WorldWideScience

Sample records for 3t3-l1 preadipocytes effect

  1. The effects of Ganoderma lucidum herba pharmacopuncture on 3T3-L1 preadipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Chea-woo Lee

    2008-09-01

    Full Text Available Objective : The purpose of this study is to investigate the effects of Ganoderma lucidum herba pharmacopuncture (GHP on the adipogenesis in 3T3-L1 preadipocytes. Methods : 3T3- L1 preadipocytes were differentiated with adipogenic reagents by incubating for 2 days in the absence or presence of GHP ranging from 1 and 2%. The effect of GHP on cell proliferation of 3T3-L1 preadipocytes was investigated using MTT assay. The effect of GHP on adipogenesis was examined by Oil red O staining and measuring glycerol-3-phosphate dehydrogenase (GPDH and intracellular triglyceride (TG content. Results : Following results were obtained from the preadipocyte proliferation and adipocyte differentiation of 3T3-L1. We observed no effect of GHP on preadipocyte proliferation. GHP inhibited adipogenesis, the activity of GPDH and accumulation of intracellular TG content. Conclusions : These results suggest that GHP inhibit differentiation of preadipocyte.

  2. Effects of Ghrelin on the Proliferation and Differentiation of 3T3-L1 Preadipocytes

    Institute of Scientific and Technical Information of China (English)

    Jing LIU; Hanhua LIN; Peixuan CHENG; Xiufen HU; Huiling LU

    2009-01-01

    The effects of ghrelin on the proliferation and differentiation of 3T3-L1 preadipocytes and the possible mechanisms were investigated in this study.3T3-L1 preadipocytes were cultured in vitro and treated with different concentrations of ghrelin.Proliferation of 3T3-L1 preadipocytes was evaluated by MTT method and mRNA levels of c-myc and thymidine kinase were detected by RT-PCR.Morphological changes of 3T3-L1 preadipocytes were observed and cell differentiation was measured by oil red O staining.The mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and CAAT/enhancer binding protein (C/EBPα) in the cells at different differentiation stages were detected by RT-PCR.The results showed that ghrelin at concentrations of 10-7 to 10-15 mol/L could significantly promote preadipocyte proliferation (P<0.05),with the most pronounced effect observed at 1011mol/L (P<0.01).Treatment of 3T3-L1 preadipocytes with ghrelin significantly in-creased the mRNA levels of c-myc and thymidine kinase (P<0.01).Morphological findings demonstrated that the great amount of lipid droplets appeared in the 3T3-L1 preadipocytes treated with ghrelin.Ghrelin could morphologically induce the differentiation of 3T3-L1 preadipocytes into mature adipocytes.Ghrelin significantly increased the mRNA levels of PPART and C/EBPα during the differentiation,when compared with control group (P<0.05).The mRNA levels of PPARγ and C/EBPα were obviously up-regulated with the differentiation of preadipocytes after the treatment of ghrelin.There were significant difference in the mRNA levels of PPARγ and C/EBPα on day 2 and day 8 of the differentiation of 3T3-L1 preadipocytes (P<0.01).In conclusion,ghrelin could promote the proliferation and differentiation of 3T3-L1 preadipocytes by increasing the mRNA levels of PPARγ and C/EBPα and therefore enhance the sensitivity of adipocytes against insulin.

  3. The Differentiation-and Proliferation-Inhibitory Effects of Sporamin from Sweet Potato in 3T3-L1 Preadipocytes

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhi-dong; LI Peng-gao; MU Tai-hua

    2009-01-01

    The aim of this study was to investigate the effect of different concentrations of sporamin on the differentiation and proliferation of 3T3-L1 preadipocytes,providing the theoretical basis for the development of food to treat obesity and diabetes.The isolation and purification of sporamin from sweet potato species 55-2 were performed by ammonium sulphate precipitation in combination with ion-exchange and gel filtration chromatography.With berberine as a positive control,different concentrations of sporamin (0.000,0.125,0.025,0.250,0.500,and 1.000 mg mL-1) were used to treat 3T3-L1 preadipocytes.Intracellular fat accumulation and the degree of adipogenesis were quantified using Oil Red O staining and colorimetry.Preadipocytes differentiation was measured by 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT)spectrophotometric assay.Two sporamin proteins,which were separated into sporamin A (31 kD) and sporamin B (22 kD),could be purified by ion-exchange and gel filtration chromatography.After being treated by different concentrations of sporamin,the differentiation of 3T3-L1 preadipocytes was significantly inhibited,compared with the positive control.When the sporamin solution concentration was 0.500 mg mL-1,the accumulation of lipid droplets within the cells was significantly decreased and the optical density (OD) value of the solution from destained Oil Red O reached to 0.35,which was the lowest value (P < 0.05).The proliferation of 3T3-L1 preadipocytes was significantly inhibited by treating at higher sporamin concentrations.In addition,the inhibitory effect was more obvious with the prolonged treatment time (P< 0.05).The differentiation and proliferation of 3T3-L1 preadipocytes could be inhibited significantly by the addition of higher concentration sporamin.It was,therefore,suggested that the sporamin was potentially effective for weight loss.

  4. Differential effects of eicosapentaenoic acid and docosahexaenoic acid in promoting the differentiation of 3T3-L1 preadipocytes.

    Science.gov (United States)

    Murali, Ganesan; Desouza, Cyrus V; Clevenger, Michelle E; Ramalingam, Ramesh; Saraswathi, Viswanathan

    2014-01-01

    The objective of this study was to determine the effects of enrichment with n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the differentiation of 3T3-L1 preadipocytes. Enrichment with DHA but not EPA significantly increased the differentiation markers compared to control differentiated cells. DHA compared to EPA treatment led to a greater increase in adiponectin secretion and, conditioned media collected from DHA treated cells inhibited monocyte migration. Moreover, DHA treatment resulted in inhibition of pro-inflammatory signaling pathways. DHA treated cells predominantly accumulated DHA in phospholipids whereas EPA treatment led to accumulation of both EPA and its elongation product docosapentaenoic acid (DPA), an n-3 fatty acid. Of note, adding DPA to DHA inhibited DHA-induced differentiation. The differential effects of EPA and DHA on preadipocyte differentiation may be due, in part, to differences in their intracellular modification which could impact the type of n-3 fatty acids incorporated into the cells.

  5. Verapamil inhibits 3T3-L1 preadipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    Nan Gu; Shi Liu; Xirong Guo; Li Fei; Xiaoqin Pan; Mei Guo; Ronghua Chen

    2009-01-01

    Objective: To investigate the effect of the calcium channel blocker verapamil on adipocyte differentiation and its mechanism of action. Methods: Preadipocytes from 3T3-L1 strain mouse embryos were cultured and differentiated into matured adipocytes in vitro. Verapamil was added to the culture medium in the concentration of 30 μmol/L on Day 0. Cell differentiation was determined by Oil Red O staining and marker gene mRNA expression was evaluated and compared by RT-PCR. The fluo-3/AM probe and laser scanning confocal microscopy were used to measure intracellular calcium concentrations. Results: ①The differentiation rate of 3T3-L1 preadipocytes exposed to verapamil was lower than that of untreated cells. ②Verapamil promoted the retention of pref-1 gene expression. Lipoprotein lipase expression in the verapamil group was significantly lower than that in the control group on Day 4, Day 6 and Day 8 (P 0.05). Conclusion: In 3T3-L1 preadipocytes verapamil significantly reduced adipocyte differentiation, down-regulated the mRNA expression of three marker genes for adipocytes differentiation, and prolonged the mRNA expression of an inhibitor of differentiation. The inhibitory effect of verapamil on differentiation may involve its role as a blocker of calcium influx in adipocytes.

  6. The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes.

    Science.gov (United States)

    Pavlikova, Nela; Weiszenstein, Martin; Pala, Jan; Halada, Petr; Seda, Ondrej; Elkalaf, Moustafa; Trnka, Jan; Kovar, Jan; Polak, Jan

    2015-12-01

    Experiments using cultured primary cells or cell lines are a routine in vitro approach used across multiple biological disciplines, However, the structural and functional influences of various cultureware materials on cultured cells is not clearly understood. Surface treatments of cultureware have proven to have profound effects on cell viability and proliferation. In this study, we investigated the impact of polystyrene and fluorocarbon cultureware dishes on the proteomic profile of differentiated 3T3-L1 preadipocytes. After expansion and differentiation of cells on appropriate cultureware dishes, cell lysates were separated using two-dimensional gel electrophoresis and proteins were visualized with Coomassie blue staining. Spots with the highest differential expression between the two culture conditions were subsequently analyzed using matrix-assisted laser desorption/ionization mass spectrometry and the identified proteins were subjected to pathway analysis. We observed that 43% of all spots were differentially expressed depending on the cultureware. Pathway analysis revealed that glucose metabolism, mitochondrial structure and cell differentiation, represented by 14-3-3 protein-mediated signaling and the mitochondrial inner membrane organizing system (MINOS), were significantly affected by cultureware material. These results indicate that cultureware material can have a profound effect on key adipocyte functional pathways. These effects modifications of the cells should be reflected in the design of in vitro experiments and interpretation of their results.

  7. Inhibitory Effects of Purple Sweet Potato Leaf Extract on the Proliferation and Lipogenesis of the 3T3-L1 Preadipocytes.

    Science.gov (United States)

    Lee, Shou-Lun; Lee, Hsien-Kuang; Chin, Ting-Yu; Tu, Ssu-Chieh; Kuo, Ming-Hsun; Kao, Ming-Ching; Wu, Yang-Chang

    2015-01-01

    Purple sweet potato leaves (PSPLs) are healthy vegetable that is rich in anti-oxidants. A solution of boiling water extract of PSPL (PSPLE) is believed to be able to prevent obesity and metabolic syndrome in the countryside of Taiwan, but its efficacy has not yet been verified. The purpose of this study was to investigate the possible anti-adipogenesis effect of PSPLE in vitro. PSPLE was used to treat the 3T3-L1 cells, and the effects on cell proliferation and adipogenesis were investigated. The results showed that PSPLE caused a dose-dependent decrease in the cell proliferation of 3T3-L1 preadipocytes, but did not alter the cell viability. In addition, PSPLE induced ERK inactivation in the 3T3-L1 preadipocytes. Furthermore, pre-treatment of confluent 3T3-L1 cells with PSPLE led to reduced lipid accumulation in differentiated 3T3-L1 cells. The inhibition of lipogenesis could result from the PSPLE-induced down-regulation of the expression of the C/EBPα and SREBP-1 transcription factors during 3T3-L1 adipocyte differentiation. These results suggest that PSPLE not only inhibits cell proliferation at an early stage but also inhibits adipogenesis at a later stage of the differentiation program. PMID:26205968

  8. Effects of aqueous extracts of raw pu-erh tea and ripened pu-erh tea on proliferation and differentiation of 3T3-L1 preadipocytes.

    Science.gov (United States)

    Cao, Zhen-Hui; Yang, Hui; He, Zhan-Long; Luo, Cheng; Xu, Zhi-Qiang; Gu, Da-Hai; Jia, Jun-Jing; Ge, Chang-Rong; Lin, Qiu-Ye

    2013-08-01

    Pu-erh tea has shown anti-obesity effects but little is known about its effect on proliferation and differentiation of preadipocytes. This study investigated the effects of the aqueous extracts of raw pu-erh tea and ripened pu-erh tea on proliferation and differentiation of murine 3T3-L1 preadiopocytes. We examined dose and time effects of both aqueous extracts on proliferation of 3T3-L1 preadipocytes. The contents of triglycerides in cytoplasm and the mRNA expression of critical transcriptional factors involved in differentiation were determined. Cytotoxicity and apoptosis rate of preadipocytes by pu-erh tea extracts treatment were test for toxic and pro-apoptotic effects. Both aqueous extracts of pu-erh tea inhibited the proliferation of 3T3-L1 preadipocytes at the selected time points. At lower concentration of raw pu-erh tea extracts (less than 300 µg/ml) and ripened pu-erh tea extracts (less than 350 µg/ml), no significant cytotoxic and pro-apoptotic were observed. Ripened pu-erh tea was more effective with lower IC50 than raw pu-erh tea. Both extracts suppressed the differentiation and down-regulated the gene expression of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer binding proteins-α. Therefore, these results indicate that both aqueous extracts of pu-erh tea can inhibit proliferation and differentiation with ripened pu-erh tea more potent. Polyphenol rich in both extracts may play a role in the inhibition of proliferation and differentiation of 3T3-L1 preadipocytes.

  9. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Peng-Yeh [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Tsai, Chong-Bin [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC (China); Tseng, Min-Jen, E-mail: biomjt@ccu.edu.tw [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China)

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  10. Effect of Ichnocarpus frutescens (L.) R.Br. hexane extract on preadipocytes viability and lipid accumulation in 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    M Saravanan; S Ignacimuthu

    2013-01-01

    Objective: To investigate the crude extracts of Ichnocarpus frutescens (I. frutescens) for antiobesity effect. Methods: Leaves of I. frutescens were sequentially extracted with hexane, ethyl acetate, and methanol and their effect on viability of 3T3-L1 preadipocytes were evaluated. Based on this the apoptosis on preadipocytes was confirmed by DNA fragmentation and LDH (Lactate dehydrogenase) leakage assays. Anti-adipogenesis was performed by oil red O (ORO) staining and free glycerol release in the medium of differentiated adipocytes. Results: The hexane extract of I. frutescens (IFHE) inhibited cell viability in a time- and dose-related manner. An increased release of LDH, as a marker of membrane integrity, was observed at a dose of 200 μg/mL. The discontinuous DNA fragments on agarose gel electrophoresis showed the apoptotic effect of the IFHE. Morphological observations of cells stained with ORO showed a decrease in cellular lipid content at the concentrations tested compared to the induced control cells. In the experiment of lipolytic activity, treatment with IFHE enhanced glycerol secretion with the rates of approximately 28%, 55%, and 46% at the concentrations of 100, 200 and 300 μg/mL, respectively. Conclusions:The observed properties clearly revealed the medicinal property of I. frutescens in the treatment of obesity.

  11. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    Directory of Open Access Journals (Sweden)

    Martin Weiszenstein

    Full Text Available Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2 on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated. Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.

  12. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware

    Science.gov (United States)

    Weiszenstein, Martin; Pavlikova, Nela; Elkalaf, Moustafa; Halada, Petr; Seda, Ondrej; Trnka, Jan; Kovar, Jan; Polak, Jan

    2016-01-01

    Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2) on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated). Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux. PMID:27023342

  13. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    Science.gov (United States)

    Weiszenstein, Martin; Pavlikova, Nela; Elkalaf, Moustafa; Halada, Petr; Seda, Ondrej; Trnka, Jan; Kovar, Jan; Polak, Jan

    2016-01-01

    Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2) on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated). Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.

  14. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3.

    Science.gov (United States)

    Jang, Byeong-Churl

    2016-08-01

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrine also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. PMID:27246736

  15. 11 beta-hydroxysteroid dehydrogenase type 1 promotes differentiation of 3T3-L1 preadipocyte

    Institute of Scientific and Technical Information of China (English)

    Yun LIU; Yan SUN; Ting ZHU; Yu XIE; Jing YU; Wen-lan SUN; Guo-xian DING; Gang HU

    2007-01-01

    Aim: To investigate the relationship between 11 beta-hydroxysteroid dehydroge-nase type 1 (1 lbeta-HSD1), a potential link between obesity and type 2 diabetes,and preadipocyte differentiation. Methods: Mouse 11beta-HSD1 siRNA plasmids were transfected into 3T3-L1 preadipocytes (a cell line derived from mouse Swiss3T3 cells that were isolated from mouse embryo), for examination of the effect of targeted 11 beta-HSD1 inhibition on differentiation of 3T3-L1 cells. Dif-ferentiation was stimulated with 3-isobutyl-1-methyxanthine, insulin, and dexamethasone. The transcription level of the genes was detected by real-time PCR. Results: Lipid accumulation was significantly inhibited in cells transfected with mouse 11beta-HSD1 siRNA compared with non-transfected 3T3-L1 cells.Fewer lipid droplets were detected in the transfected cells both prior to stimulation and after stimulation with differentiation-inducing reagents. The expression of adipocyte differentiation-associated markers such as lipoprotein lipase and fatty acid synthetase were downregulated in the transfected cells. Similarly, the expres-sion of preadipocyte factor-1, an inhibitor of adipocyte differentiation, was downregulated upon stimulation of differentiation and had no changes in the transfected cells. Conclusion: 11 beta-HSD1 can promote preadipocyte differentiation. Based on this, we propose that 11 beta-HSD1 may be an important candidate mediator of obesity and obesity-induced insulin resistance.

  16. A resistin binding peptide selected by phage display inhibits 3T3-L1 preadipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Resistin, a newly discovered cysteine-rich hormone secreted mainly by adipose tissues, has been proposed to form a biochemical link between obesity and type 2 diabetes. However, the resistin receptor has not yet been identified. This study aimed to identify resistin binding proteins/receptor.Methods Three cDNA fragments with the same 11 bp 5' sequence were found by screening a cDNA phage display library of rat multiple tissues. As the reading frames of the same 11 bp 5' sequence were interrupted by a TGA stop codon, plaque lift assay was consequently used to prove the readthrough phenomenon. The stop codon in the same 11 bp 5' sequence was replaced by tryptophan, and the binding activity of the coded peptide [AWIL, which was designated as resistin binding peptide (RBP)] with resistin was identified by the confocal microscopy technique and the affinity chromatography experiment. pDual GC-resistin and pDual GC-resistin binding peptide were co-transfected into 3T3-L1 cells to confirm the function of resistin binding peptide.Results Three cDNA fragments with the same 11 bp 5' sequence were found. The TGA stop codon in reading frames of the same 11 bp 5' sequence was proved to be readthroughed. The binding activity of RBP with resistin was consequently identified. The expression of the resistin binding peptide in 3T3-L1 preadipocytes expressing pDual GC-resistin significantly inhibited the adipogenic differentiation.Conclusion RBP could effectively rescue the promoted differentiation of resistin overxepressed 3T3-L1 preadipocyte.

  17. (+)-Episesamin inhibits adipogenesis and exerts anti-inflammatory effects in 3T3-L1 (pre)adipocytes by sustained Wnt signaling, down-regulation of PPARγ and induction of iNOS.

    Science.gov (United States)

    Freise, Christian; Trowitzsch-Kienast, Wolfram; Erben, Ulrike; Seehofer, Daniel; Kim, Ki Young; Zeitz, Martin; Ruehl, Martin; Somasundaram, Rajan

    2013-03-01

    Obesity and its associated health risks still demand for effective therapeutic strategies. Drugs and compositions derived from Oriental medicine such as green tea polyphenols attract growing attention. Previously, an extract from the Japanese spice bush Lindera obtusiloba (L. obtusiloba) traditionally used for treatment of inflammation and prevention of liver damage was shown to inhibit adipogenesis. Aiming for the active principle of this extract (+)-episesamin was identified, isolated and applied in adipogenic research using 3T3-L1 (pre)adipocytes, an established cell line for studying adipogenesis. With an IC50 of 10μM (+)-episesamin effectively reduced the growth of 3T3-L1 preadipocytes and decreased hormone-induced 3T3-L1 differentiation as shown by reduced accumulation of intracellular lipid droplets and diminished protein expression of GLUT-4 and vascular endothelial growth factor. Mechanistically, the presence of (+)-episesamin during hormone-induced differentiation provoked a reduced phosphorylation of ERK1/2 and β-catenin along with a reduced protein expression of peroxisome proliferator-activated receptor γ and a strongly increased protein expression of iNOS. Treatment of mature adipocytes with (+)-episesamin resulted in a reduction of intracellular stored lipid droplets and induced the proapoptotic enzymes caspases-3/-7. Besides interfering with adipogenesis, (+)-episesamin showed anti-inflammatory activity by counteracting the lipopolysaccharide- and tumor necrosis factor α-induced secretion of interleukin 6 by 3T3-L1 preadipocytes. In conclusion, (+)-episesamin seems to be the active drug in the L. obtusiloba extract being responsible for the inhibition of adipogenesis and, thus, should be evaluated as a novel potential complementary treatment for obesity. PMID:22818712

  18. Effects of Different Species Bovine Sera on Proliferation and Differentiation in 3T3L1 Preadipocyte%不同品种牛血清对3T3L1前脂肪细胞增殖与分化的影响

    Institute of Scientific and Technical Information of China (English)

    冯丽萍; 宋忠峰; 施琼; 李文波; 罗晓瑜; 曹兵海

    2011-01-01

    研究不同品种牛血清对3T3-L1细胞增殖与分化的影响,采用模型细胞体外培养法模拟牛脂肪组织生长环境,为牛大理石纹肉早期选择提供一种可能性的方法.抽取17头秦川牛和28头秦杂牛血清,先制备没灭活和灭活血清组培养细胞,MTT法检测细胞增殖相对数,油红O检测脂肪含量,再用不同品种牛血清培养细胞,检测细胞增殖相对数和脂肪含量,以及用比色法测定三磷酸甘油脱氢酶(GPDH)和脂肪酸合成酶(FAS)活性.结果表明,灭活血清培养细胞的增殖相对数量在分化培养第2和4天与分化脂肪含量在第2、4、6和8天都极显著高于没灭活血清组(P<0.01);秦杂牛血清培养细胞的数量在第2和4天显著高于秦川牛(P<0.05),秦川牛血清培养细胞分化的脂肪含量在第8天显著高于秦杂牛(P<0.05),其他天数没有显著性差异(P>0.05);分化第8天的细胞内GPDH和FAS酶活两牛种间没有显著性差异(P>0.05).结果显示自制血清灭活比没灭活的更利于细胞的培养;牛血清品种是影响前脂肪细胞增殖与分化的因素,秦杂牛血清可能更有利于前脂肪细胞的增殖,而秦川牛血清可能更有利于前脂肪细胞的分化,但仍需进一步研究.%The purpose of this study was to know the effects of different species bovine sera on the proliferation and differentiation of 3T3-L1 preadipocytes. In order to provide the possible method of early selection for marbling, we use cell model in vitro culture to simulate the environment of bovine adipose tissue. Collected the bovine sera of different species from seventeen Qinchuan cattle and twenty-eight Qinchuan- Angus hybrid cattle. One part of sera were heat inactivated. The other were activated. The relatively cell number, which stands for proliferation of 3T3-L1 cells, was assayed by MTT colorimetry. Fat content and enzyme activities,which contain glycerol phosphate dehydrogenase (GPDH) and fatty acid

  19. Effects of Chowiseungcheng-tang Extracts on the Preadipocytes Proliferation in 3T3-L1 cell line, Lipolysis of Adipocytes in rat, and Localized Fat Accumulation by extraction methods

    Directory of Open Access Journals (Sweden)

    Jae-eun, Lee

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Chowiseungcheng-tang extracts on the preadipocytes proliferation in 3T3-L1 cell line, lipolysis of adipocytes in rat’s epididymal adipocytes and localized fat accumulation of porcine by extraction methods(alcohol and water. Methods : Diminish preadipocytes proliferation and promote lipolysis of adipocytes do primary role to reduce obesity. So, we used 3T3-L1 mouse embryo fibroblasts(preadipocytes and rat epididymal adipocytes from Sprague-Dawley rats to investigate the effects of Chowiseungcheng-tang extracts on the preadipocytes proliferation, lipolysis of adipocytes. They were treated with 0.01, 0.1, 1.0㎎/㎖ Chowiseungcheng-tang alcohol and water extracts. And for the purpose of investigating the effects of Chowiseungcheng-tang alcohol and water extracts on the localized fat accumulation, we injected 0.1, 1.0, 10.0㎎/㎖ Chowiseungcheng-tang extracts to porcine fat tissues and observed histological changes of them. Results : Following results were obtained from the preadipocytes proliferation and lipolysis of adipocytes and histological investigation of fat tissues. 1. Chowiseungcheng-tang extracts suppressed preadipocytes proliferation on the high dosage(especially 1.0㎎/㎖, and especially alcohol extracts had better effects. 2. The alcohol extracts of Chowiseungcheng-tang decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH on the concentrations of 0.1, 1.0㎎/㎖. Alcohol extracts had better effects than water extracts. 3. Chowiseungcheng-tang extracts increased lipolysis of adipocytes on the concentrations of 0.1, 1.0㎎/㎖, and especially on the concentration of 1.0㎎/㎖ alcohol extract of Chowiseungcheng-tang had better effect. 4. The water extract of Chowiseungcheng-tang had significant activity to the destruction of porcine fat cell membranes only on the concentration of 10.0㎎/㎖, but alcohol extracts of Chowiseungcheng-tang had it on all

  20. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    Science.gov (United States)

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.

  1. The role of Akt on Arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    Zhi Xin WANG; Chun Sun JIANG; Lei LIU; Xiao Hui WANG; Hai Jing JIN; Qiao WU; Quan CHEN

    2005-01-01

    The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARγ and C/EBPα and disrupting the interaction between PPARγ and RXRα, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARγ. Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.

  2. Suppressive effects of quercetin-3-O-(6″-Feruloyl)-β-D-galactopyranoside on adipogenesis in 3T3-L1 preadipocytes through down-regulation of PPARγ and C/EBPα expression.

    Science.gov (United States)

    Yang, Lei; Li, Xiao-Fan; Gao, Lei; Zhang, Ya-Ou; Cai, Guo-Ping

    2012-03-01

    Obesity is a chronic, costly disease, and flavonoids such as quercetin have been proven to play protective roles against it. This study investigated the suppressive effect of quercetin-3-O-(6″-feruloyl)-β-D-galactopyranoside (QFG) on adipogenesis of 3T3-L1 preadipocytes. Quercetin-3-O-(6″-feruloyl)-β-D-galactopyranoside and quercetin were both extracted from Psidium guajava (Myrtaceae, commonly known as guava) leaves and were evaluated for their suppressive effect on adipogenesis by means of oil red O staining and triglyceride assay. It was shown that QFG inhibited adipogenesis in a dose- and time-dependent manner, and it exerted a stronger effect than did quercetin at the same concentration. Quantitative real-time polymerase chain reaction and western blotting were conducted to further examine the differentiation expression of marker genes and transcriptional factors. Both mRNA and protein expression of the key adipogenic transcriptional factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT (cytidine-cytidine-adenosine-adenosine-thymidine)/enhancer-binding protein alpha (C/EBPα), were inhibited by QFG. Moreover, the mRNA expression patterns of key participants in the Wnt-β-catenin pathway were not altered during the QFG-induced adipogenesis inhibition. These results suggest that QFG effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of PPARγ and C/EBPα and, probably, via a Wnt-β-catenin independent pathway.

  3. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    International Nuclear Information System (INIS)

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT element binding protein α (C/EBPα), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins

  4. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    He, Yonghan [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Li, Ying [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Shuocheng [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Perry, Ben [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Zhao, Tiantian [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4 (Canada); Wang, Yanwen, E-mail: yanwen.wang@nrc.ca [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Sun, Changhao, E-mail: sun2002changhao@yahoo.com [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China)

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  5. Protein kinase A suppresses the differentiation of 3T3-L1 preadipocytes

    Institute of Scientific and Technical Information of China (English)

    Fuqiang Li; Dongmei Wang; Yiran Zhou; Bo Zhou; Yanan Yang; Hehua Chen; Jianguo Song

    2008-01-01

    cAMP and protein kinase A (PKA) are widely known as signaling molecules that are important for the induction of adipogenesis. Here we show that a strong increase in the amount of cAMP inhibits the adipogenesis of 3T3-L1 fibroblast cells. Stimulation of PKA activity suppresses adipogenesis and, in contrast, inhibition of PKA activity markedly accelerates the adipogenic process. As adipogenesis progresses, there is a significant increase in the expression level of PKA regulatory subunits and a corresponding decrease in PKA activity. Moreover, treatment of 3T3-L1 cells with epidermal growth factor (EGF) stimulates PKA activity and blocks adipogenesis. Inhibition of PKA activity abolishes this suppressive effect of EGF on adipogenesis. Moreover, activation of PKA induces serine/threonine phosphorylation, reduces tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) and the association between PKA and IRS-1. Taken together, our study demonstrates that PKA has a pivotal role in the suppression of adipogenesis. cAMP at high concentrations can suppress adipogenesis through PKA activation. These findings could be important and useful for understanding the mechanisms of adipogenesis and the relevant physiological events.

  6. Resveratrol metabolites modify adipokine expression and secretion in 3T3-L1 pre-adipocytes and mature adipocytes.

    Directory of Open Access Journals (Sweden)

    Itziar Eseberri

    Full Text Available OBJECTIVE: Due to the low bioavailability of resveratrol, determining whether its metabolites exert any beneficial effect is an interesting issue. METHODS: 3T3-L1 maturing pre-adipocytes were treated during differentiation with 25 µM of resveratrol or with its metabolites and 3T3-L1 mature adipocytes were treated for 24 hours with 10 µM resveratrol or its metabolites. The gene expression of adiponectin, leptin, visfatin and apelin was assessed by Real Time RT-PCR and their concentration in the incubation medium was quantified by ELISA. RESULTS: Resveratrol reduced mRNA levels of leptin and increased those of adiponectin. It induced the same changes in leptin secretion. Trans-resveratrol-3-O-glucuronide and trans-resveratrol-4'-O-glucuronide increased apelin and visfatin mRNA levels. Trans-resveratrol-3-O-sulfate reduced leptin mRNA levels and increased those of apelin and visfatin. CONCLUSIONS: The present study shows for the first time that resveratrol metabolites have a regulatory effect on adipokine expression and secretion. Since resveratrol has been reported to reduce body-fat accumulation and to improve insulin sensitivity, and considering that these effects are mediated in part by changes in the analyzed adipokines, it may be proposed that resveratrol metabolites play a part in these beneficial effects of resveratrol.

  7. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    Science.gov (United States)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes.

  8. Suppressive Effect of Long-Chain Base from Sea Cucumber Cucumaria frondosa on the Differentiation of 3T3-L1 Preadipocytes and Underlying Mechanism%叶瓜参长链碱抑制3T3-L1前脂肪细胞分化作用机制

    Institute of Scientific and Technical Information of China (English)

    毛磊; 徐慧; 田迎樱; 徐杰; 王玉明; 王静凤; 薛长湖

    2015-01-01

    目的:研究叶瓜参长链碱(long-chain base from the sea cucumber Cucumariafrondosa,Cf-LCB)对3T3-L1前脂肪细胞分化的作用,并探讨其作用机制.方法:以四甲基偶氮唑蓝(methyl thiazolyl tetrazolium,MTT)法检测Cf-LCB对3T3-L1前脂肪细胞增殖活性的影响;采用传统鸡尾酒法诱导3T3-L1前脂肪细胞分化为成熟脂肪细胞,分别采用油红O染色和甘油三酯(triglycerides,TG)含量测定法评价其对3T3-L1前脂肪细胞分化的影响;反转录实时荧光定量聚合酶链式反应(quantity real-time reverse transcript polymerase chain reaction,qRT-PCR)法检测脂肪细胞分化关键基因CCAAT增强子结合蛋白αt (CCAAT/enhancer binding protein alpha,C/EB Pα)、过氧化物酶体增殖物激活受体γ(peroxisome proliferators-activated receptors gamma,PPARγ)以及WNT/β-catenin通路关键基因WNT10b (wingless-type MMTV integration site family members)、卷曲蛋白l(frizzled protein1,FZ1)、低密度脂蛋白受体相关蛋白6 (LDL-receptor-related protein6,LRP6)和β-连环蛋白(β3-catenin)的mRNA表达水平;Western blotting法检测WNT/β-catenin通路关键基因LRP6和β-catenin的蛋白表达量.结果:Cf-LCB能显著抑制3T3-L1前脂肪细胞的增殖;抑制3T3-L1细胞脂滴形成以及C/EBPα和PPARγ mRNA表达;显著上调WNT/β-catenin通路关键基因FZ1、LRP6和β-catenin mRNA表达,对WNT10b的表达无影响;显著促进RP和β--catenin的蛋白表达,提高核内β-catenin含量.结论:Cf-LCB能够显著抑制3T3-L1前脂肪细胞分化,其作用机制与激活WNT/β-catenin通路有关.

  9. Activation of liver X receptors prevents statin-induced death of 3T3-L1 preadipocytes

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus K; Steffensen, Knut R;

    2008-01-01

    The biological functions of liver X receptors (LXRs) alpha and beta have primarily been linked to pathways involved in fatty acid and cholesterol homeostasis. Here we report a novel role of LXR activation in protecting cells from statin-induced death. When 3T3-L1 preadipocytes were induced...... to differentiate by standard isobutylmethylxanthine/dexamethasone/insulin treatment in the presence of statins, they failed to differentiate and underwent massive apoptosis. The simultaneous addition of selective LXR agonists prevented the statin-induced apoptosis. By using mouse embryo fibroblasts from wild...... statin-induced apoptosis; nor did LXR action depend on protein kinase B, whose activation by insulin was impaired in statin-treated cells. Rather, LXR-dependent rescue of statin-induced apoptosis in 3T3-L1 preadipocytes required NF-kappaB activity, since expression of a dominant negative version...

  10. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress.

    Science.gov (United States)

    Baret, Pascal; Septembre-Malaterre, Axelle; Rigoulet, Michel; Lefebvre d'Hellencourt, Christian; Priault, Muriel; Gonthier, Marie-Paule; Devin, Anne

    2013-01-01

    Numerous studies indicate that an increase in reactive oxygen species (ROS) significantly affects white adipose tissue biology and leads to an inflammatory profile and insulin resistance, which could contribute to obesity-associated diabetes and cardiovascular diseases. Mitochondria play a key role in adipose tissue energy metabolism and constitute the main source of cellular ROS such as H(2)O(2). Polyphenols constitute the most abundant antioxidants provided by the human diet. Indeed, they are widely distributed in fruits, vegetables and some plant-derived beverages such as coffee and tea. Thus, the biological effects of dietary polyphenols that may increase the antioxidant capacity of the body against obesity-induced oxidative stress are of high interest. Here, we studied the capacity of polyphenols to modulate the impact of oxidative stress on the mitochondria of preadipocytes, which are important cells governing the adipose tissue development for energy homeostasis. Whereas H(2)O(2) treatment induces a proliferation arrest associated with an increase in mitochondrial content in 3T3-L1 preadipocytes, preconditioning with some major dietary polyphenols totally or partially protects the cells against oxidative stress consequences. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

  11. Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro.

    Science.gov (United States)

    Takahashi, Tomihisa

    2011-04-01

    Runx2, a transcription factor, is essential for osteoblastic differentiation, bone formation, and maintenance. We examined the effect of Runx2 on transdifferentiation of 3T3-L1 preadipocytes into functional, mature osteoblasts. Forced expression of exogenous Runx2 using a retroviral gene-delivery system showed increases of alkaline phosphatase (ALP) activity and expression of the osteoblastic marker genes osteocalcin (OC), bone sialoprotein (BSP), and osterix (Osx), accompanied by low-level matrix mineralization. In contrast, adipocytic differentiation was completely blocked with downregulation of adipogenic transcription factors PPARγ2, C/EBPα, and C/EBPδ. Treatment of dexamethasone (Dex), a synthetic glucocorticoid, stimulated the formation of mineralized nodules in Runx2-overexpressing 3T3-L1 cells with increases of ALP, OC, BSP, and Osx expression. Here, we focused on a dual specific phosphatase, mitogen-activated protein kinase (MKP-1), since Dex significantly increased MKP-1 expression in Runx2-overexpressing 3T3-L1 cells. Forced expression of exogenous MKP-1 resulted in accumulation of robust matrix mineralization in parallel with induction of ALP activity and expression of OC, BSP, and Osx in Runx2-overexpressing 3T3-L1 cells. These results suggest that simultaneous overexpression of Runx2 and MKP-1 is effective for transdifferentiation of preadipocytes into fully differentiated bone-forming osteoblasts and provide a novel strategy for cell-based therapeutic applications requiring significant numbers of osteogenic cells to synthesize mineralized constructs for the treatment of large bone defects.

  12. RKIP phosphorylation-dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3.

    Science.gov (United States)

    Hahm, Jong Ryeal; Ahmed, Mahmoud; Kim, Deok Ryong

    2016-09-01

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-l-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-l-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity.

  13. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes

    OpenAIRE

    Yang, Soo Jin; Park, Na-Young; LIM, YUNSOOK

    2014-01-01

    BACKGROUND/OBJECTIVES Adipogenesis is part of the cell differentiation process in which undifferentiated fibroblasts (pre-adipocytes) become mature adipocytes with the accumulation of lipid droplets and subsequent cell morphological changes. Several transcription factors and food components have been suggested to be involved in adipogenesis. The aim of this study was to determine whether mulberry leaf ethanol extract (MLEE) affects adipogenesis in 3T3-L1 adipocytes. MATERIALS/METHODS The 3T3-...

  14. Evaluation of chylomicron effect on ASP production in 3T3-L1 adipocytes

    Institute of Scientific and Technical Information of China (English)

    Ying Gao; Danny Gauvreau; Wei Cui; Marc Lapointe; Sabina Paglialunga; Katherine Cianflone

    2011-01-01

    In the past few years,there has been increasing interest in the production and physiological role of acylation-stimu-lating protein(ASP),identical to C3adesArg,a product of the alternative complement pathway generated through C3 cleavage.Recent studies in C3(-/-)mice that are ASP deficient have demonstrated a role for ASP in postprandial triglyceride clearance and fat storage.The aim of the present study was to establish a cell model and sensitive ELISA assay for the evaluation of ASP production using 3T3-L1 adipocytes.3T3-L1 preadipocytes were differentiated into adipocytes,then cultured in different media such as serum-free(SF),Dulbecco's modified Eagle's medium(DMEM)/F12+10% fetal calf serum (FBS),and at varying concentrations of chylomicrons and insulin+chylomicrons up to 48 h.ASP production in SF and DMEM/F12+10% FBS was compared.Chylomicrons stimulated ASP production in a concen-tration- and time-dependent manner.By contrast,chylo-micron treatment had no effect on the production of C3,the precursor protein of ASP,which was constant over 48 h.Addition of insulin(100 nM)to a low-dose of chylomicrons(100 μg TG/ml)significantly increased ASP production compared with chylomicrons alone at 48 h(P<0.001).Furthermore,addition of insulin significantly increased C3 secretion at both 18 and 48 h of incubation (P<0.05,P<0.001,respectively).Overall,the proportion of ASP to C3 remained constant,indicating no change in the ratio of C3 cleaved to generate ASP.This study demonstrated that 3T3-L1 adipocyte is a useful model for the evaluation of C3 secretion and ASP production by using a sensitive mouse-specific ELISA assay.The stimulation of ASP production with chylomicrons demonstrates a physiologically relevant response,and provides a strategy for further studies on ASP production and function.

  15. A mutation in signal peptide of rat resistin gene inhibits differentiation of 3T3-L1 preadipocytes

    Institute of Scientific and Technical Information of China (English)

    Xi-rong GUO; Hai-xia GONG; Yan-qin GAO; Li FEI; Yu-hui NI; Rong-hua CHEN

    2004-01-01

    AIM: To detect the resistin expression of white adipose tissue in diet-induced obese (DIO) versus diet-resistant (DR) rats, and to investigate the relationship of mutated resistin and 3T3-L1 preadipocytes differentiation. METHODS:RT-PCR and Western Blot were used to detect gene/protein expression. 3T3-L1 cells were cultured, transfected,and induced to differentiation using 0.5 mmol/L 3-isobutyl-1-methyxanthine (MIX), 1 mg/L insulin, and 1μmol/Ldexamethasone. Oil red O staining was applied to detect the degree of preadipocytes differentiation. RESULTS:Expression of resistin mRNA was upregulated in DIO rats and downregulated in DR rats. However, the expression levels varied greatly within the groups. Sequencing of the resistin genes from DIO and DR rats revealed a Leu9Val (C25G) missense mutation within the signal peptide in one DR rat. The mutant resistin inhibited preadipocyte differentiation. Local experiments and Western blotting with tagged resistin fusion proteins identified both mutant and wild type proteins in the cytoplasm and secreted into the culture medium. Computer predictions using the Proscan and Subloc programs revealed four putative phosphorylation sites and a possible leucine zipper motif within the rat resistin protein. CONCLUSION: Resistin-increased differentiation may be inhibited by the mutationcontaining precursor protein, or by the mutant non-secretory resistin isoform.

  16. Specific Labeling of Mouse 3T3-L1 Preadipocyte Cell Line with Green Fluorescent Protein%小鼠3T3-L1前脂肪细胞系的特异性标记

    Institute of Scientific and Technical Information of China (English)

    张崇本; 张晓兰; 李成健; 成俊英; 吴显荣

    2004-01-01

    A vector of paP2-promoter-EGFP was constructed and introduced into mouse 3T3-L1 preadipocyte cells, a cell line derived from mouse Swiss3T3 cells that were isolated from mouse embryo, to make the cells labelled with enhanced green fluorescent protein (EGFP) whose expression was controlled by the promoter of adipose-specific gene aP2. The cells were then induced to differentiate and the expression of aP2 was detected by EGFP-microscopy and RT-PCR assays. The EGFP gene was transferred into the mouse 3T3-L1 preadipocyte cells, and EGFP expression and lipid accumulation were observed during differentiation. The expression of aP2 was stable and similar to the expression of EGFP. A preadipocyte cell line expressing EGFP was obtained under the control of the promoter of adipocyte-specific expression gene aP2, and the preadipocyte cell line was specifically labelled. The cell line provides a powerful approach for the research of adipocyte differentiation and for the screening of anti-obesity and anti-diabetes drugs.%用增强绿色荧光蛋白特异性标记小鼠3T3-L1前脂肪细胞系.构建pap2-promoter-EGFP载体,电穿孔转染小鼠3T3-L1前脂肪细胞,显微荧光观察和RT-PCR确认aP2基因的内源表达.EGFP基因转入3T3-L1前脂肪细胞,观察到细胞分化过程中EGFP表达和脂肪积累.RT-PCR分析表明,EGFP代表了稳定而真实的aP2基因的内源性表达.建立了由脂肪组织特异表达基因aP2的表达控制的EGFP标记的小鼠3T3-L1前脂肪细胞系,目前尚未见用同样方法对前脂肪细胞进行特异性标记.该细胞系将为脂肪细胞分化机理研究以及为抗肥胖症和抗糖尿病药物筛选提供有力工具.

  17. Cell Volume Regulation and Signaling in 3T3-L1 Pre-adipocytes and Adipocytes

    DEFF Research Database (Denmark)

    Eduardsen, Kathrine; Larsen, Susanne; Novak, Ivana;

    2011-01-01

    for either RVD or RVI in pre-adipocytes. The insulin receptor (InsR) localizes to caveolae and its expression dramatically increases upon adipocyte differentiation. In pre-adipocytes, InsR and its effectors focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2) localized to focal...... adhesions and were activated by a 5 min exposure to insulin (100 nM). Osmotic shrinkage transiently inhibited InsR Y(146)-phosphorylation, followed by an increase at t=15 min; a similar pattern was seen for ERK1/2 and FAK, in a manner unaffected by cholesterol depletion. In contrast, cell swelling had...... is not required for volume regulation. Given the relationship between hyperosmotic stress and insulin signaling, the finding that cell volume regulation is dramatically altered upon adipocyte differentiation may be relevant for the understanding of insulin resistance and metabolic syndrome....

  18. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes.

    Science.gov (United States)

    Lumbera, Wenchie Marie L; Dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-03-01

    There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat

  19. Epimedium koreanum Nakai and its main constituent icariin suppress lipid accumulation during adipocyte differentiation of 3T3-L1 preadipocytes.

    Science.gov (United States)

    Han, Yunk-Yung; Song, Mi-Young; Hwang, Min-Sub; Hwang, Ji-Hye; Park, Yong-Ki; Jung, Hyo-Won

    2016-09-01

    Obesity is associated with a number of metabolic abnormalities such as type 2 diabetes and has become a major health problem worldwide. In the present study, we investigated the effects of Epimedium koreanum Nakai (Herba Epimedii, HE) and its main constituent icariin on the adipocyte differentiation in 3T3-L1 preadipocytes. HE extract and icariin significantly reduced lipid accumulation and suppressed the expressions of PPARγ, C/EBPα, and SREBP-1c in 3T3-L1 adipocytes. They also inhibited fatty acid synthase (FAS), acyl-Co A synthase (ACS1), and perilipin. Moreover, HE extract and icariin markedly increased the phosphorylation of AMPK. These results indicated that HE extract and icariin can inhibit the adipocyte differentiation through downregulation of the adipogenic transcription factors, suggesting that HE containing icariin may be used as a potential therapeutic agent in the treatment and prevention of obesity. PMID:27667512

  20. Fetuin-a对3T3-L1脂肪细胞增殖和脂解的影响%Effect of Fetuin-a on Proliferation and Lipolysis of 3T3-L1 Adipocytes

    Institute of Scientific and Technical Information of China (English)

    冯娜娜; 王晓青; 陶婷

    2012-01-01

    目的 观察胎球蛋白-a(fetuin-a)对体外培养的3T3-L1脂肪细胞增殖和脂解的影响.方法 体外培养小鼠3T3-L1前脂肪细胞,以MTT法检测3T3-L1前脂肪细胞的增殖状况;采用甘油检测试剂盒测定释放到上清液的甘油含量作为脂解率的指标;采用Western blotting检测细胞内磷酸化激素敏感脂肪酶(hormone sensitive lipase,HSL)和脂肪甘油三酯脂肪酶(adipose triglyceride lipase,ATGL)的蛋白表达.结果 不同浓度的fetuin-a在干预3T3-L1前脂肪细胞后明显促进细胞增殖,且呈剂量依赖性(P<0.05).Fetuin-a能够抑制成熟脂肪细胞的脂肪分解,降低磷酸化的HSL及ATGL蛋白表达,且呈剂量依赖性(P<0.05).结论 Fetuin-a通过促进3T3-L1前脂肪细胞增殖及抑制成熟脂肪细胞的脂解参与肥胖的发生.%Objective To observe the effect of fetuin - a on proliferation and lipolysis of 3T3 - LI adipocytes. Methods 3T3 - LI preadipocytes were cultured and induced in vitro. The proliferation of 3T3 -LI preadipocytes was detected by MTT method. Lipolysis of adipocytes was examined by the measurement of glycerol release. The expressions of protein of phospho - HSL,ATGL were analyzed using western blot. Results The proliferation of 3T3 - LI preadipocytes was stimulated significantly by fetuin -a ( P < 0. 05 ). Fetuin - a inhibited lipolysis in adipocytes in a dose - dependent manner( P < 0. 05 ). Fetuin - a decreased the expressions of phospho - HSL and AT-GL protein (P < 0. 05). Conclusion Our study provides the evidence that fetuin - a might participate in obesity via its influence on the proliferation and lipolysis of adipocytes.

  1. Synergistic interactions of apigenin, naringin, quercetin and emodin on inhibition of 3T3-L1 preadipocyte differentiation and pancreas lipase activity.

    Science.gov (United States)

    Guo, XiaoXuan; Liu, Jia; Cai, ShengBao; Wang, Ou; Ji, BaoPing

    2016-01-01

    The interactions of four natural compounds including apigenin, naringin, emodin and quercetin were investigated on inhibiting 3T3-L1 preadipocyte differentiation and pancreas lipase activity. Oil Red O staining was conducted to visualise and quantify lipid accumulation. The difference between experimental and calculated results was utilised for determining the interaction types. Interestingly, emodin synergistically interacted with the other three compounds, and the combination of emodin and apigenin exhibited the strongest synergistic effect in both differentiation and pancreas lipase assays. Results implied that the combination of apigenin and emodin may be regarded as a promising complementary therapy for management of overweight or obesity. PMID:26314502

  2. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong-Il [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Ko, Hee-Chul [Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Lee, Nam-Ho [Department of Chemistry, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Kim, Se-Jae, E-mail: sjkim@jejunu.ac.kr [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of)

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  3. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis.

    Science.gov (United States)

    Yin, Lei; Yu, Kevin Shengyang; Lu, Kun; Yu, Xiaozhong

    2016-04-01

    Benzyl butyl phthalate (BBP) has been known to induce developmental and reproductive toxicity. However, its association with dysregulation of adipogenesis has been poorly investigated. The present study aimed to examine the effect of BBP on the adipogenesis, and to elucidate the underlying mechanisms using the 3T3-L1 cells. The capacity of BBP to promote adipogenesis was evaluated by multiple staining approaches combined with a High Content Cellomics analysis. The dynamic changes of adipogenic regulatory genes and proteins were examined, and the metabolite profile was identified using GC/MC based metabolomic analysis. The High Content analysis showed BBP in contrast with Bisphenol A (BPA), a known environmental obesogen, increased lipid droplet accumulation in a similar dose-dependent manner. However, the size of the lipid droplets in BBP-treated cells was significantly larger than those in cells treated with BPA. BBP significantly induced mRNA expression of transcriptional factors C/EBPα and PPARγ, their downstream genes, and numerous adipogenic proteins in a dose and time-dependent manner. Furthermore, GC/MC metabolomic analysis revealed that BBP exposure perturbed the metabolic profiles that are associated with glyceroneogenesis and fatty acid synthesis. Altogether, our current study clearly demonstrates that BBP promoted the differentiation of 3T3-L1 through the activation of the adipogenic pathway and metabolic disturbance. PMID:26820058

  4. Effects of homocysteine on adipocyte differentiation and CD36 gene expression in 3T3-L1 adipocytes.

    Science.gov (United States)

    Mentese, Ahmet; Alver, Ahmet; Sumer, Aysegul; Demir, Selim

    2016-03-01

    The aim of this study was to investigate the effects of homocysteine (Hcy), a risk factor for cardiovascular diseases, hypertension, stroke and obesity, on expression of CD36 that regulates uptake of oxidized low-density lipoprotein (Ox-LDL) by adipocytes and differentiation of 3T3-L1 cells to adipocytes. Cell viability was determined using MTT assay, and density of triglycerides were measured with Oil Red O staining. The expression levels of CD36 were analyzed using SYBR green assay by quantitative RT-PCR. Our results showed that the addition of Hcy inhibited differentiation of 3T3-L1 preadipocytes in a dose-dependent manner without a significant cell toxicity (p  0.05) compared to differentiated adipocytes. Hcy reduced adipocyte differentiation, but had no effect on the expression level of CD36 in vitro conditions. The effect of Hcy on uptake and clearance of Ox-LDL by adipose tissue now needs to be investigated in vivo. PMID:26691520

  5. 催产素对3T3-L1脂肪细胞糖脂代谢的影响%Effect of oxytocin on glucose and lipid metabolism of 3T3-L1 adipocytes

    Institute of Scientific and Technical Information of China (English)

    朱天一; 钱唯韵; 汤冰倩; 胡浩; 俞淑琴; 孙文君; 袁国跃

    2014-01-01

    目的:观察催产素对3T3-L1脂肪细胞糖脂代谢的影响。方法3T3-L1前脂肪细胞体外培养,并诱导其分化成熟为脂肪细胞。研究催产素对脂肪细胞葡萄糖消耗量以及三酰甘油、游离脂肪酸和甘油的影响。采用实时荧光定量PCR法检测糖脂代谢相关基因GLUT-1、GLUT-4、ATGT、HSL的mRNA表达。结果与对照组比较,催产素20、50、100μg/mL组葡萄糖消耗量有所增加,且表现出剂量相关。催产素组较对照组的三酰甘油降低,而甘油和游离脂肪酸增高。催产素50μg/mL组中脂代谢相关基因HSL表达明显高于对照组,糖代谢相关基因GLUT-4 mRNA表达水平增加。结论催产素处理可减少3T3-L1细胞脂质合成、增加脂质分解作用,并可明显改善脂质积聚。%Objective To study the effect of oxytocin on glucose and lipid metabolism in 3T3-L1 adipocytes. Methods Preadipocytes from 3T3-L1 cell line were cultured in vitro and induced to differentiate to adipocytes. Mature adipocytes were treated with oxytocin. Glucose consumption, triglyceride, free fat acid, and glycerol levels were determined. The mRNA expression of differentiation marker genes such as GLUT-1, GLUT-4, ATGT, and HSL were evaluated by RT-PCR method. Results The glucose consumption in the oxytocin (20, 50, and 100μg/mL) groups were increased with dose-dependent relationship compared with control group. Triglyceride in the oxytocin group was lower than that in control group, while glycerol and free fatty acid decreased. There was significant increase of expression levels of lipid metabolism related gene HSL and sugar metabolism related gene GLUT-4 mRNA in the oxytocin (50μg/mL) group compared with control group. Conclusion Treatment of oxytocin may reduce 3T3-L1 cell lipid synthesis, increase lipid decomposition, and obviously improve lipid accumulation.

  6. Trans-10,cis-12 conjugated linoleic acid (CLA) interferes with lipid droplet accumulation during 3T3-L1 preadipocyte differentiation.

    Science.gov (United States)

    Yeganeh, Azadeh; Taylor, Carla G; Tworek, Leslee; Poole, Jenna; Zahradka, Peter

    2016-07-01

    In this study, we hypothesize that the biologically active isomers of conjugated linoleic acid (CLA), cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA, have different effects on early and late stages 3T3-L1 preadipocyte differentiation. Both c9-t11 and t10-c12CLA stimulated early stage pre-adipocyte differentiation (day 2), while t10-c12CLA inhibited late differentiation (day 8) as determined by lipid droplet numbers and both perilipin-1 levels and phosphorylation state. At day 8, the adipokines adiponectin, chemerin and adipsin were all reduced in t10-c12CLA treated cells versus control cells. Immunofluorescence microscopy showed perilipin-1 was present solely on lipid droplets on day 8 in t10-c12 treated 3T3-L1 cells, whereas preilipin-1 was also located in the perinuclear region in control and c9-t11 treated cells. The t10-c12CLA isomer also decreased levels of hormone-sensitive lipase and inhibited lipolysis. These findings indicate that the decrease in lipid droplets caused by t10-c12CLA is the result of an inhibition of lipid droplet production during adipogenesis rather than a stimulation of lipolysis. Additionally, treatment with Gö6976 blocked the effect of t10-c12CLA on perilipin-1 phosphorylation, implicating PKCα in perilipin-1 phosphorylation, and thus a regulator of triglyceride catabolism. These data are supported by evidence that t10-c12CLA activated PKCα. These are the first data to show that CLA isomers can affect lipid droplet dynamics in adipocytes through PKCα. PMID:27131602

  7. Potassium channel tetramerisation domain containing 15 regulates preadipocyte differentiation%KCTD15基因调控3T3-L1脂肪前体细胞分化的研究

    Institute of Scientific and Technical Information of China (English)

    徐景; 赵旭; 杨莹; 徐梓辉

    2013-01-01

    Objective To study the effect of potassium channel tetramerisation domain containing 15 (KCTD15) gene on preadipocyte differentiation.Methods The expression of KCTD15 gene during 3T3-L1 preadipocyte differentiation was detected by semi-quantitative reverse transcriptase PCR.After transferring KCTD15 siRNA into the preadipocytes,the cell morphology was observed during preadipocyte differentiation by oil red O staining,and the level of triglyceride was examined by assay kit.The expression of adipogenesis genes,peroxisome proliferator-activated receptor (PPAR) γ,CCAAT/enhancer-binding protein (C/EBP) α,C/EBPβ and C/EBPδ was detected by semi-quantitative reverse transcriptase PCR.Results The expression of KCTD15 gene was decreased during 3T3-L1 cell differentiation.KCTD15 gene knockdown inhibited the differentiation and lipid accumulation of 3T3-L1 cells,and there was no significant change in the expression of PPARγ,C/EBPα,C/EBPβ and C/EBPδ.Conclusion KCTD15 gene deficiency leads to the inhibition of 3T3-L1 preadipocyte differentiation at early stage.%目的 探讨含钾通道四聚化结构域15(KCTD15)基因在3T3-L1脂肪前体细胞分化过程中的作用.方法 ①采用半定量逆转录PCR检测在3T3-L1脂肪前体细胞分化过程中KCTD15 mRNA表达变化.②在3T3-L1脂肪前体细胞增殖早期通过RNA干扰技术靶向敲低KCTD15基因的表达,在靶向敲低KCTD15基因后的转染KCTD15 siRNA 48 h后通过半定量逆转录PCR验证KCTD15基因的敲低效果.用油红O染色法观察KCTD15敲低后3T3-L1细胞第0天和第10天的细胞形态学改变.③采用半定量逆转录PCR检测KCTD15基因敲低后PPARγ、C/EBPα、C/EBPβ、C/EBPδ成脂基因的变化.结果 在3T3-L1脂肪前体细胞分化过程中,KCTD15 mRNA表达水平逐渐降低(P<0.05);KCTD15敲低能显著抑制3T3-L1脂肪前体细胞分化;KCTD15敲低后PPARγ、C/EBPα、C/EBPβ、C/EBPδ成脂基因无明显变化.结论 在分化早期阶段敲低KCTD15

  8. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  9. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation.

    Science.gov (United States)

    Yao, Yang; Zhu, Yingying; Gao, Yue; Shi, Zhenxing; Hu, Yibo; Ren, Guixing

    2015-10-01

    This study was performed to investigate the effect of quinoa saponins (QS) on the differentiation of 3T3-L1 preadipocytes. QS inhibited triglyceride (TG) accumulation in the mature adipocytes, evidenced by oil-red O staining and intracellular quantification. Real time-PCR analysis and western blot analysis showed that QS significantly down-regulated the mRNA and protein expression of key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer-binding protein alpha (C/EBPα), however, they had no significant effect on CCAAT/enhancer-binding protein beta (C/EBPβ) and CCAAT/enhancer-binding protein delta (C/EBPδ) which are the upstream regulators for adipogenesis compared with mature adipocytes. QS also reduced mRNA and protein expression of sterol regulatory element-binding protein-1c (SREBP-1c) related to the late stage of adipogenesis. Furthermore, lipoprotein lipase (LPL), adipocyte protein 2 (aP2) and glucose transporter 4 (Glut4), as adipocyte specific genes, were decreased in mature adipocytes by QS treatment. These findings indicate that QS are capable of suppressing adipogenesis and therefore they seem to be natural bioactive factors effective in adipose tissue mass modulation. PMID:26242624

  10. Oxidised LDL up-regulate CD36 expression by the Nrf2 pathway in 3T3-L1 preadipocytes.

    Science.gov (United States)

    D'Archivio, Massimo; Scazzocchio, Beatrice; Filesi, Carmela; Varì, Rosaria; Maggiorella, Maria Teresa; Sernicola, Leonardo; Santangelo, Carmela; Giovannini, Claudio; Masella, Roberta

    2008-06-25

    The effect of oxLDL on CD36 expression has been assessed in preadipocytes induced to differentiate. Novel evidence is provided that oxLDL induce a peroxisome proliferator-activated receptor gamma-independent CD36 overexpression, by up-regulating nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). The nuclear translocation of Nrf2 appeared to depend on PKC pathway activation. In adipocytes, the CD36 up-regulation may indicate a compensation mechanism to meet the demand of excess oxLDL and oxidised lipids in blood, reducing the risk of atherogenesis. Besides strengthening the hypothesis that oxLDL can contribute to the onset of insulin-resistance, data herein presented highlight the significance of oxLDL-induced CD36 overexpression within the cellular defence response. PMID:18514070

  11. Effect of Tumor Necrosis Factor-α on Resistin Expression in 3T3-L1 Adipocytes and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the effect of tumor necrosis factor-α (TNFα) on resistin expression in 3T3-L1 adipocytes, and further explore its mechanisms, the differentiated 3T3-L1 adipocytes were incubated with 0, 1, 10, 100 ng/mL TNFα respectively for 24 h, and then the expression of resistin was determined. The differentiated 3T3-L1 adipocytes were incubated with 100 ng/mL TNFα for 3, 6, 24 h respectively, and then the expression of resistin mRNA was analyzed.3T3-L1 adipocytes were induced to differentiate into mature adipocytes. The cells were randomly divided into 4 groups for culture. In the control group, no drugs were added. Cells of TNFα group were treated with 100 ng/mL TNFα. In Ro-31-8220 group, 5μmol/L protein kinase C inhibitor Ro-31-8220 was added. With TNFα+Ro-31-8220 group, 100 ng/mL TNFα were added 1 h after the addition of 5 μmol/L Ro-31-8220. All adipocytes were cultured for 24 h. Reverse transcriptionpolymerase chain reaction (RT-PCR) and Western blotting were employed to detect the expression of resistin gene. Our results showed that resistin protein and mRNA in 3T3-L1 adipocytes were inhibited by TNFα at different concentrations (P<0.01), and the inhibitory effect increased with the concentration (P<0.01). At the same concentrations, the inhibitory effect increased with time (P <0.01). Ro-31-8220 could inhibit its expression and the inhibitive effect remained unchanged with addition of TNFα(P>0.05). It was concluded that TNFα could inhibit the expression of resistin in 3T3-L1 adipocytes. The mechanism may be that the expression of resistin is partly controlled by protein kinase C signal conduction pathway.

  12. Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation.

    Science.gov (United States)

    Horikawa, Takumi; Shimada, Tsutomu; Okabe, Yui; Kinoshita, Kaoru; Koyama, Kiyotaka; Miyamoto, Ken-ichi; Ichinose, Koji; Takahashi, Kunio; Aburada, Masaki

    2012-01-01

    We previously reported that Kaempferia parviflora WALL. ex BAKER (KP) and its ethyl acetate extract (KPE) improve various metabolic disorders in obesity-model mice. However the mechanism is not certain, and, in this study, in order to elucidate the mechanism of the suppressive effect of KP on fat accumulation, we focused on adipocytes, which are closely linked to metabolic diseases. The finding was that KPE and its components, 3,5,7,4'-tetramethoxyflavone and 3,5,7,3',4'-pentamethoxyflavone, strongly induced differentiation of 3T3-L1 preadipocytes to adipocytes. The above two polymethoxyflavonoids (PMFs) also induced adiponectin mRNA levels, and release of adiponectin into the medium. In addition, these PMFs enhanced the expression of peroxisome proliferator-activated receptor γ (PPARγ), but did not show PPARγ ligand activity. We then investigated the expression of the differentiation-regulator located upstream of PPARγ. Expression of CCAAT/enhancer-binding protein (C/EBP) β and -δ mRNA, a transcriptional regulator of PPARγ, was induced, and expression of GATA-2 mRNA, a down-regulator of adipogenesis, was suppressed by these PMFs. These functions of the KP PMFs that enhance adipogenesis and secretion of adiponectin are, to some extent at least, involved in the mechanisms of anti-metabolic disorders effects. PMID:22687402

  13. Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3-L1 adipocytes.

    OpenAIRE

    Weiland, M; Brandenburg, C; Brandenburg, D.; Joost, H. G.

    1990-01-01

    In the present study we describe the antagonistic effects of the covalently dimerized insulin derivative B29,B29'-suberoyl-insulin on insulin receptors in 3T3-L1 mouse cells. In differentiated 3T3-L1 adipocytes, the derivative fully inhibits binding of 125I-labeled insulin to its receptor with about the same affinity as unlabeled insulin. In contrast, the dimerized derivative only partially (approximately 20%) mimics insulin's effects on glucose transport and DNA synthesis in the absence of i...

  14. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Kalume, Dario E; Blagoev, Blagoy;

    2002-01-01

    We have undertaken a systematic proteomic approach to purify and identify secreted factors that are differentially expressed in preadipocytes versus adipocytes. Using one-dimensional gel electrophoresis combined with nanoelectrospray tandem mass spectrometry, proteins that were specifically secre...

  15. Artesunate inhibits adipogeneis in 3T3-L1 preadipocytes by reducing the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3.

    Science.gov (United States)

    Jang, Byeong-Churl

    2016-05-20

    Differentiation of preadipocyte, also called adipogenesis, leads to the phenotype of mature adipocyte. However, excessive adipogenesis is closely linked to the development of obesity. Artesunate, one of artemisinin-type sesquiterpene lactones from Artemisia annua L., is known for anti-malarial and anti-cancerous activities. In this study, we investigated the effect of artesunate on adipogenesis in 3T3-L1 preadipocytes. Artesunate strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes at 5 μM concentration. Artesunate at 5 μM also reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during adipocyte differentiation. Moreover, artesunate at 5 μM reduced leptin, but not adiponectin, mRNA expression during adipocyte differentiation. Taken together, these findings demonstrate that artesunate inhibits adipogenesis in 3T3-L1 preadipoytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. PMID:27109481

  16. G9a is transactivated by C/EBPβ to facilitate mitotic clonal expansion during 3T3-L1 preadipocyte differentiation.

    Science.gov (United States)

    Li, Shu-Fen; Guo, Liang; Qian, Shu-Wen; Liu, Yuan; Zhang, You-You; Zhang, Zhi-Chun; Zhao, Yue; Shou, Jian-Yong; Tang, Qi-Qun; Li, Xi

    2013-05-01

    In 3T3-L1 preadipocyte differentiation, the CCAAT/enhancer-binding protein-β (C/EBPβ) is an important early transcription factor that activates cell cycle genes during mitotic clonal expansion (MCE), sequentially activating peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα during terminal differentiation. Although C/EBPβ acquires its DNA binding activity via dual phosphorylation at about 12-16 h postinduction, the expression of PPARγ and C/EBPα is not induced until 36-72 h. The delayed expression of PPARγ and C/EBPα ensures the progression of MCE, but the mechanism responsible for the delay remains elusive. We provide evidence that G9a, a major euchromatic methyltransferase, is transactivated by C/EBPβ and represses PPARγ and C/EBPα through H3K9 dimethylation of their promoters during MCE. Inhibitor- or siRNA-mediated G9a downregulation modestly enhances PPARγ and C/EBPα expression and adipogenesis in 3T3-L1 preadipocytes. Conversely, forced expression of G9a impairs the accumulation of triglycerides. Thus, this study elucidates an epigenetic mechanism for the delayed expression of PPARγ and C/EBPα.

  17. Bisdemethoxycurcumin Inhibits Adipogenesis in 3T3-L1 Preadipocytes and Suppresses Obesity in High-Fat Diet-Fed C57BL/6 Mice.

    Science.gov (United States)

    Lai, Ching-Shu; Chen, Ying-Yi; Lee, Pei-Sheng; Kalyanam, Nagabhushanam; Ho, Chi-Tang; Liou, Wen-Shiung; Yu, Roch-Chui; Pan, Min-Hsiung

    2016-02-01

    Obesity is caused by excessive accumulation of body fat and is closely related to complex metabolic diseases. Adipogenesis is a key process that is required in adipocyte hypertrophy in the development of obesity. Curcumin (Cur) has been reported to inhibit adipocyte differentiation, but the inhibitory effects of other curcuminoids present in turmeric, such as demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), on adipogenesis have not been investigated. Here, we investigated the effects of curcuminoids on adipogenesis and the molecular mechanisms of adipocyte differentiation. Among three curcuminoids, BDMC was the most effective suppressor of lipid accumulation in adipocytes. BDMC suppressed adipogenesis in the early stage primarily through attenuation of mitotic clonal expansion (MCE). In BDMC-treated preadipocytes, cell cycle arrest at the G0/G1 phase was found after initiation of adipogenesis and was accompanied by downregulation of cyclin A, cyclin B, p21, and mitogen-activated protein kinase (MAPK) signaling. The protein levels of the adipogenic transcription factors peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding proteins (C/EBP)α were also reduced by BDMC treatment. Furthermore, 0.5% dietary BDMC (w/w) significantly lowered body weight gain and adipose tissue mass in high-fat diet (HFD)-fed mice. The results of H&E staining showed that dietary BDMC reduced hypertrophy in adipocytes. These results demonstrate for the first time that BDMC suppressed adipogenesis in 3T3-L1 adipocytes and prevented HFD-induced obesity. Our results suggest that BDMC has the potential to prevent obesity.

  18. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guoyue, E-mail: yuanguoyue@hotmail.com [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Jia, Jue; Di, Liangliang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhou, Libin [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Li, Lianxi [Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, 600, Yishan Road, Shanghai 200233 (China); Yang, Ying [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Mao, Chaoming [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Chen, Mingdao, E-mail: mingdaochensh@yahoo.com [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  19. Clk/STY (cdc2-like kinase 1 and Akt regulate alternative splicing and adipogenesis in 3T3-L1 pre-adipocytes.

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    Full Text Available The development of adipocytes from their progenitor cells requires the action of growth factors signaling to transcription factors to induce the expression of adipogenic proteins leading to the accumulation of lipid droplets, induction of glucose transport, and secretion of adipokines signaling metabolic events throughout the body. Murine 3T3-L1 pre-adipocytes sequentially express all the proteins necessary to become mature adipocytes throughout an 8-10 day process initiated by a cocktail of hormones. We examined the role of Clk/STY or Clk1, a cdc2-like kinase, in adipogenesis since it is known to be regulated by Akt, a pivotal kinase in development. Inhibition of Clk1 by a specific inhibitor, TG003, blocked alternative splicing of PKCβII and expression of PPARγ1 and PPARγ2. SiRNA depletion of Clk1 resulted in early expression of PKCβII and sustained PKCβI expression. Since Clk1 is a preferred Akt substrate, required for phosphorylation of splicing factors, mutation of Clk1 Akt phosphorylation sites was undertaken. Akt sites on Clk1 are in the serine/arginine-rich domain and not the kinase domain. Mutation of single and multiple sites resulted in dysregulation of PKCβII, PKCβI, and PPARγ1&2 expression. Additionally, adipogenesis was blocked as assessed by Oil Red O staining, adiponectin, and Glut1 and 4 expression. Immunofluorescence microscopy revealed that Clk1 triple mutant cDNA, transfected into pre-adipocytes, resulted in excluding SRp40 (SFSR6 from co-localizing to the nucleus with PFS, a perispeckle specific protein. This study demonstrates the role of Akt and Clk1 kinases in the early differentiation of 3T3-L1 cells to adipocytes.

  20. 3T3-L1前脂肪细胞在功能性成分评价中的应用%Application of 3T3-L1 Preadipocytes in the Evaluation of Functional Components:A Review of the Literature

    Institute of Scientific and Technical Information of China (English)

    蔡教英; 刘姚; 王文君; 杨武英

    2011-01-01

    The anomaly of adipocyte proliferation and differentiation plays a key role in the development of obesity,cardiovascular disease and non-insulin-dependent diabetes.3T3-L1 preadipocyte is a well-accepted model cell for study on adipogenesis.Recently the proliferation and differentiation of adipocytes have become a hot research topic.In this paper,the in vitro culture of 3T3-L1 preadipocyte,mechanisms regulating 3T3-L1 preadipocyte proliferation and differentiation and the application thereof in the evaluation of functional components are reviewed with the purpose to provide some references for the prevention and therapy of obesity and diabetes mellitus.%脂肪细胞的增殖与分化异常是导致人类肥胖、心血管疾病和Ⅱ型糖尿病等的发生的主要原因,而3T3-L1前脂肪细胞是国际上公认的研究脂肪代谢的细胞模型,因此脂肪细胞的增殖与分化已成为研究的热点。本文主要论述3T3-L1前脂肪细胞的体外培养、增殖与分化及调控及其在功能性成分的评价中的应用,以期为预防和治疗肥胖及糖尿病等并发症提供一定的理论参考。

  1. Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation

    OpenAIRE

    Zhang, Xian-Hua; Huang, Bo; Choi, Soo-Kyong; Seo, Jung-Sook

    2012-01-01

    Resveratrol (3,4,5-trihydroxy-trans-stilbene), a phytoalexin found in grape skin, grape products, and peanuts as well as red wine, has been reported to have various biological and pharmacological properties. The purpose of this study was to investigate the anti-obesity effect of resveratrol-amplified grape skin extracts on adipocytes. The anti-obesity effects of grape skin extracts were investigated by measuring proliferation and differentiation in 3T3-L1 cells. The effect of grape skin ethan...

  2. 3T3-L1细胞分化过程中线粒体含量和葡萄糖摄取的动态变化%THE DYNAMIC CHANGES IN THE NUMBER OF MITOCHONDRIA AND GLUCOSE UPTAKE IN DIFFERENTIATING 3T3-L1 PREADIPOCYTES

    Institute of Scientific and Technical Information of China (English)

    张慧琴; 陈士勇; 王安世; 邹祖全; 王欣; 张晓宏

    2015-01-01

    Objective To observe the dynamic changes in lipid accumulation, mitochondria number and glucose uptake in differentiating murine 3T3-L1 preadipocytes, and help select adipocytes at optimal time-point of differentiation for obesity studies.Methods In this study, murine 3T3-L1 preadipocytes were cultured and induced to differentiate into mature adipocytes by classic cocktail method. On the days 0, 2, 4, 6, 8, 10, 12 of differentiation, 3T3-L1 cells were stained with Oil Red O to assess the accumulation of lipid droplets, and spectrophotometry was used to measure the lipid content. Specific mitochondrial probe (Mito-Tracker Green) was used to detect the mitochondrial number. The amount of glucose uptake was determined by 2-NBDG staining and the glucose content in culture media was measured with glucose oxidase (GOD) assay. Results More than 90% of the cells under microscope were found to exhibit the phenotype of mature adipocytes with many “ring-like” lipid droplets on day 10 of differentiation. With the development of differentiation, the number of mitochondria, and glucose uptake in 3T3-L1 preadipocytes increased gradually, and stabilized on day 10.Conclusion It is more reasonable to selectthe 3T3-L1 adipocytes at the 10th day of differentiation for the studies of obesity and its related diseases at cellular level.%目的对分化过程3T3-L1细胞脂质含量、线粒体含量及细胞对葡萄糖的摄取进行动态观察,为选择适宜分化时点的脂肪细胞进行肥胖研究提供有力证据。方法经典鸡尾酒法诱导3T3-L1前脂肪细胞分化为成熟脂肪细胞。分别于分化的第0、2、4、6、8、10、12日,对细胞进行油红O染色,分光光度法检测细胞内脂质含量;Mito-Tracker Green探针法检测分化过程中线粒体含量变化;2-N[7-硝基苯-2-乙二酸,34羟氨基]-2-脱氧葡萄糖(2-NBDG)染色法直接观察细胞对葡萄糖摄取,葡萄糖氧化酶法测定培养基葡萄糖含

  3. 二甲双胍对3T3-L1脂肪细胞瘦素、肿瘤坏死因子-α表达与分泌量影响的观察%Effects of metformin on mRNA expression and secretion of leptin and tumor necrosis factor-α in 3T3-L1 adipocytes

    Institute of Scientific and Technical Information of China (English)

    岳杉; 张艳红; 耿厚法; 班博

    2013-01-01

    Objective To observe the effects of metformin on the expression and secretion of leptin and tumor necrosis factor (TNF-α) in 3T3-L1 adipocytes,and to explore its mechanism in anti-obesity and lipid metabolism improvement.Methods The 3T3-L1 preadipocytes were cultured and differentiated into adipocytes,then incubated with metformin at different concentrations and durations.Leptin and TNF-α mRNA expressions were assayed by RT-PCR.The supernate contents of leptin and TNF-α were detected by ELISA.Results Mefformin functioned to inhibit the leptin and TNF-α mRNA expressions and secretions in 3T3-L1 adipocytes in a concentration-and time-dependent manner.Conclusion The function of metformin in anti-obesity and lipid metabolism improvement may be related with its improvement in leptin and TNF-α sensitivity.%目的 观察二甲双胍对3T3-L1脂肪细胞瘦素、肿瘤坏死因子-α(TNF-α)表达与分泌量的影响,探讨二甲双胍降低体重、改善脂代谢的作用机制. 方法 3T3-L1前脂肪细胞分化成熟后分别予不同浓度及作用时间的二甲双胍干预,采用RT-PCR法检测细胞内瘦素、TNF-α mRNA的表达,ELISA法测定培养基内瘦素、TNF-α的分泌量. 结果 二甲双胍抑制3T3-L1脂肪细胞瘦素、TNF-α的表达与分泌,呈时间与剂量依赖性. 结论 二甲双胍抗肥胖,改善脂代谢的作用可能与改善瘦素、TNF-α抵抗状态有关.

  4. Effect of dexamethasone on peroxisome proliferator activated receptor-gamma mRNA expression in 3T3-L1 adipocytes with the human recombinant adiponectin

    Institute of Scientific and Technical Information of China (English)

    SHE Qi-mei; ZHAO Jing; WANG Xia-lian; ZHOU Chang-man; SHI Xian-zhong

    2007-01-01

    Background The fat derived protein adiponectin plays an important role in the regulation of glucose metabolism. The aim of this study was to provide the experimental basis for further investigating on adiponectin (ADPN) function. Its eukaryotic recombinant was constructed and expressed in precursor cells of 3T3-L1 adipocytes. The effects of dexamethasone on peroxisome proliferator activated receptor-gamma (PPAR-γ) mRNA expression in 3T3-L1 cells with human recombinant adiponectin were assessed. Methods The recombinant plasmid pMD18-T-hADPN and eukaryotic expression vector pcDNA3.1 + were digested by two restrictive endonucleases and adiponectin and linear pcDNA3.1+ were obtained. Then, they were ligated and translated into JM109. The recombinant pcDNA3.1+-hADPN so obtained was identified by digestion by restrictive endonuclease and nucleotide sequencing. The 3T3-L1 precursor cells were transfected using SuperFect Transfection Reagent (Qiagen). Furthermore, 3T3-L1 cells with human recombinant adiponectin incubated with dexamethasone (0.5 mmol/L) for 24 hours, cells were collected and total RNA was extracted. The PPAR-γ mRNA expression was quantified by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). Results After eukaryotic recombinant was digested by Hind Ⅲ and EcoR Ⅰ, fragments of 800 bp and 5.4 kb were identified by nucleotide sequence scanning and consistent with theoretical values. Electrophoretogram of RT-PCR in 3T3-L1 precursors showed only one band in front of 250 bp, which was consistent with theoretical value 234 bp. In the 3T3-L1 cells, 3T3-L1 cells with plasmid and 3T3-L1 cells human recombinant adiponectin, treatment with dexamethasone (0.5 mmol/L) decreased PPAR-γ mRNA expression compared to untreated controls (P<0.01). Effect of dexamethasone on PPAR-γ mRNA expression in 3T3-L1 cells was reversed by stably transfected human recombinant adiponectin.Conclusion The 3T3-L1 cells stably transfected human recombinant

  5. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells

    Science.gov (United States)

    Park, Min-Jun; Song, Ji-Hye; Shon, Myung-Soo; Kim, Hae Ok; Kwon, O Jun; Roh, Seong-Soo; Kim, Choon Young; Kim, Gyo-Nam

    2016-01-01

    Obesity is a major risk factor for various metabolic diseases such as cardiovascular disease, hypertension, and type 2 diabetes mellitus. In this study, we prepared ethanol extracts from Agastache rugosa (ARE), Chrysanthemum zawadskii (CZE), Mentha arvensis (MAE), Perilla frutescens (PFE), Leonurus sibiricus (LSE), Gardenia jasminoides (GJE), and Lycopus coreanus (LCE). The anti-oxidant and anti-adipogenic effects were evaluated. The IC50 values for ascorbic acid and LCE against 2,2-diphenyl-1-picrylhydrazyl radicals were 246.2 μg/mL and 166.2 μg/mL, respectively, followed by ARE (186.6 μg/mL), CZE (198.6 μg/mL), MAE (337.1 μg/mL), PFE (415.3 μg/mL), LSE (548.2 μg/mL), and GJE (626.3 μg/mL). In non-toxic concentration ranges, CZE had a strong inhibitory effect against 3T3-L1 adipogenes (84.5%) than those of the other extracts. Furthermore, the anti-adipogenic effect of CZE is largely limited in the early stage of adipogenesis, and we revealed that the inhibitory role of CZE in adipogenesis is required for the activation of Wnt signaling. Our results provide scientific evidence that the anti-adipogenic effect of CZE can be applied as an ingredient for the development of functional foods and nutri-cosmetics for obesity prevention. PMID:27752499

  6. Effects of yerba maté, a plant extract formulation ("YGD") and resveratrol in 3T3-L1 adipogenesis.

    Science.gov (United States)

    Santos, Juliana C; Gotardo, Erica M F; Brianti, Mitsue T; Piraee, Mahmood; Gambero, Alessandra; Ribeiro, Marcelo L

    2014-01-01

    We aimed to evaluate the in vitro effects of yerba maté, YGD (a herbal preparation containing yerba maté, guarana and damiana), and resveratrol on adipogenesis. The anti-adipogenic effects of yerba mate, YGD, resveratrol and YGD + resveratrol and yerba mate + resveratrol combinations were evaluated in 3T3-L1 cells by Oil Red staining, cellular triglyceride content, and PCR quantitative array. The results demonstrated that all of the tested compounds inhibited adipogenesis. Yerba maté extract significantly down-regulated the expression of genes that play an important role in regulating adipogenesis, such as Adig, Axin, Cebpa, Fgf10, Lep, Lpl, and Pparγ2. In addition, these genes, YGD also repressed Bmp2, Ccnd1, Fasn, and Srebf1. Resveratrol also modulated the expression of Adig, Bmp2, Ccnd1, C/EBPα, Fasn, Fgf10, Lep, Lpl, and Pparγ2. Moreover, resveratrol repressed Cebpb, Cdk4, Fgf2, and Klf15. The yerba maté extract and YGD up-regulated the expression of genes involved in inhibiting adipogenesis, such as Dlk-1, Klf2, and Ucp1. Resveratrol also induced the expression of Klf2 and Ucp1. In addition resveratrol modulated the Ddit3, Foxo1, Sirt1, and Sirt2. The combined effects of these compounds on gene expression showed similar results observed from individual treatments. Our data indicates that the synergy between the compounds favors the inhibition of adipogenesis. PMID:25338179

  7. BRL37344对3T3-L1脂肪细胞脂肪分解与脂肪因子表达的影响%Effects of BRL37344 on lipolysis metabolism and adipocytokine gene expression in 3T3-L1 adipocytes

    Institute of Scientific and Technical Information of China (English)

    岳杉; 耿厚法; 班博

    2012-01-01

    目的 观察BRL37344对3T3-L1脂肪细胞脂肪分解及瘦素、TNF-cα mRNA表达的影响.方法 将3T3-L1前脂肪细胞分化成熟后,用0、10-9、10-7 mol/L浓度与0、12、24、48 h作用时间的BRL37344进行干预.采用酶法检测甘油释放含量,RT-PCR法检测细胞瘦素、TNF-α mRNA表达.结果 BRL37344可显著增加3T3 -L1脂肪细胞的脂肪分解,10-9、10-7 mol/L的BRL37344作用48 h后,细胞内瘦素mRNA表达量分别降低38%、97%,TNF-αmRNA表达量分别降低65%、130%,呈剂量依赖性;10-1mol/L的BRL37344作用12、24、48 h后,瘦素mRNA表达量分别降低6%、48%、119%,TNF-α mRNA表达量分别降低10%、66%、158%,呈时间依赖性.结论 BRL37344可促进脂肪细胞的脂质分解,抑制瘦素、TNF-α mRNA表达,其抗肥胖作用与促进脂肪分解,改善瘦素、TNF-α抵抗状态有关.%Objective To investigate the effects of BRL37344 on lipolysis metabolism and leptin, TNF-α gene expression in 3T3-L1 adipocytes, and to explore its anti-obesity mechanism at the celluar level. Methods The 3T3-L1 preadipo-cytes were cultured and differentiated into adipocytes, then incubated with BRL37344 at different concentrations (0, 10-9 mol/L, 10-7 mol/L) and durations (0, 12, 24, 48 h). Lipolysis was quantified by glycerol released in the medium which was determined by colorimetric assay. Leptin and TNF-α mRNA expressions were assayed by RT-PCR. Results Lipolysis increased significantly in 3T3-L1 adipocytes after treatment of BRL37344 in a dose- and time-dependent manner. BRL37344 at doses of 10-9 and 10-7mol/L significantly reduced leptin mRNA expression by 34% and 140% , respectively after 48 hours, as well as TNF-α mRNA expression by 65% and 130% , respectively. Leptin mRNA expression reduced by 6% , 48% , 119% , respectively after treatment of 10-7 mol/L BRL37344 for 12, 24, 48 hours, as well as TNF-α mRNA expression by 10% , 66% , 158% , respectively. Conclusion BRL37344 promotes lipolysis

  8. 小鼠3T3-L1前脂肪细胞系的增强绿色荧光蛋白标记%The Labeling of 3T3-L1 Preadipocyte Cells with Enhanced Green Fluorescent Protein

    Institute of Scientific and Technical Information of China (English)

    李成建; 成俊英; 张晓岚; 张崇本

    2004-01-01

    A cell model is desired for adipocyte differentiation investigation and for high-throughput screening of anti-obesity and anti-diabetes molecules from chemical resources due to the world wide epidemic of obesity and diabetes. In order to establish such a cell model, a plasmid of pPPARγ2-promoter-EGFP was constructed by inserting a 660bp sequence of mouse PPARγ2 promoter into the AseⅠ and KpnⅠ sites of pEGFP-N3 and transferred into 3T3-L1 preadipocyte cells. The cells were induced to differentiate and the expression of PPARγ2 was detected by the microscopic observation of EGFP and by RT-PCR assays. The results showed that the EGFP gene expression patterns were similar to that of pPPARγ2's, which indicated that the EGFP gene was transferred into the mouse 3T3-L1 preadipocyte cells, and its expression was under the control of pPPARγ2 promoter. RT-PCR assays showed that the EGFP expression authentically represented the stable expression of PPARγ2. In conclusion, a preadipocyte cell line expressing EGFP under the control of the promoter of adipocyte-specific expression gene PPARγ2 was generated. The cell line provides a powerful approach for the research of adipocyte differentiation and for the high-throughput screening of anti-obesity and anti-diabetes chemicals.%细胞模型是研究细胞分化原理以及进行高通量筛选的有效工具.为了建立特异性标记的脂肪细胞分化模型,构建了包括脂肪细胞分化特异性表达基因PPARγ2的启动子在内的载体(pPPARγ2-promoter-EGFP),用电穿孔方法转染小鼠3T3-L1 前脂肪细胞,用显微荧光观察和RT-PCR确认PPARγ2基因的内源表达.结果显示,EGFP基因成功转入3T3-L1前脂肪细胞,观察到细胞分化过程中EGFP表达和脂肪积累,RT-PCR分析表明EGFP代表了稳定而真实的PPARγ2基因的内源性表达.建立了由脂肪组织特异表达基因PPARγ2的表达控制的EGFP标记的小鼠3T3-L1前脂肪细胞系,目前国内外尚未见用同样

  9. Effect of Simavastatin on IL-6 and Adiponectin Secretion and mRNA Expression in 3T3-L1 Adipocytes

    Institute of Scientific and Technical Information of China (English)

    YIN Xiaoming; TU Ling; YANG Huiqing

    2007-01-01

    In order to investigate the effects of simvastatin on secretion and mRNA expression of interleukin-6 (IL-6) and adiponectin in 3T3-L1 adipocytes, mouse 3T3-L1 adipocytes were stimulated with lipopolysaccharide (LPS). Production and mRNA expression of IL-6 and adiponectin in 3T3-L1 adipocytes were measured using enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR), respectively. The results showed that simvastatin could significantly suppress LPS-induced IL-6 production and mRNA expression in adipocytes (P<0.05), but increase the LPS-induced adiponectin secretion and mRNA expression in a dose-dependent manner (P<0.05). It was suggested that simvastatin could exert beneficial effects on prevention of obesity-induced metabolic changes in adipocytes.

  10. Effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture Efeito da suplementação com ácido linoléico conjugado sobre a atividade da lípase lipoprotéica em cultura de adipócitos 3T3-L1

    OpenAIRE

    Adriana Prais Botelho; Lilia Ferreira Santos-Zago; Admar Costa de Oliveira

    2009-01-01

    Supplementation with conjugated linoleic acid may reduce fat body mass and increase lean body mass in various species. Some studies have demonstrated that conjugated linoleic acid reduces body fat, in part, by inhibiting the activity of lipoprotein lipase in adipocytes. The objective of this work was to study the effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture. 3T3-L1 adipocytes received linoleic acid (group C) or conjugated linole...

  11. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Ditte C. [Laboratory of Molecular and Cellular Cardiology, Department of Biochemistry, Pharmacology and Genetics, Odense University Hospital/Department of Cardiovascular and Renal Research, University of Southern Denmark, Winslowparken 21.3, DK-5000 Odense C (Denmark); Jensen, Charlotte H., E-mail: charken@health.sdu.dk [Department of Cancer and Inflammation Research, University of Southern Denmark, Winslowparken 21.1, DK-5000 Odense C (Denmark); Schneider, Mikael [Laboratory of Molecular and Cellular Cardiology, Department of Biochemistry, Pharmacology and Genetics, Odense University Hospital/Department of Cardiovascular and Renal Research, University of Southern Denmark, Winslowparken 21.3, DK-5000 Odense C (Denmark); Nossent, Anne Yael [Laboratory of Molecular and Cellular Cardiology, Department of Biochemistry, Pharmacology and Genetics, Odense University Hospital/Department of Cardiovascular and Renal Research, University of Southern Denmark, Winslowparken 21.3, DK-5000 Odense C (Denmark); Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N (Denmark); Eskildsen, Tilde [Laboratory of Molecular and Cellular Cardiology, Department of Biochemistry, Pharmacology and Genetics, Odense University Hospital/Department of Cardiovascular and Renal Research, University of Southern Denmark, Winslowparken 21.3, DK-5000 Odense C (Denmark); Hansen, Jakob L. [Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N (Denmark); Teisner, Borge [Department of Cancer and Inflammation Research, University of Southern Denmark, Winslowparken 21.1, DK-5000 Odense C (Denmark); and others

    2010-06-10

    Delta like 1 homolog (Dlk1) exists in both transmembrane and soluble molecular forms, and is implicated in cellular growth and plays multiple roles in development, tissue regeneration, and cancer. Thus, DLK1 levels are critical for cell function, and abnormal DLK1 expression can be lethal; however, little is known about the underlying mechanisms. We here report that miR-15a modulates DLK1 levels in preadipocytes thus providing a mechanism for DLK1 regulation that further links it to cell cycle arrest and cancer since miR-15a is deregulated in these processes. In preadipocytes, miR-15a increases with cell density, and peaks at the same stage where membrane DLK1{sup M} and soluble DLK1{sup S} are found at maximum levels. Remarkably, miR-15a represses the amount of all Dlk1 variants at the mRNA level but also the level of DLK1{sup M} protein while it increases the amount of DLK1{sup S} supporting a direct repression of DLK1 and a parallel effect on the protease that cleaves off the DLK1 from the membrane. In agreement with previous studies, we found that miR-15a represses cell numbers, but additionally, we report that miR-15a also increases cell size. Conversely, anti-miR-15a treatment decreases cell size while increasing cell numbers, scenarios that were completely rescued by addition of purified DLK1{sup S}. Our data thus imply that miR-15a regulates cell size and proliferation by fine-tuning Dlk1 among others, and further emphasize miR-15a and DLK1 levels to play important roles in growth signaling networks.

  12. Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stępnik, Maciej, E-mail: mstep@imp.lodz.pl [Nofer Institute of Occupational Medicine, Łódź (Poland); Arkusz, Joanna; Smok-Pieniążek, Anna [Nofer Institute of Occupational Medicine, Łódź (Poland); Bratek-Skicki, Anna; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A. [Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4 (Ireland); Gromadzińska, Jolanta [Nofer Institute of Occupational Medicine, Łódź (Poland); De Jong, Wim H. [National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9 NL‐3720, Bilthoven (Netherlands); Rydzyński, Konrad [Nofer Institute of Occupational Medicine, Łódź (Poland)

    2012-08-15

    The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but not to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ► Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ► Ludox CL-X silica NPs are cytotoxic to both cell lines. ► In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ► Cell cycle analysis shows

  13. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsin-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu 912, Pingtung, Taiwan (China); Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China)

    2010-10-15

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPAR{gamma} (peroxisome proliferator-activated receptor {gamma}), C/EBP{alpha} (CCAAT/enhancer-binding protein {alpha}), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by {alpha}-naphthoflavone ({alpha}-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  14. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT/enhancer-binding protein α), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by α-naphthoflavone (α-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  15. Inhibitory effects of compounds isolated from the dried branches and leaves of murta (Myrceugenia euosma) on lipid accumulation in 3T3-L1 cells.

    Science.gov (United States)

    Oikawa, Naoki; Nobushi, Yasuhito; Wada, Taira; Sonoda, Kumiko; Okazaki, Yuzo; Tsutsumi, Shigetoshi; Park, Yong Kun; Kurokawa, Masahiko; Shimba, Shigeki; Yasukawa, Ken

    2016-07-01

    As obesity is a global health concern the demand for anti-obesity drugs is high. In this study, we investigated the anti-obesity effect of the dried branches and leaves of murta (Myrceugenia euosma Legrand, Myrtaceae). A methanol extract of the dried branches and leaves of murta inhibited adipogenesis in 3T3-L1 cells. Three known flavanones-cryptostrobin (1), pinocembrin (4), and 5,7-dihydroxy-6,8-dimethylflavanone (6), and three chalcones-2',6'-dihydroxy-3'-methyl-4'-methoxychalcone (2), pinostrobin chalcone (3), and 2',6'-dihydroxy-4'-methoxy-3',5'-dimethylchalcone (5) were isolated from the active fraction. Structures of these compounds were identified using various spectral data. Each of these compounds also inhibited adipogenesis in 3T3-L1 cells. In particular, compound 3 was a more potent inhibitor of triglyceride accumulation than the positive control berberine. Gene expression studies revealed that treatment of 3T3-L1 cells with 3 lowers the expression levels of CCAAT/enhancer-binding protein α and peroxisome proliferator activator γ2 during adipogenesis without affecting cell viability. Treatment of 3T3-L1 cells with 3 reduced the expression levels of mRNAs encoding sterol regulatory element-binding protein 1c and several lipogenic enzymes, including fatty acid synthase and stearoyl CoA desaturase-1. These results indicate that the methanol extract and compounds isolated from the dried branches and leaves of murta exert their anti-obesity effects through the inhibition of adipogenesis. PMID:26880616

  16. THE COMBINED EFFECTS OF CATECHINS AND CAFFEINE ON CELLULAR PROLIFERATION AND LIPID METABOLISM IN 3T3-L1 CELLS%儿茶素和咖啡碱组合对3T3-L1细胞增殖及脂肪代谢的影响

    Institute of Scientific and Technical Information of China (English)

    郑国栋; 邱阳阳; 张清峰; 徐峰

    2013-01-01

    目的 研究对儿茶素和咖啡碱对3T3-L1细胞的增殖及脂肪代谢的影响.方法 采用四甲基偶氮唑盐比色法(MTT)检测对3T3-L1细胞增殖的影响;3T3-L1细胞诱导分化8d后,对各组细胞进行油红O染色并测定细胞内甘油三酯(TG)含量;细胞分化12d后,添加儿茶素和咖啡碱组合或同时添加去甲肾上腺素(NA)作用24h,分析各组细胞内脂肪分解.结果 儿茶素能明显抑制3T3-L1细胞的增殖;儿茶素和咖啡碱组合能明显抑制3T3-L1细胞分化后,细胞内TG的沉积,且在相同儿茶素浓度下,咖啡碱浓度越高抑制效果越明显.咖啡碱明显提高NA诱导成熟脂肪细胞脂解的能力,且呈剂量效应关系.结论 儿茶素和咖啡碱组合能够抑制脂肪细胞增殖和甘油三酯积聚,咖啡碱促进激素诱导脂肪细胞中脂肪分解.%Objective To investigate the combined effects of catechins and caffeine on cells proliferation and lipid metabolism in 3T3-L1 cells. Method MTT colorimetry was used to detect the effects of catechins and caffeine combination on the proliferation of 3T3-L1 cells. The differentiation of 3T3-L1 cells was induced for 8 d, then the adipocytes were stained by oil Red O, and the level of triglyceride (TG) was measured. The lipolytic effect of catechins and caffeine combination in presence or absence of noradrenaline (NA) for 24 h on 3T3-L1 cells was analyzed on the 12 th day after differentiation. Results Catechins significantly inhibited 3T3-L1 cells proliferation. Catechins and caffeine combination remarkably decreased TG accumulation after differentiation of 3T3-L1 cells, and the higher caffeine concentration was better when combined with the same catechins dose. Caffeine significantly improved NA-induced lipolysis in mature adipocytes. Conclusion Catechins and caffeine combination might inhibit cells proliferation and TG accumulation in 3T3-L1 cells. Caffeine promotes hormone-induced lipolysis in adipocytes.

  17. Dehydrodiconiferyl alcohol isolated from Cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts.

    Science.gov (United States)

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-03-16

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis.

  18. Antiobesity effects of the water-soluble fraction of the ethanol extract of Smilax china L. leaf in 3T3-L1 adipocytes

    OpenAIRE

    Kang, Yun Hwan; Kim, Kyoung Kon; Kim, Dae Jung; Choe, Myeon

    2015-01-01

    BACKGROUND/OBJECTIVES Several medicinal properties of Smilax china L. have been studied including antioxidant, anti-inflammatory, and anti-cancer effects. However, the antiobesity activity and mechanism by which the water-soluble fraction of this plant mediates its effects are not clear. In the present study, we investigated the lipolytic actions of the water-soluble fraction of Smilax china L. leaf ethanol extract (wsSCLE) in 3T3-L1 adipocytes. MATERIALS/METHODS The wsSCLE was identified by ...

  19. Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue.

    Science.gov (United States)

    Bueno, Allain Amador; Oyama, Lila Missae; de Oliveira, Cristiane; Pisani, Luciana Pelegrini; Ribeiro, Eliane Beraldi; Silveira, Vera Lucia Flor; Oller do Nascimento, Cláudia Maria

    2008-01-01

    Obesity is positively correlated to dietary lipid intake, and the type of lipid may play a causal role in the development of obesity-related pathologies. A major protein secreted by adipose tissue is adiponectin, which has antiatherogenic and antidiabetic properties. The aim of this study was to evaluate the effects of four different high-fat diets (enriched with soybean oil, fish oil, coconut oil, or lard) on adiponectin gene expression and secretion by the white adipose tissue (WAT) of mice fed on a selected diet for either 2 (acute treatment) or 60 days (chronic treatment). Additionally, 3T3-L1 adipocytes were treated for 48 h with six different fatty acids: palmitic, linoleic, eicosapentaenoic (EPA), docosahexaenoic (DHA), lauric, or oleic acid. Serum adiponectin concentration was reduced in the soybean-, coconut-, and lard-enriched diets in both groups. Adiponectin gene expression was lower in retroperitoneal WAT after acute treatment with all diets. The same reduction in levels of adiponectin gene expression was observed in epididymal adipose tissue of animals chronically fed soybean and coconut diets and in 3T3-L1 cells treated with palmitic, linoleic, EPA, and DHA acids. These results indicate that the intake of certain fatty acids may affect serum adiponectin levels in mice and adiponectin gene expression in mouse WAT and 3T3-L1 adipocytes. The effects appear to be time dependent and depot specific. It is postulated that the downregulation of adiponectin expression by dietary enrichment with soybean oil or coconut oil may contribute to the development of insulin resistance and atherosclerosis.

  20. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Chisato, E-mail: yosizaki@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Nishio, Yoshihiko [Division of Diabetes, Metabolism and Endocrinology, Department of Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kashiwagi, Atsunori; Maegawa, Hiroshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  1. 黄芩水提液对3T3-L1脂肪细胞增殖、诱导分化及脂联素启动子荧光素酶活性的影响%The Effect of Scutellaria Baicalensis Water Extract on Proliferation, Cytokines mRNA Expressions and Promoter Activity of 3T3-L1 Cells

    Institute of Scientific and Technical Information of China (English)

    崔琳; 路玲玲; 李强; 宰军华; 刘卫红; 王小晓

    2015-01-01

    目的:本研究旨在观察黄芩水提液(Scutellaria BaicalensisWater Extract,SBWE)对3T3-L1前体细胞增殖、分化,对脂肪细胞因子脂联素表达以及脂联素(Adiponectin,ADP)启动子荧光素酶活性的影响,从分子生物学角度阐述SBWE降脂作用的可能机理.方法:通过体外培养3T3-L1细胞,采用MTT法检测SBWE对3T3-L1细胞增殖能力的影响;通过诱导脂肪细胞分化成为成熟脂肪细胞,观察SBWE对脂肪形成的影响;化学发光法检测脂联素启动子双荧光素酶报告基因活性;荧光定量PCR法检测脂联素mRNA(Adipoq)表达.结果:与正常组相比,给予3T3-L1细胞0.01、0.1、1 mg?mL-1浓度的SBWE 24 h,可显著抑制细胞的增殖活性(P<0.05);0.1、1 mg?mL-1浓度的SBWE能够降低3T3-L1细胞分化为脂肪细胞的数量,并减少细胞内脂滴聚集,但无明显剂量依赖性;0.01、0.1 mg?mL-1浓度SBWE能显著提高脂联素基因启动子荧光素酶活性,与空载体比较差异有统计学意义(P<0.05);与正常组相比,给予3T3-L1细胞0.1 mg?mL-1SBWE 24 h,诱导前后的脂肪细胞Adipoq表达均明显增加(P<0.05).结论:SBWE可有效抑制3T3-L1脂肪细胞的增殖、分化,同时增加脂联素基因表达,这可能是通过增强脂联素基因启动子荧光素酶活性实现,这些为黄芩水提液减肥的作用机制提供一定的基础.%The study was designed to measure the effect of S.baicalensiswater extract (SBWE) on 3T3-L1 cells and its adiponectin (ADP) mRNA (Adipoq) and promoter luciferase activity.Cell survival rate was determined by MTT assay.The expression of Adipoq was measured by real-time PCR,while the luciferase report systems of Adipoq were used to transfer 3T3-L1 cells.The luciferase activities of the transferred cells were compared by luciferase assay.It was found that the mRNA expression of Adipoq was decreased in comparison with the control group.The luciferase activity showed a stronger ADP promoter activity in 3T3-L1 cells in

  2. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Li Hailan

    2011-12-01

    Full Text Available Abstract Background Phosphatidylcholine (PPC formulation is used for lipolytic injection, even though its mechanism of action is not well understood. Methods The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD, and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. Results PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations Conclusions PPC results in apoptosis of 3T3-L1 cells.

  3. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line

    International Nuclear Information System (INIS)

    Highlights: ► Ascofuranone increases expression of adiponectin and PPARγ. ► Inhibitors for MEK and JNK increased the expression of adiponectin and PPARγ. ► Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPARγ, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPARγ agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPARγ, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPARγ through the modulation of MAP kinase family members.

  4. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Cho, Hyun-Ji, E-mail: hjcho.dr@gmail.com [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Ascofuranone increases expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Inhibitors for MEK and JNK increased the expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPAR{gamma}, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPAR{gamma} agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPAR{gamma}, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPAR{gamma} through the modulation of MAP kinase family members.

  5. Inhibitory effect of chemical constituents from Artemisia scoparia Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in RAW 264.7 cells.

    Science.gov (United States)

    Yahagi, Tadahiro; Yakura, Naoyuki; Matsuzaki, Keiichi; Kitanaka, Susumu

    2014-04-01

    We investigated the anti-obesity effect of the aerial part of Artemisia scoparia Waldst. et Kit. (Compositae). An 80 % aqueous EtOH extract of the aerial part inhibited triglyceride (TG) accumulation and the nitric oxide (NO) production activity. A new chromane derivative was isolated from the aerial part of A. scoparia Waldst. et Kit. along with 18 known compounds. The structure of the new chromane, scopariachromane (1), was elucidated by spectroscopic analyses. The inhibitory effects of the compounds on TG accumulation activity were examined. Among these, cirsiliol (11) inhibited TG accumulation in 3T3-L1 preadipocytes. Jaceosidin (12) inhibited NO production in a murine macrophage-like cell line (RAW 264.7). These results indicate that the 80 % aqueous EtOH extract and compounds isolated from the aerial part of A. scoparia Waldst. et Kit. may improve obesity-related insulin resistance. PMID:24142543

  6. Effects of induced differentiation by high-glucose on the morphology and function of mitochondria in 3T3-L1 adipocytes%高糖诱导分化对3T3-L1成熟脂肪细胞线粒体形态和功能的影响

    Institute of Scientific and Technical Information of China (English)

    张向君; 王秀芳; 鲍子超; 吴钦良; 王加林; 赵亚萍

    2012-01-01

    目的 观察高糖诱导分化对3T3-L1成熟脂肪细胞葡萄糖转运以及线粒体功能的影响.方法 3T3-L1前体脂肪细胞分别在含25 mmol/L葡萄糖(高糖组)及5 mmol/L葡萄糖(低糖组)的DMEM培养基中诱导分化.采用油红“O”染色法观察细胞的分化程度,采用液闪仪检测成熟脂肪细胞对[3H]-2-脱氧葡萄糖的摄取率,采用透射电镜观察脂肪细胞的线粒体形态,生物发光法检测脂肪细胞内ATP.结果 两组3T3-L1前体脂肪细胞均可分化为成熟脂肪细胞,高糖组成熟脂肪细胞体积及胞质内脂滴均较低糖组大;高糖组成熟脂肪细胞基础状态及胰岛素刺激下的葡萄糖摄取率均低于低糖组脂肪细胞;高糖组成熟脂肪细胞线粒体形态异常,细胞内ATP的含量为(63.00 ±2.48) nM/mg protein,低糖组为(102.00±1.39) nM/mg protein,两组比较,P<0.05.结论 采用含25mmoL/L或5 mmol/L葡萄糖的DMEM培养基培养,对3T3-L1前体脂肪细胞向成熟脂肪细胞的分化进程无明显影响;高糖诱导分化可致成熟脂肪细胞产生胰岛素抵抗和线粒体功能损伤.%Objective To explore the roles of induced differentiation by high-glucose on glucose transport and the function of mitochondria in mature 3T3-L1 adipocytes. Method 3T3-L1 preadipocytes were induced to differentiation in DMEM medium containing 25 mmol/L glucose (high-glucose group) or 5 mmol/L glucose (low-glucose group) , respectively. The differentiation process of 3T3-L1 adipocytes was examined by Oil red "0" straining. 2-Deoxy-[3H] glucose uptake in adipocytes was assayed by liquid-scintillation counting. The morphology of mitochondria in adipocytes was evaluated by transmission electron microscope. Bioluminescence was used to measure the ATP content of the adipocytes. Result 3T3-L1 preadipocytes of the two groups were successfully differentiated into mature adipocytes . The volume of mature adipocytes and the size of lipid droplet in endochylema were larger in

  7. Xylitol does not directly affect adiponectin productionand adipogenesis in 3T3-L1 cells

    OpenAIRE

    Pilaiwan Siripurkpong; Sompoch Prajan; Sudawadee Kongkhum

    2014-01-01

    Xylitol is widely used as a low-calorie sweetener in various kinds of food products, including diabetic foods. Adiponectin, secreted by adipocytes, plays a key role in carbohydrate and lipid metabolism. Low levels of plasma adiponectin are associated with cardiovascular disease and type II diabetes. The aims of this study were to determine effects of xylitol on the adipogenesis of pre-adipocytes, adiponectin synthesis and secretion. To assess adipogenesis, pre-adipocyte 3T3-L1 cel...

  8. Arachidonic acid has a dominant effect to regulate lipogenic genes in 3T3-L1 adipocytes compared to omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Hitesh Vaidya

    2015-03-01

    Full Text Available Background: The effects of long-chain n-3 and n-6 polyunsaturated fatty acids (PUFA on the regulation of adipocytes metabolism are well known. These fatty acids are generally consumed together in our diets; however, the metabolic regulation of adipocytes in the presence of these fatty acids when given together is not known. Objective: To investigate the effects of n-3 PUFA and arachidonic acid (AA, an n-6 PUFA, on the regulation of adipogenic and lipogenic genes in mature 3T3-L1 adipocytes. Methods: 3T3-L1 adipocytes were incubated in the presence or absence of 100 µM of eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA; docosapentaenoic acid, DPA and AA, either alone or AA+n-3 PUFA; control cells received bovine serum albumin alone. The mRNA expression of adipogenic and lipogenic genes was measured. The fatty acid composition of adipocytes was analyzed using gas chromatography. Results: Individual n-3 PUFA or AA had no effect on the mRNA expression of peroxisome-proliferator-activated receptor-γ; however, AA+EPA and AA+DPA significantly increased (P<0.05 the expression compared to control cells (38 and 42%, respectively. AA and AA+EPA increased the mRNA expression of acetyl-CoA carboxylase 1 (P<0.05. AA treatment decreased the mRNA expression of stearoyl-CoA desaturase (SCD1 (P<0.01, while n-3 PUFA, except EPA, had no effect compared to control cells. AA+DHA and AA+DPA inhibited SCD1 gene expression (P<0.05 suggesting a dominant effect of AA. Fatty acids analysis of adipocytes revealed a higher accretion of AA compared to n-3 PUFA. Conclusions: Our findings reveal that AA has a dominant effect on the regulation of lipogenic genes in adipocytes.

  9. The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3T3-L1 adipocytes La combinación de resveratrol y CLA no incrementa el efecto hipolipemiante de cada molécula en adipocitos 3T3-L1

    OpenAIRE

    Lasa, A; Miranda, J.; I. Churruca; Simón, E.; N. Arias; Milagro, F.; J. A. Martínez; Mª del Puy Portillo

    2011-01-01

    Introduction: Trans-10, cis-12 conjugated linoleic acid (CLA) and resveratrol have been shown to reduce TG content in cultured 3T3-L1 adipocyte acting on different pathways. In recent years, the method of simultaneously targeting several signal transduction pathways with multiple natural products in order to achieve additive or synergistic effects has been tested. However, the combined effect of both molecules on lipid metabolism has not been described before. Objective: The aim of the presen...

  10. Effects and mechanisms of GLP-1 on fatty acid metabolism in insulin-resistant 3T3-L1 adipocytes%胰高血糖素样肽-1对胰岛素抵抗3T3-L1脂肪细胞脂肪酸代谢的作用及机制

    Institute of Scientific and Technical Information of China (English)

    董怡; 姚明辉; 王毅群

    2012-01-01

    AIM To explore the effects and mechanisms of glucagon like peptide-1 (GLP-1) on fatty acid metabolism. METHODS Through ELISA and Western blot, the present study was to investigate the effects and mechanisms of GLP-1 on fatty acid metabolism in insulin-resistant 3T3-L1 adipocytes which were induced by high glucose and insulin. RESULTS ELBA showed that GLP-1 regulated medium free fatty acid (FFA) concentrations in a insulin dependent way: FFA content rised when GLP-1 combined with insulin; GLP-1 decreased FFA content without insulin. Similarly, GLP-1 increased fatty acid synthase (FAS) content with insulin; when there was no insulin in medium, FAS could not be affected by GLP-1. Western blot revealed that GLP-1 could enhance protein kinase B(PKB) phosphoryla-tion. When treated with PKB phosphorylation inhibitor LY294002 or Wortmannin with insulin could inhibit the increased effect of GLP-1 on FFA content. GLP-1 had no effect on PKB phosphorylation when there was no insulin existence, but could diminish hormone-sensitive lipase (HSL) concentration in this case. CONCLUSION GLP-1 can enhance insulin sensitivity and decrease HSL concentration in insulin resistant 3T3-L1 adipocytes. Insulin affects GLP-1 regulation of fatty acid metabolism in resistance 3T3-L1 adipocytes.%目的 研究胰高血糖素样肽-1 (GLP-1)对胰岛素抵抗3T3-L1脂肪细胞脂肪酸代谢的作用及机制.方法 采用高糖高胰岛素造成胰岛素抵抗3T3-L1脂肪细胞模型,通过ELISA及Western blot等方法观察GLP-1对此模型脂肪酸代谢的影响及机制.结果 ELISA结果显示,GLP-1对胰岛素抵抗3T3-L1脂肪细胞中游离脂肪酸(FFA)的含量影响与胰岛素相关:在有胰岛素(100 nmol·L-1)存在时,GLP-1可增加上清液中FFA含量;而无胰岛素存在时,GLP-1可减少上清液中FFA含量.GLP-1升高细胞中脂肪酸合成酶(FAS)表达量的作用也必须依赖胰岛素的存在.Western blot结果显示在有胰岛素存在时,GLP-1可促进蛋白激

  11. 绿茶成分对3T3-L1细胞的细胞增殖及脂肪代谢的影响%Effects of Green Tea Components on Cell Proliferation and Lipid Metabolism in 3T3-L1 Cells

    Institute of Scientific and Technical Information of China (English)

    郑国栋; 徐峰; 吴少福; 张清峰; 邱阳阳

    2012-01-01

    目的:研究绿茶成分——儿茶素、咖啡碱和茶氨酸对3T3-L1前脂肪细胞的细胞增殖及脂肪代谢的影响.方法:测定不同浓度儿茶素、咖啡碱和荼氨酸对3T3-L1细胞增殖的影响,确定无毒性浓度.在分化诱导液中添加各绿茶成分后对3T3-L1细胞进行96h诱导分化,分化后第6天测定脂肪细胞中甘油三酯(TG)含量.细胞分化后第9天,单独添加绿茶成分或同时添加去甲肾上腺素(NA)24 h,分析对细胞中脂肪分解的影响.结果:添加20 μg/mL以上质量浓度的儿茶素能显著抑制3T3-L1细胞增殖,但质量浓度40,80 μg/mL的儿茶素对3T3-L1细胞有毒性作用,而160 μg/mL咖啡碱和茶氨酸对细胞增殖无明显影响.20 μg/mL儿茶素能显著抑制3T3-L1细胞中TG的合成,而咖啡碱和茶氨酸对细胞脂肪沉积无明显影响.与单独添加NA相比,同时添加咖啡碱能显著促进NA诱导细胞中脂肪分解的能力.结论:儿荼素抑制脂肪细胞的增殖和脂肪沉积,咖啡碱促进激素诱导脂肪分解.绿茶成分中儿茶素和咖啡碱对脂肪细胞内的脂肪代谢有调节作用.%Objective: To investigate the effects of green tea components, catechins, caffeine and theanine on 3T3-L1 cells proliferation and fat metabolism. Methods: 3T3—L1 cells were cultured in DMEM contained different concentrations of catechins, caffeine or theanine, and analyzed on cells proliferation and cytotoxicity. Then the differentiation of 3-T3—L1 cells were induced with these green tea components at noncytotoxic concentration for 96 hours. 6th day after differentiation, triglycerides (TG) in 3T3-L1 cells was measured. Lipolytic effect of green tea components in the present or absent of noradrenaline (NA) for 24 hours in 3T3-L1 cells was analyzed on 9th day after differentiation. Results: Above 20 μg/mL catechins significantly inhibited the proliferation of 3T3—L1 cells, but there was cytotoxic effect 40 and 80 μg/ mL. However, caffeine and

  12. Effects of Yerba maté, a Plant Extract Formulation (“YGD” and Resveratrol in 3T3-L1 Adipogenesis

    Directory of Open Access Journals (Sweden)

    Juliana C. Santos

    2014-10-01

    Full Text Available We aimed to evaluate the in vitro effects of yerba maté, YGD (a herbal preparation containing yerba maté, guarana and damiana, and resveratrol on adipogenesis. The anti-adipogenic effects of yerba mate, YGD, resveratrol and YGD + resveratrol and yerba mate + resveratrol combinations were evaluated in 3T3-L1 cells by Oil Red staining, cellular triglyceride content, and PCR quantitative array. The results demonstrated that all of the tested compounds inhibited adipogenesis. Yerba maté extract significantly down-regulated the expression of genes that play an important role in regulating adipogenesis, such as Adig, Axin, Cebpa, Fgf10, Lep, Lpl, and Pparγ2. In addition, these genes, YGD also repressed Bmp2, Ccnd1, Fasn, and Srebf1. Resveratrol also modulated the expression of Adig, Bmp2, Ccnd1, C/EBPα, Fasn, Fgf10, Lep, Lpl, and Pparγ2. Moreover, resveratrol repressed Cebpb, Cdk4, Fgf2, and Klf15. The yerba maté extract and YGD up-regulated the expression of genes involved in inhibiting adipogenesis, such as Dlk-1, Klf2, and Ucp1. Resveratrol also induced the expression of Klf2 and Ucp1. In addition resveratrol modulated the Ddit3, Foxo1, Sirt1, and Sirt2. The combined effects of these compounds on gene expression showed similar results observed from individual treatments. Our data indicates that the synergy between the compounds favors the inhibition of adipogenesis.

  13. Purification and Characterization of Aporphine Alkaloids from Leaves of Nelumbo nucifera Gaertn and Their Effects on Glucose Consumption in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Chengjun Ma

    2014-02-01

    Full Text Available Aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn are substances of great interest because of their important pharmacological activities, particularly anti-diabetic, anti-obesity, anti-hyperlipidemic, anti-oxidant, and anti-HIV’s activities. In order to produce large amounts of pure alkaloid for research purposes, a novel method using high-speed counter-current chromatography (HSCCC was developed. Without any initial cleanup steps, four main aporphine alkaloids, including 2-hydroxy-1-methoxyaporphine, pronuciferine, nuciferine and roemerine were successfully purified from the crude extract by HSCCC in one step. The separation was performed with a simple two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (5:3:3:2.5:5, v/v/v/v/v. In each operation, 100 mg crude extracts was separated and yielded 6.3 mg of 2-hydroxy-1-methoxyaporphine (95.1% purity, 1.1 mg of pronuciferine (96.8% purity, 8.5 mg of nuciferine (98.9% purity, and 2.7 mg of roemerine (97.4% respectively. The chemical structure of four aporphine alkaloids are identified by means of electrospray ionization MS (ESI-MS and nuclear magnetic resonance (NMR analysis. Moreover, the effects of four separated aporphine alkaloids on insulin-stimulated glucose consumption were examined in 3T3-L1 adipocytes. The results showed that 2-hydroxy-1-methoxyaporphine and pronuciferine increased the glucose consumption significantly as rosiglitazone did.

  14. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells.

    Science.gov (United States)

    Yang, Zhi-Gang; Matsuzaki, Keiichi; Takamatsu, Satoshi; Kitanaka, Susumu

    2011-01-01

    A new arylbenzofuran, 3',5'-dihydroxy-6-methoxy-7-prenyl-2-arylbenzofuran (1), and 25 known compounds, including moracin R (2), moracin C (3), moracin O (4), moracin P (5), artoindonesianin O (6), moracin D (7), alabafuran A (8), mulberrofuran L (9), mulberrofuran Y (10), kuwanon A (11), kuwanon C (12), kuwanon T (13), morusin (14), kuwanon E (15), sanggenon F (16), betulinic acid (17), uvaol (18), ursolic acid (19), β-sitosterol (20), oxyresveratrol 2-O-β-D-glucopyranoside (21), mulberroside A (22), mulberroside B (23), 5,7-dihydroxycoumarin 7-O-β-D-glucopyranoside (24), 5,7-dihydroxycoumarin 7-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (25) and adenosine (26), were isolated from Morus alba var. multicaulis Perro. (Moraceae). Their structures were determined by spectroscopic methods. The prenyl-flavonoids 11-14, 16, triterpenoids 17,18 and 20 showed significant inhibitory activity towards the differentiation of 3T3-L1 adipocytes. The arylbenzofurans 1-10 and prenyl-flavonoids 11-16 also showed significant nitric oxide (NO) production inhibitory effects in RAW264.7 cells. PMID:21772233

  15. 三种植物甾醇调控SRE元件和3T3-L1细胞脂肪化活性的作用%Effects of Three Plant Sterols on Activity of Sterol Regulatory Element and Adipogenesis of 3T3L-1

    Institute of Scientific and Technical Information of China (English)

    陈彦光; 张弦; 刘健

    2013-01-01

    [目的]为了研究植物甾醇对脂质代谢的调控作用.[方法]利用所构建的SRE荧光素酶活性测定系统,体外考察了豆甾醇、β-谷甾醇和菜油甾醇3种常见的植物甾醇对SRE元件的调控活性.[结果]植物甾醇能够增强SRE元件活性.植物甾醇也可以增加3T3-L1细胞的脂肪化作用.[结论]植物甾醇可能正调控脂质的合成.%[Objective] The research aimed to study the regulating effect of plant sterol on lipid metabolism.[Method] Luciferase reporter vector pGL3-basic that contained one or three sterol regulatory element (SRE) was transfected into HepG2,and luciferase activity of three plant sterols (stigmasterol,β-sitosterol and campesterol) was analyzed.[Result] The plant sterols had positive regulator of SRE.And plant sterols could increase adipogenesis of 3T3L-1.[Conclusion] Plant sterols could increase adipogenesis by increasing SRE activity.

  16. Effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture Efeito da suplementação com ácido linoléico conjugado sobre a atividade da lípase lipoprotéica em cultura de adipócitos 3T3-L1

    Directory of Open Access Journals (Sweden)

    Adriana Prais Botelho

    2009-10-01

    Full Text Available Supplementation with conjugated linoleic acid may reduce fat body mass and increase lean body mass in various species. Some studies have demonstrated that conjugated linoleic acid reduces body fat, in part, by inhibiting the activity of lipoprotein lipase in adipocytes. The objective of this work was to study the effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture. 3T3-L1 adipocytes received linoleic acid (group C or conjugated linoleic acid (group AE, supplemented with AdvantEdge® CLA, and group CO, supplemented with CLA One® in concentrations of 1 mmol/L. Heparin-releasable lipoprotein lipase activity was analyzed by means of a 3T3-L1 adipocyte culture. After 7 days, heparin-releasable lipoprotein lipase activity was lower in the groups AE and CO supplemented with conjugated linoleic acid. These results suggest that one of the mechanisms by which CLA is capable of reducing body fat is by reducing lipoprotein lipase activity.A suplementação com ácido linoléico conjugado pode reduzir a gordura corporal e aumentar a massa magra em diferentes espécies. Alguns estudos têm demonstrado que o ácido linoléico conjugado reduz a gordura corporal, por meio da inibição da atividade de lípase lipoprotéica em adipócitos. O objetivo deste estudo foi avaliar o efeito da suplementação com uma mistura de isômeros do ácido linoléico conjugado sobre a atividade da lípase lipoprotéica em cultura de adipócitos 3T3-L1. Os adipócitos 3T3-L1 receberam ácido linoléico (grupo controle ou ácido linoléico conjugado (grupo AE, suplementado com AdvantEdge® CLA, e grupo CO, suplementado com CLA One® na concentração de 1 mmol/L. A atividade de lípase lipoprotéica livre de heparina foi analisada pela média da cultura de adipócitos. Após 7 dias, a atividade da lípase lipoprotéica livre de heparina mostrou menores valores nos grupos AE e CO, suplementados com ácido linol

  17. A Herbal Formula HT048, Citrus unshiu and Crataegus pinnatifida, Prevents Obesity by Inhibiting Adipogenesis and Lipogenesis in 3T3-L1 Preadipocytes and HFD-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Yoon Hee Lee

    2015-05-01

    Full Text Available HT048 is a combination composed of Crataegus pinnatifida leaf and Citrus unshiu peel extracts. This study aimed to investigate potential anti-obesity effect of the combination. The 3T3-L1 adipocytes were treated with different doses of HT048 and triglyceride accumulation, glycerol release and adipogenesis-related genes were analyzed. For in vivo study, male Sprague Dawley rats were divided according to experimental diets: the chow diet group, the high-fat diet (HFD group, the HFD supplemented with orlistat group, the HFD supplemented with HT048 group (0.2% or 0.4% for 12 weeks. We measured the body weight, serum lipid levels and the expression of genes involved lipid metabolism. HT048 treatment dose-dependently suppressed adipocyte differentiation and stimulated glycerol release. The expressions of PPARγ and C/EBPα mRNA were decreased by HT048 treatment in adipocytes. HT048 supplementation significantly reduced the body and fat weights in vivo. Serum lipid levels were significantly lower in the HT048 supplemented groups than those of the HFD group. Expression of the hepatic lipogenesis-related genes were decreased and expression of the β-oxidation-related genes were increased in rats fed HT048 compared to that of animals fed HFD. These results suggest that HT048 has a potential benefit in preventing obesity through the inhibition of lipogenesis and adipogenesis.

  18. The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3T3-L1 adipocytes La combinación de resveratrol y CLA no incrementa el efecto hipolipemiante de cada molécula en adipocitos 3T3-L1

    Directory of Open Access Journals (Sweden)

    A. Lasa

    2011-10-01

    Full Text Available Introduction: Trans-10, cis-12 conjugated linoleic acid (CLA and resveratrol have been shown to reduce TG content in cultured 3T3-L1 adipocyte acting on different pathways. In recent years, the method of simultaneously targeting several signal transduction pathways with multiple natural products in order to achieve additive or synergistic effects has been tested. However, the combined effect of both molecules on lipid metabolism has not been described before. Objective: The aim of the present work was to analyze the effect of the combination of trans-10, cis-12 CLA and resveratrol on TG accumulation as well as on FAS, HSL and ATGL expression in 3T3-L1 mature adipocytes, in order to assess a potential interaction between both molecules. Methods: For this purpose, 3T3-L1 mature adipocytes were treated with the two molecules, both separately and combined, in 10 and 100 μM for 20 hours. TG content and FAS, ATGL and HSL expression were measured by spectrophotometry and Real Time RT-PCR respectively. Results: Both doses of CLA and 100 M resveratrol decreased TG content in mature adipocytes. The combination of both molecules reduced TG accumulation to the same extent as each one separately. No change in FAS and HSL mRNA levels after CLA and resveratrol treatment was observed. ATGL was not modified by CLA but it was increased by resveratrol and by the combination. This combination did not increase the effect caused by resveratrol on its own. Conclusion: Lipolysis increase via ATGL is involved in the TG reduction induced by resveratrol and the combination of both molecules. The combination of these two molecules does not increase the efficacy of each molecule separately in mature adipocytes and thus it does not represent an advantage for obesity treatment or prevention.Introducción: Se ha demostrado que el ácido linoleico trans-10, cis-12 conjugado (ALC y el resveratrol reducen el contenido de TG en el adipocito 3T3-L1 cultivado actuando sobre

  19. Purple Sweet Potato Leaf Extract Induces Apoptosis and Reduces Inflammatory Adipokine Expression in 3T3-L1 Differentiated Adipocytes

    Directory of Open Access Journals (Sweden)

    Shou-Lun Lee

    2015-01-01

    Full Text Available Background. Purple sweet potato leaves (PSPL are widely grown and are considered a healthy vegetable in Taiwan. PSPL contain a high content of flavonoids, and the boiling water-extracted PSPL (PSPLE is believed to prevent metabolic syndrome. However, its efficacy has not yet been verified. Therefore, we investigated the effect of PSPLE on adipocytes. Methods. The differentiated 3T3-L1 cells used in this study were derived from preadipocytes that were differentiated into adipocytes using an adipogenic agent (insulin, dexamethasone, and 3-isobutyl-1-methylxanthine; approximately 90% of the cells were differentiated using this method. Results. Treating the differentiated 3T3-L1 cells with PSPLE caused a dose-dependent decrease in the number of adipocytes rather than preadipocytes. In addition, treatment with PSPLE resulted in apoptosis of the differentiated 3T3-L1 cells as determined by DAPI analysis and flow cytometry. PSPLE also increased the expression of cleaved caspase-3 and poly ADP-ribose polymerase (PARP. Furthermore, PSPLE induced downregulation of interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α gene expression in the differentiated 3T3-L1 cells. Conclusions. These results suggest that PSPLE not only induced apoptosis but also downregulated inflammation-associated genes in the differentiated 3T3-L1 cells.

  20. Dimethyl 3, 3', 4, 4'-tetrahydroxy-δ-truxinate isolated from the leaves of Andrographis lineata.Wall. ex. Nees suppress adipogenesis in 3T3-L1 preadipocytes for type 2 diabetes.

    Science.gov (United States)

    Deepa, Vijayakumar Sudarshana; Rajaram, Krishnasamy; Sureshkumar, Periyasamy

    2015-03-01

    The present investigation elucidates the isolation and characterization of bioactive compound from the ethanolic leaf extract of Andrographis lineata (EtALL) which suppress the differentiation of 3T3-L1 adipocytes. The ethanolic leaf extract was subjected to bioassay guided fractionation in 3T3-L1 cell lines. Five fractions were isolated from the EtALL extract by column chromatography. All the Fractions (I-V) along with EtALL were screened for adipogenesis activity (Oil-Red-O staining).The fraction which showed maximum adipogenesis activity was purified by thin layer chromatography. The bioactive Fraction IV was found to have maximum adipogenic (96.83%) activity and the activity was comparable to Rosiglitazone. The spectroscopic data analysis reveals that, the isolated bioactive compound was Dimethyl 3, 3', 4, 4'-tetrahydroxy-δ-truxinate (DTδT), a combination of truxillic and truxinic acid derivative. DTδT showed insulin mimicking (131.2%), sensitizing (810.02%) and adipogenic activity (80.23%). Hence our present study concluded that, Dimethyl 3, 3', 4, 4'-tetrahydroxy-δ-truxinate isolated from the ethanolic leaf extract of Andrographis lineata stimulates glucose uptake, potentiates insulin-stimulated glucose in 3T3-L1 adipocytes without increasing adiposity. PMID:25730801

  1. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jing [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Liu, Gexiu [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Yan, Guoyao [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); He, Dongmei [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Zhou, Ying [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Chen, Shengting, E-mail: shengtingchen@sina.cn [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China)

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  2. 不同程度间歇低氧对3T3-L1脂肪细胞炎性细胞因子和脂肪因子的影响%Effects of Different Degrees of Intermittent Hypoxia on Inflammatory Cytokines and Adipokines in 3T3-L1 Adipocytes

    Institute of Scientific and Technical Information of China (English)

    杨庆婵; 周芹; 王彦; 何庆; 冯靖; 陈宝元

    2013-01-01

    目的:测定不同程度间歇低氧(IH)处理的3T3-L1脂肪细胞中炎性细胞因子和脂肪因子水平的变化。方法建立阻塞性睡眠呼吸暂停(OSA)模式间歇低氧/再氧合(IH/ROX)细胞模型,将分化成熟的3T3-L1脂肪细胞分为5组,即3个不同程度IH组(5%O2,7.5%O2,10%O2,编号为IH-1,IH-2,IH-3)、持续低氧(10%O2,CH)组和正常氧对照(21%O2,IN)组。采用ELISA法测定脂肪细胞上清液中肿瘤坏死因子(TNF)-α、白细胞介素(IL)-6、瘦素和脂联素的水平,Western blot测定脂肪细胞中低氧诱导因子(HIF)-1α、葡萄糖转运蛋白(Glut)-1水平,Real-time-PCR测定脂肪细胞中HIF-1α、Glut-1、TNF-α、IL-6、瘦素、脂联素的mRNA表达水平。结果 IH组和CH组TNF-α、IL-6和瘦素蛋白及其mRNA水平均高于IN组,IH-1组TNF-α、IL-6和瘦素蛋白及瘦素mRNA水平高于IH-2、IH-3组(均P<0.05);IH组和CH组脂联素蛋白及其mRNA水平均低于IN组,IH-1组低于IH-2、IH-3组(均P<0.05)。结论OSA模式IH与脂肪细胞炎性细胞因子和脂肪因子的表达和释放有关,IH可能是脂肪细胞炎症反应的基础,参与OSA患者胰岛素抵抗的发生。%Objective To study the effect of different degrees of intermittent hypoxia (IH) on inflammatory cytokines and adipokines in 3T3-L1 adipocytes. Methods An intermittent hypoxia/reoxygenation (IH/ROX) from obstructive sleep apnea (OSA) adipocyte model was established. 3T3-L1 adipocytes were divided into five groups, three IH groups (5% O2, 7.5%O2 and 10%O2, referred to as IH-1, IH-2 and IH-3), sustained hypoxia group (10%O2, CH) and the normal oxygen control group (21%O2, IN). ELISA method was used to detect values of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), leptin and adiponectin in cell supernatant. Western blot analysis was used to detect levels of hypoxia-inducible fac-tor-1α(HIF-1α) and glucose transporter-1 (Glut

  3. Pharmacological Effects of the Water Fraction of Key Components in the Traditional Chinese Prescription Mai Tong Fang on 3T3-L1 Adipocytes and ob/ob Diabetic Mice

    OpenAIRE

    Liang Ma; Li Huang; Heying Pei; Zhuowei Liu; Caifeng Xie; Lei Lei; Xiaoxin Chen; Haoyu Ye; Aihua Peng; Lijuan Chen

    2014-01-01

    Mai Tong Fang (MTF), a Chinese herbal combination, has been used for the treatment of diabetic nephropathy in traditional medical clinics in China. However, the anti-adipogenic and anti-hyperglycemic effects of MTF have not been fully elucidated, so this study explored these pharmacological activities in 3T3-L1 adipocytes and ob/ob mice, respectively, of the water fraction of milkvetch root, salviae miltiorrhizae and mulberry as key components of MTF. MTF was found to inhibit adipogenesis and...

  4. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, Chiaki; Takahashi, Katsuhiko [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan); Kagechika, Hiroyuki [School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062 (Japan); Takahashi, Noriko, E-mail: t-noriko@hoshi.ac.jp [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan)

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  5. Traditional Herbal Formula Oyaksungi-San Inhibits Adipogenesis in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Sae-Rom Yoo

    2015-01-01

    Full Text Available Background. Oyaksungi-san (OYSGS is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells. Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH activity, leptin production, mRNA, and protein levels of adipogenesis-related factors. Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH activity, triglyceride (TG content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α, and peroxisome proliferator-activated receptor gamma (PPAR-γ. Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK as well as its substrate acetyl CoA (ACC carboxylase. Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity.

  6. Xylitol does not directly affect adiponectin productionand adipogenesis in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Pilaiwan Siripurkpong

    2014-08-01

    Full Text Available Xylitol is widely used as a low-calorie sweetener in various kinds of food products, including diabetic foods. Adiponectin, secreted by adipocytes, plays a key role in carbohydrate and lipid metabolism. Low levels of plasma adiponectin are associated with cardiovascular disease and type II diabetes. The aims of this study were to determine effects of xylitol on the adipogenesis of pre-adipocytes, adiponectin synthesis and secretion. To assess adipogenesis, pre-adipocyte 3T3-L1 cells were treated with xylitol during cell differentiation and fat droplets in the mature adipocytes were stained with oil red O. Adiponectin levels were determined by Western blot in both culture media and mature adipocytes treated with xylitol. There were no significant differences in the levels of adipogenesis, adiponectin synthesis and secretion in the xylitol-treated 3T3-L1 cells compared with the untreated control cells. This suggests that xylitol does not have a direct effect on adipogenesis or on adiponectin synthesis and secretion.

  7. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Akio, E-mail: watanabea@jfrl.or.jp [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan); Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan)

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  8. Glucose- and Triglyceride-lowering Dietary Penta-O-galloyl-α-D-Glucose Reduces Expression of PPARγ and C/EBPα, Induces p21-Mediated G1 Phase Cell Cycle Arrest, and Inhibits Adipogenesis in 3T3-L1 Preadipocytes.

    Science.gov (United States)

    Liu, X; Malki, A; Cao, Y; Li, Y; Qian, Y; Wang, X; Chen, X

    2015-05-01

    Plant polyphenols, such as hydrolysable tannins, are present in the human diet and known to exhibit anti-diabetic and anti-obesity activity. We previously reported that the representative hydrolysable tannin compound α-penta-galloyl-glucose (α-PGG) is a small molecule insulin mimetic that, like insulin, binds to insulin receptor (IR) and activates the IR-Akt-GLUT4 signaling pathway to trigger glucose transport and reduce blood glucose levels in db/db and ob/ob diabetic mice. However, its effects on adipogenesis and lipid metabolism were not known. In this study, high fat diet (HFD)-induced diabetic and obese mice were treated with α-PGG to determine its effects on blood glucose and triglycerides. 3T3-L1 preadipocytes were used as a cell model for identifying the anti-adipogenic activity of α-PGG at molecular and cellular levels as a first step in elucidating the mechanism of action of the compound. In vivo, oral administration of α-PGG significantly reduced levels of blood glucose, triglyceride, and insulin in HFD-induced diabetic/obese mice (Pobese and diabetic mice. It selectively inhibited some but not all major adipogenic pathways as well as the mTOR-p21-mediated cell cycle regulatory pathway. It is very likely that these apparently diverse but coordinated activities together inhibited adipogenesis. These results expand our knowledge on how PGG works in adipocytes and further confirm that α-PGG functions as an orally-deliverable natural insulin mimetic with adipogenetic modulatory functions. PMID:25988880

  9. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    Science.gov (United States)

    Ariemma, Fabiana; D'Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (pdevelopment, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases. PMID:26942597

  10. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Lei, E-mail: anleim@yahoo.com.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Pang, Yun-Wei, E-mail: yunweipang@126.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Research Unit for Animal Life Sciences, Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki-Iwama 319-0206 (Japan); Tao, Li, E-mail: Eunice8023@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118 (China); Miao, Kai, E-mail: miaokai7@163.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Wu, Zhong-Hong, E-mail: wuzhh@cau.edu.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  11. Anthraquinones from Morinda officinalis roots enhance adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Liu, Qing; Kim, Seon Beom; Ahn, Jong Hoon; Hwang, Bang Yeon; Kim, Sung Yeon; Lee, Mi Kyeong

    2012-01-01

    To search for anti-diabetic and insulin-sensitising natural products, the effect on adipocyte differentiation was investigated by assessing fat accumulation in 3T3-L1 preadipocytes using Oil Red O staining. Fractionation and separation of n-hexane and CHCl₃ fractions of Morinda officinalis (Rubiaceae) using several chromatographic methods led to the isolation of three anthraquinones, 1,2-dimethoxyanthraquinone (1), alizarin-2-methyl ether (2) and rubiadin-1-methyl ether (3). Among them, alizarin-2-methyl ether (2) showed the strongest enhancing activity, followed by rubiadin-1-methyl ether (3) and 1,2-dimethoxyanthraquinone (1). At a concentration of 100 µM, alizarin-2-methyl ether (2) enhanced adipocyte differentiation by up to 131% (compared to insulin-treated cells). Thus, these compounds could be beneficial in the treatment of diabetes. PMID:22008000

  12. CLOCK promotes 3T3-L1 cell proliferation via Wnt signaling.

    Science.gov (United States)

    Zhu, Zhu; Hua, Bingxuan; Xu, Lirong; Yuan, Gongsheng; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Lu, Chao; Qian, Ruizhe

    2016-07-01

    Circadian genes control most of the physiological functions including cell cycle. Cell proliferation is a critical factor in the differentiation of progenitor cells. However, the role of Clock gene in the regulation of cell cycle via wingless-type (Wnt) pathway and the relationship between Clock and adipogenesis are unclear. We found that the circadian locomotor output cycles kaput (Clock) regulated the proliferation and the adipogenesis of 3T3-L1 preadipocytes. We found that Clock attenuation inhibited the viability of 3T3-L1 preadipocytes in the cell counting kit 8. The expression of c-Myc and Cyclin D1 decreased dramatically in 3T3-L1 when Clock was silenced with short interfering RNA and was also decreased in fat tissue and adipose tissue-derived stem cells of Clock(Δ19) mice. Clock directly controls the expression of the components of Wnt signal transduction pathway, which was verified by serum shock, chromatin immunoprecipitation, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, IWR-1, a Wnt signal pathway inhibitor, inhibited the cell cycle promotion by CLOCK, which was detected by cell viability assay, flow cytometry, and qRT-PCR. Therefore, CLOCK transcription control of Wnt signaling promotes cell cycle progression in 3T3-L1 preadipocytes. Clock inhibited the adipogenesis on day 2 in 3T3-L1 cells via Oil Red O staining and qRT-PCR detection and probably related to cellular differentiation. These data provide evidence that the circadian gene Clock regulates the proliferation of preadipocytes and affects adipogenesis. © 2016 IUBMB Life, 68(7):557-568, 2016. PMID:27194636

  13. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes

    Science.gov (United States)

    Kuroda, Masashi; Tominaga, Ayako; Nakagawa, Kasumi; Nishiguchi, Misa; Sebe, Mayu; Miyatake, Yumiko; Kitamura, Tadahiro; Tsutsumi, Rie; Harada, Nagakatsu; Nakaya, Yutaka; Sakaue, Hiroshi

    2016-01-01

    Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis. PMID:27494408

  14. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    International Nuclear Information System (INIS)

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5

  15. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Kyoung [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Tae-Yoon [Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-gu, Daegu 705-717 (Korea, Republic of); Choi, Jong-Soon [Division of Life Science, Korea Basic Science Institute, 169-148 Gwahakro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Hong, Victor Sukbong [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Jinho, E-mail: jinho@gw.kmu.ac.kr [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Park, Jong-Wook, E-mail: j303nih@dsmc.or.kr [Department of Immunology, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of)

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  16. Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation.

    Science.gov (United States)

    Joo, Jeong In; Kim, Dong Hyun; Yun, Jong Won

    2010-11-01

    Chaga mushroom (Inonotus obliquus) has long been used as a folk medicine due to its numerous biological functions such as antibacterial, antiallergic, antiinflammatory and antioxidative activities. In the present study, it was found that the I. obliquus hot water extract (IOWE) activated adipogenesis of 3T3-L1 preadipocytes. Even in the absence of adipogenic stimuli by insulin, the IOWE strongly induced adipogenesis of 3T3-L1 preadipocytes. The major constituent of IOWE was glucose-rich polysaccharides with a molecular mass of 149  kDa. IOWE enhanced the differentiation of 3T3-L1 preadipocytes, increasing TG (triacylglycerol) accumulation that is critical for acquisition of the adipocyte phenotype, in a dose-dependent manner. IOWE stimulated gene expression of C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome proliferator-activated receptors γ) during adipocyte differentiation, and induced the expression of PPARγ target genes such as aP2 (adipocyte protein 2), LPL (lipoprotein lipase) and CD36 (fatty acid translocase). Immunoblot analysis revealed that IOWE increased the expression of adipogenic makers such as PPARγ and GLUT4 (glucose transporter 4). The luciferase reporter assay demonstrated that IOWE did not exhibit PPARγ ligand activity. Although these results require further investigation, the ability of natural mushroom product to increase PPARγ transcriptional activities may be expected to be therapeutic targets for dyslipidemia and type 2 diabetes. PMID:21031614

  17. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    Science.gov (United States)

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (Psize of lipid droplets in 3T3-L1 adipocytes (Padipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (Psize (P>0.05) and remedy the palmitate damage induced cell death (Padipocytes. PMID:27157327

  18. Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jeong [Department of Biochemistry, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of); Park, Sahng Wook [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Hojeong [Department of Anatomy, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of); Park, Sang-Kyu, E-mail: 49park@kd.ac.kr [Department of Biochemistry, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of); Yoon, Dojun, E-mail: mozart@kd.ac.kr [Department of Biochemistry, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of)

    2010-02-19

    Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor {gamma}2, CCAAT/enhancer-binding protein alpha (C/EBP{alpha}), sterol regulatory element binding protein-1c, and Krueppel-like factor 15, but not those of C/EBP{beta} or C/EBP{delta}, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.

  19. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    Directory of Open Access Journals (Sweden)

    Chia-Chien Hsieh

    Full Text Available Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development.

  20. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    Science.gov (United States)

    Hsieh, Chia-Chien; Huang, Yu-Shan

    2016-01-01

    Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF)-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM) and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development.

  1. Exogenous Sodium Pyruvate Stimulates Adipogenesis of 3T3-L1 Cells.

    Science.gov (United States)

    Hwang, Ji-Sun; Kim, Song-Yi; Jung, Eun-Hye; Kwon, Mi-Youn; Kim, Kyoung-Hong; Cho, Hyeongjin; Han, Inn-Oc

    2016-01-01

    We investigated the effects of exogenous sodium pyruvate (SP) on adipocyte differentiation, lipid accumulation, and the mRNA expression levels of adipogenesis-related genes in 3T3-L1 pre-adipocytes. Differentiation of pre-adipocytes was induced by MDI (3-isobutyl-1-methylxanthine: IBMX, dexamethasone: DEX, and insulin), in the presence or absence of SP. Adipogenesis was stimulated by SP in a concentration-dependent manner. SP also induced the expression of genes encoding aP2, GLUT4, and adiponectin, but had no effect on cell proliferation. Exogenous glucose did not promote adipogenesis or lipid accumulation. 2-deoxy-D-glucose inhibited adipogenesis initiated by MDI, but failed to influence the effects of SP on adipogenesis, whereas 3-bromopyruvate inhibited adipogenesis regardless of whether SP was present. The pro-adipogenic properties of SP were limited to the early events of adipogenesis. To determine whether SP mimics the adipogenic action of dexamethasone or insulin, we examined the effects of SP on adipogenesis with combinations of IBMX, DEX, and insulin. SP did not improve incomplete lipid accumulation observed in cells grown under IBMX-, DEX-, or insulin-free conditions. Insulin-stimulated ERK1/2 phosphorylation was diminished by SP, while phosphorylation of Akt was increased, correlating with increased glucose uptake in response to insulin. We also observed that SP stimulated immediate early expression of C/EBPβ and C/EBPδ. The PPARγ antagonist GW9662 inhibited adipogenesis. Our findings highlight the adipogenic function of exogenous SP by stimulating early events of adipogenesis. PMID:26053972

  2. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Fabiana Ariemma

    Full Text Available Environmental endocrine disruptors (EDCs, including bisphenol-A (BPA, have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01. In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ, Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2 and CCAAT/enhancer binding protein (C/EBPα was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05 and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001. Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6 and interferon-γ (IFNγ were significantly increased (p<0.05. In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases.

  3. The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/β-catenin signaling pathway

    Science.gov (United States)

    KIM, YOUNG-MIN; KIM, IN-HYE; CHOI, JEONG-WOOK; LEE, MIN-KYEONG; NAM, TAEK-JEONG

    2015-01-01

    The differentiation of 3T3-L1 cells into adipocytes involves the activation of an organized system of obesity-related genes, of which those encoding CCAAT/enhancer-binding proteins (C/EBPs) and the Wnt-10b protein may play integral roles. In a previous study of ours, we found that a specific peptide found in tuna (sequence D-I-V-D-K-I-E-I; termed TP-D) inhibited 3T3-L1 cell differentiation. In the present study, we observed that the expression of expression of C/EBPs and Wnt-10b was associated with obesity. The initial step of 3T3-L1 cell differentiation involved the upregulation of C/EBP-α expression, which in turn activated various subfactors. An upstream effector of glycogen synthase kinase-3β (GSK-3β) inhibited Wnt-10b expression in 3T3-L1 adipocytes. In a previous study of ours, we sequenced the tuna peptide via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS) and confirmed the anti-obesity effects thereof in 3T3-L1 adipocytes. In the present study, we demonstrate that TP-D inhibits C/EBP and promotes Wnt-10b mRNA expression, thus activating the Wnt pathway. The inhibition of lipid accumulation was measured using a glucose and triglyceride (TG) assay. Our results confirmed that TP-D altered the expression levels of C/EBP-related genes in a dose-dependent manner and activated the Wnt signaling pathway. In addition, we confirmed that total adiponectin and high-molecular weight (HMW) adiponectin levels were reduced by treatment with TP-D. These data indicate that TP-D inhibits adipocyte differentiation through the inhibition of C/EBP genes and the subsequent activation of the Wnt/β-catenin signaling pathway. PMID:26046125

  4. The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Kim, Young-Min; Kim, In-Hye; Choi, Jeong-Wook; Lee, Min-Kyeong; Nam, Taek-Jeong

    2015-08-01

    The differentiation of 3T3-L1 cells into adipocytes involves the activation of an organized system of obesity-related genes, of which those encoding CCAAT/enhancer-binding proteins (C/EBPs) and the Wnt-10b protein may play integral roles. In a previous study of ours, we found that a specific peptide found in tuna (sequence D-I-V-D-K-I-E-I; termed TP-D) inhibited 3T3-L1 cell differentiation. In the present study, we observed that the expression of expression of C/EBPs and Wnt-10b was associated with obesity. The initial step of 3T3-L1 cell differentiation involved the upregulation of C/EBP-α expression, which in turn activated various subfactors. An upstream effector of glycogen synthase kinase-3β (GSK-3β) inhibited Wnt-10b expression in 3T3-L1 adipocytes. In a previous study of ours, we sequenced the tuna peptide via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS) and confirmed the anti-obesity effects thereof in 3T3-L1 adipocytes. In the present study, we demonstrate that TP-D inhibits C/EBP and promotes Wnt-10b mRNA expression, thus activating the Wnt pathway. The inhibition of lipid accumulation was measured using a glucose and triglyceride (TG) assay. Our results confirmed that TP-D altered the expression levels of C/EBP-related genes in a dose-dependent manner and activated the Wnt signaling pathway. In addition, we confirmed that total adiponectin and high-molecular weight (HMW) adiponectin levels were reduced by treatment with TP-D. These data indicate that TP-D inhibits adipocyte differentiation through the inhibition of C/EBP genes and the subsequent activation of the Wnt/β-catenin signaling pathway.

  5. Aspartame downregulates 3T3-L1 differentiation.

    Science.gov (United States)

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.

  6. Effect of globular domain of adiponectin on pentose phosphate pathway key enzyme of 3T3 adipocyte%脂联素球状结构域对3T3-L1脂肪细胞磷酸戊糖途径关键酶表达的影响

    Institute of Scientific and Technical Information of China (English)

    王彦; 廉如; 陈思思; 高婷婷; 吴彬; 陈显久

    2012-01-01

    Objective To investigate the effect of globular domain of adiponectin (gAd) on pentose phosphate pathway key enzyme of 3T3-L1 adipocytes. Methods Matured 3T3-L1 adipocytes were intervened with gAd, and realtime PCR (RT-PCR) was used to determine the transcription level of glucose-6-phosphatase (G6PD), the key enzyme in pentose phosphate pathway; the changes of transcription level of G6PD were expressed in changes of mRNA levels. All the data were analyzed statistically. Results G6PD transcription level was not different between gAd group and control group. Conclusions gAd promotes the intake of glucose by 3T3-L1 cells, and the catabolism of glucose taken probably was not via the pentose phosphate pathway.Objective To investigate the effect of globular domain of adiponectin (gAd) on pentose phosphate pathway key enzyme of 3T3-L1 adipocytes. Methods Matured 3T3-L1 adipocytes were intervened with gAd, and realtime PCR (RT-PCR) was used to determine the transcription level of glucose-6-phosphatase (G6PD), the key enzyme in pentose phosphate pathway; the changes of transcription level of G6PD were expressed in changes of mRNA levels. All the data were analyzed statistically. Results G6PD transcription level was not different between gAd group and control group. Conclusions gAd promotes the intake of glucose by 3T3-L1 cells, and the catabolism of glucose taken probably was not via the pentose phosphate pathway.%目的:通过探讨脂联素球状结构域(gAd)对3T3-L1脂肪细胞磷酸戊糖途径关键酶表达的影响,进而探讨gAd促进脂肪细胞摄取的葡萄糖是否经磷酸戊糖途径代谢.方法:用gAd干预分化成熟的3T3-L1脂肪细胞,干预结束后测定细胞残液的葡萄糖浓度,并以实时荧光定量PCR(RT-PCR)法检测各组细胞磷酸戊糖途径关键酶葡萄糖-6-磷酸酶(G6PD)转录水平的表达情况,进行统计学分析.结果:各实验组细胞残液中葡萄糖浓度均显著低于对照组(均P<O.01);各实验组G6PD

  7. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Colette N Miller

    Full Text Available Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1, enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM following standard differentiation supplemented with thyroid hormone (T3; 1 nM. The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1 were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.

  8. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    Science.gov (United States)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  9. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    OpenAIRE

    Nabilatul Hani Mohd-Radzman; Wan Iryani Wan Ismail; Siti Safura Jaapar; Zainah Adam; Aishah Adam

    2013-01-01

    Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Fi...

  10. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes.

    OpenAIRE

    MacDougald, O A; Hwang, C. S.; Fan, H; Lane, M D

    1995-01-01

    A mutation within the obese gene was recently identified as the genetic basis for obesity in the ob/ob mouse. The obese gene product, leptin, is a 16-kDa protein expressed predominantly in adipose tissue. Consistent with leptin's postulated role as an extracellular signaling protein, human embryonic kidney 293 cells transfected with the obese gene secreted leptin with minimal intracellular accumulation. Upon differentiation of 3T3-L1 preadipocytes into adipocytes, the leptin mRNA was expresse...

  11. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Masubuchi

    Full Text Available BACKGROUND: Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS: In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6. The α subunits of Gs (Gαs and G14 (Gα14 but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. CONCLUSIONS: 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.

  12. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Nabilatul Hani Mohd-Radzman

    2013-01-01

    Full Text Available Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p<0.001 in normal conditions and up to 4.4 times (p<0.001 in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.

  13. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chian-Jiun Liou

    2015-01-01

    Full Text Available Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK, resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C, ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.

  14. Phenyllactic Acid from Lactobacillus plantarum PromotesAdipogenic Activity in 3T3-L1 Adipocyte via Up-Regulationof PPAR-γ2

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    2015-08-01

    Full Text Available Synthetic drugs are commonly used to cure various human ailments at present. However, the uses of synthetic drugs are strictly regulated because of their adverse effects. Thus, naturally occurring molecules may be more suitable for curing disease without unfavorable effects. Therefore, we investigated phenyllactic acid (PLA from Lactobacillus plantarum with respect to its effects on adipogenic genes and their protein expression in 3T3-L1 pre-adipocytes by qPCR and western blot techniques. PLA enhanced differentiation and lipid accumulation in 3T3-L1 cells at the concentrations of 25, 50, and 100 μM. Maximum differentiation and lipid accumulation were observed at a concentration of 100 μM of PLA, as compared with control adipocytes (p < 0.05. The mRNA and protein expression of PPAR-γ2, C/EBP‑α, adiponectin, fatty acid synthase (FAS, and SREBP-1 were increased by PLA treatment as compared with control adipocytes (p < 0.05. PLA stimulates PPAR-γ mRNA expression in a concentration dependent manner, but this expression was lesser than agonist (2.83 ± 0.014 fold of PPAR-γ2. Moreover, PLA supplementation enhances glucose uptake in 3T3-L1 pre-adipocytes (11.81 ± 0.17 mM compared to control adipocytes, but this glucose uptake was lesser than that induced by troglitazone (13.75 ± 0.95 mM and insulin treatment (15.49 ± 0.20 mM. Hence, we conclude that PLA treatment enhances adipocyte differentiation and glucose uptake via activation of PPAR-γ2, and PLA may thus be the potential candidate for preventing Type 2 Diabetes Mellitus (T2DM.

  15. The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells.

    Science.gov (United States)

    Yu, Bangning; Cook, Carla; Santanam, Nalini

    2009-10-01

    Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor (PPAR)-gamma, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H(2)O(2)) (100 microM) or tumor necrosis factor-alpha (TNFalpha) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5-100 microM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARgamma, and C/EBPalpha to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H(2)O(2) or TNFalpha and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5-25 microM) having a larger inductive effect compared to higher concentrations (50-100 microM). Boldine treatment alone in the absence of H(2)O(2) or TNFalpha was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  16. Hydrogen sulfide promotes adipogenesis in 3T3L1 cells.

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    Full Text Available The effect of hydrogen sulfide (H2S on differentiation of 3T3L1-derived adipocytes was examined. Endogenous H2S was increased after 3T3L1 differentiation. The expression of the H2S-synthesising enzymes, cystathionine γ-lyase (CSE, cystathionine β-synthase (CBS and 3-mercaptopyruvate sulfurtransferase (3-MST, was increased in a time-dependent manner during 3T3L1 differentiation. Expression of genes associated with adipogenesis related genes including fatty acid binding protein 4 (FABP4/aP2, a key regulator of this process, was increased by GYY4137 (a slow-releasing H2S donor compound and sodium hydrosulfide (NaHS, a classical H2S donor but not by ZYJ1122 or time-expired NaHS. Furthermore expression of these genes were reduced by aminooxyacetic acid (AOAA, CBS inhibitor, DL-propargylglycine (PAG, CSE inhibitor as well as by CSE small interference RNA (siCSE and siCBS. The size and number of lipid droplets in mature adipocytes was significantly increased by both GYY4137 and NaHS, which also impaired the ability of CL316,243 (β3-agonist to promote lipolysis in these cells. In contrast, AOAA and PAG had the opposite effect. Taken together, we show that the H2S-synthesising enzymes CBS, CSE and 3-MST are endogenously expressed during adipogenesis and that both endogenous and exogenous H2S modulate adipogenesis and adipocyte maturation.

  17. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors

  18. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Yang, Ying, E-mail: yangying_sh@yahoo.com [Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Shen, Weili, E-mail: weili_shen@hotmail.com [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  19. Over-expression of NYGGF4 inhibits glucose transport in 3T3-L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt

    Institute of Scientific and Technical Information of China (English)

    Chun-mei ZHANG; Xiao-hui CHEN; Bin WANG; Feng LIU; Xia CHI; Mei-ling TONG; Yu-hui NI; Rong-hua CHEN; Xi-rong GUO

    2009-01-01

    Aim: NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese patients. The purpose of this study was to investigate the effects of NYGGF4 on basal and insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes and to understand the underlying mechanisms. Methods: 3T3-L1 preadipocytes transfected with either an empty expression vector (pcDNA3.1Myc/His B) or an NYGGF4 expression vector were differentiated into mature adipocytes. Glucose uptake was determined by measuring 2-deoxy-D-[3H]glucose uptake into the adipocytes. Immunoblotting was performed to detect the translocation of insulin-sensitive glu-cose transporter 4 (GLUT4). Immunoblotting also was used to measure the phosphorylation and total protein contents of insulin signaling proteins such as the insulin receptor (IR), insulin receptor substrate (IRS)-I, Akt, ERK1/2, p38, and JNK. Results: NYGGF4 over-expression in 3T3-L1 adipocytes reduced insulin-stimulated glucose uptake and impaired insulin-stimulated GLUT4 translocation. It also diminished insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phos-phorylation of Akt without affecting the phosphorylation of IR, ERK1/2, p38, and JNK. Conclusion: NYGGF4 regulates the functions of IRS-1 and Akt, decreases GLUT4 translocation and reduces glucose uptake in response to insulin. These observations highlight the potential role of NYGGF4 in glucose homeostasis and possibly in the pathogenesis of obesity.

  20. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells

    OpenAIRE

    Kim Gon-Sup; Park Hyoung Joon; Woo Jong-Hwa; Kim Mi-Kyeong; Koh Phil-Ok; Min Wongi; Ko Yeoung-Gyu; Kim Chung-Hei; Won Chung-Kil; Cho Jae-Hyeon

    2012-01-01

    Abstract Background Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF) on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells. Methods During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein...

  1. Regulation of lipoprotein lipase synthesis in 3T3-L1 adipocytes by interleukin-1

    International Nuclear Information System (INIS)

    When fully differentiated 3T3-L1 fatty fibroblasts were exposed to purified, recombinant murine interleukin-1, a dose dependent suppression of lipoprotein lipase activity was observed. The loss of activity reached a maximum of 60-70% of control and appeared to be due to a specific effect on the synthesis of the enzyme as judged by a suppression of the ability to incorporate [35S]methionine into immunoprecipitable lipoprotein lipase. There was no general effect on protein synthesis as determined by radiolabel incorporated into acid precipitable protein, however, after a 17 h exposure of the 3T3-L1 cells to interleukin-1, the synthesis of two proteins (molecular weights, 19,400 and 165,000 daltons) was enhanced several fold. The observed effects on protein synthesis in the adipocytes occur at a concentration of interleukin-1 which is similar to the concentration necessary for the stimulation of [3H]thymidine incorporation into mouse thymocyte DNA. The present study represents the first unequivocal report of the ability of interleukin-1 to regulate protein synthesis in intact cells, specifically adipocytes. Moreover, their results demonstrate the ability of interleukin-1 to regulate metabolism by controlling the synthesis of specific proteins

  2. Traditional Korean Herbal Formula Samsoeum Attenuates Adipogenesis by Regulating the Phosphorylation of ERK1/2 in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Soo-Jin Jeong

    2015-01-01

    Full Text Available Adipogenesis is the cell differentiation process from preadipocytes into adipocytes and the critical action in the development of obesity. In the present study, we conducted in vitro analyses to investigate the inhibitory effects of Samsoeum (SSE, a traditional herbal decoction. SSE had no significant cytotoxic effect against either the undifferentiated or differentiated 3T3-L1 cells. Oil Red O staining results showed that SSE significantly inhibited fat accumulation in adipocytes. SSE treatment consistently reduced the intracellular triglyceride content in the cells. SSE significantly inactivated glycerol-3-phosphate dehydrogenase (GPDH, a major link between carbohydrate and lipid metabolisms in 3T3-L1 adipocytes, and markedly inhibited the production of leptin, an important adipokine, in differentiated cells. SSE markedly suppressed the mRNA expression of the adipogenesis-related genes peroxisome proliferator-activated receptor-gamma (PPAR-γ, CCAAT/enhancer binding protein-alpha (C/EBP-α, fatty acid synthase (FAS, lipoprotein lipase (LPL, and fatty acid binding protein 4 (FABP4. Importantly, SSE increased the phosphorylation of ERK1/2, but not p38 MAPK and JNK, in adipose cells. Overall, our results indicate that SSE exerts antiadipogenic activity and modulates expressions of adipogenesis-related genes and ERK1/2 activation in adipocytes.

  3. Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells.

    Science.gov (United States)

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-01-01

    This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells.

  4. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages

    Science.gov (United States)

    Morrison, Shona; McGee, Sean L

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes. PMID:26451286

  5. A Quantified Ginseng (Panax ginseng C.A. Meyer Extract Influences Lipid Acquisition and Increases Adiponectin Expression in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Chia-Rou Yeo

    2011-01-01

    Full Text Available A Panax ginseng extract (PGE with a quantified amount of ginsenosides was utilized to investigate its potential to inhibit proliferation, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Seven fingerprint ginsenosides were quantified using high performance liquid chromatography and their respective molecular weights were further confirmed via LC-ESI-MS analysis from four different extraction methods. Extraction using methanol under reflux produced significantly higher amounts of ginsenosides. The methanol extract consisted of Rg1 (47.40 ± 4.28 mg/g, dry weight of extract, Re (61.62 ± 5.10 mg/g, Rf (6.14 ± 0.28 mg/g, Rb1 (21.73 ± 1.29 mg/g, Rc (78.79 ± 4.15 mg/g, Rb2 (56.80 ± 3.79 mg/g, Rd (5.90 ± 0.41 mg/g. MTT analysis showed that PGE had a concentrationdependent cytotoxic effect on 3T3-L1 preadipocyte and the LC50 value was calculated to be 18.2 ± 5 μg/mL. Cell cycle analysis showed minimal changes in all four phases. Differentiating adipocytes treated with ginseng extract had a visible decrease in lipid droplets formation measured by Oil red O staining. Consequently, triglycerides levels in media significantly (P < 0.05 decreased by 39.5% and 46.1% when treated at concentrations of 1 μg/mL and 10 μg/mL compared to untreated control cells. Western blot analysis showed that the adiponectin protein expression was significantly (P < 0.05 increased at 10 μg/mL, but not at 1 μg/mL. A quantified PGE reduced the growth of 3T3-L1 cells, down-regulated lipid accumulation and up-regulated adiponectin expression in the 3T3-L1 adipocyte cell model.

  6. Piromelatine decreases triglyceride accumulation in insulin resistant 3T3-L1 adipocytes: role of ATGL and HSL.

    Science.gov (United States)

    Wang, Ping-Ping; She, Mei-Hua; He, Ping-Ping; Chen, Wu-Jun; Laudon, Moshe; Xu, Xuan-Xuan; Yin, Wei-Dong

    2013-08-01

    Piromelatine, a novel investigational multimodal sleep medicine, is developed for the treatment of patients with primary and co-morbid insomnia. Piromelatine has been shown to inhibit weight gain and improve insulin sensitivity in high-fat/high-sucrose-fed (HFHS) rats. Considering that piromelatine has also been implicated in lowering of triglyceride levels in HFHS rats, this work elucidated whether this effect involves in the regulation of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) in triglyceride (TG) metabolism. In this study, we investigated the effects of piromelatine and MT2 receptors inhibition on TG content, insulin-stimulated glucose uptake, and the expressions of ATGL and HSL in 3T3-L1 adipocytes preincubated in high glucose and high insulin (HGI) conditions. Our results showed that culturing 3T3-L1 adipocytes under HGI conditions increased triglyceride accumulation with concomitant decrease of ATGL and HSL expression, inducing insulin resistance in 3T3-L1 adipocytes. We also found that triglyceride accumulation was significantly inhibited and the levels of ATGL/HSL increased after melatonin or piromelatine treatment. The effects of melatonin/piromelatine (10 nM) were counteracted by pretreatment with the relatively selective MT2 receptor antagonist luzindole (100 nM). In this study, our data demonstrate that piromelatine reverses high glucose and high insulin-induced triglyceride accumulation in 3T3-L1 adipocytes, possibly through up-regulating of ATGL and HSL expression via a melatonin-dependent manner.

  7. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages

    OpenAIRE

    Morrison, Shona; McGee, Sean L.

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they r...

  8. Alteration of proteoglycan metabolism during the differentiation of 3T3- L1 fibroblasts into adipocytes

    OpenAIRE

    1991-01-01

    3T3-L1 fibroblasts were induced to differentiate to 3T3-L1 adipocytes by dexamethasone, isobutyl-methylxanthine, and insulin. To study how differentiation affects extracellular matrix production, the accumulation of proteoglycans was studied by labeling the 3T3-L1 cells with [35S]sulphate for 24 h. The labeled proteoglycans were isolated from the medium and cell layer extracts by anion-exchange chromatography. They were then taken to gel filtration chromatography on Superose 6 before or after...

  9. High-dose Resveratrol Inhibits Insulin Signaling Pathway in 3T3-L1 Adipocytes

    OpenAIRE

    Lee, Haemi; Kim, Jae-Woo

    2013-01-01

    Background Insulin resistance is a major factor in the development of metabolic syndrome and is associated with central obesity and glucose intolerance. Resveratrol, a polyphenol found in fruits, has been shown to improve metabolic conditions. Although it has been widely studied how resveratrol affects metabolism, little is known about how resveratrol regulates lipogenesis with insulin signaling in 3T3-L1 adipocytes. Methods: We treated differentiated 3T3-L1 adipocytes with resveratrol to obs...

  10. Ox-LDL induces ER stress and promotes the adipokines secretion in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Yaqin Chen

    Full Text Available Adipocytes behave as a rich source of adipokines, which may be the link between obesity and its complications. Endoplasmic reticulum (ER stress in adipocytes can modulate adipokines secretion. The aim of this study is to evaluate the effect of oxidized low density lipoprotein (ox-LDL treatment on ER stress and adipokines secretion in differentiated adipocytes. 3T3-L1 pre-adipocytes were cultured and differentiated into mature adipocytes in vitro. Differentiated adipocytes were incubated with various concentrations of ox-LDL (0-100 µg/ml for 48 hours; 50 µg/ml ox-LDL for various times (0-48 hours with or without tauroursodeoxycholic acid (TUDCA (0-400 µM pre-treatment. The protein expressions of ER stress markers, glucose regulated protein 78(GRP78 and CCAAT/enhancer binding protein [C/EBP] homologous protein (CHOP in adipocytes were detected by Western blot. The mRNA expressions of visfatin and resistin were measured by real-time PCR and the protein release of visfatin and resistin in supernatant were determined by ELISA. Treatment with ox-LDL could increase the cholesterol concentration in adipocytes. Ox-LDL induced the expressions of GRP78 and CHOP protein in adipocytes and promoted visfatin and resistin secretion in culture medium in dose and time-dependent manner. TUDCA could attenuate the effect of ox-LDL on GRP78 and CHOP expressions and reduce visfatin and resistin at mRNA and protein level in dose-dependent manner. In conclusion, ox-LDL promoted the expression and secretion of visfatin and resistin through its activation of ER stress, which may be related to the increase of cholesterol load in adipocytes.

  11. DNA Topoisomerase IIα contributes to the early steps of adipogenesis in 3T3-L1 cells.

    Science.gov (United States)

    Jacobsen, Rhîan G; Mazloumi Gavgani, Fatemeh; Mellgren, Gunnar; Lewis, Aurélia E

    2016-10-01

    DNA topoisomerases (Topo) are multifunctional enzymes resolving DNA topological problems such as those arising during DNA replication, transcription and mitosis. Mammalian cells express 2 class II isoforms, Topoisomerases IIα (Topo IIα) and IIβ (Topo IIβ), which have similar enzymatic properties but are differently expressed, in dividing and pluripotent cells, and in post-mitotic and differentiated cells respectively. Pre-adipocytes re-enter the cell cycle prior to committing to their differentiation and we hypothesised that Topo II could contribute to these processes. We show that Topo IIα expression in 3T3-L1 cells is induced within 16h after the initiation of the differentiation programme, peaks at 24h and rapidly declines thereafter. In contrast Topo IIβ was present both in pre-adipocytes and throughout differentiation. Inhibition of PI3K with LY294002, known to prevent adipocyte differentiation, consistently reduced the expression of Topo IIα, whereas a clear effect on Topo IIβ was not apparent. In addition, inhibition of mTOR with rapamycin also reduced the protein levels of Topo IIα. Using specific class IA PI3K catalytic subunit inhibitors, we show that p110α inhibition with A66 has the greatest reduction of Topo IIα expression and of differentiation, as measured by triglyceride storage. The timing of Topo IIα expression coincides with the mitotic clonal expansion (MCE) phase of differentiation and inhibition of Topo II with ICRF-187 during this stage decreased PPARγ1 and 2 protein levels and triglyceride storage, whereas inhibition later on has little impact. Moreover, the addition of ICRF-187 had no effect on the incorporation of EdU during S-phase at day 1 but lowered the relative cell numbers on day 2. ICRF-187 also induced an increase in the centri/pericentromeric heterochromatin localisation of Topo IIα, indicating a role for Topo IIα at these locations during MCE. In summary, we present evidence that Topo IIα plays an important role

  12. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Kim Gon-Sup

    2012-04-01

    Full Text Available Abstract Background Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells. Methods During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein expression of adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during adipocyte differentiation. Results The insulin-induced expression of C/EBPβ and PPARγ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPα, which is essential for the acquisition of insulin sensitivity by adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473 and GSK3β (Ser9, which may reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only inhibited triglyceride accumulation during adipogenesis but also contributed to the lipolysis of adipocytes. Conclusions In the present study, we demonstrate that CAF suppressed adipogenesis in 3T3-L1 adipocytes. Our results indicated that CAF down-regulates the expression of C/EBPβ and subsequently inhibits the activation of PPARγ and C/EBPα. The anti-adipogenic activity of CAF was mediated by the inhibition of Akt activation and GSK3β phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately inhibiting adipocyte differentiation.

  13. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM:To investigate the effects and molecular mechanisms of berberine on improving insulin resistance induced by free fatty acids (FFAs) in 3T3-LI adipocytes.METHODS:The model of insulin resistance in 3T3-L1 adipocytes was established by adding palmic acid (0.5 mmol/L) to the culture medium.Berberine treatment was performed at the same time.Glucose uptake rate was determined by the 2-deoxy-[3H]-Dglucose method.The levels of IkB kinase beta (IKKβ)Ser181 phosphorylation,insulin receptor substrate1(IRS-1) Ser307 phosphorylation,expression of IKKβ,IRS-1,nuclear transcription factor kappaB p65 (NF-κB p65),phosphatidylinositol-3-kinase p85(PI-3K p85) and glucose transporter 4 (GLUT4) proteins were detected by Western blotting.The distribution of NF-κB p65 proteins inside the adipocytes was observed through confocal laser scanning microscopy(CLSM).RESULTS:After the intervention of palmic acid for 24 h,the insulin-stimulated glucose transport in 3T3-L1 adipocytes was inhibited by 67%.Meanwhile,the expression of IRS-1 and PI-3K p85 protein was reduced,while the levels of IKKβ Ser181 and IRS-1 Ser307 phosphorylation,and nuclear translocation of NF-κB p65 protein were increased.However,the above indexes,which indicated the existence of insulin resistance,were reversed by berberine although the expression of GLUT4,IKKβ and total NF-κB p65 protein were not changed during this study.CONCLUSION:Insulin resistance induced by FFAs in 3T3-L1 adipocytes can be improved by berberine.Berberine reversed free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ.

  14. 4-Hydroxyderricin, as a PPARγ Agonist, Promotes Adipogenesis, Adiponectin Secretion, and Glucose Uptake in 3T3-L1 Cells.

    Science.gov (United States)

    Li, Yongjia; Goto, Tsuyoshi; Yamakuni, Kanae; Takahashi, Haruya; Takahashi, Nobuyuki; Jheng, Huei-Fen; Nomura, Wataru; Taniguchi, Masahiko; Baba, Kimiye; Murakami, Shigeru; Kawada, Teruo

    2016-07-01

    Adipocyte differentiation plays a pivotal role in maintaining the production of small-size adipocytes with insulin sensitivity, and impaired adipogenesis is implicated in insulin resistance. 4-Hydroxyderricin (4-HD), a phytochemical component of Angelica keiskei, possesses diverse biological properties such as anti-inflammatory, antidiabetic, and antitumor. In the present study, we investigated the effects of 4-HD on adipocyte differentiation. 4-HD promoted lipid accumulation in 3T3-L1 cells, upregulated both peroxisome proliferator-activated receptor (PPAR)-γ mRNA and protein expression, and acted as a ligand for PPARγ in the luciferase assay. Moreover, 4-HD increased the mRNA and protein expression levels of adiponectin. Additionally, it promoted insulin-dependent glucose uptake into 3T3-L1 adipocytes and increased Akt phosphorylation and glucose transporter (GLUT) 4 mRNA expression. In summary, these findings suggest that 4-HD, which promoted adipogenesis and insulin sensitivity in 3T3-L1 cells, might be a phytochemical with potent insulin-sensitizing effects. PMID:27098252

  15. Role of 11-beta-hydroxysteroid dehydrogenase type 1 in differentiation of 3T3-L1 cells and in rats with diet-induced obesity

    Institute of Scientific and Technical Information of China (English)

    Yun LIU; Wen-lan SUN; Yan SUN; Gang HU; Guo-xian DING

    2006-01-01

    Aim: To observe the roles of 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in in vitro preadipocyte differentiation and in rats with diet-induced obesity (DIO). Methods: Protein expression of 11β-HSD1 in the process of 3T3-L1 cell differentiation and in various tissues of the rats were detected by Western blot analysis; expression of 11β-HSD1 mRNA and glucocorticoid receptor (GR) and other marker genes of preadipocyte differentiation were detected by using real-time PCR. Results: Lipid droplets in 3T3-L1 cells accumulated and increased after stimulation. A dramatically elevated protein level of 11β-HSD1, especially in the late stages of 3T3-L1 cell differentiation, was detected. The relative mRNA levels of 11β-HSD1, GR and cell differentiation markers LPL, aP2, and FAS were upregulated, and Pref-1 was downregulated during the differentiation. In DIO rats, bodyweight, visceral adipose mass index and the protein expression of 11β-HSD1 increased, especially in adipose tissue, brain and muscles. Serum insulin, triglyceride, total cholesterol and 1oW-density lipoprotein cholesterol were found to be increased in DIO rats, but without any obvious changes in blood glucose or tumor necrosis factor-αlevels. Conclusion: 11β-HSD1 may promote preadipocyte differentiation, and may be involved in the development of obesity.

  16. CCAAT/enhancer-binding protein-β participates in oxidized LDL-enhanced proliferation in 3T3-L1 cells.

    Science.gov (United States)

    Santangelo, Carmela; Varì, Rosaria; Scazzocchio, Beatrice; Filesi, Carmelina; D'Archivio, Massimo; Giovannini, Claudio; Masella, Roberta

    2011-09-01

    Increased circulating oxidized LDL (oxLDL) have been found in obese subjects. Obesity is characterized by an excess of fat mass resulting from an increase in adipocyte number and size. The generation of new adipocytes is a tightly controlled process where multiple factors acting in a signaling cascade follow a precise temporal expression pattern; oxLDL appear to have a role in the impairment of this process. The purpose of this study was to examine the effects of oxLDL on the mechanisms involved in the proliferative stage of the differentiation process in 3T3-L1 cells. After hormonal induction, 3T3-L1 cells undergo approximately two rounds of mitotic clonal expansion (MCE), a process required for adipogenesis. CCAAT/enhancer-binding protein β (C/EBPβ) is immediately expressed after induction, and plays a crucial role in MCE, but its expression must decrease to allow preadipocytes to mature into adipocytes. We found that, in the presence of stimuli to differentiate, oxLDL induced a higher proliferation rate in this cell line, associated with a sustained up-regulation of C/EBPβ, which remained activated inside the nucleus for several days. RNAi-mediated knockdown of C/EBPβ 24 h after oxLDL treatment counteracted the increase in proliferation rate. Both C/EBPβ expression and proliferation processes appear to be influenced by cAMP/protein kinase A (PKA) and extracellular signal-regulated kinases1/2 (ERK1/2) pathways. OxLDL treatment led to increased levels of cAMP, and to a strong, prolonged phosphorylation of ERK1/2 and C/EBPβ. The addition of cAMP and PKA inhibitors, SQ22536 and H-89, respectively, reduced proliferation only in oxLDL-treated cells, whereas the addition of ERK1/2 inhibitor U0126 blocked proliferation in both control and oxLDL-treated cells. C/EBPβ nuclear expression and DNA-binding activity were reduced by U0126, under all tested conditions. These findings show that the altered expression pattern of C/EBPβ is involved in the increase in the

  17. Proinflammatory cytokine production and insulin sensitivity regulated by overexpression of resistin in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Garvey W Timothy

    2006-07-01

    Full Text Available Abstract Resistin is secreted from adipocytes, and high circulating levels have been associated with obesity and insulin resistance. To investigate whether resistin could exert autocrine effects in adipocytes, we expressed resistin gene in 3T3-L1 fibroblasts using a lentiviral vector, and selected several stably-transduced cell lines under blasticidin selection. We observed that 3T3-L1 adipocytes expressing resistin have a decreased gene expression for related transcriptional factors (CCAAT/enhancer binding protein α(C/EBPα , peroxisome proliferator-activated receptor gamma (PPARγ, and adipocyte lipid binding protein (ALBP/aP2 which is one of target genes for the PPARγ during adipocyte differentiation,. Overexpression of resistin increased the levels of three proinflammatory cytokines, tumor necrosis factor alpha (TNFα, interleukin 6 (IL-6 and monocyte chemoattractant protein-1 (MCP-1, which play important roles for insulin resistance, glucose and lipid metabolisms during adipogenesis. Furthermore, overexpressing resistin in adipocytes inhibits glucose transport 4 (GLUT4 activity and its gene expression, reducing insulin's ability for glucose uptake by 30 %. In conclusion, resistin overexpression in stably transduced 3T3-L1 cells resulted in: 1 Attenuation of programmed gene expression responsible for adipogenesis; 2 Increase in expression of proinflammatory cytokines; 3 Decrease in insulin responsiveness of the glucose transport system. These data suggest a new role for resistin as an autocrine/paracrine factor affecting inflammation and insulin sensitivity in adipose tissue.

  18. Blockage of PPARδ increases the expression of inflammatory factors in 3T3-L1 cells stimulated with TNFα

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-li; ZHU Zhi-ming; CAO Ting-bing; WANG Li-juan

    2006-01-01

    Objective: To investigate the role of peroxisome proliferator-activated receptors δ (PPARδ)in inflammatory reaction and its possible mechanism in adipocyte. Methods:Lentivirus-mediated RNA interference (RNAi) was used to block the expression of PPARδ in 3T3-L1 cells. In order to induce inflammation in 3T3-L1, cells were stimulated with tumor necrosis factor-α(TNFα, 20 ng/ml) for 4 h. The expression of PPARδ, nuclear factor κB (NFκB) and C reactive protein (CRP) were determined by Western blot analysis. Results:The expression of PPARδ was reduced by 80% after RNAi. Blockage of PPARδ promoted the expression of CRP and NFκB in cells stimulated with TNFα, but had no effect on normal cells. Conclusion: PPARδ is involved in inflammatory reaction in adipocyte. Blockage of PPARδ can promote the inflammation mediated by inflammatory factors and increase the expression of NFκB and CRP in 3T3-L1 cells stimulated with TNFα.

  19. Traditional medicine yanggyuksanhwa-tang inhibits adipogenesis and suppresses proliferator-activated receptor gamma expression in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Soo-Jin Jeong

    2015-01-01

    Full Text Available Background: Yanggyuksanhwa-tang (YGSHT is a specific traditional Korean herbal formula for Soyangin according to Sasang constitutional philosophy. Although its biological activities against inflammation and cerebral infarction have been reporting, there is no information about the adipogenic activity of YGSHT. In the present study, we investigated the anti adipogenic activity of YGSHT to evaluate effects of YGSHT on adipogenesis in vitro. Materials and Methods: Using 3T3 L1 preadipocytes, we induced the cellular differentiation into adipocytes by adding insulin. Anti adipogenic activity of YGSHT was measured by oil red O staining, triglyceride assay, glycerol 3 phosphate dehydrogenase (GPDH activity test, and leptin assay. Results: YGSHT extract had no significant cytotoxicity in preadipocytes or differentiated adipocytes. YGSHT reduced the number of lipid droplets and content of triglyceride in adipose cells. YGSHT also significantly inhibited GPDH activity and decreased leptin production compared with control adipocytes. Down regulation of peroxisome proliferator activated receptor gamma (PPAR g expression at the messenger RNA level was observed in YGSHT treated adipocytes. Conclusion: Taken together, our data suggest that YGSHT has potential as an anti-obesity drug candidate.

  20. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Highlights: •Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. •Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. •Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. •Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. •Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O2 for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via

  1. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Takeshi, E-mail: thashimo@fc.ritsumei.ac.jp [Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Yokokawa, Takumi; Endo, Yuriko [Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Iwanaka, Nobumasa [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Higashida, Kazuhiko [Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Faculty of Sport Science, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 (Japan); Taguchi, Sadayoshi [Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan)

    2013-10-11

    Highlights: •Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. •Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. •Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. •Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. •Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O{sub 2} for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via

  2. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling.

    Science.gov (United States)

    Jin, Min; Wu, Yutao; Wang, Jing; Chen, Jian; Huang, Yiting; Rao, Jinpeng; Feng, Chun

    2016-05-20

    Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study, we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation. PMID:27103442

  3. Latent insulin receptors and possible receptor precursors in 3T3-L1 adipocytes.

    OpenAIRE

    Deutsch, P J; Wan, C F; Rosen, O M; Rubin, C S

    1983-01-01

    Cell surface and cryptic insulin receptors were solubilized from the particulate fraction of murine 3T3-L1 adipocytes with buffer containing 1% Triton X-100. Solubilized receptors were affinity crosslinked with 125I-labeled insulin and disuccinimidyl suberate and characterized by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and autoradiography after specific immunoprecipitation. Two insulin-binding polypeptides were identified: the more abundant protein had a Mr of 130,000, corre...

  4. Rosiglitazone Balances Insulin-Induced Exo- And Endocytosis In Single 3t3-L1 Adipocytes

    OpenAIRE

    Velebit, Jelena; Chowdhury, Helena H.; Kreft, Marko; Zorec, Robert

    2011-01-01

    Abstract Rosiglitazone (Rosi) improves insulin sensitivity and increases the translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM). This involves the fusion of membrane-bound compartments with the plasma membrane, thus increasing the plasma membrane area. However, recent work has shown that in Rosi-pretreated 3T3-L1 adipocytes membrane area did not increase following insulin application, suggesting that the rates of exo- and endocytosis are balanced. Here we ex...

  5. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayoshi [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  6. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion

  7. Ginseng (Panax quinquefolius Reduces Cell Growth, Lipid Acquisition and Increases Adiponectin Expression in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Chia-Rou Yeo

    2011-01-01

    Full Text Available An American ginseng (Panax quinquefolius extract (GE that contained a quantifiable amount of ginsenosides was investigated for the potential to inhibit proliferation, affect the cell cycle, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Six fingerprint ginsenosides were quantified by high performance liquid chromatography and the respective molecular weights were confirmed by LC-ESI-MS analysis. The extract contained Rg1 (347.3 ± 99.7 μg g−1, dry weight, Re (8280.4 ± 792.3 μg g−1, Rb1 (1585.8 ± 86.8 μg g−1, Rc (32.9 ± 8 μg g−1, Rb2 (62.6 ± 10.6 μg g−1 and Rd (90.4 ± 3.2 μg g−1. The GE had a dose-dependent effect on 3T3-L1 cell growth, the LC50 value was determined to be 40.3 ± 5 μg ml−1. Cell cycle analysis showed modest changes in the cell cycle. No significant changes observed in both G1 and G2/M phases, however there was a significant decrease (P<.05 in the S phase after 24 and 48 h treatment. Apoptotic cells were modest but significantly (P<.05 increased after 48 h (3.2 ± 1.0% compared to untreated control cells (1.5 ± 0.1%. Lipid acquisition was significantly reduced (P<.05 by 13 and 22% when treated at concentrations of 20.2 and 40.3 μg ml−1 compared to untreated control cells. In relation to adiponectin activation, western blot analysis showed that the protein expression was significantly (P<.05 increased at concentrations tested. A quantified GE reduced the growth of 3T3-L1 cells, down-regulated the accumulation of lipid and up-regulated the expression of adiponectin in the 3T3-L1 adipocyte cell model.

  8. Antibody against the insulin receptor causes disappearance of insulin receptors in 3T3-L1 cells: a possible explanation of antibody-induced insulin resistance.

    OpenAIRE

    Grunfeld, C.

    1984-01-01

    The effect of a rabbit antibody induced against the rat insulin receptor (RAR) was tested using cultured 3T3-L1 fat cells. As previously seen with antibodies against the insulin receptor from patients with the type B syndrome of insulin resistance and acanthosis nigricans, RAR acutely mimicked the action of insulin by stimulating deoxyglucose uptake. After prolonged exposure of 3T3-L1 cells to RAR, insulinomimetic activity was lost and the cells became resistant to the action of insulin. This...

  9. Effects of extrogenous hydrogen sulfide on the expression of glucose transporter 4 in 3T3-L1 adipocytes with insulin resistance%外源性硫化氢对胰岛素抵抗脂肪细胞葡萄糖转运体4表达的影响

    Institute of Scientific and Technical Information of China (English)

    杨非柯; 刘竞芳; 陈伟; 何新平; 卢桂静

    2014-01-01

    目的 观察外源性硫化氢(H2S)对3T3-L1脂肪细胞胰岛素抵抗(IR)的影响,并探讨其机制.方法 用高糖高胰岛素培养3T3-L1脂肪细胞,建立IR细胞模型,外源性H2S供体NaHS(10-5、10-4和10-3 mol/L)处理IR 3T3-L1细胞12、24和48 h.MTT法检测细胞活力,葡萄糖氧化酶法检测培养液中的葡萄糖消耗量,2-脱氧-[3H]-D-葡萄糖摄入法检测葡萄糖的摄取.实时定量PCR和Western blot检测葡萄糖转运体4(Glut4)的表达.结果 与对照组比较,IR模型组细胞葡萄糖消耗和摄取量以及Glut4 mRNA和蛋白的表达显著降低(均为P<0.05).与对照组比较,所有浓度的NaHS均未影响细胞活力.与IR模型组比较,NaHS(10-4和10-3 mol/L)处理24和48 h显著增加细胞葡萄糖消耗和摄取量以及Glut4 mRNA和蛋白的表达(均P<0.05).结论 外源性H2S改善了高糖高胰岛素诱导的脂肪细胞的IR,其机制可能与H2S上调Glut4的表达有关.

  10. PPARγ配体罗格列酮及其激动剂GW9662对脂肪细胞因子表达的影响%Differential effects of PPARγ ligand rosiglitazone and selective antagonist GW9662 on adipocytokine gene expression in 3T3-L1 adipocytes

    Institute of Scientific and Technical Information of China (English)

    LIU Ying-zi; Vural Ozdemir; OUYANG Dong-shengI; LIU Zhao-qian; LIU Jie; LI Zhi; WANG Dan; ZENG Fei-yue; TAN Zhi-rong; HU Dong-li; ZHOU Hong-hao

    2007-01-01

    BACKGROUND: There is a growing recognition that the adipose tissue is an endocrine organ that secretes signaling molecules such as adiponectin and resistin. The peroxisome proliferator activated receptor γ (PPARγ) is expressed in high levels in the adipose tissue. Thiazolidinediones are selective PPARγ agonists with insulin-sensitizing properties. It has been postulated that thiazolidinediones such as rosiglitazone exert their pharmacodynamic effects in part through modulation of resistin (implicated in insulin resistance) and adiponectin (an insulin-sensitizing molecule) expression subsequent to activation of PPARγ. There are conflicting data, however, on the biological direction in which resistin expression is modulated by PPARγ agonists and whether an increase in adiponectin expression can occur in the face of an upregulation of resistin. METHODS: Using the murine 3T3-L1 adipocytes as a model, we evaluated the changes in resistin and adiponectin gene expression after vehicle, rosiglitazone (10 μmol/L, a PPARγ agonist), GW9662 (5 μmol/L, a selective PPARγ antagonist) or GW662 and rosiglitazone co-treatment.RESULTS: In comparison to vehicle treatment, rosiglitazone increased the average adiponectin and resistin mRNA expression by 1.66- and 1.55-fold, respectively (P<0.05). Importantly, GW9662 also upregulated adiponectin expression (by 1.57-fold, P<0.05) but did not influence resistin expression (P>0.05). Co-treatment with rosiglitazone and GW9662 maintained the adiponectin upregulation (1.87-fold increase from vehicle, P<0.05) while attenuating resistin upregulation (1.31-fold increase from vehicle, P<0.05) induced by rosiglitazone alone (1.55-fold increase from vehicle, P<0.05). CONCLUSION: This study presents new evidence that adiponectin transcript is upregulated with both a PPARγ agonist (rosiglitazone) and antagonist (GW9662), while GW9662 co-treatment does not block rosiglitazone-induced adiponectin upregulation. These data

  11. Alliin, a Garlic (Allium sativum Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Saray Quintero-Fabián

    2013-01-01

    Full Text Available Garlic (Allium sativum L. has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide, a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS- stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  12. Salicortin-Derivatives from Salix pseudo-lasiogyne Twigs Inhibit Adipogenesis in 3T3-L1 Cells via Modulation of C/EBPα and SREBP1c Dependent Pathway

    OpenAIRE

    Hong Pyo Kim; Young Choong Kim; Sang Hyun Sung; Eun Ju Jeong; Jimmy Kang; Heejung Yang; Sang Hoon Lee; Mina Lee

    2013-01-01

    Obesity is reported to be associated with excessive growth of adipocyte mass tissue as a result of increases in the number and size of adipocytes differentiated from preadipocytes. To search for anti-adipogenic phytochemicals, we screened for inhibitory activities of various plant sources on adipocyte differentiation in 3T3-L1 preadipocytes. Among the sources, a methanolic extract of Salix pseudo-lasiogyne twigs (Salicaceae) reduced lipid accumulation in a concentration-dependent manner. Duri...

  13. TC10 is regulated by caveolin in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Dave Bridges

    Full Text Available BACKGROUND: TC10 is a small GTPase found in lipid raft microdomains of adipocytes. The protein undergoes activation in response to insulin, and plays a key role in the regulation of glucose uptake by the hormone. METHODOLOGY/PRINCIPAL FINDINGS: TC10 requires high concentrations of magnesium in order to stabilize guanine nucleotide binding. Kinetic analysis of this process revealed that magnesium acutely decreased the nucleotide release and exchange rates of TC10, suggesting that the G protein may behave as a rapidly exchanging, and therefore active protein in vivo. However, in adipocytes, the activity of TC10 is not constitutive, indicating that mechanisms must exist to maintain the G protein in a low activity state in untreated cells. Thus, we searched for proteins that might bind to and stabilize TC10 in the inactive state. We found that Caveolin interacts with TC10 only when GDP-bound and stabilizes GDP binding. Moreover, knockdown of Caveolin 1 in 3T3-L1 adipocytes increased the basal activity state of TC10. CONCLUSIONS/SIGNIFICANCE: Together these data suggest that TC10 is intrinsically active in vivo, but is maintained in the inactive state by binding to Caveolin 1 in 3T3-L1 adipocytes under basal conditions, permitting its activation by insulin.

  14. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes.

    Science.gov (United States)

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Jiang, Ping; Gong, Huan; Wang, Zai; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2016-08-01

    Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with the induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. PMID:27264953

  15. Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking.

    Science.gov (United States)

    Sadler, Jessica B A; Bryant, Nia J; Gould, Gwyn W

    2015-02-01

    The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes.

  16. IL-17A synergistically enhances TNFα-induced IL-6 and CCL20 production in 3T3-L1 adipocytes.

    Science.gov (United States)

    Shinjo, Takanori; Iwashita, Misaki; Yamashita, Akiko; Sano, Tomomi; Tsuruta, Mitsudai; Matsunaga, Hiroaki; Sanui, Terukazu; Asano, Tomoichiro; Nishimura, Fusanori

    2016-08-19

    Interleukin-17A (IL-17A) is known to induce inflammatory responses and to be involved in the pathogenesis of not only autoimmune diseases, but also several metabolic and infectious diseases. In this study, IL-17A is shown to induce IL-6 expression in 3T3-L1 mature adipocytes. Interestingly, we found that IL-17A synergistically amplified TNFα-induced secretion of IL-6 and upregulation of IL-17RA expression in 3T3-L1 adipocytes. Its synergistic effects on IL-6 production were inhibited by pre-treatment with inhibitors of IκBα and JNK. Furthermore, IL-17A cooperatively enhanced LPS-mediated IL-6 production in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. In addition, IL-17A also enhanced CCL20 production in 3T3-L1 adipocytes stimulated with TNFα or co-cultured with LPS-stimulated RAW macrophages. In high-fat diet-fed mouse epididymal adipose tissues, IL-17RA and RORγt mRNA levels were significantly increased and the serum level of CCL20 was also upregulated. Taken together, these data show that, in adipose tissues, IL-17A contributes to exacerbating insulin resistance-enhancing IL-6 production and promotes the infiltration of Th17 cells in cooperation with TNFα; these findings represent a novel hypothesis for the association between IL-17A-producing cells and type 2 diabetes. PMID:27311858

  17. Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes.

    Science.gov (United States)

    Al-Naqeb, Ghanya; Rousová, Jana; Kubátová, Alena; Picklo, Matthew J

    2016-06-25

    Levels of obesity in Middle Eastern countries are increasing. Phytochemicals have anti-obesogenic properties as evidenced by prevention of adipocyte differentiation and blocking triacylglyceride (TG) accumulation. In Yemen, Pulicaria jaubertii E. Gamal-Eldin (PJ) is a food additive and a traditional medicine. We tested the hypothesis that phytochemicals present in PJ inhibit adipocytic responses during differentiation of 3T3-L1 preadipocytes to adipocytes. Methanolic extracts of PJ did not block expression of fatty acid binding protein 4 (FABP4) a marker of differentiation but did inhibit TG accumulation. Treatment of 3T3-L1 preadipocytes increased NADPH:quinone oxidoreductase 1 (NQO1), a suppressor of TG accumulation. Further fractionation of the methanolic PJ extract with hexane and dichloromethane (DCM) demonstrated that bioactivity towards TG reduction and elevated expression of NQO1 and other antioxidant genes (glutamate cysteine ligase catalytic unit, glutathione disulfide reductase, glutathione peroxidase (GPx) 4 resided in the DCM fraction. Activity towards depleting GSH and elevating the expression of catalase and GPx3 were found in the DCM and hexane fractions. Analysis by gas chromatography and liquid chromatography coupled with mass spectrometry demonstrated the presence of catechin-like moieties in the DCM and methanolic fractions and suggest that these components were partially responsible for the bioactivity of these fractions. In summary, our data indicate that fractions derived PJ exhibit anti-adipogenic properties in part through the presence of catechin-like compounds.

  18. Adipogenesis stimulates the nuclear localization of EWS with an increase in its O-GlcNAc glycosylation in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang; Kamemura, Kazuo, E-mail: k_kamemura@nagahama-i-bio.ac.jp

    2014-07-18

    Highlights: • The majority of EWS localizes stably in the cytosol in 3T3-L1 preadipocytes. • Adipogenic stimuli induce the nuclear localization of EWS. • Adipogenesis promotes O-GlcNAcylation of EWS. • O-GlcNAcylation stimulates the recruitment of EWS to the nuclear periphery. - Abstract: Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughout adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation.

  19. Kibizu concentrated liquid suppresses the accumulation of lipid droplets in 3T3-L1 cells.

    Science.gov (United States)

    Inoue, Chisato; Kozaki, Tomomi; Morita, Yukiko; Shirouchi, Bungo; Fukami, Katsuya; Shimizu, Kuniyoshi; Sato, Masao; Katakura, Yoshinori

    2015-08-01

    Adipocyte size is closely related to the occurrence of diabetes, metabolic syndrome, and insulin resistance. Thus, researchers are searching for active substances that function to reduce adipocyte size. In the present study, we focused on sugar cane vinegar, Kibizu, and evaluated the function of Kibizu to reduce adipocyte size by using an in vitro model system, because people in Amami Oshima famous for longevity regularly consume Kibizu. Results showed that Kibizu treatment significantly reduced the size and number of lipid droplets in 3T3-L1 cells, relative to treatment with Kurozu, another traditional vinegar. Results of an extraction experiment suggest that the active components in Kibizu are lipophilic and hydrophobic. In addition, an in vivo experiment on rats treated with Kibizu showed that the active components were contained in large vein blood. Results of an additional in vivo experiment suggest that metabolites generated by Kibizu-treated rats are primarily contained or modified specifically in the large vein blood. PMID:25672941

  20. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Milton, Flora Aparecida [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Cvoro, Aleksandra [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Amato, Angelica A. [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Caro Alves de Lima, Maria do; Rocha Pitta, Ivan [Laboratório de Planejamento e Síntese de Fármacos – LPSF, Universidade Federal de Pernambuco (Brazil); Assis Rocha Neves, Francisco de [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Webb, Paul, E-mail: pwebb@HoustonMethodist.org [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States)

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  1. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation

  2. Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes

    DEFF Research Database (Denmark)

    Gual, Philippe; Gonzalez, Teresa; Grémeaux, Thierry;

    2003-01-01

    In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1......-associated phosphoinositide 3 (PI 3)-kinase activity in response to physiological insulin concentrations. Insulin-induced membrane ruffling, which is dependent on PI 3-kinase activation, was also markedly reduced. These inhibitory effects were associated with an increase in IRS-1 Ser307 phosphorylation....... Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation...

  3. Lipid Droplets Characterization in Adipocyte Differentiated 3T3-L1 Cells: Size and Optical Density Distribution

    OpenAIRE

    V. Rizzatti; F. Boschi; Pedrotti, M.; E. Zoico; A. Sbarbati; Zamboni, M.

    2013-01-01

    The 3T3-L1 cell line, derived from 3T3 cells, is widely used in biological research on adipose tissue. 3T3-L1 cells have a fibroblast-like morphology, but, under appropriate conditions, they differentiate into an adipocyte-like phenotype. During the differentiation process, 3T3-L1 cells increase the synthesis of triglycerides and acquire the behavior of adipose cells. In particular, triglycerides accumulate in lipid droplets (LDs) embedded in the cytoplasm. The number and the size distributio...

  4. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice.

    Science.gov (United States)

    Ejaz, Asma; Wu, Dayong; Kwan, Paul; Meydani, Mohsen

    2009-05-01

    Angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. We investigated the effect of curcumin, the major polyphenol in turmeric spice, on angiogenesis, adipogenesis, differentiation, apoptosis, and gene expression involved in lipid and energy metabolism in 3T3-L1 adipocyte in cell culture systems and on body weight gain and adiposity in mice fed a high-fat diet (22%) supplemented with 500 mg curcumin/kg diet for 12 wk. Curcumin (5-20 micromol/L) suppressed 3T3-L1 differentiation, caused apoptosis, and inhibited adipokine-induced angiogenesis of human umbilical vein endothelial cells. Supplementing the high-fat diet of mice with curcumin did not affect food intake but reduced body weight gain, adiposity, and microvessel density in adipose tissue, which coincided with reduced expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2. Curcumin increased 5'AMP-activated protein kinase phosphorylation, reduced glycerol-3-phosphate acyl transferase-1, and increased carnitine palmitoyltransferase-1 expression, which led to increased oxidation and decreased fatty acid esterification. The in vivo effect of curcumin on the expression of these enzymes was also confirmed by real-time RT-PCR in subcutaneous adipose tissue. In addition, curcumin significantly lowered serum cholesterol and expression of PPARgamma and CCAAT/enhancer binding protein alpha, 2 key transcription factors in adipogenesis and lipogenesis. The curcumin suppression of angiogenesis in adipose tissue together with its effect on lipid metabolism in adipocytes may contribute to lower body fat and body weight gain. Our findings suggest that dietary curcumin may have a potential benefit in preventing obesity.

  5. Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase.

    Science.gov (United States)

    Li, Shuijie; Bouzar, Célia; Cottet-Rousselle, Cécile; Zagotta, Ivana; Lamarche, Frédéric; Wabitsch, Martin; Tokarska-Schlattner, Malgorzata; Fischer-Posovszky, Pamela; Schlattner, Uwe; Rousseau, Denis

    2016-06-01

    Resveratrol is attracting much interest because of its potential to decrease body weight and increase life span, influencing liver and muscle function by increasing mitochondrial mass and energy expenditure. Even though resveratrol was already shown to reduce the adipose tissue mass in animal models, its effects on mitochondrial mass and network structure in adipocytes have not yet been studied. For this purpose, we investigated the effect of resveratrol on mitochondrial mass increase and remodeling during adipogenic differentiation of two in vitro models of adipocyte biology, the murine 3T3-L1 cell line and the human SGBS cell strain. We confirm that resveratrol inhibits lipogenesis in differentiating adipocytes, both mouse and human. We further show that this is linked to inhibition of the normally observed mitochondrial mass increase and mitochondrial remodeling. At the molecular level, the anti-lipogenic effect of resveratrol seems to be mediated by a blunted expression increase and an inhibition of acetyl-CoA carboxylase (ACC). This is one of the consequences of an inhibited insulin-induced signaling via Akt, and maintained signaling via AMP-activated protein kinase. The anti-lipogenic effect of resveratrol is further modulated by expression levels of mitochondrial ATAD3, consistent with the emerging role of this protein as an important regulator of mitochondrial biogenesis and lipogenesis. Our data suggest that resveratrol acts on differentiating preadipocytes by inhibiting insulin signaling, mitochondrial biogenesis, and lipogenesis, and that resveratrol-induced reduction of mitochondrial biogenesis and lipid storage contribute to adipose tissue weight loss in animals and humans.

  6. Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Fromm-Dornieden Carolin

    2012-03-01

    Full Text Available Abstract Background Control of translation allows for rapid adaptation of the cell to stimuli, rather than the slower transcriptional control. We presume that translational control is an essential process in the control of adipogenesis, especially in the first hours after hormonal stimulation. 3T3-L1 preadipocytes were cultured to confluency and adipogenesis was induced by standard protocols using a hormonal cocktail. Cells were harvested before and 6 hours after hormonal induction. mRNAs attached to ribosomes (polysomal mRNAs were separated from unbound mRNAs by velocity sedimentation. Pools of polysomal and unbound mRNA fractions were analyzed by microarray analysis. Changes in relative abundance in unbound and polysomal mRNA pools were calculated to detect putative changes in translational activity. Changes of expression levels of selected genes were verified by qPCR and Western blotting. Results We identified 43 genes that shifted towards the polysomal fraction (up-regulated and 2 genes that shifted towards free mRNA fraction (down-regulated. Interestingly, we found Ghrelin to be down-regulated. Up-regulated genes comprise factors that are nucleic acid binding (eIF4B, HSF1, IRF6, MYC, POLR2a, RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, TSC22d3, form part of ribosomes (RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, act on the regulation of translation (eIF4B or transcription (HSF1, IRF6, MYC, TSC22d3. Others act as chaperones (BAG3, HSPA8, HSP90ab1 or in other metabolic or signals transducing processes. Conclusions We conclude that a moderate reorganisation of the functionality of the ribosomal machinery and translational activity are very important steps for growth and gene expression control in the initial phase of adipogenesis.

  7. mVps45 knockdown selectively modulates VAMP expression in 3T3-L1 adipocytes.

    Science.gov (United States)

    Sadler, Jessica B A; Roccisana, Jennifer; Virolainen, Minttu; Bryant, Nia J; Gould, Gwyn W

    2015-01-01

    Insulin stimulates the delivery of glucose transporter-4 (GLUT4)-containing vesicles to the surface of adipocytes. Depletion of the Sec1/Munc18 protein mVps45 significantly abrogates insulin-stimulated glucose transport and GLUT4 translocation. Here we show that depletion of mVps45 selectively reduced expression of VAMPs 2 and 4, but not other VAMP isoforms. Although we did not observe direct interaction of mVps45 with any VAMP isoform; we found that the cognate binding partner of mVps45, Syntaxin 16 associates with VAMPs 2, 4, 7 and 8 in vitro. Co-immunoprecipitation experiments in 3T3-L1 adipocytes revealed an interaction between Syntaxin 16 and only VAMP4. We suggest GLUT4 trafficking is controlled by the coordinated expression of mVps45/Syntaxin 16/VAMP4, and that depletion of mVps45 regulates VAMP2 levels indirectly, perhaps via reduced trafficking into specialized subcellular compartments.

  8. Differentiation of the insulin-sensitive glucose transporter in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    3T3-L1 fibroblasts differentiate in culture to resemble adipocytes both morphologically and biochemically. Insulin-sensitive glucose transport, as measured by 2-deoxy-[1-14C]- glucose uptake in the undifferentiated cell is small (2X). In contrast, the rate of glucose transport in fully differentiated cells is elevated 15-fold over basal in the presence of insulin. To determine if this is due to an increase in the number of transporters/cell or accessibility to the transporters, the number of transporters was measured in subcellular fractions over differentiation using a 3H-cytochalasin B binding assay. The increase in the rate of insulin-sensitive glucose transport directly parallels an increase in the number of transporters which reside in an insulin-responsive intracellular compartment. This observation was confirmed by identifying the transporters by immunoblotting using an antibody generated against the human erythrocyte transporter. The molecular weight of this transporter increases over differentiation from a single band of 40kDa to a heterogeneous triplet of 40, 44 and 48kDa. These data suggest that the transporter undergoes differential processing and that the functional, insulin-responsive transporter may be different from the insulin-insensitive (basal) transporter

  9. Centipede grass exerts anti-adipogenic activity through inhibition of C/EBPβ, C/EBPα, and PPARγ expression and the AKT signaling pathway in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Park Hyoung Joon

    2012-11-01

    Full Text Available Abstract Background Centipede grass (CG originates from China and South America and is reported to contain several C-glycosyl flavones and phenolic constituents, including maysin and luteolin derivatives. This study aimed to investigate, for the first time, the antiobesity activity of CG and its potential molecular mechanism in 3T3-L1 cells. Methods To study the effect of CG on adipogenesis, differentiating 3T3-L1 cells were treated every day with CG at various concentrations (0–100 μg/ml for six days. Oil-red O staining and triglyceride content assay were performed to determine the lipid accumulation in 3T3-L1 cells. The expression of mRNAs or proteins associated with adipogenesis was measured using RT-PCR and Western blotting analysis. We examined the effect of CG on level of phosphorylated Akt in 3T3-L1 cells treated with CG at various concentration s during adipocyte differentiation. Results Differentiation was investigated with an Oil-red O staining assay using CG-treated 3T3-L1 adipocytes. We found that CG suppressed lipid droplet formation and adipocyte differentiation in 3T3-L1 cells in a dose-dependent manner. Treatment of the 3T3-L1 adipocytes with CG resulted in an attenuation of the expression of adipogenesis-related factors and lipid metabolic genes. The expression of C/EBPα and PPARγ, the central transcriptional regulators of adipogenesis, was decreased by the treatment with CG. The expression of genes involved in lipid metabolism, aP2 were significantly inhibited following the CG treatment. Moreover, the CG treatment down-regulated the phosphorylation levels of Akt and GSK3β. Conclusions Taken collectively, these data indicated that CG exerts antiadipogenic activity by inhibiting the expression of C/EBPβ, C/EBPα, and PPARγ and the Akt signaling pathway in 3T3-L1 adipocytes.

  10. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Sinclair Andrew J

    2010-06-01

    Full Text Available Abstract Background Lipid droplet (LD formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3 in comparison to SFA (STA; stearic acid, C18:0 and MUFA (OLA; oleic acid, C18:1n-9 on 3T3-L1 adipocyte LD formation, regulation of genes central to LD function and adipokine responsiveness. Cells were supplemented with 100 μM FA during 7-day differentiation. Results EPA markedly reduced LD size and total lipid accumulation, suppressing PPARγ, Cidea and D9D/SCD1 genes, distinct from other treatments. These changes were independent of alterations of lipolytic genes, as both EPA and STA similarly elevated LPL and HSL gene expressions. In response to acute lipopolysaccharide exposure, EPA-differentiated adipocytes had distinct improvement in inflammatory response shown by reduction in monocyte chemoattractant protein-1 and interleukin-6 and elevation in adiponectin and leptin gene expressions. Conclusions This study demonstrates that EPA differentially modulates adipogenesis and lipid accumulation to suppress LD formation and size. This may be due to suppressed gene expression of key proteins closely associated with LD function. Further analysis is required to determine if EPA exerts a similar influence on LD formation and regulation in-vivo.

  11. Influence and related mechanism of Retn gene expression on glucose uptake in 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    LI Yanui; LI Huaixing; DONG Shiyuan; YU Chao; JIANG Yu; SUN Shuhan

    2007-01-01

    The aim of this article was to investigate the influence and the related mechanism of the Retn gene on glucose uptake and insulin resistance in 3T3-L1 cells.Radioimmunoassay was used to determine glucose uptake in 3T3-L1 cells with different Retn gene expression levels,whether cells were stimulated by insulin or not.RT-PCR and real-time RT-PCR analysis were used to determine the mRNA levels of several glucose transport proteins in 3T3-L1 cells with different Retn gene expression levels,including insulin receptor substrate1(IRS-1),phosphatidylinositol 3-kinase(PI-3K),AKT-2,glucose transporter-4(GLUT-4),p38 mitogen-activated protein kinase(p38MAPK)and glycogen synthase kinase-3β (GSK-3β).The glucose uptake decreased with the increase in Retn gene expression in 3T3-L1 cells,which was independent of whether the cells were stimulated by insulin or not.The mRNA expression of two signal proteins PI-3K and AKT-2 decreased and the other two signal proteins,GSK-3β and p38MAPK.increased with Retn overexpression in 3T3-L1 cells.Resistin could induce insulin resistance in adipocytes,which might be related to the changes of some proteins in PI-3K and Ras pathways.

  12. The Herbal Medicine KBH-1 Inhibits Fat Accumulation in 3T3-L1 Adipocytes and Reduces High Fat Diet-Induced Obesity through Regulation of the AMPK Pathway.

    Directory of Open Access Journals (Sweden)

    Ji-Hye Lee

    Full Text Available The aim of this study was to investigate whether a novel formulation of an herbal extract, KBH-1, has an inhibitory effect on obesity. To determine its anti-obesity effects and its underlying mechanism, we performed anti-obesity-related experiments in vitro and in vivo. 3T3-L1 preadipocytes were analyzed for lipid accumulation as well as the protein and gene expression of molecular targets involved in fatty acid synthesis. To determine whether KBH-1 oral administration results in a reduction in high-fat diet (HFD-induced obesity, we examined five groups (n = 9 of C57BL/6 mice as follows: 10% kcal fat diet-fed mice (ND, 60% kcal fat diet-fed mice (HFD, HFD-fed mice treated with orlistat (tetrahydrolipstatin, marketed under the trade name Xenical, HFD-fed mice treated with 150 mg/kg KBH-1 (KBH-1 150 and HFD-fed mice treated with 300 mg/kg KBH-1 (KBH-1 300. During adipogenesis of 3T3-L1 cells in vitro, KBH-1 significantly reduced lipid accumulation and down-regulated the expression of master adipogenic transcription factors, including CCAAT/enhancer binding protein (C/EBP β, C/EBP α and peroxisome proliferation-activity receptor (PPAR γ, which led to the suppression of the expression of several adipocyte-specific genes and proteins. KBH-1 also markedly phosphorylated the adenosine monophosphate-activated protein kinase (AMPK and acetyl-CoA carboxylase (ACC. In addition, KBH-1-induced the inhibition effect on lipid accumulation and AMPK-mediated signal activation were decreased by blocking AMPK phosphorylation using AMPK siRNA. Furthermore, daily oral administration of KBH-1 resulted in dose-dependent decreases in body weight, fat pad mass and fat tissue size without systemic toxicity. These results suggest that KBH-1 inhibits lipid accumulation by down-regulating the major transcription factors of the adipogenesis pathway by regulating the AMPK pathway in 3T3-L1 adipocytes and in mice with HFD-induced obesity. These results implicate KBH-1, a

  13. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Kazuaki Kajimoto

    2014-01-01

    Full Text Available The fatty acid binding protein 4 (FABP4, one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6 and vascular endothelial growth factor (VEGF production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH, superoxide dismutase (SOD and glutathione S-transferase A4 (GSTA4 were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2. FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1, the signal sequence receptor α (Ssr1, the ORM1-like 3 (Ormdl3, and the spliced X-box binding protein 1 (Xbp1s, were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes.

  14. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan)

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  15. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    International Nuclear Information System (INIS)

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  16. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy); Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  17. CREB Activation Induces Adipogenesis in 3T3-L1 Cells

    OpenAIRE

    Reusch, Jane E.B.; Colton, Lilliester A.; Klemm, Dwight J.

    2000-01-01

    Obesity is the result of numerous, interacting behavioral, physiological, and biochemical factors. One increasingly important factor is the generation of additional fat cells, or adipocytes, in response to excess feeding and/or large increases in body fat composition. The generation of new adipocytes is controlled by several “adipocyte-specific” transcription factors that regulate preadipocyte proliferation and adipogenesis. Generally these adipocyte-specific factors are expressed only follow...

  18. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes.

    Science.gov (United States)

    Lee, Hyejin; Li, Hua; Jeong, Ji Hye; Noh, Minsoo; Ryu, Jae-Ha

    2016-07-01

    In this study, we evaluated the insulin-sensitizing effect of flavans purified from Broussonetia kazinoki Siebold (BK) on 3T3-L1 adipocytes. Among the tested compounds, kazinol B enhanced intracellular lipid accumulation, gene expression of proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-alpha (C/EBPα), and consistently induced PPARγ transcriptional activation. To further investigate the insulin-sensitizing effect of kazinol B, we measured glucose analogue uptake by fully differentiated adipocytes and myotubes. Kazinol B increased 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake by cells by upregulating the gene expression and translocation of glucose transporter 4 (GLUT-4) into the plasma membrane in adipocytes. Kazinol B stimulated the gene expression and secretion of adiponectin, which is associated with a low risk of types 1 and 2 diabetes mellitus. We also suggested the mechanism of the antidiabetic effect of kazinol B by assaying Akt and AMP-activated protein kinase (AMPK) phosphorylation. In conclusion, kazinol B isolated from BK improved insulin sensitivity by enhancing glucose uptake via the insulin-Akt signaling pathway and AMPK activation. These results suggest that kazinol B might be a therapeutic candidate for diabetes mellitus. PMID:27223849

  19. Inhibition of Adipogenesis by Oligonol through Akt-mTOR Inhibition in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Jae-Yeo Park

    2014-01-01

    Full Text Available Polyphenols have recently become an important focus of study in obesity research. Oligonol is an oligomerized polyphenol, typically comprised of catechin-type polyphenols from a variety of fruits, which has been found to exhibit better bioavailability and bioreactivity than natural polyphenol compounds. Here, we demonstrated that Oligonol inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression. During adipogenesis, Oligonol downregulated the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ, CCAAT/enhancer binding proteins α (C/EBPα, and δ (C/EBPδ in a dose-dependent manner and the expression of genes involved in lipid biosynthesis. The antiadipogenic effect of Oligonol appears to originate from its ability to inhibit the Akt and mammalian target of rapamycin (mTOR signaling pathway by diminishing the phosphorylation of ribosomal protein S6 kinase (p70S6K, a downstream target of mTOR and forkhead box protein O1 (Foxo1. These results suggest that Oligonol may be a potent regulator of obesity by repressing major adipogenic genes through inhibition of the Akt signaling pathway, which induces the inhibition of lipid accumulation, ultimately inhibiting adipogenesis.

  20. Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: size and optical density distribution

    Directory of Open Access Journals (Sweden)

    V. Rizzatti

    2013-08-01

    Full Text Available The 3T3-L1 cell line, derived from 3T3 cells, is widely used in biological research on adipose tissue. 3T3-L1 cells have a fibroblast-like morphology, but, under appropriate conditions, they differentiate into an adipocyte-like phenotype. During the differentiation process, 3T3-L1 cells increase the synthesis of triglycerides and acquire the behavior of adipose cells. In particular, triglycerides accumulate in lipid droplets (LDs embedded in the cytoplasm. The number and the size distribution of the LDs is often correlated with obesity and many other pathologies linked with fat accumulation. The integrated optical density (IOD of the LDs is related with the amount of triglycerides in the droplets. The aim of this study is the attempt to characterize the size distribution and the IOD of the LDs in 3T3-L1 differentiated cells. The cells were differentiated into adipocytes for 5 days with a standard procedure, stained with Oil Red O and observed with an optical microscope. The diameter, area, optical density of the LDs were measured. We found an asymmetry of the kernel density distribution of the maximum Feret’s diameter of the LDs with a tail due to very large LDs. More information regarding the birth of the LDs could help in finding the best mathematical model in order to analyze fat accumulation in adipocytes.

  1. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone;

    2016-01-01

    . New insights into phosphorylation-dependent signaling networks that impact on nuclear proteins and controls adipocyte differentiation and cell fate. Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency...

  2. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Bo [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Song, Youngwoo; Kim, Changhee [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-03-07

    Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.

  3. The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling

    OpenAIRE

    Choi, Bong-Hyuk; Kim, Yu-Hee; Ahn, In-Sook; Ha, Jung-Heun; Byun, Jae-Min; Do, Myoung-Sool

    2009-01-01

    In our previous study, we have shown that berberine has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect is due to the down-regulation of adipogenic enzymes and transcription factors. Here we focused more on anti-inflammatory effect of berberine using real time RT-PCR and found it changes expressions of adipokines. We hypothesized that anti-adipogenicity of berberine mediates anti-inflammtory effect and explored leptin as a candidate medi...

  4. Lactacystin inhibits 3T3-L1 adipocyte differentiation through induction of CHOP-10 expression

    International Nuclear Information System (INIS)

    Hormonal induction triggers a cascade leading to the expression of CCAAT/enhancer-binding protein(C/EBP)α and peroxisome proliferator-activated receptor (PPAR) γ, C/EBPα, and PPARγ turns on series of adipocyte genes that give rise to the adipocyte phenotype. Previous findings indicate that C/EBPβ, a transcriptional activator of the C/EBPα and PPARγ genes, is rapidly expressed after induction, but lacks DNA-binding activity and therefore cannot activate transcription of the C/EBPα and PPARγ genes early in the differentiation program. Acquisition of DNA-binding activity of C/EBPβ occurs when CHOP-10, a dominant-negative form of C/EBP family members, is down-regulated and becomes hyperphosphorylated as preadipocytes traverse the G1-S checkpoint of mitotic clonal expansion. Evidences are presented in this report that lactacystin, a proteasome inhibitor, up-regulated the CHOP-10 expression, blocked the DNA-binding activity of C/EBPβ, and subsequently inhibited MCE as well as adipocyte differentiation

  5. Inhibition of Adipogenesis and Induction of Apoptosis and Lipolysis by Stem Bromelain in 3T3-L1 Adipocytes

    OpenAIRE

    Sandeep Dave; Naval Jit Kaur; Ravikanth Nanduri; H Kitdorlang Dkhar; Ashwani Kumar; Pawan Gupta

    2012-01-01

    The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid s...

  6. Inhibition of Adipogenesis by Oligonol through Akt-mTOR Inhibition in 3T3-L1 Adipocytes

    OpenAIRE

    Jae-Yeo Park; Younghwa Kim; Jee Ae Im; Seungkwon You; Hyangkyu Lee

    2014-01-01

    Polyphenols have recently become an important focus of study in obesity research. Oligonol is an oligomerized polyphenol, typically comprised of catechin-type polyphenols from a variety of fruits, which has been found to exhibit better bioavailability and bioreactivity than natural polyphenol compounds. Here, we demonstrated that Oligonol inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression. During adipogenesis, Oligonol downregulated the mRNA levels of peroxisome ...

  7. Mammalian ste20-like kinase and SAV1 promote 3T3-L1 adipocyte differentiation by activation of PPARγ.

    Directory of Open Access Journals (Sweden)

    Byoung Hee Park

    Full Text Available The mammalian ste20 kinase (MST signaling pathway plays an important role in the regulation of apoptosis and cell cycle control. We sought to understand the role of MST2 kinase and Salvador homolog 1 (SAV1, a scaffolding protein that functions in the MST pathway, in adipocyte differentiation. MST2 and MST1 stimulated the binding of SAV1 to peroxisome proliferator-activated receptor γ (PPARγ, a transcription factor that plays a key role in adipogenesis. The interaction of endogenous SAV1 and PPARγ was detected in differentiating 3T3-L1 adipocytes. This binding required the kinase activity of MST2 and was mediated by the WW domains of SAV1 and the PPYY motif of PPARγ. Overexpression of MST2 and SAV1 increased PPARγ levels by stabilizing the protein, and the knockdown of SAV1 resulted in a decrease of endogenous PPARγ protein in 3T3-L1 adipocytes. During the differentiation of 3T3-L1 cells into adipocytes, MST2 and SAV1 expression began to increase at 2 days when PPARγ expression also begins to increase. MST2 and SAV1 significantly increased PPARγ transactivation, and SAV1 was shown to be required for the activation of PPARγ by rosiglitazone. Finally, differentiation of 3T3-L1 cells was augmented by MST2 and SAV1 expression and inhibited by knockdown of MST1/2 or SAV1. These results suggest that PPARγ activation by the MST signaling pathway may be a novel regulatory mechanism of adipogenesis.

  8. 罗格列酮抗氧化应激效应影响3T3-L1细胞内脏脂肪素表达%Rosiglitazone Influences Expression of Visfatin in 3T3-L1 Adipocytes Through Inhibiting Oxidative Stress

    Institute of Scientific and Technical Information of China (English)

    季振中; 徐焱成

    2011-01-01

    目的:研究罗格列酮对3T3-L1细胞内脏脂肪素表达的影响及其机制.方法:体外培养并诱导分化3T3-L1细胞,加入葡萄糖激酶制作氧化应激模型,并用不同浓度和不同作用时间罗格列酮干预,观察脂肪因子表达的变化.结果:内脏脂肪素的表达随着葡萄糖激酶氧化应激的浓度增高而递减,具有剂最依赖效应(P<0.05);内脏脂肪素的表达随着罗格列酮干预浓度增加而增加(P<0.05),随着罗格列酮作用时间的延长,内脏脂肪素的表达经历了先下降后上升的过程.且罗格列酮对于内脏脂肪素表达的影响与氧化应激状态的改变平行.结论:罗格列酮可以通过抗氧化应激作用调节内脏脂肪素的表达,可能在罗格列酮改善肥胖相关的2型糖尿病胰岛素抵抗中起到重要作用.%Objective: To study the effect of rosiglitazone on 3T3-L1 adipocyte and the mechanisms.Methods: The 3T3-L1 adipocytes were cultured and induced to differentiation and maturity in vitro, and glucokinase was added to make an oxidative model. Then the adipocytes were treated by rosiglitazone at different doses and for different time. The expression of visfatin was determined by ELISA. Results: Visfatin expression was decreased along with the increase dose of the glucokinase in a concentration-dependent manner (P<0. 05). With the pretreatment of oxidative stress, visfatin expression was increased according to the increasing doses of rosiglitazone (P< 0. 05). As the extension of rosiglitazone effect, expression of visfatin experienced decreasing- increasing process, and was parallel with the changes of oxidative stress. Conclusion: Rosiglitazone can increase visfatin expression in 3T3-L1 adipocyte by reducing oxidative stress, which could play a role in the treatment of insulin resistance in obesity related diabetes.

  9. Germinated brown rice extract inhibits adipogenesis through the down-regulation of adipogenic genes in 3T3-L1 adipocytes.

    Science.gov (United States)

    Ho, Jin-Nyoung; Son, Mi-Eun; Lim, Won-Chul; Lim, Seung-Taik; Cho, Hong-Yon

    2013-09-01

    The aim of this study was to examine the anti-adipogenic effect of germinated brown rice methanol extract (GBR) in 3T3-L1 adipocytes. The GBR inhibited adipocyte differentiation was measured by Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity in a dose-dependent manner without initiating any cytotoxicity. The mRNA levels of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBPα), proliferator-activated receptorγ (PPARγ), and sterol regulatory element-binding protein-1c (SREBP-1c), and adipogenic genes, such as fatty acid synthase (FAS), adipocyte fatty acid-binding protein (aP2), and lipoprotein lipase (LPL), were significantly down-regulated by treatment with GBR when compared to that of untreated control cells. Moreover, tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) mRNA expressions were attenuated by GBR in mature adipocytes. These data suggest that GBR exhibits an anti-adipogenic effect through the suppression of adipogenesis in 3T3-L1 adipocytes.

  10. TNF-α Induces Caspase-1 Activation Independently of Simultaneously Induced NLRP3 in 3T3-L1 Cells.

    Science.gov (United States)

    Furuoka, Mana; Ozaki, Kei-Ichi; Sadatomi, Daichi; Mamiya, Sayaka; Yonezawa, Tomo; Tanimura, Susumu; Takeda, Kohsuke

    2016-12-01

    The intracellular cysteine protease caspase-1 is critically involved in obesity-induced inflammation in adipose tissue. A substantial body of evidence from immune cells, such as macrophages, has shown that caspase-1 activation depends largely on a protein complex, called the NLRP3 inflammasome, which consists of the NOD-like receptor (NLR) family protein NLRP3, the adaptor protein ASC, and caspase-1 itself. However, it is not fully understood how caspase-1 activation is regulated within adipocytes upon inflammatory stimuli. In this study, we show that TNF-α-induced activation of caspase-1 is accompanied by robust induction of NLRP3 in 3T3-L1 adipocytes but that caspase-1 activation may not depend on the NLRP3 inflammasome. Treatment of 3T3-L1 cells with TNF-α induced mRNA expression and activation of caspase-1. Although the basal expression of NLRP3 and ASC was undetectable in unstimulated cells, TNF-α strongly induced NLRP3 expression but did not induce ASC expression. Interestingly, inhibitors of the ERK MAP kinase pathway strongly suppressed NLRP3 expression but did not suppress the expression and activation of caspase-1 induced by TNF-α, suggesting that NLRP3 is dispensable for TNF-α-induced caspase-1 activation. Moreover, we did not detect the basal and TNF-α-induced expression of other NLR proteins (NLRP1a, NLRP1b, and NLRC4), which do not necessarily require ASC for caspase-1 activation. These results suggest that TNF-α induces caspase-1 activation in an inflammasome-independent manner in 3T3-L1 cells and that the ERK-dependent expression of NLRP3 may play a role independently of its canonical role as a component of inflammasomes. J. Cell. Physiol. 231: 2761-2767, 2016. © 2016 Wiley Periodicals, Inc. PMID:26989816

  11. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2014-12-01

    Full Text Available A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  12. Functional Analysis of Long-chain Acyl-CoA Synthetase 1 in 3T3-L1 Adipocytes*

    OpenAIRE

    Lobo, Sandra; Wiczer, Brian M.; Bernlohr, David A

    2009-01-01

    ACSL1 (acyl-CoA synthetase 1), the major acyl-CoA synthetase of adipocytes, has been proposed to function in adipocytes as mediating free fatty acid influx, esterification, and storage as triglyceride. To test this hypothesis, ACSL1 was stably silenced (knockdown (kd)) in 3T3-L1 cells, differentiated into adipocytes, and evaluated for changes in lipid metabolism. Surprisingly, ACSL1-silenced adipocytes exhibited no significant changes in basal or insulin-stimulated long-chain fatty acid uptak...

  13. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability

    OpenAIRE

    Sabater Martínez, David; Arriarán, Sofía; Romero Romero, María del Mar; Agnelli, Silvia; Fernández López, José Antonio; Remesar Betlloch, Xavier; Alemany, Marià

    2014-01-01

    White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, ...

  14. In vitro and in vivo enhancement of adipogenesis by Italian ryegrass (Lolium multiflorum in 3T3-L1 cells and mice.

    Directory of Open Access Journals (Sweden)

    Mariadhas Valan Arasu

    Full Text Available Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.

  15. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  16. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  17. L-4F Inhibits Oxidized Low-density Lipoprotein-induced Inflammatory Adipokine Secretion via Cyclic AMP/Protein Kinase A-CCAAT/Enhancer Binding Protein β Signaling Pathway in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Xiang-Zhu Xie

    2016-01-01

    Conclusions: OxLDL induces C/EBPβ protein synthesis in a time-dependent manner and enhances MCP-1 secretion and expression in 3T3-L1 adipocytes. L-4F dose-dependently counterbalances the pro-inflammatory effect of oxLDL, and cyclic AMP/PKA-C/EBPβ signaling pathway may participate in it.

  18. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    OpenAIRE

    Ching Sheng, Chu; Ki Rok, Kwon; Tae Jin, Rhim; Dong Heui, Kim

    2008-01-01

    Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper ...

  19. Regulation of myosin light chain kinase during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Shelly Woody

    Full Text Available Myosin II (MyoII is required for insulin-responsive glucose transporter 4 (GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC of MyoIIA via myosin light chain kinase (MLCK. The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy ethane-N,N,N',N'-tetra acetic acid, (BAPTA (in the presence of insulin impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

  20. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    International Nuclear Information System (INIS)

    Highlights: → In 3T3-L1 adipocytes iAs3+ decreases insulin-stimulated glucose uptake. → iAs3+ attenuates insulin-induced phosphorylation of AKT S473. → iAs3+ activates the cellular adaptive oxidative stress response. → iAs3+ impairs insulin-stimulated ROS signaling. → iAs3+ decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 μM) inorganic arsenite (iAs3+) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs3+ exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs3+ exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in adipocytes

  1. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Peng [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Sun, Guifan [School of Public Health, China Medical University, Shenyang 110001 (China); Andersen, Melvin E. [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  2. Lactobacillus plantarum LG42 Isolated from Gajami Sik-Hae Inhibits Adipogenesis in 3T3-L1 Adipocyte

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Park

    2013-01-01

    Full Text Available We investigated whether lactic acid bacteria isolated from gajami sik-hae (GLAB are capable of reducing the intracellular lipid accumulation by downregulating the expression of adipogenesis-related genes in differentiated 3T3-L1 cells. The GLAB, Lactobacillus plantarum LG42, significantly decreased the intracellular triglyceride storage and the glycerol-3-phosphate dehydrogenase (GPDH activity in a dose-dependent manner. mRNA expression of transcription factors like peroxisome proliferator-activated receptor (PPAR γ and CCAAT/enhancer-binding protein (C/EBP α involved in adipogenesis was markedly decreased by the GLAB treatment. Moreover, the GLAB also decreased the expression level of adipogenic markers like adipocyte fatty acid binding protein (aP2, leptin, GPDH, and fatty acid translocase (CD36 significantly. These results suggest that the GLAB inhibits lipid accumulation in the differentiated adipocyte through downregulating the expression of adipogenic transcription factors and other specific genes involved in lipid metabolism.

  3. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability

    Science.gov (United States)

    Sabater, David; Arriarán, Sofía; Romero, María Del Mar; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2014-01-01

    White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.

  4. Iodixanol Gradient Centrifugation to Separate Components of the Low-Density Membrane Fraction from 3T3-L1 Adipocytes.

    Science.gov (United States)

    Sadler, Jessica B A; Lamb, Christopher A; Gould, Gwyn W; Bryant, Nia J

    2016-02-01

    We optimized a set of fractionation techniques to facilitate the isolation of subcellular compartments containing insulin-sensitive glucose transporter isoform 4 (GLUT4), which is mobilized from GLUT4 storage vesicles (GSVs) in fat and muscle cells in response to insulin. In the absence of insulin, GLUT4 undergoes a continuous cycle of GSV formation and fusion with other compartments. Full membrane fractionation of 3T3-L1 adipocytes produces a low-density membrane fraction that contains both the constitutive recycling pool (the endosomal recycling compartments) and the insulin-sensitive pool (the GSVs). These two pools can be separated based on density using iodixanol gradient centrifugation, described here. PMID:26832683

  5. The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells.

    Science.gov (United States)

    Woo, Mi-Seon; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2013-07-01

    Gracilaria verrucosa is a red alga that is widely distributed in seaside areas of many countries. We examined the effect of G. verrucosa extract on adipogenesis, reactive oxygen species (ROS) production, and glucose uptake in 3T3-L1 cells. Oil red O staining and a nitroblue tetrazolium assay showed that G. verrucosa extract inhibited lipid accumulation and ROS production, respectively. mRNA levels of adipogenic transcription factors, peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, as well as of their target gene, adipocyte protein 2, were reduced upon treatment with G. verrucosa extract. However, G. verrucosa extract increased glucose uptake, glucose transporter-4 expression, and AMP-activated protein kinaseα (AMPKα) phosphorylation compared to the control. Our results suggest that the anti-adipogenic and insulin-sensitive effects of G. verrucosa extract can be recapitulated to activation of AMPKα.

  6. Stearoyl-CoA Desaturase 1 Is a Key Determinant of Membrane Lipid Composition in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Rodriguez-Cuenca, Sergio; Whyte, Lauren; Hagen, Rachel; Vidal-Puig, Antonio; Fuller, Maria

    2016-01-01

    Stearoyl-CoA desaturase 1 (SCD1) is a lipogenic enzyme important for the regulation of membrane lipid homeostasis; dysregulation likely contributes to obesity associated metabolic disturbances. SCD1 catalyses the Δ9 desaturation of 12-19 carbon saturated fatty acids to monounsaturated fatty acids. To understand its influence in cellular lipid composition we investigated the effect of genetic ablation of SCD1 in 3T3-L1 adipocytes on membrane microdomain lipid composition at the species-specific level. Using liquid chromatography/electrospray ionisation-tandem mass spectrometry, we quantified 70 species of ceramide, mono-, di- and trihexosylceramide, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, bis(monoacylglycero)phosphate, phosphatidylinositol and cholesterol in 3T3-L1 adipocytes in which a 90% reduction in scd1 mRNA expression was achieved with siRNA. Cholesterol content was unchanged although decreases in other lipids resulted in cholesterol accounting for a higher proportion of lipid in the membranes. This was associated with decreased membrane lateral diffusion. An increased ratio of 24:0 to 24:1 in ceramide, mono- and dihexosylceramide, and sphingomyelin likely also contributed to this decrease in lateral diffusion. Of particular interest, we observed a decrease in phospholipids containing arachidonic acid. Given the high degree of structural flexibility of this acyl chain this will influence membrane lateral diffusion, and is likely responsible for the transcriptional activation of Lands' cycle enzymes lpcat3 and mboat7. Of relevance these profound changes in the lipidome were not accompanied by dramatic changes in gene expression in mature differentiated adipocytes, suggesting that adaptive homeostatic mechanisms to ensure partial maintenance of the biophysical properties of membranes likely occur at a post-transcriptional level. PMID:27632198

  7. Identification of the Target Proteins of Rosiglitazone in 3T3-L1 Adipocytes through Proteomic Analysis of Cytosolic and Secreted Proteins

    OpenAIRE

    Hwang, Hyun-Ho; Moon, Pyong-Gon; Lee, Jeong-Eun; Kim, Jung-Guk; LEE, WAN; Ryu, Sung-Ho; Baek, Moon-Chang

    2011-01-01

    Rosiglitazone, one of the thiazolidinedione (TZD), is an oral antidiabetic drug that activates a gamma isoform of peroxisome proliferator-activated receptor (PPARγ). To identify target proteins induced by rosiglitazone in adipocytes, we first performed simultaneous in-depth proteomic profiling of cytosolic proteins and secreted proteins (secretome) from 3T3-L1 adipocytes using a label-free quantification method with nano-UPLC MS/MS. In total, we identified 646 proteins from 3T3-L1 adipocytes,...

  8. Dynamic tracking and mobility analysis of single GLUT4 storage vesicle in live 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    Chen Hong LI; Li BAI; Dong Dong LI; Sheng XIA; Tao XU

    2004-01-01

    Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is unclear how GSVs are arranged based on their mobility. We examined this issue in 3T3-L1 cells via investigating the three-dimensional mobility of single GSV labeled with EGFP-fused GLUT4. A thin layer of cytosol right adjacent to the plasma membrane was illuminated and successively imaged at 5 Hz under a total internal reflection fluorescence microscope with a penetration depth of 136 nm. Employing single particle tracking, the three-dimensional subpixel displacement of single GSV was tracked at a spatial precision of 22 nm. Both the mean square displacement and the diffusion coefficient were calculated for each vesicle. Tracking results revealed that vesicles moved as if restricted within a cage that has a mean radius of 160 nm, suggesting the presence of some intracellular tethering matrix. By constructing the histogram of the diffusion coefficients of GSVs, we observed a smooth distribution instead of the existence of distinct groups. The result indicates that GSVs are dynamically retained in a continuous and wide range of mobility rather than into separate classes.

  9. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Sandeep Dave

    Full Text Available The phytotherapeutic protein stem bromelain (SBM is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2, fatty acid synthase (FAS, lipoprotein lipase (LPL, CD36, and acetyl-CoA carboxylase (ACC were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B, and GTP binding protein G(iα(1, as well as sustained expression of hormone sensitive lipase (HSL. These data indicate that SBM, together with all-trans retinoic-acid (atRA, may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.

  10. Characterization of GLUT4-containing vesicles in 3T3-L1 adipocytes by total internal reflection fluorescence microscopy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Insulin-responsive GLUT4(glucose transporter 4) translocation plays a major role in regulating glucose uptake in adipose tissue and muscle.Whether or not there is a specialized secretory GSV(GLUT4 storage vesicle) pool,and more importantly how GSVs are translocated to the PM(plasma membrane) under insulin stimulation is still under debate.In the present study,we systematically analyzed the dynamics of a large number of single GLUT4-containing vesicles in 3T3-L1 adipocytes by TIRFM(total internal reflection fluorescence microscopy).We found that GLUT4-containing vesicles can be classified into three groups according to their mobility,namely vertical,stable,and lateral GLUT4-containing vesicles.Among these groups,vertical GLUT4-containing vesicles exclude transferrin receptors and move towards the PM specifically in response to insulin stimulation,while stable and lateral GLUT4-containing vesicles contain transferrin receptors and show no insulin responsiveness.These data demonstrate that vertical GLUT4-containing vesicles correspond to specialized secretory GSVs,which approach the PM directly and bypass the constitutive recycling pathway.

  11. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes.

    Science.gov (United States)

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-08-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli

  12. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes

    Science.gov (United States)

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-01-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli-type chickpeas, which are

  13. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  14. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  15. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Science.gov (United States)

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism. PMID:26174858

  16. Curcumin, a Potential Inhibitor of Up-regulation of TNF-alpha and IL-6 Induced by Palmitate in 3T3-L1 Adipocytes through NF-kappaB and JNK Pathway

    Institute of Scientific and Technical Information of China (English)

    SHAO-LING WANG; YING EI; YING WEN; YAN-FENG CHEN; LI-XIN NA; SONG-TAO LI; CHANG-HAO SUN

    2009-01-01

    Objective To investigate the attenuating effect of curcumin, an anti-inflammatory compound derived from dietary spice turmeric (Curcuma longa) on the pro-inflammatory insulin-resistant state in 3T3-L1 adipocytes. Methods Glucose uptake rate was determined with the [3H] 2-deoxyglucose uptake method. Expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured by quantitative RT-PCR analysis and ELISA. Nuclear transcription factor kappaB p65 (NF-κB p65) and mitogen-activated protein kinase (MAPKs) were detected by Western blot assay. Results The basal glucose uptake was not altered, and curcumin increased the insulin-stimulated glucose uptake in 3T3-L1 cells. Curcumin suppressed the transcription and secretion of TNF-α and IL-6 induced by palmitate in a concentration-dependent manner. Palmitate induced nuclear translocation of NF-kB. The activities of Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase1/2 (ERK1/2) and p38MAPK decreased in the presence of curcumin. Moreover, pretreatment with SP600125 (inhibitor of JNK) instead of PD98059 or SB203580 (inhibitor of ERK 1/2 or p38MAPK, respectively) decreased the up-regulation of TNF-α induced by palmitate. Conclusion Curcumin reverses palmitate-induced insulin resistance state in 3T3-L1 adipocytes through the NF-kB and JNK pathway.

  17. Buckwheat (Fagopyrum esculentum M. Sprout Treated with Methyl Jasmonate (MeJA Improved Anti-Adipogenic Activity Associated with the Oxidative Stress System in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Lim

    2013-01-01

    Full Text Available Buckwheat sprouts contain various bioactive compounds including rutin which have a number of biological activities. We have previously shown that buckwheat sprouts (TBWE treated with methyl jasmonate (MeJA significantly increased the amount of phenolics and the antioxidant activity. The aim of this study was to demonstrate the effect of TBWE on anti-adipogenesis and pro-oxidant enzyme in 3T3-L1 adipocytes. We also evaluated the anti-oxidative activity of TBWE in adipocytes by using the nitroblue tetrazolium assay. Our data showed that TBWE markedly inhibited adipocyte differentiation and ROS production in 3T3-L1 cells compared with control groups. Moreover, TBWE has strongly shown the inhibition of adipogenic transcription factor as well as pro-oxidant enzymes. Together, we demonstrate that the MeJA treatment significantly increased the amount of phenolic compound, resulting in the suppression of adipogenesis and ROS production in the 3T3-L1 cells. These findings indicate that TBWE has the potential for anti-adipogenesis activity with anti-oxidative properties.

  18. Buckwheat (Fagopyrum esculentum M.) sprout treated with methyl jasmonate (MeJA) improved anti-adipogenic activity associated with the oxidative stress system in 3T3-L1 adipocytes.

    Science.gov (United States)

    Lee, Young-Jun; Kim, Kui-Jin; Park, Kee-Jai; Yoon, Bo-Ra; Lim, Jeong-Ho; Lee, Ok-Hwan

    2013-01-11

    Buckwheat sprouts contain various bioactive compounds including rutin which have a number of biological activities. We have previously shown that buckwheat sprouts (TBWE) treated with methyl jasmonate (MeJA) significantly increased the amount of phenolics and the antioxidant activity. The aim of this study was to demonstrate the effect of TBWE on anti-adipogenesis and pro-oxidant enzyme in 3T3-L1 adipocytes. We also evaluated the anti-oxidative activity of TBWE in adipocytes by using the nitroblue tetrazolium assay. Our data showed that TBWE markedly inhibited adipocyte differentiation and ROS production in 3T3-L1 cells compared with control groups. Moreover, TBWE has strongly shown the inhibition of adipogenic transcription factor as well as pro-oxidant enzymes. Together, we demonstrate that the MeJA treatment significantly increased the amount of phenolic compound, resulting in the suppression of adipogenesis and ROS production in the 3T3-L1 cells. These findings indicate that TBWE has the potential for anti-adipogenesis activity with anti-oxidative properties.

  19. Salicortin-Derivatives from Salix pseudo-lasiogyne Twigs Inhibit Adipogenesis in 3T3-L1 Cells via Modulation of C/EBPα and SREBP1c Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Hong Pyo Kim

    2013-08-01

    Full Text Available Obesity is reported to be associated with excessive growth of adipocyte mass tissue as a result of increases in the number and size of adipocytes differentiated from preadipocytes. To search for anti-adipogenic phytochemicals, we screened for inhibitory activities of various plant sources on adipocyte differentiation in 3T3-L1 preadipocytes. Among the sources, a methanolic extract of Salix pseudo-lasiogyne twigs (Salicaceae reduced lipid accumulation in a concentration-dependent manner. During our search for anti-adipogenic constituents from S. pseudo-lasiogyne, five salicortin derivatives isolated from an EtOAc fraction of this plant and bearing 1-hydroxy-6-oxo-2-cyclohexene-carboxylate moieties, namely 2′,6′-O-acetylsalicortin (1, 2′-O-acetylsalicortin (2, 3′-O-acetylsalicortin (3, 6′-O-acetylsalicortin (4, and salicortin (5, were found to significantly inhibit adipocyte differentiation in 3T3-L1 cells. In particular, 2′,6′-O-acetylsalicortin (1 had the most potent inhibitory activity on adipocyte differentiation, with an IC50 value of 11.6 μM, and it significantly down-regulated the expressions of CCAAT/enhancer binding protein α (C/EBPα and sterol regulatory element binding protein 1 (SREBP1c. Furthermore, 2′,6′-O-acetylsalicortin (1 suppressed mRNA expression levels of C/EBPβ during the early stage of adipocyte differentiation and stearoyl coenzyme A desaturase 1 (SCD-1, acetyl-CoA carboxylase (ACC, and fatty acid synthase (FAS expression, target genes of SREBP1c. In the present study, we demonstrate that the anti-adipogenesis mechanism of 2′,6′-O-acetylsalicortin (1 may be mediated via down-regulation of C/EBPα and SREBP1c dependent pathways. Through their anti-adipogenic activity, salicortin derivatives may be potential novel therapeutic agents against obesity.

  20. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Rossella Valentino

    Full Text Available Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1 nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.

  1. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Fazliana Mansor

    2013-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARgamma is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT- induced polycystic ovary syndrome (PCOS, a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP and PCOS-control (1 mL of deionised water for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100 μg/mL LP and compared to untreated control and 10 μM of rosiglitazone (in type of thiazolidinediones. LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway.

  2. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes.

    Science.gov (United States)

    Mansor, Fazliana; Gu, Harvest F; Ostenson, Claes-Göran; Mannerås-Holm, Louise; Stener-Victorin, Elisabet; Wan Mohamud, Wan Nazaimoon

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP) and PCOS-control (1 mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100  μ g/mL LP and compared to untreated control and 10  μ M of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway. PMID:23935612

  3. Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.

  4. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling.

    Directory of Open Access Journals (Sweden)

    Yan Shen

    Full Text Available We previously demonstrated that cinnamon extract (CE ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4 translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK.

  5. Mechanism of losartan in treatment of insulin resistance in 3T3-L1 adipocytes%氯沙坦改善3T3-L1脂肪细胞胰岛素抵抗的机制研究

    Institute of Scientific and Technical Information of China (English)

    刘晓莉; 潘瑜; 束金莲; 高丰厚; 金惠敏

    2011-01-01

    Objective To investigate the main mechanism of losartan in treatment of insulin resistance in 3T3-L1 adipocytes. Methods The model of insulin resistance in 3T3-L1 adipocytes was induced by dexamethasone. Model control group (without treatment with any drug), losartan group (treatment with 1 μmol/L, 10 μmol/L and 100 μmol/L losartan for 48 h respectively) and wortmannin + losartan group were divided. Adipocytes in wortmannin + losartan group were pretreated with 100 nraol/L wortmannin, phosphatidylinositol 3-kinase (PI3K) inhibitor for 20 min, and were treated with 100 μmol/L losartan for 48 h. The size of adipocytes was observed, glucose oxidase method was employed to measure the glucose concentration in supernatant of culture fluid, and Western blotting was adopted to detect the expression of PI3K and insulin receptor substrate 1 (IRS-1) and level of IRS-1 serine phosphorylation in adipocytes. Results Compared with model control group, the size of adipocytes significantly reduced (P <0. 01), the glucose concentration in supernatant of culture fluid significantly decreased (P <0.01) , the expression of PI3K and IRS-1 significantly increased (P <0.01). The level of IRS-1 serine phosphorylation significantly decreased compared with model control group (P<0.01), but the effect could be blocked by wortmannin. Conclusion Losartan could significantly decrease the cell size and increase the consumption of glucose in 3T3-L1 adipocytes with insulin resistance, and the mechanism might be associated with PI3K pathway.%目的 探讨氯沙坦改善3T3-L1脂肪细胞胰岛素抵抗的主要作用机制.方法 以地塞米松诱导3T3-L1脂肪细胞,建立胰岛素抵抗细胞模型,根据细胞模型添加干预药物的不同分为模型对照组(不添加任何药物)、氯沙坦组(分别给予1、10、100 μmol/L氯沙坦干预48 h)和wortmannin+氯沙坦组,wortmannin+氯沙坦组以100 nmol/L的磷脂酰肌醇3激酶(PI3K)特异性抑制剂wortmannin预处理20 min

  6. Stinging Nettle (Urtica dioica L. Attenuates FFA Induced Ceramide Accumulation in 3T3-L1 Adipocytes in an Adiponectin Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Diana N Obanda

    Full Text Available Excess dietary lipids result in the accumulation of lipid metabolites including ceramides that can attenuate insulin signaling. There is evidence that a botanical extract of Urtica dioica L. (stinging nettle improves insulin action, yet the precise mechanism(s are not known. Hence, we examined the effects of Urtica dioica L. (UT on adipocytes.We investigated the effects of an ethanolic extract of UT on free fatty acid (palmitic acid induced inhibition of insulin-stimulated Akt serine phosphorylation and modulation of ceramidase expression in 3T3-L1 adipocytes. Adipocytes were exposed to excess FFAs in the presence or absence of UT. Effects on adiponectin expression, ceramidase expression, ceramidase activity, ceramide accumulation and insulin signaling were determined.As expected, FFAs reduced adiponectin expression and increased the expression of ceramidase enzymes but not their activity. FFA also induced the accumulation of ceramides and reduced insulin-stimulated phosphorylation of Akt in adipocytes. The effects of FFA were partially reversed by UT. UT enhanced adiponectin expression and ceramidase activity in the presence of excess FFAs. UT abated ceramide accumulation and increased insulin sensitivity via enhanced Akt phosphorylation. A siRNA knockdown of adiponectin expression prevented UT from exerting positive effects on ceramidase activity but not Akt phosphorylation.In adipocytes, the ability of UT to antagonize the negative effects of FFA by modulating ceramidase activity and ceramide accumulation is dependent on the presence of adiponectin. However, the ability of UT to enhance Akt phosphorylation is independent of adiponectin expression. These studies demonstrate direct effects of UT on adipocytes and suggest this botanical extract is metabolically beneficial.

  7. Stinging Nettle (Urtica dioica L.) Attenuates FFA Induced Ceramide Accumulation in 3T3-L1 Adipocytes in an Adiponectin Dependent Manner

    Science.gov (United States)

    Obanda, Diana N.; Zhao, Peng; Richard, Allison J.; Ribnicky, David; Cefalu, William T.; Stephens, Jacqueline M.

    2016-01-01

    Objective Excess dietary lipids result in the accumulation of lipid metabolites including ceramides that can attenuate insulin signaling. There is evidence that a botanical extract of Urtica dioica L. (stinging nettle) improves insulin action, yet the precise mechanism(s) are not known. Hence, we examined the effects of Urtica dioica L. (UT) on adipocytes. Research Design We investigated the effects of an ethanolic extract of UT on free fatty acid (palmitic acid) induced inhibition of insulin-stimulated Akt serine phosphorylation and modulation of ceramidase expression in 3T3-L1 adipocytes. Adipocytes were exposed to excess FFAs in the presence or absence of UT. Effects on adiponectin expression, ceramidase expression, ceramidase activity, ceramide accumulation and insulin signaling were determined. Results As expected, FFAs reduced adiponectin expression and increased the expression of ceramidase enzymes but not their activity. FFA also induced the accumulation of ceramides and reduced insulin-stimulated phosphorylation of Akt in adipocytes. The effects of FFA were partially reversed by UT. UT enhanced adiponectin expression and ceramidase activity in the presence of excess FFAs. UT abated ceramide accumulation and increased insulin sensitivity via enhanced Akt phosphorylation. A siRNA knockdown of adiponectin expression prevented UT from exerting positive effects on ceramidase activity but not Akt phosphorylation. Conclusions In adipocytes, the ability of UT to antagonize the negative effects of FFA by modulating ceramidase activity and ceramide accumulation is dependent on the presence of adiponectin. However, the ability of UT to enhance Akt phosphorylation is independent of adiponectin expression. These studies demonstrate direct effects of UT on adipocytes and suggest this botanical extract is metabolically beneficial. PMID:26939068

  8. Simvastatin inhibits ox-LDL-induced inflammatory adipokines secretion via amelioration of ER stress in 3T3-L1 adipocyte.

    Science.gov (United States)

    Wu, Zhi-hong; Chen, Ya-qin; Zhao, Shui-ping

    2013-03-01

    Adipocytes behave as a rich source of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Endoplasmic reticulum (ER) stress in adipocytes can alter adipokines secretion and induce inflammation. The aim of this study is to evaluate the effect of simvastatin on the ox-LDL-induced ER stress and expression and secretion of TNF-α and MCP-1 in 3T3-L1 adipocytes. Differentiated adipocytes were treated with various concentrations of ox-LDL (0-100 μg/ml) for 24h with or without simvastatin pre-treatment. The protein expressions of ER stress markers, glucose-regulated protein 78 (GRP78) and C/EBP homology protein (CHOP), were determined by Western blot analysis. The mRNA expressions of TNF-α and MCP-1 were measured by real-time PCR. The protein release of TNF-α and MCP-1 in culture medium were evaluated by ELISA. Ox-LDL treatment led to significant up-regulation of GRP78 and CHOP in dose-dependent manner. The expressions of TNF-α and MCP-1 were dose-dependently increased at mRNA and protein levels after ox-LDL intervention. The effects of ox-LDL on adipocytes were abolished by pre-treatment with 4-phenylbutyrate (4-PBA), a chemical chaperone known to ameliorate ER stress. Simvastatin could inhibit ox-LDL-induced ER stress and reduce the expression of TNF-α and MCP-1 at mRNA and protien level in dose dependent manner. In conclusion, ox-LDL can stimulate the expression and secretion of TNF-α and MCP-1 through its activation of ER stress in adipocytes. Simvastatin might exert direct anti-inflammatory effects in adipocytes through amelioration of ER stress.

  9. Regulation of apelin and its receptor expression in adipose tissues of obesity rats with hypertension and cultured 3T3-L1 adipocytes.

    Science.gov (United States)

    Wu, Hongxian; Cheng, Xian Wu; Hao, Changning; Zhang, Zhi; Yao, Huali; Murohara, Toyoaki; Dai, Qiuyan

    2014-01-01

    The apelin/APJ system has been implicated in obesity-related hypertension. We investigated the mechanism responsible for the pathogenesis of obesity-related hypertension with a special focus on the crosstalk between AngII/its type 1 receptor (AT1R) signaling and apelin/APJ expression. Sprague-Dawley rats fed a high-fat (obesity-related hypertension, OH) or normal-fat diet (NF) for 15 weeks were randomly assigned to one of two groups and administered vehicle or perindopril for 4 weeks. Compared to the NF rats, the OH rats showed lower levels of plasma apelin and apelin/APJ mRNAs of perirenal adipose tissues, and these changes were restored by perindopril. Administration of the AT1R antagonist olmesartan resulted in the restoration of the reduction of apelin and APJ expressions induced by AngII for 48 h in 3T3-L1 adipocytes. Among several inhibitors for extracellular signal-regulated kinases 1/2 (ERK1/2) PD98059, p38 mitogen-activated protein kinase (p38MAPK) SB203580 and phosphatidylinositol 3-kinase (PI3K) LY294002, the latter showed an additive effect on AngII-mediated inhibitory effects. In addition, the levels of p-Akt, p-ERK and p38MAPK proteins were decreased by long-term treatment with AngII (120 min), and these changes were restored by Olmesartan. Apelin/APJ appears to be impaired in obesity-related hypertension. The AngII inhibition-mediated beneficial effects are likely attributable, at least in part, to restoration of p38/ERK-dependent apelin/APJ expression in diet-induced obesity-related hypertension.

  10. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Messineo, Sebastiano; Laria, Anna Elisa; Arcidiacono, Biagio; Chiefari, Eusebio; Luque Huertas, Raúl M; Foti, Daniela P; Brunetti, Antonio

    2016-01-01

    The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia - through the hypoxia-inducible factor 1 (HIF-1) - plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity. PMID:27445976

  11. Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate.

    Directory of Open Access Journals (Sweden)

    María del Mar Romero

    Full Text Available Cultured adipocytes (3T3-L1 produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively sustained. Proportionally (with respect to lactate plus glycerol, more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of

  12. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes

    OpenAIRE

    Crown, Scott B.; Nicholas Marze; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass...

  13. Free Fatty Acids Activate Renin-Angiotensin System in 3T3-L1 Adipocytes through Nuclear Factor-kappa B Pathway

    Directory of Open Access Journals (Sweden)

    Jia Sun

    2016-01-01

    Full Text Available The activity of a local renin-angiotensin system (RAS in the adipose tissue is closely associated with obesity-related diseases. However, the mechanism of RAS activation in adipose tissue is still unknown. In the current study, we found that palmitic acid (PA, one kind of free fatty acid, induced the activity of RAS in 3T3-L1 adipocytes. In the presence of fetuin A (Fet A, PA upregulated the expression of angiotensinogen (AGT and angiotensin type 1 receptor (AT1R and stimulated the secretion of angiotensin II (ANG II in 3T3-L1 adipocytes. Moreover, the activation of RAS in 3T3-L1 adipocytes was blocked when we blocked Toll-like receptor 4 (TLR4 signaling pathway using TAK242 or NF-κB signaling pathway using BAY117082. Together, our results have identified critical molecular mechanisms linking PA/TLR4/NF-κB signaling pathway to the activity of the local renin-angiotensin system in adipose tissue.

  14. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1986-05-01

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (..cap alpha..Gs), assayed by radiolabeling in the presence of cholera toxin and (/sup 32/P)NAD/sup +/, increased upon differentiation as previously described by others. The amounts of ..cap alpha..Gi and ..cap alpha..Go assayed by radiolabeling in the presence of pertussis toxin and (/sup 32/P)NAD/sup +/ increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain ..cap alpha..Go and with one raised against the..beta..-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of ..cap alpha..Go and also demonstrate an increase in the amount of the ..beta..-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes.

  15. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (αGs), assayed by radiolabeling in the presence of cholera toxin and [32P]NAD+, increased upon differentiation as previously described by others. The amounts of αGi and αGo assayed by radiolabeling in the presence of pertussis toxin and [32P]NAD+ increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain αGo and with one raised against theβ-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of αGo and also demonstrate an increase in the amount of the β-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes

  16. Buckwheat (Fagopyrum esculentum M.) Sprout Treated with Methyl Jasmonate (MeJA) Improved Anti-Adipogenic Activity Associated with the Oxidative Stress System in 3T3-L1 Adipocytes

    OpenAIRE

    Jeong-Ho Lim; Kee-Jai Park; Bo-Ra Yoon; Kui-Jin Kim; Young-Jun Lee; Ok-Hwan Lee

    2013-01-01

    Buckwheat sprouts contain various bioactive compounds including rutin which have a number of biological activities. We have previously shown that buckwheat sprouts (TBWE) treated with methyl jasmonate (MeJA) significantly increased the amount of phenolics and the antioxidant activity. The aim of this study was to demonstrate the effect of TBWE on anti-adipogenesis and pro-oxidant enzyme in 3T3-L1 adipocytes. We also evaluated the anti-oxidative activity of TBWE in adipocytes by using the nitr...

  17. Vasonatrin peptide promotes the synthesis of adiponectin in 3T3-L1 adipocytes of mouse and the underlying mechanism%血管钠肽促进小鼠3T3-L1脂肪细胞合成脂联素及其可能机制

    Institute of Scientific and Technical Information of China (English)

    铁茹; 邢文娟; 陈小丽; 金坚; 张海锋; 于军; 陈宝莹

    2012-01-01

    目的 探讨血管钠肽(VNP)对脂肪因子脂联素生成的影响及其机制.方法 在3T3-L1细胞分化的脂肪细胞中加入不同浓度的VNP,分别用实时定量PCR法和Western blot法检测脂联素的mRNA水平和蛋白表达,放免法测定细胞内cGMP的水平.结果 VNP可显著增加脂联素mRNA水平和蛋白表达,同时提高细胞内cGMP,含量为(38±5)~(265±35)nmol/L,显著高于对照组的(10±2)nmol/L(P<0.01);该效应可用8-Br-cGMP诱导,可被cGMP依赖性蛋白激酶抑制剂KT-5823或钠尿肽受体NPR阻断剂HS-142-1抑制.结论VNP可通过NPR/cGMP/PKG信号通路增加脂肪细胞脂联素的表达.%Objective To identify the roles of vasonatrin peptide (VNP) on adiponectin production and the underlying mechanisms. Methods 3T3-L1 cells were differentiated into adipocytes and exposed to various concentrations of VNP. Quantitative PCR and immunoassays were performed to determine the mRNA levels of adiponectin. Involved signaling pathway was identified by radioimmunoassay to detect the levels of intracellular cGMP[ (38+5) ~ (265 ± 35)nmol/L]. Results VNP markedly enhanced adiponectin mRNA expression as well as protein secretion. In addition, VNP significantly enhanced the intracellular level of cGMP. The effects of VNP were mimicked by 8-Br-cGMP, whereas inhibited by HS-142-1 or KT-5823. Conclusions VNP regulates adiponectin production in adipocytes via a guanylyl cyclase-coupled NPR/cGMP/PKG pathway.

  18. Adipocyte differentiation of 3T3-L1 preadipocytes is dependent on lipoxygenase activity during the initial stages of the differentiation process

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus K; Sørensen, Morten B;

    2003-01-01

    (s) increases rapidly upon induction of differentiation and reaches a maximum on days 3-4 of the adipocyte differentiation programme. The conventional platelet- and leucocyte-type 12(S)-LOXs and the novel eLOX-3 (epidermis-type LOX-3) are expressed in white and brown adipose tissue, whereas only eLOX-3...

  19. Pioglitazone promotes preadipocyte proliferation by downregulating p16{sup Ink4a}

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Arif U. [Department of Cardiorenal Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Ohmori, Koji, E-mail: komori@med.kagawa-u.ac.jp [Department of Cardiorenal Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Hashimoto, Takeshi [Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Kamitori, Kazuyo; Hirata, Yuko [Department of Cell Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Ishihara, Yasuhiro; Okamoto, Naoko; Noma, Takahisa [Department of Cardiorenal Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Kosaka, Hiroaki [Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Tokuda, Masaaki [Department of Cell Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Kohno, Masakazu [Department of Cardiorenal Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan)

    2011-07-29

    Highlights: {yields} Mechanisms for preadipocyte hyperplasia by pioglitazone, a PPAR{gamma} agonist, are shown. {yields} Pioglitazone promotes cell-cycle of 3T3-L1 preadipocytes and increases their number. {yields} Pioglitazone downregulates a cyclin dependent kinase inhibitor, p16{sup Ink4a}. {yields} PPAR{gamma} transrepresses p16{sup Ink4a} gene in preadipocytes, which pioglitazone enhances. -- Abstract: Pioglitazone, a synthetic ligand of peroxisome proliferator-activated receptor (PPAR){gamma}, causes preadipocyte proliferation through a mechanism which still remains elusive. Here, to address the mechanism, we investigated the effects of PPAR{gamma} and pioglitazone on the kinetics of cyclin-dependent kinase inhibitors, especially with p16{sup Ink4a} (p16) centered, by employing 3T3-L1 preadipocytes. Pioglitazone promoted preadipocyte proliferation by increasing S and G{sub 2}/M cell-cycle entry, which was accompanied by decreased p16 mRNA expression. PPAR{gamma} overexpression along with the luciferase reporter assay confirmed that PPAR{gamma} was crucial for the downregulation of p16 mRNA transcription, and that the action was augmented by pioglitazone. Thus, pioglitazone exerted cell-cycle dependent promoting effect on preadipocyte proliferation, of which mechanisms include p16-downregulation through PPAR{gamma}.

  20. Pioglitazone promotes preadipocyte proliferation by downregulating p16Ink4a

    International Nuclear Information System (INIS)

    Highlights: → Mechanisms for preadipocyte hyperplasia by pioglitazone, a PPARγ agonist, are shown. → Pioglitazone promotes cell-cycle of 3T3-L1 preadipocytes and increases their number. → Pioglitazone downregulates a cyclin dependent kinase inhibitor, p16Ink4a. → PPARγ transrepresses p16Ink4a gene in preadipocytes, which pioglitazone enhances. -- Abstract: Pioglitazone, a synthetic ligand of peroxisome proliferator-activated receptor (PPAR)γ, causes preadipocyte proliferation through a mechanism which still remains elusive. Here, to address the mechanism, we investigated the effects of PPARγ and pioglitazone on the kinetics of cyclin-dependent kinase inhibitors, especially with p16Ink4a (p16) centered, by employing 3T3-L1 preadipocytes. Pioglitazone promoted preadipocyte proliferation by increasing S and G2/M cell-cycle entry, which was accompanied by decreased p16 mRNA expression. PPARγ overexpression along with the luciferase reporter assay confirmed that PPARγ was crucial for the downregulation of p16 mRNA transcription, and that the action was augmented by pioglitazone. Thus, pioglitazone exerted cell-cycle dependent promoting effect on preadipocyte proliferation, of which mechanisms include p16-downregulation through PPARγ.

  1. Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds

    OpenAIRE

    Valentina Mitran; Madalina Georgiana Albu; Eugeniu Vasile; Anisoara Cimpean; Marieta Costache

    2015-01-01

    This paper aims at demonstrating the biocompatibility of recently developed 3D hydrogel scaffolds containing the same amount of collagen (COLL) and variable concentrations of sericin (SS) in order to find the most suitable formula for adipose tissue engineering (ATE) applications. These scaffolds were obtained by COLL crosslinking with glutaraldehyde followed by freeze-drying and, subsequently, seeded with 3T3-L1 preadipocytes. Scanning electron microscopy studies revealed the scaffolds׳ arch...

  2. The interaction of /sup 125/I-insulin with cultured 3T3-L1 adipocytes: quantitative analysis by the hypothetical grain method

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.Y.; Carpentier, J.L.; Van Obberghen, E.; Blackett, N.M.; Grunfeld, C.; Gorden, P.; Orci, L.

    1983-07-01

    The murine 3T3-L1 fibroblast under appropriate incubation conditions differentiates into an adipocyte phenotype. This 3T3-L1 adipocyte exhibits many of the morphologic, biochemical, and insulin-responsive features of the normal rodent adipocyte. Using quantitative electron microscopic (EM) autoradiography we find that, when /sup 125/I-insulin is incubated with 3T3-L1 adipocytes, the ligand at early times of incubation localizes to the plasma membrane of the cell preferentially to microvilli and coated pits. When the incubation is continued at 37 degrees C, /sup 125/I-insulin is internalized by the cells and preferential binding to the villous surface is lost. With the internalization of the ligand, two intracellular structures become labeled, as determined by the method of hypothetical grain analysis. These include large clear, presumably endocytotic, vesicles and multivesicular bodies. Over the first hour of incubation the labeling of these structures increases in parallel, but in the second hour they diverge: the labeling of multivesicular bodies and other lysosomal forms continuing to increase and the labeling of large clear vesicles decreasing. At 3 hours limited but significant labeling occurs in small Golgi-related vesicles that have the typical distribution of GERL. The distinct morphologic features of this cell make it ideal for a quantitative morphologic analysis and allow for an unambiguous view of the sequence of events involved in receptor-mediated endocytosis of a polypeptide hormone. These events are likely to be representative of the processing of insulin by the mature rodent adipocyte.

  3. The influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cellular maturation

    OpenAIRE

    Prostek, Adam; Gajewska, Małgorzata; Kamola, Dariusz; Bałasińska, Bożena

    2014-01-01

    Background EPA and DHA have been reported to have anti-obesity and anti-inflammatory properties. Recent studies revealed that these positive actions of n-3 PUFA at least partially are connected with their influence on metabolism and secretory functions of the adipose tissue. However, their impact on old adipocytes is still poorly understood. Therefore the aim of the present study was to evaluate the influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cel...

  4. PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation in 3T3L1 adipocytes

    OpenAIRE

    Manna, Prasenjit; Jain, Sushil K.

    2013-01-01

    PIP3 (phosphatidylinositol-3,4,5-triphosphate) and PIP2 (phosphatidylinositol-4,5-biphosphate) are two well-known membrane bound polyphosphoinositides. Diabetes is associated with impaired glucose metabolism. Using a 3T3L1 adipocyte cell model, this study investigated the roles of PIP3 and PIP2 on insulin stimulated glucose metabolism in high glucose (HG) treated cells. Exogenous PIP3 supplementation (1, 5, or 10 nM) increased the phosphorylation of AKT and PKCζ/λ, which in turn upregulated G...

  5. The impact of cholesteryl ester transfer protein on glucose metabolism in 3T3-L1 adipocytes%胆固醇酯转运蛋白对3T3-L1脂肪细胞糖代谢的影响

    Institute of Scientific and Technical Information of China (English)

    朱晓慧; 常毅娜; 付真真; 郭雯; 高贝贝; 符金香; 陈晓丽; 周红文

    2014-01-01

    3T3-L1 adipocytes stably expressing different levels of human cholesterol ester transfer protein (CETP) were constructed and identified.Glucose uptake and glucose transporter 4 (GLUT4) protein levels of these cells were also measured.Insulin-stimulated 2-deoxyglucose uptake was significantly higher in 3T3-L1 adipocytes which expressed high,medium,and low levels of CETP than that in control ceils,and the elevated levels of glucose uptake were positively related with CETP expression in a dose-dependent manner.After insulin stimulation,there was no difference in GLUT4 protein expression among control cell and those expressing CETP.CETP plays a role in the regulation of glucose metabolism in adipocytes.%建立人胆固醇酯转运蛋白(CETP)不同表达水平的3T3-L1脂肪前体细胞株,并进行鉴定,测定葡萄糖摄取率以及葡萄糖转运体4(GLUT4)蛋白表达水平.与对照组相比,表达CETP的3T3-L1脂肪细胞葡萄糖摄取显著增高,且此作用与CETP表达量呈正相关.胰岛素刺激后,稳定表达CETP的3T3-L1脂肪细胞GLUT4蛋白表达水平与对照组相比无显著差异.推测CETP可能通过调节脂肪细胞内胆固醇含量的变化而促进脂肪细胞的糖代谢.

  6. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin, a polyphen...

  7. High-Speed Microdialysis-Capillary Electrophoresis Assays for Measuring Branched Chain Amino Acid Uptake in 3T3-L1 cells.

    Science.gov (United States)

    Harstad, Rachel K; Bowser, Michael T

    2016-08-16

    We have developed a high-throughput microdialysis-capillary electrophoresis (MD-CE) assay for monitoring branched chain amino acid (BCAA) uptake/release dynamics in 3T3-L1 cells. BCAAs (i.e., isoleucine, leucine, and valine) and their downstream metabolites (i.e., alanine, glutamine, and glutamate) are important indicators of adipocyte lipogenesis. To perform an analysis, amino acids were sampled using microdialysis, fluorescently labeled in an online reaction, separated using CE, and detected using laser-induced fluorescence (LIF) in a sheath flow cuvette. Separation conditions were optimized for the resolution of the BCAAs isoleucine, leucine, and valine, as well as 13 other amino acids, including ornithine, alanine, glutamine, and glutamate. CE separations were performed in <30 s, and the temporal resolution of the online MD-CE assay was <60 s. Limits of detection (LOD) were 400, 200, and 100 nM for isoleucine, leucine, and valine, respectively. MD-CE dramatically improved throughput in comparison to traditional offline CE methods, allowing 8 replicates of 15 samples (i.e., 120 analyses) to be assayed in <120 min. The MD-CE assay was used to assess the metabolism dynamics of 3T3-L1 cells over time, confirming the utility of the assay. PMID:27398773

  8. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Scott B Crown

    Full Text Available The branched chain amino acids (BCAA valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0 and odd chain length (C15:0 and C17:0 fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  9. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  10. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA. PMID:26710334

  11. 大鼠AQP7基因重组腺病毒载体的构建及其在3T3-L1脂肪细胞中的表达%Construction of rat AQP7 recombinant adenovirus vector and its expression in 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    潘伟; 谷雪梅; 沈飞霞

    2012-01-01

    目的:构建携带大鼠AQP7基因的腺病毒载体,并检测其在3T3-L1脂肪细胞中的表达.方法:采用RT-PCR方法,从大鼠脂肪组织中扩增克隆大鼠AQP7基因,插入到穿梭质粒中获得重组质粒pDC316-AQP7.PCR、酶切鉴定后,重组穿梭质粒和骨架质粒经脂质体2000转染293细胞出毒产生重组腺病毒.经PCR进行鉴定,转染293细胞扩增并纯化,半数组织培养感染剂量(TCID 50)方法测定腺病毒滴度.体外转染分化成熟的3T3-L1细胞,用Western blot方法检测AQP7的表达水平.结果:PCR、酶切及测序证实重组穿梭质粒构建正确.同时成功构建AQP7重组腺病毒,并制备出高滴度的病毒保存液,可以有效转染3T3-L1细胞.结论:成功构建了含大鼠AQP7基因的重组腺病毒载体且其可以在3T3-L1细胞中有效表达,为今后更好地研究AQP7在肥胖发生发展过程中的调控机制奠定了基础.%Objective: To construct the recombinant adenovius vector carrying rat AQP7 and transfect the 3T3-L1 cells. Methods: The full cDNA sequence was obtained from rat adipose tissue using RT-PCR. The AQP7 gene was inserted into pDC316 shuttle plasid in order to produce recombinant pDC316-AQP7. After the identification of PCR,restriction endonuclease digestion and sequencing, the recombinant pDC316-AQP7 shuttle plasid coinfected with rescue plasmid into 293 cells by Lipofectamine 2000. The recombinant adenovirus vector (Ad5-AQP7) was confirmed by PCR, and then amplified in 293 cells and purified. The titer was used 50% tissue culture infective dose (TC1D) assay. 3T3-L1 cells were transfected with Ad5-AQP7 and the expression of AQP7 gene was detected with Western blot. Results: PCR, restrition endonuclease digestion and sequencing analysis confirmed the construction of pDC316-AQP7 shuttle plasmid.Recombinant adenovius with high titer was produced and could express efficiently in 3T3-L1 cells. Conclusion: Recombinant adenovirus vector earring rat AQP7 gene (Ad5-AQP7

  12. Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds

    Directory of Open Access Journals (Sweden)

    Valentina Mitran

    2015-04-01

    Full Text Available This paper aims at demonstrating the biocompatibility of recently developed 3D hydrogel scaffolds containing the same amount of collagen (COLL and variable concentrations of sericin (SS in order to find the most suitable formula for adipose tissue engineering (ATE applications. These scaffolds were obtained by COLL crosslinking with glutaraldehyde followed by freeze-drying and, subsequently, seeded with 3T3-L1 preadipocytes. Scanning electron microscopy studies revealed the scaffolds׳ architecture and cellular colonization. Also, in vitro biocompatibility of the developed scaffolds was evaluated by LDH and MTT assays and Live/Dead analysis of 3T3-L1 preadipocyte populating these 3D matrices. The best results in terms of cell survival and proliferation status were obtained in the case of the hybrid COLL scaffold containing 40% SS (COLL–SS4. Furthermore, the biological performance of the analyzed COLL-based hydrogels at 5- and 8- days post-seeding was found to decrease as follows: COLL–SS4>COLL–SS2>COLL>COLL–SS6. Consequently, our study highlights that hybrid scaffolds obtained by the addition of variable concentrations of SS to a constant COLL composition positively influences the behavior of 3T3-L1 cells with the exception of the COLL–SS6 matrix (60% SS. Altogether, the data obtained recommend SS as a component of COLL-based hydrogels providing them with features that may be useful in ATE applications.

  13. Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds

    Institute of Scientific and Technical Information of China (English)

    Valentina Mitran; Madalina Georgiana Albu; Eugeniu Vasile; Anisoara Cimpean; Marieta Costache

    2015-01-01

    This paper aims at demonstrating the biocompatibility of recently developed 3D hydrogel scaffolds containing the same amount of collagen (COLL) and variable concentrations of sericin (SS) in order to find the most suitable formula for adipose tissue engineering (ATE) applications. These scaffolds were obtained by COLL crosslinking with glutaraldehyde followed by freeze-drying and, subsequently, seeded with 3T3-L1 preadipocytes. Scanning electron microscopy studies revealed the scaffolds' architecture and cellular colonization. Also, in vitro biocompatibility of the developed scaffolds was evaluated by LDH and MTT assays and Live/Dead analysis of 3T3-L1 preadipocyte populating these 3D matrices. The best results in terms of cell survival and proliferation status were obtained in the case of the hybrid COLL scaffold containing 40% SS (COLL–SS4). Furthermore, the biological performance of the analyzed COLL-based hydrogels at 5- and 8- days post-seeding was found to decrease as follows:COLL–SS4 4 COLL–SS2 4 COLL 4 COLL–SS6. Consequently, our study highlights that hybrid scaffolds obtained by the addition of variable concentrations of SS to a constant COLL composition positively influences the behavior of 3T3-L1 cells with the exception of the COLL–SS6 matrix (60%SS). Altogether, the data obtained recommend SS as a component of COLL-based hydrogels providing them with features that may be useful in ATE applications.

  14. OM2, a Novel Oligomannuronate-Chromium(III Complex, Promotes Mitochondrial Biogenesis and Lipid Metabolism in 3T3-L1 Adipocytes via the AMPK-PGC1α Pathway.

    Directory of Open Access Journals (Sweden)

    Jiejie Hao

    Full Text Available In our previous studies, we prepared novel oligomannuronate-chromium(III complexes (OM2, OM4 from marine alginate, and found that these compounds sensitize insulin action better than oligomannuronate(OM, chromium, and metformin in C2C12 skeletal muscle cells. In the present study, we studied their effects on mitochondrial biogenesis, lipid metabolism, and the underlying molecular mechanisms in differentiated 3T3-L1 adipocytes.We firstly used the pGL3-PGC1α and pGL3-ATGL promoter plasmids to compare their effects on PGC1α and ATGL transcription activities. Then mitochondrial biogenesis was quantified by transmission electron microscopy and MitoTracker staining. Mitochondrial oxygen consumption and fatty acid oxidation were measured by an oxygen biosensor system and ³H-labelled water scintillation. The mitochondrial DNA and mRNA involved in mitochondrial biogenesis and lipid oxidation were evaluated by real-time PCR. AMPK together with other protein expression levels were measured by western blotting. The inhibitor compound C and siRNA of PGC1α were used to inhibit the OM2-induced AMPK-PGC1α signaling pathway. And we found that OM2 stimulated AMPK-PGC1α pathway in the 3T3-L1 adipocytes, which were correlated with induced mitochondrial biogenesis, improved mitochondrial function, and reduced lipid accumulation by enhanced fatty acid β-oxidation and augmented ATGL protein expression.Our data indicated that the marine oligosaccharide-derived OM2 might represent a novel class of molecules that could be useful for type 2 diabetes prevention and treatment by up-regulating AMPK-PGC1α signaling pathway.

  15. OM2, a Novel Oligomannuronate-Chromium(III) Complex, Promotes Mitochondrial Biogenesis and Lipid Metabolism in 3T3-L1 Adipocytes via the AMPK-PGC1α Pathway

    Science.gov (United States)

    Hao, Jiejie; Hao, Cui; Zhang, Lijuan; Liu, Xin; Zhou, Xiaolin; Dun, Yunlou; Li, Haihua; Li, Guangsheng; Zhao, Xiaoliang; An, Yuanyuan; Liu, Jiankang; Yu, Guangli

    2015-01-01

    Background In our previous studies, we prepared novel oligomannuronate-chromium(III) complexes (OM2, OM4) from marine alginate, and found that these compounds sensitize insulin action better than oligomannuronate(OM), chromium, and metformin in C2C12 skeletal muscle cells. In the present study, we studied their effects on mitochondrial biogenesis, lipid metabolism, and the underlying molecular mechanisms in differentiated 3T3-L1 adipocytes. Methodology/Principal Findings We firstly used the pGL3-PGC1α and pGL3-ATGL promoter plasmids to compare their effects on PGC1α and ATGL transcription activities. Then mitochondrial biogenesis was quantified by transmission electron microscopy and MitoTracker staining. Mitochondrial oxygen consumption and fatty acid oxidation were measured by an oxygen biosensor system and ³H-labelled water scintillation. The mitochondrial DNA and mRNA involved in mitochondrial biogenesis and lipid oxidation were evaluated by real-time PCR. AMPK together with other protein expression levels were measured by western blotting. The inhibitor compound C and siRNA of PGC1α were used to inhibit the OM2-induced AMPK-PGC1α signaling pathway. And we found that OM2 stimulated AMPK-PGC1α pathway in the 3T3-L1 adipocytes, which were correlated with induced mitochondrial biogenesis, improved mitochondrial function, and reduced lipid accumulation by enhanced fatty acid β-oxidation and augmented ATGL protein expression. Conclusions/Significance Our data indicated that the marine oligosaccharide-derived OM2 might represent a novel class of molecules that could be useful for type 2 diabetes prevention and treatment by up-regulating AMPK-PGC1α signaling pathway. PMID:26176781

  16. STAT5a promotes the transcription of mature mmu-miR-135a in 3T3-L1 cells by binding to both miR-135a-1 and miR-135a-2 promoter elements.

    Science.gov (United States)

    Wei, Xiajie; Cheng, Xiaoyan; Peng, Yongdong; Zheng, Rong; Chai, Jin; Jiang, Siwen

    2016-08-01

    Despite extensive research on the role of miR-135a in biological processes, very little attention has been paid to the regulation of its transcription. We have previously reported that miR-135a suppresses 3T3-L1 preadipocyte differentiation and adipogenesis by directly targeting the adenomatous polyposis coli (APC) gene and activating the canonical Wnt/β-catenin signaling pathway, but the regulatory elements that regulate the expression of the two isoforms of miR-135a (miR-135a-1 and miR-135a-2) remain poorly understood. Here, by using deletion analysis, we predicted two binding sites (-874/-856 and -2020/-2002) for the transcription factor Signal Transducers and Activators of Transcription 5a (STAT5a) within the core promoters of miR-135a-1 and miR-135a-2 (-1128/-556 and -2264/-1773), and the subsequent site-directed mutagenesis indicated that the two STAT5a binding sites regulated the activity of the miR-135a-1 and miR-135a-2 promoters. The binding of STAT5a to the miR-135a-1/2 core promoters in vitro and in cell culture was identified by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays. Overexpression and RNAi knockdown of STAT5a showed that the transcription factor regulated the endogenous miR-135a expression. Additionally, The expression time frame of STAT5a and APC indicated a potential negative feedback between them. In sum, the overall results from this study indicate that STAT5a regulates miR-135a transcription by binding to both miR-135a-1 and miR135a-2 promoter elements and the findings provide novel insights into the molecular regulatory mechanisms of miR-135a during adipogenesis. PMID:27276245

  17. Buddleja officinalis Maximowicz Extract Inhibits Lipid Accumulation on Adipocyte Differentiation in 3T3-L1 Cells and High-Fat Mice

    Directory of Open Access Journals (Sweden)

    Jin-Kyu Kim

    2012-07-01

    Full Text Available Obesity is a global health problem. It is also known to be a risk factor for the development of metabolic disorders, type 2 diabetes, systemic hypertension, cardiovascular disease, dyslipidemia, and atherosclerosis. In this study, we elucidated that Buddleja officinalis Maximowicz extract significantly inhibited lipid accumulation during 3T3-L1 adipocyte differentiation. Furthermore, Buddleja officinalis Maximowicz extract reduced the body weight gain induced through feeding a high-fat diet to C57BL/6 mice. The treatment of Buddleja officinalis Maximowicz extract significantly reduced the adipose tissue weight to 2.7/100 g of body weight in high-fat mice. When their adipose tissue morphology was investigated for histochemical staining, the distribution of cell size in the high-fat diet groups was hypertrophied compared with those from Buddleja officinalis Maximowicz extract-treated mice. In addition, in Buddleja officinalis Maximowicz extract-treated mice, a significant reduction of serum triglyceride and T-cholesterol was observed at to 21% and 17%, respectively. The discovery of bioactive compounds from diet or dietary supplementation is one of possible ways to control obesity and to prevent or reduce the risks of various obesity-related diseases. These results support that Buddleja officinalis Maximowicz extract is expected to create the therapeutic interest with respect to the treatment of obesity.

  18. Suppressing the activity of ERRalpha in 3T3-L1 adipocytes reduces mitochondrial biogenesis but enhances glycolysis and basal glucose uptake.

    Science.gov (United States)

    Nie, Yaohui; Wong, Chiwai

    2009-09-01

    Estrogen-related receptor alpha (ERRalpha) is thought to primarily regulate lipid oxidation and control the transcription of genes in the oxidative phosphorylation pathway in skeletal and cardiac muscles. However, its role in white adipose tissue is not well studied. In this study, we aimed to establish a role for ERRalpha in adipocytes by down-regulating its activity through its inverse agonist XCT-790 in differentiated 3T3-L1 adipocytes. We found that XCT-790 differentially reduced the expression of ERRalpha target genes. Specifically, XCT-790 reduced the expressions of peroxisome proliferator-activated receptor gamma co-activator-1beta (PGC-1beta), resulting in reductions of mitochondrial biogenesis, adiogenesis and lipogeneis. Through suppressing the expression of another ERRalpha target gene pyruvate dehydrogenase kinase 2 (PDK2), we found that XCT-790 not only enhanced the conversion of pyruvate to acetyl-CoA and hyper-activated the tricarboxylic acid (TCA) cycle, but also led to higher levels of mitochondrial membrane potential and reactive oxidant species (ROS) production. Additionally, XCT-790 treatment also resulted in enhanced rates of glycolysis and basal glucose uptake. Therefore, ERRalpha stands at the crossroad of glucose and fatty acid utilization and acts as a homeostatic switch to regulate the flux of TCA cycle, mitochondrial membrane potential and glycolysis to maintain a steady level of ATP production, particularly, when mitochondrial biogenesis is reduced. PMID:18544047

  19. Rosiglitazone Induces Mitochondrial Biogenesis in Differentiated Murine 3T3-L1 and C3H/10T1/2 Adipocytes.

    Science.gov (United States)

    Rong, James X; Klein, Jean-Louis D; Qiu, Yang; Xie, Mi; Johnson, Jennifer H; Waters, K Michelle; Zhang, Vivian; Kashatus, Jennifer A; Remlinger, Katja S; Bing, Nan; Crosby, Renae M; Jackson, Tymissha K; Witherspoon, Sam M; Moore, John T; Ryan, Terence E; Neill, Sue D; Strum, Jay C

    2011-01-01

    Growing evidence indicates that PPARγ agonists, including rosiglitazone (RSG), induce adipose mitochondrial biogenesis. By systematically analyzing mitochondrial gene expression in two common murine adipocyte models, the current study aimed to further establish the direct role of RSG and capture temporal changes in gene transcription. Microarray profiling revealed that in fully differentiated 3T3-L1 and C3H/10T1/2 adipocytes treated with RSG or DMSO vehicle for 1, 2, 4, 7, 24, and 48 hrs, RSG overwhelmingly increased mitochondrial gene transcripts time dependently. The timing of the increases was consistent with the cascade of organelle biogenesis, that is, initiated by induction of transcription factor(s), followed by increases in the biosynthesis machinery, and then by increases in functional components. The transcriptional increases were further validated by increased mitochondrial staining, citrate synthase activity, and O(2) consumption, and were found to be associated with increased adiponectin secretion. The work provided further insight on the mechanism of PPARγ-induced mitochondrial biogenesis in differentiated adipocytes.

  20. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2016-02-01

    Full Text Available The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05. Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ and glucose transporter type 4 (GLUT4 expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling.

  1. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro.

    Science.gov (United States)

    Jiao, Yang; Zhang, Jingying; Lu, Lunjie; Xu, Jiaying; Qin, Liqiang

    2016-02-01

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05). Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT4) expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling. PMID:26907332

  2. Prokineticin receptor 1 as a novel suppressor of preadipocyte proliferation and differentiation to control obesity.

    Directory of Open Access Journals (Sweden)

    Cécilia Szatkowski

    Full Text Available BACKGROUND: Adipocyte renewal from preadipocytes occurs throughout the lifetime and contributes to obesity. To date, little is known about the mechanisms that control preadipocyte proliferation and differentiation. Prokineticin-2 is an angiogenic and anorexigenic hormone that activate two G protein-coupled receptors (GPCRs: PKR1 and PKR2. Prokineticin-2 regulates food intake and energy metabolism via central mechanisms (PKR2. The peripheral effect of prokineticin-2 on adipocytes/preadipocytes has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: Since adipocytes and preadipocytes express mainly prokineticin receptor-1 (PKR1, here, we explored the role of PKR1 in adipose tissue expansion, generating PKR1-null (PKR1(-/- and adipocyte-specific (PKR1(ad-/- mutant mice, and using murine and human preadipocyte cell lines. Both PKR1(-/- and PKR1(ad-/- had excessive abdominal adipose tissue, but only PKR1(-/- mice showed severe obesity and diabetes-like syndrome. PKR1(ad-/- mice had increased proliferating preadipocytes and newly formed adipocyte levels, leading to expansion of adipose tissue. Using PKR1-knockdown in 3T3-L1 preadipocytes, we show that PKR1 directly inhibits preadipocyte proliferation and differentiation. These PKR1 cell autonomous actions appear targeted at preadipocyte cell cycle regulatory pathways, through reducing cyclin D, E, cdk2, c-Myc levels. CONCLUSIONS/SIGNIFICANCE: These results suggest PKR1 to be a crucial player in the preadipocyte proliferation and differentiation. Our data should facilitate studies of both the pathogenesis and therapy of obesity in humans.

  3. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Haruka; Yoshimura, Takeshi [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan); Aoki, Naohito, E-mail: n-aoki@bio.mie-u.ac.jp [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  4. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents.

  5. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells.

    Science.gov (United States)

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-12-10

    Limonin, one of the major components in dictamni radicis cortex (DRC), has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST) has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca(2+) and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca(2+) and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca(2+) and cAMP levels and phosphorylation of CREB.

  6. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yeo Cho Yoon

    2015-12-01

    Full Text Available Limonin, one of the major components in dictamni radicis cortex (DRC, has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca2+ and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca2+ and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca2+ and cAMP levels and phosphorylation of CREB.

  7. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    Science.gov (United States)

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-01

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. PMID:27094023

  8. Neu-p11 ameliorates insulin resisitance in 3T3-L1 adipocytes based on ATGL/HSL and its underlying mechanism%ATGL/HSL角度下解析Neu-p11改善胰岛素抵抗作用机制

    Institute of Scientific and Technical Information of China (English)

    王平平; 佘美华; Laudon Moshe; 尹卫东

    2013-01-01

    Aim To explore the possible role of adipose tissue triglyceride enzyme ( ATGL ) and hormonesensitive lipase ( HSL ) in high glucose and insulin ( HGI ) - induced insulin resistance in 3T3-L1 adipocytes and the underlying mechanisms. Methods 3T3-L1 adipocytes were administered with HGI for 24 h to induce insulin resistance. Glucose uptake and the quantitative determination of triglycerides were designed for detection indicators. Protein expressions were detected by Western blot. Results HGI incubating resulted in decreased insulin-stimulated glucose uptake and a significant increase in TG content in fat cells, with a concomitant decrease in ATGL and HSL protein expression. The Neu-p11 intervention reversed the effects of HGI on fat cells, while luzindole counteracted the effect of Neu-pll. Conclusions Neu-p11 might inhibit TG deposition in insulin-resistant 3T3-L1 adipocytes via MT2 receptor -dependent manner, at least in part by increasing triglyceride hydrolysis, resulting from enhancing ATGL and HSL levels.%目的 探讨脂肪组织甘油三酯酶(adipose triglyceride lipase,ATGL)及激素敏感性脂肪酶(hormone-sensitive lipase,HSL)在褪黑素非选择性受体激动剂Neu-p11改善高糖高胰岛素(high glucose and insulin,HGI)诱导的3T3-L1脂肪细胞胰岛素抵抗(insulin resistance,IR)中的作用及机制.方法 培养3T3-L1脂肪细胞,HGI诱导IR模型.以葡萄糖消耗量及细胞内甘油三酯(triglyceride,TG)定量测定作为检测指标,Western blot检测蛋白水平的表达情况.结果 HGI孵育减少脂肪细胞葡萄糖摄取,促进细胞内TG积聚,同时伴有ATGL及HSL的蛋白表达下调.Neu-p11干预逆转了HGI对脂肪细胞的作用效应,而MT2竞争性拮抗剂luzindole却拮抗了Neu-p11的上述效应.结论 Neu-p11以MT2受体依赖性方式抑制IR脂肪细胞TG沉积,可能与其上调ATGL、HSL蛋白的表达,促进TG水解相关.

  9. Quantification of hormone sensitive lipase phosphorylation and colocalization with lipid droplets in murine 3T3L1 and human subcutaneous adipocytes via automated digital microscopy and high-content analysis.

    Science.gov (United States)

    McDonough, Patrick M; Ingermanson, Randall S; Loy, Patricia A; Koon, Erick D; Whittaker, Ross; Laris, Casey A; Hilton, Jeffrey M; Nicoll, James B; Buehrer, Benjamin M; Price, Jeffrey H

    2011-06-01

    Lipolysis in adipocytes is associated with phosphorylation of hormone sensitive lipase (HSL) and translocation of HSL to lipid droplets. In this study, adipocytes were cultured in a high-throughput format (96-well dishes), exposed to lipolytic agents, and then fixed and labeled for nuclei, lipid droplets, and HSL (or HSL phosphorylated on serine 660 [pHSLser660]). The cells were imaged via automated digital fluorescence microscopy, and high-content analysis (HCA) methods were used to quantify HSL phosphorylation and the degree to which HSL (or pHSLser660) colocalizes with the lipid droplets. HSL:lipid droplet colocalization was quantified through use of Pearson's correlation, Mander's M1 Colocalization, and the Tanimoto coefficient. For murine 3T3L1 adipocytes, isoproterenol, Lys-γ3-melanocyte stimulating hormone, and forskolin elicited the appearance and colocalization of pHSLser660, whereas atrial natriuretic peptide (ANP) did not. For human subcutaneous adipocytes, isoproterenol, forskolin, and ANP activated HSL phosphorylation/colocalization, but Lys-γ3-melanocyte stimulating hormone had little or no effect. Since ANP activates guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase, HSL serine 660 is likely a substrate for cGMP-dependent protein kinase in human adipocytes. For both adipocyte model systems, adipocytes with the greatest lipid content displayed the greatest lipolytic responses. The results for pHSLser660 were consistent with release of glycerol by the cells, a well-established assay of lipolysis, and the HCA methods yielded Z' values >0.50. The results illustrate several key differences between human and murine adipocytes and demonstrate advantages of utilizing HCA techniques to study lipolysis in cultured adipocytes.

  10. Effects of fisetin on mouse lipid metabolism in vitro and in vivo

    OpenAIRE

    Tomoaki Yonesaka; Kaoru Yoshida; Shunsuke Iizuka; Hiromi Hagiwara

    2014-01-01

    Objective: The aim of this study was to investigate the anti-obesity effects of the polyphenol fisetin in 3T3-L1 preadipocytes and C57BL/6 female mice that were fed a high-fat diet (HFD). Background: Polyphenols, such as sakuranetin, hesperetin, tea catechin, and quercetin, reportedly regulate adipocyte differentiation in 3T3-L1 cells. Furthermore, green tea, apple, and molokheiya polyphenols exhibit anti-obesity activities in HFD-treated obese rats or mice. Fisetin is abund...

  11. The Effect of Cultivated Wild Ginseng Extract on Preadipocyte Proliferation

    Directory of Open Access Journals (Sweden)

    Byoung-Woo Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of cultivated wild ginseng extract on primary cultured preadipocyte and adipocytes. Methods : Diminish preadipocyte proliferation does primary role to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures with using Sprague-Dawley rats and treated with 0.01-1mg/㎖ cultivated wild ginseng extract. Result : At all concentrations, cultivated wild ginseng extract wasn't show the suppress proliferation of preadipocytes significantly and failed to show effects on decomposition of adipocytes except high dosage. Conclusion : Based on these findings, cultivated wild ginseng is not a suitable choice for the treatment of localized obesity.

  12. Effect of soluble Jagged1-mediated inhibition of Notch signaling on proliferation and differentiation of an adipocyte progenitor cell model

    OpenAIRE

    Urs, Sumithra; Turner, Bryce; Tang, Yuefeng; Rostama, Bahman; Small, Deena; Liaw, Lucy

    2012-01-01

    Adipose tissue development is dependent on multiple signaling mechanisms and cell-cell interactions that regulate adipogenesis, angiogenesis and extracellular remodeling. The Notch signaling pathway is an important cell-fate determinant whose role in adipogenesis is not clearly defined. To address this issue, we examined the effect of inhibition of Notch signaling by soluble-Jagged1 in the 3T3-L1 preadipocyte line. In vitro, soluble-Jagged1 expression in 3T3-L1 cells altered cell morphology, ...

  13. Effects of pioglitazone on proliferation and differentiation of human preadipocytes

    Institute of Scientific and Technical Information of China (English)

    Jianying Zhou; Minjuan Ge; Yamei Wang; Haiwei Wu; Jie Shen; Xianghua Ma

    2007-01-01

    Objective: To explore the effects of thiazolidinediones (TZDs) pioglitazone on proliferation and differentiation of human preadipocytes. Methods :Omental adipose tissue biopsies were obtained from 15 patients who were undergoing elective open-abdominal surgery. The primary culture and differentiated induction of human preadipocytes were performed, and the human preadipo-cytes were treated with pioglitazone at different concentrations at proper moments. Dynamic morphological changes of the human preadipocytes were observed, and their proliferation and differentiation were assessed with Colorimetric MTT Assay and Oil Red O Staining. Results:After 24 hours and 72 hours with pioglitazone, 0.1 μmol/L (μmol/ml) pioglitazone increased the MTT values of the human preadipocytes by 25.3% and 34.8% ,respectively(P < 0.05), while 1 μ mol/L pioglitazone by 27.4% and 26.6%(P< 0.05), compared with the control group without pioglitazone. The human preadipocytes with pioglitazone cumulated more adipose in the endochylema than those without pioglitazone obviously. 0.1 μmol/L pioglitazone increased the differentiation degree of the human preadipocytes differentiated for 8-10 days by 44.81% and 1 μmol/L pioglitazone by 53.76%(P < 0.05). Conclusion:Thiazolidinediones pioglitazone may significantly promote the proliferation and differentiation of the human omental preadipocytes.

  14. Induction of mitochondrial uncoupling enhances VEGF₁₂₀ but reduces MCP-1 release in mature 3T3-L1 adipocytes: possible regulatory mechanism through endogenous ER stress and AMPK-related pathways.

    Science.gov (United States)

    Miyokawa-Gorin, Kaoru; Takahashi, Kazuto; Handa, Keiko; Kitahara, Atsuko; Sumitani, Yoshikazu; Katsuta, Hidenori; Tanaka, Toshiaki; Nishida, Susumu; Yoshimoto, Katsuhiko; Ohno, Hideki; Ishida, Hitoshi

    2012-03-01

    Although white adipocytes contain a larger number of mitochondria per cytoplasmic volume, adipocyte mitochondrial uncoupling to reduce the efficiency of ATP production on cellular function including secretory regulation of bioactive molecules such as VEGF and MCP-1 remains to be elucidated. Here we induce mitochondrial uncoupling under hypoxia-independent conditions in mature 3T3-L1 adipocytes using a metabolic uncoupler, dinitrophenol (DNP). MCP-1 release was significantly decreased by 26% (poxidative stress was observed. Treatment with thapsigargin, which can induce exogenous endoplasmic reticulum (ER) stress, clearly attenuated MCP-1 release (pmetabolic syndrome and type 2 diabetes.

  15. 3,4-Oxo-isopropylidene-shikimic acid promotes adiopkine expression during murine 3T3-L1 fibroblast differentiation into adipocytes

    Directory of Open Access Journals (Sweden)

    Shifen Dong

    2014-10-01

    Conclusions: These findings demonstrated that ISA promoted adipogenesis by up-regulating expressions of C/EBP β, PPAR γ, C/EBP α, aP2 and FAS, and also stimulated adipokines during adipocyte differentiation. Further study should clarify the relationship between stimulation of adipokines and cognitive enhancing effect of ISA.

  16. Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties

    NARCIS (Netherlands)

    Balvers, M.G.J.; Verhoeckx, K.C.M.; Plastina, P.; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F.

    2010-01-01

    n-3 PUFAs have beneficial health effects which are believed to be partly related to their anti-inflammatory properties, however the exact mechanisms behind this are unknown. One possible explanation could be via their conversion to N-acyl ethanolamines (NAEs), which are known to possess anti-inflamm

  17. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes

    OpenAIRE

    Fazliana Mansor; Gu, Harvest F.; Claes-Göran Östenson; Louise Mannerås-Holm; Elisabet Stener-Victorin; Wan Nazaimoon Wan Mohamud

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivi...

  18. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    OpenAIRE

    Mohamad Hafizi Abu Bakar; Mohamad Roji Sarmidi; Cheng Kian Kai; Hasniza Zaman Huri; Harisun Yaakob

    2014-01-01

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (p...

  19. Glyphosate Inhibits PPAR Gamma Induction and Differentiation of Preadipocytes and is able to Induce Oxidative Stress.

    Science.gov (United States)

    Martini, Claudia N; Gabrielli, Matías; Brandani, Javier N; Vila, María Del C

    2016-08-01

    Glyphosate-based herbicides (GF) are extensively used for weed control. Thus, it is important to investigate their putative toxic effects. We have reported that GF at subagriculture concentrations inhibits proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. In this investigation, we evaluated the effect of GF on genes upregulated during adipogenesis. GF was able to inhibit the induction of PPAR gamma, the master gene in adipogenesis but not C/EBP beta, which precedes PPAR gamma activation. GF also inhibited differentiation and proliferation of another model of preadipocyte: mouse embryonic fibroblasts. In exponentially growing 3T3-L1 cells, GF increased lipid peroxidation and the activity of the antioxidant enzyme, superoxide dismutase. We also found that proliferation was inhibited with lower concentrations of GF when time of exposure was extended. Thus, GF was able to inhibit proliferation and differentiation of preadipocytes and to induce oxidative stress, which is indicative of its ability to alter cellular physiology. PMID:27044015

  20. Pycnogenol® inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses.

    Science.gov (United States)

    Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-03-01

    Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. PMID:21796705

  1. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

    DEFF Research Database (Denmark)

    Juul, Trine Maxel; Smidt, Kamille; Larsen, Agnete;

    2015-01-01

    BACKGROUND: The expansion and function of adipose tissue are important during the development of insulin resistance and inflammation in obesity. Zinc dyshomeostasis is common in obese individuals. In the liver, zinc influx transporter ZIP14, affects proliferation and glucose metabolism but the role...... of ZIP14 in adipose tissue is still unknown. This study investigates ZIP14 gene expression in human adipose tissue before and after weight loss as well as the regulation of ZIP14 during early adipogenesis. METHODS: Fourteen obese individuals were investigated before and after a 10 week weight loss...... intervention and compared to 14 non-obese controls. Gene expressions of ZIP14 and peroxisome proliferator-activated receptor γ (PPARγ) were measured in subcutaneous adipose tissue and correlated with metabolic and inflammatory markers. Further, we investigated gene expression of ZIP14 and PPARγ during early...

  2. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue.

    Science.gov (United States)

    Nobusue, Hiroyuki; Endo, Tsuyoshi; Kano, Koichiro

    2008-06-01

    We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro. PMID:18386066

  3. 鼠PVRL-2慢病毒载体的构建及其在3T3-L1细胞中的表达%Potential role of mouse PVRL-2 gene in the fatty acid metabolism

    Institute of Scientific and Technical Information of China (English)

    马静; 刘晓萌; 张传海; 郑宗基; 赵倩伟; 杨鸣琦; 张雷

    2013-01-01

    Excess fat and cholesterol in food such as meat,eggs or milk could lead to hyperlipoidemia in human.Currently,to explore genes expression and their mechanisms associated with lipid metabolism has been a major focus in veterinary science.Growing bodies of evidence indicated that molecular functions of fatty acid metabolism related genes such as ApoE,ApoC1 and Tomm40 were very well characterized; however,function of their chromosomal neighbor such as PVRL-2 gene in the fatty acid metabolism remains unclear.Present study was aim to investigate potential role of mouse PVRL-2 gene in regulation of fatty acid related gene expression using preadipogenic 3T3-L1 cells.The cells were infected by Lentiviral particles which was produced by lentiviral plasmid containing Pvrl2 gene,and RNA were extracted 48h post viral infection.Quantitative real-time PCR analysis confirmed that PVRL-2 overexpressed more than 100 folds upon PVRL-2 virus transformation compared to the control.Notably,the expression of PPARα gene which is a key player in the fatty acid oxidation was strongly induced (4.5 fold increase) post PVRL-2 viral infection,but not other genes that related to the fatty acid metabolism such as CPT1A,FASN,COX7A,PGC1B,ASADM showed similar changes.Furthermore,bioinformatics analyses revealed that Nectin-2,coded by PVRL-2,should be a transmembrane protein with a signal peptide.In conclusion,the present study demonstrated that overexpression of PVRL-2 induce the expression of PPARα,which highlight the potential roles of PVRL-2 gene in fatty acid metabolism.Future studies are needed to determine detailed molecular function of PVRL-2 gene in fatty acid metabolism.%过多的脂肪和胆固醇随着肉蛋奶被人体摄入是导致人类高血脂等各种疾病诱发的原因之一,而探索脂代谢通路相关基因的表达变化及其调控机制已经成为分子生物学技术在兽医学领域中的研究热点.与高血脂有关的ApoE、ApoC1和Tomm40等基因研究较多,

  4. Effects of fisetin on mouse lipid metabolism in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Tomoaki Yonesaka

    2014-10-01

    Full Text Available Objective: The aim of this study was to investigate the anti-obesity effects of the polyphenol fisetin in 3T3-L1 preadipocytes and C57BL/6 female mice that were fed a high-fat diet (HFD. Background: Polyphenols, such as sakuranetin, hesperetin, tea catechin, and quercetin, reportedly regulate adipocyte differentiation in 3T3-L1 cells. Furthermore, green tea, apple, and molokheiya polyphenols exhibit anti-obesity activities in HFD-treated obese rats or mice. Fisetin is abundant in plants, fruits, and vegetables and exhibits multiple biological activities, such as the inhibition of prostate cancer growth, neuroprotection, and protection against osteoporosis. In addition, fisetin regulates obesity by targeting mammalian target of rapamycin complex 1 signaling, which is a central mediator of lipid biosynthesis. Materials and methods: (1 in vitro experiments; we investigated the effects of fisetin on intracellular lipid accumulation and glycerol-3-phosphate activity during the differentiation of 3T3-L1 cells. We monitored expression of adipogenetic related-genes in 3T3-L1 cells by real-time polymerase-chain-reaction. (2 in vivo experiments; we examined the effects of fisetin on anti-obesity activities in C57BL/6 female mice that were fed a HFD.Functional Results: Fisetin inhibited intracellular lipid accumulation and glycerol-3-phosphate activity during the differentiation of 3T3-L1 cells in a dose-dependent manner (50-75 M. In addition, real-time polymerase-chain-reaction revealed that this compound suppressed the expression of peroxisome proliferator-activated receptor γ (PPARγ, adipocyte protein 2, and perilipin mRNAs in 3T3-L1 cells. In contrast, anti-obesity activities, such as reduction of body weight and fat tissue, and improvements in obesity-related blood biochemical parameters and fatty liver, were not observed in HFD-induced mice treated with fisetin (20 mg/kg body weight by intraperitoneal injections twice per week for 8 weeks

  5. The Effect of Bangpungtongsung-san Extracts on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Sang Min, Lee

    2008-03-01

    Full Text Available Objective : The purpose of this study is to investigate the effects of Bangpungtongsung-san extracts on the preadipocytes proliferation, of 3T3-L1 cell line. lipolysis of adipocytes in rat's epididymis and localized fat accumulation of porcine by extraction methods(alcohol and water. Methods : Diminish 3T3-L1 proliferation and lipogenesis do primary role to reduce obesity. So, 3T3-L1 preadipocyte and adipocytes were performed on cell cultures, and using Sprague-Dawley rats for the lipogenesis, and treated with 0.01-1 ㎎/㎖ Bangpungtongsung-san Extracts depend on concentrations. Porcine skin including fat tissue after treated Bangpungtongsung-san Extracts by means of the dosage dependent variation are investigated the histologic changes after injection of these extracts. Results : Following results were obtained from the 3T3-L1 preadipocyte proliferation and lipolysis of adipocyte in rats and histologic investigation of fat tissue. 1. Bangpungtongsung-san extracts were showed the effect of decreased preadipocyte proliferation on the high dosage(1.0㎎/㎖. 2. Bangpungtongsung-san extracts were showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH on the high dosage(1.0㎎/㎖ and Specially, alcohol extract of Bangpungtongsung -san was clear as time goes by high concentration. 3. Bangpungtongsung-san extracts were showed tries to compare the effect of lipolysis, alcohol extract of Bangpungtongsung-san on the high dosage(1.0㎎/㎖ was observed the effect is higher than water extract. 4. Investigated the histological changes in porcine fat tissue after treated Bangpungtongsung-san extracts, we knew that water extract of Bangpungtongsung-san was showed the effect of lipolysis on the high dosage(10.0㎎/㎖ and alcohol extract of Bangpungtongsung-san was showed significant activity to the lysis of cell membranes in all concentration. Conclusion : These results suggest that Bangpungtongsung-san extracts efficiently

  6. "The preadipocyte factor" DLK1 marks adult mouse adipose tissue residing vascular cells that lack in vitro adipogenic differentiation potential

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Jensen, Line; Schrøder, Henrik Daa;

    2009-01-01

    Delta-like 1 (Dlk1) is expressed in 3T3-L1 preadipocytes and has frequently been referred to as "the" preadipocyte marker, yet the phenotype of DLK1(+) cells in adipose tissue remains undetermined. Herein, we demonstrate that DLK1(+) cells encompass around 1-2% of the adult mouse adipose stromal......, generation of tube-like structures on matrigel, and uptake of Acetylated Low Density-Lipoprotein, all characteristics of endothelial cells. We therefore suggest that DLK1(+)SVF cells are of a vascular origin and not them-selves committed preadipocytes as assumed hitherto....

  7. Effects of fatty acid regulation on visfatin gene expression in adipocytes

    Institute of Scientific and Technical Information of China (English)

    WEN Yu; WANG Hong-wei; WU Jing; LU Hui-ling; HU Xiu-fen; Katherine Cianflone

    2006-01-01

    Background The levels of long-term elevated serum or intracellular free fatty acid (FFA) induce insulin resistance associated with central obesity. The insulin-mimetic protein visfatin is preferentially produced by visceral adipose tissues and has been implicated in obesity and insulin resistance. To identify that FFA is capable of inducing insulin resistance and to clarify the role of FFA on visfatin, we examined the effect of monounsaturated FFA oleate (C18:1) and saturated FFA palmitate (C16:0) on glucose transport and visfatin gene expression in cultured 3T3-L1 adipocytes or preadipocytes.Methods FFA-free DMEM/F12, 0.125 mmol/L, 0.5 mmol/1 and 1.0 mmol/L oleate or palmitate was added to cultured 3T3-L1 adipocytes or preadipocytes and incubated overnight. Glucose transport was assessed as 3H-2-deoxy-glucose uptake. Total RNA was extracted and subjected to RT-PCR for the measurement of visfatin mRNA levels. Statistical comparisons between control group and other groups were performed with the two-tailed paired t test, and one-way ANOVA was used to compare the mean values among the groups.Results Insulin increased specific membrane glucose transport in 3T3-L1 preadipocytes. Upregulation was evident from 15 minutes to 1 hour exposure to insulin. However, after 6-hour exposure to insulin, there was a downregulation in the response to insulin. Dose response studies demonstrated that 2-deoxy glucose transport was increased by 336% at 50 nmol/L insulin (P<0.01), and reached a maximal effect at 100 nmol/L insulin(P<0.01). Oleate and palmitate treatment did not influence basal glucose transport (without insulin stimulation),whereas insulin-stimulated glucose transport was inhibited after overnight oleate and palmitate treatment in preadipocytes and adipocytes. In 3T3-L1 preadipocytes, insulin resistance could be achieved at 0.125 mmol/L oleate or palmitate (P<0.05, respectively), and the inhibition was dose dependent. In adipocytes, the inhibition was noted at 0

  8. Differentiation of Pre-Adipocytes in Modelled Microgravity

    Science.gov (United States)

    Coinu, R.; Postiglione, I.; Meloni, M. A.; Galleri, G.; Pippia, P.; Palumbo, G.

    2008-06-01

    It has been demonstrated that microgravity affects biological and biochemical functions of cells including: morphology, cytoskeleton and embryogenesis [1]; proliferation, reduction of DNA, protein synthesis and glucose transport [2]; signalling, reduction of EGF-dependant c-fos and c-jun expression [3]; gene expression, reduction of IL2 expression and release by activated T-cells [4]. Moreover it has be found that peroxisome proliferators activated receptor γ (PPARγ2), which is known to be important for adipocyte differentiation, adipsin, leptin, and glucose transporter-4, are highly expressed in response to modelled microgravity [5]. These findings prompted us to investigate the effects of microgravity on cellular differentiation rate using a well characterized model. Such model consists in murine pre-adipocyte cells (3T3-L1) properly stimulated with insulin, dexamethazone and isobuthylmethyl-xantine (DMI protocol). The adipogenic program is completed within a short time. The entire process requires coordinated and temporarily beated molecular events. Early events. Growth arrest at confluence; Clonal expansion (this process involves synchronous entry of cells into S phase of the cell cycle, leading to one or two rounds of mitosis); Early expression of C/EBPβ and C/EBPδ. Late events. Expression of PPARγ and C/EBPα Assumption of rounded morphology and accumulation of lipid droplets.

  9. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    OpenAIRE

    Yang Jiao; Jingying Zhang; Lunjie Lu; Jiaying Xu; Liqiang Qin

    2016-01-01

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Us...

  10. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells

    OpenAIRE

    Yeo Cho Yoon; Sung-Hee Kim; Min Jung Kim; Hye Jeong Yang; Mee-Ra Rhyu; Jae-Ho Park

    2015-01-01

    Limonin, one of the major components in dictamni radicis cortex (DRC), has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST) has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST p...

  11. Functional study of the upregulation of miRNA-27a and miRNA-27b in 3T3-L1 cells in response to berberine.

    Science.gov (United States)

    Wu, Yue-Yue; Huang, Xin-Mei; Liu, Jun; Cha, Ying; Chen, Zao-Ping; Wang, Fang; Xu, Jiong; Sheng, Li; Ding, He-Yuang

    2016-09-01

    Berberine is the major active component of Rhizoma Coptidis derived from a traditional Chinese herbal medicine and is known to regulate micro (mi)RNA levels, although the mechanism for this action remains unknown. The present study confirmed that treatment of 3T3‑L1 cells with berberine inhibited cell viability and differentiation in a dose‑ and time‑dependent manner, and significantly increased the mRNA expression levels of miRNA‑27a and miRNA‑27b. In addition, in 3T3‑L1 cells treated with berberine, overexpression of miRNA‑27a and miRNA‑27b improved the berberine-mediated inhibition of cell differentiation and reduction of triglyceride contents. By contrast, miRNA‑27a and miRNA‑27b inhibitors attenuated the berberine‑mediated inhibition of cell differentiation and reduction of triglyceride contents. Additionally, peroxisome proliferator‑activated receptors (PPAR)‑γ was confirmed to be a target of miRNA‑27a in the 3T3‑L1 cells. A dual‑luciferase reporter assay indicated that the expression of PPAR‑γ was negatively regulated by miRNA-27a. These findings may provide novel mechanistic insight into the antiobesity effects of certain compounds in traditional Chinese herbal medicine. PMID:27484069

  12. The 3T3-L1 adipocyte glycogen proteome

    OpenAIRE

    Stapleton, David; Nelson, Chad; Parsawar, Krishna; Flores-Opazo, Marcelo; McClain, Donald; Parker, Glendon

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellula...

  13. The anti-obesity effect of natural vanadium-containing Jeju ground water.

    Science.gov (United States)

    Park, Seon-Joo; Youn, Cha-Kyung; Hyun, Jin Won; You, Ho Jin

    2013-02-01

    This study investigated the anti-obesity effects of Jeju ground water containing the vanadium components S1 (8.0 ± 0.9 μg/l) and S3 (26.0 ± 2.09 μg/l) on the differentiation of 3 T3-L1 preadipocytes and obesity in mice that were fed a high-fat diet (HFD). The 3 T3-L1 preadipocyte cells were cultured and differentiated in media consisting of Jeju ground water (S1, S3) or deionized water (DW) containing dexamethasone, isobutylmethylxanthine, and insulin. Oil Red O staining showed that lipid accumulation was attenuated in adipocyte cells treated with Jeju ground water. S3 significantly decreased peroxisome-activated receptor γ and CCAAT-enhancer-binding protein α mRNA expression levels, which play major roles in the transcriptional control of adipogenesis, compared to DW. Furthermore, mRNA expression levels of targeted genes, such as adipocyte fatty acid, lipoprotein lipase, and leptin, were decreased by S3 treatment compared with the control group. In mice with HFD-induced obesity, Jeju ground water decreased HFD-induced body weight gain and reduced total cholesterol, triglyceride, and glucose levels in the plasma compared to control mice. Taken together, Jeju ground water inhibits preadipocyte differentiation and adipogenesis in obesity animal models.

  14. Differentiation of preadipocytes and mature adipocytes requires PSMB8.

    Science.gov (United States)

    Arimochi, Hideki; Sasaki, Yuki; Kitamura, Akiko; Yasutomo, Koji

    2016-01-01

    The differentiation of adipocytes is tightly regulated by a variety of intrinsic molecules and also by extrinsic molecules produced by adjacent cells. Dysfunction of adipocyte differentiation causes lipodystrophy, which impairs glucose and lipid homeostasis. Although dysfunction of immunoproteasomes causes partial lipodystrophy, the detailed molecular mechanisms remain to be determined. Here, we demonstrate that Psmb8, a catalytic subunit for immunoproteasomes, directly regulates the differentiation of preadipocytes and additionally the differentiation of preadipocytes to mature adipocytes. Psmb8(-/-) mice exhibited slower weight gain than wild-type mice, and this was accompanied by reduced adipose tissue volume and smaller size of mature adipocytes compared with controls. Blockade of Psmb8 activity in 3T3-L1 cells disturbed the differentiation to mature adipocytes. Psmb8(-/-) mice had fewer preadipocyte precursors, fewer preadipocytes and a reduced ability to differentiate preadipocytes toward mature adipocytes. Our data demonstrate that Psmb8-mediated immunoproteasome activity is a direct regulator of the differentiation of preadipocytes and their ultimate maturation. PMID:27225296

  15. Anti-obesity effect of an isoflavone fatty acid ester on obese mice induced by high fat diet and its potential mechanism

    Directory of Open Access Journals (Sweden)

    Shen Hong

    2010-05-01

    Full Text Available Abstract Background The novel compound 1a is one of the isoflavone fatty acid esters. In order to investigate the anti-obesity effect of compound 1a and its potential mechanism of influence in adipocyte differentiation, Obese male C57BL/6J mice induced by high-fat diet (HFD and rat preadipocytes (3T3-L1 cell were used. Methods After 4-week HFD induction, the obese model was made successfully. After treatment with compound 1a, mice plasma biochemistry parameters were analyzed. In addition, mice hepatic tissue slice was observed. In in vitro research, 3T3-L1 cell differentiation by Oil-Red-O staining and adipocyte apoptosis was detected by flow cytometry. Results The in vivo results implied that compound 1a significantly decreased the body weight, white adipose tissue weight of obesity mice(p in vitro results suggested that compound 1a could significantly suppress the adipocyte viability and lipid accumulation in the differentiation of preadipocyte, and induce apoptosis in both preadipocytes and mature adipocytes(p Conclusion Compound 1a regulates serum lipid profiles, decreases adipose tissue mass and body weight gain by inducing adipocyte apoptosis in high fat diet induced mice. Thus, it may be used to treat obese patients with hypercholesterolemia and hypertriglyceridemia.

  16. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyan [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Xue, Peng [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Hou, Yongyong [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Zhang, Hao [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Zheng, Hongzhi [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Zhou, Tong [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Teng, Weiping [The First Affiliated Hospital, China Medical University, Shenyang 110001 (China); Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jingbopi@gmail.com [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China)

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.

  17. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    International Nuclear Information System (INIS)

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis

  18. Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNFα and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-κB genes

    OpenAIRE

    Marimoutou, Méry; Le Sage, Fanny; Smadja, Jacqueline; Lefebvre d’Hellencourt, Christian; Gonthier, Marie-Paule; Robert-Da Silva, Christine

    2015-01-01

    Background Adipose cells responsible for fat storage are the targets of reactive oxygen species (ROS) like H2O2 and pro-inflammatory agents including TNFα and LPS. Such mediators contribute to oxidative stress and alter inflammatory processes in adipose tissue, leading to insulin resistance during obesity. Thus, the identification of natural compounds such as plant polyphenols able to increase the antioxidant and anti-inflammatory capacity of the body is of high interest. We aimed to evaluate...

  19. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    Directory of Open Access Journals (Sweden)

    Min-Ki Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Venom and Sweet Bee Venom according to the dosage dependent variation are investigated the histologic changes after injection of these Pharmacopuncture. Result : Following results were obtained from the preadipocyte proliferation and lipolysis of adipocyte and histologic investigation of fat tissue. 1. Bee Venom and Sweet Bee Venom showed the effect of decreased preadipocyte proliferation depend on concentration. 2. Bee Venom and Sweet Bee Venom showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH significantly. 3. Bee Venom was not showed the effect of lipolysis, but Sweet Bee Venom was increased in low dosage and decreased in high dosage. 4. Investigated the histologic changes in porcine fat tissue after treated Bee Venom and Sweet Bee Venom, we knew that these Pharmacopuncture was activated nonspecific lysis of cell membranes depend on concentration. Conclusion : These results suggest that Bee Venom and Sweet Bee Venom efficiently induces decreased proliferation of preadipocyte and lipolysis in adipose tissue

  20. Characterization of the inhibitory effect of growth hormone on primary preadipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, L. H.; Madsen, B; Teisner, Børge;

    1998-01-01

    GH exerts adipogenic activity in several preadipocyte cell lines, whereas in primary rat preadipocytes, GH has an antiadipogenic activity. To better understand the molecular mechanism involved in adipocyte differentiation, the expression of adipocyte-specific genes was analyzed in differentiating...... accumulation, no reduction in the expression level of ADD1 was observed in response to GH, whereas there was a 50% reduction in the expression of PPARgamma. The DNA binding activity of the PPARgamma/retinoid X receptor-alpha(RXRalpha) to the ARE7 element from the aP2 gene was also reduced by approximately 50......% in response to GH. GH inhibited the expression of late markers of adipocyte differentiation, fatty acid synthase, aP2, and hormone-sensitive lipase by 70-80%. The antiadipogenic effect of GH was not affected by the mitogen-activated protein (MAP) kinase/ extracellular-regulated protein (ERK) kinase...

  1. Effects of parabens on adipocyte differentiation.

    Science.gov (United States)

    Hu, Pan; Chen, Xin; Whitener, Rick J; Boder, Eric T; Jones, Jeremy O; Porollo, Aleksey; Chen, Jiangang; Zhao, Ling

    2013-01-01

    Parabens are a group of alkyl esters of p-hydroxybenzoic acid that include methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. Paraben esters and their salts are widely used as preservatives in cosmetics, toiletries, food, and pharmaceuticals. Humans are exposed to parabens through the use of such products from dermal contact, ingestion, and inhalation. However, research on the effects of parabens on health is limited, and the effects of parabens on adipogenesis have not been systematically studied. Here, we report that (1) parabens promote adipogenesis (or adipocyte differentiation) in murine 3T3-L1 cells, as revealed by adipocyte morphology, lipid accumulation, and mRNA expression of adipocyte-specific markers; (2) the adipogenic potency of parabens is increased with increasing length of the linear alkyl chain in the following potency ranking order: methyl- < ethyl- < propyl- < butylparaben. The extension of the linear alkyl chain with an aromatic ring in benzylparaben further augments the adipogenic ability, whereas 4-hydroxybenzoic acid, the common metabolite of all parabens, and the structurally related benzoic acid (without the OH group) are inactive in promoting 3T3-L1 adipocyte differentiation; (3) parabens activate glucocorticoid receptor and/or peroxisome proliferator-activated receptor γ in 3T3-L1 preadipocytes; however, no direct binding to, or modulation of, the ligand binding domain of the glucocorticoid receptor by parabens was detected by glucocorticoid receptor competitor assays; and lastly, (4) parabens, butyl- and benzylparaben in particular, also promote adipose conversion of human adipose-derived multipotent stromal cells. Our results suggest that parabens may contribute to obesity epidemic, and the role of parabens in adipogenesis in vivo needs to be examined further.

  2. 胆汁酸核受体激动剂对脂联素及其受体的影响%Effects of farnesoid X receptor agonist on adiponectin and its receptors

    Institute of Scientific and Technical Information of China (English)

    辛小敏; 钟慕晓; 张珊珊; 彭瑶; 朱薇; 张亚历

    2014-01-01

    目的:观察胆汁酸核受体激动剂GW4064对3T3-L1前脂肪细胞分化过程中脂联素及其受体和对HepG2细胞脂联素受体的影响。方法用GW4064干预3T3-L1前脂肪细胞的整个分化过程,荧光Real-time PCR法检测分化第0、2、4、6、8天胆汁酸核受体(FXR)、过氧化物酶体增殖物激活受体γ2(PPARγ2)、脂联素、脂联素受体(AdipoR1、AdipoR2)mRNA相对表达量及ELISA法检测脂联素蛋白水平,同时,GW4064干预饥饿后的HepG2细胞0、12、24、48 h后,荧光Real-time PCR法检测AdipoR1和AdipoR2 mRNA相对表达量。结果 GW4064干预后,3T3-L1前脂肪细胞中FXR、PPARγ2、脂联素、AdipoR2及HepG2细胞AdipoR2 mRNA相对表达量较空白组明显上升,脂联素蛋白水平与其mRNA表达情况一致,差异均有统计学意义(P<0.05),而3T3-L1前脂肪细胞、HepG2细胞的AdipoR1表达无明显改变。结论 GW4064可上调脂肪细胞FXR、PPARγ2、脂联素、AdipoR2及HepG2细胞AdipoR2的表达,而脂联素和AdipoR2是治疗非酒精性脂肪性肝病的两个重要因素,因此FXR激动剂可能通过诱导其表达达到治疗非酒精性脂肪性肝病的目的;另外,PPARγ是脂肪细胞分化成熟的重要调控因子,推测胆汁酸核受体对脂肪细胞的调控可能是通过上调PPARγ实现的。%Objective To investigate the effects of GW4064, a farnesoid X receptor (FXR) agonist, on adiponectin and its receptors during the differentiation of 3T3-L1 preadipocytes and on adiponectin receptors in HepG2 cells. Methods The mRNA expressions of FXR, PPARγ2, adiponectin, AdipoR1, and AdipoR2 and the protein levels of adiponectin on days 0, 2, 4, 6, and 8 during the differentiation of 3T3-L1 preadipocytes treated with GW4064 were detected by fluorescent real-time PCR and ELISA, respectively. The mRNA expressions of AdipoR1 and AdipoR2 in HepG2 cells were also examined at 0, 12, 24, and 48 h after GW4064 treatment. Results The m

  3. The Effect of Crataegi Fructus Pharmacopuncture on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Seung Hwan, Won

    2008-06-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Crataegi Fructus Pharmacopuncture(CFP on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3days in the absence or presence of CFP ranging from 0.01 to 1mg/mL. The effect of CFP on adipogenesis was examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with CFP ranging from 0.01 to 1mg/mL for 3 hrs. The effect of CFP on lipolysis was examined by measuring free glycerol released. Fat tissue from pig skin was injected with CFP ranging from 0.1 to 10mg/mL to examine the effect of CFP on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Crataegi Fructus Pharmacopuncture inhibited adipogenic differentiation at the concentration of 1.0mg/mL 2. Crataegi Fructus Pharmacopuncture decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1mg/mL. 3. Crataegi Fructus Pharmacopuncture ok. lipolysis at the concentration of 0.1mg/ml. 4. Crataegi Fructus Pharmacopuncture ranging 0.1 to 10mg/mL failed to exert lysis of cell membrane in porcine fat tissue. Conclusions : These results suggest that Crataegi Fructus Pharmacopuncture at relatively high concentration inhibited adipogenesis and increased lipolysis of adipocytes. However, Crataegi Fructus Pharmacopuncture didn’t exert any effect on lysis of cell membrane in fat tissue.

  4. NYGGF4基因过表达对脂肪细胞线粒体的影响%Effects of NYGGF4 overexpression on mitochondria in adipocyte

    Institute of Scientific and Technical Information of China (English)

    徐广峰; 赵亚萍; 陈小慧; 高春林; 王建国; 郭锡熔

    2011-01-01

    目的 观察NYGGF4基因过表达对脂肪细胞线粒体的影响.方法 构建NYGGF4基因表达载体,转染3T3-L1前体脂肪细胞,G418筛选表达NYGGF4细胞株后,用RT-PCR及western blot技术验证,建立NYGGF4稳定过表达细胞株.用透射电镜观察NYGGF4基因过表达对脂肪细胞线粒体形态的影响,实时荧光定量PCR检测NYGGF4基因过表达及对照空载脂肪细胞中核转录因子PGCIα、NRFI、mtTFA mRNA含量.结果 RT-PCR及western blot均提示NYGGF4稳定过表达细胞株建立成功.NYGGF4基因过表达可以导致脂肪细胞线粒体形态异常,显著上调脂肪细胞PGCIα mRNA表达,对NRFI、mtTFA mRNA 水平无明显影响.结论 NYGGF4基因过表达可以导致脂肪细胞线粒体损伤.%Objective To observe the effects of NYGGF4 overexpression on mitochondria in 3T3-L1 adipocyte. Methods The coding sequence of human NYGGF4 gene was inserted into the pcDNA3. lMyc/His B vector to become recombinant expression plasmid NYG-GF4-pcDNA3. 1/myc-His B which was subsequently transferred into 3T3-L1 pre-adipocyte. The transfected 3T3-L1 cell expressing NYGGF4 was selected with neomycin (G418), and identified by RT-PCR and western blot. The effect of NYGGF4 overexpression on mitochondrial morphology in transfected 3T3-L1 was evaluated by transmission electron microscope. The levels of peroxisome prolifera-tor-actived receptor co-activator la (PGCla), nuclear respiratory factor 1(NRF1) and mitochondrial transcription factor A (mtTFA) mRNA in the transfected 3T3-L1 and control cells were detected by real-time quantitative RT-PCR. Results RT-PCR and western blot demonstrated that the 3T3-L1 strain stably overexpressing NYGGF4 was established successfully. The overexpression of NYGGF4 may lead to abnormal mitochondrial morphology and increased PGC-la mRNA level in adipocytes but no increased NRF1 and mtTFA mRNA was found. Conclusions The overexpression of NYGGF4 may damage mitochondia in adipocytes.

  5. Effects of Kurozu concentrated liquid on adipocyte size in rats

    Directory of Open Access Journals (Sweden)

    Nakamura Kumi

    2010-11-01

    Full Text Available Abstract Background Kurozu concentrated liquid (KCL is used as a health-promoting supplement for the treatment of disorders such as cancer, hyperlipidemia, and hypertension in Japan. We investigated the possible anti-obesity effects of KCL in rats. Methods Male Sprague Dawley rats were fed American Institute of Nutrition 76 formula diet and were orally administrated KCL or acetic acid at a dose of 100 mg/kg body weight or deionized water for 4 weeks. Adipocyte size, DNA content in subcutaneous adipose tissue, lipid levels in the serum and liver, and the rate of fatty acid excretion were determined. Effects of KCL on pancreatic lipase activity and 3T3-L1 preadipocyte differentiation were investigated in vitro. Results In the KCL group, the average adipocyte size in subcutaneous and perirenal adipose tissues was significantly reduced. The KCL-administered rats displayed greater numbers of small adipocytes in the subcutaneous, perirenal and mesenteric adipose tissues than did rats from the other groups. In the KCL group, the DNA content in subcutaneous adipose tissue was significantly increased. The rate of fatty acid excretion was significantly increased in the KCL group. Furthermore, KCL significantly inhibited pancreatic lipase activity in vitro, and also significantly inhibited fat accumulation and mRNA expression of fatty acid binding protein 2 (aP2 and peroxisome proliferator-activated γ (PPARγ in 3T3-L1 preadipocyte. The levels of serum and liver lipids, the concentration of serum glucose, and the levels of adiponectin were similar among the 3 groups. Conclusion Oral administration of KCL decreases the adipocyte size via inhibition of dietary fat absorption and reductions of PPARγ and aP2 mRNA expression levels in adipocytes.

  6. In Vitro Effects of Strontium on Proliferation and Osteoinduction of Human Preadipocytes

    Directory of Open Access Journals (Sweden)

    V. Nardone

    2015-01-01

    Full Text Available Development of tools to be used for in vivo bone tissue regeneration focuses on cellular models and differentiation processes. In searching for all the optimal sources, adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes are able to differentiate into osteoblasts with analogous characteristics to bone marrow mesenchymal stem cells, producing alkaline phosphatase (ALP, collagen, osteocalcin, and calcified nodules, mainly composed of hydroxyapatite (HA. The possibility to influence bone differentiation of stem cells encompasses local and systemic methods, including the use of drugs administered systemically. Among the latter, strontium ranelate (SR represents an interesting compound, acting as an uncoupling factor that stimulates bone formation and inhibits bone resorption. The aim of our study was to evaluate the in vitro effects of a wide range of strontium (Sr2+ concentrations on proliferation, ALP activity, and mineralization of a novel finite clonal hADSCs cell line, named PA20-h5. Sr2+ promoted PA20-h5 cell proliferation while inducing the increase of ALP activity and gene expression as well as HA production during in vitro osteoinduction. These findings indicate a role for Sr2+ in supporting bone regeneration during the process of skeletal repair in general, and, more specifically, when cell therapies are applied.

  7. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes

    OpenAIRE

    Sinclair Andrew J; Manickam Elizabeth; Cameron-Smith David

    2010-01-01

    Abstract Background Lipid droplet (LD) formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA) unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3) in comparison to SFA (STA; stearic acid, C18:0) and MUFA (OLA; oleic acid, C18:1n-9) ...

  8. Pulicaria jaubertii extract prevents triglyceride deposition in 3T3-L1 adipocytes

    Science.gov (United States)

    Currently, levels of obesity in Middle Eastern countries are increasing. Phytochemicals have anti-obesogenic properties as evidenced by prevention of adipocyte differentiation. In Yemen, Pulicaria jaubertii E.Gamal-Eldin (PJ) is a food additive and a traditional medicine. We tested the ability of ex...

  9. 胆汁酸核受体激动剂对瘦素及OB-Rb的影响%Effects of FXR agonist on leptin and OB-Rb

    Institute of Scientific and Technical Information of China (English)

    辛小敏; 张珊珊; 钟慕晓; 杨公利; 彭瑶; 朱薇; 张亚历

    2014-01-01

    目的:观察胆汁酸核受体激动剂GW4064对3T3-L1前脂肪细胞分化过程中瘦素及长型瘦素受体(OB-Rb)和对HepG2细胞 OB-Rb 的影响。方法:用 GW4064干预3T3-L1前脂肪细胞的分化过程,采用荧光real-time PCR 法检测分化过程中第0、2、4、6、8天瘦素及OB-Rb mRNA 相对表达量及ELISA 法检测瘦素分泌情况,同时,用 GW4064干预饥饿后的 HepG2细胞0、12、24、48 h 后,荧光 real-time PCR 法检测 OB-Rb mRNA 相对表达量。结果:GW4064干预后,3T3-L1前脂肪细胞中瘦素 mRNA 相对表达量较对照组明显上升,瘦素蛋白分泌情况与其 mRNA 表达相似,差异均有统计学意义(均 P<0.05),而 OB-Rb mRNA 表达无明显改变(P>0.05);同时,HepG2细胞的OB-Rb mRNA 在干预后表达明显增加,差异有统计学意义(P<0.001)。结论:GW4064可上调脂肪细胞瘦素和HepG2细胞OB-Rb 的表达,目前瘦素在非酒精性脂肪性肝病中的作用及机制尚不明确,而 OB-Rb 的低表达则与非酒精性脂肪性肝病中的瘦素抵抗相关,因此,我们推测胆汁酸核受体激动剂可通过提高肝脏OB-Rb 的表达改善瘦素抵抗,从而达到治疗非酒精性脂肪性肝病的目的。%Objective To investigate the effects of GW4064,one FXR agonist,on the leptin and OB-Rb during the differentiation of 3T3-L1 preadipocytes and on the OB-Rb in the HepG2 cells. Methods The mRNA relative expression of leptin , OB-Rb and the protein of leptin on the day of 0 , 2 , 4 , 6 , 8 during the differentiation of 3T3-L1 preadipocytes after interfered with GW4064 were detected by fluorescent real-time PCR and ELISA , respectively. Meanwhile , the mRNA relative expression of OB-Rb of HepG2 cells after treated with GW4064 0 h , 12 h,24 h,48 h were also examined. Results The mRNA relative expression of leptin in the 3T3-L1 preadipocytes and OB-Rb in the HepG2 cells after treated with GW4064 were significantly

  10. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes.

    Science.gov (United States)

    Colitti, Monica; Stefanon, Bruno

    2016-01-01

    Several natural compounds exhibit strong capacity for decreasing triglyceride accumulation, enhancing lipolysis and inducing apoptosis. The present study reports the anti-adipogenic effects of Silybum marianum (SL), Citrus aurantium (CA), Taraxacum officinale (TO), resveratrol (RE), Curcuma longa (CU), caffeine (CF), oleuropein (OL) and docosahexaenoic acid (DHA) in reducing differentiation and increasing lipolysis and apoptosis. Analyses were performed on human primary visceral pre-adipocytes after 10 (P10) and 20 (P20) days of treatment during differentiation and on mature adipocytes after 7 days of treatment (A7). The percentage of apoptosis induced by TO extract in P10 and P20 cells was significantly higher than that induced by all other compounds and in CTRL cells. Triglyceride accumulation was significantly lower in cells treated with DHA, CF, RE in comparison to cells treated with OL and in CTRL cells. Treatments with CF, DHA and OL significantly incremented lipolysis in P20 cells in comparison to other compounds and in CTRL cells. On the contrary, the treatment of A7 cells with OL, CA and TO compounds significantly increased cell lipolysis. The addition of CF in differentiating P20 pre-adipocytes significantly increased the expression of genes involved in inhibition of adipogenesis, such as GATA2, GATA3, WNT1, WNT3A, SFRP5, and DLK1. Genes involved in promoting adipogenesis such as CCND1, CEBPB and SREBF1 were significantly down-regulated by the treatment. The screening of bioactive compounds for anti-adipogenic effects showed that in differentiating cells TO extract was the most effective in inducing apoptosis and CF and DHA extracts were more efficient in inhibition of differentiation and in induction of cell lipolysis. PMID:27540349

  11. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Ching Sheng, Chu

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖. The effects of hot pepper extract and capsaicin on adipogenesis were examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖ for 3 hrs. The effects of hot pepper extract and capsaicin on lipolysis were examined by measuring free glycerol released. Fat tissue from pig skin was injected with hot pepper extract or capsaicinCFP ranging from 0.1 to 10㎎/㎖ to examine the effects of hot pepper extract and capsaicin on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Hot pepper extract and capsaicin inhibited adipogenic differentiation at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenesis than hot pepper extract. 2. Hot pepper extract and capsaicin decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenic differentiation than hot pepper extract. 3. Hot pepper extract and capsaicin increased glycerol release at the concentration of 0.1㎎/㎖. There was no difference in lipolytic activity between hot pepper extract and

  12. Effect and Mechanism of Active Component of Isatidis Radix in Obesity Prevention%板蓝根活性组分预防肥胖作用及机制研究

    Institute of Scientific and Technical Information of China (English)

    孙婷婷; 袁野; 于红艳; 刘墨祥; 李吉萍

    2013-01-01

    目的 探讨板蓝根活性组分(ACIR)的预防肥胖作用及其可能的作用机制.方法 高脂饮食诱导小鼠肥胖的同时给予不同剂量ACIR,观察小鼠体质量、进食量、脂肪重量、脂肪细胞形态、肝脏重量及血脂变化,并进行小鼠负重游泳实验;体外培养诱导分化3T3-LI前脂肪细胞,观察ACIR对脂肪细胞增殖、分化和脂滴形成的影响.结果 ACIR能显著降低小鼠体质量、脂肪系数及肝脏重量,使脂肪细胞变小;改善小鼠进食量,明显延长小鼠负重游泳时间,使血清总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL)含量降低,但高密度脂蛋白(HDL)无明显变化;抑制前脂肪细胞增殖和分化,减少脂滴形成.结论 ACIR具有预防肥胖和降血脂作用,其可能的机制是抑制前脂肪细胞增殖和分化.%OBJECTIVE To investigate the preventing obesity effect of active component of Isatidis Radix (ACIR) and its mechanism. METHODS Body weight, food intake, fat weight, fat cell morphology, liver weight and lipids of obese mice induced by a high-fat diet were chosen as the indexes to observe the preventing obesity effect of different dosages of ACIR. The swimming time of loaded mice under the action of drugs was also observed. 3T3-L1 preadipocytes were cultured to investigate the effect of ACIR on proliferation, differentiation and lipid droplet formation of 3T3-L1 preadipocytes. RESULTS ACIR could significantly decrease the body weight, fat index and the weight of the liver, at the same time reduce lipocyte size, improve food intake in mice, extend the swimming time of mice and serum total cholesterol (TC), triglycerides (TG), low density lipoprotein decreased (LDL), but high density lipoprotein (HDL) did not change; it could also inhibit the proliferation, differentiation and lipid droplet formation of 3T3-L1 preadipocytes. CONCLUSION ACIR has protective effect on preventing obesity, and can reduce blood lipids, which might be

  13. The mechanics of hyaluronic acid/adipic acid dihydrazide hydrogel: towards developing a vessel for delivery of preadipocytes to native tissues.

    Science.gov (United States)

    Shoham, Naama; Sasson, Aviad Levi; Lin, Feng-Huei; Benayahu, Dafna; Haj-Ali, Rami; Gefen, Amit

    2013-12-01

    Promising treatment approaches in repairing tissue defects include implementation of regenerative medicine strategies, particularly delivery of preadipocytes to sites where adipose tissue damage needs to be repaired or where fat needs to be generated. In this study, we suggest that the injectable hyaluronic acid/adipic acid dihydrazide (HA/ADH) hydrogel may be an adipose-tissue-like material in terms of biological compatibility as well as mechanical behavior. First, we show that the hydrogel enables and supports growth, proliferation and differentiation of 3T3-L1 preadipocytes. Second, given that adipose tissue is a weight-bearing biological structure, we investigate the large deformation mechanical behavior of the hydrogel with and without embedded preadipocytes, by performing confined and unconfined compression tests and then calibrating a strain energy density (SED) function to the results. Four test groups were examined: (1) Hydrogel specimens right after the preparation without cells, (2) and (3) 3-days-cultured hydrogel specimens with and without cells, respectively, and (4) 6-days-cultured hydrogel specimens with cells. A one-term Ogden SED was found to adequately describe the hyperelastic behavior of the hydrogel specimens in all experimental groups. Importantly, we found that the mechanical properties of the hydrogel, when subjected to compression, are in good agreement with those of native adipose tissue, with the better fit occurring 3-6 days after preparation of the hydrogel. Third, computational finite element studies of the mechanical (stress-strain) behavior of the HA/ADH hydrogel when containing mature adipocytes indicated that the stiffnesses of the constructs were mildly affected by the presence of the adipocytes. Hence, we conclude that injectable HA/ADH hydrogel may serve as a vessel for protecting preadipocytes during, and at a short-term after delivery to native tissues, e.g. in research towards regenerative medicine in tissue reconstructions.

  14. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    OpenAIRE

    Saray Quintero-Fabián; Daniel Ortuño-Sahagún; Manuel Vázquez-Carrera; Rocío Ivette López-Roa

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory ef...

  15. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin

  16. Biophysical Assessment of Human Aquaporin-7 as a Water and Glycerol Channel in 3T3-L1 Adipocytes

    OpenAIRE

    Ana Madeira; Marta Camps; Antonio Zorzano; Moura, Teresa F.; Graça Soveral

    2013-01-01

    The plasma membrane aquaporin-7 (AQP7) has been shown to be expressed in adipose tissue and its role in glycerol release/uptake in adipocytes has been postulated and correlated with obesity onset. However, some studies have contradicted this view. Based on this situation, we have re-assessed the precise localization of AQP7 in adipose tissue and analyzed its function as a water and/or glycerol channel in adipose cells. Fractionation of mice adipose tissue revealed that AQP7 is located in both...

  17. Automated Image Processing for Spatially Resolved Analysis of Lipid Droplets in Cultured 3T3-L1 Adipocytes

    OpenAIRE

    Sims, James Kenneth; Rohr, Brian; Miller, Eric; Lee, Kyongbum

    2014-01-01

    Cellular hypertrophy of adipose tissue underlies many of the proposed proinflammatory mechanisms for obesity-related diseases. Adipose hypertrophy results from an accumulation of esterified lipids (triglycerides) into membrane-enclosed intracellular lipid droplets (LDs). The coupling between adipocyte metabolism and LD morphology could be exploited to investigate biochemical regulation of lipid pathways by monitoring the dynamics of LDs. This article describes an image processing method to id...

  18. Effect of Salicornia herbacea on Osteoblastogenesis and Adipogenesis in Vitro

    Directory of Open Access Journals (Sweden)

    Fatih Karadeniz

    2014-10-01

    Full Text Available Bone-related complications are among the highest concerning metabolic diseases in the modern world. Bone fragility and susceptibility to fracture increase with age and diseases like osteoporosis. Elevated adipogenesis in bone results in osteoporosis and loss of bone mass when coupled with lack of osteoblastogenesis. In this study the potential effect of Salicornia herbacea extract against osteoporotic conditions was evaluated. Adipogenesis inhibitory effect of S. herbacea has been evidenced by decreased lipid accumulation of differentiating cells and expression levels of crucial adipogenesis markers in 3T3-L1 pre-adipocytes. S. herbacea treatment reduced the lipid accumulation by 25% of the control. In addition, mRNA expression of peroxisome proliferator-activated receptor (PPARγ, CCAAT/enhancer-binding protein (C/EBPα and sterol regulatory element binding protein (SREBP1c were inhibited by the presence of S. herbacea. Bone formation enhancement effect of S. herbacea was also confirmed in MC3T3-E1 pre-osteoblasts. The presence of S. herbacea significantly elevated the alkaline phosphatase (ALP activity by 120% at a concentration of 100 μg/mL in differentiating osteoblasts. S. herbacea also significantly increased the expression of osteoblastogenesis indicators, ALP, bone morphogenetic protein (BMP-2, osteocalcin and collagen type I (collagen-I. In conclusion, S. herbacea possess potential to be utilized as a source of anti-osteoporotic agent that can inhibit adipogenesis while promoting osteoblastogenesis.

  19. 瘦素对人前脂肪细胞增殖及分化的影响%Effects of leptin on proliferation and differentiation of human preadipocyte

    Institute of Scientific and Technical Information of China (English)

    杨孝良; 巫国辉; 李小林; 曾瑞

    2010-01-01

    Objective To observe the effects of leptin on the proliferation and differentiation of human preadipocyte in vitro, and to explore the possible mechanism of the generation of obesity regulated by leptin. Methods The human preadipocytes were isolated from human subcutaneous adipose tissue of abdomen and cultured in vitro. The effects of leptin (0-1 000 ng/ml) on the proliferation, lipid accumulation and the mRNA expression of PPAR-γ2 and C/EBP-α, which are the differentiation and transcription factor of human preadipocyte, were analyzed by the methods of MTT, cell counting, extracting stained intracytoplasmic lipid with oil red O and RT-PCR. Results Leptin (1 000 ng/ml) could stimulate the proliferation, lipid accumulation and the mRNA expression of PPAR-γ2 and C/EBP-α (P0. 05). Conclusion Leptin in higher concentration can stimulate the proliferation and differentiation of preadipocye in vitro, which indicates that leptin may regulate the generation of obesity through acting on the proliferation and differentiation of preadipocyte at the pathologic state of leptin resistance and high leptin concentration in serum.%目的 观察瘦索在体外对人前脂肪细胞增殖和分化的影响,探讨瘦素调节肥胖发生的可能机制.方法 分离并体外培养人腹部皮下前脂肪细胞.采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)比色法、细胞计数法、油红O染色提取法及逆转录-聚合酶链式反应(RT-PCR)方法 分析不同浓度(0~1 000 ng/ml)瘦素对人前脂肪细胞增殖、脂质积聚及分化转录因子γ2过氧化物酶体增殖物激活受体(PPAR-γ)、CCAAT增强子α结合蛋白(C/EBP-α)mRNA表达的影响.结果 高浓度(1 000 ng/ml)瘦素能够促进人前脂肪细胞的增殖、脂质积聚以及PPAR-γ2、C/EBP-α mRNA表达(P0.05).结论 在体外超生理浓度的瘦素能够促进前脂肪细胞的增殖和分化,提示瘦素抵抗、血清高瘦素浓度等病理状态时,瘦素可能促进前

  20. Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice

    Directory of Open Access Journals (Sweden)

    Chien-Chen Wu

    2015-01-01

    Full Text Available Recent studies have demonstrated beneficial effects of specific probiotics on alleviating obesity-related disorders. Here we aimed to identify probiotics with potential antiobesity activity among 88 lactic acid bacterial strains via in vitro screening assays, and a Lactobacillus plantarum strain K21 was found to harbor abilities required for hydrolyzing bile salt, reducing cholesterol, and inhibiting the accumulation of lipid in 3T3-L1 preadipocytes. Furthermore, effects of K21 on diet-induced obese (DIO mice were examined. Male C57Bl/6J mice received a normal diet, high-fat diet (HFD, or HFD with K21 administration (109 CFU in 0.2 mL PBS/day for eight weeks. Supplementation of K21, but not placebo, appeared to alleviate body weight gain and epididymal fat mass accumulation, reduce plasma leptin levels, decrease cholesterol and triglyceride levels, and mitigate liver damage in DIO mice. Moreover, the hepatic expression of peroxisome proliferator-activated receptor-γ (PPAR-γ related to adipogenesis was significantly downregulated in DIO mice by K21 intervention. We also found that K21 supplementation strengthens intestinal permeability and modulates the amount of Lactobacillus spp., Bifidobacterium spp., and Clostridium perfringens in the cecal contents of DIO mice. In conclusion, our results suggest that dietary intake of K21 protects against the onset of HFD-induced obesity through multiple mechanisms of action.

  1. New ethanol extraction improves the anti-obesity effects of black tea.

    Science.gov (United States)

    Park, Bongju; Lee, Sangjin; Lee, Bonggyeong; Kim, Ingyum; Baek, Namjoon; Lee, Tae Ho; Lee, Seok-Yong; Son, Miwon; Park, Hyunsung

    2016-03-01

    Black tea has been reported to have anti-obesity effects in both rodents and humans. Gallic acid, an active component of black tea, decomposes quickly into pyrogallol in high-temperature solutions. This study introduced a new, aqueous ethanol extraction of black tea, which resulted in extracts with higher concentrations of gallic acid than conventional black tea extracts prepared by hot-water extraction or hot-ethanol extraction. We confirmed that, compared with the hot-water extract of black tea, the cold-ethanol extract of black tea (CE-BTE) had greater effects on reducing body weight and body fat, improving fatty liver, regulating blood glucose, and reducing blood cholesterol in the high-fat diet-induced obese mouse model. Nonetheless, although CE-BTE significantly reduced fat content, it did not reduce peroxisome proliferator-activated receptor (PPARγ) protein in epididymal fat tissue of HFD mice. We also showed that CE-BTE did not inhibit the function of PPARγ protein to drive adipogenesis of mouse 3T3-L1 preadipocytes. Considering that PPARγ is a master transcription factor not only for adipocyte differentiation, but also for adipose tissue function, such as glucose and lipid metabolism and insulin sensitivity, these results suggest that CE-BTE reduced fat mass and body weight without dampening fat cell homeostasis and insulin sensitivity.

  2. Effects of Benazapril and Telmisartan on the adiponectin expression of human preadipocytes%贝那普利、替米沙坦对人前脂肪细胞脂联素表达的影响

    Institute of Scientific and Technical Information of China (English)

    赵志强; 田凤石; 雒珞; 吴岩; 李广平

    2012-01-01

    Objective To investigate the effects of Benazapril and Telmisartan on the adiponectin expression of human preadipocytes. Methods Human omental and subcutaneous preadipocytes were isolated from abdominal adipose tissue obtained from 12 healthy adult women undergoing elective abdominal surgery. Preadipocytes were difierentiated for 14 days without any treatment ( Group NC)or in the presence of either angiotensin convening enzyme inhibitor Benazapril ( Group Benazapril), angiotensin II receptor blocker Telmisartan(Group Telmisartan). The approach of radioimmunoassay was used to detect the adiponeetin expression level. Results Benazapril and Telmisartan can increase the differentiation, improve the expression and protein excretion levels in human primary culture omental and subcutaneous preadipocytes in vitro. Conclusion Telmisartan and Benazapril have stronger effects on human omental preadipocytes in adiponectin mRNA expression and secretion. This may suggests a wide perspective of RAS blockers on metabolic syndrome with characteristic in-tra-abdominal obesity.%目的 探讨贝那普利、替米沙坦对体外原代培养的人网膜和皮下来源的前脂肪细胞脂联素(APN)表达的影响.方法 自12例行电切开腹部手术的健康成年女性腹部皮下和网膜分离前脂肪细胞,分为3组,即无干预正常对照组(NC组)、血管紧张素转换酶抑制剂类药物贝那普利组(ACEI组)和血管紧张素Ⅱ受体拮抗剂类药物替米沙坦组(ARB组),诱导分化共14 d.放射免疫法测定各组APN mRNA表达水平.结果 与NC组比较,ACEI组、ARB组体外原代培养的人网膜和皮下前脂肪细胞中APN mRNA表达明显增强.结论 贝那普利、替米沙坦可促进网膜来源的前脂肪细胞的分化,在以腹型肥胖为特征的代谢综合征干预方面可能具有广泛的应用前景.

  3. Ethanol extract of lotus (Nelumbo nucifera) root exhibits an anti-adipogenic effect in human pre-adipocytes and anti-obesity and anti-oxidant effects in rats fed a high-fat diet.

    Science.gov (United States)

    You, Jeong Soon; Lee, Yun Ju; Kim, Kyoung Soo; Kim, Sung Hoon; Chang, Kyung Ja

    2014-03-01

    Lotus (Nelumbo Nucifera) root, a well-known medicinal plant in Asia, is reported to have various therapeutic benefits, including anti-diabetes, anti-hypertension, and anti-hyperlipidaemia. We hypothesized that the ethanol extract of lotus root (ELR) would exhibit an anti-adipogenic effect in human pre-adipocytes as well as anti-obesity and anti-oxidant effects in rats fed a high-fat diet. Treatment with ELR in human pre-adipocytes resulted in inhibition of lipid accumulation and attenuated expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor gamma and adipocyte marker genes, such as glucose transporter 4 and leptin. Administration of ELR resulted in a significant decrease in relative weights of adipose tissues in rats fed a high-fat diet. Consumption of a high-fat diet resulted in an increase in serum total cholesterol (TC) and triglyceride (TG) levels; however, administration of ELR resulted in a decrease in the levels of TC and TG. Administration of ELR resulted in a decrease in the level of serum leptin and insulin. Administration of ELR in rats fed a high-fat diet resulted in a decrease in hepatic thiobarbituric acid reactive substance content, elevated by a high-fat diet and an increase in superoxide dismutase activity and hepatic glutathione content. These results suggest that lotus root exerts anti-oxidant and anti-obesity effects and could be used as a functional and nutraceutical ingredient in combatting obesity-related diseases.

  4. The effect of squalane-dissolved fullerene-C60 on adipogenesis-accompanied oxidative stress and macrophage activation in a preadipocyte-monocyte co-culture system.

    Science.gov (United States)

    Xiao, Li; Aoshima, Hisae; Saitoh, Yasukazu; Miwa, Nobuhiko

    2010-08-01

    Effects of squalane-dissolved fullerene-C60 (Sql-fullerene) on macrophage activation and adipose conversion with oxidative stress were studied using an inflammatory adipose-tissue equivalent (ATE) and OP9 mouse stromal preadipocyte-U937 lymphoma cell co-culture systems. Differentiation of OP9 cells was initiated by insulin-rich serum replacement (SR) as an adipogenic stimulant, and then followed by accumulation of intracellular lipid droplets and reactive oxygen species (ROS), both of which were significantly inhibited by Sql-fullerene. In the OP9-U937 cell co-culture system, U937 cells rapidly differentiated to macrophage-like cells during SR-induced adipogenesis in OP9 cells. The ROS accumulation was in the co-culture more marked than in OP9 cells alone, suggesting that the interaction between adipocytes and monocytes/macrophages promotes inflammatory responses. Sql-fullerene significantly inhibited macrophage activation and low-grade adipogenesis in the OP9-U937 co-culture system. We developed a three-dimensional inflammatory adipose-tissue model "ATE" consisting of, characteristically, U937 cells in the culture-wells, and, in addition, mounted a culture insert containing OP9 cells-populated collagen gel. ATE is enabled with suitable stimulation to represent the pathology of inflammatory disorders, such as macrophage infiltration in adipose tissue. Five-day culturing of ATE in SR medium occurred U937 macrophage migration and intracellular oil-droplet accumulation that were significantly inhibited by Sql-fullerene. Our results suggest that Sql-fullerene might be explored as a potential medicine for the treatment of metabolic syndrome or other obesity-related disorders.

  5. Effect of jatrorrhizine on the glucolipid metabolism in adipocyte and its mechanism%药根碱对脂肪细胞糖脂代谢的影响及其机制研究

    Institute of Scientific and Technical Information of China (English)

    王慧; 陈刘; 姜友昭; 陈兵

    2012-01-01

    Objective To investigate the effect of jatrorrhizine, extracted from the rhizome of Coptis chinensis, on the glucose up-take and fatty acid oxidation in the 3T3-L1 adipocyte. Methods Jatrorrhizine in different concentrations (265.65, 53.75, 10.75, 2.15 and 0.45u,mol/L) was used in culture of the 3T3-L1 adipocytes for different periods (12, 24, 48 and 72 hours), and the cytotoxicity of jatrorrhizine was then determined by MTT assay. The uptake of glucose mediated by insulin was assessed by 3H-labeled deoxyglucose, and fatty acid oxidation in co-cultured 3T3-L1 adipocyte was measured using 14 C-labeled palmitic acid. The expression of PPARs gene was detected by real-time PCR, and the expression of PPARs protein was detected by Western blotting. Jatrorrhizine was replaced with PBS solution for all the control experiments. Results The optimal active concentration of jatrorrhizine was 0.45|xmol/L, and the preferable reaction time was 48 hours. Compared to PBS solution, the in vitro fatty acid oxidation in 3T3-L1 adipocyte was promoted by jatrorrhizine, so were the genie and protein expressions of PPARα and PPARp (P<0.01 or P<0.05). The impact on the PPAR 7, however, was negative. Conclusion Jatrorrhizine can promote the fatty acid oxidation in 3T3-L1 adipocyte, which may be attributable to the up-regulation of PPAR α and PPAR |3 levels in 3T3-L1 adipocyte.%目的 探讨黄连根茎提取物药根碱对3T3-L1脂肪细胞葡萄糖摄取、脂肪酸氧化的影响及其可能机制.方法 采用不同浓度(265.65、53.75、10.75、2.15、0.45μmol/L)药根碱作用于3T3-L1细胞不同时间(12、24、48、72h),MTT法检测药根碱的细胞毒性.以0.45 μ mol/L药根碱作用于3T3-L1细胞48h后,用[3H]2-DG标记检测胰岛素介导的葡萄糖摄取情况,14C-palmitic标记检测脂肪酸氧化情况,Real-time PCR检测PPARs基因表达情况,Western blotting检测PPARs蛋白表达情况,以PBS代替药根碱作为对照.结果 药根碱最佳作用浓度为0.45

  6. Environmental chemicals modulate polar bear (Ursus maritimus) peroxisome proliferator-activated receptor gamma (PPARG) and adipogenesis in vitro

    DEFF Research Database (Denmark)

    Routti, Heli; Lille-Langøy, Roger; Berg, Mari K;

    2016-01-01

    and three synthetic mixtures of contaminants in murine 3T3-L1 preadipocytes and polar bear adipose tissue-derived stem cells (pbASCs). PCB153 and p,p'-DDE antagonized pbPPARG, although their predicted receptor-ligand affinity was weak. PBDEs, tetrabromobisphenol A, and PCB170 had a weak agonistic effect...

  7. Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus.

    Science.gov (United States)

    Lee, Jung-Han; Hyun, Chang-Kee

    2014-09-01

    Inonotus obliquus has been traditionally used for treatment of metabolic diseases; however, the mechanism remains to be elucidated. In this study, we found that the water-soluble melanin complex extracted from I. obliquus improved insulin sensitivity and reduced adiposity in high fat (HF)-fed obese mice. When the melanin complex was treated to 3T3-L1 adipocytes, insulin-stimulated glucose uptake was increased significantly, and its phosphoinositide 3-kinase-dependent action was proven with wortmannin treatment. Additionally, dose-dependent increases in Akt phosphorylation and glucose transporter 4 translocation into the plasma membrane were observed in melanin complex-treated cells. Adiponectin gene expression in 3T3-L1 cells incubated with melanin complex increased which was corroborated by increased AMP-activated protein kinase phosphorylation in HepG2 and C2C12 cells treated with conditioned media from the 3T3-L1 culture. Melanin complex-treated 3T3-L1 cells showed no significant change in expression of several lipogenic genes, whereas enhanced expressions of fatty acid oxidative genes were observed. Similarly, the epididymal adipose tissue of melanin complex-treated HF-fed mice had higher expression of fatty acid oxidative genes without significant change in lipogenic gene expression. Together, these results suggest that the water-soluble melanin complex of I. obliquus exerts antihyperglycemic and beneficial lipid-metabolic effects, making it a candidate for promising antidiabetic agent. PMID:24615848

  8. In vitro Hypolipidemic and Antioxidant Effects of Leaf and Root Extracts of Taraxacum Officinale

    Directory of Open Access Journals (Sweden)

    Belén García-Carrasco

    2015-06-01

    Full Text Available Adipose tissue dysfunction constitutes a primary defect in obesity and might link this disease to severe chronic health problems. We aimed to evaluate the antioxidant activity of three extracts from Taraxacum officinale (dandelion as well as their effects on mature 3T3-L1 adipocytes concerning intracellular lipid accumulation and cytotoxicity, this would give indications regarding therapeutic interest of dandelion as potential anti-obesity candidate. Antioxidant activities of extracts from dandelion roots and leaves were evaluated in vitro using 1,1-diphenyl-2-picrylhyorazyl (DPPH and Ferric Reducing Antioxidant Power (FRAP methods at the concentration range used in cellular assays (300–600 µg/mL. The influence of the extracts on mature 3T3-L1 adipocyte viability was determined by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Lipid content was determined by Oil-red-O staining. The extracts showed effective antioxidant activity correlating with total flavonoid and polyphenol contents. However, the functionality level was weakly associated with the antioxidant activity. Further, our data demonstrated that mature 3T3-L1 adipocytes reduced in size and number when incubated with the extracts, which suggests a significant increase in lipolysis activity. Particularly, leaf extract and crude powdered root of dandelion reduced triglyceride accumulation in mature 3T3-L1 adipocytes to a greater extent that the extract from the root. Our study shows anti-lipogenic effects of dandelion extracts on adipocytes as well as radical scavenging and reducing activity. Importantly, along with previous results indicating that cell populations cultivated in the presence of the dandelion extracts decrease in 3T3-L1 adipogenesis capacity, these results suggests that these extracts might represent a treatment option for obesity-related diseases by affecting different processes during the adipocyte life cycle.

  9. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N;

    2012-01-01

    Disturbed Wnt signaling has been implicated in numerous diseases, including type 2 diabetes and the metabolic syndrome. In the present study, we have investigated cross-talk between insulin and Wnt signaling pathways using preadipocytes with and without knockdown of the Wnt co-receptors LRP5...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  10. Phenamil enhances the adipogenic differentiation of hen preadipocytes.

    Science.gov (United States)

    Regassa, Alemu; Park, Kye Won; Kim, Woo Kyun

    2016-10-01

    A study was conducted to examine the effect of phenamil on adipogenic differentiation and expression of key adipogenic transcripts in hen preadipocytes. Preadipocytes were isolated from 20-week old Single Comb White Leghorn hens (Gallas gallus, Lohman strain). The experiment lasted for 48 h and had six treatments. Non-treated control (C) cells, cells treated with dexamethasone, 3-isobutyl-1-methylxanthine, insulin, and oleic acid (DMIOA) (T1), DMIOA + 15 μM phenamil (T2), DMIOA + 30 μM phenamil (T3), 15 μM phenamil alone (T4), and 30 μM phenamil alone (T5). Neutral lipid accumulation and the mRNA expression of key adipogenic transcripts were measured in all treatments and compared. Lipid accumulation was detected in T1, T2, and T3 only. Expression of peroxisome proliferator receptor-activator gamma 2 (PPARγ2), the core enhancer binding protein α (C/EBPα), C/EBPβ, fatty acid binding protein 4 (FABP4), and lipoprotein lipase (LPL) as well as ETS variant 4 (ETV4) and 5 was higher (P hen preadipocytes but does not induce adipogenesis by itself. PMID:27460177

  11. Impact of metabolic regulators on the expression of the obesity associated genes FTO and NAMPT in human preadipocytes and adipocytes.

    Directory of Open Access Journals (Sweden)

    Daniela Friebe

    Full Text Available BACKGROUND: FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators. METHODOLOGY AND PRINCIPAL FINDINGS: We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively. CONCLUSION: FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes.

  12. Impact of Metabolic Regulators on the Expression of the Obesity Associated Genes FTO and NAMPT in Human Preadipocytes and Adipocytes

    Science.gov (United States)

    Schönberg, Maria; Bernhard, Falk; Büttner, Petra; Landgraf, Kathrin; Kiess, Wieland; Körner, Antje

    2011-01-01

    Background FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators. Methodology and Principal Findings We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively. Conclusion FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes. PMID:21687707

  13. Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes

    Science.gov (United States)

    Currently, levels of obesity in Middle Eastern countries are increasing. Phytochemicals have anti-obesogenic properties as evidenced by prevention of adipocyte differentiation. In Yemen, Pulicaria jaubertii E.Gamal-Eldin (PJ) is a food additive and a traditional medicine. We evaluated the ability of...

  14. Anti-diabetic properties of Fucus vesiculosus and pine bark extracts using the adipocyte cell model 3T3-L1

    OpenAIRE

    Margrét Eva Ásgeirsdóttir 1989

    2016-01-01

    Obesity is a serious health problem, affecting the lives of several hundred million individuals in the western civilizations. In obese individuals, large amounts of fat are stored in adipose tissue, which also acts as endocrine organ. This function can be affected in obesity, thus contribute to the onset of metabolic disorders like diabetes. Also, the progression of diabetes has been linked to accumulation of free radicals in the body which are as well involved in other degenerative diseases....

  15. Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production

    OpenAIRE

    Groeneveld, Matthijs P; Brierley, Gemma V.; Rocha, Nuno M.; Kenneth Siddle; Semple, Robert K.

    2016-01-01

    Loss of function of the insulin receptor (INSR) in humans produces severe insulin resistance. Unlike “common” insulin resistance, this is associated with elevated plasma levels of the insulin-sensitising, adipose-derived protein adiponectin. The underlying mechanism for this paradox is unclear, and it is at odds with the acute stimulation of adiponectin secretion reported on insulin treatment of cultured adipocytes. Given recent evidence for ligand-independent actions of the INSR, we used a l...

  16. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes

    OpenAIRE

    Wang, Yanxin; Watford, Malcolm

    2006-01-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. C...

  17. 2-(2-Bromophenyl)-formononetin and 2-heptyl-formononetin are PPARγ partial agonists and reduce lipid accumulation in 3T3-L1 adipocytes

    DEFF Research Database (Denmark)

    Andersen, Charlotte; Kotowska, Dorota Ewa; Tortzen, Christian;

    2014-01-01

    PPARγ whereas both analogues bound to the receptor and behaved as PPARγ partial agonists in the transactivation assay. Neither of the compounds affected phosphorylation of AMPK. In conclusion, the analogues of formononetin decreased lipid accumulation possibly in part by acting as PPARγ partial agonists....

  18. Dynamic effects and applications for nanosecond pulsed electric fields in cells and tissues

    Science.gov (United States)

    Beebe, Stephen J.; Blackmore, Peter F.; Hall, Emily; White, Jody A.; Willis, Lauren K.; Fauntleroy, Laura; Kolb, Juergen F.; Schoenbach, Karl H.

    2005-04-01

    Nanosecond, high intensity pulsed electric fields [nsPEFs] that are below the plasma membrane [PM] charging time constant have decreasing effects on the PM and increasing effects on intracellular structures and functions as the pulse duration decreases. When human cell suspensions were exposed to nsPEFs where the electric fields were sufficiently intense [10-300ns, adipocytes including decreased cell size and number, caspase activation, DNA fragmentation, and/or cytochrome c release into the cytoplasm. Phosphatidylserine externalization was observed as a biological response to nsPEFs in 3T3-L1 preadipocytes and p53-wildtype and -null human colon carcinoma cells. B10.2 mouse fibrosarcoma tumors that were exposed to nsPEFs ex vivo and in vivo exhibited DNA fragmentation, elevated caspase activity, and reduced size and weight compared to contralateral sham-treated control tumors. When nsPEF conditions were below thresholds for apoptosis and classical PM electroporation, non-apoptotic responses were observed similar to those initiated through PM purinergic receptors in HL-60 cells and thrombin in human platelets. These included Ca2+ mobilization from intracellular stores [endoplasmic reticulum] and subsequently through store-operated Ca2+ channels in the PM. In addition, platelet activation measured as aggregation responses were observed in human platelets. Finally, when nsPEF conditions followed classical electroporation-mediated transfection, the expression intensity and number of GFP-expressing cells were enhanced above cells exposed to electroporation conditions alone. These studies demonstrate that application of nsPEFs to cells or tissues can modulate cell-signaling mechanisms with possible applications as a new basic science tool, cancer treatment, wound healing, and gene therapy.

  19. Prolonged efficiency of siRNA-mediated gene silencing in primary cultures of human preadipocytes and adipocytes

    OpenAIRE

    Lee, Mi-Jeong; Pickering, R. Taylor; Puri, Vishwajeet

    2013-01-01

    Objective Primary human preadipocytes and differentiated adipocytes in culture are valuable cell culture systems to study adipogenesis and adipose function in relation to human adipose biology. To use these systems for mechanistic studies, we studied siRNA-mediated knockdown of genes for its effectiveness. Design and Methods Methods were developed to effectively deliver siRNA to for gene silencing in primary preadipocytes isolated from human subcutaneous adipose tissue and newly-differentiate...

  20. Mast cell deficiency results in the accumulation of preadipocytes in adipose tissue in both obese and non-obese mice

    Directory of Open Access Journals (Sweden)

    Yasushi Ishijima

    2014-01-01

    Full Text Available Mast cells have been suggested to play key roles in adipogenesis. We herein show that the expression of preadipocyte, but not adipocyte, marker genes increases in the white adipose tissue of mast cell-deficient (KitW-sh/W-sh mice under both obese and non-obese conditions. In vitro culturing with adipogenic factors revealed increased adipocytes differentiated from the KitW-sh/W-sh stromal vascular fraction, suggesting the accumulation of preadipocytes. Moreover, the increased expression of preadipocyte genes was restored by mast cell reconstitution in the KitW-sh/W-sh mice. These results suggest positive effects of mast cells on the preadipocyte to adipocyte transition under both physiological and pathological conditions.

  1. 水通道蛋白7对蛋白激酶B的影响%The Effect of Aquaglyceroporin 7 on Protein Kinase B Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    潘伟; 沈飞霞; 谷雪梅; 叶菁; 顾雪疆; 倪连松; 李卫平

    2013-01-01

    该文旨在探讨水通道蛋白7(AQP7)在3T3-L1脂肪细胞不同分化阶段的表达以及其对胰岛素信号通路中蛋白激酶B(PKB)的影响.通过培养3T3-L1前体脂肪细胞,诱导分化为成熟的脂肪细胞,用荧光定量PCR,Western blot、酶学方法分析显示,随3T3-L1脂肪细胞分化过程,AQP7与PKB磷酸化水平同步上升,同时培养基中释放的甘油浓度伴随AQP7的表达平行增加.以TNF-α处理分化成熟的脂肪细胞构建胰岛素抵抗模型,AQP7与PKB磷酸化水平均下降,转染高表达AQP7基因的重组腺病毒载体(Ad-AQP7)之后,随着AQP7表达上调,胰岛素刺激下的PKB磷酸化水平提高,并且葡萄糖代谢能力增强.由此可见,AQP7水平随3T3-L1脂肪细胞分化过程逐渐上升,其高表达可能通过增加PKB磷酸化水平改善胰岛素敏感性,提示AQP7可能成为治疗肥胖的一个重要作用靶点.%Aquaglyceroporin 7 (AQP7) is a water transporting protein which also regulates the glycerol efflux in adipocytes. The study of AQP7 might shed new light on the prevention and control of obesity. In this study, we aimed to analyze expression profiles of AQP7 in the different differentiation phase of adipocytes and the relationship between AQP7 and PKB in the insulin pathway. 3T3-L1 preadipocyte cells were induced fully differentiated. Insulin resistance in differentiated adipocytes was induced by TNF-α. Adenovirus overexpression AQP7 (Ad-AQP7) was constructed and transfected to adipocytes. The expression levels of AQP7 and phosphorylated PKB (p-PKB) were measured. The glycerol release from adipocytes and the change of glucose concentration in the culture medium were also tested.The AQP7 levels were gradually up-regulated along with the differentiation phase of 3T3-L1 preadipocytes, which was consistent with the expression levels of p-PKB. Overexpression of AQP7 by transfecting Ad-AQP7 to insulin resistant adipocytes could improve insulin sensitivity and glucose utilization, in

  2. Stable expression of lipocalin-type prostaglandin D synthase in cultured preadipocytes impairs adipogenesis program independently of endogenous prostanoids

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Mohammad Salim; Chowdhury, Abu Asad; Rahman, Mohammad Sharifur [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Nishimura, Kohji [Department of Molecular and Functional Genomics, Center for Integrated Research in Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Jisaka, Mitsuo; Nagaya, Tsutomu [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Shono, Fumiaki [Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima-shi, Tokushima 770-8514 (Japan); Yokota, Kazushige, E-mail: yokotaka@life.shimane-u.ac.jp [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan)

    2012-02-15

    Lipocalin-type prostaglandin D synthase (L-PGDS) expressed preferentially in adipocytes is responsible for the synthesis of PGD{sub 2} and its non-enzymatic dehydration products, PGJ{sub 2} series, serving as pro-adipogenic factors. However, the role of L-PGDS in the regulation of adipogenesis is complex because of the occurrence of several derivatives from PGD{sub 2} and their distinct receptor subtypes as well as other functions such as a transporter of lipophilic molecules. To manipulate the expression levels of L-PGDS in cultured adipocytes, cultured preadipogenic 3T3-L1 cells were transfected stably with a mammalian expression vector having cDNA encoding murine L-PGDS oriented in the sense direction. The isolated cloned stable transfectants with L-PGDS expressed higher levels of the transcript and protein levels of L-PGDS, and synthesized PGD{sub 2} from exogenous arachidonic acid at significantly higher levels. By contrast, the synthesis of PGE{sub 2} remained unchanged, indicating no influence on the reactions of cyclooxygenase (COX) and PGE synthase. Furthermore, the ability of those transfectants to synthesize {Delta}{sup 12}-PGJ{sub 2} increased more greatly during the maturation phase. The sustained expression of L-PGDS in cultured stable transfectants hampered the storage of fats during the maturation phase of adipocytes, which was accompanied by the reduced gene expression of adipocyte-specific markers reflecting the down-regulation of the adipogenesis program. The suppressed adipogenesis was not rescued by either exogenous aspirin or peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists including troglitazone and {Delta}{sup 12}-PGJ{sub 2}. Taken together, the results indicate the negative regulation of the adipogenesis program by the enhanced expression of L-PGDS through a cellular mechanism involving the interference of the PPAR{gamma} signaling pathway without the contribution of endogenous pro-adipogenic prostanoids

  3. File list: Unc.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Brown_preadipocytes mm9 Unclassified Adipocyte Brown preadipocytes... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Brown_preadipocytes.bed ...

  4. File list: Unc.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Brown_preadipocytes mm9 Unclassified Adipocyte Brown preadipocytes... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Brown_preadipocytes.bed ...

  5. File list: Unc.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Brown_preadipocytes mm9 Unclassified Adipocyte Brown preadipocytes... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Brown_preadipocytes.bed ...

  6. File list: Unc.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Brown_preadipocytes mm9 Unclassified Adipocyte Brown preadipocytes... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Brown_preadipocytes.bed ...

  7. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol.

    Science.gov (United States)

    Lau, C H; Chan, C M; Chan, Y W; Lau, K M; Lau, T W; Lam, F C; Law, W T; Che, C T; Leung, P C; Fung, K P; Ho, Y Y; Lau, C B S

    2007-11-01

    Cortex Moutan (CM, root bark of Paeonia suffruticosa Andr.) is one of the common herbs found in anti-diabetic traditional Chinese medicine formulae. To study the potential anti-diabetic mechanisms of CM, four in vitro models (intestinal brush border membrane vesicles (BBMV), rat hepatoma cell line H4IIE, human skin fibroblasts cell line Hs68 and mouse adipocytes 3T3-L1) were used. CM showed significant in vitro anti-diabetic effects by inhibiting glucose uptake of BBMV and enhancing glucose uptake into Hs68 and 3T3-L1 cells. Using bioassay-guided fractionation, paeonol was confirmed to be one of the active constituents for inhibiting BBMV glucose uptake. With neonatal-streptozotocin diabetic rats, paeonol (200 and 400mg/kgbody wt.) was found to improve oral glucose tolerance in vivo. To the best of our knowledge, this is the first report on the anti-diabetic effect of paeonol.

  8. Beta-mecaptoethanol suppresses inflammation and induces adipogenic differentiation in 3T3-F442A murine preadipocytes.

    Directory of Open Access Journals (Sweden)

    Wen Guo

    Full Text Available Preadipocytes are present in adipose tissues throughout adult life that can proliferate and differentiate into mature adipocytes in response to environmental cues. Abnormal increase in adipocyte number or size leads to fat tissue expansion. However, it is now recognized that adipocyte hypertrophy is a greater risk factor for metabolic syndrome whereas fat tissue that continues to produce newer and smaller fat cells through preadipocyte differentiation is "metabolically healthy". Because adipocyte hypertrophy is often associated with increased oxidant stress and low grade inflammation, both are linked to disturbed cellular redox, we tested how preadipocyte differentiation may be regulated by beta-mercaptoethanol (BME, a pharmacological redox regulator and radical scavenger, using murine 3T3-F442A preadipocytes as the cell model. Effects of BME on adipogenesis were measured by microphotography, real-time PCR, and Western analysis. Our data demonstrated that preadipocyte differentiation could be regulated by extracellular BME. At an optimal concentration, BME enhanced expression of adipogenic gene markers and lipid accumulation. This effect was associated with BME-mediated down-regulation of inflammatory cytokine expression during early differentiation. BME also attenuated TNFalpha-induced activation of NFkappaB in differentiating preadipocytes and partially restored TNFalpha-mediated suppression on adipogenesis. Using a non-adipogenic HEK293 cell line transfected with luciferase reporter genes, we demonstrated that BME reduced basal and TNFalpha-induced NFkappaB activity and increased basal and ciglitazone-induced PPARgamma activity; both may contribute to the pro-adipogenic effect of BME in differentiating F442A preadipocytes.

  9. Effect of hypoxia on metabolic markers and gene expression HIF-1 α in adipocytes

    OpenAIRE

    Younes, Noura B.

    2015-01-01

    Background: Docosahexaenoic acid (DHA; omega-3 fatty acid) has been reported to have potential anti-obesity properties. Hypoxia is a condition that results from the excessive expansion of white adipose tissue resulting in obesity-related conditions including insulin resistance, inflammation and oxidative stress. Methods: The objective of this study was to test the effects of DHA on the hypoxia responses (1.0 % for 24 hours) of 3T3-L1 adipocytes with a focus on oxidative stress, inflammation, ...

  10. 超声波对体外培养猪前脂肪细胞增殖分化的抑制效应%Inhibitory effect of ultrasonic wave on the proliferation and differentiation of porcine preadipocyte cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    李爱林; 陈学杰; 吴小蔚

    2007-01-01

    BACKGROUND: Soft tissue filling is a problem in clinic. It has been proved that ultrasonic wave-treated mature adipocytes cannot be used for cell transplantation.It is hopeful to solve the problem with adipose tissue engineering. OBJECTIVE: To observe the effect of ultrasonic wave on the in vitro culture and proliferation of preadipocytes, and validate the possibility of preadipocyte as seed cell in adipose tissue engineering following ultrasound-assisted liposuction. DESIGN: Controlled observation experiment. SETTING: Department of Plastic Surgery, Rennin Hospital, Wuhan University. MATERIALS: This experiment was carried out in the Medical College of Wuhan University from July 2003 to September 2004. One local 3-month-old hybridized pig was provided by the Experimental Animal Center of Medical College of Wuhan University. After the pig was anesthetized with ketamine, an area of 10 cm×20 cm was labeled on both sides of back respectively, and the tissue in the labeled area was harvested. The tissue on the right side served as experimental group and that on the left side served as control group. METHODS: The tissue of the expedmental group was pretreated for 8 minutes by ultrasonic wave with the energy of 3W/cm2. Under aseptic condition, the skin layer was open, and 100 g subcutaneous adipose tissue was resected from each side and then placed in prepared container containing cold D-hanks solution for later use. The ultrasonic wave-treated porcine preadipocytes of adipose tissue of experimental group were isolated and cultured in vitro, and the number and lipid content of preadipocytes were measured every other 2 days. Results were presented as the mean val ue of the number of cells of three wells. In the control group, pretreatment of ultrasonic wave was omitted. The growth curves of two groups were drawn. Intracellular adipose content was measured by oil red O staining. Absorbance (A) was measured with spectrophotometer (HITACHI G2000), which was regulated at the

  11. 体外模拟动态力学刺激对SD幼鼠前脂肪细胞生长活力影响的研究%A study on the effect of Proliferation in SD rats Preadipocyte Cells in vitro Dynamic Mechanical Stimulation

    Institute of Scientific and Technical Information of China (English)

    谢西梅; 陈波; 崔瑾; 杨运宽

    2011-01-01

    目的:探讨体外模拟动态力学刺激对SD幼鼠前脂肪细胞生长活力影响的研究,为推拿按摩治疗青少年单纯性肥胖的现代医学细胞生物学机制提供理论与实验依据.方法:体外培养SD幼鼠前脂肪细胞,从细胞生物力学角度,模拟推拿治疗的按摩作用方式,对细胞实施按摩动态力学刺激,观察按摩动态力学刺激对前脂肪细胞生长活力的影响.结果:体外模拟动态力学刺激抑制了前脂肪细胞的生长活力(P<0.05,P<0.01).结论:推拿按摩治疗青少年单纯性肥胖可能通过抑制前脂肪细胞的生长活力,使前脂肪细胞向脂肪细胞转化率降低而实现.%Objective:From the mechanics perspective of cell biology,in vitro simulation of dynamic mechanical massage to stimulate the form of SD rats to explore the vitality of preadipocyte,proliferation on the impact of the expression for Massage treatment of adolescents with simple obesity and obesity complications of modern medical cell biology mechanism based on theory and experiment. Methods; healthy SD rats in vitro culture of pre - obese fat cells, in different frequencies of vitro preadipocyte implementation of dynamic mechanical stimulation,observed changes in cell viability. Results:In different frequencies of vitro dynamic mechanical stimulation,the preadipocyte viability have significant effections. Conclusion:Massage therapy adolescents with simple obesity and obesity complications mechanism probably by inhibiting preadipocyte viability and proliferation, so that preadipocyte to adipocyte conversion rate decreased to reach.

  12. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity

    DEFF Research Database (Denmark)

    Zhang, Li Li; Yan Liu, Dao; Ma, Li Qun;

    2007-01-01

    We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect......-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced...... in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels...

  13. File list: NoD.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Brown_preadipocytes mm9 No description Adipocyte Brown preadipocyt...es http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Brown_preadipocytes.bed ...

  14. File list: NoD.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Brown_preadipocytes mm9 No description Adipocyte Brown preadipocyt...es http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.Brown_preadipocytes.bed ...

  15. File list: Pol.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Brown_preadipocytes mm9 RNA polymerase Adipocyte Brown preadipocyt...es SRX341031,SRX341032,SRX341029,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Brown_preadipocytes.bed ...

  16. File list: NoD.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Brown_preadipocytes mm9 No description Adipocyte Brown preadipocyt...es http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.10.AllAg.Brown_preadipocytes.bed ...

  17. File list: NoD.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Brown_preadipocytes mm9 No description Adipocyte Brown preadipocyt...es http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Brown_preadipocytes.bed ...

  18. File list: Pol.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Brown_preadipocytes mm9 RNA polymerase Adipocyte Brown preadipocyt...es SRX341031,SRX341032,SRX341029,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Brown_preadipocytes.bed ...

  19. File list: Pol.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Brown_preadipocytes mm9 RNA polymerase Adipocyte Brown preadipocyt...es SRX341031,SRX341032,SRX341029,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.10.AllAg.Brown_preadipocytes.bed ...

  20. File list: Pol.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Brown_preadipocytes mm9 RNA polymerase Adipocyte Brown preadipocyt...es SRX341031,SRX341032,SRX341029,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Brown_preadipocytes.bed ...

  1. Inhibitory Effect of High Temperature- and High Pressure-Treated Red Ginseng on Exercise-Induced Oxidative Stress in ICR Mouse

    OpenAIRE

    Seok-Yeong Yu; Bo-Ra Yoon; Young-Jun Lee; Jong Seok Lee; Hee-Do Hong; Young-Chul Lee; Young-Chan Kim; Chang-Won Cho; Kyung-Tack Kim; Ok-Hwan Lee

    2014-01-01

    As previously reported, high temperature- and high pressure-treated red ginseng (HRG) contain higher contents of phenolic compounds and protect C2C12 muscle cells and 3T3-L1 adipocytes against oxidative stress. This study investigated the effect of HRG on oxidative stress using a mouse model. Our results show that the levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, hepatic malondialdehyde in the HRG group were significantly lower than those of the exercise grou...

  2. Effect of puerarin on the P13K pathway for glucose transportation and insulin signal transduction in adipocytes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ying; ZHOU You; YIN Hui-jun; ZHANG Ying

    2009-01-01

    To explore the effect of puerarin on insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and protein expression of protein kinase B(PKB) in the P13K pathway of the glucose consumption, transportation and insulin signal transduction in 3T3-L1 adipocytes with insulin resistance. The insulin resistance 3T3-L1 adiocytes model was established by free fatty acid induction. The model cells were managed with puerarin in different concentrations. Glucose consumption was detected with glucose oxidase method, glucose transportation rate was determined by 2-deoxy-3 H glucose ingesting method, and the IR, IRS-1 and PKB expression were determined by Western blot. Glucose consumption and transportation were significantly decreased in the model adipocytes, but increased after treated with puerarin (P < 0. 01 ). Moreover, the level of tyrosine phosphorylation of IR subunit βwas higher in the puerarin treated groups, and that of IRS-1 was higher in the group treated with low dose puerarin than that in the model group. The 3T3-L1 adipocytes of insulin resistance model could be induced by free fatty acid successfully, puerarin could promote the glucose utilization in them to alleviate the insulin resistance, which may be related with the action in advancing the tyrosine phosphorylation of IR and IRS-1.

  3. Bisphenol S Induces Adipogenesis in Primary Human Preadipocytes From Female Donors.

    Science.gov (United States)

    Boucher, Jonathan G; Ahmed, Shaimaa; Atlas, Ella

    2016-04-01

    Human exposure to bisphenol A has been associated with negative health outcomes in humans and its use is now regulated in a number of countries. Bisphenol S (BPS) is increasingly used as a replacement for bisphenol A; however, its effects on cellular metabolism and potential role as an endocrine disruptor have not been fully characterized. In the current study, we evaluated the effect of BPS on adipogenesis in primary human preadipocytes. The effect of BPS on the differentiation of human preadipocytes was determined after treatment with BPS at concentrations ranging from 0.1 nM to 25 μM by quantifying lipid accumulation and mRNA and protein levels of key adipogenic markers. Treatment of preadipocytes with 25 μM BPS induced lipid accumulation and increased the mRNA and protein levels of several adipogenic markers including lipoprotein lipase and adipocyte protein 2 (aP2). Cotreatment of cells with the estrogen receptor antagonist ICI-182,780 significantly inhibited BPS-induced lipid accumulation and affected aP2 but not lipoprotein lipase protein levels. Cotreatment of cells with the glucocorticoid receptor antagonist RU486 had no effect on BPS-induced lipid accumulation or protein levels. Furthermore, reporter gene assays using a synthetic promoter containing peroxisome proliferator-activated receptor-γ (PPARG)-response elements and a PPARG-responsive human aP2 promoter region showed that BPS was able to activate PPARG. To our knowledge, this study is the first to show that BPS induces lipid accumulation and differentiation of primary human preadipocytes, and this effect may be mediated through a PPARG pathway.

  4. White Tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre-adipocytes

    Directory of Open Access Journals (Sweden)

    Wenck Horst

    2009-05-01

    Full Text Available Abstract Background The dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. To investigate how natural substances influence lipolysis and adipogenesis, we determined the effects of White Tea extract on cultured human subcutaneous preadipocytes and adipocytes. Methods For our in vitro studies we used a White Tea extract solution that contained polyphenols and methylxanthines. Utilizing cultured human preadipocytes we investigated White Tea extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. In vitro studies on human adipocytes were performed aiming to elucidate the efficacy of White Tea extract solution to stimulate lipolytic activity. To characterize White Tea extract solution-mediated effects on a molecular level, we analyzed gene expression of essential adipogenesis-related transcription factors by qRT-PCR and determined the expression of the transcription factor ADD1/SREBP-1c on the protein level utilizing immunofluorescence analysis. Results Our data show that incubation of preadipocytes with White Tea extract solution significantly decreased triglyceride incorporation during adipogenesis in a dose-dependent manner (n = 10 without affecting cell viability (n = 10. These effects were, at least in part, mediated by EGCG (n = 10, 50 μM. In addition, White Tea extract solution also stimulated lipolytic activity in adipocytes (n = 7. Differentiating preadipocytes cultivated in the presence of 0.5% White Tea extract solution showed a decrease in PPARγ, ADD1/SREBP-1c, C/EBPα and C/EBPδ mRNA levels. Moreover, the expression of the transcription factor ADD1/SREBP-1c was not only decreased on the mRNA but also on the protein level. Conclusion White Tea extract is a natural source that effectively inhibits adipogenesis and stimulates lipolysis-activity. Therefore, it can be utilized to

  5. Adipocyte Induction of Preadipocyte Differentiation in a Gradient Chamber

    OpenAIRE

    Lai, Ning; Sims, James K; Jeon, Noo Li; Lee, Kyongbum

    2012-01-01

    Adipose tissue expansion involves enlargement of mature adipocytes and the formation of new adipocytes through the differentiation of locally resident preadipocytes. Factors released by the enlarged adipocytes are potential cues that induce the differentiation of the preadipocytes. Currently, there are limited options to investigate these cues in isolation from confounding systemic influences. A gradient generating microfluidic channel-based cell culture system was designed to enable solution...

  6. White Tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes

    OpenAIRE

    Wenck Horst; Gallinat Stefan; Schepky Andreas; Grönniger Elke; Siegner Ralf; Holtzmann Ursula; Knott Anja; Söhle Jörn; Stäb Franz; Winnefeld Marc

    2009-01-01

    Abstract Background The dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. To investigate how natural substances influence lipolysis and adipogenesis, we determined the effects of White Tea extract on cultured human subcutaneous preadipocytes and adipocytes. Methods For our in vitro studies we used a White Tea extract solution that contained polyphenols and methylxanthines. Utilizing cultured human pr...

  7. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.).

    Science.gov (United States)

    Choi, Ji Won; Synytsya, Andriy; Capek, Peter; Bleha, Roman; Pohl, Radek; Park, Yong Il

    2016-08-01

    A water-soluble polysaccharide JS-MP-1 was isolated from Korean mulberry fruits Oddi (Morus alba L.). Sugar linkage analysis and NMR data confirmed that it is a rhamnogalacturonan type I (RG I) polymer carrying arabinan and arabinogalactan (AG II) side chains. JS-MP-1 reduced dose-dependently the viability of 3T3-L1 pre-adipocyte cells, significantly stimulated the cleavage of caspases 9 and 3 and poly (ADP-ribose) polymerase (PARP) and decreased the ratio of Bcl-2 to Bax expression level that led to mitochondrial dysfunction and apoptosis in pre-adipocyte cells. The apoptotic death was mediated by stimulation of MAPKs (ERK and p38) signalling pathway. These results suggest that JS-MP-1 is able to reduce the number of fat cells and the mass of adipose tissue via inhibition of pre-adipocyte proliferation and thus JS-MP-1 itself or a crude aqueous Oddi extract containing this polysaccharide can be used as functional ingredient of health-beneficial food supplements for the treatment or prevention of obesity disorders. PMID:27112865

  8. Obestatin as a regulator of adipocyte metabolism and adipogenesis

    OpenAIRE

    Gurriarán-Rodríguez, Uxía; Al-Massadi, Omar; Roca-Rivada, Arturo; Crujeiras, Ana Belén; Gallego, Rosalía; Pardo, Maria; Seoane, Luisa Maria; Pazos, Yolanda; Felipe F Casanueva; Camiña, Jesús P

    2011-01-01

    Abstract The role of obestatin, a 23-amino-acid peptide encoded by the ghrelin gene, on the control of the metabolism of pre-adipocyte and adipocytes as well as on adipogenesis was determined. For in vitro assays, pre-adipocyte and adipocyte 3T3-L1 cells were used to assess the obestatin effect on cell metabolism and adipogenesis based on the regulation of the key enzymatic nodes, Akt and AMPK and their downstream targets. For in vivo assays, white adipose tissue (WAT) was obtained from male ...

  9. 不同支架及接种培养方法对前脂肪细胞生长情况的影响%Effects of Different Scaffolds and Cultures on Growth of Preadipocytes

    Institute of Scientific and Technical Information of China (English)

    费剑锋; 宋红权; 孙洋; 张瑞; 张风琴

    2010-01-01

    目的 通过对体外培养前脂肪细胞并分别与聚乳酸-羟基乙酸共聚物(PLGA)支架、胶原支架以及透明质酸支架复合,研究3种不同支架材料的细胞相容性.方法 切取成年女性腹部皮下脂肪组织,采用胶原酶消化的方法分离培养人前脂肪细胞,采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑臭盐(MTT)法观察3种不同支架材料的细胞相容性,并以透明质酸作为支架,考察静态和水平摇床两种接种培养方式对前脂肪细胞在支架上接种率的影响.结果 前脂肪细胞可以在体外成功地分离、培养,能定向分化为脂肪细胞,并可以进行传代扩增.前脂肪细胞在PLGA、胶原以及透明质酸3种材料上生长良好,其中透明质酸支架以及水平摇床接种培养效果更佳.结论 透明质酸更加适宜作为组织工程化脂肪的支架材料,水平摇床的接种培养可提高细胞与支架材料之间的接种率,优于静态培养.%Objective To culture preadipocytes in vitro and to study the cell compatibility of PLGA scaffolds,collagen scarfolds and hyaluronic acid-based scaffolds and tO choose the optimal seeding method.Methods The preadipocytes from human abdominal adipose tissue were isolated and cultured in enzyme-digesting method.The generation of human preadipocytes was planted on PLGA scaffolds,collagen scaffolds and hyaluronic acid-based scaffolds.and the cell compatibility was observed by MTT method.The seeding efficiency of human preadipocytes on scaffolds.human preadipocytes were seeded to hyaluronic acid-based scaffolds by static culture and stirred culture.Results Compared compatibility of preadipocyte with three different scaffolds,there was great difference between hyaluronic acid-based scaffolds and PLGA scaffolds.Difference also existed between hyaluronic acid-based scaffolds and collagen scaffolds that were different from PLGA scaffolds.Among them,hyaluronic acid-based scaffolds was the best

  10. Klf7 modulates the differentiation and proliferation of chicken preadipocyte

    Institute of Scientific and Technical Information of China (English)

    Zhiwei Zhang; Haixia Wang; Yingning Sun; Hui Li; Ning Wang

    2013-01-01

    Krüppel-like factor 7 (Klf7) has been extensively studied in the mammalian species,but its function in avian species is unclear.The objective of this study was to reveal the function of chicken Klf7 (Gallus gallus Klf7,gKlf7) in adipogenesis.The results of real-time reverse transcription polymerase chain reaction demonstrated that the relative mRNA level of chicken Klf7 (gKlf7/gβ-Actin) in the abdominal adipose tissue was significantly associated with the abdominal fat content and the age of broilers (P <0.05),and gKlf7 was more highly expressed in preadipocytes than in mature adipocytes (P< 0.05).In addition,Oil red O staining showed that gKlf7 inhibited chicken preadipocyte differentiation,and MTT assay indicated that gKlf7 overexpression promoted preadipocyte proliferation.Additionally,luciferase assays showed that gKlf7 overexpression suppressed the chicken CCAAT/enhancerbinding protein α (C/ebpα),fatty acid synthase (Fasn),and lipoprotein lipase (Lpl) promoter activities (P < 0.05),and gKlf7 knockdown increased the chicken peroxisome proliferator-activated receptor γ (Pparγ),C/ebpα and fatty acid-binding protein 4 (Fabp4) promoter activities (P < 0.05).Together,our study demonstrated that chicken Klf7 inhibits preadipocyte differentiation and promotes preadipocyte proliferation.

  11. MiR-378 Plays an Important Role in the Differentiation of Bovine Preadipocytes

    Directory of Open Access Journals (Sweden)

    Si-Yuan Liu

    2015-07-01

    Full Text Available Background: Adipocyte, the main cellular component of white adipose tissue, plays a vital role in energy balance in higher eukaryotes. In recent years, adipocytes have also been identified as a major endocrine organ involved in immunological responses, vascular diseases, and appetite regulation. In farm animals, fat content and categories are closely correlated with meat quality. MicroRNAs (miRNAs, a class of endogenous single-stranded non-coding RNA molecules, participate in the regulation of adipocyte differentiation and adipogenesis through regulating the transcription or translation of target mRNAs. MiR-378 plays an important role in a number of biological processes, including cell growth, cell differentiation, tumor cell survival and angiogenesis. Methods: In the present study, bioinformatics analysis and dual-luciferase reporter assay were used to identify and validate the target genes of miR-378. In vitro cell transfection, quantitative reverse transcription polymerase chain reaction (RT-qPCR, western blot analysis, Oil Red O staining, and triglyceride content measurement were conducted to analyze the effects of miR-378 on bovine preadipocyte differentiation. Results: MiR-378 was induced during adipocyte differentiation. In the differentiated adipocytes overexpressing miR-378, the volume of lipid droplets was enlarged, and the triglyceride content was increased. Moreover, the mRNA expression levels of the adipocyte differentiation marker genes, peroxisome proliferator-activated receptor gamma (PPARγ and sterol regulatory element-binding protein (SREBP, were significantly elevated in the differentiated, mature adipocytes. In contrast, the mRNA expression level of preadipocyte factor 1 (Pref-1 was markedly reduced. E2F transcription factor 2 (E2F2 and Ras-related nuclear (RAN-binding protein 10 (RANBP10 were the two target genes of miR-378. The mRNA expression levels of E2F2 and RANBP10 did not significantly change in bovine preadipocytes

  12. File list: Oth.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Brown_preadipocytes mm9 TFs and others Adipocyte Brown preadipocyt...341023,SRX341760,SRX341767,SRX341763,SRX341027 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Brown_preadipocytes.bed ...

  13. File list: DNS.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Brown_preadipocytes mm9 DNase-seq Adipocyte Brown preadipocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Brown_preadipocytes.bed ...

  14. File list: ALL.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Brown_preadipocytes mm9 All antigens Adipocyte Brown preadipocytes...RX341419,SRX341767,SRX341421,SRX478161,SRX341039,SRX341040 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.05.AllAg.Brown_preadipocytes.bed ...

  15. File list: His.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Brown_preadipocytes mm9 Histone Adipocyte Brown preadipocytes SRX3...RX341420,SRX341421,SRX341046 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.Brown_preadipocytes.bed ...

  16. File list: InP.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Brown_preadipocytes mm9 Input control Adipocyte Brown preadipocyte...056,SRX341058,SRX478161 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.Brown_preadipocytes.bed ...

  17. File list: Oth.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Brown_preadipocytes mm9 TFs and others Adipocyte Brown preadipocyt...341763,SRX341767,SRX341419,SRX341028,SRX341766 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Brown_preadipocytes.bed ...

  18. File list: ALL.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Brown_preadipocytes mm9 All antigens Adipocyte Brown preadipocytes...RX341044,SRX341420,SRX341421,SRX341046,SRX478161,SRX341027 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.20.AllAg.Brown_preadipocytes.bed ...

  19. File list: DNS.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Brown_preadipocytes mm9 DNase-seq Adipocyte Brown preadipocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.05.AllAg.Brown_preadipocytes.bed ...

  20. File list: His.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Brown_preadipocytes mm9 Histone Adipocyte Brown preadipocytes SRX3...RX341421,SRX341046,SRX478160 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.50.AllAg.Brown_preadipocytes.bed ...

  1. File list: His.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Brown_preadipocytes mm9 Histone Adipocyte Brown preadipocytes SRX3...RX341421,SRX341039,SRX341040 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Brown_preadipocytes.bed ...

  2. File list: DNS.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Brown_preadipocytes mm9 DNase-seq Adipocyte Brown preadipocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Brown_preadipocytes.bed ...

  3. File list: Oth.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Brown_preadipocytes mm9 TFs and others Adipocyte Brown preadipocyt...341028,SRX341760,SRX341767,SRX341763,SRX341027 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.Brown_preadipocytes.bed ...

  4. File list: InP.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Brown_preadipocytes mm9 Input control Adipocyte Brown preadipocyte...782,SRX341056,SRX478161 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.Brown_preadipocytes.bed ...

  5. File list: ALL.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Brown_preadipocytes mm9 All antigens Adipocyte Brown preadipocytes...RX341420,SRX341421,SRX341046,SRX478161,SRX341027,SRX478160 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.50.AllAg.Brown_preadipocytes.bed ...

  6. File list: Oth.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Brown_preadipocytes mm9 TFs and others Adipocyte Brown preadipocyt...341766,SRX341418,SRX341023,SRX341419,SRX341767 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.Brown_preadipocytes.bed ...

  7. File list: ALL.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Brown_preadipocytes mm9 All antigens Adipocyte Brown preadipocytes...RX341420,SRX478161,SRX478160,SRX341040,SRX341041,SRX341039 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.10.AllAg.Brown_preadipocytes.bed ...

  8. File list: DNS.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Brown_preadipocytes mm9 DNase-seq Adipocyte Brown preadipocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Brown_preadipocytes.bed ...

  9. File list: InP.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Brown_preadipocytes mm9 Input control Adipocyte Brown preadipocyte...058,SRX341056,SRX478161 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.10.AllAg.Brown_preadipocytes.bed ...

  10. Osteodifferentiation of Human Preadipocytes Induced by Strontium Released from Hydrogels

    Directory of Open Access Journals (Sweden)

    Valeria Nardone

    2012-01-01

    Full Text Available In recent years, there has been an increasing interest in interactive application principles of biology and engineering for the development of valid biological systems for tissue regeneration, such as for the treatment of bone fractures or skeletal defects. The application of stem cells together with biomaterials releasing bioactive factors promotes the formation of bone tissue by inducing proliferation and/or cell differentiation. In this study, we used a clonal cell line from human adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes, named PA2-E12, to evaluate the effects of strontium (Sr2+ released in the culture medium from an amidated carboxymethylcellulose (CMCA hydrogel enriched with different Sr2+ concentrations on osteodifferentiation. The osteoinductive effect was evaluated through both the expression of alkaline phophatase (ALP activity and the hydroxyapatite (HA production during 42 days of induction. Present data have shown that Sr2+ released from CMCA promotes the osteodifferentiation induced by an osteogenic medium as shown by the increase of ALP activity at 7 and 14 days and of HA production at 14 days. In conclusion, the use of biomaterials able to release in situ osteoinductive agents, like Sr2+, could represent a new strategy for future applications in bone tissue engineering.

  11. Differential gene expression in white and brown preadipocytes

    NARCIS (Netherlands)

    Boeuf, S.; Klaus, S.; Klingenspor, M.; Schneider, T.; Franssen-Hal, van N.L.W.; Keijer, J.

    2001-01-01

    White (WAT) and brown (BAT) adipose tissue are tissues of energy storage and energy dissipation, respectively. Experimental evidence suggests that brown and white preadipocytes are differentially determined, but so far not much is known about the genetic control of this determination process. The ai

  12. Metformin-suppressed differentiation of human visceral preadipocytes: Involvement of microRNAs.

    Science.gov (United States)

    Fujita, Koji; Iwama, Hisakazu; Oura, Kyoko; Tadokoro, Tomoko; Hirose, Kayo; Watanabe, Miwako; Sakamoto, Teppei; Katsura, Akiko; Mimura, Shima; Nomura, Takako; Tani, Joji; Miyoshi, Hisaaki; Morishita, Asahiro; Yoneyama, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Himoto, Takashi; Masaki, Tsutomu

    2016-10-01

    Visceral adipose tissue contributes to the pathophysiology of metabolic syndrome. Metformin has been reported to suppress lipogenesis in a murine preadipocyte cell line. However, the effect of metformin on the differentiation of human visceral adipose tissue remains unknown. MicroRNAs (miRNAs or miRs) have been suggested as therapeutic targets because of their involvement in the differentiation and maturation of fatty cells. The aim of this study was to determine whether metformin suppresses the differentiation of human preadipocytes and to identify miRNAs associated with the regulation of lipid metabolism. Human visceral preadipocytes (HPrAD-vis) were preincubated in growth media and then cultured with differentiation media containing metformin for 1 or 2 weeks. Adipogenic differentiation of the cells was assessed by Oil Red O staining, and soluble adiponectin in the culture media was measured using an enzyme-linked immunosorbent assay. Cell proliferation was assessed using a WST-8 assay, and the gene and protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT‑enhancer-binding protein α (C/EBPα) was determined by RT-qPCR and western blot analysis, respectively. miRNAs were profiled using human miRNA Oligo chips after total RNA was extracted and labeled. Oil Red O staining showed that metformin suppressed the accumulation of lipid droplets in HPrAD-vis cells. The adiponectin concentration in the culture media was also decreased in metformin-treated cells. The WST-8 assay revealed no effect on proliferation or growth inhibition following metformin treatment, although metformin suppressed the expression of PPARγ and C/EBPα. miRNA profiling further revealed differences between the metformin-treated group and control HPrAD-vis cells. Thus, the findings of the present study demonstrated that metformin suppressed the differentiation of human preadipocytes in vitro and altered the miRNA profile of these cells. Thus, the mi

  13. Polyphenolic extract from Hibiscus sabdariffa reduces body fat by inhibiting hepatic lipogenesis and preadipocyte adipogenesis.

    Science.gov (United States)

    Kao, Erl-Shyh; Yang, Mon-Yuan; Hung, Chia-Hung; Huang, Chien-Ning; Wang, Chau-Jong

    2016-01-01

    Diets high in fat lead to excess lipid accumulation in adipose tissue, which is a crucial factor in the development of obesity, hepatitis, and hyperlipidemia. In this study, we investigated the anti-obesity effect of Hibiscus sabdariffa extract (HSE) in vivo. Hamsters fed a high-fat diet (HFD) develop symptoms of obesity, which were determined based on body weight changes and changes in plasma and serum triglycerides, free fatty acid concentrations, total cholesterol levels, LDL-C levels, HDL-C levels, and adipocyte tissue weight. HFD-fed hamsters were used to investigate the effects of HSE on symptoms of obesity such as adipogenesis and fatty liver, loss of blood glucose regulation, and serum ion imbalance. Interestingly, HSE treatment effectively reduced the effects of the HFD in hamsters in a dose-dependent manner. Further, after inducing maturation of preadipocytes, Hibiscus sabdariffa polyphenolic extract (HPE) was shown to suppress the adipogenesis of adipocytes. However, HPE does not affect the viability of preadipocytes. Therefore, both HSE and HPE are effective and viable treatment strategies for preventing the development and treating the symptoms of obesity. PMID:26489044

  14. Effects of Crude Oil/Dispersant Mixture and Dispersant Components on PPARγ Activity in Vitro and in Vivo: Identification of Dioctyl Sodium Sulfosuccinate (DOSS; CAS #577-11-7) as a Probable Obesogen

    Science.gov (United States)

    Temkin, Alexis M.; Bowers, Robert R.; Magaletta, Margaret E.; Holshouser, Steven; Maggi, Adriana; Ciana, Paolo; Guillette, Louis J.; Bowden, John A.; Kucklick, John R.; Baatz, John E.; Spyropoulos, Demetri D.

    2015-01-01

    Background The obesity pandemic is associated with multiple major health concerns. In addition to diet and lifestyle, there is increasing evidence that environmental exposures to chemicals known as obesogens also may promote obesity. Objectives We investigated the massive environmental contamination resulting from the Deepwater Horizon (DWH) oil spill, including the use of the oil dispersant COREXIT in remediation efforts, to determine whether obesogens were released into the environment during this incident. We also sought to improve the sensitivity of obesogen detection methods in order to guide post-toxicological chemical assessments. Methods Peroxisome proliferator–activated receptor gamma (PPARγ) transactivation assays were used to identify putative obesogens. Solid-phase extraction (SPE) was used to sub-fractionate the water-accommodated fraction generated by mixing COREXIT, cell culture media, and DWH oil (CWAF). Liquid chromatography–mass spectrometry (LC-MS) was used to identify components of fractionated CWAF. PPAR response element (PPRE) activity was measured in PPRE-luciferase transgenic mice. Ligand-binding assays were used to quantitate ligand affinity. Murine 3T3-L1 preadipocytes were used to assess adipogenic induction. Results Serum-free conditions greatly enhanced the sensitivity of PPARγ transactivation assays. CWAF and COREXIT had significant dose-dependent PPARγ transactivation activities. From SPE, the 50:50 water:ethanol volume fraction of CWAF contained this activity, and LC-MS indicated that major components of COREXIT contribute to PPARγ transactivation in the CWAF. Molecular modeling predicted several components of COREXIT might be PPARγ ligands. We classified dioctyl sodium sulfosuccinate (DOSS), a major component of COREXIT, as a probable obesogen by PPARγ transactivation assays, PPAR-driven luciferase induction in vivo, PPARγ binding assays (affinity comparable to pioglitazone and arachidonic acid), and in vitro murine

  15. Characterization and endocrine regulation of proliferation and differentiation of primary cultured preadipocytes from gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Salmerón, C; Acerete, L; Gutiérrez, J; Navarro, I; Capilla, E

    2013-07-01

    A preadipocyte primary cell culture was established to gain knowledge about adipose tissue development in gilthead sea bream (Sparus aurata), one of the most extensively produced marine aquaculture species in the Mediterranean. The preadipocytes obtained from the stromal-vascular cell fraction of adipose tissue proliferated in culture, reaching confluence around day 8. At that time, the addition of an adipogenic medium promoted differentiation of the cells into mature adipocytes, which showed an enlarged cytoplasm filled with lipid droplets. First, cell proliferation and differentiation were analyzed under control and adipogenic conditions during culture development. Next, the effects of insulin, GH, and IGF-I on cell proliferation were evaluated at day 8. All peptides significantly stimulated proliferation of the cells after 48 h of incubation (P differentiation when added to growth medium were studied at day 11, after 3 d of induction with adipogenic medium. The results showed that IGF-I is more potent than insulin enhancing differentiation (P product in aquaculture.

  16. Tadalafil reduces visceral adipose tissue accumulation by promoting preadipocytes differentiation towards a metabolically healthy phenotype: Studies in rabbits.

    Science.gov (United States)

    Maneschi, Elena; Cellai, Ilaria; Aversa, Antonio; Mello, Tommaso; Filippi, Sandra; Comeglio, Paolo; Bani, Daniele; Guasti, Daniele; Sarchielli, Erica; Salvatore, Giulia; Morelli, Annamaria; Mazzanti, Benedetta; Corcetto, Francesca; Corno, Chiara; Francomano, Davide; Galli, Andrea; Vannelli, Gabriella Barbara; Lenzi, Andrea; Mannucci, Edoardo; Maggi, Mario; Vignozzi, Linda

    2016-03-15

    Development of metabolically healthy adipocytes within dysfunctional adipose tissue may represent an attractive way to counteract metabolic syndrome (MetS). In an experimental animal model of high fat diet (HFD)-induced MetS, in vivo, long- and short-term tadalafil treatments were able to reduce visceral adipose tissue (VAT) accumulation and hypertriglyceridemia, and to induce the expression in VAT of the brown fat-specific marker, uncoupling protein 1 (UCP1). VAT preadipocytes (PAD), isolated from the tadalafil-treated HFD rabbits, showed: i) a multilocular morphology; ii) an increased expression of brown fat-specific genes (such as UCP1 and CIDEA); iii) improved mitochondrial structure and dynamic and reduced superoxide production; iv) improved insulin sensitivity. Similar effects were obtained after in vitro tadalafil treatment in HFD rPAD. In conclusion, tadalafil counteracted HFD-associated VAT alterations, by restoring insulin-sensitivity and prompting preadipocytes differentiation towards a metabolically healthy phenotype. PMID:26805634

  17. Differential Chemokine Signature between Human Preadipocytes and Adipocytes

    Science.gov (United States)

    Ignacio, Rosa Mistica C.; Gibbs, Carla R.; Lee, Eun-Sook

    2016-01-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity. PMID:27340388

  18. Differential Chemokine Signature between Human Preadipocytes and Adipocytes.

    Science.gov (United States)

    Ignacio, Rosa Mistica C; Gibbs, Carla R; Lee, Eun-Sook; Son, Deok-Soo

    2016-06-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) datas