were 57.0% and 51.6%, respectively. The 5-year overall survival rates for the COX-2 positive and negative patients were 53.0% and 72.9%, respectively (p=0.146). Further, the 5-year disease free survival rates for the COX-2 positive and negative patients were 46.3% and 72

  4. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, Francisco [Service of Radiation Therapy, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Gutiérrez, Antonio, E-mail: antoniom.gutierrez@ssib.es [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Rodriguez, Jose [MD Anderson Cancer Center, Madrid (Spain); Ramos, Rafael [Service of Pathology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Garcia, Juan Fernando [Spanish National Cancer Research Centre, Madrid (Spain); Martinez-Serra, Jordi [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Casasus, Marta; Nicolau, Cristina [Service of Radiation Therapy, Policlinica Miramar, Palma de Mallorca (Spain); Bento, Leyre; Herraez, Ines [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Lopez-Perezagua, Paloma [Service of Radiology, IDISPA, Palma de Mallorca (Spain); Daumal, Jaime [Service of Nuclear Medicine, IDISPA, Palma de Mallorca (Spain); Besalduch, Joan [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain)

    2015-05-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.

  5. Cyclooxygenase-2 and epithelial growth factor receptor up-regulation during progression of Barrett's esophagus to adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Yan Li; John M Wo; Mukunda B Ray; Whitney Jones; Ruifeng R Su; Susan Ellis; Robert C G Martin

    2006-01-01

    AIM: To investigate the expression of cyclooxygenase-2(COX-2) and epithelial growth factor receptor (EGFR)throughout the progression of Barrett's esophagus (BE).METHODS: COX-2 and EGFR protein expressions were detected by using immunohistochemical method. A detailed cytomorphological changes were determined.Areas of COX-2 and EGFR expression were quantified by using computer Imaging System.RESULTS: The expressions of both COX-2 and EGFR increased along with the progression from BE to esophagus adenocarcinoma (EAC). A positive correlation was found between COX-2 expression and EGFR expression.CONCLUSION: COX-2 and EGFR may be cooperative in the stepwise progression from BE to EAC, thereby leading to carcinogenesis.

  6. miR-144 and targets, c-fos and cyclooxygenase-2 (COX2), modulate synthesis of PGE2 in the amnion during pregnancy and labor.

    Science.gov (United States)

    Li, Huanan; Zhou, Jiawei; Wei, Xiajie; Chen, Ran; Geng, Junnan; Zheng, Rong; Chai, Jin; Li, Fenge; Jiang, Siwen

    2016-06-14

    Labor is initiated as a result of hormonal changes that are induced by the activation of the inflammatory response and a series of biochemical events. The amnion, which is the primary source of prostaglandin E2 (PGE2), plays an important role in the process of labor. In the present study, we uncovered a pathway in which c-fos, cyclooxygenase-2 (COX2) and miR-144 function as hormonal modulators in the amnions of pregnant mice and humans. miR-144 down-regulated the synthesis of PGE2 during pregnancy by directly and indirectly inhibiting COX2 expression and by directly inhibiting the expression of c-fos, a transcriptional activator of COX2 and miR-144. Estrogen (E2) activated c-fos, thus promoting the expression of miR-144 and COX2 during labor. However, the increase in COX2 resulted in the partial inhibition of COX2 expression by miR-144, thereby slightly reducing the secretion of PGE2. These observations suggest that miR-144 inhibits PGE2 secretion by section to prevent the initiation of premature labor. Up-regulated expression of miR-144, c-fos and COX2 was also observed both in preterm mice and in mice undergoing normal labor. In summary, miR-144, c-fos and COX2 play important roles in regulating PGE2 secretion in the amnion during pregnancy and labor.

  7. Effectiveness of cyclooxygenase-2 inhibition in limiting abdominal aortic aneurysm progression in mice correlates with a differentiated smooth muscle cell phenotype.

    Science.gov (United States)

    Mukherjee, Kamalika; Gitlin, Jonathan M; Loftin, Charles D

    2012-12-01

    Abdominal aortic aneurysms (AAAs) are a chronic condition that often progress over years to produce a weakened aorta with increased susceptibility for rupture, and currently, there are no pharmacological treatments available to slow disease progression. AAA development has been characterized by increased expression of cyclooxygenase-2 (COX-2), and inactivation of COX-2 before disease initiation reduces AAA incidence in a mouse model of the disease. The current study determined the effectiveness of COX-2 inhibition on AAA progression when treatment was begun after initiation of the disease. COX-2 inhibitor treatment with celecoxib was initiated after angiotensin II-induced AAA formation in a strain of nonhyperlipidemic mice that we have previously identified as highly susceptible to AAA development. When analyzed at different time points during progression of the disease, celecoxib treatment significantly reduced the incidence and severity of AAAs. The celecoxib treatment also protected the mice from aortic rupture and death. The aneurysmal lesion displayed an altered smooth muscle cell (SMC) phenotype, whereas celecoxib treatment was associated with increased expression of differentiated SMC markers and reduced dedifferentiation marker expression during AAA progression. Maintenance of a differentiated SMC phenotype is associated with the effectiveness of COX-2 inhibition for limiting AAA progression in nonhyperlipidemic mice.

  8. 1-Bromopropane up-regulates cyclooxygenase-2 expression via NF-κB and C/EBP activation in murine macrophages.

    Science.gov (United States)

    Han, Eun Hee; Yang, Ji Hye; Kim, Hyung-Kyun; Choi, Jae Ho; Khanal, Tilak; Do, Minh Truong; Chung, Young Chul; Lee, Kwang Youl; Jeong, Tae Cheon; Jeong, Hye Gwang

    2012-05-01

    1-Bromopropane (1-BP) has been used in industry as an alternative to ozone-depleting solvents. In the present study, we examined the effect of 1-BP on cyclooxygenase-2 (COX-2) gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. 1-BP dose-dependently increased COX-2 protein and mRNA levels, as well as COX-2 promoter-driven luciferase activity in macrophages. Additionally, exposure to 1-BP markedly enhanced the production of prostaglandin E(2) (PGE(2)), a major COX-2 metabolite, in macrophages. Transfection experiments with several human COX-2 promoter constructs revealed that 1-BP activated the transcription factors nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein (C/EBP), but not AP-1 or the cyclic AMP response element binding protein. Furthermore, Akt and mitogen-activated protein (MAP) kinases were significantly activated by 1-BP. These results demonstrated that 1-BP induced COX-2 expression via NF-κB and C/EBP activation through the Akt/ERK and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the inflammatory effects of 1-BP.

  9. NO2 inhalation promotes Alzheimer’s disease-like progression: cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication

    Science.gov (United States)

    Yan, Wei; Yun, Yang; Ku, Tingting; Li, Guangke; Sang, Nan

    2016-03-01

    Air pollution has been reported to be associated with increased risks of cognitive impairment and neurodegenerative diseases. Because NO2 is a typical primary air pollutant and an important contributor to secondary aerosols, NO2-induced neuronal functional abnormalities have attracted greater attention, but the available experimental evidence, modulating mechanisms, and targeting medications remain ambiguous. In this study, we exposed C57BL/6J and APP/PS1 mice to dynamic NO2 inhalation and found for the first time that NO2 inhalation caused deterioration of spatial learning and memory, aggravated amyloid β42 (Aβ42) accumulation, and promoted pathological abnormalities and cognitive defects related to Alzheimer’s disease (AD). The microarray and bioinformation data showed that the cyclooxygenase-2 (COX-2)-mediated arachidonic acid (AA) metabolism of prostaglandin E2 (PGE2) played a key role in modulating this aggravation. Furthermore, increasing endocannabinoid 2-arachidonoylglycerol (2-AG) by inhibiting monoacylglycerol lipase (MAGL) prevented PGE2 production, neuroinflammation-associated Aβ42 accumulation, and neurodegeneration, indicating a therapeutic target for relieving cognitive impairment caused by NO2 exposure.

  10. Cyclooxygenase-2 Silencing for the Treatment of Colitis: A Combined In Vivo Strategy Based on RNA Interference and Engineered Escherichia Coli

    Science.gov (United States)

    Spisni, Enzo; Valerii, Maria C; De Fazio, Luigia; Cavazza, Elena; Borsetti, Francesca; Sgromo, Annamaria; Candela, Marco; Centanni, Manuela; Rizello, Fernando; Strillacci, Antonio

    2015-01-01

    Nonpathogenic-invasive Escherichia coli (InvColi) bacteria are suitable for genetic transfer into mammalian cells and may act as a vehicle for RNA Interference (RNAi) in vivo. Cyclooxygenase-2 (COX-2) is overexpressed in ulcerative colitis (UC) and Crohn's disease (CD), two inflammatory conditions of the colon and small intestine grouped as inflammatory bowel disease (IBD). We engineered InvColi strains for anti-COX-2 RNAi (InvColishCOX2), aiming to investigate the in vivo feasibility of a novel COX-2 silencing strategy in a murine model of colitis induced by dextran sulfate sodium (DSS). Enema administrations of InvColishCOX2 in DSS-treated mice led to COX-2 downregulation, colonic mucosa preservation, reduced colitis disease activity index (DAI) and increased mice survival. Moreover, DSS/InvColishCOX2-treated mice showed lower levels of circulating pro-inflammatory cytokines and a reduced colitis-associated shift of gut microbiota. Considering its effectiveness and safety, we propose our InvColishCOX2 strategy as a promising tool for molecular therapy in intestinal inflammatory diseases. PMID:25393372

  11. The regulation of cytotoxicity and cyclooxygenase-2 expression by 2-hydroxy-ethyl methacrylate in human osteoblasts are related to intracellular glutathione levels.

    Science.gov (United States)

    Ho, Y-C; Huang, F-M; Lee, S-S; Chang, Y-C

    2014-08-01

    To investigate the effects of 2-hydroxy-ethyl methacrylate (HEMA) on cytotoxicity and cyclooxygenase-2 (COX-2) protein expression in human osteoblasts. Cytotoxicity was judged using an Alamar Blue reduction assay on human osteoblast cell line U2OS. Western blot was used to evaluate the expression of COX-2 protein by HEMA. To determine whether glutathione (GSH) levels were important in cytotoxicity and COX-2 expression of HEMA, cells were pre-treated with the GSH precursor, 2-oxothiazolidine-4-carboxylic acid (OTZ), to boost thiol levels, or buthionine sulfoximine (BSO) to deplete GSH. Paired Student's t-tests were applied for the statistical analysis of the results. HEMA demonstrated a cytotoxic effect to U2OS cells in a dose-dependent manner (P cytotoxicity and COX-2 expression (P cytotoxicity and COX-2 expression (P tested inhibited cell growth on U2OS cells. HEMA has a significant potential for periapical toxicity. The activation of COX-2 protein expression may be one of the mechanisms of HEMA-induced periapical inflammation. These inhibitory effects were associated with intracellular GSH levels. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Stimulation of cyclooxygenase-2-activity by nitric oxide-derived species in rat chondrocyte: lack of contribution to loss of cartilage anabolism.

    Science.gov (United States)

    Nédélec, E; Abid, A; Cipolletta, C; Presle, N; Terlain, B; Netter, P; Jouzeau, J

    2001-04-15

    Cross-talk between inducible nitric oxide synthase (NOS II) and cyclooxygenase-2 (COX-2) was investigated in rat chondrocytes. In monolayers, interleukin-1beta (IL-1beta) induced COX-2 and NOS II expression in a dose- and time-dependent manner, to produce high prostaglandin E(2) (PGE(2)) and nitrite (NO(2)(-)) levels in an apparently coordinated fashion. COX-2 mRNA was induced earlier (30 min. versus 4 hr) and less markedly (4-fold versus 12-fold at 24 hr) than NOS II, and was poorly affected by the translational inhibitor cycloheximide (CHX). IL-1beta did not stabilize COX-2 mRNA in contrast to CHX. Indomethacin and NS-398 lacked any effect on NO(2)(-) levels whereas L-NMMA and SMT reduced PGE(2) levels at concentration inhibiting NO(2)(-) production from 50 to 90%, even when added at a time allowing a complete expression of both enzymes (8 hr). Basal COX activity was unaffected by NO donors. The SOD mimetic, CuDips inhibited COX-2 activity by more than 75% whereas catalase did not. Inhibition of COX-2 by CuDips was not sensitive to catalase, consistent with a superoxide-mediated effect. In tridimensional culture, IL-1beta inhibited radiolabelled sodium sulphate incorporation while stimulating COX-2 and NOS II activities. Cartilage injury was corrected by L-NMMA or CuDips but not by NSAIDs, consistent with a peroxynitrite-mediated effect. These results show that in chondrocytes: (i) COX2 and NOS II genes are induced sequentially and distinctly by IL-1beta; (ii) COX-1 and COX-2 activity are affected differently by NO-derived species; (iii) peroxynitrite accounts likely for stimulation of COX-2 activity and inhibition of proteoglycan synthesis induced by IL-1beta.

  13. Lysyl Oxidase, A Critical Intra- and Extra-Cellular Target in the Lung for Cigarette Smoke Pathogenesis

    Directory of Open Access Journals (Sweden)

    Lijun Chen

    2011-01-01

    Full Text Available Cigarette smoke (CS, a complex chemical mixture, contains more than 4,800 different compounds, including oxidants, heavy metals, and carcinogens, that individually or in combination initiate or promote pathogenesis in the lung accounting for 82% of chronic obstructive pulmonary disease (COPD deaths and 87% of lung cancer deaths. Lysyl oxidase (LO, a Cu-dependent enzyme, oxidizes peptidyl lysine residues in collagen, elastin and histone H1, essential for stabilization of the extracellular matrix and cell nucleus. Considerable evidences have shown that LO is a tumor suppressor as exemplified by inhibiting transforming activity of ras, a proto oncogene. CS condensate (CSC, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and cadmium (Cd, major components of CS, down-regulate LO expression at such multiple levels as mRNA, protein and catalytic activity in lung cells in vitro and in vivo indicating LO as a critical intra- and extracellular target for CS pathogenesis in the lung. In view of multiple biological functions and regulation characteristics of the LO gene, molecular mechanisms for CS damage to lung LO and its role in emphysema and cancer pathogenesis are discussed in this review.

  14. Strain-Specific Spontaneous and NNK-Mediated Tumorigenesis in Pten+/− Mice

    Directory of Open Access Journals (Sweden)

    Mary Christine Hollander

    2008-08-01

    Full Text Available Pten is a negative regulator of the Akt pathway, and its inactivation is believed to be an etiological factor in many tumor types. Pten+/- mice are susceptible to a variety of spontaneous tumor types, depending on strain background. Pten+/- mice, in lung tumor-sensitive and -resistant background strains, were treated with a tobacco carcinogen, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, to determine whether allelic Pten deletion can cooperate with NNK in carcinogenesis in lung or other tissues. In lung tumor-resistant C57BL/6 Pten+/- or +/+ mice, NNK treatment did not lead to any lung tumors and did not increase the incidence or severity of tumors previously reported for this strain. In contrast, in a lung tumor-susceptible pseudo-A/J strain, there was a dose-dependent increase in lung tumor size in Pten+/- compared with +/+ mice, although there was no increase in multiplicity. No other tumor types were observed in pseudo-A/J Pten+/- mice regardless of NNK treatment. Lung tumors from these Pten+/- mice had K-ras mutations, retained Pten expression and had similar Akt pathway activation as lung tumors from +/+ mice. Therefore, deletion of a single copy of Pten does not substantially add to the lung tumor phenotype conferred by mutation of K-ras by NNK, and there is likely no selective advantage for loss of the second Pten allele in lung tumor initiation.

  15. Purification and reconstitution of human membrane-bound DHRS7 (SDR34C1) from Sf9 cells.

    Science.gov (United States)

    Skarka, Adam; Škarydová, Lucie; Štambergová, Hana; Wsól, Vladimír

    2014-03-01

    Dehydrogenase/reductase SDR family member 7 (DHRS7, SDR34C1, retSDR4) is one of the many endoplasmic reticulum bound members of the SDR superfamily. Preliminary results indicate its potential significance in human metabolism. DHRS7 containing TEV-cleavable His10 and FLAG-tag expressed in the Sf9 cell line was solubilised, purified, and reconstituted into liposomes to enable the improved characterisation of this enzyme in the future. Igepal CA-630 was determined to be the best detergent for the solubilisation process. The solubilised DHRS7 was purified using affinity chromatography, and the purified enzyme was subjected to TEV cleavage of the affinity tags and then repurified using subtractive Ni-IMAC. The cleaved and uncleaved versions of DHRS7 were successfully reconstituted into liposomes. In addition, using tobacco specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as the substrate, the cleaved liposomal DHRS7 was found to be inactive, whereas the pure and uncleaved liposomal DHRS7 were confirmed as enzymes, which reduce carbonyl group of the substrates.

  16. p-Dimethylaminocinnamaldehyde Derivatization for Colorimetric Detection and HPLC-UV/Vis-MS/MS Identification of Indoles

    Science.gov (United States)

    Porubsky, Patrick R.; Scott, Emily E.; Williams, Todd D.

    2008-01-01

    Cytochrome P450 2A13 is a lung specific enzyme known to activate the potent tobacco procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) into two carcinogenic metabolites. CYP2A13 has been crystallized and X-ray diffraction experiments illuminated the structure of this enzyme, but with an unknown ligand present in the enzyme active site. This unknown ligand was suspected to be indole but a selective method had to be developed to differentiate among indole and its metabolites in the protein sample. We successfully modified a microbiological colorimetric assay to spectrophotometrically differentiate between indole and a number of possible indole metabolites in nanomolar concentrations by derivatization with p-dimethylaminocinnamaldehyde (DMACA). Further differentiation of indoles was made by mass spectrometry (HPLC-UV/Vis-MS/MS) utilizing the chromophore generated in the DMACA conjugation as a UV signature for HPLC detection. The ligand in the crystallized protein was identified as unsubstituted indole, which facilitated refinement of two alternate conformations in the CYP2A13 crystal structure active site. PMID:18423367

  17. It is time to regulate carcinogenic tobacco-specific nitrosamines in cigarette tobacco.

    Science.gov (United States)

    Hecht, Stephen S

    2014-07-01

    The Family Smoking Prevention and Tobacco Control Act gives the U.S. Food and Drug Administration power to regulate tobacco products. This commentary calls for immediate regulation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) in cigarette tobacco as a logical path to cancer prevention. NNK and NNN, powerful carcinogens in laboratory animals, have been evaluated as "carcinogenic to humans" by the International Agency for Research on Cancer. NNK and NNN are present in the tobacco of virtually all marketed cigarettes; levels in cigarette smoke are directly proportional to the amounts in tobacco. The NNK metabolite NNAL, itself a strong carcinogen, is present in the urine of smokers and nonsmokers exposed to secondhand smoke. Some of the highest levels of NNK and NNN are found in U.S. products. It is well established that factors such as choice of tobacco blend, agricultural conditions, and processing methods influence levels of NNK and NNN in cigarette tobacco and cigarette smoke. Therefore, it is time to control these factors and produce cigarettes with 100 ppb or less each of NNK and NNN in tobacco, which would result in an approximate 15- to 20-fold reduction of these carcinogens in the mainstream smoke of popular cigarettes sold in the United States.

  18. Similar exposure to a tobacco-specific carcinogen in smokeless tobacco users and cigarette smokers.

    Science.gov (United States)

    Hecht, Stephen S; Carmella, Steven G; Murphy, Sharon E; Riley, William T; Le, Chap; Luo, Xianghua; Mooney, Marc; Hatsukami, Dorothy K

    2007-08-01

    Smokeless tobacco has been proposed as a reduced risk substitute for smoking, but no large studies have investigated exposure to the powerful carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in smokeless tobacco users versus smokers. The purpose of this study was to carry out such a comparison. Levels of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronides (total NNAL), a biomarker of NNK exposure, and cotinine, a biomarker of nicotine exposure, were quantified in the urine of 420 smokers and 182 smokeless tobacco users who were participants in studies designed to reduce their use of these products. The measurements were taken at baseline, before intervention. Levels of total NNAL per milliliter of urine were significantly higher in smokeless tobacco users than in smokers (P tobacco users than in smokers (P tobacco users than in smokers (P tobacco-specific carcinogen NNK in smokeless tobacco users and smokers. These findings do not support the use of smokeless tobacco as a safe substitute for smoking.

  19. Green tea and its major components ameliorate immune dysfunction in mice bearing Lewis lung carcinoma and treated with the carcinogen NNK.

    Science.gov (United States)

    Zhu, M; Gong, Y; Yang, Z; Ge, G; Han, C; Chen, J

    1999-01-01

    The protective effects of tea and/or its components on dysfunction of immune functions during tumor growth and carcinogenesis in mice were studied using two experimental models: C57/BL6J mice transplanted with Lewis lung carcinoma (LLC) and Kunming mice treated with a single dose of 4-(methylnitrosamino-)-1-(3-pyridyl)-1-butanone (NNK). In C57/BL6J mice bearing LLC, the weight of the thymus decreased, the proportion of CD4(+)-positive T lymphocytes and the ratio of CD4+ to CD8+ decreased, luminol-enhanced chemiluminescence of white blood cells in peripheral blood stimulated by zymosan increased, and plaque-forming cells (PFC) decreased. However, in LLC-bearing mice given green tea as drinking water, all immune functions were improved, along with inhibition of tumor growth. In Kunming mice treated with NNK, during the four weeks of observation, their immunologic indicators, such as phagocytosis of macrophages in the abdominal cavity, luminol-enhanced chemiluminescence of white blood cells, plaque-forming cells, and delayed-type hypersensitivity, increased or decreased to various extents compared with normal controls. However, these changes were significantly prevented in the mice given green tea, mixed tea, or tea polyphenol as drinking water. In conclusion, tea and its components ameliorated immune dysfunction in mice bearing LLC or treated with the carcinogen NNK.

  20. The chemical composition of smokeless tobacco: a survey of products sold in the United States in 2006 and 2007.

    Science.gov (United States)

    Borgerding, M F; Bodnar, J A; Curtin, G M; Swauger, J E

    2012-12-01

    Selected toxicant concentrations and other chemical measures have been determined for 43 U.S. smokeless tobacco products sold in 2006 and 2007. Products evaluated included moist snuff, dry snuff, loose leaf, plug, dissolvable and snus tobacco brands. Reference products available for scientific research purposes and eleven Swedish products were also evaluated and compared to the commercial products studied. Chemical endpoints determined included benzo[a]pyrene (B[a]P), N'-nitrosonornicotine (NNN), N'-nitrosoanatabine (NAT), N'-nitrosoanabasine (NAB), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-Nitrosodimethylamine (NDMA), nitrite, cadmium, lead, arsenic, nickel, chromium, chloride, water, pH and nicotine. Different toxicant profiles were observed for the products studied, with snus tobacco brands generally containing relatively low concentrations of B[a]P and tobacco specific nitrosamines (TSNAs) compared to other moist snuffs. Smokeless tobacco reference product toxicant profiles were similar to corresponding commercial products, with the exception of the TSNA content of the dry snuff reference material. TSNA concentrations observed for all commercial products were lower than historically reported values, likely reflecting changes in product shelf life, tobacco curing practices and, possibly, product blend formulations during the last 20-30 years. The survey results summarized provide a temporal point of comparison with future data anticipated from FDA "harmful and potentially harmful constituents in tobacco products" reporting.

  1. A longitudinal study of smokers' exposure to cigarette smoke and the effects of spontaneous product switching.

    Science.gov (United States)

    Cunningham, Anthony; Sommarström, Johan; Camacho, Oscar M; Sisodiya, Ajit S; Prasad, Krishna

    2015-06-01

    A challenge in investigating the effect of public health policies on cigarette consumption and exposure arises from variation in a smoker's exposure from cigarette to cigarette and the considerable differences between smokers. In addition, limited data are available on the effects of spontaneous product switching on a smoker's cigarette consumption and exposure to smoke constituents. Over 1000 adult smokers of the same commercial 10mg International Organization for Standardization (ISO) tar yield cigarette were recruited into the non-residential, longitudinal study across 10 cities in Germany. Cigarette consumption, mouth level exposure to tar and nicotine and biomarkers of exposure to nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone were measured every 6months over a 3 and a half year period. Cigarette consumption remained stable through the study period and did not vary significantly when smokers spontaneously switched products. Mouth level exposure decreased for smokers (n=111) who switched to cigarettes of 7mg ISO tar yield or lower. In addition, downward trends in mouth level exposure estimates were observed for smokers who did not switch cigarettes. Data from this study illustrate some of the challenges in measuring smokers' long-term exposure to smoke constituents in their everyday environment. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Expression of a constitutively active nitrate reductase variant in tobacco reduces tobacco-specific nitrosamine accumulation in cured leaves and cigarette smoke.

    Science.gov (United States)

    Lu, Jianli; Zhang, Leichen; Lewis, Ramsey S; Bovet, Lucien; Goepfert, Simon; Jack, Anne M; Crutchfield, James D; Ji, Huihua; Dewey, Ralph E

    2016-07-01

    Burley tobaccos (Nicotiana tabacum) display a nitrogen-use-deficiency phenotype that is associated with the accumulation of high levels of nitrate within the leaf, a trait correlated with production of a class of compounds referred to as tobacco-specific nitrosamines (TSNAs). Two TSNA species, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN), have been shown to be strong carcinogens in numerous animal studies. We investigated the potential of molecular genetic strategies to lower nitrate levels in burley tobaccos by overexpressing genes encoding key enzymes of the nitrogen-assimilation pathway. Of the various constructs tested, only the expression of a constitutively active nitrate reductase (NR) dramatically decreased free nitrate levels in the leaves. Field-grown tobacco plants expressing this NR variant exhibited greatly reduced levels of TSNAs in both cured leaves and mainstream smoke of cigarettes made from these materials. Decreasing leaf nitrate levels via expression of a constitutively active NR enzyme represents an exceptionally promising means for reducing the production of NNN and NNK, two of the most well-documented animal carcinogens found in tobacco products. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. A study to investigate changes in the levels of biomarkers of exposure to selected cigarette smoke constituents in Japanese adult male smokers who switched to a non-combustion inhaler type of tobacco product.

    Science.gov (United States)

    Miura, Naoki; Yuki, Dai; Minami, Naoki; Kakehi, Aoi; Futamura, Yasuyuki

    2015-04-01

    In a clinical study, changes in 14 biomarkers of exposures (BOEs) from 10 tobacco smoke constituents and mutagens detected by the urine mutagenicity test were investigated using a non-combustion inhaler type of tobacco product (NCIT) by switching from a conventional cigarette. This study was conducted in 80 Japanese healthy adult males with a 4-week residential, controlled, open-label, parallel group design. After randomization, 40 smokers used NCIT with approximately 750 aspirations, other 20 smokers smoked approximately 20 pieces of an assigned 1-mg ISO tar conventional cigarette (CC1) every day. Twenty non-smokers (NS) did not use any tobacco product. Under this study condition, switching from cigarette to NCIT showed significant reduction in all BOEs measured. On day 29, the levels of these BOEs were almost the same as those in the NS group, except BOEs of nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). This suggested that the exposure to 8 constituents and mutagens in the NCIT group was similar to that in the NS group, while the exposure to nicotine was higher. Although the precise exposure level to NNK was not estimated because of the long half-life of its BOE, it would be substantially lower in the NCIT group than in the CC1 group. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Synergistic Induction of Cyclooxygenase-2 by Transforming Growth Factor-β1 and Epidermal Growth Factor Inhibits Apoptosis in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Debabrata Saha

    1999-12-01

    Full Text Available Increased expression of cyclooxygenase-2 (COX-2 expression has been observed in several human tumor types and in selected animal and cell culture models of carcinogenesis, including lung cancer. Increased expression of COX-2 and production of prostaglandins appear to provide a survival advantage to transformed cells through the inhibition of apoptosis, increased attachment to extracellular matrix, increased invasiveness, the stimulation of angiogenesis. In the present studies, we found that transforming growth factor β1 (TGF-β1 and epidermal growth factor (EGF synergistically induced the expression of COX-2 and prostaglandin E2 (PGE2 production in mink lung epithelial (Mvi Lu cells. EGF, but not PDGF or IGF-1, was able to inhibit TGF-β1-induced apoptosis in Mvi Lu cells and this effect was blocked by NS-398, a selective inhibitor of COX-2 activity, suggesting a possible role for COX-2 in the anti-apoptosic effect of EGF receptor ligands. The combination of TGF-β1 and EGF also significantly induced COX-2 expression in rat intestinal epithelial (RIE-1 cells and completely prevented sodium butyrate (NaBu-induced apoptosis. The synergistic induction of COX-2 by TGF-β1 and EGF was not observed in R1B-L17 cells, a line derived from Mvi Lu cells that lacks the TGF-β type-I receptor. AG1478, a selective inhibitor of EGF receptor tyrosine kinase activity, completely suppressed the induction of COX-2 expression by either EGF or TGF-β1+EGF. Also, PD98059, a specific inhibitor of MEK/ERK pathway, SB203580, a specific inhibitor of p38 MAPK activity, significantly inhibited the induction of COX-2 in response to combined EGF and TGF-β1. These results suggest an important collaborative interaction of TGF-β1 and EGF signaling in the induction of COX-2 and prostaglandin production in Mv1Lu cells.

  5. Lactoferrin from Camelus dromedarius inhibits nuclear transcription Factor-kappa B activation, cyclooxygenase-2 expression and prostaglandin E2 production in stimulated human chondrocytes

    Directory of Open Access Journals (Sweden)

    Naila Rasheed

    2016-01-01

    Full Text Available Background: Osteoarthritis (OA is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2 expression and prostaglandin E2 (PGE2 production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases.

  6. Cyclooxygenase-2 modulates the insulin-like growth factor axis in non-small-cell lung cancer.

    Science.gov (United States)

    Põld, Mehis; Krysan, Kostyantyn; Põld, Anu; Dohadwala, Mariam; Heuze-Vourc'h, Nathalie; Mao, Jenny T; Riedl, Karen L; Sharma, Sherven; Dubinett, Steven M

    2004-09-15

    Constitutive overexpression of cyclooxygenase-2 (COX-2) occurs frequently in several different malignancies, including lung, colon, breast, and prostate cancer. Clinical studies have established elevated serum insulin-like growth factor (IGF-I) content and IGF-I:IGF-binding protein 3 (IGFBP-3) ratio as risk factors for these same malignancies. Therefore, we sought to determine the link between COX-2 expression and the IGF axis in COX-2 gene-modified human non-small-cell lung cancer (NSCLC) cells. Overexpression of COX-2 in NSCLC cells enhanced the antiapoptotic and mitogenic effects of IGF-I and IGF-II, facilitated the autophosphorylation of the type 1 IGF receptor, increased class IA phosphatidylinositol 3'-kinase activity, and decreased expression of IGFBP-3. Thus, these findings show that COX-2 augments the stimulatory arm of the IGF axis.

  7. Vascular endothelial growth factor, matrix metalloproteinases, and cyclooxygenase-2 influence prognosis of uterine cervical cancer in young women.

    Science.gov (United States)

    Noriyuki, Maiko; Sumi, Toshiyuki; Zhi, Xu; Misugi, Fumiko; Nobeyama, Hiroyuki; Yoshida, Hiroyuki; Matsumoto, Yoshinari; Yasui, Tomoyo; Honda, Ken-Ichi; Ishiko, Osamu

    2007-09-01

    Recent changes in the lifestyle of young women have led to an increase in the rate of uterine cervical cancer. We investigated the clinicopathological characteristics of uterine cervical cancer in young women, and examined the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). Tumor samples from 439 patients with uterine cervical cancer, who were initially treated at Osaka City University Medical School Hospital, Japan between 1995 and 2004, were stained immunohistochemically. The patients were classified into two groups according to age at onset: group Y included women aged or =36 years. Group Y had more cases of squamous cell carcinoma, while group O had more advanced cases (Pcervical cancer in young women.

  8. Temporal and topographic profiles of cyclooxygenase-2 expression during 24 h of focal brain ishemia in rats.

    Science.gov (United States)

    Yokota, Chiaki; Kaji, Tomohito; Kuge, Yuji; Inoue, Hiroyasu; Tamaki, Nagara; Minematsu, Kazuo

    2004-03-11

    Substantial increases in cyclooxygenase-2 (COX-2) mRNA and protein levels were demonstrated in the peri-infarct and focal ischemic areas after 3-24 and 12-24 h, respectively, in rats. In the ischemic core, significant increases in COX-2 mRNA followed 6 h of ischemia, though the peak level was about one-third of that in the peri-infarct area. Increases in COX-2 protein in the ischemic core were not observed during ischemic periods. Diffuse, neuronal COX-2 staining was found in peri-infarct areas as well as in discrete, immunoreactive neurons in the ischemic core. Robust increases in prostaglandin E2 levels in the peri-infarct area were demonstrated following 24 h of ischemia. Prostaglandin production as well as COX-2 expression in ischemic tissues depended on the degree and duration of the reduction in cerebral blood flow.

  9. The effects of low and high concentrations of luteolin on cultured human endothelial cells under normal and glucotoxic conditions: involvement of integrin-linked kinase and cyclooxygenase-2.

    Science.gov (United States)

    Abbasi, Naser; Akhavan, Maziar Mohammad; Rahbar-Roshandel, Nahid; Shafiei, Massoumeh

    2014-09-01

    Luteolin protects against high glucose (HG)-induced endothelial dysfunction whereas its cytotoxicity has been reported against normal endothelial cells. This study was undertaken to determine luteolin cytoprotective and cytotoxic dose ranges and to elucidate their respective mechanisms. Luteolin prevented HG-induced human umbilical vein endothelial cell (HUVEC) death with an EC50 value of 2.0 ± 0.07 μM. The protective effect of luteolin was associated with decreased intracellular reactive oxygen species (ROS) and Ca(2+) (Cai(2+)) levels and enhanced nitric oxide (NO) production. At high concentrations, luteolin caused HUVEC death in normal glucose (NG) and HG states (LC50 40 ± 2.23 and 38 ± 1.12 μM, respectively), as represented by increased ROS and Cai(2+) and decreased NO. Western blots illustrated that exposure to HG increased cyclooxygenase-2 (COX-2) and integrin-linked kinase (ILK) expression. Luteolin at low concentrations suppressed HG-mediated up-regulation of COX-2 but maintained HG-induced over-expression of ILK while at high concentrations significantly increased COX-2 and decreased ILK expression in both HG and NG states. Our data indicated that cytoprotective action of luteolin was manifested with much lower concentrations, by a factor of approximately 20, compared with cytotoxic activity under both normal or glucotoxic conditions. It appears that luteolin exerts its action, in part, by modulating ILK expression which is associated with regulation of COX-2 expression and NO production in endothelial cells. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Lack of association between the cyclooxygenase 2 -765G>C polymorphism and prostate cancer risk: a meta-analysis.

    Science.gov (United States)

    Feng, Y-Q; Li, Y U; Xiao, W-D; Wang, G-X; Li, Y O

    2015-10-28

    The aim of this study was to investigate the association between the cyclooxygenase 2 (COX2) -765G>C (rs20417) polymorphism and prostate cancer (PC) risk using meta-analysis. A systematic literature search was performed using the PubMed, Embase, Cochrane Library, and Google Scholar databases by using the terms "cyclooxygenase-2/COX-2/PTGs2", "polymorphism" or "variation", and "prostate" and "cancer" or "carcinoma" to identify relevant articles up to June 14, 2014. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were assessed for PC risk associated with COX2 -765G>C polymorphism using fixed- and random-effect models. We identified a total of nine publications, including 5952 cases and 5078 controls, to investigate the effect of COX2 -765G>C on PC risk, and found no significant association in any genetic model tested (CC vs GG: OR = 0.993, 95%CI = 0.923-1.068; GC+CC vs GG: OR = 1.041, 95%CI = 0.931-1.103; CC vs GC+GG: OR = 0.858, 95%CI = 0.689-1.067; CC vs GG: OR = 0.871, 95%CI = 0.689-1.086; GC vs GG: OR = 1.032, 95%CI = 0.945-1.127). Power analysis and tests for publication bias ensured the reliability of our results. This meta-analysis suggested that the functional COX2 -765G>C polymorphism, located in the COX2 gene promoter, is unlikely to be associated with PC risk. However, additional larger, well-designed studies are still required to reach a conclusive result on this issue.

  11. Imrecoxib:a novel and selective cyclooxygenase 2 inhibitor with anti-inflammatory effect

    Institute of Scientific and Technical Information of China (English)

    Xiao-hong CHEN; Jin-ye BAI; Fang SHEN; Ai-ping BAI; Zong-ru GUO; Gui-fang CHENG

    2004-01-01

    AIM: To investigate the inhibitory effect of imrecoxib, a synthetic compound of completely new structure, on cyclooxygenase 1 (COX-1) and 2 (COX-2) and its anti-inflammatory effect in vivo. METHODS: The inhibitory effects of imrecoxib on cyclooxygenase 1 and 2 were studied using whole cell assay with murine peritoneal macrophages induced by calcimycin and LPS. The inhibitory effects of imrecoxib on mRNA level of COX- 1 and COX2 in human macrophage cell line U937 were detected by reverse transcription polymerase chain reaction (RT-PCR)analysis. Effects of imrecoxib on acute and chronic inflammation were evaluated in rat carrageenan induced edema model and rat adjuvant-induced arthritis model, respectively. RESULTS: Imrecoxib was found to inhibit COX-1and COX-2 with IC50 value of 115+28 nmol/L and 18+4 nmol/L, respectively. Imrecoxib was shown to selectively and dose-dependently inhibit COX-2 mRNA level. Imrecoxib effectively inhibited carrageenan-induced acute inflammation at the doses of 5, 10, and 20 mg.kg-1 ig and adjuvant-induced chronic inflammation at the doses of 10and 20 rmg.kg-1.d-1 ig. CONCLUSION: Imrecoxib is a novel and moderately selective COX-2 inhibitor that possesses anti-inflammatory effect by inhibition of COX-2 mRNA expression.

  12. Combined inhibition of epidermal growth factor receptor and cyclooxygenase-2 leads to greater anti-tumor activity of docetaxel in advanced prostate cancer.

    Directory of Open Access Journals (Sweden)

    Jianzhong Lin

    Full Text Available The epidermal growth factor receptor (EGFR and cyclooxygenase-2(COX-2 play a critical role in disease progression, relapse and therapeutic resistance of advanced prostate cancer (PCa. In this paper, we evaluated, for the first time, the therapeutic benefit of blocking EGRF and/or COX-2 (using gefitinib and NS-398, respectively in terms of improving the efficacy of the conventional clinical chemotherapeutic drug docetaxel in vitro and vivo. We showed that EGFR and COX-2 expression was higher in metastatic than non-metastatic PCa tissues and cells. Docetaxel, alone or in combination with gefitinib or NS-398, resulted in a small decrease in cell viability. The three drug combination decreased cell viability to a greater extent than docetaxel alone or in combination with gefitinib or NS-398. Docetaxel resulted in a modest increase in apoptotic cell in metastatic and non-metastatic cell lines. NS-398 markedly enhanced docetaxel-induced cell apoptosis. The combination of the three drugs caused even more marked apoptosis and resulted in greater suppression of invasive potential than docetaxel alone or in association with gefitinib or NS-398. The combination of all three drugs also resulted in a more marked decrease in NF-ΚB, MMP-9 and VEGF levels in PC-3M cells. These in vitro findings were supported by in vivo studies showing that docetaxel in combination with gefitinib and NS-398 was significantly more effective than any individual agent. Based on previous preclinical research, we conclude that simultaneously blocking EGFR and COX-2 by gefitinib and NS-398 sensitizes advanced PCa cells to docetaxel-induced cytotoxicity.

  13. The bitter barricading of prostaglandin biosynthesis pathway: understanding the molecular mechanism of selective cyclooxygenase-2 inhibition by amarogentin, a secoiridoid glycoside from Swertia chirayita.

    Directory of Open Access Journals (Sweden)

    Shantanu Shukla

    Full Text Available Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2 activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was -52.35 KCal/mol against a binding free energy of -8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the

  14. Effects of Acute and Chronic Cold Stress on Expression of Cyclooxygenase-2 and Prostaglandin E Synthase mRNA in Quail Intestine

    Directory of Open Access Journals (Sweden)

    J Fu, CP Liu1, ZW Zhang1, W Liao2 and SW Xu1,*

    2013-07-01

    Full Text Available The cold temperature, a common environmental stress, reduces the immunity and re-production activities of the poultry. This study aims to investigate the role of acute and chronic cold exposure in the regulation of cyclooxygenase-2 (COX-2 and prostaglandin E synthase (PTGES expression in the duodenum, jejunum, and ileum of quail. A total of 96 quail with 15 days of age were randomly allocated into 12 groups (8 each group for exposure to acute (up to 12 h and chronic (up to 20 days cold temperature (12±1°C. After that, different segments of the intestine were harvested and subjected to morphology observations under the light and electronic microscopes. qRT-PCR was performed to analyze expression of COX-2 and PTGES, and DNA sequencing was performed to analyze PCR products. The data showed that under acute cold stress, expression of COX-2 and PTGES mRNA was first decreased and then increased in the duodenum, jejunum, and ileum of quail. However, chronic cold stress induced expression of COX-2 and PTGES mRNA in the duodenum, jejunum and ileum of quail, which was then reduced after 20 days of cold exposure. Morphologically, significant changes were also observed in the duodenum, jejunum and ileum after both acute and chronic cold stresses to the animals. The data from the current study indicated that both acute and chronic cold stresses were able to induce inflammation responses in the duodenum, jejunum and ileum, which might be due to the cold-damaged intestinal morphology.

  15. Imaging of cyclooxygenase-2 (COX-2) expression : Potential use in diagnosis and drug evaluation

    NARCIS (Netherlands)

    de Vries, E. F. J.

    2006-01-01

    Cyclooxygenase is an enzyme that catalyzes the first two steps in the biosynthesis of prostanoids. The constitutively expressed isoform COX-1 is regarded as a housekeeping enzyme that is responsible for the normal production of prostanoids. The inducible isoform COX-2, on the other hand, is transien

  16. Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line.

    Science.gov (United States)

    Liu, X H; Kirschenbaum, A; Yao, S; Stearns, M E; Holland, J F; Claffey, K; Levine, A C

    1999-01-01

    Upregulation of vascular endothelial growth factor (VEGF) expression induced by hypoxia is crucial event leading to neovascularization. Cyclooxygenase-2, an inducible enzyme that catalyzes the formation of prostaglandins (PGs) from arachidonic acid, has been demonstrated to be induced by hypoxia and play role in angiogenesis and metastasis. To investigate the potential effect of COX-2 on hypoxia-induced VEGF expression in prostate cancer. We examined the relationship between COX-2 expression and VEGF induction in response to cobalt chloride (CoCl2)-simulated hypoxia in three human prostate cancer cell lines with differing biological phenotypes. Northern blotting and ELISA revealed that all three tested cell lines constitutively expressed VEGF mRNA, and secreted VEGF protein to different degrees (LNCaP > PC-3 > PC3ML). However, these cell lines differed in the ability to produce VEGF in the presence of CoCl2-simulated hypoxia. CoCl2 treatment resulted in 40% and 75% increases in VEGF mRNA, and 50% and 95% in protein secretion by LNCaP and PC-3 cell lines, respectively. In contrast, PC-3ML cell line, a PC-3 subline with highly invasive, metastatic phenotype, exhibits a dramatic upregulation of VEGF, 5.6-fold in mRNA and 6.3-fold in protein secretion after treatment with CoCl2. The upregulation of VEGF in PC-3ML cells is accompanied by a persistent induction of COX-2 mRNA (6.5-fold) and protein (5-fold). Whereas COX-2 expression is only transiently induced in PC-3 cells and not affected by CoCl2 in LNCaP cells. Moreover, the increases in VEGF mRNA and protein secretion induced by CoCl2 in PC-3ML cells were significantly suppressed following exposure to NS398, a selective COX-2 inhibitor. Finally, the effect of COX-2 inhibition on CoCl2-induced VEGF production was reversed by the treatment with exogenous PGE2. Our data demonstrate that VEGF induction by cobalt chloride-simulated hypoxia is maintained by a concomitant, persistent induction of COX-2 expression and

  17. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  18. Antiinflammatory and antinociceptive activities of gossypin and procumbentin--cyclooxygenase-2 (COX-2) inhibition studies.

    Science.gov (United States)

    Mada, Sripal Reddy; Metukuri, Mallikarjuna Reddy; Burugula, Laxminarayana; Reddanna, Pallu; Krishna, Devarakonda Rama

    2009-06-01

    In the present study the antiinflammatory and antinociceptive activities of a few selected flavonoids were investigated. Procumbentin, gossypin, chrysin and methylhespiridin were studied for antiinflammatory and antinociceptive activities using in vitro enzymatic assays and in animal models utilizing acetic acid-induced writhing in mice and hind paw edema in rats. In vitro studies were performed using TMPD (NNN'N'-tetramethyl-p-phenylene diamine) and oxygraphic methods for COX-1 (cyclooxygenase-1), COX-2, 5-LOX (5-lipoxygenase) and 15-LOX. Gossypin and procumbentin showed COX-2 inhibitory activity and exhibited IC(50) (COX-2/COX-1) ratios of 0.14 and 0.11, respectively. None of the flavonoids tested in this study showed LOX inhibitory activity. Four groups were studied for each test compound following intraperitoneal (i.p.) administration of doses of 10, 30 and 100 mg/kg. Antiinflammatory activity was measured by the carrageenin-induced rat hind paw edema model and antinociceptive activity by acetic acid-induced writhing. Procumbentin and gossypin showed antinociceptive activity at the 100 mg/kg dose. Gossypin showed antiinflammatory activity at doses of 10, 30, 100 mg/kg. Procumbentin and gossypin exhibited COX-2 inhibitory activity when tested by in vitro methods. Procumbentin and gossypin showed antinociceptive, and gossypin showed antiinflammatory, activities.

  19. Use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs in high doses increases mortality and risk of reinfarction in patients with prior myocardial infarction

    DEFF Research Database (Denmark)

    Sørensen, Rikke; Abildstrøm, Steen Zabell; Torp-Pedersen, C.

    2008-01-01

    The selective cyclooxygenase-2 (COX-2) inhibitors and other nonselective nonsteroidal antiinflammatory drugs (NSAIDs) have been associated with increased cardiovascular risk, but the risk in patients with established cardiovascular disease is unknown. In the present study, we analyzed the risk of...

  20. Cyclooxygenase-2 expression on urothelial and inflammatory cells of cystoscopic biopsies and urine cytology as a possible predictive marker for bladder carcinoma.

    Science.gov (United States)

    Moussa, Mona; Omran, Zeinab; Nosseir, Mona; Lotfy, Abeya; Swellam, Tarek

    2009-01-01

    Cyclooxygenase-2 (COX-2) is a key inducible enzyme involved in the production of prostaglandins. It contributes to human carcinogenesis by various mechanisms. The aim of the current study was to elucidate the possible involvement of COX-2 in human bladder carcinoma by examining its expression on both urothelial and inflammatory cells in tissue biopsies and urine cytology samples of different urinary bladder lesions. A total of 65 patients were included in the study and were selected from cases admitted to Urology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt. They represented seven control cases with almost normal-looking bladder tissue; pure chronic cystitis (n=12); premalignant lesions (18) in the form of squamous metaplasia (n=8) or urothelial dysplasia (n=10) as well as transitional cell carcinoma (TCC) (n=18), and squamous cell carcinoma (SqCC) (n=10). Immunohistochemistry of formalin-fixed, paraffin-embedded tissue sections and urine cytology samples was performed for all cases using COX-2 (H-62): sc-7951, a rabbit polyclonal antibody. The study revealed positive COX-2 expression on the urothelial and inflammatory cells of cystoscopic biopsies from all cases of pure chronic cystitis, squamous metaplasia and SqCC compared with 42.8% and 71.4% of normal controls, respectively. The score of urothelial COX-2 expression was sequentially up-regulated from normal to chronic cystitis (either pure or associated with premalignant changes) (pUrine cytology samples were positive for COX-2 in a comparable manner to that observed in cystoscopic biopsies. Accordingly, the results of the current study have provided new information in two aspects: First, is the possibility of using the differential COX-2 expression on both inflammatory and urothelial cells as markers for premalignant or malignant transformation; second, besides cystoscopy, urine cytology was found to have a high sensitivity for COX-2 expression and hence proved to be valuable in

  1. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells.

    Science.gov (United States)

    Kulp, Samuel K; Yang, Ya-Ting; Hung, Chin-Chun; Chen, Kuen-Feng; Lai, Ju-Ping; Tseng, Ping-Hui; Fowble, Joseph W; Ward, Patrick J; Chen, Ching-Shih

    2004-02-15

    Regarding the involvement of cyclooxygenase-2 (COX-2)-independent pathways in celecoxib-mediated antineoplastic effects, the following two issues remain outstanding: identity of the non-COX-2 targets and relative contributions of COX-2-dependent versus -independent mechanisms. We use a close celecoxib analog deficient in COX-2-inhibitory activity, DMC (4-[5-(2,5-dimethylphenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzene-sulfonamide), to examine the premise that Akt signaling represents a major non-COX-2 target. Celecoxib and DMC block Akt activation in PC-3 cells through the inhibition of phosphoinositide-dependent kinase-1 (PDK-1) with IC(50) of 48 and 38 micro M, respectively. The consequent effect on Akt activation is more pronounced (IC(50) values of 28 and 20 micro M, respectively), which might be attributed to the concomitant dephosphorylation by protein phosphatase 2A. In serum-supplemented medium, celecoxib and DMC cause G(1) arrest, and at higher concentrations, they induce apoptosis with relative potency comparable with that in blocking Akt activation. Moreover, the effect of daily oral celecoxib and DMC at 100 and 200 mg/kg on established PC-3 xenograft tumors is assessed. Celecoxib at both doses and DMC at 100 mg/kg had marginal impacts. However, a correlation exists between the in vitro potency of DMC and its ability at 200 mg/kg to inhibit xenograft tumor growth through the inhibition of Akt activation. Analysis of the tumor samples indicates that a differential reduction in the phospho-Akt/Akt ratio was noted in celecoxib- and DMC-treated groups vis-à-vis the control group. Together, these data underscore the role of 3-phosphoinositide-dependent protein kinase-1/Akt signaling in celecoxib-mediated in vitro antiproliferative effects in prostate cancer cells.

  2. Exisulind in combination with celecoxib modulates epidermal growth factor receptor, cyclooxygenase-2, and cyclin D1 against prostate carcinogenesis: in vivo evidence.

    Science.gov (United States)

    Narayanan, Bhagavathi A; Reddy, Bandaru S; Bosland, Maarten C; Nargi, Dominick; Horton, Lori; Randolph, Carla; Narayanan, Narayanan K

    2007-10-01

    Nonsteroidal anti-inflammatory drugs mediate anticancer effects by modulating cyclooxygenase-2 (COX-2)-dependent and/or COX-2-independent mechanism(s); however, the toxicity issue is a concern with single agents at higher doses. In this study, we determined the combined effect of celecoxib, a COX-2 inhibitor, along with exisulind (sulindac sulfone/Aptosyn) at low doses in prostate cancer. We used a sequential regimen of N-methyl-N-nitrosourea + testosterone to induce prostate cancer in Wistar-Unilever rats. Following carcinogen treatment, celecoxib and exisulind individually and their combination at low doses were given in NIH-07 diet for 52 weeks. We determined the incidence of prostatic intraepithelial neoplasia, adenocarcinomas, rate of tumor cell proliferation, and apoptosis. Immunohistochemical and Western blot analysis were done to determine COX-2, epidermal growth factor receptor (EGFR), Akt, androgen receptor, and cyclin D1 expression. Serum prostaglandin E2 and tumor necrosis factor-alpha levels were determined using enzyme immunoassay/ELISA assays. The rats that received celecoxib in combination with exisulind at low doses showed a significant decrease in prostatic intraepithelial neoplasia and adenocarcinomas as well as an enhanced rate of apoptosis. An overall decrease in COX-2, EGFR, Akt, androgen receptor, and cyclin D1 expression was found associated with tumor growth inhibition. Reduced serum levels of COX-2 protein, prostaglandin E2, and tumor necrosis factor-alpha indicated anti-inflammatory effects. A strong inhibition of total and phosphorylated form of EGFR (Tyr(992) and Tyr(845)) and Akt (Ser(473)) was significant in rats given with these agents in combination. In this study, we show for the first time that the combination of celecoxib with exisulind at low doses could prevent prostate carcinogenesis by altering key molecular events.

  3. Effects of nimesulide, acetylsalicylic acid, ibuprofen and nabumetone on cyclooxygenase-1- and cyclooxygenase-2-mediated prostanoid production in healthy volunteers ex vivo.

    Science.gov (United States)

    Kerola, Markku; Vuolteenaho, Katriina; Kosonen, Outi; Kankaanranta, Hannu; Sarna, Seppo; Moilanen, Eeva

    2009-01-01

    : The beneficial actions of non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with inhibition of cyclooxygenase-2 (COX-2), whereas some of their adverse effects are associated mainly with inhibition of COX-1. Selective COX-2 inhibitors reduce the risk of gastrointestinal adverse events, but increase the risk of thromboembolic events pointing to importance of optimal COX-1/COX-2 inhibition in drug safety. We compared the effects of acetylsalicylic acid, ibuprofen, nabumetone and nimesulide on COX-1 and COX-2 pathways in healthy volunteers in an ex vivo set-up using single oral doses commonly used to treat acute pain. In a randomized, double-blind four-phase cross-over study, 15 healthy volunteers were given orally a single dose of either acetylsalicylic acid 500 mg, ibuprofen 400 mg, nabumetone 1 g or nimesulide 100 mg. Blood samples were drawn before and 1, 3, 6, 24 and 48 hr after the drug for the assessment of COX-1 and COX-2 activity. COX-1 activity was measured as thromboxane(2) production during blood clotting and COX-2 activity as endotoxin-induced prostaglandin E(2) synthesis in blood leucocytes. The data show that after a single oral dose these four NSAIDs have different profiles of action on COX-1 and COX-2. As expected, acetylsalicylic acid appeared to be COX-1-selective and ibuprofen effectively inhibited both COX-1 and COX-2. Nabumetone showed only a slight inhibitory effect on COX-1 and COX-2. Nimesulide caused almost complete suppression of COX-2 activity and a partial reduction of COX-1 activity. This confirms the relative COX-2 selectivity of nimesulide.

  4. Requirement of cyclooxygenase-2 expression and prostaglandins for human prostate cancer cell invasion.

    Science.gov (United States)

    Nithipatikom, Kasem; Isbell, Marilyn A; Lindholm, Paul F; Kajdacsy-Balla, Andre; Kaul, Sushma; Campell, William B

    2002-01-01

    The PC-3 Low Invasive cells and the PC-3 High Invasive cells were used to investigate the correlation of the COX-2 expression and its arachidonic acid metabolites, prostaglandins, with their invasiveness through Matrigel using a Boyden chamber assay. The COX-2 expression in PC-3 High Invasive cells was approximately 3-fold higher than in PC-3 Low Invasive cells while the COX-1 expression was similar in both cell sublines. When incubated with arachidonic acid, PGE2 was the major prostaglandin produced by these cells. PC-3 High Invasive cells produced PGE2 approximately 2.5-fold higher than PC-3 Low Invasive cells. PGD2 was the second most abundant prostaglandin produced by these cells. Both indomethacin (a nonspecific COX inhibitor) and NS-398 (a specific COX-2 inhibitor) inhibited the production of prostaglandins and the cell invasion. PGE2 alone did not induce the cell invasion of PC-3 Low Invasive cells. However, PGE2 reversed the inhibition of cell invasion by NS-398 and enhanced the cell invasion of the PC-3 High Invasive cells. In contrast, PGD2 slightly inhibited the cell invasion. These results suggest that in the PC-3 Low Invasive cells, COX-2-derived PGE2 may not be sufficient to induce cell invasion while in the PC-3 High Invasive cells, PGE2 may be sufficient to act as an enhancer for the cell invasion. Further, PGD2 may represent a weak inhibitor and counteracts the effect of PGE2 in the cell invasion.

  5. Inhibition of cyclooxygenase-2 prevents inflammation-mediated preterm labor in the mouse.

    Science.gov (United States)

    Gross, G; Imamura, T; Vogt, S K; Wozniak, D F; Nelson, D M; Sadovsky, Y; Muglia, L J

    2000-06-01

    Prostaglandins (PGs) have proven important during parturition, but inhibition of PG production treating preterm labor (PTL) results in significant maternal and fetal side effects. We hypothesize that specific inhibition of either cyclooxygenase (COX)-1 or -2 may result in separation of therapeutic and toxic effects. We demonstrate that COX-2, but not COX-1, is induced during inflammation-mediated PTL caused by lipopolysaccharide (LPS) administration. A two- to threefold increase in uterine and ovarian PG concentrations coincides with this induction of COX-2. The COX-2-selective inhibitor SC-236 proved effective in stopping preterm delivery and the increases in PGs. The COX-1-selective inhibitor SC-560 also attenuated uterine and ovarian PG production after LPS but did not inhibit PTL as efficiently as SC-236. COX-1-deficient mice, which show delay in the onset of term labor, exhibited no delay in onset of PTL after LPS. These findings suggest that the mechanisms for initiation of inflammation-mediated PTL and term labor differ and that selective COX-2 inhibition may provide a means of stopping inflammation-induced PTL in humans.

  6. Cyclooxygenase 2: understanding the pathophysiological role through genetically altered mouse models.

    Science.gov (United States)

    Martín Sanz, Paloma; Hortelano, Sonsoles; Bosca, Lisardo; Casado, Marta

    2006-09-01

    Cyclooxygenase (COX) -1 and -2 catalyze the first step in the biosynthesis of prostanoids. COX-1 is constitutively expressed in many tissues and seems to be involved in the housekeeping function of prostanoids. COX-2, the inducible isoform, accounts for the elevated production of prostaglandins in response to various inflammatory stimuli, hormones and growth factors. COX-2 expression has been also associated with cell growth regulation, tissue remodelling and carcinogenesis. More of these characteristics have been elucidate through using COX selective inhibitors. Recent advances in transgenic and gene-targeting approaches allow a sophisticated manipulation of the mouse genome by gene addition, gene deletion or gene modifications. The development of COX-2 genetically altered mice has provided models to elucidate the physiological and pathophysiological roles of this enzyme.

  7. Estrogen-dependent induction of cyclooxygenase-2 in the canine prostate in vivo.

    Science.gov (United States)

    Doré, M; Chevalier, S; Sirois, J

    2005-01-01

    Cyclooxygenase (COX)-2 is involved in several physiologic and pathologic processes. COX-2 is overexpressed in human and canine prostate cancer, but little is known about COX-2 inducers in the prostate. Our objective was to investigate the effect of sex steroid hormones on COX-2 expression in the canine prostate in vivo. COX-2 expression was evaluated by immunohistochemistry in intact and castrated dogs treated with exogenous androgen or estrogen. Results showed that no COX-2 staining was observed in prostates of untreated or androgen-treated castrated or intact dogs. However, treatment of intact and castrated dogs with estrogen resulted in squamous metaplasia with intense COX-2 expression observed in both squamous epithelial cells and in cells of acini without metaplasia. This is the first report to demonstrate the induction of COX-2 by estrogen in the prostate in vivo.

  8. The Role of Cyclooxygenase-2 in Cell Proliferation and Cell Death in Human Malignancies

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2010-01-01

    Full Text Available It is well admitted that the link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways, which act during the different steps of tumorigenesis. The cyclooxygenases (COXs are a family of enzymes, which catalyze the rate-limiting step of prostaglandin biosynthesis. This family contains three members: ubiquitously expressed COX-1, which is involved in homeostasis; the inducible COX-2 isoform, which is upregulated during both inflammation and cancer; and COX-3, expressed in brain and spinal cord, whose functions remain to be elucidated. COX-2 was described to modulate cell proliferation and apoptosis mainly in solid tumors, that is, colorectal, breast, and prostate cancers, and, more recently, in hematological malignancies. These findings prompt us to analyze here the effects of a combination of COX-2 inhibitors together with different clinically used therapeutic strategies in order to further improve the efficiency of future anticancer treatments. COX-2 modulation is a promising field investigated by many research groups.

  9. Changes in extracellular matrix composition regulate cyclooxygenase-2 expression in human mesangial cells.

    Science.gov (United States)

    Alique, Matilde; Calleros, Laura; Luengo, Alicia; Griera, Mercedes; Iñiguez, Miguel Ángel; Punzón, Carmen; Fresno, Manuel; Rodríguez-Puyol, Manuel; Rodríguez-Puyol, Diego

    2011-04-01

    Glomerular diseases are characterized by a sustained synthesis and accumulation of abnormal extracellular matrix proteins, such as collagen type I. The extracellular matrix transmits information to cells through interactions with membrane components, which directly activate many intracellular signaling events. Moreover, accumulating evidence suggests that eicosanoids derived from cyclooxygenase (COX)-2 participate in a number of pathological processes in immune-mediated renal diseases, and it is known that protein kinase B (AKT) may act through different transcription factors in the regulation of the COX-2 promoter. The present results show that progressive accumulation of collagen I in the extracellular medium induces a significant increase of COX-2 expression in human mesangial cells, resulting in an enhancement in PGE(2) production. COX-2 overexpression is due to increased COX-2 mRNA levels. The study of the mechanism implicated in COX-2 upregulation by collagen I showed focal adhesion kinase (FAK) activation. Furthermore, we observed that the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway by collagen I and collagen I-induced COX-2 overexpression was abolished by PI3K and AKT inhibitors. Additionally, we showed that the cAMP response element (CRE) transcription factor is implicated. Finally, we studied COX-2 expression in an animal model, N(G)-nitro-l-arginine methyl ester hypertensive rats. In renal tissue and vascular walls, COX-2 and collagen type I content were upregulated. In summary, our results provide evidence that collagen type I increases COX-2 expression via the FAK/PI3K/AKT/cAMP response element binding protein signaling pathway.

  10. Synthesis and evaluation of a radioiodinated lumiracoxib derivative for the imaging of cyclooxygenase-2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kuge, Yuji [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638 (Japan)], E-mail: kuge@med.hokudai.ac.jp; Obokata, Naoyuki; Kimura, Hiroyuki; Katada, Yumiko; Temma, Takashi [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Sugimoto, Yukihiko [Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Aita, Kazuki [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Central Institute of Isotope Science, Hokkaido University, Sapporo 060-8638 (Japan); Seki, Koh-ichi [Central Institute of Isotope Science, Hokkaido University, Sapporo 060-8638 (Japan); Tamaki, Nagara [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638 (Japan); Saji, Hideo [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2009-11-15

    Introduction: Despite extensive attempts to develop cyclooxygenase (COX)-2 imaging radiotracers, no suitable positron emission tomography (PET)/single photon emission computed tomography (SPECT) tracers are currently available for in vivo imaging of COX-2 expression. The aims of this study were to synthesize and evaluate a radioiodinated derivative of lumiracoxib, 2-[(2-fluoro-6-iodophenyl)-amino]-5-methylphenylacetic acid (FIMA), which is structurally distinct from other drugs in the class and has weakly acidic properties, as a SPECT tracer for imaging COX-2 expression. Methods: The COX inhibitory potency was assessed by measuring COX-catalyzed oxidation with hydrogen peroxide. Cell uptake characteristics of {sup 125}I-FIMA were assessed in control and linterfero/interferon-{gamma}-stimulated macrophages. The biodistribution of {sup 125}I-FIMA was determined by the ex vivo tissue counting method in rats. Results: The COX-2 inhibitory potency of FIMA (IC{sub 50}=2.46 {mu}M) was higher than that of indomethacin (IC{sub 50}=20.9 {mu}M) and was comparable to lumiracoxib (IC{sub 50}=0.77 {mu}M) and diclofenac (IC{sub 50}=0.98 {mu}M). The IC{sub 50} ratio (COX-1/COX-2=182) indicated FIMA has a high isoform selectivity for COX-2. {sup 125}I-FIMA showed a significantly higher accumulation in COX-2 induced macrophages than in control macrophages, which decreased with nonradioactive FIMA in a concentration dependent manner. The biodistribution study showed rapid clearance of {sup 125}I-FIMA from the blood and most organs including the liver and kidneys. No significant in vivo deiodination was observed with radioiodinated FIMA. Conclusions: FIMA showed high inhibitory potency and selectivity for COX-2. Radioiodinated FIMA showed specific accumulation into COX-2 induced macrophages, no significant in vivo deiodination and rapid blood clearance. Radioiodinated FIMA deserves further investigation as a SPECT radiopharmaceutical for imaging COX-2 expression.

  11. Evaluation of 2 celecoxib derivatives: analgesic effect and selectivity to cyclooxygenase-2/1

    Institute of Scientific and Technical Information of China (English)

    Zhi-hong LU; Xiao-yun XIONG; Bang-le ZHANG; Guo-cheng LIN; Yu-xiang SHI; Zhen-guo LIU; Jing-ru MENG; Yu-mei ZHOU; Qi-bing MEI

    2005-01-01

    Aim: To evaluate the analgesic effects of 2 celecoxib derivatives and their inhibitory effects on cyclooxygenase (COX). Methods: Four antinociceptive assays were used: the acetic acid-induced writhing test, hot plate test, hot tail-flick test and formalin test. Three doses were used in the analgesic assays and ED50 values were calculated. For the selectivity assay, macrophages were incubated with test compounds at various concentrations and then stimulated with calcimycin or lipopolysaccharide (LPS). The amounts of 6-keto-prostaglandin F1α (6-keto-PGF1α)and prostaglandin E2 (PGE2) in the supernatant were examined by radioimmunoassay (RIA). The selectivity of the test compounds was expressed as the IC50,COX-1/IC50,COX-2 value. Results: Celecoxib and its 2 derivatives had a significant analgesic effect. The ED50 values of celecoxib, PC-406 and PC-407 were 94.2, 67.9, and 63.3mg/kg, respectively, for the acetic acid-induced writhing test; 104.7, 89.1, and 30.0mg/kg, respectively, for the hot tail-flick response test; 60.7, 56.7, and 86.2 mg/kg,respectively, for the hot plate response test; 67.1,55.8, and 68.8 mg/kg, respectively,for the formalin-induced response. That is, the ED50 of PC-406 was the lowest for the formalin and hot plate tests, which focus on changes above the spinal cord level; however, the ED50 of PC-407 was lowest for the tail-flick and writhing tests,which focus on changes at the spinal cord level. Celecoxib and PC-407 inhibited COX-1 with IC50 values of 39.8 and 27.5 nmol/L, respectively. PC-406 inhibited COX-1 with an IC50 value of more than 1000 nmol/L. The IC50 values for the effect of celecoxib, PC-406 and PC-407 on COX-2 were 4.8, 8.9, and 1.9 nmol/L respectively.The IC50,COX-1/IC50,COX-2 ratios for celecoxib and PC-407 were 8.3 and 14.4, respectively. For PC-406, the ratio was greater than 112.2. Conclusion: Derivatives of celecoxib via substitution with an isopropyl or naphthyl group at the 5 position in the pyrazole ring still have

  12. Molecular imaging of cyclooxygenase-2 in canine transitional cell carcinomas in vitro and in vivo.

    Science.gov (United States)

    Cekanova, Maria; Uddin, Md Jashim; Bartges, Joseph W; Callens, Amanda; Legendre, Alfred M; Rathore, Kusum; Wright, Laura; Carter, Amanda; Marnett, Lawrence J

    2013-05-01

    The enzyme COX-2 is induced at high levels in tumors but not in surrounding normal tissues, which makes it an attractive target for molecular imaging of cancer. We evaluated the ability of novel optical imaging agent, fluorocoxib A to detect urinary bladder canine transitional cell carcinomas (K9TCC). Here, we show that fluorocoxib A uptake overlapped with COX-2 expression in primary K9TCC cells in vitro. Using subcutaneously implanted primary K9TCC in athymic mice, we show specific uptake of fluorocoxib A by COX-2-expressing K9TCC xenograft tumors in vivo. Fluorocoxib A uptake by COX-2-expressing xenograft tumors was blocked by 70% (P dogs diagnosed with TCC. Fluorocoxib A specifically detected COX-2-expressing K9TCC during cystoscopy in vivo but was not detected in normal urothelium. Taken together, our findings show that fluorocoxib A selectively bound to COX-2-expressing primary K9TCC cells in vitro, COX-2-expressing K9TCC xenografts tumors in nude mice, and heterogeneous canine TCC during cystoscopy in vivo. Spontaneous cancers in companion animals offer a unique translational model for evaluation of novel imaging and therapeutic agents using primary cancer cells in vitro and in heterogeneous cancers in vivo.

  13. Inhibition of cyclooxygenase-2 by diallyl sulfides (DAS) in HEK 293T cells.

    Science.gov (United States)

    Elango, Erode M; Asita, Hag; Nidhi, Gunapalan; Seema, Parvathy; Banerji, Asoke; Kuriakose, Moni A

    2004-01-01

    Cyclooxygenase (COX) is involved in modulating inflammatory response through the synthesis of prostaglandins. The inducible isoform of the enzyme, COX-2, is overexpressed in some malignant and premalignant lesions. Several preclinical and clinical studies have reported COX-2 inhibition as an effective strategy for chemoprevention. Nonsteroidal anitinflammatory drugs (NASIDs) such as celecoxib, are the most widely investigated COX-2 inhibitors. The oil-soluble diallyl sulfides (DAS) include monosulfides (DAMS), disulfides (DADS) and trisulfides (DATS). They were found to be effective against canine and human tumors, the mechanism of which remains unresolved. We attempted a comparative evaluation of the antiproliferative effect of DAS in HEK 293T cells. The cells were treated with increasing concentrations of DAMS, DADS and DATS. There were significant differences between the IC50 values of DAMS, DADS and DATS. RT-PCR was performed and the expression of COX-2 was compared with that of b actin. DATS inhibited COX-2 gene expression significantly stronger than DAMS and DADS. The data are suggestive of antineoplastic effect of DAS, mediated by controlling COX-2 expression.

  14. Propyphenazone-Based Analogues as Prodrugs and Selective Cyclooxygenase-2 Inhibitors

    Science.gov (United States)

    2014-01-01

    Improving the gastrointestinal safety profile of nonsteroidal anti-inflammatory drugs (NSAIDs) is an important goal. Herein, we report two strategies, using the nonacidic propyphenazone structure, with potential to overcome the side effects of NSAIDs. Propyphenazone was employed to temporarily mask the free acid group of the widely used NSAIDs ibuprofen, diclofenac, and ketoprofen to develop three mutual prodrugs hypothesized to have minimal GI irritation. The three prodrugs exhibit in vivo anti-inflammatory and analgesic activities with improved potency over each parent drug when compared to a nonhydrolyzable control betahistine–propyphenazone (BET–MP). Additionally, ANT–MP formed by the irreversible coupling of propyphenazone and 4-aminoantipyrine, displayed exceptional COXII selectivity (COXII IC50 of 0.97 ± 0.04 μM, compared to no observed inhibition of COXI at 160 μM). Inhibition of COXII suppresses inflammatory diseases without affecting COXI-mediated GI tract events. ANT–MP exhibited maximal analgesic effect when tested in vivo in an abdominal writhing assay (100% protection) and its anti-inflammatory activity showed a peak at 2 h in a carrageenan-induced paw edema model. Its unique selectivity toward the COXII enzyme was investigated using molecular modeling techniques. PMID:25221653

  15. Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44.

    Science.gov (United States)

    Dohadwala, M; Luo, J; Zhu, L; Lin, Y; Dougherty, G J; Sharma, S; Huang, M; Pold, M; Batra, R K; Dubinett, S M

    2001-06-15

    Elevated tumor cyclooxygenase (COX-2) expression is associated with increased angiogenesis, tumor invasion, and suppression of host immunity. We have previously shown that genetic inhibition of tumor COX-2 expression reverses the immunosuppression induced by non-small cell lung cancer (NSCLC). To assess the impact of COX-2 expression in lung cancer invasiveness, NSCLC cell lines were transduced with a retroviral vector expressing the human COX-2 cDNA in the sense (COX-2-S) and antisense (COX-2-AS) orientations. COX-2-S clones expressed significantly more COX-2 protein, produced 10-fold more prostaglandin E(2), and demonstrated an enhanced invasive capacity compared with control vector-transduced or parental cells. CD44, the cell surface receptor for hyaluronate, was overexpressed in COX-2-S cells, and specific blockade of CD44 significantly decreased tumor cell invasion. In contrast, COX-2-AS clones had a very limited capacity for invasion and showed diminished expression of CD44. These findings suggest that a COX-2-mediated, CD44-dependent pathway is operative in NSCLC invasion. Because tumor COX-2 expression appears to have a multifaceted role in conferring the malignant phenotype, COX-2 may be an important target for gene or pharmacologic therapy in NSCLC.

  16. An immunohistochemical study of cyclooxygenase-2 expression in various feline neoplasms.

    Science.gov (United States)

    Beam, S L; Rassnick, K M; Moore, A S; McDonough, S P

    2003-09-01

    Cyclooxygenase (COX) enzymes catalyze the synthesis of prostaglandins and exist as two isoforms, COX-1 and COX-2. COX-2 is a potent inducible mediator of inflammation. COX-2 is also upregulated in several human tumors and in canine squamous cell, renal cell, and transitional cell carcinomas, prostatic adenocarcinoma, and intestinal neoplasia. The purpose of this study was to determine whether COX-2 is expressed in various feline tumors. Results of this study may help determine whether COX-2 is a potential target for therapeutic and preventive strategies in cats. Immunohistochemical studies were performed on paraffin-embedded tissues using the amplified streptavidin-biotin-horseradish peroxidase system. COX-2 was found in 7 of 19 (37%) feline transitional cell carcinomas and in 2 of 21 (9%) feline oral squamous cell carcinomas. No COX-2 immunoreactivity was detected in cutaneous squamous cell carcinomas (6), adenocarcinomas (nine mammary, eight pulmonary, seven intestinal), lymphomas (six nasal, six intestinal), or 10 vaccine-associated sarcomas. The widespread absence of COX-2 expression in most feline neoplasms might suggest that COX-2 inhibitors would have a low potential as anticancer agents.

  17. Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats

    Science.gov (United States)

    Guo, Yuanxin; Lei, Wenjuan; Wang, Jianfeng; Hu, Xinyue; Wei, Yuling; Ji, Chaonan; Yang, Junqing

    2016-01-01

    Although COX-2 inhibition in animal models of neurodegenerative diseases has shown neuroprotection, recent studies have revealed some serious side effects (ulcers, bleeding, fatal cerebrovascular diseases etc.) and the limited benefits of COX-2 inhibitors. A more focused approach is necessary to explore the therapeutic effect of the COX downstream signaling pathway in neurological research. The aim of this study was to explore the alterations of the PGES-PGE2-EP signal pathway and the effect of misoprostol on neurodegeneration by chronic aluminum-overload in rats. Adult rats were treated by intragastric administration of aluminum gluconate. The PGE2 content and expression of PGES and EPs in the hippocampi of rats were detected using ELISA, q-PCR and Western blot analysis, respectively. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in the rat hippocampi were also detected. The misoprostol treatment dose-dependently improved spatial learning and memory function as well as healing after hippocampal neuron damage induced by chronic aluminum-overload in rats. Meanwhile, the administration of misoprostol resulted in a decrease in the PGE2 level and down-regulation of the mPGES-1, EP2 and EP4 expression levels, while there was a dose-dependent up-regulation of EP3 expression. These results suggest that misoprostol possesses a neuroprotective property, and the mechanism involves affecting the EP3 level and reducing the endogenous production of PGE2 through a negative feedback mechanism, increasing the EP3 expression level, decreasing the EP2 and EP4 expression levels, and rebuilding the mPGES-1-PGE2-EP1-4 signal pathway balance. In this way, misoprostol has a counteractive effect on oxidant stress and inflammation in the central nervous system. The PGES-PGE2-EPs signaling pathway is a potential therapeutic strategy for treating neurodegeneration in patients. PMID:27033056

  18. A cyclooxygenase-2-dependent prostaglandin E2 biosynthetic system in the Golgi apparatus.

    Science.gov (United States)

    Yuan, Chong; Smith, William L

    2015-02-27

    Cyclooxygenases (COXs) catalyze the committed step in prostaglandin (PG) biosynthesis. COX-1 is constitutively expressed and stable, whereas COX-2 is inducible and short lived. COX-2 is degraded via endoplasmic reticulum (ER)-associated degradation (ERAD) following post-translational glycosylation of Asn-594. COX-1 and COX-2 are found in abundance on the luminal surfaces of the ER and inner membrane of the nuclear envelope. Using confocal immunocytofluorescence, we detected both COX-2 and microsomal PGE synthase-1 (mPGES-1) but not COX-1 in the Golgi apparatus. Inhibition of trafficking between the ER and Golgi retarded COX-2 ERAD. COX-2 has a C-terminal STEL sequence, which is an inefficient ER retention signal. Substituting this sequence with KDEL, a robust ER retention signal, concentrated COX-2 in the ER where it was stable and slowly glycosylated on Asn-594. Native COX-2 and a recombinant COX-2 having a Golgi targeting signal but not native COX-1 exhibited efficient catalytic coupling to mPGES-1. We conclude that N-glycosylation of Asn-594 of COX-2 occurs in the ER, leading to anterograde movement of COX-2 to the Golgi where the Asn-594-linked glycan is trimmed prior to retrograde COX-2 transport to the ER for ERAD. Having an inefficient ER retention signal leads to sluggish Golgi to ER transit of COX-2. This permits significant Golgi residence time during which COX-2 can function catalytically. Cytosolic phospholipase A2α, which mobilizes arachidonic acid for PG synthesis, preferentially translocates to the Golgi in response to physiologic Ca(2+) mobilization. We propose that cytosolic phospholipase A2α, COX-2, and mPGES-1 in the Golgi comprise a dedicated system for COX-2-dependent PGE2 biosynthesis.

  19. Targeting the prostaglandin E2 EP1 receptor and cyclooxygenase-2 in the amygdala kindling model in mice.

    Science.gov (United States)

    Fischborn, Sarah Verena; Soerensen, Jonna; Potschka, Heidrun

    2010-09-01

    The prostaglandin E2 EP1 receptor as well as the inflammatory enzyme cyclooxygenase-2 have been suggested as targets for disease modulation, improvement of therapeutic response, and restoration of pharmacosensitivity in epilepsies. Translational development of respective add-on approaches requires careful analysis of putative effects on ictogenesis. Therefore we evaluated the impact of the EP1 receptor antagonist SC-51089, the EP1 receptor agonist misoprostol and the COX-2 inhibitors celecoxib and NS-398 in the mouse amygdala kindling model of temporal lobe epilepsy. Neither celecoxib nor NS-398 affected the generation, spread and termination of seizure activity. Whereas SC-51089 did not affect the seizure threshold, the highest dose (30mg/kg) significantly decreased the seizure severity when administered 60min before stimulation. Moreover, SC-51089 significantly prolonged seizure duration at the highest dose. The EP1 receptor agonist misoprostol exerted contrasting effects on seizure duration with a significant decrease in the duration of motor seizure activity. The data suggest that doses of COX-2 inhibitors and EP1 receptor antagonists which exert disease modulating or antiepileptic drug potentiating effects do not negatively affect seizure control in temporal lobe epilepsy. The contrasting impact of the EP1 receptor antagonist and agonist suggests that EP1 receptors can influence endogenous mechanisms involved in termination of seizure activity.

  20. Quantitative assessment of the association of COX-2 (Cyclooxygenase-2 immunoexpression with prognosis in human osteosarcoma: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    Full Text Available BACKGROUND: Numerous studies examining the relationship between Cyclooxygenase-2 (COX-2 immunoexpression and clinical outcome in osteosarcoma patients have yielded inconclusive results. METHODS: We accordingly conducted a meta-analysis of 9 studies (442 patients that evaluated the correlation between COX-2 immunoexpression and clinical prognosis (death. Pooled odds ratios (OR and risk ratios (RR with 95% confidence intervals (95% CI were calculated using the random-effects or fixed-effects model. RESULTS: Meta-analysis showed no significant association between COX-2 positivity and age, gender, tumor location, histology, stage, metastasis or 90% necrosis. Conversely, COX-2 immunoexpression was associated with overall survival rate (RR=2.12; 95% CI: 1.10-3.74; P=0.009 and disease-free survival rate (RR=1.63; 95% CI: 1.17-2.28; P=0.004 at 2 years. Sensitivity analysis performed by omitting low quality studies showed that the pooled results were stable. CONCLUSIONS: COX-2 positivity was associated with a lower 2-year overall survival rate and disease-free survival rate. COX-2 expression change is an independent prognostic factor in patients with osteosarcoma.

  1. Interaction between cyclooxygenase-2 and insulin-like growth factor in breast cancer: A new field for prevention and treatment

    Science.gov (United States)

    TAROMARU, GIULIANA CÁSSIA MORRONE; DE OLIVEIRA, VILMAR MARQUES; SILVA, MARIA ANTONIETA LONGO GALVÃO; MONTOR, WAGNER RICARDO; BAGNOLI, FABIO; RINALDI, JOSÉ FRANCISCO; AOKI, TSUTOMU

    2011-01-01

    The objective of this study was to evaluate the correlation between cyclooxygenase-2 (COX-2) and markers of cell proliferation and apoptosis, including, Bcl-2, Bax, Ki-67 and the type I insulin-like growth factor (IGF) receptor (IGF1-R) in ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC), present in the same surgical specimen. A total of 110 cases were evaluated using tissue microarrays. Cases were classified in scores from 0 to 3 according to pre-defined methods. The results showed that the positivity rates were COX-2 in 87% of cases in DCIS and IDC; Bcl-2 in 55% of cases in DCIS and IDC; Bax in 23% of cases in IDC and 19% in DCIS, IGF-1 in 24% of cases in DCIS and IDC; and Ki-67 in 81% of cases in DCIS and IDC. We also observed a positive correlation between the expression of COX-2 and IGF1-R (p=0.045). Our results demonstrate a positive correlation between the expression of COX-2 and IGF1-R in DCIS and IDC, demonstrating that they are involved in breast cancer carcinogenesis. Further studies are required to prove the effectiveness of COX-2 and IGF1-R inhibitors for the prevention and treatment of breast cancer, as well as to explain their mechanism of action. PMID:22740976

  2. Levuglandin forms adducts with histone h4 in a cyclooxygenase-2-dependent manner, altering its interaction with DNA.

    Science.gov (United States)

    Carrier, Erica J; Zagol-Ikapitte, Irene; Amarnath, Venkataraman; Boutaud, Olivier; Oates, John A

    2014-04-22

    Inflammation and subsequent cyclooxygenase-2 (COX-2) activity has long been linked with the development of cancer, although little is known about any epigenetic effects of COX-2. A product of COX-2 activation, levuglandin (LG) quickly forms covalent bonds with nearby primary amines, such as those in lysine, which leads to LG-protein adducts. Here, we demonstrate that COX-2 activity causes LG-histone adducts in cultured cells and liver tissue, detectable through LC-MS, with the highest incidence in histone H4. Adduction is blocked by a γ-ketoaldehyde scavenger, which has no effect on COX-2 activity as measured by PGE2 production. Formation of the LG-histone adduct is associated with an increased histone solubility in NaCl, indicating destabilization of the nucleosome structure; this is also reversed with scavenger treatment. These data demonstrate that COX-2 activity can cause histone adduction and loosening of the nucleosome complex, which could lead to altered transcription and contribute to carcinogenesis.

  3. Expression of Vascular Endothelial Growth Factor and Cyclooxygenase-2 in Laryngeal Squamous Cell Carcinoma and Its significance

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to study the expressions of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) in human laryngeal squamous cell carcinoma (LSCC) and its significance,the expression of VEGF mRNA and COX-2 mRNA in 62 cases of LSCC and 54 adjacent noncancerous laryngeal tissues and 9 normal human laryngeal mucous tissues was detected by using techniques of semi-quantitative RT-PCR. It was found that the expression level of VEGF and COX-2 mRNA was significantly increased in LSCC as compared with that in the normal human laryngeal mucous tissues (both P<0.01), and the expression level of VEGF and COX-2 mRNA were significantly increased in stage Ⅲ + Ⅳ tissues of LSCC as compared with the stage Ⅰ + Ⅱ tissues of LSCC (P <0. 01). There was a high positive correlation between VEGF and COX-2 expression in LSCC (r=0. 756,P<0.01). These data raise the possibility that VEGF and COX-2 may play key roles in the growth, invasion and metastasis of LSCC.

  4. Cyclooxygenase 2 in Gastric Carcinoma Is Expressed in Doublecortin- and CaM Kinase-Like-1-Positive Tuft Cells

    Science.gov (United States)

    Mutoh, Hiroyuki; Sashikawa, Miho; Sakamoto, Hirotsugu; Tateno, Tomoko

    2014-01-01

    Background/Aims Doublecortin and CaM kinase-like-1 (DCAMKL1) is a marker of stem cells expressed predominantly in the crypt base in the intestine. However, DCAMKL1-positive cells have been shown to be differentiated tuft cells rather than quiescent progenitors. Tuft cells are the only epithelial cells that express cyclooxygenase 2 (COX-2) in the normal intestinal epithelium. We previously generated Cdx2-transgenic mice as model mice for intestinal metaplasia and gastric carcinoma. In the current study, we investigated the association between COX-2 and DCAMKL1 in gastric carcinoma. Methods We examined the association between COX-2 and DCAMKL1 expression in gastric carcinomas in clinical samples (early gastric well-differentiated adenocarcinoma) and Cdx2-transgenic mice; and the DCAMKL1-transgenic mouse stomach using immunohistochemistry and quantitative real-time polymerase chain reaction. Results The COX-2-expressing cells were scattered, not diffusely expressed, in gastric carcinomas from humans and Cdx2-transgenic mice. DCAMKL1-positive cells were also scattered in the gastric carcinomas, indicating that tuft cells could still be present in gastric carcinoma. COX-2 was expressed in DCAMKL1-positive tuft cells in Cdx2- and DCAMKL1-transgenic mouse stomachs, whereas the Sox9 transcription factor was ubiquitously expressed in gastric carcinomas, including COX-2-positive cells. Conclusions COX-2 is expressed in DCAMKL1-expressing quiescent tuft cells in gastric carcinoma. PMID:25228975

  5. Involvement of eicosanoids in the pathogenesis of pancreatic cancer: the roles of cyclooxygenase-2 and 5-lipoxygenase.

    Science.gov (United States)

    Knab, Lawrence M; Grippo, Paul J; Bentrem, David J

    2014-08-21

    The interplay between inflammation and cancer progression is a growing area of research. A combination of clinical, epidemiological, and basic science investigations indicate that there is a relationship between inflammatory changes in the pancreas and neoplastic progression. Diets high in ω-6 polyunsaturated fatty acids provide increased substrate for arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) to form eicosanoids. These eicosanoids directly contribute to pancreatic cancer cell proliferation. Both COX-2 and 5-LOX are upregulated in multiple cancer types, including pancreatic cancer. In vitro studies using pancreatic cancer cell lines have demonstrated upregulation of COX-2 and 5-LOX at both the mRNA and protein levels. When COX-2 and 5-LOX are blocked via a variety of mechanisms, cancer cell proliferation is abrogated both in vitro and in vivo. The mechanism of COX-2 has been shown to include effects on apoptosis as well as angiogenesis. 5-LOX has been implicated in apoptosis. The use of COX-2 and 5-LOX inhibitors in clinical studies in patients with pancreatic cancer has been limited. Patient enrollment has been restricted to those with advanced disease which makes evaluation of these drugs as chemopreventive agents difficult. COX-2 and 5-LOX expression have been shown to be present during the early neoplastic changes of pancreatic cancer, well before progression to invasive disease. This indicates that the ideal role for these interventions is early in the disease process as preventive agents, perhaps in patients with chronic pancreatitis or hereditary pancreatitis.

  6. Nuclear factor κB and cyclooxygenase-2 immunoexpression in oral dysplasia and oral squamous cell carcinoma.

    Science.gov (United States)

    Pontes, Hélder Antônio Rebelo; Pontes, Flávia Sirotheau Corrêa; Fonseca, Felipe Paiva; de Carvalho, Pedro Luiz; Pereira, Erika Martins; de Abreu, Michelle Carvalho; de Freitas Silva, Brunno Santos; dos Santos Pinto, Décio

    2013-02-01

    Oral leukoplakia is the main potentially malignant oral lesion, and oral squamous cell carcinoma accounts for more than 95% of all malignant neoplasms in the oral cavity. Therefore, the aim of this study was to verify the immunoexpression of nuclear factor κB (NF-κB) and cyclooxygenase-2 (COX-2) proteins in dysplastic oral lesions and oral squamous cell carcinoma. Immunohistochemical reactions were performed on 6 inflammatory fibrous hyperplasia, 28 oral leukoplakia, and 15 oral squamous cell carcinoma paraffin-embedded samples. Immunoperoxidase reaction for NF-κB and COX-2 was applied on the specimens, and the positivity of the reactions was calculated for 1000 epithelial cells. Using the analysis of variance and the Tukey post hoc statistical analyses, a significantly increased immunoexpression for NF-κB was observed when oral squamous cell carcinoma samples were compared with the other groups studied. However, using the Kruskal-Wallis and the Dunn post hoc tests, a statistically significant result for COX-2 expression was obtained only when the moderate dysplasia group was compared with the inflammatory fibrous hyperplasia group. Nuclear factor κB may participate in the malignant phenotype acquisition process of the oral squamous cell carcinoma in its late stages, whereas COX-2 may be involved in the early stages of oral carcinogenesis process.

  7. Effect of diclofenac on cyclooxygenase-2 levels and early breaking strength of experimental colonic anastomoses and skin incisions

    DEFF Research Database (Denmark)

    Klein, M; Krarup, P-M; Ågren, M S

    2011-01-01

    of diclofenac 4 mg/kg/day on the cyclooxygenase-2 (COX-2) enzyme in the anastomotic tissue and on the breaking strength of anastomotic and incisional wounds. The operation was performed with colonic resection and hand-sewn anastomosis. After 3 days, the rats were sacrificed and the breaking strength and the COX......-2 content of the anastomosis were measured. Results: There was a significantly reduced level of COX-2 in the rats treated with diclofenac (p = 0.001); no significant differences in any of the breaking strength measurements and no significant correlation between COX-2 levels and breaking strength...... of the anastomotic or incisional wounds could be found (p = 0.073 and p = 0.727). Conclusion: This study for the first time showed that a diclofenac dose of 4 mg/kg/24 h was sufficient to reduce the level of COX-2 enzymes in the anastomotic tissue in rats. This inhibition of the inflammatory response did not lead...

  8. The Expression of Cyclooxygenase-2 in Cervical Cancers and Hela Cells Was Regulated by Estrogen/Progestogen

    Institute of Scientific and Technical Information of China (English)

    LI Yunguang; PU Demin; LI Yanli

    2007-01-01

    To investigate the relationship between the expression of cyclooxygenase-2 (COX-2) and menstrual cycle, the regulatory effects of 17-β-estradiol (E2) and medroxyprogesterone acetate (MPA) on the expression of COX-2 in cervical cancer Hela cells were examined. Cervical cancer specimens were obtained from 47 pre-menopausal patients. The phase of menstrual cycle was determined by case history and HE staining of uterine endometrium. COX-2 was immunohistochemically stained by SABC staining and the staining intensity was determined with computerized image analysis system.Hela cells were incubated with alcohol, E2, E2+MPA, MPA for 12, 24 and 48 h respectively. The expression of COX-2 in Hela cells was detected by Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Our results showed that the expression of COX-2 was significantly higher during proliferative phase than secretory phase (P<0.05), but there was no difference in the positive rate between proliferative phase and secretory phase (P>0.05). Incubation with E2 could significantly enhance the expression of COX-2 continually. On the contrary, E2+MPA and MPA alone could decrease the expression of COX-2 as compared with the control and E2 group (P<0.05 and P<0.01 respectively). It is concluded that the expression of COX-2 in cervical cancer of pre-menopausal patients and Hela cells was regulated by estrogen/progestogen.

  9. CYCLO-OXYGENASE 2 IS PRESENT IN THE MAJORITY OF LESIONAL SKIN FROM PATIENTS WITH AUTOINMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-10-01

    Full Text Available Introduction: The in situ immune response within skin biopsies from patients affected by autoimmune skin blistering diseases (ABDs is not well characterized. Aim: Based on the fact that the ABD immune response is considered an adaptive immune response, both an innate immune response and inflammation would be expected in these diseases. Our investigation investigates the presence of cyclo-oxygenase-2 (COX-2, since this enzyme is commonly involved in innate immune responses. Methods: We utilized immunohistochemistry (IHC to evaluate the presence of COX-2 in lesional skin biopsies of patients affected by ABDs. We tested 30 patients with endemic pemphigus foliaceus (EPF, 15 controls from the endemic area, and 15 biopsies from healthy controls from the USA. We also tested archival biopsies from patients with selected ABDs, including 20 patients with bullous pemphigoid, 20 with pemphigus vulgaris, 8 with pemphigus foliaceus and 12 with dermatitis herpetiformis. Results: Most ABD biopsies stained positive for COX-2 in the lesional blister and/or the dermal inflammatory infiltrate, accentuated in the upper neurovascular plexus. In BP and EPF, the COX-2 staining was also seen in the sweat glands. All controls were negative. Conclusions: We document that COX-2 is expressed in lesional skin of patients with ABDs.

  10. [Cyclooxygenase 2 and carcinogenesis].

    Science.gov (United States)

    Rodrigues, Sylvie; Bruyneel, Erik; Rodrigue, Christelle M; Shahin, Emami; Gespach, Christian

    2004-05-01

    The membrane glycoprotein Cox2 is regulated at transcriptional and post-transcriptional levels by pro-inflammatory agents, cytokines, growth factors, oncogenes, and tumor-promoters. Cox2 is expressed during early stages of colorectal carcinogenesis from the premalignant adenoma stage, and adenocarcinomas of stomach, colon, breast, lung and prostate. Its expression is detected in neoplastic, inflammatory, endothelial and stromal cells. Cox2 is involved in the conversion of arachidonic acid into prostaglandins and thromboxanes, as well as the synthesis of malonaldehyde (MDA, a mutagen) and the production of hydrogen peroxide, which promotes carcinogenesis. The Cox2 products act in turn on serpentine receptors coupled to heterotrimeric G-proteins (R-TXA2, R-PG) that are connected to signaling elements implicated in oncogenesis. Thus, Cox2 plays a key role in early stages of carcinogenesis by promoting the proliferation of tumoral cells and their resistance to apoptosis, as well as angiogenesis, tumor cell invasion and setting up of the metastatic process. These mechanisms establish the rationale behind the therapeutic targeting of Cox2 in human solid tumors.

  11. Cyclooxygenase/lipoxygenase shunting lowers the anti-cancer effect of cyclooxygenase-2 inhibition in colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Ganesh Radhakrishnan

    2012-09-01

    Full Text Available Abstract Background Arachidonic acid metabolite, generated by cyclooxygenase (COX, is implicated in the colorectal cancer (CRC pathogenesis. Inhibiting COX may therefore have anti-carcinogenic effects. Results from use of non-steroidal anti-inflammatory drugs inhibiting only COX have been conflicting. It has been postulated that this might result from the shunting of arachidonic acid metabolism to the 5-lipoxygenase (5-LOX pathway. Cancer cell viability is promoted by 5-LOX through several mechanisms that are similar to those of cyclooxygenase-2 (COX-2. Expression of 5-LOX is upregulated in colorectal adenoma and cancer. The aim of this study was to investigate the shunting of arachidonic acid metabolism to the 5-LOX pathway by cyclooxygenase inhibition and to determine if this process antagonizes the anti-cancer effect in colorectal cancer cells. Methods Three colorectal cancer cell lines (HCA7, HT-29 & LoVo expressing 5-LOX and different levels of COX-2 expression were used. The effects of aspirin (a non-selective COX inhibitor and rofecoxib (COX-2 selective on prostaglandin E2 (PGE2 and leukotriene B4 (LTB4 secretion were quantified by ELISA. Proliferation and viability were studied by quantifying double-stranded DNA (dsDNA content and metabolic activity. Apoptosis was determined by annexin V and propidium iodide staining using confocal microscopy, and caspase-3/7 activity by fluorescent substrate assay. Results COX inhibitors suppressed PGE2 production but enhanced LTB4 secretion in COX-2 expressing cell lines (P  Conclusions This study provides evidence of shunting between COX and 5-LOX pathways in the presence of unilateral inhibition, and may explain the conflicting anti-carcinogenic effects reported with use of COX inhibitors.

  12. Overexpression of vasoactive intestinal peptide receptors and cyclooxygenase-2 in human prostate cancer. Analysis of potential prognostic relevance.

    Science.gov (United States)

    Fernández-Martínez, Ana B; Carmena, María J; Arenas, M Isabel; Bajo, Ana M; Prieto, Juan C; Sánchez-Chapado, Manuel

    2012-08-01

    Vasoactive intestinal peptide (VIP) is a potent inductor of cyclooxygenase-2 (COX-2) expression in human prostate cancer cell lines. There are conflicting data regarding the role of COX-2 in the progression of this disease. Here we examined the expression of VIP receptors (VPAC1 and VPAC2) and COX-2 in prostate cancer specimens. Correlations among protein levels and various clinicopathological factors and prognosis of patients were statistically analyzed. For these purposes, formaldehyde-fixed, paraffin-embedded prostate tissue specimens from 63 patients with prostate cancer and 9 control samples were used. The expression of VPAC1 and VPAC2 receptors and COX-2 was analyzed at mRNA levels by quantitative reverse transcriptase-PCR. The corresponding expression at protein level was studied by immunohistochemistry, scored as negative, weak, moderate, or strong, and correlated with different clinicopathological factors by means of multivariate analysis. 88% of prostate cancer tissues overexpressed VPAC1-receptor at mRNA level, 72% VPAC2-receptor and 77% COX-2. Simultaneous overexpression of the three genes was seen in 52% of patients. Similar overexpression patterns were observed at protein level. The correlation between VPAC1 and VPAC2 receptor protein levels was statistically significant. However, no significant correlations existed among protein levels of VPAC receptors and COX-2 with patient age, prostate-specific antigen (PSA) levels, tumor stage, Gleason score and survival time. The overexpression of VPAC1 and VPAC2 receptors and COX-2 in cancer tissue gives them a potential role as targets for diagnosis of prostate cancer but results do not support a clear value as biomarkers for the clinical prognosis of this disease.

  13. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-01-31

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  14. The role of chemoprevention by selective cyclooxygenase-2 inhibitors in colorectal cancer patients - a population-based study

    Directory of Open Access Journals (Sweden)

    Yang Yi-Hsin

    2012-12-01

    Full Text Available Abstract Background There are limited population-based studies focusing on the chemopreventive effects of selective cyclooxygenase-2 (COX-2 inhibitors against colorectal cancer. The purpose of this study is to assess the trends and dose–response effects of various medication possession ratios (MPR of selective COX-2 inhibitor used for chemoprevention of colorectal cancer. Methods A population-based case–control study was conducted using the Taiwan Health Insurance Research Database (NHIRD. The study comprised 21,460 colorectal cancer patients and 79,331 controls. The conditional logistic regression was applied to estimate the odds ratios (ORs for COX-2 inhibitors used for several durations (5 years, 3 years, 1 year, 6 months and 3 months prior to the index date. Results In patients receiving selective COX-2 inhibitors, the OR was 0.51 (95% CI=0.29~0.90, p=0.021 for an estimated 5-year period in developing colorectal cancer. ORs showing significant protection effects were found in 10% of MPRs for 5-year, 3-year, and 1-year usage. Risk reduction against colorectal cancer by selective COX-2 inhibitors was observed as early as 6 months after usage. Conclusion Our results indicate that selective COX-2 inhibitors may reduce the development of colorectal cancer by at least 10% based on the MPRs evaluated. Given the limited number of clinical reports from general populations, our results add to the knowledge of chemopreventive effects of selective COX-2 inhibitors against cancer in individuals at no increased risk of colorectal cancer.

  15. Cyclooxygenase 2 polymorphism and colorectal cancer: -765G>C variant modifies risk associated with smoking and body mass index

    Institute of Scientific and Technical Information of China (English)

    Li-Li Xing; Zhen-Ning Wang; Li Jiang; Yong Zhang; Ying-Ying Xu; Juan Li; Yang Luo; Xue Zhang

    2008-01-01

    AIM: To explore whether cyclooxygenase 2 (COX-2) -765G>C polymorphism is associated with susceptibility of colorectal cancer (CRC) and to evaluate the risk of colorectal cancer in relation to environmental exposures and polymorphism.METHODS: We conducted a case-control study of 137 patients with colorectal cancer and 199 cancer-free controls in northeast China. Multivariate logistic regression analysis was performed to calculate the adjusted odds ratio (OR) and 95% confidence interval (95% CI).RESULTS: The -765G>C polymorphism was not independently associated with CRC risk. However, risk associated with the polymorphism differed by smoking and body mass index (BMI). Smoking and BMI associated risks were stronger among those with -765GG genotype, showing that smokers had a 2.682-fold greater risk of CRC than nonsmokers (51/43 vs 68/126, P = 0.006). Compared to those with a normal body mass index (BMI 18.5-22.9), those with overweight (BMI 23-24.9) had a 3.909-fold higher risk of CRC (OR = 3.909, 95% CI = 2.081-7.344; P < 0.001), while those with obesity (BMI > 25) had a 2.031- fold higher risk of CRC (OR = 1.107, 95% CI = 1.107-3.726; P = 0.022).CONCLUSION: Although COX-2 -765G>C polymorphism is not associated with an increased risk of CRC, -765GG genotype appears to be related to an increased risk in the presence of smoking and higher BMI.

  16. Similar reductions in the risk of human colon cancer by selective and nonselective cyclooxygenase-2 (COX-2 inhibitors

    Directory of Open Access Journals (Sweden)

    Alshafie Galal A

    2008-08-01

    Full Text Available Abstract Background Epidemiologic and laboratory investigations suggest that aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs have chemopreventive effects against colon cancer perhaps due at least in part to their activity against cyclooxygenase-2 (COX-2, the rate-limiting enzyme of the prostaglandin cascade. Methods We conducted a case control study of colon cancer designed to compare effects of selective and non-selective COX-2 inhibitors. A total of 326 incident colon cancer patients were ascertained from the James Cancer Hospital, Columbus, Ohio, during 2003–2004 and compared with 652 controls with no history of cancer and matched to the cases at a 2:1 ratio on age, race, and county of residence. Data on the past and current use of prescription and over the counter medications and colon cancer risk factors were ascertained using a standardized risk factor questionnaire. Effects of COX-2 inhibiting agents were quantified by calculating odds ratios (OR and 95% confidence intervals. Results Results showed significant risk reductions for selective COX-2 inhibitors (OR = 0.31, 95% CI = 0.16–0.57, regular aspirin (OR = 0.33, 95% CI = 0.20–0.56, and ibuprofen or naproxen (0.28, 95% CI = 0.15–0.54. Acetaminophen, a compound with negligible COX-2 activity and low dose aspirin (81 mg produced no significant change in the risk of colon cancer. Conclusion These results suggest that both non-selective and selective COX-2 inhibitors produce significant reductions in the risk of colon cancer, underscoring their strong potential for colon cancer chemoprevention.

  17. No association between cyclooxygenase-2 and uridine diphosphate glucuronosyltransferase 1A6 genetic polymorphisms and colon cancer risk

    Institute of Scientific and Technical Information of China (English)

    Cheryl L Thompson; Sarah J Plummer; Alona Merkulova; Iona Cheng; Thomas C Tucker; Graham Casey; Li Li

    2009-01-01

    AIM: To investigate the association of variations in the cyclooxygenase-2 (COX2) and uridine diphosphate glucuronosyltransferase 1A6 (UGT1A6) genes and nonsteroidal anti-inflammatory drugs (NSAIDs) use with risk of colon cancer. METHODS: NSAIDs, which are known to reduce the risk of colon cancer, act directly on COX2 and reduce its activity. Epidemiological studies have associated variations in the COX2 gene with colon cancer risk, but others were unable to replicate this finding. Similarly, enzymes in the UGT1A6 gene have been demonstrated to modify the therapeutic effect of NSAIDs on colon adenomas. Polymorphisms in the UGT1A6 gene have been statistically shown to interact with NSAID intake to influence risk of developing colon adenomas, but not colon cancer. Here we examined the association of tagging single nucleotide polymorphisms (SNPs) in the COX2 and UGT1A6 genes, and their interaction with NSAID consumption, on risk of colon cancer in a population of 422 colon cancer cases and 481 population controls. RESULTS: No SNP in either gene was individually statistically significantly associated with colon cancer, nor did they statistically significantly change the protective effect of NSAID consumption in our sample. Like others, we were unable to replicate the association of variants in the COX2 gene with colon cancer risk ( P > 0.05), and we did not observe that these variants modify the protective effect of NSAIDs ( P > 0.05). We were able to confirm the lack of association of variants in UGT1A6 with colon cancer risk, although further studies will have to be conducted to confirm the association of these variants with colon adenomas. CONCLUSION: Our study does not support a role of COX2 and UGT1A6 genetic variations in the development of colon cancer.

  18. Cyclooxygenase-2, a Potential Therapeutic Target, Is Regulated by miR-101 in Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Ying Shao

    Full Text Available Cyclooxygenase-2 (COX-2 is known to promote the carcinogenesis of esophageal squamous cell carcinoma (ESCC. There are no reports on whether microRNAs (miRNAs regulate COX-2 expression in ESCC. This study investigated the effect of miR-101 on ESCC through modulating COX-2 expression in ESCC.Real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR was used to quantify miR-101 expression in ESCC clinical tissues and cell lines. The effects of miR-101 on ESCC progression were evaluated by cell counting kit-8 (CCK8, transwell migration and invasion assays, as well as by flow cytometry. The COX-2 and PEG2 levels were determined by western blot and enzyme-linked immunosorbent assays (ELISA. The luciferase reporter assay was used to verify COX-2 as a direct target of miR-101. The anti-tumor activity of miR-101 in vivo was investigated in a xenograft nude mouse model of ESCC.Downregulation of miR-101 was confirmed through comparison of 30 pairs of ESCC tumor and adjacent normal tissues (P < 0.001, as well as in 11 ESCC cell lines and a human immortalized esophageal cell line (P < 0.001. Transfection of miR-101 in ESCC cell lines significantly suppressed cell proliferation, migration, and invasion (all P < 0.001. The antitumor effect of miR-101 was verified in a xenograft model. Furthermore, COX-2 was shown to be a target of miR-101.Overexpression of miR-101 in ESCC inhibits proliferation and metastasis. Therefore, the miR-101/COX-2 pathway might be a therapeutic target in ESCC.

  19. Simultaneous inhibition of EGFR/VEGFR and cyclooxygenase-2 targets stemness-related pathways in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Araceli Valverde

    Full Text Available Despite the demonstrated benefits of anti-EGFR/VEGF targeted therapies in metastatic colorectal cancer (mCRC, many patients initially respond, but then show evidence of disease progression. New therapeutic strategies are needed to make the action of available drugs more efficient. Our study aimed to explore whether simultaneous targeting of EGFR/VEGF and cyclooxygenase-2 (COX-2 may aid the treatment and management of mCRC patients. The dual tyrosine kinase inhibitor AEE788 and celecoxib were used to inhibit EGFR/VEGFR and COX-2, respectively, in colorectal cancer cells. COX-2 inhibition with celecoxib augmented the antitumoral and antiangiogenic efficacy of AEE788, as indicated by the inhibition of cell proliferation, induction of apoptosis and G1 cell cycle arrest, down-regulation of VEGF production by cancer cells and reduction of cell migration. These effects were related with a blockade in the EGFR/VEGFR signaling axis. Notably, the combined AEE788/celecoxib treatment prevented β-catenin nuclear accumulation in tumor cells. This effect was associated with a significant downregulation of FOXM1 protein levels and an impairment in the interaction of this transcription factor with β-catenin, which is required for its nuclear localization. Furthermore, the combined treatment also reduced the expression of the stem cell markers Oct 3/4, Nanog, Sox-2 and Snail in cancer cells, and contributed to the diminution of the CSC subpopulation, as indicated by colonosphere formation assays. In conclusion, the combined treatment of AEE788 and celecoxib not only demonstrated enhanced anti-tumoral efficacy in colorectal cancer cells, but also reduced colon CSCs subpopulation by targeting stemness-related pathways. Therefore, the simultaneous targeting of EGFR/VEGF and COX-2 may aid in blocking mCRC progression and improve the efficacy of existing therapies in colorectal cancer.

  20. Simultaneous Inhibition of EGFR/VEGFR and Cyclooxygenase-2 Targets Stemness-Related Pathways in Colorectal Cancer Cells

    Science.gov (United States)

    Valverde, Araceli; Peñarando, Jon; Cañas, Amanda; López-Sánchez, Laura M.; Conde, Francisco; Hernández, Vanessa; Peralbo, Esther; López-Pedrera, Chary; de la Haba-Rodríguez, Juan; Aranda, Enrique; Rodríguez-Ariza, Antonio

    2015-01-01

    Despite the demonstrated benefits of anti-EGFR/VEGF targeted therapies in metastatic colorectal cancer (mCRC), many patients initially respond, but then show evidence of disease progression. New therapeutic strategies are needed to make the action of available drugs more efficient. Our study aimed to explore whether simultaneous targeting of EGFR/VEGF and cyclooxygenase-2 (COX-2) may aid the treatment and management of mCRC patients. The dual tyrosine kinase inhibitor AEE788 and celecoxib were used to inhibit EGFR/VEGFR and COX-2, respectively, in colorectal cancer cells. COX-2 inhibition with celecoxib augmented the antitumoral and antiangiogenic efficacy of AEE788, as indicated by the inhibition of cell proliferation, induction of apoptosis and G1 cell cycle arrest, down-regulation of VEGF production by cancer cells and reduction of cell migration. These effects were related with a blockade in the EGFR/VEGFR signaling axis. Notably, the combined AEE788/celecoxib treatment prevented β-catenin nuclear accumulation in tumor cells. This effect was associated with a significant downregulation of FOXM1 protein levels and an impairment in the interaction of this transcription factor with β-catenin, which is required for its nuclear localization. Furthermore, the combined treatment also reduced the expression of the stem cell markers Oct 3/4, Nanog, Sox-2 and Snail in cancer cells, and contributed to the diminution of the CSC subpopulation, as indicated by colonosphere formation assays. In conclusion, the combined treatment of AEE788 and celecoxib not only demonstrated enhanced anti-tumoral efficacy in colorectal cancer cells, but also reduced colon CSCs subpopulation by targeting stemness-related pathways. Therefore, the simultaneous targeting of EGFR/VEGF and COX-2 may aid in blocking mCRC progression and improve the efficacy of existing therapies in colorectal cancer. PMID:26107817

  1. Expression of Prostaglandin-Synthesizing Enzymes (Cyclooxygenase 1, Cyclooxygenase 2) in the Ovary of the Quail (Coturnix japonica).

    Science.gov (United States)

    Rodler, D; Sinowatz, F

    2015-01-01

    Cyclooxygenase is known to be the ratelimiting enzyme in the production of prostaglandins. So far, in different bird species there have been found two isoforms of cyclooxygenases (COX), cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). These isoforms along with prostaglandins are regarded to possess a determining influence on the success in female reproduction. Only in a few bird species the expression sites of cyclooxygenases have been investigated. In this study we report on the expression of COX-1 and COX-2 in the ovary of the quail (Coturnix japonica) using PCR, immunohistochemistry and non-radioactive in situ hybridization techniques. Using real time-polymerase chain reaction (RT-PCR), a distinct signal for COX-1 and COX-2 could be shown in small and large follicles of quail ovary. Antibodies to COX-1 distinctly labelled smooth muscle cells of the stroma, whereas COX-2 showed marked immunostaining in the thecal glands and the ovarian surface epithelium. In the same location, a signal of the corresponding mRNAs of COX-1 and COX-2 was found using in situ hybridization. This expression pattern in the quail is therefore completely different from the localization of COX-1 and COX-2 in the hen and ostrich, which suggests different functions of the cyclooxygenases in this small galliform avian species. According to our results, in quails COX-2 is involved in the synthesis of prostaglandins in the ovary's interstitial glands, which until now have been considered mainly as steroid-secreting cells. COX-1, which is expressed in the smooth muscles of the stroma, possibly plays a role in ovulation.

  2. Expression of cyclooxygenase-2 mRNA in drug-sensitive cell and drug-resistant strains of ovarian cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Li; Zehua Wang

    2006-01-01

    Objective: To investigate the expression of cyclooxygenase-2 (COX-2) mRNA in drug-sensitive cell and drugresistant clones of ovarian cancer cell lines. Methods: RT-PCR and immunocytochemistry were used to investigate the expression of cyclooxygenase-2 in 3 clones drug-sensitive and 5 clones drug-resistant ovarian cancer cell. Results: Strong COX-2 mRNA expressions were detected in 3 clones of drug-sensitive cell and weak expressions were detected in 5 clones of drug-resistant cell. The protein expression of COX-2 in drug-sensitive cell was strongly positive reaction in immunocytochemistry stain and there was a weak positive reaction in 5clones of drug-resistant cell. Conclusion: The expression of COX-2 mRNA in drug-sensitive cell strains is much higher than that in drugresistant strains of ovarian cancer cell lines, providing a basis of the chemoprevention for ovarian cancer.

  3. Overexpression of Cyclooxygenase-2 in Noncancerous Liver Tissue Increases the Postoperative Recurrence of Hepatocellular Carcinoma in Patients with Hepatitis B Virus-Related Cirrhosis

    Directory of Open Access Journals (Sweden)

    Yi-Fu He

    2010-01-01

    Full Text Available BACKGROUND: Many previous studies have evaluated the histopathological features of tumours as risk factors for postoperative recurrence in hepatitis B virus (HBV-associated hepatocellular carcinoma (HCC. However, there have been few large studies investigating the relationship between cyclooxygenase-2 (COX-2 expression in non-cancerous regions of the liver and postoperative recurrence in the remnant liver, especially in HBV-related HCC.

  4. Characterization of the effects of cyclooxygenase-2 inhibition in the regulation of apoptosis in human small and non-small cell lung cancer cell lines.

    LENUS (Irish Health Repository)

    Alam, Mahmood

    2012-02-03

    BACKGROUND: Cyclooxygenase-2 enzyme (COX-2) is overexpressed in human non-small cell lung cancer (NSCLC) but is not expressed in small cell lung cancer. Selective COX-2 inhibitors have been shown to induce apoptosis in NSCLC cells, an effect which is associated with the regulation of intracellular MAP kinase (MAPK) signal pathways. Our aims were to characterize the effects of COX-2 inhibition by rofecoxib on apoptosis in human NSCLC and small cell lung cancer cell lines. METHODS: The human NSCLC cell line NCI-H2126 and small cell lung cancer cell line DMS-79 were used. Constitutive COX-2 protein levels were first determined by Western blot test. Levels of apoptosis were evaluated by using propidium iodide staining on FACScan analysis after incubation of NCI-H2126 and DMS-79 with p38 MAPK inhibitor SB202190 (25 ?microM), NF-kappaB inhibitor SN50 (75 microg\\/mL), and rofecoxib at 100 and 250 microM. All statistical analysis was performed by analysis of variance. RESULTS: Western blot test confirmed the presence of COX-2 enzyme in NCI-H2126 and absence in DMS-79. Interestingly, rofecoxib treatment demonstrated a dose-dependent increase in apoptosis in both cell lines. Given this finding, the effect of rofecoxib on NF-kappaB and p38 MAPK pathways was also examined. Apoptosis in both cell lines was unaltered by SN50, either alone or in combination with rofecoxib. A similar phenomenon was observed in NCI-H2126 cells treated with SB202190, either alone or in combination with rofecoxib. In contrast, p38 MAPK inhibition greatly upregulated DMS-79 apoptosis in a manner that was unaltered by the addition of rofecoxib. CONCLUSIONS: Rofecoxib led to a dose-dependent increase in apoptosis in both tumor cell lines. This effect occurred independently of COX-2, NF-kappaB, and p38 MAPK pathways in DMS-79 cells. As such, rofecoxib must act on alternative pathways to regulate apoptosis in human small cell lung cancer cells.

  5. Cyclooxygenase-2-prostaglandin E2-eicosanoid receptor inflammatory axis: a key player in Kaposi's sarcoma-associated herpes virus associated malignancies.

    Science.gov (United States)

    Paul, Arun George; Chandran, Bala; Sharma-Walia, Neelam

    2013-08-01

    The role of cyclooxygenase-2 (COX-2), its lipid metabolite prostaglandin E2 (PGE2), and Eicosanoid (EP) receptors (EP; 1-4) underlying the proinflammatory mechanistic aspects of Burkitt's lymphoma, nasopharyngeal carcinoma, cervical cancer, prostate cancer, colon cancer, and Kaposi's sarcoma (KS) is an active area of investigation. The tumorigenic potential of COX-2 and PGE2 through EP receptors forms the mechanistic context underlying the chemotherapeutic potential of nonsteroidal anti-inflammatory drugs (NSAIDs). Although role of the COX-2 is described in several viral associated malignancies, the biological significance of the COX-2/PGE2/EP receptor inflammatory axis is extensively studied only in Kaposi's sarcoma-associated herpes virus (KSHV/HHV-8) associated malignancies such as KS, a multifocal endothelial cell tumor and primary effusion lymphoma (PEL), a B cell-proliferative disorder. The purpose of this review is to summarize the salient findings delineating the molecular mechanisms downstream of COX-2 involving PGE2 secretion and its autocrine and paracrine interactions with EP receptors (EP1-4), COX-2/PGE2/EP receptor signaling regulating KSHV pathogenesis and latency. KSHV infection induces COX-2, PGE2 secretion, and EP receptor activation. The resulting signal cascades modulate the expression of KSHV latency genes (latency associated nuclear antigen-1 [LANA-1] and viral-Fas (TNFRSF6)-associated via death domain like interferon converting enzyme-like- inhibitory protein [vFLIP]). vFLIP was also shown to be crucial for the maintenance of COX-2 activation. The mutually interdependent interactions between viral proteins (LANA-1/vFLIP) and COX-2/PGE2/EP receptors was shown to play key roles in the biological mechanisms involved in KS and PEL pathogenesis such as blockage of apoptosis, cell cycle regulation, transformation, proliferation, angiogenesis, adhesion, invasion, and immune-suppression. Understanding the COX-2/PGE2/EP axis is very important to

  6. Temporal expression of the PGE2 synthetic system in the kidney is associated with the time frame of renal developmental vulnerability to cyclooxygenase-2 inhibition.

    Science.gov (United States)

    Frölich, Stefanie; Olliges, Anke; Kern, Niklas; Schreiber, Yannik; Narumiya, Shuh; Nüsing, Rolf M

    2012-07-15

    Pharmacological blockade of cyclooxygenase-2 (COX-2) causes impairment of kidney development. The present study was aimed at determining temporal expression pattern and activity of the PGE(2) synthetic pathway during postnatal nephrogenesis in mice and its association to the time window sensitive to COX-2 inhibition. During the first 10 days after birth, we observed transient induction of mRNA and protein for microsomal PGE synthase (mPGES)-1 between postnatal days 4 (P4) and P8, but not for mPGES-2 or cytosolic PGE synthase (cPGES). PGE(2) synthetic activity using arachidonic acid and PGH(2) as substrates and also urinary excretion of PGE(2) were enhanced during this time frame. In parallel to the PGE(2) system, COX-2 but not COX-1 expression was also transiently induced. Studying glomerulogenesis in EP receptor knockout mice revealed a reduction in glomerular size in EP1(-/-), EP2(-/-), and EP4(-/-) mice, supporting the developmental role of PGE(2). The most vulnerable time window to COX-2 inhibition by SC-236 was found closely related to the temporal expression of COX-2 and mPGES-1. The strongest effects of COX-2 inhibition were achieved following 8 days of drug administration. Similar developmental damage was caused by application of rofecoxib, but not by the COX-1-selective inhibitor SC-560. COX-2 inhibition starting after P10 has had no effect on the size of glomeruli or on the relative number of superficial glomeruli; however, growth of the renal cortex was significantly diminished, indicating the requirement of COX-2 activity after P10. Effects of COX-2 inhibition on renal cell differentiation and on renal fibrosis needed a prolonged time of exposition of at least 10 days. In conclusion, temporal expression of the PGE(2) synthetic system coincides with the most vulnerable age interval for the induction of irreversible renal abnormalities. We assume that mPGES-1 is coregulated with COX-2 for PGE(2) synthesis to orchestrate postnatal kidney development and

  7. The effect of body weight on altered expression of nuclear receptors and cyclooxygenase-2 in human colorectal cancers

    Directory of Open Access Journals (Sweden)

    Rullier Eric

    2007-09-01

    Full Text Available Abstract Background Epidemiological studies on risk factors for colorectal cancer (CRC have mainly focused on diet, and being overweight is now recognized to contribute significantly to CRC risk. Overweight and obesity are defined as an excess of adipose tissue mass and are associated with disorders in lipid metabolism. Peroxisome proliferator-activated receptors (PPARs and retinoid-activated receptors (RARs and RXRs are important modulators of lipid metabolism and cellular homeostasis. Alterations in expression and activity of these ligand-activated transcription factors might be involved in obesity-associated diseases, which include CRC. Cyclooxygenase-2 (COX-2 also plays a critical role in lipid metabolism and alterations in COX-2 expression have already been associated with unfavourable clinical outcomes in epithelial tumors. The objective of this study is to examine the hypothesis questioning the relationship between alterations in the expression of nuclear receptors and COX-2 and the weight status among male subjects with CRC. Method The mRNA expression of the different nuclear receptor subtypes and of COX-2 was measured in 20 resected samples of CRC and paired non-tumor tissues. The association between expression patterns and weight status defined as a body mass index (BMI was statistically analyzed. Results No changes were observed in PPARγ mRNA expression while the expression of PPARδ, retinoid-activated receptors and COX-2 were significantly increased in cancer tissues compared to normal colon mucosa (P ≤ 0.001. The weight status appeared to be an independent factor, although we detected an increased level of COX-2 expression in the normal mucosa from overweight patients (BMI ≥ 25 compared to subjects with healthy BMI (P = 0.002. Conclusion Our findings show that alterations in the pattern of nuclear receptor expression observed in CRC do not appear to be correlated with patient weight status. However, the analysis of COX-2

  8. Disruption of Rb/E2F pathway results in increased cyclooxygenase-2 expression and activity in prostate epithelial cells.

    Science.gov (United States)

    Davis, Joanne N; McCabe, Michael T; Hayward, Simon W; Park, John M; Day, Mark L

    2005-05-01

    The loss of the retinoblastoma tumor suppressor gene (RB) is common in many human cancers, including prostate. We previously reported that engineered deletion of RB in prostate epithelial cells results in sustained cell growth in serum-free media, a predisposition to develop hyperplasia and dysplasia in prostate tissue recombinant grafts, and sensitization to hormonal carcinogenesis. Examining the molecular consequence of RB loss in this system, we show that cyclooxygenase-2 (COX-2) is significantly up-regulated following RB deletion in prostate tissue recombinants. To study the effect of RB deletion on COX-2 regulation, we generated wild-type (PrE) and Rb-/- (Rb-/-PrE) prostate epithelial cell lines rescued by tissue recombination. We show elevated COX-2 mRNA and protein expression in Rb-/-PrE cell lines with increased prostaglandin synthesis. We also find that loss of Rb leads to deregulated E2F activity, with increased expression of E2F target genes, and that exogenous expression of E2F1 results in elevated COX-2 mRNA and protein levels. COX-2 promoter studies reveal that E2F1 transcriptionally activates COX-2, which is dependent on the transactivation and DNA-binding domains of E2F1. Further analysis revealed that the E2F1 target gene, c-myb, is elevated in Rb-/-PrE cells and E2F1-overexpressing cells, whereas ectopic overexpression of c-myb activates the COX-2 promoter in prostate epithelial cells. Additionally, cotransfection with E2F1 and a dominant-negative c-myb inhibited E2F1 activation of the COX-2 promoter. Taken together, these results suggest activation of a transcriptional cascade by which E2F1 regulates COX-2 expression through the c-myb oncogene. This study reports a novel finding describing that deregulation of the Rb/E2F complex results in increased COX-2 expression and activity.

  9. Cyclo-oxygenase-2 selective inhibitors and nonsteroidal anti-inflammatory drugs: balancing gastrointestinal and cardiovascular risk

    Directory of Open Access Journals (Sweden)

    McQuay Henry J

    2007-08-01

    Full Text Available Abstract Background Differences between gastrointestinal and cardiovascular effects of traditional NSAID or cyclooxygenase-2 selective inhibitor (coxib are affected by drug, dose, duration, outcome definition, and patient gastrointestinal and cardiovascular risk factors. We calculated the absolute risk for each effect. Methods We sought studies with large amounts of information to calculate annualised rates for clearly defined gastrointestinal (complicated upper gastrointestinal perforations, ulcers, or bleeds, but not symptomatic or endoscopic ulcers and serious cardiovascular outcomes (antiplatelet trial collaborators – APTC – outcome of fatal or nonfatal myocardial infarction or stroke, or vascular death. Results Meta-analyses and large randomised trials specifically analysing serious gastrointestinal bleeding or cardiovascular events occurring with five different coxibs had appropriate data. In total there were 439 complicated upper gastrointestinal events in 49,006 patient years of exposure and 948 serious cardiovascular events in 99,400 patient years of exposure. Complicated gastrointestinal events occurred less frequently with coxibs than NSAIDs; serious cardiovascular events occurred at approximately equal rates. For each coxib, the reduction in complicated upper gastrointestinal events was numerically greater than any increase in APTC events. In the overall comparison, for every 1000 patients treated for a year with coxib rather than NSAID, there would be eight fewer complicated upper gastrointestinal events, but one more fatal or nonfatal heart attack or stroke. Three coxib-NSAID comparisons had sufficient numbers of events for individual comparisons. For every 1000 patients treated for a year with celecoxib rather than an NSAID there would be 12 fewer upper gastrointestinal complications, and two fewer fatal or nonfatal heart attacks or strokes. For rofecoxib there would be six fewer upper gastrointestinal complications, but three

  10. Reduced Risk of Human Lung Cancer by Selective Cyclooxygenase 2 (Cox-2 Blockade: Results of a Case Control Study

    Directory of Open Access Journals (Sweden)

    Randall E. Harris, Joanne Beebe-Donk, Galal A. Alshafie

    2007-01-01

    Full Text Available We conducted a case control study of selective cyclooxygenase-2 (COX-2 blocking agents and lung cancer. A total of 492 newly diagnosed lung cancer cases were ascertained during January 1, 2002 to September 30, 2004, at The Ohio State University Medical Center, Columbus, Ohio. All cases were confirmed by examination of the pathology report. Healthy population controls without cancer were ascertained during the same time period. Controls were frequency matched at a rate of 2:1 to the cases by age, gender, and county of residence. We collected information on type, frequency, and duration of use of selective COX-2 inhibitors (primarily celecoxib or rofecoxib and nonselective NSAIDs such as ibuprofen and aspirin. Estimates of odds ratios (OR were obtained with adjustment for cigarette smoking, age and other potential confounders using logistic regression analysis. Odds Ratios for selective COX-2 inhibitors were adjusted for past use of other NSAIDs. Use of any selective COX-2 inhibitor for more than one year produced a significant (60% reduction in the risk of lung cancer (OR=0.40, 95% CI=0.19-0.81. Observed risk reductions were consistent for men (OR=0.26, 95% CI=0.10-0.62 and women (OR=0.52, 95% CI=0.24-1.13 and for individual COX-2 inhibitors (OR=0.28, 95% CI=-0.12-0.67, for celecoxib and OR=0.55, 95% CI=0.19-1.56, for rofecoxib. Intake of ibuprofen or aspirin also produced significant risk reductions (OR=0.40, 95% CI=0.23-0.73 and OR=0.53, 95% CI=0.34-0.82, respectively, whereas acetaminophen, an analgesic with negligible COX-2 activity, had no effect on the risk (OR=1.36, 95% CI=0.53-3.37. This investigation demonstrates for the first time that selective COX-2 blocking agents have strong potential for the chemoprevention of human lung cancer.

  11. Direct Lentiviral-Cyclooxygenase 2 Application to the Tendon-Bone Interface Promotes Osteointegration and Enhances Return of the Pull-Out Tensile Strength of the Tendon Graft in a Rat Model of Biceps Tenodesis: e98004

    National Research Council Canada - National Science Library

    Charles H Rundle; Shin-Tai Chen; Michael J Coen; Jon E Wergedal; Virginia Stiffel; Kin-Hing William Lau

    2014-01-01

      This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis...

  12. Prostate Tumor Growth Can Be Modulated by Dietarily Targeting the 15-Lipoxygenase-1 and Cyclooxygenase-2 Enzymes

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2009-07-01

    Full Text Available The main objectives of our study were to determine the bioavailability of omega-3 (ω-3 to the tumor, to understand its mechanisms, and to determine the feasibility of targeting the ω-6 polyunsaturated fatty acids (PUFAs metabolizing 15-lipoxygenase-1 (15-LO-1 and cyclooxygenase-2 (COX-2 pathways. Nude mice injected subcutaneously with LAPC-4 prostate cancer cells were randomly divided into three different isocaloric (and same percent [%] of total fat diet groups: high ω-6 linoleic acid (LA, high ω-3 stearidonic acid (SDA PUFAs, and normal (control diets. Tumor growth and apoptosis were examined as end points after administration of short-term (5 weeks ω-3 and ω-6 fatty acid diets. Tumor tissue membranes were examined for growth, lipids, enzyme activities, apoptosis, and proliferation. Tumors from the LA diet-fed mice exhibited the most rapid growth compared with tumors from the control and SDA diet-fed mice. Moreover, a diet switch from LA to SDA caused a dramatic decrease in the growth of tumors in 5 weeks, whereas tumors grew more aggressively when mice were switched from an SDA to an LA diet. Evaluating tumor proliferation (Ki-67 and apoptosis (caspase-3 in mice fed the LA and SDA diets suggested increased percentage proliferation index from the ω-6 diet-fed mice compared with the tumors from the ω-3 SDA-fed mice. Further, increased apoptosis was observed in tumors from ω-3 SDA diet-fed mice versus tumors from ω-6 diet-fed mice. Levels of membrane phospholipids of red blood cells reflected dietary changes and correlated with the levels observed in tumors. Linoleic or arachidonic acid and metabolites (eicosanoid/prostaglandins were analyzed for 15-LO-1 and COX-2 activities by high-performance liquid chromatography. We also examined the percent unsaturated or saturated fatty acids in the total phospholipids, PUFA ω-6/ω-3 ratios, and other major enzymes (elongase, Delta [Δ]-5-desaturase, and Δ-6-desaturase of ω-6 catabolic

  13. Pioglitazone ameliorates nonalcoholic steatohepatitis by down-regulating hepatic nuclear factor-kappa B and cyclooxygenases-2 expression in rats

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jia-sheng; ZHU Feng-shang; LIU Su; YANG Chang-qing; CHEN Xi-mei

    2012-01-01

    Background Pioglitazone is effective in nonalcoholic steatohepatitis (NASH),but the mechanisms of action are not completely understood.This study was designed to investigate the effects of pioglitazone on hepatic nuclear factor-kappa B (NF-κB) and cyclooxygenases-2 (COX-2) expression in NASH rats.Methods Thirty Sprague-Dawley male rats were randomly assigned to a control group (n=10),NASH group (n=10),and pioglitazone treatment group (n=10).Liver tissues were processed for histology by hematoxylin & eosin and Masson stained.Serum alanine aminotransferase (ALT),cholesterol,triglyceride,fasting blood glucose (FBG),fasting insulin (FINS) levels and biochemical parameters of antioxidant enzyme activities,tumor necrosis factor alpha (TNF-α),prostaglandin E2 (PGE2) levels in serum and liver were measured.The mRNA and protein expression of peroxisome proliferator-activated receptor gamma (PPARy),NF-κB and COX-2 were determined by real-time polymerase chain reaction,Westem blotting and immunohistochemistry.One-way analysis of variance (ANOVA) and Wilcoxon's signed-rank test was used for the statistical analysis.Results There were severe steatosis,moderate inflammatory cellular infiltration and fibrosis in NASH rats.After pioglitazone treatment,steatosis,inflammation and fibrosis were significantly improved compared with the NASH group(X2=20.40,P <0.001; )X2=20.17,P <0.001; X2=13.98,P=0.002).Serum ALT,cholesterol,triglyceride,FBG,FINS levelswere significantly elevated in the NASH group (P <0.05).In the NASH group,total anti-oxidation competence (T-AOC),superoxide dismutase (SOD),catalase (CAT),glutathione peroxidase (GSH-PX) and malondialdehyde (MDA) levels inserum and liver were conspicuous disordered than those parameters in the control group.Meanwhile,TNF-α and PGE2levels in serum and liver were significantly increased compared with the control group.Immunohistochemistry showedNF-KB and COX-2 expression in liver was significantly elevated.However,PPARy level

  14. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC, in tumor cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Hofman Florence M

    2006-05-01

    Full Text Available Abstract Background 2,5-Dimethyl-celecoxib (DMC is a close structural analog of the selective cyclooxygenase-2 (COX-2 inhibitor celecoxib (Celebrex® that lacks COX-2-inhibitory function. However, despite its inability to block COX-2 activity, DMC is able to potently mimic the anti-tumor effects of celecoxib in vitro and in vivo, indicating that both of these drugs are able to involve targets other than COX-2 to exert their recognized cytotoxic effects. However, the molecular components that are involved in mediating these drugs' apoptosis-stimulatory consequences are incompletely understood. Results We present evidence that celecoxib and DMC are able to down-regulate the expression of survivin, an anti-apoptotic protein that is highly expressed in tumor cells and known to confer resistance of such cells to anti-cancer treatments. Suppression of survivin is specific to these two drugs, as other coxibs (valdecoxib, rofecoxib or traditional NSAIDs (flurbiprofen, indomethacin, sulindac do not affect survivin expression at similar concentrations. The extent of survivin down-regulation by celecoxib and DMC in different tumor cell lines is somewhat variable, but closely correlates with the degree of drug-induced growth inhibition and apoptosis. When combined with irinotecan, a widely used anticancer drug, celecoxib and DMC greatly enhance the cytotoxic effects of this drug, in keeping with a model that suppression of survivin may be beneficial to sensitize cancer cells to chemotherapy. Remarkably, these effects are not restricted to in vitro conditions, but also take place in tumors from drug-treated animals, where both drugs similarly repress survivin, induce apoptosis, and inhibit tumor growth in vivo. Conclusion In consideration of survivin's recognized role as a custodian of tumor cell survival, our results suggest that celecoxib and DMC might exert their cytotoxic anti-tumor effects at least in part via the down-regulation of survivin – in a

  15. URETERAL ACCESS SHEATH INFLUENCE ON THE URETERAL WALL EVALUATED BY CYCLOOXYGENASE-2 AND TUMOUR NECROSIS FACTOR- α IN A PORCINE MODEL

    DEFF Research Database (Denmark)

    Lildal, Søren Kissow; Nørregaard, Rikke; Andreassen, Kim Hovgaard;

    2017-01-01

    OBJECTIVE: To examine the effect of ureteral access sheaths (UAS) on the expression of the proinflammatory mediators cyclooxygenase-2 (COX-2) and tumour necrosis factor-α (TNF-α) in the ureteral wall. MATERIAL AND METHODS: In 22 pigs a ureteral access sheath was inserted and removed after 2 minutes......, respectively. CONCLUSION: The pro-inflammatory mediators COX-2 and TNF-α were significantly up-regulated in the ureteral wall by the influence of ureteral access sheaths. These findings may have implications for postoperative pain, drainage and complications....

  16. Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model

    OpenAIRE

    Cekanova, Maria; Uddin, Md. Jashim; Legendre, Alfred M.; Galyon, Gina; Bartges, Joseph W.; Callens, Amanda; Martin-Jimenez, Tomas; Marnett, Lawrence J.

    2012-01-01

    We evaluated preclinical single-dose safety, pharmacokinetic properties, and specific uptake of the new optical imaging agent fluorocoxib A in dogs. Fluorocoxib A, N-[(5-carboxy-X-rhodaminyl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, selectively binds and inhibits the cyclooxygenase-2 (COX-2) enzyme, which is overexpressed in many cancers. Safety pilot studies were performed in research dogs following intravenous (i.v.) administration of 0.1 and 1  mg/kg fluo...

  17. Inhibition of cyclooxygenase-2 in experimental severe acute pancreatitis Inibição da Ciclo-Oxigenase-2 na pancreatite aguda grave experimental

    Directory of Open Access Journals (Sweden)

    José Luiz Jesus de Almeida

    2006-08-01

    Full Text Available BACKGROUND: The standard treatment for acute pancreatitis (AP is still based on supportive care. The search for a new drug that could change the natural history of the disease is a continuing challenge for many researchers. The aim of this study is to evaluate the effect of a cyclooxygenase-2 (COX-2 inhibitor on experimental AP in rats. METHODS: The animals were divided into 2 groups: Group 1 (n = 30-animals with taurocholate-induced AP treated with parecoxib (40 mg/kg. Group 2 (n = 30-animals with taurocholate-induced AP that received saline. The COX-2 inhibitor (parecoxib was injected immediately after AP induction, through the penis dorsal vein. The parameters evaluated were histology, serum levels of amylase, IL-6 and IL-10, and mortality rate. RESULTS: The serum levels of IL-6 and IL-10 in the parecoxib-treated group were lower than the control group. The amylase serum levels and the mortality rate remained unchanged in the treated animals. Histologic morphology also was unaltered, except for fat necrosis, which was higher in parecoxib-treated rats. CONCLUSION: Inhibition of Cox-2 decreases the systemic release of inflammatory cytokines, but has a poor effect on the direct pancreas injury caused by taurocholate.INTRODUÇÃO: O tratamento padrão para a pancreatite aguda permanece baseado em medidas de suporte. A busca por uma droga que altere a história natural da doença ainda é um desafio para muitos pesquisadores. O objetivo deste estudo é avaliar o efeito de um inibidor da COX-2 na pancreatite aguda grave experimental (PA em ratos. MÉTODO: Os animais foram divididos em dois Grupos: Grupo 1 (n=30 - animais com PA induzida por taurocolato e tratados com parecoxib (40mg/Kg. Grupo 2 (n=30 - animais com PA induzida por taurocolato que receberam solução salina. O inibidor de COX-2 (parecoxib foi injetado imediatamente após a indução, através da veia dorsal do pênis. Os parâmetros avaliados foram histologia, níveis séricos de

  18. Helicobacter pylori VacA enhances prostaglandin E2 production through induction of cyclooxygenase 2 expression via a p38 mitogen-activated protein kinase/activating transcription factor 2 cascade in AZ-521 cells

    DEFF Research Database (Denmark)

    Hisatsune, Junzo; Yamasaki, Eiki; Nakayama, Masaaki;

    2007-01-01

    Treatment of AZ-521 cells with Helicobacter pylori VacA increased cyclooxygenase 2 (COX-2) mRNA in a time- and dose-dependent manner. A p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, blocked elevation of COX-2 mRNA levels, whereas PD98059, which blocks the Erk1/2 cascade......A-induced COX-2 expression. In parallel with COX-2 expression, VacA increased prostaglandin E(2) (PGE(2)) production, which was inhibited by SB203580 and NS-398, a COX-2 inhibitor. VacA-induced PGE(2) production was markedly attenuated in AZ-521 cells stably expressing DN-p38. VacA increased transcription...... promoter activation. The reduction of ATF-2 expression in AZ-521 cells transformed with ATF-2-small interfering RNA duplexes resulted in suppression of COX-2 expression. Thus, VacA enhances PGE(2) production by AZ-521 cells through induction of COX-2 expression via the p38 MAPK/ATF-2 cascade, leading...

  19. Tolerability of selective cyclooxygenase 2 inhibitors used for the treatment of rheumatological manifestations of inflammatory bowel disease.

    Science.gov (United States)

    Miao, Xin-Pu; Li, Jian-Sheng; Ouyang, Qin; Hu, Ren-Wei; Zhang, Yan; Li, Hui-Yan

    2014-10-23

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to reduce inflammatory pain and swelling in inflammatory bowel disease (IBD) patients with rheumatological manifestations. While these drugs effectively reduce musculoskeletal pain and stiffness, long-term use is limited by gastrointestinal (GI) adverse effects (AEs) and disease exacerbation. As an alternative to NSAIDs, selective cyclooxygenase 2 (COX-2) inhibitors were developed to improve GI safety and tolerability. COX-2 inhibitors include drugs such as celecoxib, rofecoxib, valdecoxib, etoricoxib, and lumiracoxib. Rofecoxib and valdecoxib have been withdrawn from the market worldwide due to safety concerns (most importantly for cardiovascular adverse events) and lumiracoxib has been withdrawn in many countries due to liver toxicity. However, celecoxib and etoricoxib continue to be available for use in many countries. Several studies have examined whether COX-2 inhibitors can be safely used for the treatment of rheumatological manifestations of IBD with inconsistent results. Some investigators report acceptable safety profiles associated with these drugs while others found that COX-2 inhibitors are associated with high rates of disease exacerbation. The objective of this systematic review was to evaluate the tolerability and safety of COX-2 inhibitors used for the treatment of rheumatological manifestations of IBD. We searched the following databases from inception to 19 September 2013: PubMed, EMBASE, MEDLINE and CENTRAL. The search was not limited by language. Additional trials were identified by manually searching the reference lists of relevant papers and conference proceedings and through correspondence with experts and pharmaceutical companies. Randomized controlled trials (RCTs) that compared COX-2 inhibitors to placebo were considered for inclusion. Participants were adult patients with IBD presenting with rheumatological manifestations of at least two weeks duration. Two authors independently

  20. Induction of cyclooxygenase-2 expression by prostaglandin E2 stimulation of the prostanoid EP4 receptor via coupling to Gαi and transactivation of the epidermal growth factor receptor in HCA-7 human colon cancer cells.

    Science.gov (United States)

    Yoshida, Kenji; Fujino, Hiromichi; Otake, Sho; Seira, Naofumi; Regan, John W; Murayama, Toshihiko

    2013-10-15

    Increased expressions of cyclooxygenase-2 (COX-2) and its downstream metabolite, prostaglandin E2 (PGE2), are well documented events in the development of colorectal cancer. Interestingly, PGE2 itself can induce the expression of COX-2 thereby creating the potential for positive feedback. Although evidence for such a positive feedback has been previously described, the specific E-type prostanoid (EP) receptor subtype that mediates this response, as well as the relevant signaling pathways, remain unclear. We now report that the PGE2 stimulated induction of COX-2 expression in human colon cancer HCA-7 cells is mediated by activation of the prostanoid EP4 receptor subtype and is followed by coupling of the receptor to Gαi and the activation of phosphatidylinositol 3-kinase. Subsequent activation of metalloproteinases releases membrane bound heparin-binding epidermal growth factor-like growth factor resulting in the transactivation of epidermal growth factor receptors and the activation of the extracellular signal-regulated kinases and induction of COX-2 expression. This induction of COX-2 expression by PGE2 stimulation of the prostanoid EP4 receptor may underlie the upregulation of COX-2 during colorectal cancer and appears to be an early event in the process of tumorigenesis. © 2013 Elsevier B.V. All rights reserved.

  1. Determination of methyl-, 2-hydroxyethyl- and 2-cyanoethylmercapturic acids as biomarkers of exposure to alkylating agents in cigarette smoke.

    Science.gov (United States)

    Scherer, Gerhard; Urban, Michael; Hagedorn, Heinz-Werner; Serafin, Richard; Feng, Shixia; Kapur, Sunil; Muhammad, Raheema; Jin, Yan; Sarkar, Mohamadi; Roethig, Hans-Juergen

    2010-10-01

    Alkylating agents occur in the environment and are formed endogenously. Tobacco smoke contains a variety of alkylating agents or precursors including, among others, N-nitrosodimethylamine (NDMA), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), acrylonitrile and ethylene oxide. We developed and validated a method for the simultaneous determination of methylmercapturic acid (MMA, biomarker for methylating agents such as NDMA and NNK), 2-hydroxyethylmercapturic acid (HEMA, biomarker for ethylene oxide) and 2-cyanoethylmercapturic acid (CEMA, biomarker for acrylonitrile) in human urine using deuterated internal standards of each compound. The method involves liquid/liquid extraction of the urine sample, solid phase extraction on anion exchange cartridges, derivatization with pentafluorobenzyl bromide (PFBBr), liquid/liquid extraction of the reaction mixture and LC-MS/MS analysis with positive electrospray ionization. The method was linear in the ranges of 5.00-600, 1.00-50.0 and 1.50-900 ng/ml for MMA, HEMA and CEMA, respectively. The method was applied to two clinical studies in adult smokers of conventional cigarettes who either continued smoking conventional cigarettes, were switched to test cigarettes consisting of either an electrically heated cigarette smoking system (EHCSS) or having a highly activated carbon granule filter that were shown to have reduced exposure to specific smoke constituents, or stopped smoking. Urinary excretion of MMA was found to be unaffected by switching to the test cigarettes or stop smoking. Urinary HEMA excretion decreased by 46 to 54% after switching to test cigarettes and by approximately 74% when stopping smoking. Urinary CEMA excretion decreased by 74-77% when switching to test cigarettes and by approximately 90% when stopping smoking. This validated method for urinary alkylmercapturic acids is suitable to distinguish differences in exposure not only between smokers and nonsmokers but also between smoking of conventional and

  2. Tobacco-Specific Nitrosamines in Electronic Cigarettes: Comparison between Liquid and Aerosol Levels

    Directory of Open Access Journals (Sweden)

    Konstantinos E. Farsalinos

    2015-07-01

    Full Text Available Introduction: Although electronic cigarette (EC liquids contain low levels of tobacco-specific nitrosamines (TSNAs, studies evaluating the levels emitted to the aerosol are scarce. The purpose of this study was to compare the levels of TSNAs between liquids and generated aerosol. Methods: Three EC liquids were obtained from the market. An additional (spiked sample was prepared by adding known amounts of standard TSNAs solutions to one of the obtained liquids. N-nitrosonornicotine (NNN, N-nitrosoanatabine (NAT, N-nitrosoanabasine (NAB and 4-(methylnitrosamino1-(3-pyridyl-1-butanone (NNK were measured. Three 100-puff sets from each liquid were trapped in filter pads and were subsequently analyzed for the presence of TSNAs. The expected levels of TSNAs (calculated based on the liquid consumption were compared with the measured levels in the aerosol. Results: Only NAB was found at trace levels in two commercial liquids (1.2 and 2.3 ng/g, while the third contained 1.5 ng/g NAB and 7.7 ng/g NNN. The 100-puff sets resulted in 336–515 mg liquid consumption, with no TSNAs being detected in the aerosol. The spiked sample contained 42.0–53.9 ng/g of each of the TSNAs. All TSNAs were detected in the aerosol with the measured levels being statistically similar to the expected amounts. A significant correlation between expected and measured levels of TSNAs in the aerosol was found (r = 0.83, p < 0.001. Conclusion: The findings of this study show that exposure of EC users to TSNAs can be accurately assessed based on the levels present in the liquid, without the need to analyze the aerosol.

  3. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer.

    Science.gov (United States)

    Xiang, Chan; Wang, Jiucun; Kou, Xiaochen; Chen, Xiabin; Qin, Zhaoyu; Jiang, Yan; Sun, Chang; Xu, Jibin; Tan, Wen; Jin, Li; Lin, Dongxin; He, Fuchu; Wang, Haijian

    2015-05-01

    Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system.

  4. Children’s Exposure to Secondhand and Thirdhand Smoke Carcinogens and Toxicants in Homes of Hookah Smokers

    Science.gov (United States)

    Daffa, Reem M.; Liles, Sandy; Jackson, Sheila R.; Kassem, Noura O.; Younis, Maram A.; Mehta, Setoo; Chen, Menglan; Jacob, Peyton; Carmella, Steve G.; Chatfield, Dale A.; Benowitz, Neal L.; Matt, Georg E.; Hecht, Stephen S.; Hovell, Melbourne F.

    2014-01-01

    Introduction: We examined homes of hookah-only smokers and nonsmokers for levels of indoor air nicotine (a marker of secondhand smoke) and indoor surface nicotine (a marker of thirdhand smoke), child uptake of nicotine, the carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and the toxicant acrolein by analyzing their corresponding metabolites cotinine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and NNAL-glucuronides (total NNAL) and 3-hydroxypropylmercapturic acid. Methods: Data were collected at 3 home visits during a 7-day study period from a convenience sample of 24 households with a child 5 years or younger. Three child urine samples and 2 air and surface samples from the living room and the child bedroom were taken in homes of nonsmokers (n = 5) and hookah-only smokers (n = 19) comprised of daily hookah smokers (n = 8) and weekly/monthly hookah smokers (n = 11). Results: Nicotine levels in indoor air and on surfaces in the child bedrooms in homes of daily hookah smokers were significantly higher than in homes of nonsmokers. Uptake of nicotine, NNK, and acrolein in children living in daily hookah smoker homes was significantly higher than in children living in nonsmoker homes. Uptake of nicotine and NNK in children living in weekly/monthly hookah smoker homes was significantly higher than in children living in nonsmoker homes. Conclusions: Our data provide the first evidence for uptake of nicotine, the tobacco-specific lung carcinogen NNK, and the ciliatoxic and cardiotoxic agent acrolein in children living in homes of hookah smokers. Our findings suggest that daily and occasional hookah use in homes present a serious, emerging threat to children’s long-term health. PMID:24590387

  5. Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants.

    Science.gov (United States)

    Shimada, Tsutomu; Murayama, Norie; Kakimoto, Kensaku; Takenaka, Shigeo; Lim, Young-Ran; Yeom, Sora; Kim, Donghak; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2017-07-21

    1. 1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined. 2. CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation. 3. Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants. 4. CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene. 5. Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2 A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.

  6. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer.

    Science.gov (United States)

    Yuan, Jian-Min; Butler, Lesley M; Stepanov, Irina; Hecht, Stephen S

    2014-01-15

    Tobacco-constituent biomarkers are metabolites of specific compounds present in tobacco or tobacco smoke. Highly reliable analytic methods, based mainly on mass spectrometry, have been developed for quantitation of these biomarkers in both urine and blood specimens. There is substantial interindividual variation in smoking-related lung cancer risk that is determined in part by individual variability in the uptake and metabolism of tobacco smoke carcinogens. Thus, by incorporating these biomarkers in epidemiologic studies, we can potentially obtain a more valid and precise measure of in vivo carcinogen dose than by using self-reported smoking history, ultimately improving the estimation of smoking-related lung cancer risk. Indeed, we have demonstrated this by using a prospective study design comparing biomarker levels in urine samples collected from smokers many years before their development of cancer versus those in their smoking counterparts without a cancer diagnosis. The following urinary metabolites were associated with lung cancer risk, independent of smoking intensity and duration: cotinine plus its glucuronide, a biomarker of nicotine uptake; 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronides (total NNAL), a biomarker of the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK); and r-1-,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT), a biomarker of polycyclic aromatic hydrocarbons (PAH). These results provide several possible new directions for using tobacco smoke-constituent biomarkers in lung cancer prevention, including improved lung cancer risk assessment, intermediate outcome determination in prevention trials, and regulation of tobacco products.

  7. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens.

    Science.gov (United States)

    Gowda, A S Prakasha; Spratt, Thomas E

    2016-03-21

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.

  8. Tobacco alkaloids and tobacco-specific nitrosamines in dust from homes of smokeless tobacco users, active smokers, and nontobacco users.

    Science.gov (United States)

    Whitehead, Todd P; Havel, Christopher; Metayer, Catherine; Benowitz, Neal L; Jacob, Peyton

    2015-05-18

    Smokeless tobacco products, such as moist snuff or chewing tobacco, contain many of the same carcinogens as tobacco smoke; however, the impact on children of indirect exposure to tobacco constituents via parental smokeless tobacco use is unknown. As part of the California Childhood Leukemia Study, dust samples were collected from 6 homes occupied by smokeless tobacco users, 6 homes occupied by active smokers, and 20 tobacco-free homes. To assess children's potential for exposure to tobacco constituents, vacuum-dust concentrations of five tobacco-specific nitrosamines, including N'-nitrosonornicotine [NNN] and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone [NNK], as well as six tobacco alkaloids, including nicotine and myosmine, were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We used generalized estimating equations derived from a multivariable marginal model to compare levels of tobacco constituents between groups, after adjusting for a history of parental smoking, income, home construction date, and mother's age and race/ethnicity. The ratio of myosmine/nicotine was used as a novel indicator of the source of tobacco contamination, distinguishing between smokeless tobacco products and tobacco smoke. Median dust concentrations of NNN and NNK were significantly greater in homes with smokeless tobacco users compared to tobacco-free homes. In multivariable models, concentrations of NNN and NNK were 4.8- and 6.9-fold higher, respectively, in homes with smokeless tobacco users compared to tobacco-free homes. Median myosmine/nicotine ratios were lower in homes with smokeless tobacco users (1.8%) compared to homes of active smokers (7.7%), confirming that cigarette smoke was not the predominant source of tobacco constituents in homes with smokeless tobacco users. Children living with smokeless tobacco users may be exposed to carcinogenic tobacco-specific nitrosamines via contact with contaminated dust and household surfaces.

  9. Temporal Variations in Cigarette Tobacco Bacterial Community Composition and Tobacco-Specific Nitrosamine Content Are Influenced by Brand and Storage Conditions

    Science.gov (United States)

    Chopyk, Jessica; Chattopadhyay, Suhana; Kulkarni, Prachi; Smyth, Eoghan M.; Hittle, Lauren E.; Paulson, Joseph N.; Pop, Mihai; Buehler, Stephanie S.; Clark, Pamela I.; Mongodin, Emmanuel F.; Sapkota, Amy R.

    2017-01-01

    Tobacco products, specifically cigarettes, are home to microbial ecosystems that may play an important role in the generation of carcinogenic tobacco-specific nitrosamines (TSNAs), as well as the onset of multiple adverse human health effects associated with the use of these products. Therefore, we conducted time-series experiments with five commercially available brands of cigarettes that were either commercially mentholated, custom-mentholated, user-mentholated, or non-mentholated. To mimic user storage conditions, the cigarettes were incubated for 14 days under three different temperatures and relative humidities (i.e., pocket, refrigerator, and room). Overall, 360 samples were collected over the course of 2 weeks and total DNA was extracted, PCR amplified for the V3V4 hypervariable region of the 16S rRNA gene and sequenced using Illumina MiSeq. A subset of samples (n = 32) was also analyzed via liquid chromatography with tandem mass spectrometry for two TSNAs: N’-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Comparative analyses of the five tobacco brands revealed bacterial communities dominated by Pseudomonas, Pantoea, and Bacillus, with Pseudomonas relatively stable in abundance regardless of storage condition. In addition, core bacterial operational taxonomic units (OTUs) were identified in all samples and included Bacillus pumilus, Rhizobium sp., Sphingomonas sp., unknown Enterobacteriaceae, Pantoea sp., Pseudomonas sp., Pseudomonas oryzihabitans, and P. putida. Additional OTUs were identified that significantly changed in relative abundance between day 0 and day 14, influenced by brand and storage condition. In addition, small but statistically significant increases in NNN levels were observed in user- and commercially mentholated brands between day 0 and day 14 at pocket conditions. These data suggest that manufacturing and user manipulations, such as mentholation and storage conditions, may directly impact the

  10. Analysis of Traces of Tobacco-Specific Nitrosamines (TSNAs in USP Grade Nicotine, E-Liquids, and Particulate Phase Generated by the Electronic Smoking Devices

    Directory of Open Access Journals (Sweden)

    Moldoveanu Serban C.

    2017-04-01

    Full Text Available The present study describes the development of a liquid chromatography tandem mass spectrometry (LC-MS/MS technique for the analysis of trace levels of four tobaccospecific nitrosamines (TSNAs: nitrosoanabasine (NAB, nitrosoanatabine (NAT, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, and nitrosonornicotine (NNN. The technique can be applied for the analysis of TSNAs in USP grade nicotine. Nicotine used in e-liquids for the electronic smoking devices is typically obtained from tobacco plant materials (Nicotiana tabacum, Nicotiana rustica and, although it is purified, it contains besides nicotine low levels of several contaminants such as minor alkaloids. It also contains traces of TSNAs. Analysis of TSNAs in USP grade nicotine is a challenging task since the analyzed samples contain about 10+7–10+8 times more nicotine than individual TSNAs. Because the analyzed solutions cannot be diluted too much in order to keep the TSNAs level above the limit of quantitation (LOQ, even for apparently good chromatographic separations, the peak tailing of nicotine may generate interferences. The new method of analysis uses a Luna Omega 1.6 μm particles chromatographic column for separation and detection on a LC-MS/MS instrument with scheduled multiple reaction monitoring (Scheduled MRM. The levels of TSNAs in nicotine of USP purity from four commercial sources varied between 3 to 8 ng/g NAB, 4 to 20 ng/g NAT, 30 to 50 ng/g NNK, and 0.5 to 2 ng/g for NNN. Besides the analysis of TSNAs in nicotine, the technique has been applied successfully in the analysis of TSNAs in e-liquids and in particulate phase generated by the electronic smoking devices.

  11. Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smoke of U.S. Commercial Cigarettes.

    Science.gov (United States)

    Edwards, Selvin H; Rossiter, Lana M; Taylor, Kenneth M; Holman, Matthew R; Zhang, Liqin; Ding, Yan S; Watson, Clifford H

    2017-02-20

    Tobacco-specific nitrosamines (TSNAs) are N-nitroso-derivatives of pyridine-alkaloids (e.g., nicotine) present in tobacco and cigarette smoke. Two TSNAs, N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are included on the Food and Drug Administration's list of harmful and potentially harmful constituents (HPHCs) in tobacco products and tobacco. The amounts of four TSNAs (NNK, NNN, N-nitrosoanabasine (NAB), and N'-nitrosoanatabine (NAT)) in the tobacco and mainstream smoke from 50 U.S. commercial cigarette brands were measured from November 15, 2011 to January 4, 2012 using a validated HPLC/MS/MS method. Smoke samples were generated using the International Organization of Standardization (ISO) and Canadian Intense (CI) machine-smoking regimens. NNN and NAT were the most abundant TSNAs in tobacco filler and smoke across all cigarette brands, whereas NNK and NAB were present in lesser amounts. The average ratios for each TSNA in mainstream smoke to filler content is 29% by the CI smoking regimen and 13% for the ISO machine-smoking regimen. The reliability of individual TSNAs to predict total TSNA amounts in the filler and smoke was examined. NNN, NAT, and NAB have a moderate to high correlation (R(2) = 0.61-0.98, p smoke from the CI machine-smoking regimen. In contrast, filter ventilation is a major determinant of levels of TSNAs in smoke by the ISO machine-smoking regimen. Comparative analysis demonstrates substantial variability in TSNA amounts in tobacco filler and mainstream smoke yields under ISO and CI machine-smoking regimens among U.S. commercial cigarette brands.

  12. Selective determination of tobacco-specific nitrosamines in mainstream cigarette smoke by GC coupled to positive chemical ionization triple quadrupole MS.

    Science.gov (United States)

    Wu, Da; Lu, Yifeng; Lin, Huaqing; Zhou, Wanhong; Gu, Wenbo

    2013-08-01

    A rapid method for the selective determination of four kinds of tobacco-specific nitrosamines, N-nitrosonornicotine, N-nitrosoanatabine, N-nitrosoanabasine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, in mainstream cigarette smoke was developed by GC coupled to positive chemical ionization triple-quadrupole MS. After mainstream cigarette smoke was collected on a cambridge filter pad, the particulate matter was extracted with 0.1 M HCL aqueous solution, cleaned by positive cation-exchange solid extraction, and finally injected into GC-MS/MS using isotopically labeled analogues as internal standards. Excellent linearity was obtained over the concentration range of 0.5-200.0 ng mL(-1) for all tobacco-specific nitrosamines with values for correlation coefficient between 0.9996-0.9999. Limits of detection of each tobacco specific nitrosamine varied from 0.023-0.028 ng cig(-1), and lower limits of quantification varied from 0.077-0.093 ng cig(-1). The recovery of each tobacco specific nitrosamine was from 90.0-109.0%. The relative standard deviations of the intra-day and inter-day precisions were 3.1-5.8 and 3.9-6.6, respectively. This method was applied to reference and domestic cigarettes. The result showed that the method was consistent with traditional methods and can be used as an effective approach for the routine analysis of tobacco-specific nitrosamines. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fully automated analysis of four tobacco-specific N-nitrosamines in mainstream cigarette smoke using two-dimensional online solid phase extraction combined with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Jie; Bai, Ruoshi; Yi, Xiaoli; Yang, Zhendong; Liu, Xingyu; Zhou, Jun; Liang, Wei

    2016-01-01

    A fully automated method for the detection of four tobacco-specific nitrosamines (TSNAs) in mainstream cigarette smoke (MSS) has been developed. The new developed method is based on two-dimensional online solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE/LC-MS/MS). The two dimensional SPE was performed in the method utilizing two cartridges with different extraction mechanisms to cleanup disturbances of different polarity to minimize sample matrix effects on each analyte. Chromatographic separation was achieved using a UPLC C18 reversed phase analytical column. Under the optimum online SPE/LC-MS/MS conditions, N'-nitrosonornicotine (NNN), N'-nitrosoanatabine (NAT), N'-nitrosoanabasine (NAB), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were baseline separated with good peak shapes. This method appears to be the most sensitive method yet reported for determination of TSNAs in mainstream cigarette smoke. The limits of quantification for NNN, NNK, NAT and NAB reached the levels of 6.0, 1.0, 3.0 and 0.6 pg/cig, respectively, which were well below the lowest levels of TSNAs in MSS of current commercial cigarettes. The accuracy of the measurement of four TSNAs was from 92.8 to 107.3%. The relative standard deviations of intra-and inter-day analysis were less than 5.4% and 7.5%, respectively. The main advantages of the method developed are fairly high sensitivity, selectivity and accuracy of results, minimum sample pre-treatment, full automation, and high throughput. As a part of the validation procedure, the developed method was applied to evaluate TSNAs yields for 27 top-selling commercial cigarettes in China. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A Model To Estimate the Sources of Tobacco-Specific Nitrosamines in Cigarette Smoke.

    Science.gov (United States)

    Lipowicz, Peter J; Seeman, Jeffrey I

    2017-08-21

    Tobacco-specific nitrosamines (TSNAs) are one of the most extensively and continually studied classes of compounds found in tobacco and cigarette smoke.1-5 The TSNAs N-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) have been characterized by the US Food and Drug Administration (FDA) as harmful and potentially harmful constituents in tobacco products,6 and cigarette manufacturers report their levels in cigarette tobacco filler and cigarette smoke to the FDA. NNN and NNK are classified by IARC as carcinogenic to humans.7 TSNAs transfer from tobacco to smoke by evaporation driven by heat and the flow of gases down the cigarette rod. Other TSNA sources in smoke include pyrorelease, where room temperature-unextractable TSNAs are released by smoking, and pyrosynthesis, where TSNAs are formed by reactions during smoking. We propose the first model that quantifies these three sources of TSNA in smoke. In our model, evaporative transfer efficiency of a TSNA is equated to the evaporative transfer efficiency of nicotine. Smoke TSNA measured in excess of what is transferred by evaporation is termed "pyrogeneration," which is the net sum of pyrorelease and pyrosynthesis minus pyrodegredation. This model requires no internal standard, is applicable to commercial cigarettes "as is," and uses existing analytical methods. This model was applied to archived Philip Morris USA data. For commercial blended cigarettes, NNN pyrogeneration appears to be unimportant, but NNK pyrogeneration contributes roughly 30-70% of NNK in smoke with the greater contribution at lower tobacco NNK levels. This means there is an opportunity to significantly reduce smoke NNK by up to 70% if pyrogeneration can be decreased or eliminated, perhaps by finding a way to grow and cure tobacco with reduced matrix-bound NNK. For burley research cigarettes, pyrogeneration may account for 90% or more of both NNN and NNK in smoke.

  15. DNA Sequence Variants in the Five Prime Untranslated Region of the Cyclooxygenase-2 Gene Are Commonly Found in Healthy Dogs and Gray Wolves.

    Science.gov (United States)

    Safra, Noa; Hayward, Louisa J; Aguilar, Miriam; Sacks, Benjamin N; Westropp, Jodi L; Mohr, F Charles; Mellersh, Cathryn S; Bannasch, Danika L

    2015-01-01

    The aim of this study was to investigate the frequency of regional DNA variants upstream to the translation initiation site of the canine Cyclooxygenase-2 (Cox-2) gene in healthy dogs. Cox-2 plays a role in various disease conditions such as acute and chronic inflammation, osteoarthritis and malignancy. A role for Cox-2 DNA variants in genetic predisposition to canine renal dysplasia has been proposed and dog breeders have been encouraged to select against these DNA variants. We sequenced 272-422 bases in 152 dogs unaffected by renal dysplasia and found 19 different haplotypes including 11 genetic variants which had not been described previously. We genotyped 7 gray wolves to ascertain the wildtype variant and found that the wolves we analyzed had predominantly the second most common DNA variant found in dogs. Our results demonstrate an elevated level of regional polymorphism that appears to be a feature of healthy domesticated dogs.

  16. DNA Sequence Variants in the Five Prime Untranslated Region of the Cyclooxygenase-2 Gene Are Commonly Found in Healthy Dogs and Gray Wolves.

    Directory of Open Access Journals (Sweden)

    Noa Safra

    Full Text Available The aim of this study was to investigate the frequency of regional DNA variants upstream to the translation initiation site of the canine Cyclooxygenase-2 (Cox-2 gene in healthy dogs. Cox-2 plays a role in various disease conditions such as acute and chronic inflammation, osteoarthritis and malignancy. A role for Cox-2 DNA variants in genetic predisposition to canine renal dysplasia has been proposed and dog breeders have been encouraged to select against these DNA variants. We sequenced 272-422 bases in 152 dogs unaffected by renal dysplasia and found 19 different haplotypes including 11 genetic variants which had not been described previously. We genotyped 7 gray wolves to ascertain the wildtype variant and found that the wolves we analyzed had predominantly the second most common DNA variant found in dogs. Our results demonstrate an elevated level of regional polymorphism that appears to be a feature of healthy domesticated dogs.

  17. In vitro and In Silico Studies on Curcumin and Its Analogues as Dual Inhibitors for cyclooxygenase-1 (COX-1 and cyclooxygenase-2 (COX-2

    Directory of Open Access Journals (Sweden)

    Nunung Yuniarti

    2012-03-01

    Full Text Available Curcumin has been widely reported as an anti-inflammatory agent isolated from the plant Curcuma longa L. (turmeric. This anti-inflammatory activity was associated with the ability of this compound to inhibit the activity of both cyclooxygenase-1 (COX-1 and cyclooxygenase-2 (COX-2 in arachidonic acid metabolism. Dual COX-1 and COX-2 inhibitors are preferred to be employed in the therapy of chronic inflammatory diseases compared to selective inhibitors, since it was reported that the use of selective inhibitors led to severe adverse side effect. In the present study, in vitro and in silico assays on curcumin and its analogues as dual inhibitors for both COX-1 and COX-2 were performed. The results provide theoretical contribution in understanding the ligand-protein interactions at the molecular level to develop new curcumin analogues which possess better anti-inflammatory activity as well as to avoid unsolicited side effects.

  18. Clinical Profile of Cyclooxygenase-2 Inhibitors in Treating Non-Small Cell Lung Cancer: A Meta-Analysis of Nine Randomized Clinical Trials.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan Zhou

    Full Text Available Evidence on the benefits of combining cyclooxygenase-2 inhibitor (COX-2 in treating non-small cell lung cancer (NSCLC is still controversial. We investigated the efficacy and safety profile of cyclooxygenase-2 inhibitors in treating NSCLC.The first meta-analysis of eligible studies was performed to assess the effect of COX-2 inhibitors for patients with NSCLC on the overall response rate (ORR, overall survival (OS, progression-free survival (PFS, one-year survival, and toxicities. The fixed-effects model was used to calculate the pooled RR and HR and between-study heterogeneity was assessed. Subgroup analyses were conducted according to the type of COX-2 inhibitors, treatment pattern, and treatment line.Nine randomized clinical trials, comprising 1679 patents with NSCLC, were included in the final meta-analysis. The pooled ORR of patients who have NSCLC with COX-2 inhibitors was significantly higher than that without COX-2 inhibitors. In subgroup analysis, significantly increased ORR results were found on celecoxib (RR = 1.29, 95% CI: 1.09, 1.51, rofecoxib (RR = 1.61, 95% CI: 1.14, 2.28, chemotherapy (RR = 1.40, 95% CI: 1.20, 1.63, and first-line treatment (RR = 1.39, 95% CI: 1.19, 1.63. However, COX-2 inhibitors had no effect on the one-year survival, OS, and PFS. Increased RR of leucopenia (RR = 1.21, 95% CI: 1.01, 1.45 and thrombocytopenia (RR = 1.36, 95% CI: 1.06, 1.76 suggested that COX-2 inhibitors increased hematologic toxicities (grade ≥ 3 of chemotherapy.COX-2 inhibitors increased ORR of advanced NSCLC and had no impact on survival indices, but it may increase the risk of hematologic toxicities associated with chemotherapy.

  19. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2

    Science.gov (United States)

    Xu, Jianfeng; Li, Jie; Hong, Zaifa; Yin, Zhenyu; Wang, Xiaomin

    2016-01-01

    Hepatic stellate cells (HSCs) are critical mediators of immunosuppression and the pathogenesis of hepatocellular carcinoma (HCC). Our previous work indicates that HSCs promote HCC progression by enhancing immunosuppressive cell populations including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). MDSCs are induced by inflammatory cytokines (e.g., prostaglandins) and are important in immune suppression. However, how HSCs mediate expansion of MDSCs is uncertain. Thus, we studied activated HSCs that could induce MDSCs from bone marrow cells and noted that HSC-induced MDSCs up-regulated immunosuppressive activity via iNOS, Arg-1, and IL-4Rα. After treating cells with a COX-2 inhibitor or an EP4 antagonist, we established that HSC-induced MDSC accumulation was mediated by the COX2-PGE2-EP4 signaling. Furthermore, in vivo animal studies confirmed that inhibition of HSC-derived PGE2 could inhibit HSC-induced MDSC accumulation and HCC growth. Thus, our data show that HSCs are required for MDSC accumulation mediated by the COX2-PGE2-EP4 pathway, and these data are the first to link HSC and MDSC subsets in HCC immune microenvironment and provide a rationale for targeting PGE2 signaling for HCC therapy. PMID:26758420

  20. Interventional effect of flunarizine on the expression of cyclooxygenase-2 and plasminogen activator inhibitor type-1 during experimental Cerebral ischemia/reperfusion in gerbils

    Institute of Scientific and Technical Information of China (English)

    Wensheng Zhou; Zhiping Hu; Yan Hong

    2006-01-01

    BACKGROUND:Some researches suggest that induced cyclooxygenase-2 (COX-2) can cause brain injury through a series of ways at the phase of cerebral ischemia/hypoxia.Plasminogen activator inhibitor type-1(PAI-1)is a kind of inhibitor of serine stretch protein enzyme and is able to protect cell surface and microvascular basement membrane from degradation of protease and also protect contact surface among cells so as to maintain integrality of tissue structure.However,correlation of protective effect of flunarizine on brain with COX-2 and PAI-1 should be studied further.OBJECTIVE:To observe the effect of flunadzine on expressions of COX-2 and PAI-1 protein in forebrain and degree of brain injury among gerbils after cerebral ischemia.DESIGN:A randomized controlled animal study.SEITING:Department of Neurology,the Second Xiangya Hospital of Central South University;Department of Neurology,Mawangdui Hospital of Hunan Province.MATERIALS:A total of 40 healthy gerbils,of both genders,aged 9 months,weighing(90±10)g,were selected in this study.Anti-COX-2 multi-antibody,anti-PAI-1 multi-antibody,SABC immunohistochemical kit and DAB kit were provided by Wuhan Boster Biological Engineering Co.,Ltd.;and flunarizine capsule was provided by Xi'an Yangsen Pharmaceutical Company(batch number:041018726,dosage:5 mg/pill).METHODS:The experiment was Carried out in Laboratory of Mental Disease,Hunan Provincial Gedatdcs Institute affiliated by Hunan Provincial Mawangdui Hospital from January 2004 to March 2005.① All gerbils were randomly divided into cerebral ischemia group,flunarizine intervention group,sham operation group and normal control group with 10 in each group.Gerbils in normal control group were only cut off their heads.Gerbils in sham operation group were only dissected their bilateral common carotid arteries and sacdficad 1 day later.Gerbils in cerebral ischemia group and flunanzine intervention group were anesthetized,centrally cut open skin of neck,bluntly dissected

  1. Incremental cost-effectiveness of cyclooxygenase 2-selective versus nonselective nonsteroidal, anti-inflammatory drugs in a cohort of coumarin users : A pharmacoeconomic analysis linked to a case-control study

    NARCIS (Netherlands)

    Knijff-Dutmer, EAJ; Postma, MJ; van der Palen, J; Brouwers, JRBJ; van de Laar, MAFJ

    2004-01-01

    Background: A previous case-control study involving concomitant users of coumarin and nonsteroidal anti-inflammatory drugs (NSAIDs) found that cyclooxygenase 2 (COX-2)-selective NSAIDs were associated with fewer bleeding complications than nonselective NSAIDs. Objective: The goal of this study was t

  2. Incremental cost-effectiveness of cyclooxygenase 2-selective versus nonselective nonsteroidal anti-inflammatory drugs in a cohort of coumarin users: A pharmacoeconomic analysis linked to a case-control study

    NARCIS (Netherlands)

    Knijff-Dutmer, Ellen A.J.; Postma, Maarten J.; Palen, van der Job; Brouwers, Jacobus R.B.J.; Laar, van de Martin A.F.J.

    2004-01-01

    Background: A previous case-control study involving concomitant users of coumarin and nonsteroidal anti-inflammatory drugs (NSAIDs) found that cyclooxygenase 2 (COX-2)-selective NSAIDs were associated with fewer bleeding complications than nonselective NSAIDs. Objective: The goal of this study was

  3. Mechanisms underlying aspirin-mediated growth inhibition and apoptosis induction of cyclooxygenase-2 negative colon cancer cell line SW480

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the effects of aspirin (acetylsalicylic acid) on proliferation and apoptosis of colorectal can- cer cell line $W480 and its mechanism. METHODS: Cyclooxygenase (COX)-2 negative colorec- tal cancer cell line SW480 was treated with aspirin at concentrations of 2.5 retool/L, 5.0 retool/L, 10.0 mmol/L for different periods in vitro. Anti-proliferation effect of aspirin on SW480 was detected by 3-(4,5-dimeth- ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle and apoptosis were observed by flow cytometry (FCM). Transmission electron microscope (TEM) was used for morphological study. Apoptosis-as- sociated genes were detected by immunohistochemical staining and Western blotting. RESULTS: Aspirin inhibited SW480 proliferation and induced apoptosis in a dose- and time-dependent manner. Treatment with different concentrations of aspirin significantly increased the proportions of cells at the G0/G1 phase and decreased the proportions of cells at the S- and G2/M phases in a concentration- dependent manner. Aspirin not only induced apoptosis but also caused cell necrosis at a high concentration as well. After treatment with aspirin, SW480 cells displayed typically morphological features of apoptosis and necrosis under TEM, and increased the Bcl-2 expression in cells, but the expression of Bax was down regulated. CONCLUSION: Aspirin inhibits proliferation and induces apoptosis of SW480 cells. Its anti-tumor mechanism may arrest cell cycle and shift Bax/Bcl-2 balance in cells.

  4. Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer

    OpenAIRE

    Costa, C; SOARES, R.; Reis-Filho, J S; Leitão, D; Amendoeira, I; Schmitt, F C

    2002-01-01

    Aims: Cyclo-oxygenases 1 and 2 (COX-1 and COX-2) are key enzymes in prostaglandin biosynthesis. COX-2 is induced by a wide variety of stimuli, and present during inflammation. COX-2 overexpression has been observed in colon, head and neck, lung, prostate, stomach, and breast cancer. In colon and gastric cancer, COX-2 expression was associated with angiogenesis. The aim of this study was to determine the relation between COX-2 expression and angiogenesis in breast cancer, and to correlate the ...

  5. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Wolfgang, E-mail: wolfgang.brozek@gmx.at; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S. [Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2012-07-26

    Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH){sub 2}D{sub 3} and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression.

  6. Increase of carcinogenic risk via enhancement of cyclooxygenase-2 expression and hydroxyestradiol accumulation in human lung cells as a result of interaction between BaP and 17-beta estradiol.

    Science.gov (United States)

    Chang, Louis W; Chang, Yun-Ching; Ho, Chia-Chi; Tsai, Ming-Hsien; Lin, Pinpin

    2007-07-01

    Animal studies demonstrated that females are more susceptible than males to benzo[a]pyrene (BaP)-induced toxicities, including lung carcinogenesis. Elevation of cyclooxygenase-2 (COX-2) expression has been shown to increase the risk of cancer development. BaP induces COX-2 expression, and an interaction between BaP and estrogen in relation to COX-2 expression is suspected. In the present study, 10 muM BaP alone only slightly increased COX-2 mRNA expression and 10 nM 17-beta estradiol (E(2)) alone slightly increased prostaglandin E2 (PGE2) secretion in human bronchial epithelial cells. However, co-treatment with BaP and E(2) potentiated COX-2 mRNA expression and significantly elevated PGE2 secretion. Utilizing specific inhibitors and reporter assays, we further investigated the potentiation mechanisms of E(2) on BaP-induced COX-2 expression. First, E(2) activated estrogen receptor to increase PGE2 secretion, which directly increased COX-2 expression. Second, E(2) potentiated BaP-induced nuclear factor-kappaB (NF-kappaB) activation, which regulates COX-2 expression. Third, although the aryl hydrocarbon receptor (AhR) did not play a role in BaP-induced COX-2 expression, the potentiation effect of E(2) itself was AhR dependent. We further demonstrated that BaP induced the production of genotoxic E(2) metabolites (2- and 4-hydroxyestradiols) via AhR-up-regulated cytochromes P450 1A1 and 1B1. These metabolites could directly activate NF-kappaB to further promote COX-2 mRNA expression in human lung epithelial cells. These findings were further supported by increased PGE2 secretion in rat lung slice cultures. Our findings that the BaP-E(2) interaction enhanced COX-2 expression and hydroxyestradiol accumulation in the media of cultivated lung cells and tissues provide the needed scientific basis for higher risk of BaP-associated lung cancer in females.

  7. Expression of cyclooxygenase-2 in the canine lower urinary tract with regard to the effects of gonadal status and gender.

    Science.gov (United States)

    Ponglowhapan, S; Church, D B; Khalid, M

    2009-05-01

    As pituitary gonadotrophins can induce prostaglandin (PG) synthesis and receptors for LH and FSH are present in the canine lower urinary tract (LUT), the objectives of this study were to (i) investigate the expression of COX-2, a key rate-limiting enzyme in PG production, in the canine LUT and (ii) determine if COX-2 expression differs between gender, gonadal status (intact and gonadectomised) and LUT regions. Four regions (body and neck of the bladder as well as proximal and distal urethra) of the LUT were obtained from 20 clinically healthy dogs (5 intact males, 5 intact anoestrous females, 4 castrated males, 6 spayed females). In situ hybridization and immunohistochemistry were performed to determine the presence of COX-2 mRNA and protein, respectively. The mRNA and protein expression was semi-quantitatively assessed. The scoring system combined both the distribution and intensity of positive staining and was carried out separately on the three tissue layers (epithelium, sub-epithelial stroma and muscle) for each of four regions of the LUT. In comparison to intact dogs, lower expression (Pcanine LUT and COX-2-regulated PG synthesis in the canine LUT may differ between gonadal statuses and genders. The lower expression of COX-2 in gonadectomised dogs may impair normal function of the LUT and probably implicated in the development of neutering-induced urinary incontinence in the dog.

  8. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-01-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  9. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-06-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  10. Inhibitory activity against cyclooxygenase-2 enzyme of extraction from algae%海藻提取物环氧加酶-2抑制活性研究

    Institute of Scientific and Technical Information of China (English)

    史大永; 李晓红; 李敬; 郭书举; 苏华

    2009-01-01

    Cyclooxygenase-2 (COX-2) is a key enzyme that catalyzes the biosynthesis of prostaglandins from arachidonic acid and plays a critical role in inflammation, pain and fever. In order to search for new type inhibitors against COX-2, extractions from 10 algae were screened indirectly by determination of prostaglandin E2 which was synthesized from arachidonic acid. Human cyclooxygenase-2 genes were cloned from human monocyte cell line THP-1 cells and expressed in Spodoptera frugiperda (sf9) insect cell line by Bac-to-Bac baculovirus expression systems. The results showed that ethanolic extraction of Scytosiphon lomentarius, EtOAc phase of Sargassum thunbergii and Codium fragile and butanolic phase of Rhodomela confervoides exhibited good bioactivities with inhibitory ratio higher than 50% at a dose of 10 μg/mL.%系统采集中国沿海10种代表性海藻,进行有效成分提取与粗分;利用昆虫杆状病毒表达系统克隆人COX-2基因,并在昆虫Spodoptera frugiperda(sf9)细胞中表达获得COX-2蛋白;以花生四烯酸为底物,通过测定前列腺素PGE2的生成浓度,测定海藻不同部位对COX-2酶的抑制活性.结果表明,萱藻(Scytosiphon lomentarius)乙醇提取物、鼠尾藻(Sargassum thunbergii)和刺松藻(Codium fragile)乙酸乙酯相、松节藻(Rhodomela conferroides)正丁醇相表现出良好的COX-2酶抑制活性(质量浓度为10μg/mL时,抑制率大于50%).首次对上述海藻进行COX-2酶抑制活性研究,其中萱藻乙醇提取物、鼠尾藻和刺松藻乙酸乙酯相、松节藻正丁醇相表现出良好的COX-2抑制活性.

  11. Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice

    Directory of Open Access Journals (Sweden)

    Koehler Raymond C

    2010-07-01

    Full Text Available Abstract Background The enzyme cytosolic phospholipase A2 alpha (cPLA2α has been implicated in the progression of cerebral injury following ischemia and reperfusion. Previous studies in rodents suggest that cPLA2α enhances delayed injury extension and disruption of the blood brain barrier many hours after reperfusion. In this study we investigated the role of cPLA2α in early ischemic cerebral injury. Methods Middle cerebral artery occlusion (MCAO was performed on cPLA2α+/+ and cPLA2α-/- mice for 2 hours followed by 0, 2, or 6 hours of reperfusion. The levels of cPLA2α, cyclooxygenase-2, neuronal morphology and reactive oxygen species in the ischemic and contralateral hemispheres were evaluated by light and fluorescent microscopy. PGE2 content was compared between genotypes and hemispheres after MCAO and MCAO and 6 hours reperfusion. Regional cerebral blood flow was measured during MCAO and phosphorylation of relevant MAPKs in brain protein homogenates was measured by Western analysis after 6 hours of reperfusion. Results Neuronal cPLA2α protein increased by 2-fold immediately after MCAO and returned to pre-MCAO levels after 2 hours reperfusion. Neuronal cyclooxygenase-2 induction and PGE2 concentration were greater in cPLA2α+/+ compared to cPLA2α-/- ischemic cortex. Neuronal swelling in ischemic regions was significantly greater in the cPLA2α+/+ than in cPLA2α-/- brains (+/+: 2.2 ± 0.3 fold vs. -/-: 1.7 ± 0.4 fold increase; P 2α+/+ ischemic core than in cPLA2α-/- (+/+: 7.12 ± 1.2 fold vs. -/-: 3.1 ± 1.4 fold; P 2α+/+, but not cPLA2α-/-, had disruption of neuron morphology and decreased PGE2 content. Phosphorylation of the MAPKs-p38, ERK 1/2, and MEK 1/2-was significantly greater in cPLA2a+/+ than in cPLA2α-/- ischemic cortex 6 hours after reperfusion. Conclusions These results indicate that cPLA2α modulates the earliest molecular and injury responses after cerebral ischemia and have implications for the potential clinical

  12. Research Advances in Cyclooxygenase-2 and Gastric Carcinoma%环氧合酶-2在胃癌中的研究进展

    Institute of Scientific and Technical Information of China (English)

    王璟; 韩晓鹏; 李洪涛; 于建平; 刘宏斌

    2015-01-01

    我国胃癌发病人数居全球首位,其发生机制及安全有效的治疗是研究重点.大量研究结果表明,环氧化酶-2(Cyclooxygenase-2,COX-2)过度表达促进肿瘤细胞增殖和抑制细胞凋亡,并与胃癌的发生发展、淋巴转移、分化程度、病理分期及预后密切相关.随着COX-2与胃癌关系的研究的深入,COX-2已逐渐成为胃癌治疗的新的靶点.近年来,针对细胞受体、信号传导、细胞周期和血管生成等靶点的抗肿瘤治疗已成为肿瘤治疗研究的新方向.因此,以COX-2为特异靶点的治疗策略有望为胃癌治疗提供新的思路.%The population of patients with gastric carcinoma in China ranks first in the world.A safe and effective treatment of gastric carcinoma is the key point in the research.Several studies have shown that Cyclooxygenase-2 (COX-2) overexpression promotes tumor cell proliferation and inhibition of apoptosis.COX-2 is closely associated with the development of gastric carcinoma,lymph node metastasis,differentiation,pathological staging and prognosis.COX-2 has become a new target for cancer therapy with COX-2 and gastric carcinoma in-depth study.In recent years,along with the molecular biology of cancer occurrence and development mechanism of the deepening of the research,directed cell receptor,signal transduction,cell cycle and angiogenesis targeted anti tumor therapy has become a new research direction in tumor therapy.Therefore,COX-2,as a specific target for therapeutic strategies for the treatment of gastric carcinoma,is expected to provide new ideas.

  13. Differential expression of cyclooxygenase-2 and its regulation by tumor necrosis factor-alpha in normal and malignant prostate cells.

    Science.gov (United States)

    Subbarayan, V; Sabichi, A L; Llansa, N; Lippman, S M; Menter, D G

    2001-03-15

    Cyclooxygenase (COX)-2 expression is elevated in some malignancies; however, information is scarce regarding COX-2 contributions to the development of prostate cancer and its regulation by inflammatory cytokines. The present study compared and contrasted the expression levels and subcellular distribution patterns of COX-1 and COX-2 in normal prostate [prostate epithelial cell (PrEC), prostate smooth muscle (PrSM), and prostate stromal (PrSt)] primary cell cultures and prostatic carcinoma cell lines (PC-3, LNCaP, and DU145). The basal COX-2 mRNA and protein levels were high in normal PrEC and low in tumor cells, unlike many other normal cells and tumor cells. Because COX-2 levels were low in prostate smooth muscle cells, prostate stromal cells, and tumor cells, we also examined whether COX-1 and COX-2 gene expression was elevated in response to tumor necrosis factor-alpha (TNF-alpha), a strong inducer of COX-2 expression. Northern blot analysis and reverse transcription-PCR demonstrated different patterns and kinetics of expression for COX-1 and COX-2 among normal cells and tumor cells in response to TNF-alpha. In particular, COX-2 protein levels increased, and the subcellular distribution formed a distinct perinuclear ring in the normal cells at 4 h after TNF-alpha exposure. The COX-2 protein levels also increased in cancer cells, but the subcellular distribution was less organized; COX-2 protein appeared diffuse in some cells and accumulated as focal deposits in the cytoplasm of other cells. TNF-alpha induction of COX-2 and prostaglandin E2 correlated inversely with induction of apoptosis. We conclude that COX-2 expression may be important to PrEC cell function. Although it is low in stromal and tumor cells, COX-2 expression is induced by TNF-alpha in these cells, and this responsiveness may play an important role in prostate cancer progression.

  14. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors.

    Science.gov (United States)

    Zhu, Jiuxiang; Huang, Jui-Wen; Tseng, Ping-Hui; Yang, Ya-Ting; Fowble, Joseph; Shiau, Chung-Wai; Shaw, Yeng-Jeng; Kulp, Samuel K; Chen, Ching-Shih

    2004-06-15

    The blockade of Akt activation through the inhibition of 3-phosphoinositide-dependent kinase-1 (PDK-1) represents a major signaling mechanism whereby celecoxib mediates apoptosis. Celecoxib, however, is a weak PDK-1 inhibitor (IC(50), 48 microM), requiring at least 30 microM to exhibit discernable effects on the growth of tumor cells in vitro. Here, we report the structure-based optimization of celecoxib to develop PDK-1 inhibitors with greater potency in enzyme inhibition and growth inhibition. Kinetics of PDK-1 inhibition by celecoxib with respect to ATP suggest that celecoxib derivatives inhibit PDK-1 by competing with ATP for binding, a mechanism reminiscent to that of many kinase inhibitors. Structure-activity analysis together with molecular modeling was used to generate compounds that were tested for their potency in inhibiting PDK-1 kinase activity and in inducing apoptosis in PC-3 prostate cancer cells. Docking of potent compounds into the ATP-binding site of PDK-1 was performed for lead optimization, leading to two compounds, OSU-03012 and OSU-03013, with IC(50) values in PDK-1 inhibition and apoptosis induction in the low microM range. Exposure of PC-3 cells to these agents led to Akt dephosphorylation and inhibition of p70 S6 kinase activity. Moreover, overexpression of constitutively active forms of PDK-1 and Akt partially protected OSU-03012-induced apoptosis. Screening in a panel of 60 cell lines and more extensive testing in PC-3 cells indicated that the mean concentration for total growth inhibition was approximately 3 microM for both agents. Considering the conserved role of PDK-1/Akt signaling in promoting tumorigenesis, these celecoxib analogs are of translational relevance for cancer prevention and therapy.

  15. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells

    Science.gov (United States)

    Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.

    1997-01-01

    Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.

  16. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells

    Science.gov (United States)

    Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.

    1997-01-01

    Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.

  17. Curcumin improves prostanoid ratio in diabetic mesenteric arteries associated with cyclooxygenase-2 and NF-κB suppression

    Directory of Open Access Journals (Sweden)

    Sirada Rungseesantivanon

    2010-12-01

    Full Text Available Sirada Rungseesantivanon1, Naris Thengchaisri4, Preecha Ruangvejvorachai2, Suthiluk Patumraj31Interdepartment of Physiology, Graduate School, 2Department of Pathology, 3Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; 4Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, ThailandBackground: Curcumin, the active ingredient from turmeric rhizomes, has been shown to have a wide range of pharmacological properties including antioxidant and anti-inflammatory effects. Curcumin has been reviewed for its multiple molecular action on inhibiting tumor angiogenesis via its mechanisms of cyclooxygenase (COX-2, and vascular endothelial growth factor (VEGF inhibition. In this present study, we aimed to assess the effects of curcumin on preventing diabetes-induced vascular dysfunction in association with COX-2, nuclear factor-κB (NF-κB expression, and prostanoid production.Methods: Twelve-week-old male Wistar rats were separated into five groups: 1 diabetes with 0.9% normal saline (DM-NSS; n = 10, 2 diabetes treated with curcumin 30 mg/kg (n = 10, 3 diabetes treated with curcumin 300 mg/kg (n = 10, 4 the control with 0.9% normal saline (n = 10, and 5 the control treated with 300 mg/kg (n = 10. Daily oral feeding of curcumin was started at 6 weeks after the streptozotocin injection. Levels of 6-keto prostaglandin (PG F1α and thromboxane (TX B2 were determined from mesenteric perfusates using enzyme immunoassay kits. Protein kinase C (PKC-ßII and COX-2 with NF-κB levels were analyzed in the mesenteric arteries by immunofluorescent staining and immunohistochemistry, respectively.Results: The ratio of 6-keto-PGF1α and TXB2 was significantly decreased in DM-NSS compared with the control (P < 0.05. Double-immunofluorescent staining with specific antibodies for PKC-βII and a-smooth muscle actins showed that the diabetic mesenteric arteries contained increased

  18. Immunohistochemical localization of cyclooxygenase-1 and cyclooxygenase-2 in the human fetal and adult male reproductive tracts.

    Science.gov (United States)

    Kirschenbaum, A; Liotta, D R; Yao, S; Liu, X H; Klausner, A P; Unger, P; Shapiro, E; Leav, I; Levine, A C

    2000-09-01

    The first rate-limiting step in the conversion of arachidonic acid to PGs is catalyzed by cyclooxygenase (Cox). Two isoforms of Cox have been identified, Cox-1 (constitutively expressed) and Cox-2 (inducible form), which are the products of two different genes. In this study we describe the immunohistochemical localization of Cox-1 and -2 in the human male fetal and adult reproductive tracts. There was no Cox-1 expression in fetal samples (prostate, seminal vesicles, or ejaculatory ducts), and only minimal expression in adult tissues. There was no expression of Cox-2 in the fetal prostate. In a prepubertal prostate there was some Cox-2 expression that localized exclusively to the smooth muscle cells of the transition zone. In adult hyperplastic prostates, Cox-2 was strongly expressed in smooth muscle cells, with no expression in the luminal epithelial cells. Cox-2 was strongly expressed in epithelial cells of both fetal and adult seminal vesicles and ejaculatory ducts. The Cox-2 staining intensity in the fetal ejaculatory ducts during various times of gestation correlated with previously reported testosterone production rates by the fetal testis. These data indicate that Cox-2 is the predominant isoform expressed in the fetal male reproductive tract, and its expression may be regulated by androgens. The distinct cell type-specific expression patterns of Cox-2 in the prostate (smooth muscle) vs. the seminal vesicles and ejaculatory ducts (epithelium) may reflect the different roles of PGs in these tissues.

  19. Effect of the major glycosides of Harpagophytum procumbens (Devil's Claw) on epidermal cyclooxygenase-2 (COX-2) in vitro.

    Science.gov (United States)

    Abdelouahab, Nassima; Heard, Charles

    2008-05-01

    Harpagophytum procumbens, commonly known as Devil's Claw, is indigenous to southern Africa, and extracts of the tubers have been used for centuries in the treatment of a variety of inflammatory disorders. Its major active components, harpagoside (1), harpagide (2), 8-coumaroylharpagide (3), and verbascoside (4), are believed to interact either synergistically or antagonistically in modulating the enzymes responsible for inducing inflammation, although this has not been probed hitherto. In the current work, the ability of these compounds to inhibit the expression of COX-2 following administration to freshly excised porcine skin has been investigated. An ethanol-soluble extract of H. procumbens tubers and two of the pure compounds tested showed promising activity in Western blotting and immunocytochemical assays, with harpagoside (1) and 8-coumaroylharpagide (3) exhibiting greater reductions in COX-2 expression than verbascoside (4). Harpagide (2) caused a significant increase in the levels of COX-2 expression after 6 h of topical application. The data suggest that the efficacy of H. procumbens is dependent upon the ratios of compounds 1-4 present, which is inconsistent with some current official monograph specifications based solely on harpagoside (1) content.

  20. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Côté Claude H

    2011-10-01

    Full Text Available Abstract Background Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2. The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade. Methods Proliferation of L6 rat skeletal myoblasts stimulated with PAR-2 agonists (tryptase, trypsin and SLIGKV was assessed. The specificity of the tryptase effect was evaluated with a specific inhibitor, APC-366. Western blot analyses were used to evaluate the expression and functionality of PAR-2 receptor and to assess the expression of COX-2. COX-2 activity was evaluated with a commercial activity assay kit and by measurement of PGF2α production. Proliferation assays were also performed in presence of different prostaglandins (PGs. Results Tryptase increased L6 myoblast proliferation by 35% above control group and this effect was completely inhibited by APC-366. We confirmed the expression of PAR-2 receptor in vivo in skeletal muscle cells and in satellite cells and in vitro in L6 cells, where PAR-2 was found to be functional. Trypsin and SLIGKV increased L6 cells proliferation by 76% and 26% above control, respectively. COX-2 activity was increased following stimulation with PAR-2 agonist but its expression remained unchanged. Inhibition of COX-2 activity by NS-398 abolished the stimulation of cell proliferation induced by tryptase and trypsin. Finally, 15-deoxy-Δ-12,14-prostaglandin J2 (15Δ-PGJ2, a product of COX-2-derived prostaglandin D2, stimulated myoblast proliferation, but not PGE2 and PGF2α. Conclusions Taken together, our data show that tryptase can stimulate myoblast proliferation and this effect is part of a signaling cascade dependent on PAR-2 activation and on the downstream

  1. Evaluation of [{sup 11}C]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Erik F.J. de [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen (Netherlands)], E-mail: e.f.j.de.vries@ngmb.umcg.nl; Doorduin, Janine; Dierckx, Rudi A.; Waarde, Aren van [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen (Netherlands)

    2008-01-15

    Background: Overexpression of cyclooxygenase type 2 (COX-2) is triggered by inflammatory stimuli, but it also plays a prominent role in the initiation and progression of various diseases. This study aims to investigate [{sup 11}C]rofecoxib as a positron emission tomography (PET) tracer for COX-2 expression. Methods: [{sup 11}C]Rofecoxib was prepared by methylation of its sulphinate precursor. Regional brain distribution and specific binding of [{sup 11}C]rofecoxib in healthy rats was studied by ex vivo biodistribution and autoradiography. Regional brain distribution and PET imaging studies were also performed on rats with severe encephalitis, caused by nasal infection with herpes simplex virus (HSV). Finally, ex vivo biodistribution and blocking studies were carried in rats with a sterile inflammation, induced by intramuscular turpentine injection. Results: [{sup 11}C]rofecoxib brain uptake in control animals corresponded with the known distribution of COX-2. Pretreatment with NS398 significantly reduced tracer uptake in the cingulate/frontopolar cortex, whereas the reduction in hippocampus approached significance. Ex vivo autoradiography also revealed preferential tracer uptake in hippocampus and cortical areas that could be blocked by NS398. In HSV-infected animals, [{sup 11}C]rofecoxib uptake was moderately increased in all brain regions, but it could not be blocked with indomethacin. Yet, some PET images revealed increased tracer uptake in brain areas with microglia activation. In turpentine-injected animals, [{sup 11}C]rofecoxib uptake in inflamed muscle was not higher than in control muscle and could not be blocked with NS398. Indomethacin caused a slight reduction in muscle uptake. Conclusions: Despite the apparent correlation between [{sup 11}C]rofecoxib uptake and COX-2 distribution in healthy rats, [{sup 11}C]rofecoxib could not unambiguously detect COX-2 overexpression in two rat models of inflammation.

  2. Cyclooxygenase 2-dependent and independent activation of Akt through casein kinase 2α contributes to human bladder cancer cell survival

    Directory of Open Access Journals (Sweden)

    Fujimoto Kiyohide

    2011-05-01

    Full Text Available Abstract Background Survival rate for patients presenting muscle invasive bladder cancer is very low, and useful therapeutic target has not been identified yet. In the present study, new COX2 downstream signals involved in urothelial carcinoma cell survival were investigated in vitro and in vivo. Methods COX2 gene was silenced by siRNA transfection. Orthotopic implantation animal model and transurethral instillation of siRNA with atelocollagen was constructed to examine the effects of COX2 knockdown in vivo. Cell cycle was examined by flowcytoketry. Surgical specimens derived from patients with urinary bladder cancer (all were initially diagnosed cases were used for immunohistochemical analysis of the indicated protein expression in urothelial carcinoma cells. Results Treatment with the COX2 inhibitor or knockdown of COX2 reduced expression of casein kinase (CK 2 α, a phophorylated Akt and urokinase type plasminogen activator (uPA, resulting in p27 induction, cell cycle arrest at G1 phase and cell growth suppression in human urothelial carcinoma cell lines expressing COX2. Silencing of CK2α exhibited the similar effects. Even in UMUC3 cells lacking the COX2 gene, COX2 inhibition also inhibited cell growth through down-regulation of the CK2α-Akt/uPA axis. The mouse orthotropic bladder cancer model demonstrated that the COX2 inhibitor, meloxicam significantly reduced CK2α, phosphorylated Akt and uPA expression, whereas induced p27 by which growth and invasiveness of bladder cancer cells were strongly inhibited. Immunohistochemically, high expression of COX2, CK2α and phosphorylated form of Akt was found in high-grade, invasive carcinomas as well as carcinoma in situ, but not in low-grade and noninvasive phenotypes. Conclusions COX2-dependent and independent activation of CK2α-Akt/uPA signal is mainly involved in urothelial carcinoma cell survival, moreover, not only COX2 but also CK2α could be direct targets of COX2 inhibitors.

  3. STUDY ON THE EXPRESSION OF CYCLOOXYGENASE-2 IN HEPATOCELLULAR CARCINOMA CELL LINES AND ON THE GROWTH INHIBITION EFFECT OF NS-398

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To investigate the expression of cyclooxygenase -2 (COX-2) in hepatocellular carcinoma cell lines and to explore the effect of NS-398, a selective inhibitor for COX-2, on HepG-2 cell line. Methods: Immunohistochemistry and RT-PCR were used to investigate COX-2 expression in 6 HCC cell lines. MTT and Flowcytometry were used to evaluate the effect of the selective inhibitor of COX-2, NS-398, on HepG-2 cell lines. Results: All six HCC cell lines showed COX-2 expression at protein level. Five out of 6 cell lines showed COX-2 expression at mRNA level. NS-398 could suppress the growth of HepG-2 cell line, in a time and dose dependant manner. Conclusion: NS-398, a selective inhibitor of COX-2, showed inhibition effect on HepG-2 HCC cell line. The efficacy of inhibition was time and dose dependent, providing a new evidence for chemoprovention of hepatocellular carcinorma with COX-2 selective inhibitors.

  4. Vitual screening and binding mode elucidation of curcumin analogues on Cyclooxygenase-2 using AYO_COX2_V1.1 protocol

    Science.gov (United States)

    Mulatsari, E.; Mumpuni, E.; Herfian, A.

    2017-05-01

    Curcumin is yellow colored phenolic compounds contained in Curcuma longa. Curcumin is known to have biological activities as anti-inflammatory, antiviral, antioxidant, and anti-infective agent [1]. Synthesis of curcumin analogue compounds has been done and some of them had biological activity like curcumin. In this research, the virtual screening of curcumin analogue compounds has been conducted. The purpose of this research was to determine the activity of these compounds as selective Cyclooxygenase-2inhibitors in in-silico. Binding mode elucidation was made by active and inactive representative compounds to see the interaction of the amino acids in the binding site of the compounds. This research used AYO_COX2_V.1.1, a structure-based virtual screening protocol (SBVS) that has been validated by Mumpuni E et al, 2014 [2]. AYO_COX2_V.1.1 protocol using a variety of integrated applications such as SPORES, PLANTS, BKchem, OpenBabel and PyMOL. The results of virtual screening conducted on 49 curcumin analogue compounds obtained 8 compounds with 4 active amino acid residues (GLY340, ILE503, PHE343, and PHE367) that were considered active as COX-2 inhibitor.

  5. Aspirin analogues as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, nitric oxide release, molecular modeling, and biological evaluation as anti-inflammatory agents.

    Science.gov (United States)

    Kaur, Jatinder; Bhardwaj, Atul; Huang, Zhangjian; Knaus, Edward E

    2012-01-02

    Analogues of aspirin were synthesized through an efficient one-step reaction in which the carboxyl group was replaced by an ethyl ester, and/or the acetoxy group was replaced by an N-substituted sulfonamide (SO(2)NHOR(2):R(2) =H, Me, CH(2)Ph) pharmacophore. These analogues were designed for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. In vitro COX-1/COX-2 isozyme inhibition studies identified compounds 11 (CO(2) H, SO(2)NHOH), 12 (CO(2)H, SO(2)NHOCH(2)Ph), and 16 (CO(2)Et, SO(2)NHOH) as highly potent and selective COX-2 inhibitors (IC(50) range: 0.07-0.7 μM), which exhibited appreciable in vivo anti-inflammatory activity (ED(50) range: 23.1-31.4 mg kg(-1)). Moreover, compounds 11 (IC(50) =0.2 μM) and 16 (IC(50) =0.3 μM), with a sulfohydroxamic acid (SO(2)NHOH) moiety showed potent 5-LOX inhibitory activity. Furthermore, the SO(2)NHOH moiety present in compounds 11 and 16 was found to be a good nitric oxide (NO) donor upon incubation in phosphate buffer at pH 7.4. Molecular docking studies in the active binding site of COX-2 and 5-LOX provided complementary theoretical support for the experimental biological structure-activity data acquired. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model

    Science.gov (United States)

    Cekanova, Maria; Uddin, Md. Jashim; Legendre, Alfred M.; Galyon, Gina; Bartges, Joseph W.; Callens, Amanda; Martin-Jimenez, Tomas; Marnett, Lawrence J.

    2012-11-01

    We evaluated preclinical single-dose safety, pharmacokinetic properties, and specific uptake of the new optical imaging agent fluorocoxib A in dogs. Fluorocoxib A, N-[(5-carboxy-X-rhodaminyl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, selectively binds and inhibits the cyclooxygenase-2 (COX-2) enzyme, which is overexpressed in many cancers. Safety pilot studies were performed in research dogs following intravenous (i.v.) administration of 0.1 and 1 mg/kg fluorocoxib A. Blood and urine samples collected three days after administration of each dose of fluorocoxib A revealed no evidence of toxicity, and no clinically relevant adverse events were noted on physical examination of exposed dogs over that time period. Pharmacokinetic parameters were assessed in additional research dogs from plasma collected at several time points after i.v. administration of fluorocoxib A using high-performance liquid chromatography analysis. The pharmacokinetic studies using 1 mg/kg showed a peak of fluorocoxib A (92±28 ng/ml) in plasma collected at 0.5 h. Tumor specific uptake of fluorocoxib A was demonstrated using a dog diagnosed with colorectal cancer expressing COX-2. Our data support the safe single-dose administration and in vivo efficacy of fluorocoxib A, suggesting a high potential for successful translation to clinical use as an imaging agent for improved tumor detection in humans.

  7. Significance of CYCLOOXYGENASE-2(COX-2), PERIOSTIN (POSTN) and INTERLEUKIN-4(IL-4) gene expression in the pathogenesis of chronic rhinosinusitis with nasal polyps.

    Science.gov (United States)

    Miłoński, Jarosław; Zielińska-Bliźniewska, Hanna; Przybyłowska, Karolina; Pietkiewicz, Piotr; Korzycka-Zaborowska, Barbara; Majsterek, Ireneusz; Olszewski, Jurek

    2015-12-01

    The purpose of this paper was to evaluate the level of Cyclooxygenase-2 (COX-2), Periostin (POSTN) and Interleukin-4(IL-4) gene expression in patients with chronic rhinosinusitis with nasal polyps, without polyps and with a nasal septum deviation. The tests were performed on 63 patients (24 women and 39 men) with chronic rhinosinusitis and polyps (CRSwP-study group I), with determination of the COX-2, POSTN and IL-4 gene expression; an allergy was diagnosed in 38 cases. The reference groups were patients with chronic rhinosinusitis without polyps--CRS (n = 23, including 14 women and 9 men) and patients with nasal septum deviation--DSN (n = 18, including 9 women and 9 men). The expression level was determined in the polyp tissue and the mucosa of paranasal sinus collected during an FESS. The expression level of studied genes was also evaluated in the material. Immediately after being collected, the tissue fragments were placed in test tubes with 1 ml of RNAlater (Qiagen, Hilden, Germany) preventing the degradation of RNA and frozen at -70 °C. The studies revealed an increased level of POSTN, IL-4 gene expression and a decreased level of COX-2 gene expression that may be associated with the development of chronic rhinosinusitis with nasal polyps. An analysis of the expression level indicates the participation of POSTN and IL-4 in the development of chronic rhinosinusitis with nasal polyps in patients with atopy.

  8. The effects of a cyclooxygenase-2 (COX-2 expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    Directory of Open Access Journals (Sweden)

    Marshall Jean-Claude

    2007-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity.

  9. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Tian, Yue [Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Yang, Yang; Hu, Fengqing; Xie, Xiao; Mei, Ju [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Ding, Fangbao, E-mail: drnail@sina.com [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China)

    2015-05-08

    The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cell proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2. - Highlights: • USP22 interacts with COX-2. • USP22 deubiquitinates and stabilizes COX-2. • USP22 is required for COX-2-mediated upregulation of prostaglandin E2.

  10. Memory B cells from older people express normal levels of cyclooxygenase-2 and produce higher levels of IL-6 and IL-10 upon in vitro activation.

    Science.gov (United States)

    Bancos, Simona; Phipps, Richard P

    2010-01-01

    Worldwide the elderly population is increasing. The elderly show deficiencies in immune function. B lymphocytes are essential elements of the immune system responsible for antibody production. This laboratory previously showed that activated human B cells isolated from young adults express cyclooxygenase-2 (Cox-2) and that Cox-2 is essential for optimal antibody responses. Recent data suggests that Cox-2 expression decreases with age in mouse bone tissue. There is no information regarding Cox-2 expression in B cells from older human subjects. We investigated the expression and activity of Cox-2 in naïve and memory B cells from older people. We show that B cells from older subjects show similar Cox-2 protein expression and activity, antibody production and proliferation compared to younger people. However, we found that activated memory B cells from older people produce higher levels of IL-6 and IL-10 compared to young adults. Therefore, the dysregulated cytokine production could contribute to immune senescence in the elderly.

  11. The cyclooxygenase-2 inhibitor nimesulide, a nonsteroidal analgesic, decreases the effect of radiation therapy in head-and-neck cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Czembirek, Cornelia; Eder-Czembirek, Christina; Turhani, Dritan [Dept. of Cranio-, Maxillofacial and Oral Surgery, Medical Univ. of Vienna (Austria); Erovic, Boban M.; Thurnher, Dietmar [Dept. of Otorhinolaryngology, Head and Neck Surgery, Medical Univ. of Vienna (Austria); Spittler, Andreas [Dept. of Surgery, Research Labs., Medical Univ. of Vienna (Austria); Selzer, Edgar; Poetter, Richard [Dept. of Radiotherapy and Radiobiology and CLEXO (Center of Excellence for Clinical and Experimental Oncology), Medical Univ. of Vienna (Austria)

    2009-05-15

    Background: no data are available on the effects of the cyclooxygenase-2 (COX-2) inhibitor nimesulide in combination with irradiation on the survival of head-and-neck carcinoma cells. Material and methods: two head-and-neck carcinoma cell lines (SCC9 and SCC25) were treated with nimesulide (50-600 {mu}M) and irradiated concomitantly or sequentially. Early effects on cell survival were investigated by counting cell numbers, long-term effects by colony-forming assays. Cell-cycle effects were analyzed 24-72 h after treatment with nimesulide by flow cytometry. Results: unexpectedly, nimesulide solely inhibited cell proliferation without affecting colony-forming ability. In addition, no evidence for a radiosensitizing effect of nimesulide in short-term assays was seen. Nimesulide alone had no effect on clonogenic survival alone or in combination with radiation. Conclusion: nimesulide differentially affects cell proliferation and clonogenic survival and may decrease the efficacy of radiotherapy. Short-term assays to assess tumor growth may not correctly predict the clinically relevant long-term effect of COX-2 inhibitors. (orig.)

  12. Single subject pharmacological-MRI (phMRI study: Modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor

    Directory of Open Access Journals (Sweden)

    Chialvo DR

    2005-11-01

    Full Text Available Abstract We use fMRI to examine brain activity for pain elicited by palpating joints in a single patient suffering from psoriatic arthritis. Changes in these responses are documented when the patient ingested a single dose of a selective cyclooxygenase-2 inhibitor (COX-2i. We show that mechanical stimulation of the painful joints exhibited a cortical activity pattern similar to that reported for acute pain, with activity primarily localized to the thalamus, insular, primary and secondary somatosensory cortices and the mid anterior cingulum. COX-2i resulted in significant decreased in reported pain intensity and in brain activity after 1 hour of administration. The anterior insula and SII correlated with pain intensity, however no central activation site for the drug was detected. We demonstrate the similarity of the activation pattern for palpating painful joints to brain activity in normal subjects in response to thermal painful stimuli, by performing a spatial conjunction analysis between these maps, where overlap is observed in the insula, thalamus, secondary somatosensory cortex, and anterior cingulate. The results demonstrate that one can study effects of pharmacological manipulations in a single subject where the brain activity for a clinical condition is delineated and its modulation by COX-2i demonstrated. This approach may have diagnostic and prognostic utility.

  13. Expression of Cyclooxygenase-2 mRNA and Identification of Its Splice Variant in Human Myometrium Obtained from Women in Labor

    Institute of Scientific and Technical Information of China (English)

    HUANG Yinping; WAN Jingyuan; YE Duyun; WU Ping; HUANG Yanjun; ZHANG Li; ZHOU Xiaoyan; HUANG Yunfeng; YUAN Ping; ZHANG Daijuan

    2005-01-01

    In order to investigate the expression of cyclooxygenase-2 (COX-2) in human lower segments of myometrium obtained from women in labor and those not in labor and identify the splicing variant of COX-2, reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the expression of COX-2. The primers were designed and synthesized according to the sequence of rat COX-2 splice variant which was discovered firstly by us. Then the splicing variant of COX-2 in human myometrium from woman in labor was identified, cloned into vector and sequenced. The results showed that the expression of COX-2 mRNA was lower in human myometrium obtained from women who were not in labor than that in labor women and a new band of COX-2 was obtained in myometrium from labor woman. The fragment included an unspliced intron, which pitched between exons 7 and 8. It was suggested that COX-2 gene was not only expressed highly in human myometrium from woman in labor, but also produced splicing variant by alternative splicing.

  14. Progress of Cyclooxygenase-2 Expression in Tumors and Its Inhibitors Application in Anti-tumor%环氧合酶-2在肿瘤中的表达及其抑制剂在肿瘤中的应用进展

    Institute of Scientific and Technical Information of China (English)

    李巨仕; 汤恢焕

    2011-01-01

    环氧合酶-2(Cyclooxygenase-2,COX-2)是前列腺素合成过程中一重要的限速酶,COX-2的过度表达及其前列腺素产物与多种肿瘤的发生、发展关系密切,COX-2抑制剂通过抑制肿瘤细胞增殖,诱导肿瘤细胞凋亡,阻断致癌物的代谢,减弱肿瘤介导的免疫抑制,调节抑制血管生成,抑制肿瘤细胞侵袭,环氧合酶非依赖抑癌途径,对原癌基因及抑癌基因的影响等途径影响肿瘤的发生发展,这方面的研究为针对COX-2的抗肿瘤策略打开新的视野,提供新的线索.%Cyclooxygenase-2 (COX-2) is the process of prostaglandin synthesis is an important rate-limiting enzyme, COX-2 over-expression of prostaglandin products with a variety of tumors, the development of close.COX-2 inhibiting tumor cell added induce tumor cell apoptosis,blocking the metabolism of carcinogens, decreased tumor-mediated immunosuppression, inhibition of angiogenesis regulation, inhibition of tumor cell invasion, cyclooxygenase-independent tumor suppressor pathway, and suppression of oncogene the impact of cancer genes affect the tumor development pathway, esearch in this area is for COX-2 anti-tumor strategy to open new horizons and provide new clues.

  15. Ureteral Access Sheath Influence on the Ureteral Wall Evaluated by Cyclooxygenase-2 and Tumor Necrosis Factor-α in a Porcine Model

    Science.gov (United States)

    Lildal, Søren Kissow; Nørregaard, Rikke; Andreassen, Kim Hovgaard; Christiansen, Frederikke Eichner; Jung, Helene; Pedersen, Malene Roland

    2017-01-01

    Abstract Objective: To examine the effect of ureteral access sheath (UAS) on the expression of the pro-inflammatory mediators cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) in the ureteral wall. Material and Methods: In 22 pigs an UAS was inserted and removed after 2 minutes on one side and 2 hours on the contralateral side. Postoperatively ureters were excised in vivo, and tissue samples from the distal (2 minutes/2 hours) and proximal ureter (2 minutes/2 hours) were snap-frozen before quantitative polymerase chain reaction analysis of COX-2 and TNF-α. Five unmanipulated ureteral units from other pigs served as the control group. Results: Compared to controls COX-2 mRNA was significantly upregulated in all UAS treated ureteral groups. Similarly, TNF-α mRNA was upregulated in all groups except the 2-minute proximal ureteral group. Both COX-2 and TNF-α expression were significantly higher in the distal than in the proximal ureter in the UAS treated ureters. After UAS insertion for 2 minutes, expression levels in the distal ureter were increased 6.5- and 8-fold for COX-2 and TNF-α, respectively; and after 2 hours of UAS placement COX-2 and TNF-α mRNA expression levels were increased 9- and 9.5-fold, respectively. Conclusion: The pro-inflammatory mediators COX-2 and TNF-α were significantly upregulated in the ureteral wall by the influence of UAS. These findings may have implications for postoperative pain, drainage, and complications. PMID:27998175

  16. Cyclooxygenase-2 overexpression is common in serrated and non-serrated colorectal adenoma, but uncommon in hyperplastic polyp and sessile serrated polyp/adenoma

    Directory of Open Access Journals (Sweden)

    Kirkner Gregory J

    2008-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2, PTGS2 plays an important role in colorectal carcinogenesis. COX-2 overexpression in colorectal cancer is inversely associated with microsatellite instability (MSI and the CpG island methylator phenotype (CIMP. Evidence suggests that MSI/CIMP+ colorectal cancer may arise through the serrated tumorigenic pathway through various forms of serrated neoplasias. Therefore, we hypothesized that COX-2 may play a less important role in the serrated pathway. Methods By immunohistochemistry, we assessed COX-2 expression in 24 hyperplastic polyps, 7 sessile serrated polyp/adenomas (SSA, 5 mixed polyps with SSA and adenoma, 27 traditional serrated adenomas, 515 non-serrated adenomas (tubular adenoma, tubulovillous adenoma and villous adenoma, 33 adenomas with intramucosal carcinomas, 96 adenocarcinomas with serration (corkscrew gland and 111 adenocarcinomas without serration. Results Strong (2+ COX-2 overexpression was more common in non-serrated adenomas (28% = 143/515 than in hyperplastic polyps (4.2% = 1/24, p = 0.008 and serrated polyps (7 SSAs and 5 mixed polyps (0% = 0/12, p = 0.04. Furthermore, any (1+/2+ COX-2 overexpression was more frequent in non-serrated adenomas (60% = 307/515 than in hyperplastic polyps (13% = 3/24, p Conclusion COX-2 overexpression is infrequent in hyperplastic polyp, SSA and mixed polyp with SSA and adenoma, compared to non-serrated and serrated adenoma. COX-2 overexpression becomes more frequent as tumors progress to higher grade neoplasias. Our observations suggest that COX-2 may play a less significant role in the serrated pathway of tumorigenesis; however, COX-2 may still play a role in later stage of the serrated pathway.

  17. Cyclooxygenase-2 and human epidermal growth factor receptor type 2 (HER-2 expression simultaneously in invasive and in situ breast ductal carcinoma

    Directory of Open Access Journals (Sweden)

    Adrienne Pratti Lucarelli

    Full Text Available CONTEXT AND OBJECTIVE: Cyclooxygenase-2 (COX-2 and human epidermal growth factor receptor type 2 (HER-2 are associated with tumorigenesis. Studies have shown that HER-2 can regulate COX-2 expression. The aim of this study was to eval