WorldWideScience

Sample records for 3t3 cells modulation

  1. Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Electrical stimulation (ES is therapeutic to many bone diseases, from promoting fracture regeneration to orthopedic intervention. The application of ES offers substantial therapeutic potential, while optimal ES parameters and the underlying mechanisms responsible for the positive clinical impact are poorly understood. In this study, we assembled an ES cell culture and monitoring device. Mc-3T3-E1 cells were subjected to different frequency to investigate the effect of osteogenesis. Cell proliferation, DNA synthesis, the mRNA levels of osteosis-related genes, the activity of alkaline phosphatase (ALP, and intracellular concentration of Ca2+ were thoroughly evaluated. We found that 100 Hz could up-regulate the mRNA levels of collagen I, collagen II and Runx2. On the contrary, ES could down-regulate the mRNA levels of osteopontin (OPN. ALP activity assay and Fast Blue RR salt stain showed that 100 Hz could accelerate cells differentiation. Compared to the control group, 100 Hz could promote cell proliferation. Furthermore, 1 Hz to 10 Hz could improve calcium deposition in the intracellular matrix. Overall, these results indicate that 100Hz ES exhibits superior potentialities in osteogenesis, which should be beneficial for the clinical applications of ES for the treatment of bone diseases.

  2. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hung Yao-Ching

    2009-01-01

    Full Text Available Abstract Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions.

  3. Tunable swelling of polyelectrolyte multilayers in cell culture media for modulating NIH-3T3 cells adhesion.

    Science.gov (United States)

    Qi, Wei; Cai, Peng; Yuan, Wenjing; Wang, Hua

    2014-11-01

    For polyelectrolyte multilayers (PEMs) assembled by the layer-by-layer (LbL) assembly technique, their nanostructure and properties can be governed by many parameters during the building process. Here, it was demonstrated that the swelling of the PEMs containing poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) in cell culture media could be tuned with changing supporting salt solutions during the assembly process. Importantly, the influence of the PEMs assembled in different salt solutions on NIH-3T3 cell adhesion was observable. Specifically, the cells could possess a higher affinity for the films assembled in low salt concentration (i.e. 0.15M NaCl) or no salt, the poorly swelling films in cell culture media, which was manifested by the large cell spreading area and focal adhesions. In contrast, those were assembled in higher salt concentration, highly swelling films in cell culture media, were less attractive for the fibroblasts. As a result, the cell adhesion behaviors may be manipulated by tailoring the physicochemical properties of the films, which could be performed by changing the assembly conditions such as supporting salt concentration. Such a finding might promise a great potential in designing desired biomaterials for tissue engineering and regenerative medicine.

  4. St. John's wort promotes adipocyte differentiation and modulates NF-κB activation in 3T3-L1 cells.

    Science.gov (United States)

    Hatano, Tomoko; Sameshima, Yuka; Kawabata, Mami; Yamada, Shizuo; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu; Mizuno, Hideya

    2014-01-01

    St. John's wort (SJW), or Hypericum perforatum, is a perennial herb that has been used in the treatment of depression in several countries. Though its therapeutic effect on depression has been extensively studied, its influence on metabolic syndrome is yet to be fully characterized. Therefore, we investigated the effect of SJW extract on adipocyte differentiation and its anti-inflammatory effects by using 3T3-L1 preadipocytes. Oil Red O staining indicated that SJW promotes adipocyte differentiation, while immunoblots indicated that SJW increases the expression of peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor regulating adipocyte differentiation, and adiponectin, an anti-inflammatory adipokine. Furthermore, the anti-inflammatory activity of SJW was demonstrated by its inhibition of the activation of nuclear factor-κB (NF-κB), an inflammatory transcription factor. Stimulation of mature 3T3-L1 adipocytes by tumor necrosis factor-α (TNF-α) decreased the expression of the NF-κB inhibitor IκBα, and increased its phosphorylation. Treatment with SJW further decreased the TNF-α-induced perturbation in IκBα expression and phosphorylation, which indicated that SJW mediated the inhibition of NF-κB activation. In addition, SJW decreased the TNF-α-induced increase in the mRNA levels of pro-inflammatory adipokines, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Collectively, our results indicate that SJW treatment could promote adipocyte differentiation probably through its anti-inflammatory activity, which in turn suggests that SJW has the potential to minimize the risk factors of metabolic syndrome.

  5. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  6. Comparison of oxygen consumption rates in minimally transformed BALB/3T3 and virus-transformed 3T3B-SV40 cells.

    Science.gov (United States)

    Leznev, E I; Popova, I I; Lavrovskaja, V P; Evtodienko, Y V

    2013-08-01

    In the recent years, bioenergetics of tumor cells and particularly cell respiration have been attracting great attention because of the involvement of mitochondria in apoptosis and growing evidence of the possibility to diagnose and treat cancer by affecting the system of oxidative phosphorylation in mitochondria. In the present work, a comparative study of oxygen consumption in 3T3B-SV40 cells transformed with oncovirus SV40 and parental BALB/3T3 cells was conducted. Such fractions of oxygen consumption as "phosphorylating" respiration coupled to ATP synthesis, "free" respiration not coupled to ATP synthesis, and "reserve" or hidden respiration observed in the presence of protonophore were determined. Maximal respiration was shown to be only slightly decreased in 3T3B-SV40 cells as compared to BALB/3T3. However, in the case of certain fractions of cellular respiration, the changes were significant. "Phosphorylating" respiration was found to be reduced to 54% and "reserve" respiration, on the contrary, increased up to 160% in virus-transformed 3T3B-SV40 cells. The low rate of "phosphorylating" respiration and high "reserve" respiration indicate that under normal incubation conditions the larger part of mitochondrial respiratory chains of the virus-transformed cells is in the resting state (i.e. there is no electron transfer to oxygen). The high "reserve" respiration is suggested to play an important role in preventing apoptosis of 3T3B-SV40 cells.

  7. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Cho, Hyun-Ji, E-mail: hjcho.dr@gmail.com [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Ascofuranone increases expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Inhibitors for MEK and JNK increased the expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPAR{gamma}, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPAR{gamma} agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPAR{gamma}, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPAR{gamma} through the modulation of MAP kinase family members.

  8. The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells.

    Science.gov (United States)

    Yu, Bangning; Cook, Carla; Santanam, Nalini

    2009-10-01

    Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor (PPAR)-gamma, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H(2)O(2)) (100 microM) or tumor necrosis factor-alpha (TNFalpha) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5-100 microM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARgamma, and C/EBPalpha to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H(2)O(2) or TNFalpha and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5-25 microM) having a larger inductive effect compared to higher concentrations (50-100 microM). Boldine treatment alone in the absence of H(2)O(2) or TNFalpha was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease.

  9. Increased Oxidative Stress in Cultured 3T3-L1 Cells was Attenuated by Berberine Treatment.

    Science.gov (United States)

    Dong, Shi-Fen; Yasui, Naomi; Negishb, Hiroko; Kishimoto, Aya; Sun, Jian-Ning; Ikeda, Katsumi

    2015-06-01

    The 3T3-L1 cell line is one of the most well-characterized and reliable models for studying adipocytes. Increased oxidative stress in accumulated fat was found in 3T3-L1 cells. Berberine, an isoquinoline alkaloid, could suppress fat deposition in 3T3-L1 cells; however, whether berberine suppresses increased oxidative stress is not well known. In this study, we observed the effect of berberine on increased oxidative stress in 3T3-L1 cells. 3T3-L1 cells were cultured and treated with berberine (5-20 μM) from day 3 to day 8. We confirmed that berberine markedly inhibited fat accumulation and lipid droplets in 3T3-L1 adipocytes and decreased triglyceride content. Berberine inhibited increased oxidative stress in 3T3-L1 cells by suppressing reactive oxygen species (ROS) production, and increased glutathione peroxidase (GPx) gene expression and GPx activity. Berberine also markedly reduced adipokines secreted by adipocytes, including leptin and resistin.

  10. Hydrogen sulfide promotes adipogenesis in 3T3L1 cells.

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    Full Text Available The effect of hydrogen sulfide (H2S on differentiation of 3T3L1-derived adipocytes was examined. Endogenous H2S was increased after 3T3L1 differentiation. The expression of the H2S-synthesising enzymes, cystathionine γ-lyase (CSE, cystathionine β-synthase (CBS and 3-mercaptopyruvate sulfurtransferase (3-MST, was increased in a time-dependent manner during 3T3L1 differentiation. Expression of genes associated with adipogenesis related genes including fatty acid binding protein 4 (FABP4/aP2, a key regulator of this process, was increased by GYY4137 (a slow-releasing H2S donor compound and sodium hydrosulfide (NaHS, a classical H2S donor but not by ZYJ1122 or time-expired NaHS. Furthermore expression of these genes were reduced by aminooxyacetic acid (AOAA, CBS inhibitor, DL-propargylglycine (PAG, CSE inhibitor as well as by CSE small interference RNA (siCSE and siCBS. The size and number of lipid droplets in mature adipocytes was significantly increased by both GYY4137 and NaHS, which also impaired the ability of CL316,243 (β3-agonist to promote lipolysis in these cells. In contrast, AOAA and PAG had the opposite effect. Taken together, we show that the H2S-synthesising enzymes CBS, CSE and 3-MST are endogenously expressed during adipogenesis and that both endogenous and exogenous H2S modulate adipogenesis and adipocyte maturation.

  11. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes.

    Science.gov (United States)

    Ueda, Manabu; Furuyashiki, Takashi; Yamada, Kayo; Aoki, Yukiko; Sakane, Iwao; Fukuda, Itsuko; Yoshida, Ken-Ichi; Ashida, Hitoshi

    2010-11-01

    In this study, we investigated the effects of tea catechins on the translocation of glucose transporter (GLUT) 4 in 3T3-L1 adipocytes. We found that the ethyl acetate fraction of green tea extract, containing abundant catechins, most decreased insulin-induced glucose uptake activity in 3T3-L1 cells. When the cells were treated with 50 μM catechins in the absence or presence of insulin for 30 min, nongallate-type catechins increased glucose uptake activity without insulin, whereas gallate-type catechins decreased insulin-induced glucose uptake activity. (-)-Epicatechin (EC) and (-)-epigallocatechin (EGC), nongallate-type catechins, increased glucose uptake activity in the dose- and time-dependent manner, whereas (-)-catechin 3-gallate (Cg) and (-)-epigallocatechin 3-gallate (EGCg), gallate-type catechins, decreased insulin-induced glucose uptake activity in the dose- and time-dependent manner. When the cells were treated with 50 μM catechins for 30 min, EC and EGC promoted GLUT4 translocation, whereas Cg and EGCg decreased the insulin-induced translocation in the cells. EC and EGC increased phosphorylation of PKCλ/ζ without phosphorylation of insulin receptor (IR) and Akt. Wortmannin and LY294002, inhibitors for phosphatidylinositol 3'-kinase (PI3K), decreased EC- and EGC-induced glucose uptake activity in the cells. Cg and EGCg decreased phosphorylation of PKCλ/ζ in the presence of insulin without affecting insulin-induced phosphorylation of IR, and Akt. Therefore, EC and EGC promote the translocation of GLUT4 through activation of PI3K, and Cg and EGCg inhibit insulin-induced translocation of GLUT4 by the insulin signaling pathway in 3T3-L1 cells.

  12. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, T.; Pfeifer, U. (Univ. of Wuerzburg (West Germany))

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  13. Prolonged induction activates Cebpα independent adipogenesis in NIH/3T3 cells.

    Directory of Open Access Journals (Sweden)

    Hsiao-Yun Shao

    Full Text Available BACKGROUND: 3T3-L1 cells are widely used to study adipogenesis and insulin response. Their adipogenic potential decreases with time in the culture. Expressing exogenous genes in 3T3-L1 cells can be challenging. This work tries to establish and characterize an alternative model of cultured adipocytes that is easier to work with than the 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS: INDUCED CELLS WERE IDENTIFIED AS ADIPOCYTES BASED ON THE FOLLOWING THREE CHARACTERISTICS: (1 Accumulation of triglyceride droplets as demonstrated by oil red O stain. (2 Transport rate of 2-deoxyglucose increased after insulin stimulation. (3 Expression of fat specific genes such as Fabp4 (aP2, Slc2a4 (Glut4 and Pparg (PPARγ. Among the cell lines induced under different conditions in this study, only NIH/3T3 cells differentiated into adipocytes after prolonged incubation in 3T3-L1 induction medium containing 20% instead of 10% fetal bovine serum. Rosiglitazone added to the induction medium shortened the incubation period from 14 to 7 days. The PI3K/AKT pathway showed similar changes upon insulin stimulation in these two adipocytes. C/EBPα mRNA was barely detectable in NIH/3T3 adipocytes. NIH/3T3 adipocytes induced in the presence of rosiglitazone showed higher 2-deoxyglucose transport rate after insulin stimulation, expressed less Agt (angiotensinogen and more PPARγ. Knockdown of C/EBPα using shRNA blocked 3T3-L1 but not NIH/3T3 cell differentiation. Mouse adipose tissues from various anatomical locations showed comparable levels of C/EBPα mRNA. CONCLUSIONS/SIGNIFICANCE: NIH/3T3 cells were capable of differentiating into adipocytes without genetic engineering. They were an adipocyte model that did not require the reciprocal activation between C/EBPα and PPARγ to differentiate. Future studies in the C/EBPα independent pathways leading to insulin responsiveness may reveal new targets to diabetes treatment.

  14. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jing [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Liu, Gexiu [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Yan, Guoyao [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); He, Dongmei [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Zhou, Ying [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Chen, Shengting, E-mail: shengtingchen@sina.cn [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China)

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  15. Calcification of MC3T3-E1 cells on titanium and zirconium.

    Science.gov (United States)

    Umezawa, Takayuki; Chen, Peng; Tsutsumi, Yusuke; Doi, Hisashi; Ashida, Maki; Suzuki, Shoichi; Moriyama, Keiji; Hanawa, Takao

    2015-01-01

    To confirm similarity of hard tissue compatibility between titanium and zirconium, calcification of MC3T3-E1 cells on titanium and zirconium was evaluated in this study. Mirror-polished titanium (Ti) and zirconium (Zr) disks and zirconium-sputter deposited titanium (Zr/Ti) were employed in this study. The surface of specimens were characterized using scanning electron microscopy and X-ray diffraction. Then, the cellular proliferation, differentiation and calcification of MC3T3-E1 cells on specimens were investigated. The surface of Zr/Ti was much smoother and cleaner than those of Ti and Zr. The proliferation of the cell was the same among three specimens, while the differentiation and calcification on Zr/Ti were faster than those on Ti and Zr. Therefore, Ti and Zr showed the identical hard tissue compatibility according to the evaluation with MC3T3-E1 cells. Sputter deposition may improve cytocompatibility.

  16. Increased Association of Dynamin Ⅱ with Myosin Ⅱ in Ras Transformed NIH3T3 Cells

    Institute of Scientific and Technical Information of China (English)

    Soon-Jeong JEONG; Su-Gwan KIM; Jiyun YOO; Mi-Young HAN; Joo-Cheol PARK; Heung-Joong KIM; Seong Soo KANG; Baik-Dong CHOI; Moon-Jin JEONG

    2006-01-01

    Dynamin has been implicated in the formation of nascent vesicles through both endocytic and secretory pathways. However, dynamin has recently been implicated in altering the cell membrane shape during cell migration associated with cytoskeleton-related proteins. Myosin Ⅱ has been implicated in maintaining cell morphology and in cellular movement. Therefore, reciprocal immunoprecipitation was carried out to identify the potential relationship between dynamin Ⅱ and myosin Ⅱ. The dynamin Ⅱ expression level was higher when co-expressed with myosin Ⅱ in Ras transformed NIH3T3 cells than in normal NIH3T3 cells.Confocal microscopy also confirmed the interaction between these two proteins. Interestingly, exposing the NIH3T3 cells to platelet-derived growth factor altered the interaction and localization of these two proteins.The platelet-derived growth factor treatment induced lamellipodia and cell migration, and dynamin Ⅱ interacted with myosin Ⅱ. Grb2, a 24 kDa adaptor protein and an essential element of the Ras signaling pathway,was found to be associated with dynamin Ⅱ and myosin Ⅱ gene expression in the Ras transformed NIH3T3 cells. These results suggest that dynamin Ⅱ acts as an intermediate messenger in the Ras signal transduction pathway leading to membrane ruffling and cell migration.

  17. Salicortin-Derivatives from Salix pseudo-lasiogyne Twigs Inhibit Adipogenesis in 3T3-L1 Cells via Modulation of C/EBPα and SREBP1c Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Hong Pyo Kim

    2013-08-01

    Full Text Available Obesity is reported to be associated with excessive growth of adipocyte mass tissue as a result of increases in the number and size of adipocytes differentiated from preadipocytes. To search for anti-adipogenic phytochemicals, we screened for inhibitory activities of various plant sources on adipocyte differentiation in 3T3-L1 preadipocytes. Among the sources, a methanolic extract of Salix pseudo-lasiogyne twigs (Salicaceae reduced lipid accumulation in a concentration-dependent manner. During our search for anti-adipogenic constituents from S. pseudo-lasiogyne, five salicortin derivatives isolated from an EtOAc fraction of this plant and bearing 1-hydroxy-6-oxo-2-cyclohexene-carboxylate moieties, namely 2′,6′-O-acetylsalicortin (1, 2′-O-acetylsalicortin (2, 3′-O-acetylsalicortin (3, 6′-O-acetylsalicortin (4, and salicortin (5, were found to significantly inhibit adipocyte differentiation in 3T3-L1 cells. In particular, 2′,6′-O-acetylsalicortin (1 had the most potent inhibitory activity on adipocyte differentiation, with an IC50 value of 11.6 μM, and it significantly down-regulated the expressions of CCAAT/enhancer binding protein α (C/EBPα and sterol regulatory element binding protein 1 (SREBP1c. Furthermore, 2′,6′-O-acetylsalicortin (1 suppressed mRNA expression levels of C/EBPβ during the early stage of adipocyte differentiation and stearoyl coenzyme A desaturase 1 (SCD-1, acetyl-CoA carboxylase (ACC, and fatty acid synthase (FAS expression, target genes of SREBP1c. In the present study, we demonstrate that the anti-adipogenesis mechanism of 2′,6′-O-acetylsalicortin (1 may be mediated via down-regulation of C/EBPα and SREBP1c dependent pathways. Through their anti-adipogenic activity, salicortin derivatives may be potential novel therapeutic agents against obesity.

  18. The effect of MAGE-A1 gene on NIH3T3 cells

    Institute of Scientific and Technical Information of China (English)

    Jingjun Sun; Jin Zhu; Zhenning Qiu; Yuhua Li; Guipeng Ding; Yi Zhu; Zhenqing Feng; Xiaohong Guan

    2005-01-01

    Objective: Melanoma antigen genes(MAGE) genes have been found in many kinds of tumor tissue, but not in normal tissue except testis and placentas. The Ags encoded by MAGE genes therefore are strictly tumor-specific. The most current researches associated with these genes focus on the tumor vaccination using these Ags. Few reports are concerning these genes' functions. In this study, we investigated the role of MAGE-A1 gene on NIH3T3 cells after transferring with it. Methods: Clone the MAGE-A1 into the plasmids pEGFP-C3 and pcDNA3.1, then transfer the reconstructed plasmids and primary plasmids into the NIH3T3 cells using a new transfer reagent FuGENE 6. Selecting the positively transferred cells by G418. Identified by RT-PCR, Western blot, Immunocytochemistry,Laser Scanning Confocal Microscope and Fluoroscope. The cells mobile ability was measured with Millicell-PCF. The cell cycle and apoptosis were measured with Flow Cytometry. Results: The apoptosis rate of NIH3T3 cells that transferred with control plasmid pcDNA3.1was 13.4% and the raitos that stay in S phase and G2-M phase were 5.68% and 1.04% respectively. The apoptosis rate of NIH3T3 cells that transferred with pcDNA3.1-A1 was 0.90% and the ratios that stayed in S phase and G2-M phase were 19.31% and 13.47% respectively. The apoptosis rate of the cells that transferred with control plasmid pEGFP-C3 was 1.87 %, a little higher than 1.47 % of those transferred with pEGFP-C3-A1. Conclusion: The MAGE-A1 gene may enhance the cell cycle, inhibit the apoptosis and raise the mobile ability of NIH3T3 cells.

  19. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    Science.gov (United States)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  20. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    Science.gov (United States)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  1. Trophic effect of a methanol yeast extract on 3T3 fibroblast cells.

    Science.gov (United States)

    Gallo, Dominique; Dillemans, Monique; Allardin, David; Priem, Fabian; Van Nedervelde, Laurence

    2014-01-01

    With regard to the increase of human life expectancy, interest for topical treatments aimed to counteract skin aging is still growing. Hence, research for bioactive compounds able to stimulate skin fibroblast activity is an attractive topic. Having previously described the effects of a new methanol yeast extract on growth and metabolic activity of Saccharomyces cerevisiae, we studied its effects on 3T3 fibroblasts to evaluate its potential antiaging property. This investigation demonstrates that this extract increases proliferation as well as migration of 3T3 cells and decreases their entrance in senescence and apoptosis phases. Altogether, these results open new perspectives for the formulation of innovative antiaging topical treatments.

  2. Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Suh, K S; Choi, E M; Rhee, S Y; Kim, Y S

    2014-02-01

    Methylglyoxal is a reactive dicarbonyl compound produced by glycolytic processing and identified as a precursor of advanced glycation end products. The elevated methylglyoxal levels in patients with diabetes are believed to contribute to diabetic complications, including bone defects. The objective of this study was to evaluate the effect of methylglyoxal on the function of osteoblastic MC3T3-E1 cells. The data indicated that methylglyoxal decreased osteoblast differentiation and induced osteoblast cytotoxicity. Pretreatment of MC3T3-E1 cells with aminoguanidine (a carbonyl scavenger), Trolox (an antioxidant), and cyclosporin A (a blocker of the mitochondrial permeability transition pore) prevented methylglyoxal-induced cytotoxicity in MC3T3-E1 cells. However, BAPTA/AM (an intracellular Ca(2+) chelator) and dantrolene (an inhibitor of endoplasmic reticulum Ca(2+) release) did not reverse the cytotoxic effect of methylglyoxal. Methylglyoxal increased the formation of intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation in osteoblastic MC3T3-E1 cells. Methylglyoxal also decreased the mitochondrial membrane potential and intracellular ATP and nitric oxide levels, suggesting that carbonyl stress-induced loss of mitochondrial integrity contributes to the cytotoxicity of methylglyoxal. Furthermore, the results demonstrated that methylglyoxal induced protein adduct formation, inactivation of glyoxalase I, and activation of glyoxalase II. Aminoguanidine reversed all aforementioned effects of methylglyoxal. Taken together, these data support the notion that high methylglyoxal concentrations have detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.

  3. Pleiotrophin Transforms NIH 3T3 Cells and Induces Tumors in Nude Mice

    Science.gov (United States)

    Chauhan, Anil K.; Li, Yue-Sheng; Deuel, Thomas F.

    1993-01-01

    The pleiotrophin (PTN) gene (Ptn) encodes an 18-kDa protein that is highly conserved among mammalian species and that functions as a weak mitogen and promotes neurite-outgrowth activity in vitro. To further investigate the role PTN plays in regulating cell growth, we overexpressed the bovine PTN cDNA and now show that PTN phenotypically transforms NIH 3T3 cells, as evidence by increased cell number at confluence, focus formation, anchorage-independent growth, and tumor formation in the nude muse. The results demonstrate that the Ptn gene has the potential to regulate NIH 3T3 cell growth and suggest that PTN may influence abnormal cell growth in vivo.

  4. Ultrasound associated uptake of chitosan nanoparticles in MC3T3-E1 cells

    Science.gov (United States)

    Wu, Junyi

    Chitosan is a natural linear polysaccharide that has been well known for its applications in drug delivery system due to its unique physicochemical and biological properties. However, challenges still remain for it to become a fully realized therapeutic agent. In this study, we investigated the uptake of chitosan nanoparticles (CNP) under the ultrasound stimulation, using a model cell culture system (MC3T3-E1 mouse pre-osteoblasts). The CNP were fabricated by an ionic gelation method and were lyophilized prior to characterization and delivery to cells. Particle size and zeta potential were measured using Dynamic Light Scattering (DLS); the efficiency of chitosan complexation was measured using the ninhydrin assay. Cytotoxicity was examined by neutral red assay within 48 hours after delivery. The effect of ultrasound (US) on the efficiency of nanoparticle delivery to the MC3T3-E1 cells was examined at 1MHz and at either 1 or 2 W/cm2. Fluorescein isothiocyanate (FITC)-conjugated-CNP were used to visualize the internalized particles within the cytosol. The uptake of FITC-CNP exhibits a dose and time dependent effect, a strong FITC fluorescence was detected at the concentration of 500microg/mL under fluorescence microscope. Ultrasound assisted uptake of FITC-CNP performed a significant positive effect at 2W/cm2 with 60s of ultrasound exposure time. CNP displayed a slightly decrease in cell viability from 25microg/mL to 100microg/mL, while higher concentration of CNP facilitates the proliferation of MC3T3-E1 cells. Less than 10% of reduction in cell viability was observed for US at 1W/cm2 and 2W/cm2 with 30s and 60s of exposure time, which suggest a mild effect of US to MC3T3-E1 cell line.

  5. The intracellular mechanism of alpha-fetoprotein promoting the proliferation of NIH 3T3 cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    AIM The existence and properties of alpha-fetoprotein (AFP) receptor on the surface of NIH 3T3 cells and the effects of AFP on cellular signal transduction pathway were investigated. METHODS The effect of AFP on the proliferation of NIH 3T3 cells was measured by incorporation of 3H-TdR. Receptor-binding assay of 125I-AFP was performed to detect the properties of AFP receptor in NIH 3T3 cells. The influences of AFP on the [cAMP]i and the activities of protein kinase A (PKA) were determined. Western blot was used to detect the change of K-ras P21 protein expression. RESULTS The proliferation of NIH 3T3 cells treated with 0-80 mg/L of AFP was significantly enhanced. The Scatchard analysis indicated that there were two classes of binding sites with KD of 2.722×10-9M (Bmax=12810 sites per cell) and 8.931× 10-SM (Bmax=l19700 sites per cell) respectively. In the presence of AFP (20 mg/L), the content of cAMP and activities of PKA were significantly elevated . The level of K-ras P21 protein was upregulated by AFP at the concentration of 20 mg/L. The monoclonal antibody against AFP could reverse the effects of AFP on the cAMP content, PKA activity and the expression of K-ras p21 gene. CONCLUSION The effect of AFP on the cell proliferation was achieved by binding its receptor to trigger the signal transduction pathway of cAMP-PKA and alter the expression of K- ras p21 gene.

  6. Effects of 6-Hydroxyflavone on Osteoblast Differentiation in MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Chien-Hung Lai

    2014-01-01

    Full Text Available Osteoblast differentiation plays an essential role in bone integrity. Isoflavones and some flavonoids are reported to have osteogenic activity and potentially possess the ability to treat osteoporosis. However, limited information concerning the osteogenic characteristics of hydroxyflavones is available. This study investigates the effects of various hydroxyflavones on osteoblast differentiation in MC3T3-E1 cells. The results showed that 6-hydroxyflavone (6-OH-F and 7-hydroxyflavone (7-OH-F stimulated ALP activity. However, baicalein and luteolin inhibited ALP activity and flavone showed no effect. Up to 50 μM of each compound was used for cytotoxic effects study; flavone, 6-OH-F, and 7-OH-F had no cytotoxicity on MC3T3-E1 cells. Moreover, 6-OH-F activated AKT and serine/threonine kinases (also known as protein kinase B or PKB, extracellular signal-regulated kinases (ERK 1/2, and the c-Jun N-terminal kinase (JNK signaling pathways. On the other hand, 7-OH-F promoted osteoblast differentiation mainly by activating ERK 1/ 2 signaling pathways. Finally, after 5 weeks of 6-OH-F induction, MC3T3-E1 cells showed a significant increase in the calcein staining intensity relative to merely visible mineralization observed in cells cultured in the osteogenic medium only. These results suggested that 6-OH-F could activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation.

  7. Effect of Mangiferin and Mahanimbine on Glucose Utilization in 3T3-L1 cells

    Science.gov (United States)

    Kumar, B Dinesh; Krishnakumar, K; Jaganathan, Saravana Kumar; Mandal, Mahitosh

    2013-01-01

    Background: Stem barks of Mangifera indica contain a rich content of mangiferin (xanthone glucoside), whereas Murraya koenigii leaves contain rich sources of mahanimbine (carbazole alkaloid) and used traditionally for the treatment of diabetes. Objective: To investigate the effects of mangiferin (xanthone glucoside) and mahanimbine (carbazole alkaloid) on glucose utilization in 3T3-L1 cells. Materials and Methods: Mangiferin was isolated from stem barks of Mangifera indica and mahanimbine was isolated from Murraya koenigii leaves. These isolated compounds were subjected to MTT assay and glucose utilization test with 3T3-L1 cells. Results: Treatment of the 3T3-L1 cells with mangiferin and mahanimbine increased the glucose utilization in a dose-dependent manner. At a concentration of 1 mM, mangniferin showed 2-fold increase in glucose utilization compared with untreated control. In case of mahanimbine, the observed effect at 1 mM was almost equivalent to positive control (insulin at 1 μM). Moreover, MTT assay showed that both of these compounds were less toxic at a concentration of 1 mM (nearly 75% cells are viable). Conclusion: The present results indicated that these natural products (mangiferin and mahanimbine) exhibited potential ethnomedical uses in management of diabetes. PMID:23661997

  8. Rubi Fructus (Rubus coreanus) Inhibits Differentiation to Adipocytes in 3T3-L1 Cells.

    Science.gov (United States)

    Jeong, Mi-Young; Kim, Hye-Lin; Park, Jinbong; An, Hyo-Jin; Kim, Sung-Hoon; Kim, Su-Jin; So, Hong-Seob; Park, Raekil; Um, Jae-Young; Hong, Seung-Heon

    2013-01-01

    Rubi Fructus (RF) is known to exert several pharmacological effects including antitumor, antioxidant, and anti-inflammatory activities. However, its antiobesity effect has not been reported yet. This study was focused on the antidifferentiation effect of RF extract on 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were differentiating into adipocytes, 10-100  μ g/mL of RF was added. Next, the lipid contents were quantified by Oil Red O staining. RF significantly reduced lipid accumulation and downregulated the expression of peroxisome proliferator-activated receptor γ (PPAR γ ), CCAAT0-enhancer-binding proteins α (C/EBP α ), adipocyte fatty acid-binding protein 2 (aP2), resistin, and adiponectin in ways that were concentration dependent. Moreover, RF markedly upregulated liver kinase B1 and AMP-activated protein kinase (AMPK). Interestingly, pretreatment with AMPK α siRNA and RF downregulated the expression of PPAR γ and C/EBP α protein as well as the adipocyte differentiation. Our study shows that RF is capable of inhibiting the differentiation of 3T3-L1 adipocytes through the modulation of PPAR γ , C/EBP α , and AMPK, suggesting that it has a potential for therapeutic application in the treatment or prevention of obesity.

  9. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, Lisa M.; Fotos, Joseph S.; Galileo, Deni S.; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1 > LPA4 > LPA2 >> LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G protein-coupled receptor LPA1.

  10. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    Science.gov (United States)

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.

  11. Colchicine inhibits epidermal growth factor degradation in 3T3 cells.

    OpenAIRE

    Brown, K. D.; Friedkin, M; Rozengurt, E

    1980-01-01

    Colchicine (2 microM) did not affect the initial rate of association of 125I-labeled epidermal growth factor (125I-EGF) to Swiss 3T3 cells but continued incubation (up to 24 hr) led to an increase in cell-associated radioactivity. The effect is also produced by Colcemid, vinblastine, and podophyllotoxin but not by lumicolchicine. Disruption of microtubules with colchicine does not alter the rate of "down regulation" of EGF receptors, suggesting the binding and internalization of the factor pr...

  12. Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jeong [Department of Biochemistry, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of); Park, Sahng Wook [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Hojeong [Department of Anatomy, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of); Park, Sang-Kyu, E-mail: 49park@kd.ac.kr [Department of Biochemistry, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of); Yoon, Dojun, E-mail: mozart@kd.ac.kr [Department of Biochemistry, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of)

    2010-02-19

    Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor {gamma}2, CCAAT/enhancer-binding protein alpha (C/EBP{alpha}), sterol regulatory element binding protein-1c, and Krueppel-like factor 15, but not those of C/EBP{beta} or C/EBP{delta}, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.

  13. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts

    DEFF Research Database (Denmark)

    Friis, Martin B; Friborg, Christel R; Schneider, Linda;

    2005-01-01

    Cell shrinkage is a hallmark of the apoptotic mode of programmed cell death, but it is as yet unclear whether a reduction in cell volume is a primary activation signal of apoptosis. Here we studied the effect of an acute elevation of osmolarity (NaCl or sucrose additions, final osmolarity 687...... mosmol l(-1)) on NIH 3T3 fibroblasts to identify components involved in the signal transduction from shrinkage to apoptosis. After 1.5 h the activity of caspase-3 started to increase followed after 3 h by the appearance of many apoptotic-like bodies. The caspase-3 activity increase was greatly enhanced...... in cells expressing a constitutively active G protein, Rac (RacV12A3 cell), indicating that Rac acts upstream to caspase-3 activation. The stress-activated protein kinase, p38, was significantly activated by phosphorylation within 30 min after induction of osmotic shrinkage, the phosphorylation being...

  14. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells.

    Science.gov (United States)

    Hou, Qingxia; Wang, Minglian; Wu, Shuicai; Ma, Xuemei; An, Guangzhou; Liu, Huan; Xie, Fei

    2015-03-01

    To investigate the potential adverse effects of mobile phone radiation, we studied reactive oxygen species (ROS), DNA damage and apoptosis in mouse embryonic fibroblasts (NIH/3T3) after intermittent exposure (5 min on/10 min off, for various durations from 0.5 to 8 h) to an 1800-MHz GSM-talk mode electromagnetic radiation (EMR) at an average specific absorption rate of 2 W/kg. A 2',7'-dichlorofluorescin diacetate fluorescence probe was used to detect intracellular ROS levels, immunofluorescence was used to detect γH2AX foci as a marker for DNA damage, and flow cytometry was used to measure apoptosis. Our results showed a significant increase in intracellular ROS levels after EMR exposure and it reached the highest level at an exposure time of 1 h (p < 0.05) followed by a slight decrease when the exposure continued for as long as 8 h. No significant effect on the number of γH2AX was detected after EMR exposure. The percentage of late-apoptotic cells in the EMR-exposed group was significantly higher than that in the sham-exposed groups (p < 0.05). These results indicate that an 1800-MHz EMR enhances ROS formation and promotes apoptosis in NIH/3T3 cells.

  15. MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization

    Directory of Open Access Journals (Sweden)

    Tohru Hayakawa

    2012-01-01

    Full Text Available The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm and sandblasting (Ra: approximately 1.0 μm, and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells.

  16. Altered gene expression profiles of NIH3T3 cells regulated by human lung cancer associated gene CT120

    Institute of Scientific and Technical Information of China (English)

    Xiang Huo HE; Jin Jun LI; Yi Hu XIE; Yun Tian TANG; Gen Fu YAO; Wen Xin QIN; Da Fang WAN; Jian Ren GU

    2004-01-01

    CT120, a novel membrane-associated gene implicated in lung carcinogenesis, was previously identified from chromosome 17p13.3 locus, a hot mutation spot involved in human malignancies. In the present study, we further determined that CT120 ectopic expression could promote cell proliferation activity of NIH3T3 cells using MTS assay, and monitored the downstream effects of CT120 in NIH3T3 cells with Atlas mouse cDNA expression arrays. Among 588known genes, 133 genes were found to be upregulated or downregulated by CT120. Two major signaling pathways involved in cell proliferation, cell survival and anti-apoptosis were overexpressed and activated in response to CT120:One is the Raf/MEK/Erk signal cascades and the other is the PI3K/Akt signal cascades, suggesting that CT120 might contribute, at least in part, to the constitutively activation of Erk and Akt in human lung caner cells. In addition, some tumor metastasis associated genes cathepsin B, cathepsin D, cathepsin L, MMP-2/TIMP-2 were also upregulated by CT120, upon which CT120 might be involved in tumor invasiveness and metastasis. In addition, CT120 might play an important role in tumor progression through modulating the expression of some candidate "Lung Tumor Progression"genes including B-Raf, Rab-2, BAX, BAG-1, YB-1, and Cdc42.

  17. ENHANCEMENT OF NIH3T3 CELL PROLIFERATION BY EXPRESSING MACROPHAGE COLONY STIMULATING FACTOR IN NUCLEI

    Institute of Scientific and Technical Information of China (English)

    曹震宇; 吴克复; 李戈; 林永敏; 张斌; 郑国光

    2003-01-01

    Objective: To explore the effects of nuclear M-CSF on the process of tumorigenesis. Methods: Functional part of M-CSF cDNA was inserted into an eukaryotic expression plasmid pCMV/myc/nuc, which can add three NLS to the C-terminal of the expressed protein and direct the protein into the cell nuclei. The constructed plasmid was transferred into NIH3T3 cells and the cell clones were selected by G-418 selection. Cell clones stable expressing target protein were identified by RT-PCR, ABC immunohistochemistry assay and Western blot. Cell growth kinetics analyses through growth curves, cell doubling time, MTT test and anti-sense oligodeoxynucleotide (ASODN) inhibiting cell growth test were performed to identify cells proliferation potential. Results: The transfected cells showed elevated proliferation potential over the control cells. Conclusion: Abnormal appearance of M-CSF in nucleus could enhance cell proliferation, which suggests that cytokine isoforms within cell nucleus might play transcription factor-like role.

  18. Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells.

    Science.gov (United States)

    Yoo, Yeong-Min; Han, Tae-Young; Kim, Han Sung

    2016-04-08

    Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis.

  19. Culture of proliferating and differentiating fat-storing cells in 3T3-conditioned medium.

    Science.gov (United States)

    Mendoza-Figueroa, T; Argüello, C; Kuri-Harcuch, W

    1988-01-01

    There is growing evidence suggesting that hepatic fat-storing cells (FSC) or Ito cells have an important function in vitamin A storage and metabolism and in the synthesis of connective tissue components in normal liver and during fibrogenesis. The purified FSC acquire a fibroblastic morphology and their vitamin A content decreases in culture. We cultivated cells under in vitro conditions that allowed the expression of FSC morphological and functional characteristics for 3-4 weeks of primary culture. Cells were isolated from rat liver by the collagenase-perfusion method without further purification and cultured with 3T3-conditioned medium, which seemed to stimulate the selective proliferation of the FSC. After 8-10 days, round and stellate cells grew actively from a few precursor cells in the primary culture and were not subcultivated; the stellate cells had the ability to become round and vice versa and were highly motile. The cells had intracytoplasmic lipid droplets, a well developed rough endoplasmic reticulum, Golgi complex, numerous vesicles filled with electron-dense material, and extracellular matrix (ECM) components on their surface. Both stellate and round cells showed the presence of desmin by immunofluorescence and vitamin A autofluorescence, but lacked peroxidase activity. The culture conditions we describe allowed the selective proliferation of cells with morphological and functional characteristics of the FSC in the normal liver, raising the possibility of studying FSC proliferation and differentiation.

  20. mVps45 knockdown selectively modulates VAMP expression in 3T3-L1 adipocytes.

    Science.gov (United States)

    Sadler, Jessica B A; Roccisana, Jennifer; Virolainen, Minttu; Bryant, Nia J; Gould, Gwyn W

    2015-01-01

    Insulin stimulates the delivery of glucose transporter-4 (GLUT4)-containing vesicles to the surface of adipocytes. Depletion of the Sec1/Munc18 protein mVps45 significantly abrogates insulin-stimulated glucose transport and GLUT4 translocation. Here we show that depletion of mVps45 selectively reduced expression of VAMPs 2 and 4, but not other VAMP isoforms. Although we did not observe direct interaction of mVps45 with any VAMP isoform; we found that the cognate binding partner of mVps45, Syntaxin 16 associates with VAMPs 2, 4, 7 and 8 in vitro. Co-immunoprecipitation experiments in 3T3-L1 adipocytes revealed an interaction between Syntaxin 16 and only VAMP4. We suggest GLUT4 trafficking is controlled by the coordinated expression of mVps45/Syntaxin 16/VAMP4, and that depletion of mVps45 regulates VAMP2 levels indirectly, perhaps via reduced trafficking into specialized subcellular compartments.

  1. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces

    Science.gov (United States)

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-01-01

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is. PMID:27649159

  2. Intracytoplasmic triglyceride accumulation produced by dexamethasone in adult rat hepatocytes cultivated on 3T3 cells.

    Science.gov (United States)

    Mendoza-Figueroa, T; Hernandez, A; De Lourdes Lopez, M; Kuri-Harcuch, W

    1988-11-30

    Glucocorticoids, such as hydrocortisone (HC) and dexamethasone (DEX), when administered to rats, induce lipid accumulation within hepatocytes (fatty liver). To investigate whether glucocorticoids can produce triglyceride (TG) accumulation as they do in vivo and the involved mechanisms, we have used primary cultures of rat hepatocytes which synthesized and secrete triglycerides into the culture medium. Hepatocytes cultivated on a feeder layer of lethally treated 3T3 cells were exposed for 2 weeks to micromolar concentrations of DEX. This glucocorticoid caused morphological alterations and cells accumulated lipid droplets in their cytoplasm; the TG content increased up to 6-fold in a concentration- and time-dependent manner. The removal of [14C]acetic or [14C]oleic acid from the culture medium was not altered in the cultures treated with 50 micrograms/ml DEX but the incorporation of [14C]acetic and [14C]oleic acid into TG in these cultures was about 13-fold and 60% higher than in non-treated cells, respectively. On the other hand, hepatocytes treated with 50 micrograms/ml DEX for 2 weeks showed a 16-fold decrease in TG release and 40% inhibition in protein export, whereas synthesis of total cellular proteins was not altered. Our results show that corticosteroids, such as DEX, caused lipid accumulation in liver cells through an increased synthesis and/or esterification of fatty acids, but mostly through a decrease in the secretion of TG.

  3. Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells.

    Science.gov (United States)

    Akbarzadeh, Rosa; Minton, Joshua A; Janney, Cara S; Smith, Tyler A; James, Paul F; Yousefi, Azizeh-Mitra

    2015-02-01

    Tissue engineering makes use of the principles of biology and engineering to sustain 3D cell growth and promote tissue repair and/or regeneration. In this study, macro/microporous scaffold architectures have been developed using a hybrid solid freeform fabrication/thermally induced phase separation (TIPS) technique. Poly(lactic-co-glycolic acid) (PLGA) dissolved in 1,4-dioxane was used to generate a microporous matrix by the TIPS method. The 3D-bioplotting technique was used to fabricate 3D macroporous constructs made of polyethylene glycol (PEG). Embedding the PEG constructs inside the PLGA solution prior to the TIPS process and subsequent extraction of PEG following solvent removal (1,4-dioaxane) resulted in a macro/microporous structure. These hierarchical scaffolds with a bimodal pore size distribution (300 μm) contained orthogonally interconnected macro-channels generated by the extracted PEG. The diameter of the macro-channels was varied by tuning the dispensing parameters of the 3D bioplotter. The in vitro cell culture using murine MC3T3-E1 cell line for 21 days demonstrated that these scaffolds could provide a favorable environment to support cell adhesion and growth.

  4. Cultivation of adult rat hepatocytes on 3T3 cells: expression of various liver differentiated functions.

    Science.gov (United States)

    Kuri-Harcuch, W; Mendoza-Figueroa, T

    1989-08-01

    Adult rat hepatocytes were maintained in culture for at least 1 month without losing the expression of their differentiated functions; they were cultured on lethally treated 3T3 fibroblasts inoculated at 35,000 cells/cm2 with medium containing 10-25 micrograms/ml hydrocortisone. Hepatocytes showed their typical morphology; they formed bile canaliculi, microvilli, and intercellular junctions with desmosomes and nexus; some formed structures that may resemble the perisinusoidal space of Disse. In addition, they showed DNA synthesis and expressed some liver-specific functions. They synthesized albumin and other proteins, which were exported to the culture medium. Like parenchymal liver cells in vivo, de novo fatty acid synthesis and esterification took place, and more than 80% of the lipids synthesized by the hepatocytes were secreted into the medium as triglycerides; they also showed cytochrome-P450 activity that was inducible with phenobarbital, suggesting that the hepatocytes have the capacity to metabolize drugs. These culture conditions allow the study of various hepatocyte differentiated functions, and they may provide the means to analyze the effect on liver of hormones, viruses and hepatotoxic chemicals and drugs; they may also indicate conditions adequate for serial growth of hepatocytes.

  5. Mango fruit peel and flesh extracts affect adipogenesis in 3T3-L1 cells.

    Science.gov (United States)

    Taing, Meng-Wong; Pierson, Jean-Thomas; Hoang, Van L T; Shaw, Paul N; Dietzgen, Ralf G; Gidley, Michael J; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2012-08-01

    Obesity is associated with many chronic disease states, such as diabetes mellitus, coronary disease and certain cancers, including those of the breast and colon. There is a growing body of evidence that links phytochemicals with the inhibition of adipogenesis and protection against obesity. Mangoes (Mangifera indica L.) are tropical fruits that are rich in a diverse array of bioactive phytochemicals. In this study, methanol extracts of peel and flesh from three archetypal mango cultivars; Irwin, Nam Doc Mai and Kensington Pride, were assessed for their effects on a 3T3-L1 pre-adipocyte cell line model of adipogenesis. High content imaging was used to assess: lipid droplets per cell, lipid droplet area per cell, lipid droplet integrated intensity, nuclei count and nuclear area per cell. Mango flesh extracts from the three cultivars did not inhibit adipogenesis; peel extracts from both Irwin and Nam Doc Mai, however, did so with the Nam Doc Mai extract most potent at inhibiting adipogenesis. Peel extract from Kensington Pride promoted adipogenesis. The inhibition of adipogenesis by Irwin (100 μg mL(-1)) and Nam Doc Mai peel extracts (50 and 100 μg mL(-1)) was associated with an increase in the average nuclear area per cell; similar effects were seen with resveratrol, suggesting that these extracts may act through pathways similar to resveratrol. These results suggest that differences in the phytochemical composition between mango cultivars may influence their effectiveness in inhibiting adipogenesis, and points to mango fruit peel as a potential source of nutraceuticals.

  6. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells.

    Science.gov (United States)

    Kim, Sang Chon; Kim, Yoo Hoon; Son, Sung Wook; Moon, Eun-Yi; Pyo, Suhkneung; Um, Sung Hee

    2015-11-27

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis.

  7. Induction of adipocyte differentiation by polybrominated diphenyl ethers (PBDEs) in 3T3-L1 cells.

    Science.gov (United States)

    Tung, Emily W Y; Boudreau, Adèle; Wade, Michael G; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis.

  8. Induction of adipocyte differentiation by polybrominated diphenyl ethers (PBDEs in 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Emily W Y Tung

    Full Text Available Polybrominated diphenyl ethers (PBDEs are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX. A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2 and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis.

  9. NIH 3T3 cells malignantly transformed by mot—2 show inactivation and cytoplasmic sequestration of the p53 protein

    Institute of Scientific and Technical Information of China (English)

    WADHWA; SYUICHITAKANO; 等

    1999-01-01

    In previous studies we have reported that a high level of expression of mot-2 protein results in malignant transformation of NIH 3T3 cells as analyzed by anchorage independent growth and nude mice assays [Kaul et al.,Oncogene,17,907-11,1998].Mot-2 was found to interact with tumor suppressor protein p53.The transient overexpression of mot-2 was inhibitory to transcriptional activation function of p53 [Wadhwa et al.,J.Biol.Chem.,273,2958691,1998].We demonstrate here that mot-2 transfected stable clone of NIH 3T3 that showed malignant properties indeed show inactivation of p53 function as assayed by exogenous p53 dependent reporter.The expression level of p53 in response to UV-irradiation was lower in NIH 3T3/mot-2 as compared to NIH 3T3 cells and also exhibited delay in reachingpeak.Furthermore,upon serum starvation p53 was seen to translocate to the nucleus in NIH 3T3,but not in its mot-3 derivative.The data suggests that mot-2 mediated cytoplasmic sequestration and inactivation of p53 may operate,at least in part,for malignant phenotype of NIH 3T3/mot-2 cells.

  10. Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Kamon, Masayoshi; Zhao, Ran; Sakamoto, Kazuichi

    2009-12-16

    Recently, various physiological effects of the tea polyphenol catechin for alleviating diseases such as cancer, arteriosclerosis, hyperlipidaemia and osteoporosis have been reported. However, the physiological effect of catechin on bone metabolism remains unclear. We examined the physiological effect of EGCG [(-)-epigallocatechin-3-gallate], which is the main component of green tea catechin, on osteoblast development using the precursor cell line of osteoblasts, MC3T3-E1, and co-culture of the osteoblasts from mouse newborn calvaria and mouse bone marrow cells. Although EGCG did not affect the viability and proliferation of MC3T3-E1 cells, EGCG inhibited the osteoblast differentiation. Furthermore, EGCG did not affect the mineralization of differentiated MC3T3-E1 cells, and reduced osteoclast formation in co-culture. These results suggest that EGCG can effectively suppress bone resorption, and can be used as an effective medicine in the treatment of the symptoms of osteoporosis.

  11. Regulation of glucose transport in the NIH 3T3 L1 preadipocyte cell line by TCDD.

    OpenAIRE

    1994-01-01

    This study examined the changes in cellular glucose uptake induced by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) as measured by quantification of intracellular radioactivity in the NIH 3T3 L1 preadipocyte cell line after a 30-minute incubation with the non-metabolizable radioactive analogue of glucose, 3-O-methyl-D-[1-3H] glucose. Treatment of differentiated NIH 3T3 L1 cells with TCDD produced a time- and dose-dependent decrease in the cellular uptake of glucose. Treatment of cells for 3 hr w...

  12. Pre-osteoblastic MC3T3-E1 cells promote breast cancer growth in bone in a murine xenograft model

    Institute of Scientific and Technical Information of China (English)

    Thomas M. Bodenstine; Benjamin H. Beck; Xuemei Cao; Leah M. Cook; Aimen Ismai; J. Kent Powers; Andrea M. Mastro; Danny R. Welch

    2011-01-01

    The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cancer cells induce apoptosis in osteoblasts, which further exacerbates bone loss. However, in early stages, breast cancer cells induce osteoblasts to secrete inflammatory cytokines purported to drive tumor progression. To more thoroughly evaluate the role of osteoblasts in early stages of breast cancer metastasis to the bones, we used green fluorescent protein-labeled human breast cancer cell lines MDA-MB-231 and MDA-MB-435, which both induce osteolysis after intra-femoral injection in athymic mice, and the murine pre-osteoblastic cell line MC3T3-E1 to modulate osteoblast populations at the sites of breast cancer metastasis. Breast cancer cells were injected directly into the femur with or without equal numbers of MC3T3-E1 cells. Tumors grew significantly larger when co-injected with breast cancer cells and MC3T3-E1 cells than injected with breast cancer cells alone. Osteolysis was induced in both groups, indicating that MC3T3-E1 cells did not block the ability of breast cancer cells to cause bone destruction. MC3T3-E1 cells promoted tumor growth out of the bone into the extraosseous stroma. These data suggest that breast cancer cells and osteoblasts communicate during early stages of bone metastasis and promote tumor growth.

  13. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy); Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  14. Effect of cortisol on calpains in the C2C12 and 3T3-L1 cells.

    Science.gov (United States)

    Muthuraman, Pandurangan; Ravikumar, Sambandam; Muthuviveganandavel, Veerappan; Kim, Jongpil

    2014-03-01

    The present study was carried out to understand the effect of cortisol on calpain system in the C2C12 and 3T3-L1 adipocyte cells under co-culture system. Cells were co-cultured by using transwell inserts with a 0.4 μm porous membrane to separate C2C12 and 3T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates. Ten microgram per milliliter of cortisol was added to the medium. Following treatment for 3 days, the cells in the lower well were harvested for analysis. Calpains such as μ-calpain, m-calpain, and calpastatin were selected for the analysis. RT-PCR results indicated the significant increase in the mRNA expression of μ-calpain, m-calpain, and calpastatin. In addition, the confocal microscopical investigation indicated the cortisol treatment increases calpain expression in the C2C12 and 3T3-L1 cells. Taking all these together, cortisol treatment with co-culture system shows most reliable status of calpains expression in the cells, which is quite distinct from one-dimensional monocultured cells.

  15. Berberine Alleviates Olanzapine-Induced Adipogenesis via the AMPKα–SREBP Pathway in 3T3-L1 Cells

    OpenAIRE

    Yanjie Li; Xiaomin Zhao; Xiyu Feng; Xuemei Liu; Chao Deng; Chang-Hua Hu

    2016-01-01

    The aim of this study was to investigate the mechanisms underlying the inhibitory effects of berberine (BBR) on olanzapine (OLZ)-induced adipogenesis in a well-replicated 3T3-L1 cell model. Oil-Red-O (ORO) staining showed that BBR significantly decreased OLZ-induced adipogenesis. Co-treatment with OLZ and BBR decreased the accumulation of triglyceride (TG) and total cholesterol (TC) by 55.58% ± 3.65% and 49.84% ± 8.31%, respectively, in 3T3-L1 adipocytes accompanied by reduced expression of S...

  16. Expression of human insulin gene wrapped with chitosan nanoparticles in NIH3T3 cells and diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Li NIU; Yan-cheng XU; Hai-ying XIE; Zhe DAI; Hui-qin TANG

    2008-01-01

    Aim: To study the expression of human insulin gene wrapped with chitosan nanoparticles in NIH3T3 cells and diabetic rats. Methods: pCMV.Ins, an expression plasmid of the human insulin gene, was constructed. In total, 100 μg pCMV.Ins wrapped with chitosan nanoparticles (chitosan-pCMV.Ins) was transfected to NIH3T3 cells and diabetes rats through lavage and coloclysis, respectively. The transfected cells were grown in Dulbecco's modified Eagle's medium, containing G418, for 72 h after transfection. The clones were selected and continued to grow in G418 medium for 24 d. The expression of human insulin was detected by immunohistochemistry. Human insulin in the culture medium of transfected cells was measured. Fasting blood glucose and plasma human insulin of diabetic rats were measured for 5 d after transfection. RT-PCR and Western blotting were performed to confirm the expression of the human insulin gene in diabetic rats. Results: Approximately 10% of NIH3T3 cells transfected by chitosan-pCMV.Ins expressed human insulin. Human insulin in the culture medium of NIH3T3 cells transfected by chitosan-pCMV.Ins significantly increased compared with that of the control group (P<0.01). Fasting blood glucose levels of the lavage group and the coloclysis group decreased significantly in 5 d (P<0.01) in comparison, while plasma insulin levels were much higher (P<0.01). The human insulin gene mRNA and human insulin were only detected in the lavage and the coloclysis groups. Conclusion: The human insulin gene can be transfected and expressed successfully by chitosan-pCMV.Ins in NIH3T3 cells and diabetes rats, which indicates that chitosan is a promising, non-viral vector for gene expression.

  17. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing, E-mail: allenylq@hotmail.com; Liao, Er-Yuan, E-mail: eyliao@21cn.com

    2013-11-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  18. The pharmacological effects of morroniside and loganin isolated from Liuweidihuang Wan, on MC3T3-E1 cells.

    Science.gov (United States)

    Li, Manyu; Wang, Wei; Wang, Ping; Yang, Kun; Sun, Hui; Wang, Xijun

    2010-10-21

    Liuweidihuang wan (LW), initially a well-known formula for curing "wu chi wu ruan", is commonly used nowadays for clinical treatment of postmenopausal osteoporosis (PO), but the identity of the effective substance(s) remains unclear. The present study was designed to evaluate the effects of morroniside and loganin isolated from LW on the proliferation, differentiation and apoptosis of MC3T3-E1 cells, as well as the possible mechanism of action. Morroniside and loganin had no effects on the proliferation of MC3T3-E1 cells, but both susbtances could improve the activity of alkaline phosphatase (ALP), and increase the contents of collagen type I and osteocalcin. Simultaneously, the mRNA expression of caspase-3, capase-9, RANKL was down-regulated and that of bcl-2 was up-regulated, which partially explains the anti-osteoporosis mechanism in MC3T3-E1 cells. In conclusion, morroniside and loganin may directly promote the differentiation and inhibit the apoptosis of MC3T3-E1 cells, and accordingly indirectly reduce bone resorption, which makes them promising natural drugs leads for treating PO in the near future.

  19. The Pharmacological Effects of Morroniside and Loganin Isolated from Liuweidihuang Wan, on MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Xijun Wang

    2010-10-01

    Full Text Available Liuweidihuang Wan (LW, initially a well-known formula for curing “wu chi wu ruan”, is commonly used nowadays for clinical treatment of Postmenopausal Osteoporosis (PO, but the identity of the effective substance(s remains unclear. The present study was designed to evaluate the effects of morroniside and loganin isolated from LW on the proliferation, differentiation and apoptosis of MC3T3-E1 cells, as well as the possible mechanism of action. Morroniside and loganin had no effects on the proliferation of MC3T3-E1 cells, but both susbtances could improve the activity of alkaline phosphatase (ALP, and increase the contents of collagen type I and osteocalcin. Simultaneously, the mRNA expression of caspase-3, capase-9, RANKL was down-regulated and that of bcl-2 was up-regulated, which partially explains the anti-osteoporosis mechanism in MC3T3-E1 cells. In conclusion, morroniside and loganin may directly promote the differentiation and inhibit the apoptosis of MC3T3-E1 cells, and accordingly indirectly reduce bone resorption, which makes them promising natural drugs leads for treating PO in the near future.

  20. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, Chiaki; Takahashi, Katsuhiko [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan); Kagechika, Hiroyuki [School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062 (Japan); Takahashi, Noriko, E-mail: t-noriko@hoshi.ac.jp [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan)

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  1. 13-Methylberberine, a berberine analogue with stronger anti-adipogenic effects on mouse 3T3-L1 cells

    OpenAIRE

    Chow, Yit-Lai; Sogame, Mami; Sato, Fumihiko

    2016-01-01

    Lipid metabolism modulation is a main focus of metabolic syndrome research, an area in which many natural and synthetic chemicals are constantly being screened for in vitro and in vivo activity. Berberine, a benzylisoquinoline plant alkaloid, has been extensively investigated for its anti-obesity effects and as a potential cholesterol and triglyceride-lowering drug. We screened 11 protoberberine and 2 benzophenanthridine alkaloids for their anti-adipogenic effects on 3T3-L1 adipocytes and fou...

  2. Ginseng (Panax quinquefolius Reduces Cell Growth, Lipid Acquisition and Increases Adiponectin Expression in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Chia-Rou Yeo

    2011-01-01

    Full Text Available An American ginseng (Panax quinquefolius extract (GE that contained a quantifiable amount of ginsenosides was investigated for the potential to inhibit proliferation, affect the cell cycle, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Six fingerprint ginsenosides were quantified by high performance liquid chromatography and the respective molecular weights were confirmed by LC-ESI-MS analysis. The extract contained Rg1 (347.3 ± 99.7 μg g−1, dry weight, Re (8280.4 ± 792.3 μg g−1, Rb1 (1585.8 ± 86.8 μg g−1, Rc (32.9 ± 8 μg g−1, Rb2 (62.6 ± 10.6 μg g−1 and Rd (90.4 ± 3.2 μg g−1. The GE had a dose-dependent effect on 3T3-L1 cell growth, the LC50 value was determined to be 40.3 ± 5 μg ml−1. Cell cycle analysis showed modest changes in the cell cycle. No significant changes observed in both G1 and G2/M phases, however there was a significant decrease (P<.05 in the S phase after 24 and 48 h treatment. Apoptotic cells were modest but significantly (P<.05 increased after 48 h (3.2 ± 1.0% compared to untreated control cells (1.5 ± 0.1%. Lipid acquisition was significantly reduced (P<.05 by 13 and 22% when treated at concentrations of 20.2 and 40.3 μg ml−1 compared to untreated control cells. In relation to adiponectin activation, western blot analysis showed that the protein expression was significantly (P<.05 increased at concentrations tested. A quantified GE reduced the growth of 3T3-L1 cells, down-regulated the accumulation of lipid and up-regulated the expression of adiponectin in the 3T3-L1 adipocyte cell model.

  3. Inhibitory effects of LPA1 on cell motile activities stimulated by hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone in fibroblast 3T3 cells.

    Science.gov (United States)

    Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-11-08

    Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells.

  4. Specific Labeling of Mouse 3T3-L1 Preadipocyte Cell Line with Green Fluorescent Protein%小鼠3T3-L1前脂肪细胞系的特异性标记

    Institute of Scientific and Technical Information of China (English)

    张崇本; 张晓兰; 李成健; 成俊英; 吴显荣

    2004-01-01

    A vector of paP2-promoter-EGFP was constructed and introduced into mouse 3T3-L1 preadipocyte cells, a cell line derived from mouse Swiss3T3 cells that were isolated from mouse embryo, to make the cells labelled with enhanced green fluorescent protein (EGFP) whose expression was controlled by the promoter of adipose-specific gene aP2. The cells were then induced to differentiate and the expression of aP2 was detected by EGFP-microscopy and RT-PCR assays. The EGFP gene was transferred into the mouse 3T3-L1 preadipocyte cells, and EGFP expression and lipid accumulation were observed during differentiation. The expression of aP2 was stable and similar to the expression of EGFP. A preadipocyte cell line expressing EGFP was obtained under the control of the promoter of adipocyte-specific expression gene aP2, and the preadipocyte cell line was specifically labelled. The cell line provides a powerful approach for the research of adipocyte differentiation and for the screening of anti-obesity and anti-diabetes drugs.%用增强绿色荧光蛋白特异性标记小鼠3T3-L1前脂肪细胞系.构建pap2-promoter-EGFP载体,电穿孔转染小鼠3T3-L1前脂肪细胞,显微荧光观察和RT-PCR确认aP2基因的内源表达.EGFP基因转入3T3-L1前脂肪细胞,观察到细胞分化过程中EGFP表达和脂肪积累.RT-PCR分析表明,EGFP代表了稳定而真实的aP2基因的内源性表达.建立了由脂肪组织特异表达基因aP2的表达控制的EGFP标记的小鼠3T3-L1前脂肪细胞系,目前尚未见用同样方法对前脂肪细胞进行特异性标记.该细胞系将为脂肪细胞分化机理研究以及为抗肥胖症和抗糖尿病药物筛选提供有力工具.

  5. 13-Methylberberine, a berberine analogue with stronger anti-adipogenic effects on mouse 3T3-L1 cells.

    Science.gov (United States)

    Chow, Yit-Lai; Sogame, Mami; Sato, Fumihiko

    2016-12-05

    Lipid metabolism modulation is a main focus of metabolic syndrome research, an area in which many natural and synthetic chemicals are constantly being screened for in vitro and in vivo activity. Berberine, a benzylisoquinoline plant alkaloid, has been extensively investigated for its anti-obesity effects and as a potential cholesterol and triglyceride-lowering drug. We screened 11 protoberberine and 2 benzophenanthridine alkaloids for their anti-adipogenic effects on 3T3-L1 adipocytes and found that 13-methylberberine exhibited the most potent activity. 13-Methylberberine down-regulated the expression of the main adipocyte differentiation transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα), as well as their target genes. PPARγ, C/EBPα, and sterol regulatory element binding protein 1 (SREBP-1) protein levels were reduced, and this lipid-reducing effect was attenuated by an AMP-activated protein kinase (AMPK) inhibitor, indicating that the effect of this compound requires the AMPK signaling pathway. Decreased Akt phosphorylation suggested reduced de novo lipid synthesis. C-13 methyl substitution of berberine increased its accumulation in treated cells, suggesting that 13-methylberberine has improved absorption and higher accumulation compared to berberine. Our findings suggest that 13-methylberberine has potential as an anti-obesity drug.

  6. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan); Nishio, Hiroaki, E-mail: nishio@fupharm.fukuyama-u.ac.jp [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan)

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  7. p53-independent upregulation of p21WAF1 in NIH 3T3 cells malignantly transformed by mot-2

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    ot-2 protein is shown to interact with p53 and inhibit its transcriptional activation function.Mot-2 overexpressing stable clones of NIH 3T3 cells were malignantly transformed,however,they had a high level of expression of a p53 downstream gene,P21waf1.The present study was undertaken to elucidate possible molecular mechanism(s) of such upregulation.An increased level of P21waf1 expression was detected in stable transfectants although an exogenous reporter gene driven by P21waf1 promoter exhibited lower activity in these cells suggesting that some post-transcriptional mechanism contributes to upregulation.Western analyses of transient and stable clones revealed that upregulation of P21waf1 in stable NIH 3T3/mot-2 cells may be mediated by cyclin D1 and cdk-2.

  8. Phorbol esters enhance attachment of NIH/3T3 cells to laminin and type IV collagen substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Shigemi; Ben, T.L.; De Luca, L.M. (National Institutes of Health, Bethesda, MD (USA))

    1988-11-01

    The effect of phorbol esters on the adhesive properties of NIH/3T3 mouse fibroblasts was investigated using plastic substrates precoated with the extracellular matrix proteins fibronectin, collagen, and laminin. Treatment with phorbol 12-myristate 13-acetate (PMA) enhanced NIH/3T3 cell attachment to laminin and type IV collagen substrates but had little or no effect on attachment to fibronectin and type I collagen substrates. The effect of PMA in enhancing cell attachment to laminin and type IV collagen substrates was dose dependent between 10{sup {minus}9} and 10{sup {minus}7} M. PMA was effective as early as 30 min; the effect reached a maximum at 2 h and decreased gradually. Phorbol 12, 13-dibenzoate and phorbol 12, 13-diacetate were effective but to a lesser extent and phorbol 12-myristate and phorbol 13-acetate showed little or no effect. These results suggest that PMA may enhance NIH/3T3 cell adhesion through effects on laminin and type IV collagen receptors. Retinoic acid, which itself requires at least 6 h to show an effect on attachment, did not have any effect on cell attachment in 2 h and, if anything, slightly inhibited PMA-enhanced cell attachment to laminin and type IV collagen substrates.

  9. Inhibitory effect of apocynin on methylglyoxal-mediated glycation in osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Suh, Kwang Sik; Rhee, Sang Youl; Kim, Young Seol; Choi, Eun Mi

    2015-04-01

    Methylglyoxal (MG), a highly reactive metabolite of hyperglycemia, can enhance protein glycation, oxidative stress or inflammation. The present study investigated the effects of apocynin on the mechanisms associated with MG toxicity in osteoblastic MC3T3-E1 cells. Pretreatment of MC3T3-E1 cells with apocynin prevented the MG-induced protein glycation and formation of intracellular reactive oxygen species and mitochondrial superoxide in MC3T3-E1 cells. In addition, apocynin increased glutathione levels and restored the activity of glyoxalase I inhibited by MG. These findings suggest that apocynin provide a protective action against MG-induced cell damage by reducing oxidative stress and by increasing the MG detoxification system. Apocynin treatment decreased the levels of proinflammatory cytokines such as tumor necrosis factor-α and interleukin-6 induced by MG. Additionally, the nitric oxide level reduced by MG was significantly increased by apocynin. These findings indicate that apocynin might exert its therapeutic effects via upregulation of glyoxalase system and antioxidant activity. Taken together, apocynin may prove to be an effective treatment for diabetic osteopathy.

  10. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Kim Gon-Sup

    2012-04-01

    Full Text Available Abstract Background Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells. Methods During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein expression of adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during adipocyte differentiation. Results The insulin-induced expression of C/EBPβ and PPARγ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPα, which is essential for the acquisition of insulin sensitivity by adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473 and GSK3β (Ser9, which may reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only inhibited triglyceride accumulation during adipogenesis but also contributed to the lipolysis of adipocytes. Conclusions In the present study, we demonstrate that CAF suppressed adipogenesis in 3T3-L1 adipocytes. Our results indicated that CAF down-regulates the expression of C/EBPβ and subsequently inhibits the activation of PPARγ and C/EBPα. The anti-adipogenic activity of CAF was mediated by the inhibition of Akt activation and GSK3β phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately inhibiting adipocyte differentiation.

  11. Effects of Berberine on Adipose Tissues and Kidney Function in 3T3-L1 Cells and Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Kishimoto, Aya; Dong, Shi-Fen; Negishi, Hiroko; Yasui, Naomi; Sun, Jian-Ning; Ikeda, Katsumi

    2015-09-01

    We aimed to investigate the effect of berberine on adipose tissues, as well as its effect on renal injury in 3T3-L1 cells and spontaneously hypertensive rats. 3T3-L1 cells were cultured and treated with berberine (5-20 pM) from days 3 to 8. Berberine added to the cultured medium could significantly down-regulate transcription factors, including CCAAT/enhancer binding protein β, CCAAT/enhancer binding protein a, and peroxisome pro liferator-activated receptor y, and suppress peroxisome proliferator-activated receptor target genes, such as adipocyte fatty acid binding protein and fatty acid synthase, and inhibit 3T3-Ll fibroblast differentiation to adipocytes. Male spontaneously hypertensive rats received either 150 mg/day of berberine or saline orally for 8 weeks. Compared with the control, berberine-treated rats exhibited significant reductions in body weight gain (p Berberine-treated rats significantly decreased urinary albumin excretion, a marker of renal injury (p berberine decreased the adipose tissues weight and attenuated renal injury in spontaneously hypertensive rats. Based on these results, berberine has an important role in regulating adipose tissues. These results suggest the protective effect of berberine on metabolic syndrome related diseases, such as renal injury.

  12. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-12-01

    Full Text Available High dose glucocorticoid (GC administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex, Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8 assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  13. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling.

    Science.gov (United States)

    Yu, Wei; Zhu, Chao; Xu, Wenning; Jiang, Leisheng; Jiang, Shengdan

    2016-12-21

    High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10(-7) M dexamethasone (Dex), Y1 receptor shRNA interference, Y1 receptor agonist [Leu(31), Pro(34)]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8) assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK) as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK) abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  14. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

    Science.gov (United States)

    Yu, Wei; Zhu, Chao; Xu, Wenning; Jiang, Leisheng; Jiang, Shengdan

    2016-01-01

    High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex), Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8) assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK) as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK) abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation. PMID:28009825

  15. Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells

    NARCIS (Netherlands)

    Barradas, A.M.C.; Lachmann, K.; Hlawacek, G.; Frielink, C.; Truckenmuller, R.K.; Boerman, O.C.; Gastel, van R.; Garritsen, H.S.P.; Thomas, M.; Moroni, L.; Blitterswijk, van C.A.; Boer, de J.

    2012-01-01

    Numerous studies have shown that the physicochemical properties of biomaterials can control cell activity. Cell adhesion, proliferation, differentiation as well as tissue formation in vivo can be tuned by properties such as the porosity, surface micro- and nanoscale topography and chemical compositi

  16. Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells.

    NARCIS (Netherlands)

    Barradas, A.M.; Lachmann, K.; Hlawacek, G.; Frielink, C.; Truckenmoller, R.; Boerman, O.C.; Gastel, R. van; Garritsen, H.; Thomas, M.; Moroni, L.; Blitterswijk, C. Van; Boer, J. den

    2012-01-01

    Numerous studies have shown that the physicochemical properties of biomaterials can control cell activity. Cell adhesion, proliferation, differentiation as well as tissue formation in vivo can be tuned by properties such as the porosity, surface micro- and nanoscale topography and chemical compositi

  17. The Pharmacological Effects of Morroniside and Loganin Isolated from Liuweidihuang Wan, on MC3T3-E1 Cells

    OpenAIRE

    Xijun Wang; Hui Sun; Ping Wang; Kun Yang; Wei Wang; Manyu Li

    2010-01-01

    Liuweidihuang Wan (LW), initially a well-known formula for curing “wu chi wu ruan”, is commonly used nowadays for clinical treatment of Postmenopausal Osteoporosis (PO), but the identity of the effective substance(s) remains unclear. The present study was designed to evaluate the effects of morroniside and loganin isolated from LW on the proliferation, differentiation and apoptosis of MC3T3-E1 cells, as well as the possible mechanism of action. Morroniside and loganin had no effects on the pr...

  18. Ricin Toxicity in BALB/C 3T3 Cells: Peptide Biomarkers of Exposure

    Science.gov (United States)

    2011-06-01

    fibroblasts LC-MS Cell toxicity Ricin Liquid chromatography Ricinus communis Mass spectrometry Proteomics 16. SECURITY CLASSIFICATION OF: a...Preparation. Ricin communis agglutinin II (ricin, Vector Laboratories, Burlingame, CA) was dialyzed into 10 mM sodium phosphate buffer (pH 7.0, PB

  19. Cell Volume Regulation and Signaling in 3T3-L1 Pre-adipocytes and Adipocytes

    DEFF Research Database (Denmark)

    Eduardsen, Kathrine; Larsen, Susanne; Novak, Ivana;

    2011-01-01

    for either RVD or RVI in pre-adipocytes. The insulin receptor (InsR) localizes to caveolae and its expression dramatically increases upon adipocyte differentiation. In pre-adipocytes, InsR and its effectors focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2) localized to focal...... adhesions and were activated by a 5 min exposure to insulin (100 nM). Osmotic shrinkage transiently inhibited InsR Y(146)-phosphorylation, followed by an increase at t=15 min; a similar pattern was seen for ERK1/2 and FAK, in a manner unaffected by cholesterol depletion. In contrast, cell swelling had...... is not required for volume regulation. Given the relationship between hyperosmotic stress and insulin signaling, the finding that cell volume regulation is dramatically altered upon adipocyte differentiation may be relevant for the understanding of insulin resistance and metabolic syndrome....

  20. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.; Liu, Y.Y.; Zhu, B.; Li, Y.; Hua, H.; Wang, Y.H.; Zhang, J.; Jiang, Z.; Wang, Z.R. [Sichuan University, Chengdu (China). West China Medical Center. Health Ministry Key Lab. of Chronobiology], e-mail: wangzhengrong@126.com

    2009-10-15

    Period2 is a core circadian gene, which not only maintains the circadian rhythm of cells but also regulates some organic functions. We investigated the effects of mPeriod2 (mPer2) expression on radiosensitivity in normal mouse cells exposed to {sup 60}Co-{gamma}-rays. NIH 3T3 cells were treated with 12-O-tetradecanoyl phorbol-13-acetate (TPA) to induce endogenous mPer2 expression or transfected with pcDNA3.1(+)-mPer2 and irradiated with {sup 6}0Co-{gamma}-rays, and then analyzed by several methods such as flow cytometry, colony formation assay, RT-PCR, and immunohistochemistry. Flow cytometry and colony formation assay revealed that irradiated NIH 3T3 cells expressing high levels of mPer2 showed a lower death rate (TPA: 24 h 4.3% vs 12 h 6.8% and control 9.4%; transfection: pcDNA3.1-mPer2 3.7% vs pcDNA3.1 11.3% and control 8.2%), more proliferation and clonogenic survival (TPA: 121.7 {+-} 6.51 vs 66.0 {+-} 3.51 and 67.7 {+-} 7.37; transfection: 121.7 {+-} 6.50 vs 65.3 {+-} 3.51 and 69.0 {+-} 4.58) both when treated with TPA and transfected with mPer2. RT-PCR analysis showed an increased expression of bax, bcl-2, p53, cmyc, mre11, and nbs1, and an increased proportionality of bcl-2/bax in the irradiated cells at peak mPer2 expression compared with cells at trough mPer2 expression and control cells. However, no significant difference in rad50 expression was observed among the three groups of cells. Immunohistochemistry also showed increased protein levels of P53, BAX and proliferating cell nuclear antigen in irradiated cells with peak mPer2 levels. Thus, high expression of the circadian gene mPer2 may reduce the radiosensitivity of NIH 3T3 cells. For this effect, mPer2 may directly or indirectly regulate the expressions of cell proliferation- and apoptosis-related genes and DNA repair-related genes. (author)

  1. Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis.

    Science.gov (United States)

    Yang, Jeong-Yeh; Della-Fera, Mary Anne; Rayalam, Srujana; Baile, Clifton A

    2007-11-01

    Xanthohumol (XN), the chalcone from beer hops has several biological activities. XN has been shown to induce apoptosis in cancer cells and also has been reported to be involved in lipid metabolism. Based on these studies and our previous work with natural compounds, we hypothesized that XN and its isomeric flavanone, isoxanthohumol (IXN), would induce apoptosis in adipocytes through the mitochondrial pathway and would inhibit maturation of preadipocytes. Adipocytes were treated with various concentrations of XN or IXN. In mature adipocytes both XN and IXN decreased viability, increased apoptosis and increased ROS production, XN being more effective. Furthermore, the antioxidants ascorbic acid and 2-mercaptoethanol prevented XN and IXN-induced ROS generation and apoptosis. Immunoblotting analysis showed an increase in the levels of cytoplasmic cytochrome c and cleaved poly (ADP-ribose) polymerase (PARP) by XN and IXN. Concomitantly, we observed activation of the effectors caspase-3/7. In maturing preadipocytes both XN and IXN were effective in reducing lipid content, XN being more potent. Moreover, the major adipocyte marker proteins such as PPARgamma, C/EBPalpha, and aP2 decreased after treatment with XN during the maturation period and that of DGAT1 decreased after treatment with XN and IXN. Taken together, our data indicate that both XN and IXN inhibit differentiation of preadipocytes, and induce apoptosis in mature adipocytes, but XN is more potent.

  2. Ethanolic extract of Actaea racemosa (black cohosh) potentiates bone nodule formation in MC3T3-E1 preosteoblast cells.

    Science.gov (United States)

    Chan, B Y; Lau, K S; Jiang, B; Kennelly, E J; Kronenberg, F; Kung, A W C

    2008-09-01

    Aceaea racemosa (formerly Cimicifuga racemosa, black cohosh, AR) extracts have been widely used as an alternative to hormonal replacement therapy for menopausal symptoms. Recent evidences suggest AR extracts are also effective in protecting against postmenopausal bone loss. To determine whether AR has any direct anabolic effect on osteoblasts, we investigated the ethanolic extract of AR on bone nodule formation in mouse MC3T3-E1 preosteoblast cells. AR did not stimulate osteoblast proliferation. Rather, at high doses of 1000 ng/mL for 48 h, AR suppressed (7.2+/-0.9% vs. control) osteoblast proliferation. At 500 ng/mL, a significant increase in bone nodule formation was seen with Von Kossa staining. Using quantitative PCR analysis, AR was shown to enhance the gene expression of runx2 and osteocalcin. Co-treatment with ICI 182,780, the selective estrogen receptor antagonist, abolished the stimulatory effect of AR on runx2 and osteocalcin gene induction, as well as on bone nodule formation in MC3T3-E1 cells. This is a first report of the direct effect of AR on enhancement of bone nodule formation in osteoblasts, and this action was mediated via an estrogen receptor-dependent mechanism. The results provide a scientific rationale at the molecular level for the claim that AR can offer effective prevention of postmenopausal bone loss.

  3. Effect of injection molded micro-structured polystyrene surfaces on proliferation of MC3T3-E1 cells

    Directory of Open Access Journals (Sweden)

    G. Lucchetta

    2015-04-01

    Full Text Available In this work, osteoinductive micro-pillared polystyrene surfaces were mass-produced for bone replacement applications, by means of the micro injection molding process. Firstly, the molding process parameters were optimized with a two-level, three-factor central composite face-centered plan to increase the quality of polystyrene micro pillars replication and to maximize the pillars height uniformity over the molded part. Secondly, osteoblastic MC3T3-E1 cells adhesion and proliferation on the replicated substrates were assessed as a function of micro topography parameters, such as pillars diameter, aspect ratio and spacing. Cell morphology and proliferation were evaluated through MTS test after 1, 3 and 7 days from seeding. The experimental results showed that cells adhesion and proliferation is more positively promoted on micro-pillared surfaces compared to flat surfaces, but no correlations were observed between cell proliferation and pillar diameter and spacing.

  4. Transformation of BALB/c 3T3 cells in vitro by the fungicides captan, captafol and folpet.

    Science.gov (United States)

    Perocco, P; Colacci, A; Del Ciello, C; Grilli, S

    1995-10-01

    Cytotoxic and cell-transforming activities of the three fungicides, captan, captafol and folpet, have been studied in an experimental in vitro model by exposing BALB/c 3T3 cells to the chemicals with or without S-9 mix-induced bioactivation. Cytotoxicity of the three compounds was reduced in the presence of the metabolizing system. Each assayed pesticide displayed cell-transforming ability in the presence of the metabolizing system. The relative efficiency was: captafol > captan > folpet. Cell transformation was considered to be due to carcinogenesis-promoting activity. These data, obtained in a medium-term (6-8 weeks) experimental model, contribute to a better understanding of the action of the three pesticides in the multistep carcinogenesis process and provide more information concerning the oncogenic risk of these xenobiotic compounds for humans.

  5. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Masubuchi

    Full Text Available BACKGROUND: Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS: In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6. The α subunits of Gs (Gαs and G14 (Gα14 but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. CONCLUSIONS: 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.

  6. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells

    Directory of Open Access Journals (Sweden)

    Yamauchi Mika

    2007-11-01

    Full Text Available Abstract Background Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts, but their actions with regard to bone metabolism are still unclear. In this study, we investigated the effects of adiponectin on the proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. Results Adiponectin receptor type 1 (AdipoR1 mRNA was detected in the cells by RT-PCR. The adenosine monophosphate-activated protein kinase (AMP kinase was phosphorylated by both adiponectin and a pharmacological AMP kinase activator, 5-amino-imidazole-4-carboxamide-riboside (AICAR, in the cells. AdipoR1 small interfering RNA (siRNA transfection potently knocked down the receptor mRNA, and the effect of this knockdown persisted for as long as 10 days after the transfection. The transfected cells showed decreased expressions of type I collagen and osteocalcin mRNA, as determined by real-time PCR, and reduced ALP activity and mineralization, as determined by von Kossa and Alizarin red stainings. In contrast, AMP kinase activation by AICAR (0.01–0.5 mM in wild-type MC3T3-E1 cells augmented their proliferation, differentiation, and mineralization. BrdU assay showed that the addition of adiponectin (0.01–1.0 μg/ml also promoted their proliferation. Osterix, but not Runx-2, appeared to be involved in these processes because AdipoR1 siRNA transfection and AICAR treatments suppressed and enhanced osterix mRNA expression, respectively. Conclusion Taken together, this study suggests that adiponectin stimulates the proliferation, differentiation, and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions.

  7. Co-culture of C2C12 and 3T3-L1 preadipocyte cells alters the gene expression of calpains, caspases and heat shock proteins.

    Science.gov (United States)

    Pandurangan, Muthuraman; Jeong, Dawoon; Amna, Touseef; Van Ba, Hoa; Hwang, Inho

    2012-10-01

    The present study was carried out to understand the co-culture effect of C2C12 and 3T3-L1 preadipocyte cells on calpain, caspase, and heat shock protein (Hsp) systems. Calpains, caspases, and heat shock proteins play critical roles in the growth and development of mammalian cells. Cells were co-cultured using transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates and inserts containing C2C12 transferred to 3T3-L1 plates. Following co-culture for 24 and 48 h, the cells in the lower well were harvested for analysis. Calpains include μ-calpain, m-calpain, and their specific inhibitor calpastatin. The expression pattern of μ-calpain did not change in the co-cultured C2C12 and 3T3-L1 cells, whereas m-capain mRNA expression significantly reduced in the 48-h co-cultured 3T3-L1 cells. Calpastatin mRNA expression significantly increased in the 48-h co-cultured C2C12 cells. Caspase-7 mRNA expression did not change in the 24- and 48-h co-cultured C2C12 and 3T3-L1 cells. Caspase-3 mRNA expression significantly reduced in the 24- and 48-h co-cultured 3T3-L1 cells; caspase-9 mRNA had a significant reduction only at 48 h, whereas caspase-9 mRNA expression significantly increased in the 48-h co-cultured C2C12 cells. Hsp27 and Hsp90 mRNA expressions are significantly reduced in the 24- and 48-h co-cultured C2C12 and 3T3-L1 cells, whereas Hsp70 mRNA expression significantly increased in the 48-h co-cultured 3T3-L1 cells. The co-culture reflects three-dimensional views of C2C12 and 3T3-L1 cell types as in vivo, which is quite distinct from the one-dimensional monocultured C2C12 and 3T3-L1 cells.

  8. Traditional Korean Herbal Formula Samsoeum Attenuates Adipogenesis by Regulating the Phosphorylation of ERK1/2 in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Soo-Jin Jeong

    2015-01-01

    Full Text Available Adipogenesis is the cell differentiation process from preadipocytes into adipocytes and the critical action in the development of obesity. In the present study, we conducted in vitro analyses to investigate the inhibitory effects of Samsoeum (SSE, a traditional herbal decoction. SSE had no significant cytotoxic effect against either the undifferentiated or differentiated 3T3-L1 cells. Oil Red O staining results showed that SSE significantly inhibited fat accumulation in adipocytes. SSE treatment consistently reduced the intracellular triglyceride content in the cells. SSE significantly inactivated glycerol-3-phosphate dehydrogenase (GPDH, a major link between carbohydrate and lipid metabolisms in 3T3-L1 adipocytes, and markedly inhibited the production of leptin, an important adipokine, in differentiated cells. SSE markedly suppressed the mRNA expression of the adipogenesis-related genes peroxisome proliferator-activated receptor-gamma (PPAR-γ, CCAAT/enhancer binding protein-alpha (C/EBP-α, fatty acid synthase (FAS, lipoprotein lipase (LPL, and fatty acid binding protein 4 (FABP4. Importantly, SSE increased the phosphorylation of ERK1/2, but not p38 MAPK and JNK, in adipose cells. Overall, our results indicate that SSE exerts antiadipogenic activity and modulates expressions of adipogenesis-related genes and ERK1/2 activation in adipocytes.

  9. Inhibition of ribonucleic acid efflux from isolated SV40-3T3 cell nuclei by 3'-deoxyadenosine (cordycepin).

    Science.gov (United States)

    Agutter, P S; McCaldin, B

    1979-05-15

    The effect of 3'-deoxyadenosine (cordycepin) on mRNA efflux from isolated SV40-3T3 cell nuclei has been studied and compared with its effect on the nucleoside triphosphatase activity in the isolated nuclear envelope. Inhibition of mRNA efflux occurs rapidly, but is dependent on the presence of ATP. Half-maximal inhibition occurs with 40 microM-cordycepin. The effect is not simulated by 2'-deoxyadenosine or by actinomycin D, and adenosine provides a substantial degree of protection against it. Cordycepin does not directly inhibit the nucleoside triphosphatase. The stimulation of this enzyme by poly(A) is not affected unless the poly(A) and cordycepin are incubated together with nuclear lysate in the presence of ATP; in this case the stimulation is significantly reduced. Possible interpretations of these results and their relevance for understanding the system in vivo for nucleo-cytoplasmic messenger transport are discussed.

  10. Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells.

    Science.gov (United States)

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-01-01

    This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells.

  11. MC3T3-E1 cell response to stainless steel 316L with different surface treatments.

    Science.gov (United States)

    Zhang, Hongyu; Han, Jianmin; Sun, Yulong; Huang, Yongling; Zhou, Ming

    2015-11-01

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4h, 1d, 3d, 7d), and cell proliferation was assessed by MTT method at 1d, 3d, and 7d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1h. The polished sample was smooth (Sq: 1.8nm), and the blasted and HA coated samples were much rougher (Sq: 3.2μm and 7.8μm). Within 1d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3d and 7d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1d and 3d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7d. Protein adsorption on the HA coated samples was the highest at 1h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation.

  12. Human Dynactin-Associated Protein Transforms NIH3T3 Cells to Generate Highly Vascularized Tumors with Weak Cell-Cell Interaction.

    Directory of Open Access Journals (Sweden)

    Tatsuki Kunoh

    Full Text Available Human dynactin-associated protein (dynAP is a transmembrane protein that promotes AktSer473 phosphorylation. Here, we report the oncogenic properties of dynAP. In contrast to control NIH3T3 cells expressing LacZ (NIH3T3LacZ, NIH3T3dynAP cells vigorously formed foci in two-dimensional culture, colonies on soft agar, and spheroids in anchorage-deficient three-dimensional culture. NIH3T3dynAP cells injected into nude mice produced tumors with abundant blood vessels and weak cell-cell contacts. Expression of dynAP elevated the level of rictor (an essential subunit of mTORC2 and promoted phosphorylation of FOXO3aSer253. FOXO3a is a transcriptional factor that stimulates expression of pro-apoptotic genes and phosphorylation of FOXO3a abrogates its function, resulting in promoted cell survival. Knockdown of rictor in NIH3T3dynAP cells reduced AktSer473 phosphorylation and formation of foci, colony in soft agar and spheroid, indicating that dynAP-induced activation of the mTORC2/AktSer473 pathway for cell survival contributes to cell transformation. E-cadherin and its mRNA were markedly reduced upon expression of dynAP, giving rise to cells with higher motility, which may be responsible for the weak cell-cell adhesion in tumors. Thus, dynAP could be a new oncoprotein and a target for cancer therapy.

  13. Berberine Alleviates Olanzapine-Induced Adipogenesis via the AMPKα-SREBP Pathway in 3T3-L1 Cells.

    Science.gov (United States)

    Li, Yanjie; Zhao, Xiaomin; Feng, Xiyu; Liu, Xuemei; Deng, Chao; Hu, Chang-Hua

    2016-11-09

    The aim of this study was to investigate the mechanisms underlying the inhibitory effects of berberine (BBR) on olanzapine (OLZ)-induced adipogenesis in a well-replicated 3T3-L1 cell model. Oil-Red-O (ORO) staining showed that BBR significantly decreased OLZ-induced adipogenesis. Co-treatment with OLZ and BBR decreased the accumulation of triglyceride (TG) and total cholesterol (TC) by 55.58% ± 3.65% and 49.84% ± 8.31%, respectively, in 3T3-L1 adipocytes accompanied by reduced expression of Sterol regulatory element binding proteins 1 (SREBP1), fatty acid synthase (FAS), peroxisome proliferator activated receptor-γ (PPARγ), SREBP2, low-density lipoprotein receptor (LDLR), and hydroxymethylglutaryl-coenzyme A reductase (HMGR) genes compared with OLZ alone. Consistently, the co-treatment downregulated protein levels of SREBP1, SREBP2, and LDLR by 57.71% ± 9.42%, 73.05% ± 11.82%, and 59.46% ± 9.91%, respectively. In addition, co-treatment reversed the phosphorylation level of AMP-activated protein kinase-α (AMPKα), which was reduced by OLZ, determined via the ratio of pAMPKα:AMPKα (94.1%) compared with OLZ alone. The results showed that BBR may prevent lipid metabolism disorders caused by OLZ by reversing the degree of SREBP pathway upregulated and the phosphorylation of AMPKα downregulated. Collectively, these results indicated that BBR could be used as a potential adjuvant to prevent dyslipidemia and obesity caused by the use of second-generation antipsychotic medication.

  14. Berberine Alleviates Olanzapine-Induced Adipogenesis via the AMPKα–SREBP Pathway in 3T3-L1 Cells

    Science.gov (United States)

    Li, Yanjie; Zhao, Xiaomin; Feng, Xiyu; Liu, Xuemei; Deng, Chao; Hu, Chang-Hua

    2016-01-01

    The aim of this study was to investigate the mechanisms underlying the inhibitory effects of berberine (BBR) on olanzapine (OLZ)-induced adipogenesis in a well-replicated 3T3-L1 cell model. Oil-Red-O (ORO) staining showed that BBR significantly decreased OLZ-induced adipogenesis. Co-treatment with OLZ and BBR decreased the accumulation of triglyceride (TG) and total cholesterol (TC) by 55.58% ± 3.65% and 49.84% ± 8.31%, respectively, in 3T3-L1 adipocytes accompanied by reduced expression of Sterol regulatory element binding proteins 1 (SREBP1), fatty acid synthase (FAS), peroxisome proliferator activated receptor-γ (PPARγ), SREBP2, low-density lipoprotein receptor (LDLR), and hydroxymethylglutaryl-coenzyme A reductase (HMGR) genes compared with OLZ alone. Consistently, the co-treatment downregulated protein levels of SREBP1, SREBP2, and LDLR by 57.71% ± 9.42%, 73.05% ± 11.82%, and 59.46% ± 9.91%, respectively. In addition, co-treatment reversed the phosphorylation level of AMP-activated protein kinase-α (AMPKα), which was reduced by OLZ, determined via the ratio of pAMPKα:AMPKα (94.1%) compared with OLZ alone. The results showed that BBR may prevent lipid metabolism disorders caused by OLZ by reversing the degree of SREBP pathway upregulated and the phosphorylation of AMPKα downregulated. Collectively, these results indicated that BBR could be used as a potential adjuvant to prevent dyslipidemia and obesity caused by the use of second-generation antipsychotic medication. PMID:27834848

  15. Berberine Alleviates Olanzapine-Induced Adipogenesis via the AMPKα–SREBP Pathway in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yanjie Li

    2016-11-01

    Full Text Available The aim of this study was to investigate the mechanisms underlying the inhibitory effects of berberine (BBR on olanzapine (OLZ-induced adipogenesis in a well-replicated 3T3-L1 cell model. Oil-Red-O (ORO staining showed that BBR significantly decreased OLZ-induced adipogenesis. Co-treatment with OLZ and BBR decreased the accumulation of triglyceride (TG and total cholesterol (TC by 55.58% ± 3.65% and 49.84% ± 8.31%, respectively, in 3T3-L1 adipocytes accompanied by reduced expression of Sterol regulatory element binding proteins 1 (SREBP1, fatty acid synthase (FAS, peroxisome proliferator activated receptor-γ (PPARγ, SREBP2, low-density lipoprotein receptor (LDLR, and hydroxymethylglutaryl-coenzyme A reductase (HMGR genes compared with OLZ alone. Consistently, the co-treatment downregulated protein levels of SREBP1, SREBP2, and LDLR by 57.71% ± 9.42%, 73.05% ± 11.82%, and 59.46% ± 9.91%, respectively. In addition, co-treatment reversed the phosphorylation level of AMP-activated protein kinase-α (AMPKα, which was reduced by OLZ, determined via the ratio of pAMPKα:AMPKα (94.1% compared with OLZ alone. The results showed that BBR may prevent lipid metabolism disorders caused by OLZ by reversing the degree of SREBP pathway upregulated and the phosphorylation of AMPKα downregulated. Collectively, these results indicated that BBR could be used as a potential adjuvant to prevent dyslipidemia and obesity caused by the use of second-generation antipsychotic medication.

  16. Attachment of 3T3 and MDBK cells onto poly(EGDMA/HEMA) based microbeads and their biologically modified forms.

    Science.gov (United States)

    Ayhan, H; Gürhan, I; Pişkin, E

    2000-03-01

    Poly(EGDMA/HEMA) based microbeads were prepared by suspension polymerization. A comonomer, i.e., 2-hydroxyethylmethacrylate (HEMA) was included in the recipe in order to have functional hydroxyl groups on the microbead surfaces. Toluene was used in the polymerization formulations to introduce porosity into the matrix. Hydroxyl groups were first oxidized with NaIO4, and then two biological molecules, namely collagen and fibronectin were immobilized by using glutaraldehyde. A spacer-arm, i.e., hexamethylene diamine, was also used in some cases. More protein molecules were immobilized onto more swellable microbeads using spacer-arm. Higher amounts of collagen were immobilized, more than fibronectin immobilization. Attachment of two cell lines (i.e., 3T3 and MDBK cell lines) on these microbeads with a wide variety of surface properties was studied in vitro culture media. Attachments of both cells even onto the plain microbeads were significant. More cells did attach to more swellable microbeads. Introducing both fibronectin and collagen onto the microbeads caused significant increase in the cell attachment. More cells attached to the microbeads carrying fibronectin covalently attached onto the microbeads through the spacer-arm molecules. Fibronectine was better than collagen for high attachment values. The mathematical model proposed successfully simulated attachment kinetics.

  17. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe{sub 3}O{sub 4} nanofibers with static magnetic field exposure

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qing [State Key Laboratory of Organic–inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Shi, Yuzhou; Shan, Dingying; Jia, Wenkai; Duan, Shun [Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Deng, Xuliang [Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081 (China); Yang, Xiaoping, E-mail: yangxp@mail.buct.edu.cn [State Key Laboratory of Organic–inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China)

    2015-10-01

    Proliferation and differentiation of bone-related cells are modulated by many factors such as scaffold design, growth factor, dynamic culture system, and physical simulation. Nanofibrous structure and moderate-intensity (1 mT–1 T) static magnetic field (SMF) have been identified as capable of stimulating proliferation and differentiation of osteoblasts. Herein, magnetic nanofibers were prepared by electrospinning mixture solutions of poly(L-lactide) (PLLA) and ferromagnetic Fe{sub 3}O{sub 4} nanoparticles (NPs). The PLLA/Fe{sub 3}O{sub 4} composite nanofibers demonstrated homogeneous dispersion of Fe{sub 3}O{sub 4} NPs, and their magnetism depended on the contents of Fe{sub 3}O{sub 4} NPs. SMF of 100 mT was applied in the culture of MC3T3-E1 osteoblasts on pure PLLA and PLLA/Fe{sub 3}O{sub 4} composite nanofibers for the purpose of studying the effect of SMF on osteogenic differentiation of osteoblastic cells on magnetic nanofibrous scaffolds. On non-magnetic PLLA nanofibers, the application of external SMF could enhance the proliferation and osteogenic differentiation of MC3T3-E1 cells. In comparison with pure PLLA nanofibers, the incorporation of Fe{sub 3}O{sub 4} NPs could also promote the proliferation and osteogenic differentiation of MC3T3-E1 cells in the absence or presence of external SMF. The marriage of magnetic nanofibers and external SMF was found most effective in accelerating every aspect of biological behaviors of MC3T3-E1 osteoblasts. The findings demonstrated that the magnetic feature of substrate and microenvironment were applicable ways in regulating osteogenesis in bone tissue engineering. - Highlights: • Magnetic nanofibers containing well-dispersed Fe{sub 3}O{sub 4} nanoparticles were produced. • Static magnetic field (SMF) was applied to perform the culture of osteoblasts. • Osteogenic differentiation was enhanced on magnetic substrate with exposure to SMF.

  18. Chlamydia induces anchorage independence in 3T3 cells and detrimental cytological defects in an infection model.

    Directory of Open Access Journals (Sweden)

    Andrea E Knowlton

    Full Text Available Chlamydia are gram negative, obligate intracellular bacterial organisms with different species causing a multitude of infections in both humans and animals. Chlamydia trachomatis is the causative agent of the sexually transmitted infection (STI Chlamydia, the most commonly acquired bacterial STI in the United States. Chlamydial infections have also been epidemiologically linked to cervical cancer in women co-infected with the human papillomavirus (HPV. We have previously shown chlamydial infection results in centrosome amplification and multipolar spindle formation leading to chromosomal instability. Many studies indicate that centrosome abnormalities, spindle defects, and chromosome segregation errors can lead to cell transformation. We hypothesize that the presence of these defects within infected dividing cells identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation. Here we demonstrate that infection with Chlamydia trachomatis is able to transform 3T3 cells in soft agar resulting in anchorage independence and increased colony formation. Additionally, we show for the first time Chlamydia infects actively replicating cells in vivo. Infection of mice with Chlamydia results in significantly increased cell proliferation within the cervix, and in evidence of cervical dysplasia. Confocal examination of these infected tissues also revealed elements of chlamydial induced chromosome instability. These results contribute to a growing body of data implicating a role for Chlamydia in cervical cancer development and suggest a possible molecular mechanism for this effect.

  19. Effects of secretive bone morphogenetic protein 2 induced by gene transfection on the biological changes of NIH3T3 cells

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-bin; WANG Juan; LU Chun; TANG Gui-xia

    2005-01-01

    Background Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta superfamily, are powerful regulators of cartilage and bone formation. This study investigated the biological changes of NIH3T3 cells incubated with secretive BMP2 that was induced by gene transfection through transwell. Methods Eukaryonic expression vector (pcDNA3.1-B2) was transfered into NIH3T3 cells with SofastTM,a positive compound transfection agent. The positive cell clones were selected with G418. The cytoplasmic and extracellular expressions of BMP2 were determined by immunohistochemical stain and enzyme-linked immunosorbent assay. NIH3T3 cells were co-cultured with hBMP2 gene transfecting cells through transwell, and the ultrastructure, alkaline phosphatase activity and the expression of osteocalcin (the marker of osteogenetic differentiation) changes were observed. Results There were cytoplasmic and extracellular expressions of BMP2 in transfecting NIH3T3 cells. The ultrastructural changes, the high activity of alkaline phosphatase and the positive stain of osteocalcin suggested the osteogenetic differentiation tendency of NIH3T3 cells co-cultured with transfecting NIH3T3 cells. Conclusion Secretive BMP2 that is induced by gene transfection could promote the osteogenetic differentiation of fibroblast cells.

  20. MC3T3-E1 cell response to stainless steel 316L with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongyu [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Han, Jianmin, E-mail: siyanghan@163.com [Dental Materials Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081 (China); Sun, Yulong [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Huang, Yongling [Jinghang Biomedicine Engineering Division, Beijing Institute of Aeronautical Material, Beijing 100095 (China); Zhou, Ming [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4 h, 1 d, 3 d, 7 d), and cell proliferation was assessed by MTT method at 1 d, 3 d, and 7 d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1 h. The polished sample was smooth (Sq: 1.8 nm), and the blasted and HA coated samples were much rougher (Sq: 3.2 μm and 7.8 μm). Within 1 d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3 d and 7 d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1 d and 3 d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7 d. Protein adsorption on the HA coated samples was the highest at 1 h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation. - Highlights: • Rough stainless steel surface improves cell adhesion and proliferation. • HA coating results in superior cell morphology and cell attachment. • HA coating inhibits osteoblast cell proliferation after 7 d of incubation.

  1. A20 overexpression under control of mouse osteocalcin promoter in MC3T3-E1 cells inhibited tumor necrosis factor-alpha-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Lu-yang YU; Jin-wei HE; Ya-nan HOU; Tian-jin LIU; Jia-cai WU; Song-hua WU; Li-he GUO

    2006-01-01

    Aim: To construct an A20 expression vector under the control of mouse osteocalcin promoter (OC-A20), and investigate osteoblastic MC3T3-E1 cell line, which stably overexpresses A20 protein prevented tumor necrosis factor (TNF)-alpha-induced apoptosis. Methods: OC-A20 vector was constructed by fusing a fragment of the mouse osteocalcin gene-2 promoter with human A20 complementary DNA. Then the mouse MC3T3-E1 cell line, stably transfected by A20, was established. The expression of A20 mRNA and A20 protein in the cells were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. To determine the specificity of A20 expression in osteoblast, the mouse osteoblastic MC3T3-E1 cell line and mouse embryo fibro-blast NIH3T3 cell line were transiently transfected with OC-A20. The anti-apoptotic role of A20 in MC3T3-E1 cells was determined by Flow cytometric analysis (FACS), terminal dUTP nick endo-labeling (TUNEL) and DNA gel electrophoresis analysis (DNA Ladder), respectively. Results: Weak A20 expression was found in MC3T3-El cells with the primers of mouse A20. A20 mRNA and A20 protein expression were identified in MC3T3-E1 cells transfected with OC-A20 using RT-PCR and Western blot analysis. Only A20 mRNA expression was found in MC3T3-E1 cell after MC3T3-E1 cells and NIH3T3 cells were transient transfected with OC-A20. A decrease obviously occurred in the rate of apoptosis in the OC-A20 group compared with the empty vector (pcDNA3) group by FACS (P<0.001). A significant increase in TUNEL positive staining was found in the pcDNA group compared with OC-A20 group (P<0.001). Simultaneously, similar effects were demonstrated in DNA gel electrophoresis analysis. Conclusion: We constructed an osteoblast-specific expression vector that expressed A20 protein in MC3T3-E1 cells and confirmed that A20 protects osteoblast against TNF-alpha-induced apoptosis.

  2. Improvement of the BALB/c-3T3 cell transformation assay: a tool for investigating cancer mechanisms and therapies.

    Science.gov (United States)

    Poburski, Doerte; Thierbach, René

    2016-01-01

    The identification of cancer preventive or therapeutic substances as well as carcinogenic risk assessment of chemicals is nowadays mostly dependent on animal studies. In vitro cell transformation assays mimic different stages of the in vivo neoplastic process and represent an excellent alternative to study carcinogenesis and therapeutic options. In the BALB/c-3T3 two-stage transformation assay cells are chemically transformed by treatment with MCA and TPA, along with the final Giemsa staining of morphological aberrant foci. In addition to the standard method we can show, that it is possible to apply other chemicals in parallel to identify potential preventive or therapeutic substances during the transformation process. Furthermore, we successfully combined the BALB/c cell transformation assay with several endpoint applications for protein analysis (immunoblot, subcellular fractionation and immunofluorescence) or energy parameter measurements (glucose and oxygen consumption) to elucidate cancer mechanisms in more detail. In our opinion the BALB/c cell transformation assay proves to be an excellent model to investigate alterations in key proteins or energy parameters during the different stages of transformation as well as therapeutic substances and their mode of action.

  3. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Lee, Youngyi; Bae, Eun Ju

    2013-11-01

    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  4. Murine 3T3-L1 adipocyte cell differentiation model: validated reference genes for qPCR gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Tatjana Arsenijevic

    Full Text Available BACKGROUND: Analysis of gene expression at the mRNA level, using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR, mandatorily requires reference genes (RGs as internal controls. However, increasing evidences have shown that RG expression may vary considerably under experimental conditions. We sought for an appropriate panel of RGs to be used in the 3T3-L1 cell line model during their terminal differentiation into adipocytes. To this end, the expression levels of a panel of seven widely used RG mRNAs were measured by qRT-PCR. The 7 RGs evaluated were ß-actin (ACTB, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, hypoxanthine phosphoribosyl-transferase I (HPRT, ATP synthase H+ transporting mitochondrial F1 complex beta subunit (ATP-5b, tyrosine 3-monooxygenase/tryptophan 5- monooxygenase activation protein, zeta polypeptide (Ywhaz, Non-POU-domain containing octamer binding protein (NoNo, and large ribosomal protein L13a (RPL. METHODOLOGY/PRINCIPAL FINDINGS: Using three Excel applications, GeNorm, NormFinder and BestKeeper, we observed that the number and the stability of potential RGs vary significantly during differentiation of 3T3-L1 cells into adipocytes. mRNA expression analyses using qRT-PCR revealed that during the entire differentiation program, only NoNo expression is relatively stable. Moreover, the RG sets that were acceptably stable were different depending on the phase of the overall differentiation process (i.e. mitotic clonal expansion versus the terminal differentiation phase. RPL, ACTB, and Ywhaz, are suitable for terminal differentiation, whereas ATP-5b and HPRT, are suitable during mitotic clonal expansion. CONCLUSION: Our results demonstrate that special attention must be given to the choice of suitable RGs during the various well defined phases of adipogenesis to ensure accurate data analysis and that the use of several RGs is absolutely required. Consequently, our data show for the first time

  5. Flavonoids from Triticum aestivum inhibit adipogenesis in 3T3-L1 cells by upregulating the insig pathway.

    Science.gov (United States)

    Poudel, Barun; Nepali, Sarmila; Xin, Mingjie; Ki, Hyeon-Hui; Kim, Young-Ho; Kim, Dae-Ki; Lee, Young-Mi

    2015-08-01

    The present study aimed to compare the potential anti-adipogenic effects and underlying mechanisms of the luteolin, isoscoparin and isoorientin flavonoids, purified from Triticum aestivum sprout (TA) in 3T3-L1 cells. The cells were treated with different concentrations of flavonoids for 8 days and the lipid accumulation was assessed using Oil-Red-O staining. The expression levels of the transcription factors and the genes involved in adipogenesis in the cells were assessed by reverse transcription-quantitative polymerase chain reaction and western blotting. The results demonstrated that 10 μM luteolin, isoscoparin or isoorientin inhibited lipid deposition in the cells by 74, 63 and 65%, respectively. The flavonoids also significantly inhibited the transcriptional regulators of adipogenesis, including peroxisome proliferator-activated receptor-γ, CAAT/enhancer binding protein-α and sterol regulatory element binding protein (SREBP)-1c, compared with the control cells. Similarly, there was a significant downregulation of the adipocyte specific markers associated with lipid metabolism, including activating protein-2, fatty acid synthase, hormone-sensitive lipase and lipoprotein lipase, in the flavonoid treated cells. Notably, the cells treated with the flavonoids demonstrated increased expression levels of the insulin-induced genes, insig-1 and insig-2, which may have inhibited the activation of the adipogenic transcription factor, SREBP, eventually leading to the inhibition of adipogenesis. Taken together, these results revealed that the flavonoids from TA possessed an inhibitory effect on adipogenesis through downregulation of adipogenic transcription factors and genes associated with lipid metabolism, and the upregulation of insig 1 and 2, suggesting that the flavonoids from TA may be potential therapeutic agents for the prevention and treatment of obesity.

  6. Dynamic tracking and mobility analysis of single GLUT4 storage vesicle in live 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    Chen Hong LI; Li BAI; Dong Dong LI; Sheng XIA; Tao XU

    2004-01-01

    Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is unclear how GSVs are arranged based on their mobility. We examined this issue in 3T3-L1 cells via investigating the three-dimensional mobility of single GSV labeled with EGFP-fused GLUT4. A thin layer of cytosol right adjacent to the plasma membrane was illuminated and successively imaged at 5 Hz under a total internal reflection fluorescence microscope with a penetration depth of 136 nm. Employing single particle tracking, the three-dimensional subpixel displacement of single GSV was tracked at a spatial precision of 22 nm. Both the mean square displacement and the diffusion coefficient were calculated for each vesicle. Tracking results revealed that vesicles moved as if restricted within a cage that has a mean radius of 160 nm, suggesting the presence of some intracellular tethering matrix. By constructing the histogram of the diffusion coefficients of GSVs, we observed a smooth distribution instead of the existence of distinct groups. The result indicates that GSVs are dynamically retained in a continuous and wide range of mobility rather than into separate classes.

  7. A novel human gene spindlin1,encoding a protein localized in the cell nucleus and inducing NIH3T3 cell's transformation

    Institute of Scientific and Technical Information of China (English)

    GAO Yanhong; QIN Lipeng; ZHANG Peng; CHEN Lin; YUAN Hongfeng; BAI Cixian; YAN Fang; YUE Wen; PEI Xuetao

    2004-01-01

    A novel human gene, spindlin1, recently cloned in our laboratory, is highly expressed in the tissue of ovary cancer. To study its biological function, a vector expressing green fluorescent-spindlin1 fusion protein was constructed and transfected into COS-7 and NIH3T3 cells by lipofectamine methods. The results showed that the fusion protein pEGFP-N1-spindlin1 was localized in the nucleus of COS-7 and NIH3T3 cells. NIH3T3 cells which could stably express spindlin1 as a result of RT-PCR analysis compared with the parental NIH3T3 cells displayed a complete morphological change, improved the cell growth and increased the percentage of cells in G2/M phase (12.6% vs control cells at 3.4%). Furthermore, overexpressed spindlin1 cells formed colonies in soft agar, more motile in migration assay in vitro and formed tumors in nude mice. Our findings provide direct evidence that spindlin1 gene may be a prooncogene which is associated with tumorigenesis.

  8. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells.

    Science.gov (United States)

    Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2014-08-01

    Phytic acid, also known as myo-inositol hexaphosphate, has been shown to lower blood glucose levels and to improve insulin sensitivity in rodents. We investigated the effects of phytic acid and myo-inositol on differentiation, insulin-stimulated glucose uptake, and lipolysis of adipocytes to test the hypothesis that the antidiabetic properties of phytic acid and myo-inositol are mediated directly through adipocytes. 3T3-L1 cells were treated with 10, 50, or 200 μmol/L of phytic acid or myo-inositol. Oil Red O staining and an intracellular triacylglycerol assay were used to determine lipid accumulation during adipocyte differentiation. Immunoblotting and real-time polymerase chain reaction (PCR) were performed to evaluate expression of transcription factors, a target protein, and insulin signaling molecules. Phytic acid and myo-inositol exposures increased lipid accumulation in a dose-dependent manner (P acid synthase increased upon treatments with phytic acid and myo-inositol (P phytic acid and myo-inositol treatments (P phytic acid and myo-inositol treatments. In fully differentiated adipocytes, phytic acid and myo-inositol reduced basal lipolysis dose dependently (P phytic acid and myo-inositol increase insulin sensitivity in adipocytes by increasing lipid storage capacity, improving glucose uptake, and inhibiting lipolysis.

  9. Aurantio-obtusin stimulates chemotactic migration and differentiation of MC3T3-E1 osteoblast cells.

    Science.gov (United States)

    Vishnuprasad, Chethala N; Tsuchiya, Tomoko; Kanegasaki, Shiro; Kim, Joon Ho; Han, Sung Soo

    2014-05-01

    Osteoporosis is one of the major metabolic bone diseases and is among the most challenging noncommunicable diseases to treat. Although there is an increasing interest in identifying bioactive molecules for the prevention and management of osteoporosis, such studies principally focus only on differentiation and mineralization of osteoblasts or inhibition of osteoclast activity. Stimulation of osteoblast migration must be a promising osteoanabolic strategy for improved metabolic bone disease therapy. In this study, we show that an anthraquinone derivative, aurantio-obtusin, stimulated chemotactic migration of MC3T3-E1 osteoblast cells in a concentration-dependent manner. The use of a real-time chemotaxis analyzing system, TAXIScan, facilitated the evaluation of both velocity and directionality of osteoblast migration in response to the compound. Besides migration, the compound stimulated osteoblast differentiation and mineralization. Taken together, the data presented in this paper demonstrate that aurantio-obtusin is a promising osteoanabolic compound of natural origin with potential therapeutic applications in the prevention of osteoporosis and other metabolic bone diseases.

  10. 3T3 cell motility and morphology before, during, and after exposure to extremely-low-frequency magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Spadinger, I.; Palcic, B. [British Columbia Cancer Research Centre, Vancouver, British Columbia (Canada). Cancer Imaging; Agnew, D. [Ontario Hydro, Whitby, Ontario (Canada). Health and Safety Div.

    1995-08-01

    Automated image cytometry techniques were used to measure motility and morphology in 3T3 fibro-blasts exposed to extremely-low-frequency (ELF) magnetic fields. Cell motility and morphology were measured as a function of time before, during, and after 3--4 hour exposures to vertically oriented, 100 {mu}T{sub RMS} sinusoidal magnetic fields at various frequencies in the 10--63 Hz range. Sham exposures were also carried out. No static DC fields were applied, but the geomagnetic field was almost vertical and, therefore, had a large component (28.3 {mu}T) parallel to the applied AC field. The morphology and motile behavior of the cells were characterized by mathematically defined descriptors, which were calculated and averaged for the exposure period as well as for control periods that preceded and followed the exposure period. Each experiment involved the tracking of 100 cells that were subjected to one of the test frequencies (unless a sham exposure was being conducted). Statistical analysis of the results showed that even small changes of 10--20% could be significant at the P < .05 level. Changes on this order were measured in a significant proportion of the experiments. However, because such results were seen for both the sham-exposed and the ELF-exposed cells, and because the range of values that was obtained for the sham exposures was the same as that obtained for the ELF exposures, the authors concluded that there was no evidence to show that any of the measured changes were attributable to the applied ELF magnetic field.

  11. [Effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterial on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells].

    Science.gov (United States)

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong; Chen, Liaobin

    2014-10-01

    In the present research, the effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterials on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells were investigated. The experiments were divided into three groups due to biomaterials used: Group A (composite materials of sintered bone modified with surface mineralization and P24, a peptide of bone morphogenetic protein-2); Group B (sintered bone modified with surface mineralization) and Group C (sintered bone only). The three groups were observed by scanning electron microscopy (SEM) before the experiments, respectively. Then MC3T3-E1 cells were cultured on the surfaces of the three kinds of material, respectively. The cell adhesion rate was assessed by precipitation method. The proliferative ability of MC3T3-E1 cells were measured with MTT assay. And the ALP staining and measurement of alkaline phosphatase (ALP) activity were performed to assess the differentiation of cells into osteoblasts. The SEM results showed that the materials in the three groups retained the natural pore structure and the pore sizes were in the range between 200-850 μm. The adhesive ratio measurements and MTT assay suggested that adhesion and proliferation of MC3T3-E1 cells in Group A were much higher than those in Group B and Group C (P composite material was confirmed to improve the adhesion rate and proliferation and osteodifferentiation of MC3T3-E1 cells, and maintained their morphology.

  12. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong-Il [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Ko, Hee-Chul [Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Lee, Nam-Ho [Department of Chemistry, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Kim, Se-Jae, E-mail: sjkim@jejunu.ac.kr [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of)

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  13. Receptor interacting protein 1 involved in ultraviolet B induced NIH3T3 cell apoptosis through expression of matrix metalloproteinases and reactive oxygen species production

    Institute of Scientific and Technical Information of China (English)

    YAN Yan; LI Li; XU Hao-xiang; PENG Shi-guang; QU Tao; WANG Bao-xi

    2013-01-01

    Background Receptor interacting protein 1 (RIP1),which plays a key role in apoptosis,cell survival and programmed cell necrosis,is one of the most important proteins in the RIP family.The purpose of this study was to investigate the roles of RIP1 in the apoptosis,the generation of reactive oxygen species (ROS) and the expression of matrix metalloproteinases (MMPs) induced by ultraviolet B (UVB) in fibroblasts.Methods siRNA targeting RIP1 was used to silence RIP1 expression in the NIH3T3 fibroblasts.The mRNA and protein levels of MMP-1 and MMP-3,caspase-3 and-8 activities,and ROS activities were determined by reverse transcriptasequantitative polymerase chain reaction (RT-qPCR),immunoblotting,cespase activity assay,immunofiuorescence,and flow cytometry.Results The mRNA and protein expressions of MMP-1 and MMP-3 were significantly increased in RIP1 deficient NIH3T3 cells at 24 hours after UVB treatment.At 24 hours after exposure to UVB,RIP1 deficient NIH3T3 cells presented apoptotic morphology,and the apoptosis rate was significantly increased accompanied by pronounced increase in caspase-8 and-3activities.ROS production was inhibited by UVB at 12 hours in RIP1 deficient NIH3T3 cells.Conclusion RIP1 is involved in NIH3T3 cell damage induced by UVB via participating in the apoptosis,expression of MMPs and ROS production.

  14. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    Directory of Open Access Journals (Sweden)

    Chia-Chien Hsieh

    Full Text Available Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development.

  15. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    Science.gov (United States)

    Hsieh, Chia-Chien; Huang, Yu-Shan

    2016-01-01

    Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF)-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM) and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development.

  16. Cytotoxicity of folic acid conjugated hollow silica nanoparticles toward Caco2 and 3T3 cells, with and without encapsulated DOX.

    Science.gov (United States)

    Patel, Kunal; Sundara Raj, Behin; Chen, Yan; Lou, Xia

    2016-04-01

    Hollow silica nanoparticles of two sizes with and without a folic acid targeting ligand were synthesized. Fickian diffusion of the antitumor drug doxorubicin hydrochloride (DOX) was demonstrated by the produced nanoparticles, achieving a cumulative release of 73% and 45% for 215 nm and 430 nm particles respectively over a period of 500 h. The hollow silica nanoparticles presented a time and dose dependent toxicity, selective to human epithelial colorectal adenocarcinoma (Caco2) cells, over mouse embryonic fibroblast (3T3) cells. At 24h Caco2 cell viability was reduced to 66% using pure hollow silica at a concentration of 50 μg mL(-1), while that of 3T3 cells remained at 94% under the same conditions. The selective cytotoxicity of hollow silica nanoparticles was further enhanced by conjugation of folic acid and incorporation of DOX: at 24h and an equivalent DOX concentration of 0.5 μg mL(-1), viable Caco2 cells were reduced to 45% while 3T3 cells were reduced to 83%. Interestingly the equivalent dose of free DOX was more toxic to 3T3 than to Caco2 cells, reducing the 3T3 viability to 72% and the Caco2 viability to 80%, which is likely due to the presence of the p-glycoprotein pumps in Caco2 cells. Folic acid conjugation served to enhance the viability of both cell lines in this work. Careful optimization of the folate content should further improve the cell specificity of the hollow silica nanoparticles, thus providing a viable targeting platform for cancer therapy.

  17. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line

    Directory of Open Access Journals (Sweden)

    Agnieszka Śmieszek

    2015-01-01

    Full Text Available Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2 signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure.

  18. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Lei, E-mail: anleim@yahoo.com.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Pang, Yun-Wei, E-mail: yunweipang@126.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Research Unit for Animal Life Sciences, Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki-Iwama 319-0206 (Japan); Tao, Li, E-mail: Eunice8023@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118 (China); Miao, Kai, E-mail: miaokai7@163.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Wu, Zhong-Hong, E-mail: wuzhh@cau.edu.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  19. Construction of a eukaryotic expression plasmid pcDNA3.1-HuR-FLAG and its transient expression in NIH3T3 cells

    Directory of Open Access Journals (Sweden)

    Tao LI

    2011-04-01

    Full Text Available Objective To construct a eukaryotic expression vector for HuR and analyze its expression and biological function in NIH3T3 cells.Methods The total RNA was extracted from NIH3T3 cells and reverse transcribed to cDNAs.The coding region sequence of mouse HuR was then amplified by PCR and subcloned into the pcDNA3.1-FLAG plasmid.The recombinant plasmid pcDNA3.1-HuR-FLAG was verified by PCR and restriction endonuclease analysis,confirmed by DNA sequence analysis,and then transiently transfected into NIH3T3 cells with Lipofectamine LTX.The expression of HuR protein was determined by Western blotting,and the mRNA level of HuR and DUSP1 were analyzed by using real-time PCR.Result The recombinant plasmid pcDNA3.1-HuR-FLAG was correctly constructed.Twenty-four hours after transfection of the recombinant plasmid into NIH3T3 cells,the fusion protein was found to have highly expressed in the cells as revealed by Western blotting.Real-time PCR results detected that the over-expression of HuR could up-regulate the expression of DUSP1.Conclusion The eukaryotic expression vector for HuR-FLAG fusion protein has been successfully constructed and transiently expressed in NIH3T3 cells.It can be used in further analysis of the posttranscriptional regulation of DUSP1 by HuR in cancer cells.

  20. Effect of Thymosin beta4 on the Differentiation and Mineralization of MC3T3-E1 Cell on a Titanium Surface.

    Science.gov (United States)

    Jeong, Soon-Jeong; Jeong, Moon-Jin

    2016-02-01

    Osteoblasts are responsible for the synthesis of bone matrix through the secretion of collagenous and non-collagenous proteins with mineralization. Thymosin beta4 (Tbeta4) is an actin-sequestering peptide that is involved in the regulation of cell proliferation, differentiation and motility. A recent study reported that the inhibition of Tbeta4 mRNA synthesis strongly decreases the level of gene expression of bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP), osteocalcin (OCN), osteonectin (ON) and collagen type I (Col I) with mineralization during differentiation in odontoblasts. Titanium (Ti) is used commonly as an implant material for dental implants, which have strong mechanical potential and good biocompatibility with bone. This study examined whether Tbeta4 can be a potential molecule for promoting the differentiation and mineralization of MC3T3-E1 cells on a Ti surface. Tbeta4 increased the viability of MC3T3-E1 cells during differentiation on Ti discs compared to that of the control. The expression of Tbeta4 mRNA and protein in the Tbeta4-treated MC3T3-E1 cells was higher than the control during differentiation on the Ti discs. In addition, Tbeta4 increased the formation of mineralization nodules and the mRNA expression of alkaline phosphatase (ALP), DSPP, dentin matrix protein1 (DMP1), BSP and Col I compared to that of the control in MC3T3-E1 cells during differentiation on Ti discs. From the results, Tbeta4 increased the viability and promoted the differentiation and mineralization of MC3T3-E1 cells on Ti discs. This highlights the potential use of Tbeta4 for increasing osseointegration through osteoblast differentiation and mineralization on Ti discs.

  1. In vitro mineralization of MC3T3-E1 osteoblast-like cells on collagen/nano-hydroxyapatite scaffolds coated carbon/carbon composites.

    Science.gov (United States)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2016-02-01

    Collagen/nano-hydroxyapatite (collagen/nHA) scaffolds were successfully prepared on carbon/carbon composites as bioactive films using the layer-by-layer coating method. Surface characterizations of collagen/nHA scaffolds were detected by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Compressive strengths of the scaffolds were evaluated by a universal test machine. In vitro biological performances were determined using scaffolds seeded with MC3T3-E1 osteoblasts-like cells and cultured in mineralization medium for up to 21 days. In addition, cellular morphologies and several related gene expressions of MC3T3-E1 cells in the scaffolds were also evaluated. Chemical and morphological analysis showed that the scaffolds had uniform pore sizes and unified phase composition. Mechanical testing indicated that the collagen/nHA scaffolds had the highest compressive strength in 50% of strain condition when the proportion of collagen and nano-hydroxyapatite was 1:3. Cellular morphology observations and cytology tests indicated that MC3T3-E1 cells were adhered on these scaffolds and proliferated. SEM photographs and gene expressions showed that mineralized MC3T3-E1 cells and newly formed extra cellular matrix (ECM) filled up the pores of the scaffolds after the 3-week mineralization inducement. Nano-sized apatite particles were secreted from MC3T3-E1 cells and combined with the reconstructed ECM. Collectively, collagen/nHA scaffolds provided C/C composites with a biomimetic surface for cell adhesion, proliferation and mineralized extra cellular matrices formation.

  2. Cytotoxic effects of the synthetic oestrogens and androgens on Balb/c 3T3 and HepG2 cells

    Directory of Open Access Journals (Sweden)

    Minta Maria

    2014-12-01

    Full Text Available The aim of the study was to test and compare the cytotoxic potential of two synthetic oestrogens: diethylstilboestrol (DES and ethinyloestradiol (EE2 and two androgens: testosterone propionate (TP and trenbolone (TREN on two cell lines. The fibroblast cell line Balb/c 3T3 and the hepatoma cell line HepG2 were selected. To get more insight into the mode of toxic action, four methods were used, which evaluated different biochemical endpoints: mitochondrial activity (3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide reduction assay, lysosomal activity (neutral red uptake assay, total protein content, and lactate dehydrogenase release. Cytotoxicity was assessed after 24, 48, and 72 h exposure to eight concentrations ranging from 0.78 to 100 μg/mL. Concentration- and time- dependent effects were observed. Depending on the line and assay used, half maximal effective concentration after 72 h (EC50-72h values ranged as follows: DES 1-13.7 μg/mL (Balb/c 3T3 and 3.7-5.2 μg/mL (HepG2; EE2 2.1-14.3 μg/mL (Balb/c 3T3 and 1.8-7.8 μg/mL (HepG2; TP-14.9-17.5 μg/mL (Balb/c 3T3, and 63.9- 100 μg/mL (HepG2; and TREN 11.3-31.4 μg/mL (Balb/c 3T3 and 12.5-59.4 μg/mL (HepG2. The results revealed that oestrogens were more toxic than androgens and the most affected endpoint was mitochondrial activity. In contrast to oestrogens, for which EC50-72h values were similar in both lines and by all assays used, Balb/c 3T3 cells were more sensitive than HepG2 cells to TP.

  3. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells

    Science.gov (United States)

    Park, Min-Jun; Song, Ji-Hye; Shon, Myung-Soo; Kim, Hae Ok; Kwon, O Jun; Roh, Seong-Soo; Kim, Choon Young; Kim, Gyo-Nam

    2016-01-01

    Obesity is a major risk factor for various metabolic diseases such as cardiovascular disease, hypertension, and type 2 diabetes mellitus. In this study, we prepared ethanol extracts from Agastache rugosa (ARE), Chrysanthemum zawadskii (CZE), Mentha arvensis (MAE), Perilla frutescens (PFE), Leonurus sibiricus (LSE), Gardenia jasminoides (GJE), and Lycopus coreanus (LCE). The anti-oxidant and anti-adipogenic effects were evaluated. The IC50 values for ascorbic acid and LCE against 2,2-diphenyl-1-picrylhydrazyl radicals were 246.2 μg/mL and 166.2 μg/mL, respectively, followed by ARE (186.6 μg/mL), CZE (198.6 μg/mL), MAE (337.1 μg/mL), PFE (415.3 μg/mL), LSE (548.2 μg/mL), and GJE (626.3 μg/mL). In non-toxic concentration ranges, CZE had a strong inhibitory effect against 3T3-L1 adipogenes (84.5%) than those of the other extracts. Furthermore, the anti-adipogenic effect of CZE is largely limited in the early stage of adipogenesis, and we revealed that the inhibitory role of CZE in adipogenesis is required for the activation of Wnt signaling. Our results provide scientific evidence that the anti-adipogenic effect of CZE can be applied as an ingredient for the development of functional foods and nutri-cosmetics for obesity prevention. PMID:27752499

  4. Effects of a fatty acid synthase inhibitor on adipocyte differentiation of mouse 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    Li-hong LIU; Xiao-kui WANG; Yuan-dong HU; Jian-lei KANG; Li-li WANG; Song LI

    2004-01-01

    AIM: To investigate the influence of C75, a fatty acid synthase inhibitor, on adipocyte differentiation. METHODS:Mouse 3T3-L1 preadipocytes were induced to differentiation by insulin, isobutylmethylxanthine, and dexamethasone.Oil red O staining was performed and activity of glycerol-3-phosphate dehydrogenase (GPDH) was measured. The level of peroxisome proliferators-activated receptor γ (PPARγ) mRNA was assayed by semi-quantitative reverse transcription PCR. RESULTS: C75 blocked the adipogenic conversion in a dose-dependent manner and the inhibitory effects occurred both in the early phases (48 h) and in the latter phases (8 d) of the process. Treatment with C75 for 8 d induced more decrease in lipid content than 48 h (P<0.01). Treatment with C75 50 mg/L for 48 h or 8 d decreased GPDH activity by 52.8 % and 31.2 % of Vehicle, respectively. Treatment with C75 10-50 mg/L for 48 h or 8 d down-regulated PPARγ mRNA expression compared with control (P<0.01). CONCLUSION: C75 blocked the adipocyte differentiation, which was related with down-regulation of PPARγ mRNA.

  5. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation

    Institute of Scientific and Technical Information of China (English)

    Xing ZHONG; Ling-ling XIU; Guo-hong WEI; Yuan-yuan LIU; Lei SU; Xiao-pei CAO; Yan-bing LI; Hai-peng XIAO

    2011-01-01

    Aim: To investigate the effects of bezafibrate on the proliferation and differentiation of osteoblastic MC3T3-E1 cells, and to determine the signaling pathway underlying the effects.Methods: MC3T3-E1 cells, a mouse osteoblastic cell line, were used. Cell viability and proliferation were examined using MTT assay and colorimetric BrdU incorporation assay, respectively. NO production was evaluated using the Griess reagent. The mRNA expression of ALP, collagen I, osteocalcin, BMP-2, and Runx-2 was measured using real-time PCR. Western blot analysis was used to detect the expression of AMPK and eNOS proteins.Results: Bezafibrate increased the viability and proliferation of MC3T3-E1 cells in a dose- and time-dependent manner. Bezafibrate (100 μmol/L) significantly enhanced osteoblastic mineralization and expression of the differentiation markers ALP, collagen I and osteocalcin. Bezaflbrate (100 μmol/L) increased phosphorylation of AMPK and eNOS, which led to an increase of NO production by 4.08-fold, and upregulating BMP-2 and Runx-2 mRNA expression. These effects could be blocked by AMPK inhibitor compound C (5 μmol/L), or the PPARβ inhibitor GSK0660 (0.5 μmol/L), but not by the PPARa inhibitor MK886 (10 μmol/L). Furthermore, GSK0660, compound C, or N-nitro-L-arginine methyl ester hydrochloride (L-NAME, 1 mmol/L) could reverse the stimulatory effects of bezafibrate (100 pmol/L) on osteoblast proliferation and differentiation, whereas MK886 only inhibited bezafibrate-induced osteoblast prolifera-tion.Conclusion: Bezafibrate stimulates proliferation and differentiation of MC3T3-E1 cells, mainly via a PPARβ-dependent mechanism. The drug might be beneficial for osteoporosis by promoting bone formation.

  6. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings.

    Science.gov (United States)

    Wang, Jiawei; de Boer, Jan; de Groot, Klaas

    2009-09-01

    Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the proliferation and differentiation of mouse osteoblast-like MC3T3-E1 cells. It was found that MC3T3-E1 cells cultured on the biomimetically deposited carbonate apatite coating demonstrated the greatest proliferation rate and the highest differentiation potential. Cells on the biomimetically deposited octacalcium phosphate coating had lower proliferation rate before day 7, but higher after that, than those on the electrolytically deposited carbonate apatite coating. There was no difference on the expression of early differentiation markers, that is, alkaline phosphatase activity and collagen content, between biomimetically deposited octacalcium phosphate and electrolytically deposited carbonate apatite coatings. However, higher expression of late differentiation markers, that is, osteocalcin and bone sialoprotein mRNA, was found on the biomimetically deposited octacalcium phosphate coating on day 14. These results suggest that the difference in in vitro osteoblast cell performance of calcium phosphate coatings might relate to their physicochemical properties. Biomimetic carbonate apatite coating is the most favorable surface for the proliferation and differentiation of MC3T3-E1 cells.

  7. Differentially expressed genes and signalling pathways are involved in mouse osteoblast-like MC3T3-E1 cells exposed to 17-b estradiol

    Institute of Scientific and Technical Information of China (English)

    Zhen-Zhen Shang; Xin Li; Hui-Qiang Sun; Guo-Ning Xiao; Cun-Wei Wang; Qi Gong

    2014-01-01

    Oestrogen is essential for maintaining bone mass, and it has been demonstrated to induce osteoblast proliferation and bone formation. In this study, complementary DNA (cDNA) microarrays were used to identify and study the expression of novel genes that may be involved in MC3T3-E1 cells’ response to 17-b estradiol. MC3T3-E1 cells were inoculated in minimum essential media alpha (a-MEM) cell culture supplemented with 17-b estradiol at different concentrations and for different time periods. MC3T3-E1 cells treated with 1028 mol?L21 17-b estradiol for 5 days exhibited the highest proliferation and alkaline phosphatase (ALP) activity;thus, this group was chosen for microarray analysis. The harvested RNA was used for microarray hybridisation and subsequent real-time reverse transcription polymerase chain reaction (RT-PCR) to validate the expression levels for selected genes. The microarray results were analysed using both functional and pathway analysis. In this study, microarray analysis detected 5 403 differentially expressed genes, of which 1 996 genes were upregulated and 3 407 genes were downregulated, 1 553 different functional classifications were identified by gene ontology (GO) analysis and 53 different pathways were involved based on pathway analysis. Among the differentially expressed genes, a portion not previously reported to be associated with the osteoblast response to oestrogen was identified. These findings clearly demonstrate that the expression of genes related to osteoblast proliferation, cell differentiation, collagens and transforming growth factor beta (TGF-b)-related cytokines increases, while the expression of genes related to apoptosis and osteoclast differentiation decreases, following the exposure of MC3T3-E1 cells to a-MEM supplemented with 17-b estradiol. Microarray analysis with functional gene classification is critical for a complete understanding of complementary intracellular processes. This microarray analysis provides large

  8. Role of 11-beta-hydroxysteroid dehydrogenase type 1 in differentiation of 3T3-L1 cells and in rats with diet-induced obesity

    Institute of Scientific and Technical Information of China (English)

    Yun LIU; Wen-lan SUN; Yan SUN; Gang HU; Guo-xian DING

    2006-01-01

    Aim: To observe the roles of 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in in vitro preadipocyte differentiation and in rats with diet-induced obesity (DIO). Methods: Protein expression of 11β-HSD1 in the process of 3T3-L1 cell differentiation and in various tissues of the rats were detected by Western blot analysis; expression of 11β-HSD1 mRNA and glucocorticoid receptor (GR) and other marker genes of preadipocyte differentiation were detected by using real-time PCR. Results: Lipid droplets in 3T3-L1 cells accumulated and increased after stimulation. A dramatically elevated protein level of 11β-HSD1, especially in the late stages of 3T3-L1 cell differentiation, was detected. The relative mRNA levels of 11β-HSD1, GR and cell differentiation markers LPL, aP2, and FAS were upregulated, and Pref-1 was downregulated during the differentiation. In DIO rats, bodyweight, visceral adipose mass index and the protein expression of 11β-HSD1 increased, especially in adipose tissue, brain and muscles. Serum insulin, triglyceride, total cholesterol and 1oW-density lipoprotein cholesterol were found to be increased in DIO rats, but without any obvious changes in blood glucose or tumor necrosis factor-αlevels. Conclusion: 11β-HSD1 may promote preadipocyte differentiation, and may be involved in the development of obesity.

  9. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    Science.gov (United States)

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.

  10. Effect of fibroblast growth factor 9 on Runx2 gene promoter activity in MC3T3-E1 and C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    YU Li-yun; PEI Yu; XIA Wei-bo; XING Xiao-ping; MENG Xun-wu; ZHOU Xue-ying

    2007-01-01

    Background Fibroblast growth factor 9 (FGF9), expressed in brain, kidney and developing skeletal tissues, can physiologically inhibit endochondral ossification; but little is known about how FGF9 affects osteoblasts and its detailed regulatory mechanism. Here we examined the effect of FGF9 on the activity of the murine Runt-related transcription factor2 (Runx2) gene promoter in preosteoblast MC3T3-E1 and premyoblast C2C12 cells.Methods Plasmids containing the Runx2 promoter region were transfected into MC3T3-E1 and C2C12 cells and stably transfected cell lines were established. The method of luciferase reporter gene activation was used to examine the effects of FGF9 on the promoter activity.Results FGF9 (10 ng/ml) increased Runx2 promoter activity in MC3T3-E1 cells. When MC3T3-E1 cells were treated with FGF9 plus the various inhibitors or activator of the intracellular signaling transducation pathways, including 10μmol/L U0126 (the inhibitor of mitogen-activated protein kinase kinase), 10 μmol/L SB203580 (the inhibitor of p38/mitogen activated protein kinase), or 1 μmol/L C6 ceramide (an activator of mitogen activated protein kinase), the luciferase expression did not change significantly compared with that of the cells treated with FGF9 only. However, when C2C12 cells were treated with 10 ng/ml FGF9, Runx2 gene promoter activity first decreased and then increased over a period of 1 to 5 days. Among the above inhibitors, only U0126 (10 μmol/L) completely blocked the effects of FGF9 on Runx2 gene promoter activity.Conclusions Our data showed that FGF9 can affect Runx2 gene promoter activity in MC3T3-E1 and C2C12 cells. The action of FGF9 appears to depend partly on the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathways in C2C12 cells.

  11. Influence of Mechanical Force on Bone Matrix Proteins in Ovariectomised Mice and Osteoblast-like MC3T3-E1 Cells

    Science.gov (United States)

    ZHANG, MENG; ISHIKAWA, SHINTARO; INAGAWA, TOMOKO; IKEMOTO, HIDESHI; GUO, SHIYU; SUNAGAWA, MASATAKA; HISAMITSU, TADASHI

    2017-01-01

    Aim: To investigate the effect of mechanical stress on periostin and semaphorin-3A expression in a murine model of postmenopausal osteoporosis and in osteoblast-like MC3T3-E1 cells. Materials and Methods: Female mice were divided into three groups and treated with a sham operation, ovariectomy (OVX) or OVX plus treadmill training (OVX+Run). After 10 weeks, tibias were used for histological analysis. MC3T3-E1 cells were burdened by mechanical stress using a centrifuge or were treated with periostin, and the production of biologically-active semaphorin-3A was examined in vitro. Results: In OVX+Run group tibias, the number of tartrate-resistant acid phosphatase-positive osteoclasts was lower than in the OVX group, and the expression of periostin and semaphorin-3A was higher. In MC3T3-E1 cells, centrifugal stress significantly increased periostin and semaphorin-3A mRNA expression. Treatment with periostin increased the semaphorin-3A level. Conclusion: We speculate that mechanical load may increase periostin production in osteoblasts, and periostin may inhibit osteoclast differentiation by its effects on semaphorin-3A. Our results support the concept of a positive correlation between exercise and inhibition of osteoclasts in post-menopausal osteoporosis. PMID:28064225

  12. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsin-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu 912, Pingtung, Taiwan (China); Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China)

    2010-10-15

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPAR{gamma} (peroxisome proliferator-activated receptor {gamma}), C/EBP{alpha} (CCAAT/enhancer-binding protein {alpha}), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by {alpha}-naphthoflavone ({alpha}-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  13. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells

    Directory of Open Access Journals (Sweden)

    Chan Wai-Yee

    2006-06-01

    Full Text Available Abstract Background TSPY is a repeated gene mapped to the critical region harboring the gonadoblastoma locus on the Y chromosome (GBY, the only oncogenic locus on this male-specific chromosome. Elevated levels of TSPY have been observed in gonadoblastoma specimens and a variety of other tumor tissues, including testicular germ cell tumors, prostate cancer, melanoma, and liver cancer. TSPY contains a SET/NAP domain that is present in a family of cyclin B and/or histone binding proteins represented by the oncoprotein SET and the nucleosome assembly protein 1 (NAP1, involved in cell cycle regulation and replication. Methods To determine a possible cellular function for TSPY, we manipulated the TSPY expression in HeLa and NIH3T3 cells using the Tet-off system. Cell proliferation, colony formation assays and tumor growth in nude mice were utilized to determine the TSPY effects on cell growth and tumorigenesis. Cell cycle analysis and cell synchronization techniques were used to determine cell cycle profiles. Microarray and RT-PCR were used to investigate gene expression in TSPY expressing cells. Results Our findings suggest that TSPY expression increases cell proliferation in vitro and tumorigenesis in vivo. Ectopic expression of TSPY results in a smaller population of the host cells in the G2/M phase of the cell cycle. Using cell synchronization techniques, we show that TSPY is capable of mediating a rapid transition of the cells through the G2/M phase. Microarray analysis demonstrates that numerous genes involved in the cell cycle and apoptosis are affected by TSPY expression in the HeLa cells. Conclusion These data, taken together, have provided important insights on the probable functions of TSPY in cell cycle progression, cell proliferation, and tumorigenesis.

  14. Stimulation by 1,25-dihydroxyvitamin D3 of in vitro mineralization induced by osteoblast-like MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T.; Igarashi, C.; Takeuchi, Y.; Harada, S.; Kikuchi, T.; Yamato, H.; Ogata, E. (Fourth Department of Internal Medicine, University of Tokyo School of Medicine (Japan))

    1991-01-01

    Although vitamin D is essential for mineralization of bone, it is as yet unclear whether vitamin D has a direct stimulatory effect on the bone mineralization process. In the present study, the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on in vitro mineralization mediated by osteoblast-like MC3T3-E1 cells was examined. MC3T3-E1 cells continued to grow after they reached confluency, and DNA content and alkaline phosphatase activity increased linearly until about 16 days of culture, whereas 45Ca accumulation into cell and matrix layer remained low. After this period, DNA content plateaued, and 45Ca accumulation increased sharply. Histological examination by von Kossa staining revealed that calcium was accumulated into extracellular matrix. In addition, needle-shaped mineral crystals similar to hydroxyapatite crystals could be demonstrated in between collagen fibrils by electron microscopy. Thus, MC3T3-E1 cells differentiate in vitro into cells with osteoblastic phenotype and exhibit mineralization. When MC3T3-E1 cells were treated with 1,25(OH)2D3 at this stage of culture, there was a dose-dependent stimulation of 45Ca accumulation by 1,25(OH)2D3, and a significant stimulation of 45Ca accumulation was observed with 3 x 10(-10) M 1,25(OH)2D3. Although 1,25(OH)2D3 enhanced alkaline phosphatase activity and collagen synthesis at the early phase of culture, it did not affect any of these parameters at the late phase when 1,25(OH)2D3 stimulated mineralization. Neither 24,25-dihydroxyvitamin D3 nor human PTH(1-34) affected mineralization in the presence or absence of 1,25(OH)2D3. These results demonstrate that 1,25(OH)2D3 stimulates matrix mineralization induced by osteoblastic MC3T3-E1 cells, and are consistent with the possibility that 1,25(OH)2D3 has a direct stimulatory effect on bone mineralization process.

  15. Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase.

    Science.gov (United States)

    Li, Shuijie; Bouzar, Célia; Cottet-Rousselle, Cécile; Zagotta, Ivana; Lamarche, Frédéric; Wabitsch, Martin; Tokarska-Schlattner, Malgorzata; Fischer-Posovszky, Pamela; Schlattner, Uwe; Rousseau, Denis

    2016-06-01

    Resveratrol is attracting much interest because of its potential to decrease body weight and increase life span, influencing liver and muscle function by increasing mitochondrial mass and energy expenditure. Even though resveratrol was already shown to reduce the adipose tissue mass in animal models, its effects on mitochondrial mass and network structure in adipocytes have not yet been studied. For this purpose, we investigated the effect of resveratrol on mitochondrial mass increase and remodeling during adipogenic differentiation of two in vitro models of adipocyte biology, the murine 3T3-L1 cell line and the human SGBS cell strain. We confirm that resveratrol inhibits lipogenesis in differentiating adipocytes, both mouse and human. We further show that this is linked to inhibition of the normally observed mitochondrial mass increase and mitochondrial remodeling. At the molecular level, the anti-lipogenic effect of resveratrol seems to be mediated by a blunted expression increase and an inhibition of acetyl-CoA carboxylase (ACC). This is one of the consequences of an inhibited insulin-induced signaling via Akt, and maintained signaling via AMP-activated protein kinase. The anti-lipogenic effect of resveratrol is further modulated by expression levels of mitochondrial ATAD3, consistent with the emerging role of this protein as an important regulator of mitochondrial biogenesis and lipogenesis. Our data suggest that resveratrol acts on differentiating preadipocytes by inhibiting insulin signaling, mitochondrial biogenesis, and lipogenesis, and that resveratrol-induced reduction of mitochondrial biogenesis and lipid storage contribute to adipose tissue weight loss in animals and humans.

  16. Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways.

    Science.gov (United States)

    Jang, Yeon Jeong; Koo, Hyun Jung; Sohn, Eun-Hwa; Kang, Se Chan; Rhee, Dong-Kwon; Pyo, Suhkneung

    2015-07-01

    Obesity is characterized by hypertrophy and/or by the differentiation or adipogenesis of pre-existing adipocytes. In this study, we investigated the inhibitory effects of theobromine, a type of alkaloid in cocoa, on adipocyte differentiation of 3T3-L1 preadipocytes and its mechanisms of action. Theobromine inhibited the accumulation of lipid droplets, the expression of PPARγ and C/EBPα, and the mRNA expression of aP2 and leptin. The inhibition of adipogenic differentiation by theobromine occurred primarily in the early stages of differentiation. In addition, theobromine arrested the cell cycle at the G0/G1 phase and regulated the expressions of CDK2, p27, and p21. Theobromine treatment increased AMPK phosphorylation and knockdown of AMPKα1/α2 prevented the ability of theobromine to inhibit PPARγ expression in the differentiating 3T3-L1 cells. Theobromine reduced the phosphorylation of ERK and JNK. Moreover, the secretion and the mRNA level of TNF-α and IL-6 were inhibited by theobromine treatment. These data suggest that theobromine inhibits adipocyte differentiation during the early stages of adipogenesis by regulating the expression of PPARγ and C/EBPα through the AMPK and ERK/JNK signaling pathways in 3T3-L1 preadipocytes.

  17. The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Han Yunkyung

    2012-09-01

    Full Text Available Abstract Background Type 2 diabetes (T2D is a complex metabolic disorder characterized by insulin resistance and hyperglycemia. Peroxisome proliferator-activated receptor gamma (PPARγ is a key transcription factor and plays an important role in the regulation of genes involved in adipogenic differentiation, glucose metabolism and insulin signal transduction. Methods In this study, the effects of the root extract of Atractylodes japonica Koidzumi (Atractylodis Rhizoma Alba, ARA on the differentiation of 3T3-L1 preadipocytes and the possible mechanism of glucose transport were investigated. 3T3-L1 cells were cultured with insulin and ARA extract. Results In 3T3-L1 cells, ARA extract significantly enhanced adipogenic differentiation and upregulated the expression of PPARγ genes and protein in a dose-dependent manner. ARA also promoted glucose transport by increasing the glucose transporter 4 (GLUT-4, phosphatidylinositol 3-kinase (PI3K and insulin receptor substrates-1 (IRS-1 levels. Conclusion Our results suggest that ARA extract may be an attractive therapeutic agent for managing T2D via promoting the differentiation of adipocytes with the upregulation of PPARγ levels and the activation of the insulin signaling pathway.

  18. Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells.

    Science.gov (United States)

    Maldonado-Cervantes, Enrique; Jeong, Hyung Jin; León-Galván, Fabiola; Barrera-Pacheco, Alberto; De León-Rodríguez, Antonio; González de Mejia, Elvira; de Lumen, Ben O; Barba de la Rosa, Ana P

    2010-09-01

    Because an unbalanced diet is an important risk factor for several illnesses, interest has increased in finding novel health-promoting foods. Amaranth produces seeds that not only have substantial nutritional properties but that also contain phytochemical compounds as rutin and nicotiflorin and peptides with antihypertensive and anticarcinogenic activities. We report that a cancer-preventive peptide in amaranth has activities similar to those of soybean lunasin. The amaranth lunasin-like peptide, however, requires less time than the soybean lunasin to internalize into the nucleus of NIH-3T3 cells, and inhibits histone acetylation (H(3) and H(4) in a 70 and 77%, respectively). The amaranth lunasin-like peptide inhibited the transformation of NIH-3T3 cells to cancerous foci. The open reading frame (ORF) of amaranth lunasin corresponds to a bifunctional inhibitor/lipid-transfer protein (LTP). LTPs are a family of proteins that in plants are implicated in different functions, albeit all linked to developmental processes and biotic and abiotic stress resistance. Our results open new intriguing questions about the function of lunasin in plants and support that amaranth is a food alternative containing natural peptides with health-promoting benefits.

  19. Phenotypic and genotypic characteristics of novel mouse cell line (NIH/3T3)-adapted human enterovirus 71 strains (EV71:TLLm and EV71:TLLmv).

    Science.gov (United States)

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chow, Vincent T K; Chua, Kaw Bing

    2014-01-01

    Since its identification in 1969, Enterovirus 71 (EV71) has been causing periodic outbreaks of infection in children worldwide and most prominently in the Asia-Pacific Region. Understanding the pathogenesis of Enterovirus 71 (EV71) is hampered by the virus's inability to infect small animals and replicate in their derived in vitro cultured cells. This manuscript describes the phenotypic and genotypic characteristics of two selected EV71 strains (EV71:TLLm and EV71:TLLmv), which have been adapted to replicate in mouse-derived NIH/3T3 cells, in contrast to the original parental virus which is only able to replicate in primate cell lines. The EV71:TLLm strain exhibited productive infection in all primate and rodent cell lines tested, while EV71:TLLmv exhibited greater preference for mouse cell lines. EV71:TLLmv displayed higher degree of adaptation and temperature adaptability in NIH/3T3 cells than in Vero cells, suggesting much higher fitness in NIH/3T3 cells. In comparison with the parental EV71:BS strain, the adapted strains accumulated multiple adaptive mutations in the genome resulting in amino acid substitutions, most notably in the capsid-encoding region (P1) and viral RNA-dependent RNA polymerase (3D). Two mutations, E167D and L169F, were mapped to the VP1 canyon that binds the SCARB2 receptor on host cells. Another two mutations, S135T and K140I, were located in the VP2 neutralization epitope spanning amino acids 136-150. This is the first report of human EV71 with the ability to productively infect rodent cell lines in vitro.

  20. Phenotypic and genotypic characteristics of novel mouse cell line (NIH/3T3-adapted human enterovirus 71 strains (EV71:TLLm and EV71:TLLmv.

    Directory of Open Access Journals (Sweden)

    Carla Bianca Luena Victorio

    Full Text Available Since its identification in 1969, Enterovirus 71 (EV71 has been causing periodic outbreaks of infection in children worldwide and most prominently in the Asia-Pacific Region. Understanding the pathogenesis of Enterovirus 71 (EV71 is hampered by the virus's inability to infect small animals and replicate in their derived in vitro cultured cells. This manuscript describes the phenotypic and genotypic characteristics of two selected EV71 strains (EV71:TLLm and EV71:TLLmv, which have been adapted to replicate in mouse-derived NIH/3T3 cells, in contrast to the original parental virus which is only able to replicate in primate cell lines. The EV71:TLLm strain exhibited productive infection in all primate and rodent cell lines tested, while EV71:TLLmv exhibited greater preference for mouse cell lines. EV71:TLLmv displayed higher degree of adaptation and temperature adaptability in NIH/3T3 cells than in Vero cells, suggesting much higher fitness in NIH/3T3 cells. In comparison with the parental EV71:BS strain, the adapted strains accumulated multiple adaptive mutations in the genome resulting in amino acid substitutions, most notably in the capsid-encoding region (P1 and viral RNA-dependent RNA polymerase (3D. Two mutations, E167D and L169F, were mapped to the VP1 canyon that binds the SCARB2 receptor on host cells. Another two mutations, S135T and K140I, were located in the VP2 neutralization epitope spanning amino acids 136-150. This is the first report of human EV71 with the ability to productively infect rodent cell lines in vitro.

  1. Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release.

    Science.gov (United States)

    Yao, Qingqing; Li, Wei; Yu, Shanshan; Ma, Liwei; Jin, Dayong; Boccaccini, Aldo R; Liu, Yong

    2015-11-01

    Novel chitosan-polyvinyl pyrrolidone/45S5 Bioglass® (CS-PVP/BG) scaffolds were prepared via foam replication and chemical cross-linking techniques. The pristine BG, CS-PVP coated BG and genipin cross-linked CS-PVP/BG (G-CS-PVP/BG) scaffolds were synthesized and characterized in terms of chemical composition, physical structure and morphology respectively. Resistance to enzymatic degradation of the scaffold is improved significantly with the use of genipin cross-linked CS-PVP. The bio-effects of scaffolds on MC3T3-E1 osteoblast-like cells were evaluated by studying cell viability, adhesion and proliferation. The CCK-8 assay shows that cell viability on the resulting G-CS-PVP/BG scaffold is improved obviously after cross-linking of genipin. Cell skeleton images exhibit that well-stretched F-actin bundles are obtained on the G-CS-PVP/BG scaffold. SEM results present significant improvement on the cell adhesion and proliferation for cells cultured on the G-CS-PVP/BG scaffold. The drug release performance on the as-synthesized scaffold was studied in a phosphate buffered saline (PBS) solution. Vancomycin is found to be released in burst fashion within 24h from the pristine BG scaffold, however, the release period from the G-CS-PVP/BG scaffold is enhanced to 7days, indicating improved drug release properties of the G-CS-PVP/BG scaffold. Our results suggest that the G-CS-PVP/BG scaffolds possess promising physicochemical properties, sustained drug release capability and good biocompatibility for MC3T3-E1 cells' proliferation and adhesion, suggesting their potential applications in areas such as MC3T3-E1 cell stimulation and bone tissue engineering.

  2. Study on the Effects of Genistein on the Transformation of BALB/c-3T3 Cells%三羟异黄酮对BALB/c-3T3细胞的转化作用

    Institute of Scientific and Technical Information of China (English)

    王李伟; 仲伟鉴; 应贤平; 周永贵; 周祥凤

    2005-01-01

    背景与目的:研究三羟异黄酮(GEN,Genistein)在体外细胞转化中的作用.材料与方法:用改进的BALB/c-3T3细胞转化方法观察GEN组、B[a]P(10 μmol/L)+GEN组以及MCA(3-甲基胆蒽,0.2 μg/ml)+TPA(豆蔻酸乙酸大戟二萜酯,0.1 μg/ml)+GEN组中细胞转化的情况,同时测定突变型P53蛋白及PTK(酪氨酸蛋白激酶)的活性.每个组别GEN设4个剂量,分别是10、30、90、270 μmol/L.结果:与对照组相比,GEN≥30 μmol/L剂量组细胞转化率升高,GEN(30 μmol/L)+ B[a]P(10 μmol/L)细胞转化率高于B[a]P组,发生转化的细胞中突变型P53值升高.然而,在MCA+TPA模式下,30 μmol/L以上GEN抑制MCA+TPA诱导的细胞转化,PTK值随GEN升高而下降.结论:在不同模式下GEN的效应不同.GEN有诱导细胞恶性转化的作用,但在一定条件下又可抑制细胞恶性转化.

  3. Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Qingqing [Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Li, Wei [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058 (Germany); Yu, Shanshan; Ma, Liwei [Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Jin, Dayong [Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007 (Australia); Advanced Cytometry Labs, ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109 (Australia); Boccaccini, Aldo R., E-mail: Aldo.Boccaccini@ww.uni-erlangen.de [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058 (Germany); Liu, Yong, E-mail: yongliu1980@hotmail.com [Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Advanced Cytometry Labs, ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109 (Australia)

    2015-11-01

    Novel chitosan–polyvinyl pyrrolidone/45S5 Bioglass® (CS-PVP/BG) scaffolds were prepared via foam replication and chemical cross-linking techniques. The pristine BG, CS-PVP coated BG and genipin cross-linked CS-PVP/BG (G-CS-PVP/BG) scaffolds were synthesized and characterized in terms of chemical composition, physical structure and morphology respectively. Resistance to enzymatic degradation of the scaffold is improved significantly with the use of genipin cross-linked CS-PVP. The bio-effects of scaffolds on MC3T3-E1 osteoblast-like cells were evaluated by studying cell viability, adhesion and proliferation. The CCK-8 assay shows that cell viability on the resulting G-CS-PVP/BG scaffold is improved obviously after cross-linking of genipin. Cell skeleton images exhibit that well-stretched F-actin bundles are obtained on the G-CS-PVP/BG scaffold. SEM results present significant improvement on the cell adhesion and proliferation for cells cultured on the G-CS-PVP/BG scaffold. The drug release performance on the as-synthesized scaffold was studied in a phosphate buffered saline (PBS) solution. Vancomycin is found to be released in burst fashion within 24 h from the pristine BG scaffold, however, the release period from the G-CS-PVP/BG scaffold is enhanced to 7 days, indicating improved drug release properties of the G-CS-PVP/BG scaffold. Our results suggest that the G-CS-PVP/BG scaffolds possess promising physicochemical properties, sustained drug release capability and good biocompatibility for MC3T3-E1 cells' proliferation and adhesion, suggesting their potential applications in areas such as MC3T3-E1 cell stimulation and bone tissue engineering. - Highlights: • Novel genipi–chitosan–polyvinyl pyrrolidone/45S5 Bioglass® scaffolds are prepared. • Resistance to enzymatic degradation of the scaffold is improved significantly. • The resulting scaffold shows enhanced MC3T3-E1 cell adhesion and proliferation. • Release of antibiotic vancomycin from the

  4. Carbonated apatites obtained by the hydrolysis of monetite: influence of carbonate content on adhesion and proliferation of MC3T3-E1 osteoblastic cells.

    Science.gov (United States)

    Pieters, Ilse Y; Van den Vreken, Natasja M F; Declercq, Heidi A; Cornelissen, Maria J; Verbeeck, Ronald M H

    2010-04-01

    The influence of the carbonate content in apatites on the adhesion and the proliferation of MC3T3-E1 osteoblastic cells was investigated. B-type carbonated apatites (DCAps) were prepared by the hydrolysis of monetite (CaHPO(4), DCP) in solutions with a carbonate concentration ranging from 0.001 to 0.075 mol l(-1). Stoichiometric hydroxyapatite (DCAp0) was synthesized in carbonate-free solution. MC3T3-E1 cells were seeded on the compacted DCAps and cell adhesion and proliferation were analysed after 24h and 7 days, respectively, using a MTS assay and fluorescence microscopy. Cell adhesion tends to increase with increasing carbonate content for carbonate contents between 0 and 6.9 wt.% and levels out to an acceptable value (+ or - 50% compared to the control) for carbonate contents between 6.9 and 16.1 wt.%. Only DCAps with a carbonate content equal to or higher than 11% support high cell proliferation comparable to the control. On the latter DCAps, the cells have a spread morphology and form a near-confluent layer. A decrease in charge density and crystallinity at the apatite surface, as well as the formation of more spheroidal crystals with increasing carbonate content, might attribute to changes in composition and three-dimensional structure of the protein adsorption layer and hence to the observed cell behaviour. Consequently, only DCAps with a high carbonate content, mimicking early in vivo mineralization, are possible candidates for bone regeneration.

  5. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells.

    Science.gov (United States)

    Brown, Roger F; Rahaman, Mohamed N; Dwilewicz, Agatha B; Huang, Wenhai; Day, Delbert E; Li, Yadong; Bal, B Sonny

    2009-02-01

    Glasses containing varying amounts of B(2)O(3) were prepared by partially or fully replacing the SiO(2) in silicate 45S5 bioactive glass with B(2)O(3). The effects of the B(2)O(3) content of the glass on its conversion to hydroxyapatite (HA) and on the proliferation of MC3T3-E1 cells were investigated in vitro. Conversion of the glasses to HA in dilute (20 mM) K(2)HPO(4) solution was monitored using weight loss and pH measurements. Proliferation of MC3T3-E1 cells was determined qualitatively by assay of cell density at the glass interface after incubation for 1 day and 3 days, and quantitatively by fluorescent measurements of total DNA in cultures incubated for 4 days. Higher B(2)O(3) content of the glass increased the conversion rate to HA, but also resulted in a greater inhibition of cell proliferation under static culture conditions. For a given mass of glass in the culture medium, the inhibition of cell proliferation was alleviated by using glasses with lower B(2)O(3) content, by incubating the cell cultures under dynamic rather than static conditions, or by partially converting the glass to HA prior to cell culture.

  6. miRNA expression profile during fluid shear stress-induced osteogenic differentiation in MC3T3-E1 cells

    Institute of Scientific and Technical Information of China (English)

    MAI Zhi-hui; PENG Zhu-li; ZHANG Jing-lan; CHEN Lin; LIANG Huan-you; CAI Bin; AI Hong

    2013-01-01

    Background Mechanical stress plays an important role in the maintenance of bone homeostasis.Current hypotheses suggest that interstitial fluid flow is an important component of the system by which tissue level strains are amplified in bone.This study aimed to test the hypothesis that the short-term and appropriate fluid shear stress (FSS) is expected to promote the terminal differentiation of pre-osteoblasts and detect the expression profile of microRNAs in the FSS-induced osteogenic differentiation in MC3T3-E1 cells.Methods MC3T3-E1 cells were subjected to 1 hour of FSS at 12 dyn/cm2 using a parallel plate flow system.After FSS treatment,cytoskeleton immunohistochemical staining and microRNAs (miRNAs) were detected immediately.Osteogenic gene expression and immunohistochemical staining for collagen type Ⅰ were tested at the 24th hour after treatment,alkaline phosphatase (ALP) activity assay was performed at 24th,48th,and 72th hours after FSS treatment,and Alizarin Red Staining was checked at day 12.Results One hour of FSS at 12 dyn/cm2 induced actin stress fiber formation and rearrangement,up-regulated osteogenic gene expression,increased ALP activity,promoted synthesis and secretion of type Ⅰ collagen,enhanced nodule formation,and promoted terminal differentiation in MC3T3-E1 cells.During osteogenic differentiation,expression levels of miR-20a,-21,-19b,-34a,-34c,-140,and-200b in FSS-induced cells were significantly down-regulated.Conclusion The short-term and appropriate FSS is sufficient to promote terminal differentiation of pre-osteoblasts and a group of miRNAs may be invovled in FSS-induced pre-osteoblast differentiation.

  7. Expression of discoidin domain receptor 2 (DDR2) extracellular domain in pichia pastoris and functional analysis in synovial fibroblasts and NIT3T3 cells.

    Science.gov (United States)

    Zhang, Wei; Ding, Tianbing; Zhang, Jian; Su, Jin; Li, Fuyang; Liu, Xinping; Ma, Wenyu; Yao, Libo

    2006-10-01

    Discoidin domain receptor 2 (DDR2) is a kind of protein tyrosine kinases associated with cell proliferation and tumor metastasis, and collagen, identified as a ligand for DDR2, up-regulates matrix metallloproteinase 1 (MMP-1) and MMP-2 expression in cellular matrix. To investigate the roles of DDR2 in destruction of cartilage in rheumatoid arthritis (RA) and tumor metastasis, we tried to express extracellular domain of DDR2 fused with a His tag to increase protein solubility and facilitate purification (without signal peptide and transmembrane domain, designated DR) in Pichia pastoris, purify the expressed protein, and characterize its function, for purpose of future application as a specific DDR2 antagonist. Two clones of relative high expression of His-DR were obtained. After purification by a Ni-NTA (nitric-tri-acetic acid) chromatographic column, soluble fused His-DR over 90% purity were obtained. Competitive binding inhibition assay demonstrated that expressed His-DR could block the binding of DDR2 and natural DDR2 receptors on NIT3T3 and synovial cell surfaces. Results of RT-PCR, Western blotting, and gelatinase zymography showed that His-DR was capable of inhibiting MMP-1 and MMP-2 secretion from NIT3T3 cells and RA synoviocytes stimulated by collagen II. For MMP-1, the inhibitory effect was displayed at the levels of mRNA and protein, whereas for MMP-2 it was demonstrated at the level of protein physiological activity. All these findings suggested that the fused expressed His-DR inhibited the activity of natural DDR2, and relevant MMP-1 and MMP-2 expression in synoviocytes and NIH3T3 cells provoked by collagen II.

  8. Protective Effects of Cerium Oxide Nanoparticles on MC3T3-E1 Osteoblastic Cells Exposed to X-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    Cuifen Wang

    2016-04-01

    Full Text Available Background/Aims: Exposure to ionizing radiation can result in bone damage, including decreased osteocyte number and suppressed osteoblastic activity. However, molecular mechanisms remain to be elucidated, and effective prevention strategies are still limited. This study was to investigate whether cerium oxide nanoparticles (CeO2 NP can protect MC3T3-E1 osteoblast-like cells from damaging effects of X-ray irradiation, and to study the underpinning mechanism(s. Methods: MC3T3-E1, a osteoblast-like cell line, was exposed to X-ray irradiation and treated with different concentration of CeO2 nanoparticles. The micronucleus frequency was counted under a fluorescence microscope. Cell viability was evaluated using MTT assay. The effects of irradiation and CeO2 nanoparticles on alkaline phosphatase activity and MC3T3-E1 mineralization were further assayed. Results: We found that the ratio of micronuclei to binuclei was dose-dependently increased with X-ray irradiation (from 2 to 6 Gy, but diminished with the increased concentration of CeO2 NP treatment (from 50 to 100 nM. Exposure to X-rays (6 Gy decreased cell viability, differentiation and the mineralization, but CeO2 NP treatment (100 nM attenuated the deteriorative effects of irradiation. Both intracellular reactive oxygen species (ROS production and extracellular H2O2 concentration were increased after X-ray irradiation, but reduced following CeO2 NP treatment. Similar to irradiation, exposure to H2O2 (10 µM elevated the frequency of micronuclei and diminished cell viability and mineralization, while these changes were ameliorated following CeO2 NP treatment. Conclusions: Taken together, our findings suggest that CeO2 nanoparticles exhibit astonishing protective effects on irradiation-induced osteoradionecrosis in MC3T3-E1 cells, and the protective effects appear to be mediated, at least partially, by reducing oxidative stress.

  9. A Quantified Ginseng (Panax ginseng C.A. Meyer Extract Influences Lipid Acquisition and Increases Adiponectin Expression in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Chia-Rou Yeo

    2011-01-01

    Full Text Available A Panax ginseng extract (PGE with a quantified amount of ginsenosides was utilized to investigate its potential to inhibit proliferation, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Seven fingerprint ginsenosides were quantified using high performance liquid chromatography and their respective molecular weights were further confirmed via LC-ESI-MS analysis from four different extraction methods. Extraction using methanol under reflux produced significantly higher amounts of ginsenosides. The methanol extract consisted of Rg1 (47.40 ± 4.28 mg/g, dry weight of extract, Re (61.62 ± 5.10 mg/g, Rf (6.14 ± 0.28 mg/g, Rb1 (21.73 ± 1.29 mg/g, Rc (78.79 ± 4.15 mg/g, Rb2 (56.80 ± 3.79 mg/g, Rd (5.90 ± 0.41 mg/g. MTT analysis showed that PGE had a concentrationdependent cytotoxic effect on 3T3-L1 preadipocyte and the LC50 value was calculated to be 18.2 ± 5 μg/mL. Cell cycle analysis showed minimal changes in all four phases. Differentiating adipocytes treated with ginseng extract had a visible decrease in lipid droplets formation measured by Oil red O staining. Consequently, triglycerides levels in media significantly (P < 0.05 decreased by 39.5% and 46.1% when treated at concentrations of 1 μg/mL and 10 μg/mL compared to untreated control cells. Western blot analysis showed that the adiponectin protein expression was significantly (P < 0.05 increased at 10 μg/mL, but not at 1 μg/mL. A quantified PGE reduced the growth of 3T3-L1 cells, down-regulated lipid accumulation and up-regulated adiponectin expression in the 3T3-L1 adipocyte cell model.

  10. Dynamics of Actin Stress Fibers and Focal Adhesions during Slow Migration in Swiss 3T3 Fibroblasts: Intracellular Mechanism of Cell Turning

    Directory of Open Access Journals (Sweden)

    Michiko Sugawara

    2016-01-01

    Full Text Available To understand the mechanism regulating the spontaneous change in polarity that leads to cell turning, we quantitatively analyzed the dynamics of focal adhesions (FAs coupling with the self-assembling actin cytoskeletal structure in Swiss 3T3 fibroblasts. Fluorescent images were acquired from cells expressing GFP-actin and RFP-zyxin by laser confocal microscopy. On the basis of the maximum area, duration, and relocation distance of FAs extracted from the RFP-zyxin images, the cells could be divided into 3 regions: the front region, intermediate lateral region, and rear region. In the intermediate lateral region, FAs appeared close to the leading edge and were stabilized gradually as its area increased. Simultaneously, bundled actin stress fibers (SFs were observed vertically from the positions of these FAs, and they connected to the other SFs parallel to the leading edge. Finally, these connecting SFs fused to form a single SF with matured FAs at both ends. This change in SF organization with cell retraction in the first cycle of migration followed by a newly formed protrusion in the next cycle is assumed to lead to cell turning in migrating Swiss 3T3 fibroblasts.

  11. The fast track to canonical Wnt signaling in MC3T3-E1 cells protected by substance P against serum deprivation-induced apoptosis.

    Science.gov (United States)

    Yang, Jianguo; Nie, Jiping; Fu, Su; Liu, Song; Wu, Jianqun; Cui, Liang; Zhang, Yongtao; Yu, Bin

    2017-01-01

    The canonical Wnt pathway is vital to bone physiology by increasing bone mass through elevated osteoblast survival. Although investigated extensively in stem cells, its role in osteoblastic MC3T3-E1 cells has not been completely determined. To explore how this pathway is regulated by different conditions, we assessed the anti-apoptotic effects of substance P on the canonical Wnt pathway in MC3T3-E1 cells by treating cells with serum deprivation or serum starving with "substance P," a neuropeptide demonstrated to promote bone growth and stimulate Wnt signaling. The results showed that serum deprivation both induced apoptosis and activated Wnt signal transduction while substance P further stimulated the Wnt pathway via the NK-1 receptor but protected the cells from apoptotic death. Fast-tracking of Wnt signaling by substance P was also noted. These results indicate that nutritional deprivation and substance P synergistically activated the canonical Wnt pathway, a finding that helps to reveal the role of Wnt signaling in bone physiology affected by nutritional deprivation and neuropeptide substance P.

  12. Substance P Activates the Wnt Signal Transduction Pathway and Enhances the Differentiation of Mouse Preosteoblastic MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Gang Mei

    2014-04-01

    Full Text Available Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M. To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1 antagonists and Dickkopf-1 (DKK1 and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2, were measured using quantitative polymerase chain reaction (PCR. Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M significantly up-regulated the expressions of osteoblastic genes. SP (10−8 M also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1, as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10−8 M promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway.

  13. Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells.

    Science.gov (United States)

    An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong

    2015-01-01

    Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn't change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein.

  14. Interactions between spider silk and cells--NIH/3T3 fibroblasts seeded on miniature weaving frames.

    Directory of Open Access Journals (Sweden)

    Joern W Kuhbier

    Full Text Available BACKGROUND: Several materials have been used for tissue engineering purposes, since the ideal matrix depends on the desired tissue. Silk biomaterials have come to focus due to their great mechanical properties. As untreated silkworm silk has been found to be quite immunogenic, an alternative could be spider silk. Not only does it own unique mechanical properties, its biocompatibility has been shown already in vivo. In our study, we used native spider dragline silk which is known as the strongest fibre in nature. METHODOLOGY/PRINCIPAL FINDINGS: Steel frames were originally designed and manufactured and woven with spider silk, harvesting dragline silk directly out of the animal. After sterilization, scaffolds were seeded with fibroblasts to analyse cell proliferation and adhesion. Analysis of cell morphology and actin filament alignment clearly revealed adherence. Proliferation was measured by cell count as well as determination of relative fluorescence each after 1, 2, 3, and 5 days. Cell counts for native spider silk were also compared with those for trypsin-digested spider silk. Spider silk specimens displayed less proliferation than collagen- and fibronectin-coated cover slips, enzymatic treatment reduced adhesion and proliferation rates tendentially though not significantly. Nevertheless, proliferation could be proven with high significance (p<0.01. CONCLUSION/SIGNIFICANCE: Native spider silk does not require any modification to its application as a biomaterial that can rival any artificial material in terms of cell growth promoting properties. We could show adhesion mechanics on intracellular level. Additionally, proliferation kinetics were higher than in enzymatically digested controls, indicating that spider silk does not require modification. Recent findings concerning reduction of cell proliferation after exposure could not be met. As biotechnological production of the hierarchical composition of native spider silk fibres is still a

  15. Alteration of glycerolipid and sphingolipid-derived second messenger kinetics in ras transformed 3T3 cells.

    Science.gov (United States)

    Laurenz, J C; Gunn, J M; Jolly, C A; Chapkin, R S

    1996-01-05

    The effect of ras transformation (rasB fibroblasts) on basal and serum-stimulated diacylglycerol (DAG) composition and mass was examined over time with respect to changes in membrane phospholipid composition and ceramide mass. RasB cells vs. nontransformed control cells (rasD and NR6) had chronically elevated DAG levels (up to 240 min) following serum stimulation, indicating a defect in the recovery phase of the intracellular DAG pulse. Ras transformation also had a dramatic effect on DAG composition. Molecular species analysis revealed that DAG from unstimulated rasB cells was enriched in the delta 9 desaturase fatty acyl species (monoenoate 18:1(n - 7) and 18:1(n - 9)), and depleted in arachidonic acid (20:4(n - 6)). With the exception of glycerophosphoinositol (GPI), DAG remodeling paralleled the compositional alterations in individual phospholipid classes. Importantly, ras transformation altered the fatty acyl composition of sphingomyelin, a precursor to the ceramide second messenger. With the addition of serum, control cells (rasD) had a progressive increase in ceramide mass with levels approximately 5-fold higher by 240 min. In contrast, ceramide levels did not increase in rasB cells at either 4 or 240 min. These results demonstrate that ras-oncogene, in addition to its effects on DAG metabolism, can also abolish the cellular increase in ceramide mass in response to serum stimulation. Since DAG and ceramide may have opposing biological functions, the prolonged elevation of DAG and the suppression of ceramide levels would be consistent with an enhanced proliferative capacity.

  16. N(ϵ) -Carboxymethyllysine Increases the Expression of miR-103/143 and Enhances Lipid Accumulation in 3T3-L1 Cells.

    Science.gov (United States)

    Holik, Ann-Katrin; Lieder, Barbara; Kretschy, Nicole; Somoza, Mark M; Held, Sandra; Somoza, Veronika

    2016-10-01

    Advanced glycation endproducts, formed in vivo, but also by the Maillard reaction upon thermal treatment of foods, have been associated with the progression of pathological conditions such as diabetes mellitus. In addition to the accumulation with age, exogenous AGEs are introduced into the circulation from dietary sources. In this study, we investigated the effects of addition of free N(ϵ) -carboxymethyllysine (CML), a well-characterized product of the Maillard reaction, on adipogenesis in 3T3-L1 preadipocytes. Treatment with 5, 50, or 500 μM CML resulted in increased lipid accumulation to similar extents, by 11.5 ± 12.6%, 12.9 ± 8.6%, and 12.8 ± 8.5%, respectively. Long-term treatment with 500 μM CML during adipogenesis resulted in increases in miR-103 and miR-143 levels, two miRNAs described to be involved in impaired glucose homeostasis and increased lipid accumulation. Furthermore, the expression of genes associated with these miRNAs, consisting of Akt1, PI3k, and Cav1 was regulated by CML. Short-term treatment of mature 3T3-L1 adipocytes with CML resulted in decreased basal glucose uptake. These results, indicate that the addition of protein-free CML to 3T3-L1 cells influence parameters associated with adipogenesis and glucose homeostasis at transcriptional, and functional level; this indicates that free CML derived from exogenous sources, in addition to protein-bound CML may be relevant in this context. J. Cell. Biochem. 117: 2413-2422, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  17. THE COMBINED EFFECTS OF CATECHINS AND CAFFEINE ON CELLULAR PROLIFERATION AND LIPID METABOLISM IN 3T3-L1 CELLS%儿茶素和咖啡碱组合对3T3-L1细胞增殖及脂肪代谢的影响

    Institute of Scientific and Technical Information of China (English)

    郑国栋; 邱阳阳; 张清峰; 徐峰

    2013-01-01

    目的 研究对儿茶素和咖啡碱对3T3-L1细胞的增殖及脂肪代谢的影响.方法 采用四甲基偶氮唑盐比色法(MTT)检测对3T3-L1细胞增殖的影响;3T3-L1细胞诱导分化8d后,对各组细胞进行油红O染色并测定细胞内甘油三酯(TG)含量;细胞分化12d后,添加儿茶素和咖啡碱组合或同时添加去甲肾上腺素(NA)作用24h,分析各组细胞内脂肪分解.结果 儿茶素能明显抑制3T3-L1细胞的增殖;儿茶素和咖啡碱组合能明显抑制3T3-L1细胞分化后,细胞内TG的沉积,且在相同儿茶素浓度下,咖啡碱浓度越高抑制效果越明显.咖啡碱明显提高NA诱导成熟脂肪细胞脂解的能力,且呈剂量效应关系.结论 儿茶素和咖啡碱组合能够抑制脂肪细胞增殖和甘油三酯积聚,咖啡碱促进激素诱导脂肪细胞中脂肪分解.%Objective To investigate the combined effects of catechins and caffeine on cells proliferation and lipid metabolism in 3T3-L1 cells. Method MTT colorimetry was used to detect the effects of catechins and caffeine combination on the proliferation of 3T3-L1 cells. The differentiation of 3T3-L1 cells was induced for 8 d, then the adipocytes were stained by oil Red O, and the level of triglyceride (TG) was measured. The lipolytic effect of catechins and caffeine combination in presence or absence of noradrenaline (NA) for 24 h on 3T3-L1 cells was analyzed on the 12 th day after differentiation. Results Catechins significantly inhibited 3T3-L1 cells proliferation. Catechins and caffeine combination remarkably decreased TG accumulation after differentiation of 3T3-L1 cells, and the higher caffeine concentration was better when combined with the same catechins dose. Caffeine significantly improved NA-induced lipolysis in mature adipocytes. Conclusion Catechins and caffeine combination might inhibit cells proliferation and TG accumulation in 3T3-L1 cells. Caffeine promotes hormone-induced lipolysis in adipocytes.

  18. Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors

    OpenAIRE

    Urani, Chiara; Corvi, Raffaella; CALLEGARO G.; Stefanini, Federico Mattia

    2013-01-01

    In vitro cell transformation assays (CTAs) have been shown to model important stages of in vivo carcinogenesis and have the potential to predict carcinogenicity in humans. Advantages of CTAs are their ability of revealing both genotoxic and non-genotoxic carcinogens while reducing both experimental costs and the number of animals used. The endpoint of the CTA is foci formation, and requires classification under light microscopy based on morphology. Thus current limitations for the wide ado...

  19. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    Science.gov (United States)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  20. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Science.gov (United States)

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  1. Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue.

    Science.gov (United States)

    Bueno, Allain Amador; Oyama, Lila Missae; de Oliveira, Cristiane; Pisani, Luciana Pelegrini; Ribeiro, Eliane Beraldi; Silveira, Vera Lucia Flor; Oller do Nascimento, Cláudia Maria

    2008-01-01

    Obesity is positively correlated to dietary lipid intake, and the type of lipid may play a causal role in the development of obesity-related pathologies. A major protein secreted by adipose tissue is adiponectin, which has antiatherogenic and antidiabetic properties. The aim of this study was to evaluate the effects of four different high-fat diets (enriched with soybean oil, fish oil, coconut oil, or lard) on adiponectin gene expression and secretion by the white adipose tissue (WAT) of mice fed on a selected diet for either 2 (acute treatment) or 60 days (chronic treatment). Additionally, 3T3-L1 adipocytes were treated for 48 h with six different fatty acids: palmitic, linoleic, eicosapentaenoic (EPA), docosahexaenoic (DHA), lauric, or oleic acid. Serum adiponectin concentration was reduced in the soybean-, coconut-, and lard-enriched diets in both groups. Adiponectin gene expression was lower in retroperitoneal WAT after acute treatment with all diets. The same reduction in levels of adiponectin gene expression was observed in epididymal adipose tissue of animals chronically fed soybean and coconut diets and in 3T3-L1 cells treated with palmitic, linoleic, EPA, and DHA acids. These results indicate that the intake of certain fatty acids may affect serum adiponectin levels in mice and adiponectin gene expression in mouse WAT and 3T3-L1 adipocytes. The effects appear to be time dependent and depot specific. It is postulated that the downregulation of adiponectin expression by dietary enrichment with soybean oil or coconut oil may contribute to the development of insulin resistance and atherosclerosis.

  2. An optimization protocol for Swiss 3T3 feeder cell growth-arrest by Mitomycin C dose-to-volume derivation strategy.

    Science.gov (United States)

    Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar

    2017-04-01

    Feeder cell functionality following growth-arrest with the cost-effective Mitomycin C vis-à-vis irradiation is controversial due to several methodological variables reported. Earlier, we demonstrated variability in growth arrested Swiss 3T3 feeder cell life-span following titration of feeder cell densities with Mitomycin C concentrations which led to the derivation of doses per cell. Alternatively, to counter the unexpected feeder regrowth at high exposure cell density, we proposed titration of a fixed density with arithmetically derived volumes of Mitomycin C solution that corresponded to permutations of specific concentrations and doses per cell. We now describe an experimental procedure of inducing differential feeder cell growth-arrest by titrating with such volumes and validating the best feeder batch through target cell growth assessment. A safe cell density of Swiss 3T3 tested for the exclusion of Mitomycin C resistant variants was titrated with a range of volumes of a Mitomycin C solution. The differentially growth-arrested feeder batches generated were tested for short-term and long-term viability and human epidermal keratinocyte growth supporting ability. The feeder cell extinction rate was directly proportional to the volume of Mitomycin C solution within a given concentration per se. The keratinocyte colony forming efficiency and the overall growth in mass cultures were maximal with a median extinction rate produced by an intermediate volume, while the faster and slower extinction rates by high and low volumes, respectively, were suboptimal. The described method could counter the inadequacies of growth-arrest with Mitomycin C.

  3. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    Science.gov (United States)

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  4. The effects of brushite coating extract with strontium on the osteoblast-related factor expression of MC3T3-E1 cells%透钙磷石涂层浸提液掺锶对 MC3T3-E1细胞成骨相关因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    臣娟; 梁永强; 韩东颖

    2016-01-01

    Objective:To study the effects of brushite coating with strontium on the osteoblast-related factor expression of MC3T3-E1 cells.Methods:Brushite coating on tinanium surface was prepared by electrochemical deposition and the extract of the coating with stronium at 0.1%,0.5% and 1% were prepared respectively.MC3T3-E1 cells were cultured with the extracts,cell prolifera-tion,ALP activity,bFGF and VEGF mRNA were examined by MTT assay,ALP staining and RT-PCR respectively.Results:Stronti-um containing extracts promoted the proliferation,increased the ALP activity and mRNA expression of bFGF and VEGF(P <0.05)of MC3T3 cells.Conclusion:Brushite extract containing strontium may promote osteogenic function of MC3T3-E1 cells.%目的:探讨透钙磷石与锶对成骨细胞的协同作用。方法:电化学沉积制备含透钙磷石涂层钛片,浸提法制备其浸提液,向配制好的浸提液中分别加入0.1%、0.5%和1%的锶。将 MC3T3-E1细胞置于掺锶的浸提液中进行培养,检测不同含锶量的透钙磷石涂层浸提液中 MC3T3-E1细胞活性、ALP 活性,RT-PCR 检测 bFGF 和 VEGF mRNA 表达。结果:含透钙磷石涂层钛片浸提中锶的浓度为0.1%、0.5%和1%时,培养的 MC3T3-E1细胞增殖率、ALP 活性、bFGF 和 VEGF mRNA 表达均高于无锶对照组(P <0.05)。结论:掺锶透钙磷石对 MC3T3-E1细胞成骨功能有促进作用。

  5. 31P NMR analysis of intracellular pH of Swiss Mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation.

    Science.gov (United States)

    Civan, M M; Williams, S R; Gadian, D G; Rozengurt, E

    1986-01-01

    Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional 31P and 19F probes of intracellular pH (pHc) were found to be impracticable. Cells were therefore superfused with 1 to 4 mM 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pHc on external Na+ concentration (CoNa). PHc also depended on intracellular Na+ concentration (CcNa). Increasing ccNa by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducing CoNa produced a larger acid shift in pHc than with external K+ present. Comparison of separate preparations indicated that pHc was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pHc of Swiss mouse 3T3 cells using 31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event.

  6. 绿茶成分对3T3-L1细胞的细胞增殖及脂肪代谢的影响%Effects of Green Tea Components on Cell Proliferation and Lipid Metabolism in 3T3-L1 Cells

    Institute of Scientific and Technical Information of China (English)

    郑国栋; 徐峰; 吴少福; 张清峰; 邱阳阳

    2012-01-01

    目的:研究绿茶成分——儿茶素、咖啡碱和茶氨酸对3T3-L1前脂肪细胞的细胞增殖及脂肪代谢的影响.方法:测定不同浓度儿茶素、咖啡碱和荼氨酸对3T3-L1细胞增殖的影响,确定无毒性浓度.在分化诱导液中添加各绿茶成分后对3T3-L1细胞进行96h诱导分化,分化后第6天测定脂肪细胞中甘油三酯(TG)含量.细胞分化后第9天,单独添加绿茶成分或同时添加去甲肾上腺素(NA)24 h,分析对细胞中脂肪分解的影响.结果:添加20 μg/mL以上质量浓度的儿茶素能显著抑制3T3-L1细胞增殖,但质量浓度40,80 μg/mL的儿茶素对3T3-L1细胞有毒性作用,而160 μg/mL咖啡碱和茶氨酸对细胞增殖无明显影响.20 μg/mL儿茶素能显著抑制3T3-L1细胞中TG的合成,而咖啡碱和茶氨酸对细胞脂肪沉积无明显影响.与单独添加NA相比,同时添加咖啡碱能显著促进NA诱导细胞中脂肪分解的能力.结论:儿荼素抑制脂肪细胞的增殖和脂肪沉积,咖啡碱促进激素诱导脂肪分解.绿茶成分中儿茶素和咖啡碱对脂肪细胞内的脂肪代谢有调节作用.%Objective: To investigate the effects of green tea components, catechins, caffeine and theanine on 3T3-L1 cells proliferation and fat metabolism. Methods: 3T3—L1 cells were cultured in DMEM contained different concentrations of catechins, caffeine or theanine, and analyzed on cells proliferation and cytotoxicity. Then the differentiation of 3-T3—L1 cells were induced with these green tea components at noncytotoxic concentration for 96 hours. 6th day after differentiation, triglycerides (TG) in 3T3-L1 cells was measured. Lipolytic effect of green tea components in the present or absent of noradrenaline (NA) for 24 hours in 3T3-L1 cells was analyzed on 9th day after differentiation. Results: Above 20 μg/mL catechins significantly inhibited the proliferation of 3T3—L1 cells, but there was cytotoxic effect 40 and 80 μg/ mL. However, caffeine and

  7. Data from proteomic characterization of the role of Snail1 in murine mesenchymal stem cells and 3T3-L1 fibroblasts differentiation

    Directory of Open Access Journals (Sweden)

    A. Peláez-García

    2015-09-01

    Full Text Available The transcription factor (TF Snail1 is a major inducer of the epithelial–mesenchymal transition (EMT during embryonic development and cancer progression. Ectopic expression of Snail in murine mesenchymal stem cells (mMSC abrogated their differentiation to osteoblasts or adipocytes. We used either stable isotopic metabolic labeling (SILAC for 3T3-L1 cells or isobaric labeling with tandem mass tags (TMT for mMSC stably transfected cells with Snail1 or control. We carried out a proteomic analysis on the nuclear fraction since Snail is a nuclear TF that mediates its effects mainly through the regulation of other TFs. Proteomics data have been deposited in ProteomeXchange via the PRIDE partner repository with the dataset identifiers PXD001529 and PXD002157 (Vizcaino et al., 2014 [1]. Data are associated with a research article published in Molecular and Cellular Proteomics (Pelaez-Garcia et al., 2015 [2].

  8. Importância do co-cultivo com fibroblastos de camundongo 3T3 para estabelecer cultura de suspensão de células epiteliais do limbo humano Importance of 3T3 feeder layer to establish epithelial cultures from cell suspension obtained from corneo-scleral rims

    Directory of Open Access Journals (Sweden)

    Priscila Cardoso Cristovam

    2008-10-01

    Full Text Available OBJETIVO: Avaliar a importância da presença de células 3T3 para estabelecer cultura de suspensão de células epiteliais do limbo obtido de rimas córneo-esclerais. MÉTODOS: Rimas de diferentes doadores tiveram seus estroma posterior e endotélio removidos (n=6. Cada rima foi dividida em três segmentos iguais, que foram colocados em cultura em três diferentes condições: um segmento foi colocado na placa de cultura com o lado epitelial para cima (Grupo A. Os dois segmentos restantes foram tripsinizados e a suspensão de células obtida foi cultivada com (Grupo B ou sem (Grupo C células 3T3 irradiadas. As células foram mantidas em meio de cultura "supplemental hormonal epithelial médium" (SHEM, a migração epitelial e a formação de clones nos grupos A, B e C foram avaliadas pela microscopia de contraste de fase e por coloração pela rodamina B. Os resultados foram comparados estatisticamente. RESULTADOS: O crescimento de células epiteliais foi observado em 4/6 rimas (Grupo A. Todas as suspensões de células epiteliais que foram cultivadas com células 3T3 (Grupo B formaram clones. Nenhuma adesão ou formação de clones verdadeiros (holo ou meroclones foi observada na cultura de células que foi cultivada sem 3T3 (Grupo C (p=0,009. CONCLUSÕES: Suspensão de células epiteliais límbicas obtidas de rimas córneo-esclerais no modelo utilizado precisa ser cultivada com células 3T3 para formar clones e estabelecer colônias epiteliais com perspectivas para uso terapêutico na reconstrução da superfície ocular.PURPOSE: To evaluate the importance of the presence of 3T3 fibroblasts for establishing limbal epithelial cultures from cell suspension obtained from corneo-scleral rims (CSR. METHODS: Corneo-scleral rims from different donors (n=6 had their posterior stroma and endothelium stripped away. Each corneo-scleral rim was divided into three equal segments that were set up in tissue culture in three different conditions: one of the

  9. Effects of irradiation on TGF-{beta}{sub 1} mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ju Seop; Kim, Kyoung A; Koh, Kwang Joon [Department of Oral and Maxillofacial Radiology, School of Dentistry, and Institute of Oral Bio Science, Chonbuk National University, Jeonju (Korea, Republic of)

    2008-09-15

    To investigate the effects of irradiation on transforming growth factor {beta}1 (TGF-{beta}{sub 1}) mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line. Cells were cultured in alpha-minimum essential medium ({alpha}-MEM) supplemented with 10% fetal bovine serum and antibiotics. When the cells reached the level of 70-80% confluence, culture media were changed with {alpha}-MEM supplemented with 10% FBS, 5 mM {beta}-glycerol phosphate, and 50 {mu}g/mL ascorbic acid. Thereafter the cells were irradiated with a single dose of 2, 4, 6, 8 Gy at a dose rate of 1.5 Gy/min. The expression pattern of TGF-{beta}{sub 1} mRNA, calcium content and calcific nodule formation were examined on day 3, 7, 14, 21, 28, respectively, after the irradiation. The amount of TGF-{beta}{sub 1} mRNA expression decreased significantly on day 7 after irradiation of 4, 6, 8 Gy. It also decreased on day 14 after irradiation of 6, 8 Gy, and decreased on day 21 after irradiation of 8 Gy. The amount of calcium deposition decreased significantly on day 7 after irradiation of 4, 8 Gy (P<0.01) and showed a decreased tendency on day 14, 21 after irradiation of 4, 6, 8 Gy. The number of calcific nodules was decreased on day 7 after irradiation of 4, 8 Gy. Irradiation with a single dose of 4, 6, 8 Gy influences negatively the bone formation at the molecular level by affecting the TGF-{beta}{sub 1} mRNA expression that was associated with proliferation and the production of extracellular matrix in MC3T3-E1 osteoblastic cell line

  10. 新型根管封闭剂对MC3T3-E1成骨细胞的细胞毒性评估%Cytotoxicity of New Root Canal Sealers on MC3T3 -E1 Osteoblast Cells.

    Institute of Scientific and Technical Information of China (English)

    孙燕; 樊明文; 李宇红; 陆瑶伽

    2011-01-01

    Objective: To investgate the cytotoxicity of new root canal sealers, RealSeal Sealer and GuttaFlow, on MC3T3 - El osteoblast cells and compare with traditional material AH Plus. Methods: Six samples of each sealer were fabricated in sterile cylindrical Teflon tubes and were kept in a humid chamber at 37 ℃ for 7 days. Then extraction of the specimens was obtained after incubating with cell culture medium for 3 day. MC3T3 -E1 cells were cultured with different concentrations of the extracts (100% , 50%, 25%, and 12. 5%) , and the cell relative proliferation rate was evaluate by CCK -8 assay at 24h and 72 h . Results: RealSeal Sealer showed more cytotoxicity to MC3T3 -E1 cells than AH Plus and GuttaFlow(P<0. 05) within 3 days. The cytotoxicity of GuttaFlow was similar to AH Plus and the negative control. Conclusion: RealSeal Sealer had a strong cytotoxicity on MC3T3-E1cells, while GuttaFlow and AH Plus showed almost nontoxicity.%目的:评估新型根管封闭剂RealSeal sealer、GuttaFlow对MC3T3- E1成骨细胞的细胞毒性,并与传统的AH Plus比较.方法:制备RealSeal sealer、GuttaFlow和AH Plus(固化7d)的材料浸提液,倍比稀释为4种浓度:100%、50%、25%、12.5%;MC3T3-E1细胞于其中分别培养24h和72h,CCK-8法检测细胞存活率,评价不同材料的细胞毒性.结果:在实验期内,RealSeal sealer组的细胞存活率显著低于AH Plus、GuttaFlow(P<0.05),AHPlus、GuttaFlow和阴性对照组间无显著差异.结论:在本实验条件下,RealSeal sealer对MC3T3一E1成骨细胞的毒性最强,而GuttaFlow和AH Plus几乎无细胞毒性.

  11. Construction of Asxl2 gene knock out stable NIH3T3 cell line with CRISPR/Cas9n system%利用CRISPR/Cas9n系统构建Asxl2基因敲除的NIH3T3稳定细胞系

    Institute of Scientific and Technical Information of China (English)

    方佳萍; 赵秀娟; 齐艳; 王玺; 吴旭东; 娄建石

    2015-01-01

    Objective To knock out Asxl2 gene in murine embryonic fibroblast cell line NIH3T3 using CRISPR/Cas9n system. Methods A pair of sgRNAs which targeted exon 5 of Asxl2 gene were designed and subcloned into the pX462 vec⁃tor. The recombined plasmids were verified by sequencing and transfected into NIH3T3 cell line. Single cells were isolated through serial dilutions, followed by an expansion period to obtain new monoclonal cell lines. The genomic DNA of the new monoclonal cell lines was extracted and a DNA fragment flanked the target site was amplified by genotyping PCR then se⁃quenced. Lastly, western blotting were applied to confirm whether Asxl2 was successfully knocked out. Results The CRIS⁃PR/Cas9n plasmids that targeted Asxl2 were successfully constructed. NIH3T3 cells were co-transfected with the two recom⁃binant constructs. After puromycin selection, subclonal cell lines were obtained and one of them was validated by genotyping PCR-sequencing. Western blotting also confirmed that Asxl2 was completely depleted in the NIH3T3 cell line. Conclu⁃sion CRISPR/Cas9n plasmids that targeted Asxl2 were successfully constructed therefore a Asxl2 knockout NIH3T3 stable cell line was established via this system.%目的:利用CRISPR/Cas9n系统在NIH3T3小鼠胚胎成纤维细胞系中敲除Asxl2基因。方法设计一对靶向小鼠Asxl2基因第5个外显子的小向导RNA(sgRNA),分别克隆进pX462载体。将测序鉴定正确的重组质粒转染至NIH3T3细胞中,利用有限稀释法得到单细胞,通过培养获得单克隆细胞系。提取单克隆细胞系基因组DNA,ge⁃notyping PCR扩增出靶位点附近的DNA片段并测序。利用Western blot方法检测细胞株中Asxl2的敲除效果。结果成功构建靶向Asxl2的CRISPR/Cas9n重组质粒。将2个重组质粒共转染NIH3T3细胞,嘌呤霉素筛选后得到亚克隆细胞系,并且经genotyping PCR测序验证得到一株正确的单克隆细胞系。Western blot

  12. Dehydrodiconiferyl alcohol isolated from Cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts.

    Science.gov (United States)

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-03-16

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis.

  13. 黄芩水提液对3T3-L1脂肪细胞增殖、诱导分化及脂联素启动子荧光素酶活性的影响%The Effect of Scutellaria Baicalensis Water Extract on Proliferation, Cytokines mRNA Expressions and Promoter Activity of 3T3-L1 Cells

    Institute of Scientific and Technical Information of China (English)

    崔琳; 路玲玲; 李强; 宰军华; 刘卫红; 王小晓

    2015-01-01

    目的:本研究旨在观察黄芩水提液(Scutellaria BaicalensisWater Extract,SBWE)对3T3-L1前体细胞增殖、分化,对脂肪细胞因子脂联素表达以及脂联素(Adiponectin,ADP)启动子荧光素酶活性的影响,从分子生物学角度阐述SBWE降脂作用的可能机理.方法:通过体外培养3T3-L1细胞,采用MTT法检测SBWE对3T3-L1细胞增殖能力的影响;通过诱导脂肪细胞分化成为成熟脂肪细胞,观察SBWE对脂肪形成的影响;化学发光法检测脂联素启动子双荧光素酶报告基因活性;荧光定量PCR法检测脂联素mRNA(Adipoq)表达.结果:与正常组相比,给予3T3-L1细胞0.01、0.1、1 mg?mL-1浓度的SBWE 24 h,可显著抑制细胞的增殖活性(P<0.05);0.1、1 mg?mL-1浓度的SBWE能够降低3T3-L1细胞分化为脂肪细胞的数量,并减少细胞内脂滴聚集,但无明显剂量依赖性;0.01、0.1 mg?mL-1浓度SBWE能显著提高脂联素基因启动子荧光素酶活性,与空载体比较差异有统计学意义(P<0.05);与正常组相比,给予3T3-L1细胞0.1 mg?mL-1SBWE 24 h,诱导前后的脂肪细胞Adipoq表达均明显增加(P<0.05).结论:SBWE可有效抑制3T3-L1脂肪细胞的增殖、分化,同时增加脂联素基因表达,这可能是通过增强脂联素基因启动子荧光素酶活性实现,这些为黄芩水提液减肥的作用机制提供一定的基础.%The study was designed to measure the effect of S.baicalensiswater extract (SBWE) on 3T3-L1 cells and its adiponectin (ADP) mRNA (Adipoq) and promoter luciferase activity.Cell survival rate was determined by MTT assay.The expression of Adipoq was measured by real-time PCR,while the luciferase report systems of Adipoq were used to transfer 3T3-L1 cells.The luciferase activities of the transferred cells were compared by luciferase assay.It was found that the mRNA expression of Adipoq was decreased in comparison with the control group.The luciferase activity showed a stronger ADP promoter activity in 3T3-L1 cells in

  14. The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells.

    Science.gov (United States)

    Woo, Mi-Seon; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2013-07-01

    Gracilaria verrucosa is a red alga that is widely distributed in seaside areas of many countries. We examined the effect of G. verrucosa extract on adipogenesis, reactive oxygen species (ROS) production, and glucose uptake in 3T3-L1 cells. Oil red O staining and a nitroblue tetrazolium assay showed that G. verrucosa extract inhibited lipid accumulation and ROS production, respectively. mRNA levels of adipogenic transcription factors, peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, as well as of their target gene, adipocyte protein 2, were reduced upon treatment with G. verrucosa extract. However, G. verrucosa extract increased glucose uptake, glucose transporter-4 expression, and AMP-activated protein kinaseα (AMPKα) phosphorylation compared to the control. Our results suggest that the anti-adipogenic and insulin-sensitive effects of G. verrucosa extract can be recapitulated to activation of AMPKα.

  15. Characterization of the pharmacology, signal transduction and internalization of the fluorescent PACAP ligand, fluor-PACAP, on NIH/3T3 cells expressing PAC1.

    Science.gov (United States)

    Germano, P M; Stalter, J; Le, S V; Wu, M; Yamaguchi, D J; Scott, D; Pisegna, J R

    2001-06-01

    Fluor-PACAP, a fluorescent derivative of PACAP-27, has been confirmed to share a high affinity for PAC1 receptors transfected into NIH/3T3 cells and to have comparable pharmacological characteristics to the unconjugated, native form. Through competitive binding with 125I-PACAP-27, the two ligands exhibited similar dose- dependent inhibition. Additional examination of the efficacy of activating adenylyl cyclase revealed that both ligands analogously stimulated the production of cyclic AMP. Furthermore, PAC1 internalization visualized by our Fluor-PACAP, is compareable to that performed with the radioligand, 125I-PACAP-27, with maximal internalization achieved within thirty minutes. Thus, Fluor-PACAP exhibits intracellular signaling abilities homologous to the native ligand.

  16. Human alpha galactosidase and alpha 1,2fucosyltransferase concordantly inhibit xenoreactivity of NIH 3T3 cells with human serum

    Institute of Scientific and Technical Information of China (English)

    YANJing-Lian; YULu-Yang; GUOLi-He

    2003-01-01

    AIM: To study the influence of the expression of human alpha galactosidase and alphal,2 fucosyltransferase on Galalpha 1,3 Gal and consequent xenoreactivity in NIH3T3 cells. METHODS: The expression levels of G antigen andH antigen and binding of human natural antibodies (IgG and IgM) and complement (C3c) to NIH3T3 cells wereanalyzed by flow cytometry. Western blot was employed to further determine the expression of glycoproteins of Gantigen. Cytolysis assay with normal human serum was performed by MTT assay. RESULTS: Western blotshowed that glycoproteins with molecular weight of 107 kDa, 98 kDa, 88 kDa, 56 kDa, 40 kDa, and 37 kDa wereinhibited and even abrogated totally in alpha galactosidase transfectants and alpha 1,2 fucosyltransferase transfectants.The combined transfection of the two enzymes led to a much stronger inhibition of the glycoproteins. The bindingof Gs-IB4 was decreased by 57.4% in alpha galactosidase transfectants, 28.8% in alpha 1,2 fucosyltransferasetransfectants, and 72.1% in combined transfectants, respectively. In contrast, UEA-1 binding was increased about6.7-fold, 6.0-fold, and 8.0-fold respectively. The xenoreactivity with human IgG was also reduced by 61.4%, 67.0%,and 73.4%, respectively in the three kinds of transfectants. The resistance to cytolysis mediated by human serumwas enhanced by 42.4% in alpha galactosidase transfectants, 51.9% in alpha 1,2 fucosyltranferase, and even65.5% in the combined transfectants. CONCLUSION: Although alpha galactosidase and alpha 1,2 fucosyltransferasehad different biochemical properties, they could inhibit the expression of Gal alpha 1,3 Gal synergistically, leading tostronger resistance of xenograft against cytolysis.

  17. Effects of Apatite Cement Containing Atelocollagen on Attachment to and Proliferation and Differentiation of MC3T3-E1 Osteoblastic Cells

    Directory of Open Access Journals (Sweden)

    Masaaki Takechi

    2016-04-01

    Full Text Available To improve the osteoconductivity of apatite cement (AC for reconstruction of bone defects after oral maxillofacial surgery, we previously fabricated AC containing atelocollagen (AC(ate. In the present study, we examined the initial attachment, proliferation and differentiation of mouse osteoblastic cells (MC3T3-E1 cells on the surface of conventional AC (c-AC, AC(ate and a plastic cell dish. The number of osteoblastic cells showing initial attachment to AC(ate was greater than those attached to c-AC and similar to the number attached to the plastic cell wells. We also found that osteoblastic cells were well spread and increased their number on AC(ate in comparison with c-AC and the wells without specimens, while the amount of procollagen type I carboxy-terminal peptide (PIPC produced in osteoblastic cells after three days on AC(ate was greater as compared to the others. There was no significant difference in regard to alkaline phosphatase (ALP activity and osteocalcin production by osteoblastic cells among the three surface types after three and six days. However, after 12 days, ALP activity and the produced osteocalcin were greater with AC(ate. In conclusion, AC(ate may be a useful material with high osteoconductivity for reconstruction of bone defects after oral maxillofacial surgery.

  18. Ultraviolet C Irradiation Induces Different Expression of Cyclooxygenase 2 in NIH 3T3 Cells and A431 Cells: The Roles of COX-2 Are Different in Various Cell Lines

    Directory of Open Access Journals (Sweden)

    Ming-Hsiu Wu

    2012-04-01

    Full Text Available Ultraviolet C (UVC is a DNA damage inducer, and 20 J/m2 of UVC irradiation caused cell growth inhibition and induced cell death after exposure for 24–36 h. The growth of NIH 3T3 cells was significantly suppressed at 24 h after UVC irradiation whereas the proliferation of A431 cells was inhibited until 36 h after UVC irradiation. UVC irradiation increased COX-2 expression and such up-regulation reached a maximum during 3–6 h in NIH 3T3 cells. In contrast, UVC-induced COX-2 reached a maximum after 24–36 h in A431 cells. Measuring prostaglandin E2 (PGE2 level showed a biphasic profile that PGE2 release was rapidly elevated in 1–12 h after UVC irradiation and increased again at 24 h in both cell lines. Treatment with the selective COX-2 inhibitor, SC-791, during maximum expression of COX-2 induction, attenuated the UVC induced-growth inhibition in NIH 3T3 cells. In contrast, SC-791 treatment after UVC irradiation enhanced death of A431 cells. These data showed that the patterns of UVC-induced PGE2 secretion from NIH 3T3 cells and A431 cells were similar despite the differential profile in UVC-induced COX-2 up-regulation. Besides, COX-2 might play different roles in cellular response to UVC irradiation in various cell lines.

  19. PKCeta associates with cyclin E/Cdk2 complex in serum-starved MCF-7 and NIH-3T3 cells.

    Science.gov (United States)

    Shtutman, Marat; Hershko, Tzippi; Maissel, Adva; Fima, Eyal; Livneh, Etta

    2003-05-15

    Protein kinase C (PKC) encodes a family of enzymes implicated in cellular differentiation, growth control, and tumor promotion. However, very little is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that PKCeta associates with the cyclin E/Cdk2 complex. This is shown for the ectopically overexpressed PKCeta in NIH-3T3 cells, the inducibly expressed PKCeta in MCF-7 cells (under control of the tetracycline-responsive promoter), and the endogenously expressed PKCeta in mouse mammary epithelial HC11 cells. Subcellular cell fractionation experiments revealed that the complex with cyclin E is formed mostly in the nuclear fractions, although in these cells PKCeta is predominantly expressed in the cytosolic fractions. The complex of PKCeta and cyclin E was studied at various phases of the cell cycle, in serum-starved quiescent cells and in cells stimulated with serum to reenter the cell cycle. Interestingly, the interaction between PKCeta and cyclin E was most prominent in serum-starved cells and was disintegrated when cells entered the cells cycle. Immunofluorescence staining demonstrated that in serum-starved cells PKCeta is concentrated at the perinuclear zone, which is also the site of its colocalization with cyclin E. Colocalization of PKCeta and cyclin E in the perinuclear region was observed in serum-starved cells, and less in proliferating cells. These experiments suggest that the interaction between PKCeta and cyclin E is carefully regulated, and is correlated with the inactivated form of the cyclin E/Cdk2 complex. Thus, our studies support an important link between PKC and cell cycle control.

  20. Influence of sulfonylureas on autophagy, apoptosis, and differentiation of the mice MC3T3-E1 cells%磺脲类药物对成骨细胞MC3T3-E1自噬、凋亡和分化功能的影响

    Institute of Scientific and Technical Information of China (English)

    张丽; 季虹; 苏华; 刘兴艳; 辛衍代; 荣海钦

    2013-01-01

    目的 探讨磺脲类药物对成骨细胞自噬、凋亡及分化功能的影响. 方法 用磺酰罗丹明B染色检测不同浓度的格列本脲(GLB)、格列齐特(GLC)和格列吡嗪(GLP)对成骨细胞存活率的影响;Western blot分析3种磺脲类药物对细胞中自噬、凋亡标志蛋白表达的变化;Hoechst染色镜下观察上述药物对细胞凋亡的影响;通过对骨钙素(OCN)和碱性磷酸酶(ALP)的测定研究药物对细胞分化功能的影响. 结果 中、高浓度的GLB、GLC和GLP使MC3T3-E1细胞存活率降低.在药物干预下,MC3T3-E1细胞自噬和凋亡标志蛋白表达增加,mTOR信号途径无明显变化.3种药物可使细胞分泌OCN和ALP的能力下降. 结论 GLB、GLC和GLP可诱导成骨细胞MC3T3-E1发生自噬和凋亡,降低成骨细胞分化功能,且可能通过mTOR-非依赖途径诱导细胞自噬.%Objective To investigate the influence of sulfonylureas on the autophagy, apoptosis, and differentiation of the MC3T3-E1 cells. Methods Sulforhodamine B Assay was carried out to determine the effect of glibenclamide, gliclazide and glipizide in different concentrations on the cell survival. Western blot analysis was done to determine the protein levels of autophagy and apoptosis markers. Hoechst staining was applied to observe the impact of the three sulfonylureas on the cell apoptosis. The osteocalcin and alkaline phosphatase were assayed to assess the influence of these drugs on the differentiation of MC3T3-E1 cells. Results The intervention with glibenclamide, gliclazide, and glipizide in high concentrations made the survival rate of MC3T3-E1 cells decreased. Under the condition of drug intervention, the expression of autophagy and apoptosis markers of MC3T3-E1 cells was enhanced, whereas no remarkable changes were detected in mTOR signaling. The three sulfonylureas weakened the secretion of osteocalcin and alkaline phosphatase of MC3T3-E1 cells. Conclusion Glbenclamide, gliclazide, and glipizide

  1. T24 HRAS transformed NIH/3T3 mouse cells (GhrasT-NIH/3T3) in serial tumorigenic in vitro/in vivo passages give rise to increasingly aggressive tumorigenic cell lines T1-A and T2-A and metastatic cell lines T3-HA and T4-PA.

    Science.gov (United States)

    Ray, Durwood B; Merrill, Gerald A; Brenner, Frederic J; Lytle, Laurie S; Lam, Tan; McElhinney, Aaron; Anders, Joel; Rock, Tara Tauber; Lyker, Jennifer Kier; Barcus, Scott; Leslie, Kara Hust; Kramer, Jill M; Rubenstein, Eric M; Pryor Schanz, Karen; Parkhurst, Amy J; Peck, Michelle; Good, Kimberly; Granath, Kristi Lemke; Cifra, Nicole; Detweiler, Jessalee Wantz; Stevens, Laura; Albertson, Richard; Deir, Rachael; Stewart, Elisabeth; Wingard, Katherine; Richardson, Micah Rose; Blizard, Sarah B; Gillespie, Lauren E; Kriley, Charles E; Rzewnicki, Daniel I; Jones, David H

    2016-01-01

    Cancer cells often arise progressively from "normal" to "pre-cancer" to "transformed" to "local metastasis" to "metastatic disease" to "aggressive metastatic disease". Recent whole genome sequencing (WGS) and spectral karyotyping (SKY) of cancer cells and tumorigenic models have shown this progression involves three major types of genome rearrangements: ordered small step-wise changes, more dramatic "punctuated evolution" (chromoplexy), and large catastrophic steps (chromothripsis) which all occur in random combinations to generate near infinite numbers of stochastically rearranged metastatic cancer cell genomes. This paper describes a series of mouse cell lines developed sequentially to mimic this type of progression. This starts with the new GhrasT-NIH/Swiss cell line that was produced from the NIH/3T3 cell line that had been transformed by transfection with HRAS oncogene DNA from the T24 human bladder carcinoma. These GhrasT-NIH/Swiss cells were injected s.c. into NIH/Swiss mice to produce primary tumors from which one was used to establish the T1-A cell line. T1-A cells injected i.v. into the tail vein of a NIH/Swiss mouse produced a local metastatic tumor near the base of the tail from which the T2-A cell line was established. T2-A cells injected i.v. into the tail vein of a nude NIH/Swiss mouse produced metastases in the liver and one lung from which the T3-HA (H=hepatic) and T3-PA (P=pulmonary) cell lines were developed, respectively. T3-HA cells injected i.v. into a nude mouse produced a metastasis in the lung from which the T4-PA cell line was established. PCR analysis indicated the human T24 HRAS oncogene was carried along with each in vitro/in vivo transfer step and found in the T2-A and T4-PA cell lines. Light photomicrographs indicate that all transformed cells are morphologically similar. GhrasT-NIH/Swiss cells injected s.c. produced tumors in 4% of NIH/Swiss mice in 6-10 weeks; T1-A cells injected s.c. produced tumors in 100% of NIH/Swiss mice in 7

  2. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes.

    Science.gov (United States)

    Wang, Yanxin; Watford, Malcolm

    2007-04-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. Culture of Hep G2 cells without glutamine resulted in very high levels of protein, again with no change in mRNA abundance. Insulin was without effect in both C2C12 and Hep G2 cells. In 3T3 L1 adipocytes glucocorticoids increased the abundance of both glutamine synthetase mRNA and protein, insulin added alone had no effect but in the presence of glucocorticoids resulted in lower mRNA levels than seen with glucocorticoids alone, although protein levels remained high under such conditions. In contrast to the other cell lines glutamine synthetase protein levels were relatively unchanged by culture in the absence of glutamine. The results support the hypothesis that in myocytes, and hepatomas, but not in adipocytes, glutamine acts to moderate glutamine synthetase induction by glucocorticoids.

  3. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Peng-Yeh [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Tsai, Chong-Bin [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC (China); Tseng, Min-Jen, E-mail: biomjt@ccu.edu.tw [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China)

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  4. Expression of cell adhesion and differentiation related genes in MC3T3 osteoblasts plated on titanium alloys: role of surface properties.

    Science.gov (United States)

    Sista, Subhash; Wen, Cuie; Hodgson, Peter D; Pande, Gopal

    2013-04-01

    It is important to understand the cellular and molecular events that take place at the cell-material interface of implants used for bone repair. An understanding of the mechanisms involved in the initial stages of osteoblast interactions with the surface of the implant material is fundamental in deciding the fate of the cells that come in contact with it. In this study, we compared the relative gene expression of markers that are known to be associated with cell adhesion and differentiation in MC3T3 osteoblast cells, at various time points after plating the cells on surfaces of titanium (Ti) and its two alloys, titanium-zirconium (TiZr) and titanium-niobium (TiNb) by using Quantitative Real Time Polymerase Chain Reaction (RT-PCR). Our analysis indicated that expression of adhesion supporting genes was higher on TiZr surface as compared to Ti and TiNb. The behavior of these genes is possibly driven by a higher surface energy of TiZr. However no significant difference in the expression of differentiation related genes could be seen between the two alloys, although on both substrates it was higher as compared to unalloyed Ti. We propose that substrate composition of the alloys can influence the adhesion and differentiation related gene expression and that Ti alloys are better substrates for inducing osteogenesis as compared to unalloyed Ti.

  5. 饥饿素对贫铀所致MC3T3-E1细胞损伤的保护作用研究%Protective role of ghrelin in depleted uranium-induced damage of MC3 T3-E1 cells

    Institute of Scientific and Technical Information of China (English)

    郝玉徽; 黄嘉伟; 刘聪; 李蓉

    2015-01-01

    Objective To evaluate the impact of ghrelin on depleted uranium ( DU)-induced damage of the osteoblast MC3T3-E1. Methods MC3T3-E1 cells were treated with different doses of ghrelin for 1 h before DU (500 μM) treatment. After 24 hours,the cell via-bility,intracellular tartrate-resistant acid phosphatase (StrACP),alkaline phosphatase (AKP),osteoprotegerin (OPG),solvable receptor acti-vator of nuclear factor-κB ligand ( sRANKL) ,catalase ( CAT) and reactive oxygen species ( ROS) were measured. Results After DU expo-sure,ghrelin pretreatment increased the cell viability and CAT levels,and reduced intracellular StrACP,AKP,sRANKL/OPG and ROS in a dose-dependent manner. Conclusion Through maintaining the balance of OPG/RANKL and reducing the oxidative stress,ghrelin could pro-tect against DU-induced damage of MC3T3-E1 cells.%目的 评价饥饿素对贫铀(DU)所致成骨细胞(MC3T3-E1细胞)损伤的影响. 方法 不同浓度的饥饿素提前1 h预处理MC3T3-E1细胞后暴露于DU(500 μM)24 h,检测细胞存活率、细胞内抗酒石酸酸性磷酸酶(StrACP)、碱性磷酸酶(AKP)、骨保护素(OPG)、可溶性核因子-κB受体活化因子配体(sRANKL)含量以及细胞内过氧化氢酶(CAT)和活性氧(ROS)水平. 结果饥饿素预处理可明显提高DU暴露后细胞存活率及CAT含量,降低细胞内StrACP、AKP、sRANKL/OPG以及ROS水平,并且存在剂量依赖关系. 结论 饥饿素通过调节OPG/RANKL系统的失衡以及降低细胞内氧化应激,发挥对DU暴露后MC3T3-E1细胞的保护作用.

  6. 珍珠粉对 MC3T3-E1细胞增殖、分化、矿化及骨相关基因表达的影响%Effect of pearl powder on the proliferation, differentiation, and mineralization of MC3T3-E1 cells and the expression of bone related genes in the cells

    Institute of Scientific and Technical Information of China (English)

    王凯; 魏博; 谭佳妮; 季晖

    2014-01-01

    Objective To investigate the effect of pearl powder on the osteogenic proliferation, differentiation, interstitial mineralization, and apoptosis in MC3T3-E1 cells, and to explore the potential mechanisms.Methods MC3T3-E1 cells were cultured with pearl powder or low-calcium pearl powder in vitro.The osteogenic proliferation was determined using MTT method. And the differentiation was determined using alkaline phosphatase ( ALP) kit.The formation of mineralized nodules was observed using von Kossa staining. The mRNA expression of Runt-related transcription factor II ( Runx2 ) , osteocalcin ( OC ) , osteoprotegerin ( OPG ) , and receptor activator of NK-κB ligand ( RANKL ) was detected using RT-PCR.The cell apoptosis induced by serum deprivation was detected using flow cytometry.Results In a certain range of concentration, pearl powder and low-calcium pearl powder could significantly increase the secretion of ALP and the formation of mineralized nodules, and markedly improve the mRNA expression of Runx2 and OC in MC3T3-E1cells.Furthermore, pearl powder and low calcium pearl powder could significantly decrease the RANKL/OPG ratio, and ameliorate the apoptosis of the osteoblasts induced by serum deprivation. Conclusion Both pearl powder and low calcium pearl powder can promote the differentiation and maturation in MC3T3-E1cells. And the effect of pearl powder is much stronger, suggesting a critical role of calcium contained in pearl powder in regulating the osteogenic proliferation and differentiation in MC3T3-E1cells.%目的:研究珍珠粉对MC3T3-E1细胞成骨增殖、分化、间质矿化及凋亡的影响,并初步探讨其作用机制。方法在体外培养的MC3T3-E1细胞中分别加入珍珠粉和低钙珍珠粉,采用MTT法及碱性磷酸酶(Alkaline phosphatase,ALP)试剂盒检测其对MC3T3-E1细胞增殖及分化的影响;Von Kossa染色法观察矿化结节的形成;RT-PCR检测细胞中转录因子( Runt-related transcription factor

  7. Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells.

    Science.gov (United States)

    Rokicki, Ryszard; Haider, Waseem; Hryniewicz, Tadeusz

    2012-09-01

    The influence of 6 % sodium hypochlorite (NaClO) treatment on adhesion and proliferation of MC3T3 pre-osteoblast cells seeded on electropolished (EP) and magnetoelectropolished (MEP) nitinol surfaces were investigated. The chemistry, topography, roughness, surface energy, wettability of EP and MEP nitinol surfaces before and after NaClO treatment were studied with X-ray photoelectron spectroscopy (XPS), profilometry, and contact angle meter. In vitro interaction of osteoblast cell and NaClO treated EP and MEP nitinol surfaces were assessed after 3 days of incubation by scanning electron microscopy. The XPS analysis shows that NaClO treatment increases oxygen content especially in subsurface oxide layer of EP and MEP nitinol. The changes of both basic components of nitinol, namely nickel and titanium in oxide layer, were negligible. The NaClO treatment did not influence physico-morphological surface properties of EP and MEP nitinol to a big extent. The osteoblast cells show remarkable adherence and proliferation improvement on NaClO treated EP and MEP nitinol surfaces. After 3 days of incubation they show almost total confluence on both NaClO treated surfaces. The present study shows that NaClO treatment of EP and MEP nitinol surfaces alters oxide layer by enriching it in oxygen and by this improves bone cell-nitinol interaction.

  8. Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats.

    Science.gov (United States)

    Qian, A R; Li, D; Han, J; Gao, X; Di, S M; Zhang, W; Hu, L F; Shang, Peng

    2012-05-01

    Osteoblasts, the bone-forming cells, respond to various mechanical forces, such as stretch and fluid shear force in essentially similar ways. The cytoskeleton, as the load-bearing architecture of the cell, is sensitive to altered inertial forces. Disruption of the cytoskeleton will result in alteration of cellular structure and function. However, it is difficult to quantitatively illustrate cytoskeletal rearrangement because of the complexity of cytoskeletal structure. Usually, the morphological changes in actin organization caused by external stimulus are basically descriptive. In this study, fractal dimensions (D) analysis was used to quantify the morphological changes in the actin cytoskeleton of osteoblast-like cells (MC3T3-E1) under simulated microgravity using 3-D/2-D clinostats. The ImageJ software was used to count the fractal dimension of actin cytoskeleton by box-counting methods. Real-time PCR and immunofluroscent assays were used to further confirm the results obtained by fractal dimension analysis. The results showed significant decreases in D value of actin cytoskeleton, β-actin mRNA expression, and the mean fluorescence intensity of F-actin in osteoblast-like cells after 24 or 48 h of incubation under 3-D/2-D clinorotation condition compared with control. The findings indicate that 3-D/2-D clinorotation affects both actin cytoskeleton architecture and mRNA expression, and fractal may be a promising approach for quantitative analysis of the changes in cytoskeleton in different environments.

  9. Murine FGF-inducible kinase is rapidly degraded via the nuclear ubiquitin-proteosome system when overexpressed in NIH 3T3 cells.

    Science.gov (United States)

    Alberts, Gregory F; Winkles, Jeffrey A

    2004-05-01

    FGF-inducible kinase (Fnk) is a member of the polo-like kinase family of structurally-related serine/threonine protein kinases. These kinases appear to play critical roles in normal cell cycle progression and in the DNA damage response. In the case of Fnk, several reports indicate that this protein normally functions in cells as a stress-activated checkpoint kinase. However, when Fnk is ectopically overexpressed in cells, it likely becomes constitutively activated, and this promotes cell cycle arrest and apoptosis. In the present paper, we report that murine Fnk has a short half-life when transiently overexpressed in transfected NIH 3T3 fibroblasts. In contrast, when a kinase-deficient Fnk mutant protein, Fnk-K92M, is overexpressed in transfected cells, it is significantly more stable. We also found that Fnk-wild-type (WT) and Fnk-K92M are present in both the nucleus and cytoplasm of transfected cells and that Fnk nuclear export requires CRM1 function. Both of these proteins are degraded in cells via the nuclear ubiquitin-proteosome system; however, Fnk-K92M does not enter the nuclear compartment as efficiently as Fnk-WT and consequently it is significantly more stable. These results demonstrate that Fnk expression levels in transfected cells can be regulated by nuclear-cytoplasmic trafficking, ubiquitination, and proteosome-dependent degradation. Furthermore, our studies indicate that the downregulation of endogenous Fnk activity in stressed cells may occur, at least in part, by Fnk nuclear translocation and proteosomal degradation.

  10. The effect of gold nanoparticles on the proliferation and differentiation of murine osteoblast: a study of MC3T3-E1 cells in vitro.

    Science.gov (United States)

    Yao, Yuanyuan; Shi, Xiujuan; Chen, Fengshan

    2014-07-01

    The current study involves in identification and molecular levels characterization of optimal size and concentration of gold nanoparticles (AuNPs). Stable, gold nanoparticles were synthesized and characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The concentration and size dependent effects of the gold nanoparticles on proliferation of pre-osteoblast cells MC3T3-E1 was evaluated employing MTT cell proliferation assay. The results revealed that 30 nm diameter gold nanoparticles at a concentration of 10(-11) ppm were the most effective in promoting cell proliferation. Assay for alkaline phosphatase (ALP) activity and ALP staining were also used to confirm the effect of gold nanoparticles on osteoblast proliferation and differentiation. Moreover, reverse transcriptase polymerase chain reaction (RT-PCR) was used to measure the expression of the osteogenic genes Runx2, ALP, OCN and OPN as response gold nanoparticles. The data demonstrated that 30 nm gold nanoparticles at a concentration of 10(-11) ppm was the best combination of size and concentration to promote the proliferation and differentiation of osteoblasts, as indicated by an increase in the ALP activity and expression of the osteogenic genes Runx2, ALP, OCN and OPN. Collectively the results of this study suggest that gold nanoparticles can promote the proliferation and differentiation of osteoblasts and could be used effectively in treatments promoting bone regeneration.

  11. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells.

    Science.gov (United States)

    Valentino, Rossella; D'Esposito, Vittoria; Passaretti, Federica; Liotti, Antonietta; Cabaro, Serena; Longo, Michele; Perruolo, Giuseppe; Oriente, Francesco; Beguinot, Francesco; Formisano, Pietro

    2013-01-01

    Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA) is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1 nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.

  12. Influence of heating and cyclic tension on the induction of heat shock proteins and bone-related proteins by MC3T3-E1 cells.

    Science.gov (United States)

    Chung, Eunna; Sampson, Alana Cherrell; Rylander, Marissa Nichole

    2014-01-01

    Stress conditioning (e.g., thermal, shear, and tensile stress) of bone cells has been shown to enhance healing. However, prior studies have not investigated whether combined stress could synergistically promote bone regeneration. This study explored the impact of combined thermal and tensile stress on the induction of heat shock proteins (HSPs) and bone-related proteins by a murine preosteoblast cell line (MC3T3-E1). Cells were exposed to thermal stress using a water bath (44°C for 4 or 8 minutes) with postheating incubation (37°C for 4 hours) followed by exposure to cyclic strain (equibiaxial 3%, 0.2 Hz, cycle of 10-second tensile stress followed by 10-second rest). Combined thermal stress and tensile stress induced mRNA expression of HSP27 (1.41 relative fold induction (RFI) compared to sham-treated control), HSP70 (5.55 RFI), and osteopontin (1.44 RFI) but suppressed matrix metalloproteinase-9 (0.6 RFI) compared to the control. Combined thermal and tensile stress increased vascular endothelial growth factor (VEGF) secretion into the culture supernatant (1.54-fold increase compared to the control). Therefore, combined thermal and mechanical stress preconditioning can enhance HSP induction and influence protein expression important for bone tissue healing.

  13. Effect of Ichnocarpus frutescens (L.) R.Br. hexane extract on preadipocytes viability and lipid accumulation in 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    M Saravanan; S Ignacimuthu

    2013-01-01

    Objective: To investigate the crude extracts of Ichnocarpus frutescens (I. frutescens) for antiobesity effect. Methods: Leaves of I. frutescens were sequentially extracted with hexane, ethyl acetate, and methanol and their effect on viability of 3T3-L1 preadipocytes were evaluated. Based on this the apoptosis on preadipocytes was confirmed by DNA fragmentation and LDH (Lactate dehydrogenase) leakage assays. Anti-adipogenesis was performed by oil red O (ORO) staining and free glycerol release in the medium of differentiated adipocytes. Results: The hexane extract of I. frutescens (IFHE) inhibited cell viability in a time- and dose-related manner. An increased release of LDH, as a marker of membrane integrity, was observed at a dose of 200 μg/mL. The discontinuous DNA fragments on agarose gel electrophoresis showed the apoptotic effect of the IFHE. Morphological observations of cells stained with ORO showed a decrease in cellular lipid content at the concentrations tested compared to the induced control cells. In the experiment of lipolytic activity, treatment with IFHE enhanced glycerol secretion with the rates of approximately 28%, 55%, and 46% at the concentrations of 100, 200 and 300 μg/mL, respectively. Conclusions:The observed properties clearly revealed the medicinal property of I. frutescens in the treatment of obesity.

  14. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Rossella Valentino

    Full Text Available Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1 nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.

  15. Nonivamide enhances miRNA let-7d expression and decreases adipogenesis PPARγ expression in 3T3-L1 cells.

    Science.gov (United States)

    Rohm, Barbara; Holik, Ann-Katrin; Kretschy, Nicole; Somoza, Mark M; Ley, Jakob P; Widder, Sabine; Krammer, Gerhard E; Marko, Doris; Somoza, Veronika

    2015-06-01

    Red pepper and its major pungent principle, capsaicin (CAP), have been shown to be effective anti-obesity agents by reducing energy intake, enhancing energy metabolism, decreasing serum triacylglycerol content, and inhibiting adipogenesis via activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1). However, the binding of CAP to the TRPV1 receptor is also responsible for its pungent sensation, strongly limiting its dietary intake. Here, the effects of a less pungent structural CAP-analog, nonivamide, on adipogenesis and underlying mechanisms in 3T3-L1 cells were studied. Nonivamide was found to reduce mean lipid accumulation, a marker of adipogenesis, to a similar extent as CAP, up to 10.4% (P < 0.001). Blockage of the TRPV1 receptor with the specific inhibitor trans-tert-butylcyclohexanol revealed that the anti-adipogenic activity of nonivamide depends, as with CAP, on TRPV1 receptor activation. In addition, in cells treated with nonivamide during adipogenesis, protein levels of the pro-adipogenic transcription factor peroxisome-proliferator activated receptor γ (PPARγ) decreased. Results from miRNA microarrays and digital droplet PCR analysis demonstrated an increase in the expression of the miRNA mmu-let-7d-5p, which has been associated with decreased PPARγ levels.

  16. In vitro and in vivo enhancement of adipogenesis by Italian ryegrass (Lolium multiflorum in 3T3-L1 cells and mice.

    Directory of Open Access Journals (Sweden)

    Mariadhas Valan Arasu

    Full Text Available Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.

  17. 辐射对体外培养MC3T3-E1成骨前体细胞增殖和分化的影响%Effects of irradiation on proliferation and differentiation of MC3T3-E1 osteoblastic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    李玉梅; 赵铱民; 查年保; 舒震; 张松

    2014-01-01

    Objective The aim of this study is to investigate the effects of irradiation on the proliferation and differentiation of MC3T3-E1 osteoblastic cells. Methods MC3T3-E1 cells were irradiated 24 h after initial seeding. Gamma-radiation was administered at 0, 4, and 8 Gy as single doses by using a 60Co source. Cell proliferation was assessed at days 1, 3, 5, and 7 post-irradiation by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide assay. The collagen secretion of the cells was measured through sirius red staining at day 12 post-irradiation. The expressions of osteogenesis-related genes were assessed through real time fluorescence quantitative polymerase chain reaction at day 16 post-irradiation. The matrix mineralization caused by cells was evaluated through alizarin red staining at day 28 post-irradiation. Results The cells exposed to 4 Gy or 8 Gy demonstrated significantly lower proliferation rates compared with the non-irradiated group. Doses of 4 Gy or more significantly inhibited the expressions of osteogenesis-related genes (Osterix and osteocalcin). Collagen secretion and cell mineralization were significantly reduced by the 8 Gy dose. Conclusion 60Co γ-rays dose-dependently suppress the proliferation, collagen secretion, and mineralization of MC3T3-E1 cells. Furthermore, radiation seems to dose-dependently inhibit the expressions of osteogenesis-related genes of the cells.%目的:观察60Coγ射线对MC3T3-E1成骨前体细胞增殖和分化能力的影响。方法 MC3T3-E1细胞接种24 h后进行60Coγ射线照射,单次照射剂量分别为0、4、8 Gy。辐射后第1、3、5、7天,采用噻唑蓝比色法检测细胞的增殖能力;辐射后第12天,用黏胶纤维红染色法检测细胞的胶原分泌情况;第16天,用实时荧光定量聚合酶链反应检测细胞成骨相关基因mRNA的表达;第28天,采用茜素红染色及定量分析检测细胞基质的矿化能力。结果与对照组(0 Gy)相比,4

  18. 重组人釉原蛋白真核表达载体的构建及其在NIH3T3细胞中的稳定表达%Construction of recombinant human amelogenin eukaryon expression vector and its stable expression in NIH3T3 cells

    Institute of Scientific and Technical Information of China (English)

    程岚; 束蓉; 张秀丽; 田聆

    2011-01-01

    Objective To construct the recombinant eukaryon expression plasmid containing human amelogenin ( hAm) gene and transfect mammalian cell line NIH3T3 for construction of cells with stable expression of recombinant hAm. Methods hAm gene was inserted into eukaryon expression vector pcDNA3. 1/myc-His ( - ) A with restriction enzyme EcoR I and BamH I , and recombinant plasmid pcDNA3.1/myc-His (- ) A-hAm containing hAm gene was confirmed by restriction endonuclease mapping and sequencing. pcDNA3. 1/myc-His ( - ) A-hAm was transfected into NIH3T3 cells by Lipofectamine?2000, and was selected by G418 for positive cell clones. Cells with stable expression of hAm was constructed, and was identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Results Restriction endonuclease mapping and sequencing revealed that the inserted sequences were accurate in recombinant plasmid pcDNA3. 1/myc-His (- ) A-hAm. Expression of hAm with molecular weight of 28 000 was detected by SDS-PAGE and Western blotting in NIH3TS cells transfected with recombinant plasmid, which was in line with the prediction. Conclusion The recombinant eukaryon expression system containing hAm has been successfully constructed, and NIH3T3 cells with stable expression of recombinant hAm is obtained.%目的 构建含人釉原蛋白(hAm)基因的重组真核表达质粒并转染哺乳动物细胞NIH3T3,建立稳定表达重组hAm的细胞株,为临床应用奠定基础.方法 利用限制性内切酶EcoR Ⅰ和BamH Ⅰ将hAm基因插入真核表达载体pcDNA3.1/myc-His(-)A,构建含hAm基因的重组质粒pcDNA3.1/myc-His(-)A-hAm,双酶切和测序鉴定.通过LipofectamineTM 2000介导重组质粒转染NIH3T3细胞,利用G418筛选出阳性克隆,建立稳定表达人釉原蛋白的细胞株,聚丙烯酰胺凝胶电泳(SDS-PAGE)和Western blotting验证蛋白表达.结果 重组质粒pcDNA3.l/myc-His(-)A-hAm经双酶切和测序鉴定证实插入序列准

  19. Layer-by-layer assembly of peptide based bioorganic–inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, Steven M. [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States); Fath, Karl R. [The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367 (United States); The Graduate Center, The City University of New York, 365 Fifth Avenue, NY 10016 (United States); Phekoo, Aruna P. [The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367 (United States); Knoll, Grant A. [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States); Banerjee, Ipsita A., E-mail: banerjee@fordham.edu [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States)

    2015-06-01

    In this work we have developed a new family of biocomposite scaffolds for bone tissue regeneration by utilizing self-assembled fluorenylmethyloxycarbonyl protected Valyl-cetylamide (FVC) nanoassemblies as templates. To tailor the assemblies for enhanced osteoblast attachment and proliferation, we incorporated (a) Type I collagen, (b) a hydroxyapatite binding peptide sequence (EDPHNEVDGDK) derived from dentin sialophosphoprotein and (c) the osteoinductive bone morphogenetic protein-4 (BMP-4) to the templates by layer-by-layer assembly. The assemblies were then incubated with hydroxyapatite nanocrystals blended with varying mass percentages of TiO{sub 2} nanoparticles and coated with alginate to form three dimensional scaffolds for potential applications in bone tissue regeneration. The morphology was examined by TEM and SEM and the binding interactions were probed by FITR spectroscopy. The scaffolds were found to be non-cytotoxic, adhered to mouse preosteoblast MC3T3-E1 cells and promoted osteogenic differentiation as indicated by the results obtained by alkaline phosphatase assay. Furthermore, they were found to be biodegradable and possessed inherent antibacterial capability. Thus, we have developed a new family of tissue-engineered biocomposite scaffolds with potential applications in bone regeneration. - Highlights: • Fmoc-val-cetylamide assemblies were used as templates. • Collagen, a short dentin sialophosphoprotein derived sequence and BMP-4 were incorporated. • Hydroxyapatite–TiO{sub 2} nanocomposite blends and alginate were incorporated. • The 3D scaffold biocomposites adhered to preosteoblasts and promoted osteoblast differentiation. • The biocomposites also displayed antimicrobial activity.

  20. Traditional medicine yanggyuksanhwa-tang inhibits adipogenesis and suppresses proliferator-activated receptor gamma expression in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Soo-Jin Jeong

    2015-01-01

    Full Text Available Background: Yanggyuksanhwa-tang (YGSHT is a specific traditional Korean herbal formula for Soyangin according to Sasang constitutional philosophy. Although its biological activities against inflammation and cerebral infarction have been reporting, there is no information about the adipogenic activity of YGSHT. In the present study, we investigated the anti adipogenic activity of YGSHT to evaluate effects of YGSHT on adipogenesis in vitro. Materials and Methods: Using 3T3 L1 preadipocytes, we induced the cellular differentiation into adipocytes by adding insulin. Anti adipogenic activity of YGSHT was measured by oil red O staining, triglyceride assay, glycerol 3 phosphate dehydrogenase (GPDH activity test, and leptin assay. Results: YGSHT extract had no significant cytotoxicity in preadipocytes or differentiated adipocytes. YGSHT reduced the number of lipid droplets and content of triglyceride in adipose cells. YGSHT also significantly inhibited GPDH activity and decreased leptin production compared with control adipocytes. Down regulation of peroxisome proliferator activated receptor gamma (PPAR g expression at the messenger RNA level was observed in YGSHT treated adipocytes. Conclusion: Taken together, our data suggest that YGSHT has potential as an anti-obesity drug candidate.

  1. Proliferation and osteogenic response of MC3T3-E1 pre-osteoblastic cells on porous zirconia ceramics stabilized with magnesia or yttria.

    Science.gov (United States)

    Hadjicharalambous, Chrystalleni; Mygdali, Evdokia; Prymak, Oleg; Buyakov, Ales; Kulkov, Sergei; Chatzinikolaidou, Maria

    2015-11-01

    Dense zirconia ceramics are used in bone applications due to their mechanical strength and biocompatibility, but lack osseointegration. A porous interface in contact with bone tissue may lead to better bone bonding but the biological properties of porous zirconia are not widely explored. The present study focuses on the manufacturing of an yttria- (YSZ) and a magnesia-stabilized (MgSZ) porous zirconia, and on their in vitro biological investigation. The sintered ceramics had similar characteristics of porosity, pore size and interconnectivity. Their elastic moduli and compressive strength values were within the range of the values of human cortical bone. MC3T3-E1 pre-osteoblasts were used to investigate the proliferation, alkaline phosphatase (ALP) activity, collagen deposition and expression profile of four genes involved in bone metabolism of cells on porous ceramics. Scanning electron and fluorescence microscopy were employed to visualize cell morphology and growth. Pre-osteoblasts adhered well on both ceramics but cell numbers on YSZ were higher. Cells exhibited an increase in ALP activity and collagen deposition after 14 days on both MgSZ and YSZ, with higher levels on YSZ. Real-time quantitative polymerase chain reaction (qPCR) showed that the expression of bone sialoprotein (Bsp) and collagen type I (col1aI) were significantly higher on YSZ. No significant differences were found in their ability to regulate the early gene expression of Runx2 and Alp. Nevertheless, the biomineralized calcium content was similar on both ceramics after 21 days, indicating that despite chemical differences, both scaffolds direct the pre-osteoblasts toward a mature state capable of mineralizing the extracellular matrix.

  2. Borrelidin Isolated from Streptomyces sp. Inhibited Adipocyte Differentiation in 3T3-L1 Cells via Several Factors Including GATA-Binding Protein 3.

    Science.gov (United States)

    Matsuo, Hirotaka; Kondo, Yoshiyuki; Kawasaki, Takashi; Tokuyama, Shinji; Imamura, Nobutaka

    2015-01-01

    An inhibitor of 3T3-L1 adipocyte differentiation was isolated from Streptomyces sp. TK08330 and identified by spectroscopy as the 18-membered macrolide borrelidin. Treatment with 1.0 μM borrelidin suppressed intracellular lipid accumulation by 80% and inhibited the expression of adipocyte-specific genes. Borrelidin suppressed the mRNA expression of two master regulators of adipocyte differentiation, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein (C/EBPα). Studies on well-known upstream regulators of PPARγ revealed that borrelidin down-regulated C/EBPδ mRNA expression but did not affect expression of C/EBPβ. Borrelidin increased mRNA expression of negative regulators of differentiation such as GATA-binding protein (GATA) 3, Krüppel-like factor (KLF) 3 and KLF7, as well as positive regulators, KLF4, KLF6 and KLF15, at early stages of differentiation. To elucidate a primary mediator of borrelidin differentiation inhibitory activity, small interfering RNA (siRNA) transfection experiments were performed. The mRNA expression of PPARγ, which was down-regulated by borrelidin, was not changed by KLF3 and KLF7 siRNA treatment. In contrast, expression of PPARγ in GATA-3 siRNA-treated cells was not significantly different from that of control siRNA-treated cells. Borrelidin significantly inhibited lipid accumulation in control siRNA-treated cells, and treatment with GATA-3 siRNA slightly reduced the inhibitory effect of borrelidin. These results indicate that borrelidin inhibited adipocyte differentiation partially via GATA-3.

  3. 钩藤散对NIH-3T3细胞衰老模型增殖与凋亡的影响%Effects of Gouteng San on the Proliferation and Apoptosis of NIH-3T3 Cell Aging Model

    Institute of Scientific and Technical Information of China (English)

    黄厚才; 钟荣玲; 曹鹏; 宋捷; 杨德功; 夏智

    2012-01-01

    目的:观察钩藤散对NIH-3T3细胞衰老模型增殖与凋亡的影响.方法:NIH-3T3细胞接种在含10%胎牛血清的DMEM培养至20代,然后分为年轻、空白、模型3个组,传至30代时,用H2O2处理,β-半乳糖苷酶染色试剂盒染色,观察衰老细胞形态、衰老指征,确认衰老模型是否成功建立;用钩藤散(17,8.5,4.25,2.15 g·kg-1)ig SD大鼠,每天2次,连续给药3d,于末次ig1 h后麻醉、腹主动脉采血,制备含药血清;用钩藤散含药血清处理衰老模型,观察衰老细胞形态、衰老指征、增殖与凋亡等指标.结果:模型组细胞较对照组形态有显著改变,细胞衰老比例明显增加(P<0.05),因此H2O2氧化应激方法可成功建立细胞衰老模型;钩藤散含药血清能明显减少细胞形态的改变、改善衰老指征、促进细胞增殖(P<0.01)、降低细胞凋亡(P<0.01),尤其10倍剂量组最为明显.结论:钩藤散能有效促进细胞增殖,降低细胞凋亡,从而防止衰老.%Objective; To observe the regulatory effect of Gouteng San on the proliferation and apoptosis of NIH-3T3 cell lines. Method; NIH-3T3 cells were cultivated in DMEM with 10% fetal calf serum and three groups such as youth, blank and model group were used. Cells at generation 30 were treated with hydrogen peroxide ( H2 O2) .and then β-galactosidase dyeing kit was applied to observe cell morphology and aging indications to assure whether the aging mode was successfully established. Oral administration of Gouteng San was started for three constitutive days, twice daily. One hour after last administration, rats were anesthetized, and we drew blood from abdominal aorta for the preparation of Gouteng San medicated serum. NIH-3T3 cells were treated with Gouteng San medicated serum to observe cell morphology, aging indications, proliferation and apoptosis. Result; The cell morphology of model was changed and the proportion of cell senescence was increased significantly in model group

  4. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies.

    Science.gov (United States)

    Severino, Patrícia; Chaud, Marco V; Shimojo, Andrea; Antonini, Danilo; Lancelloti, Marcelo; Santana, Maria Helena A; Souto, Eliana B

    2015-05-01

    Polymyxins are a group of antibiotics with a common structure of a cyclic peptide with a long hydrophobic tail. Polymyxin B sulphate (PLX) has cationic charge, which is an obstacle for the efficient loading into Solid Lipid Nanoparticles (SLN). In the present paper, we describe an innovative method to load PLX into SLN to achieve the sustained release of the drug. PLX was firstly cross-linked with sodium alginate (SA) at different ratios (1:1, 1:2 and 1:3 SA/PLX), and loaded into SLN produced by high pressure homogenization (HPH). Optimized SLN were produced applying 500bar pressure and 5 homogenization cycles. The best results were obtained with SA/PLX (1:1), recording 99.08±1.2% for the association efficiency of the drug with SA, 0.99±10g for the loading capacity and 212.07±5.84% degree of swelling. The rheological profile of aqueous SA solution followed the typical behaviour of concentrated polymeric solutions, whereas aqueous SA/PLX solution exhibited a gel-like dynamic behaviour. Micrographs show that SA/PLX depicted a porous and discontinuous amorphous phase in different ratios. The encapsulation efficiency of SA/PLX (1:1) in SLN, the mean particle diameter, polydispersity index and zeta potential were, respectively, 82.7±5.5%; 439.5±20.42nm, 0.241±0.050 and -34.8±0.55mV. The effect of SLN on cell viability was checked in HaCat and NIH/3T3 cell lines, and the minimal inhibitory concentrations (MIC) were determined in Pseudomonas aeruginosa strains. SA/PLX-loaded SLN were shown to be less toxic than free PLX. Minimal inhibitory concentrations (MIC) showed the presence of the cross-linker polymer-drug complex, and SLN were shown to enhance MIC in the evaluated strains.

  5. 逆转录病毒载体介导的LacZ基因在NIH-3T3细胞中的稳定表达%Stable Expression of LacZ Gene in NIH-3T3 Cell Mediated by Retroviral Vector

    Institute of Scientific and Technical Information of China (English)

    张学明; 岳占碰; 杜崇涛; 安铁洙; 高丰; 邓旭明; 柳巨雄; 成军; 李德雪

    2005-01-01

    The transgenic technique mediated by spermatogonial stem cells (SSCs) might be a new way for the production of transgenic animals and the therapy of male sterility. To investigate the possibility of in vitro transfection of SSCs mediated by retroviral vector, recombined retroviral vector pLNCL carrying LacZ gene was introduced into packaging cell PA317 by liposome-mediated transduction. Five stable virus-producing cell lines were screened with the media containing G418. Then the virus-containing supernatant was collected from these clones and filtered to prepare a serial dilution. The pre-concentrated viral titer of the supernatant was determined with NIH-3T3 cell by X-gal staining. It′s demonstrated that PA3173 gave the highest pre-concentrated viral titer of 1.1×103 CFU/mL. Subsequently, the stable transfected NIH-3T3clones were screened and cultured to confluence. The X-gal staining was proceeded to detect the expression of β-galactosidase. The results showed that most of the stably transfected NIH-3T3 cells were X-gal+, which suggested that LacZ gene was expressed successfully in these cells.%精原干细胞(SSCs)介导的转基因技术很可能成为制作转基因动物及治疗雄性不育的一条新途径.为了研究逆转录病毒载体介导法转染体外培养SSCs的可行性,用脂质体介导法将携带LacZ基因的重组逆转录病毒载体pLNCL导入包装细胞PA317,用含G418的培养液筛选得到5株稳定转染的产毒细胞.收集这些克隆的产毒上清,过滤后进行倍比稀释,用NIH-3T3细胞通过X-gal染色测定其浓缩前病毒滴度.结果显示,PA3173培养上清中病毒的浓缩前滴度最高,达1.1×103CFU/mL.再将筛选到的稳定转染的NIH-3T3细胞培养至单层,进行X-gal染色检测β-半乳糖苷酶的表达.结果显示,大多数稳定转染的NIH-3T3细胞均为X-gal+,表明这些细胞成功表达了目的基因LacZ.本研究结果为后期工作中用该载体感染体外培养SSCs奠定了基础.

  6. Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate.

    Directory of Open Access Journals (Sweden)

    María del Mar Romero

    Full Text Available Cultured adipocytes (3T3-L1 produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively sustained. Proportionally (with respect to lactate plus glycerol, more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of

  7. Flavonol acylglycosides from flower of Albizia julibrissin and their inhibitory effects on lipid accumulation in 3T3-L1 cells.

    Science.gov (United States)

    Yahagi, Tadahiro; Daikonya, Akihiro; Kitanaka, Susumu

    2012-01-01

    Obesity is a serious health problem worldwide. We investigated the anti-obesity effect of the flower of Albizia julibrissin DURAZZ. (Leguminosae). A 90% EtOH extract of the flower inhibited adipogenesis in 3T3-L1 preadipocytes, as well as the activity of glycerol-3-phosphate dehydrogenase (GPDH) activity. New flavonol acylglycosides (1-4) and eighteen known compounds (5-22) were isolated by bioassay-directed fractionation. These new glycosides were elucidated to be 3″-(E)-p-coumaroylquercitrin (1), 3″-(E)-feruloylquercitrin (2), 3″-(E)-cinnamoylquercitrin (3), and 2″-(E)-cinnamoylquercitrin (4) on the basis of spectroscopic and chemical analysis. These compounds inhibited adipogenesis in 3T3-L1 preadipocytes. In particular, 2 exhibited potent inhibitory effects on triglyceride accumulation. Furthermore, GPDH activity was inhibited by 2. Additionally, 2 inhibited glucose uptake in 3T3-L1 adipocytes. These results indicate that the 90% EtOH extract and compounds isolated from the flower of A. julibrissin inhibit adipogenesis in 3T3-L1 preadipocytes and may have anti-obesity effect through the inhibition of preadipocyte differentiation.

  8. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yumei; Zhao Yimin [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Chai Feng; Hildebrand, Hartmut F [Groupe de Recherche sur les Biomateriaux, Faculte de Medecine, F-59045 Lille cedex (France); Hornez, Jean-Christophe [Laboratoire des Materiaux et Procedes (LMP), EA 2443, UVHC, 59600 Maubeuge (France); Li, Chang Liang [Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Traisnel, Michel, E-mail: zhaoym@fmmu.edu.c, E-mail: fhildebrand@univ-lille2.f [Ecole Nationale Superieure de Chimie de Lille, UMR CNRS 8008, 59652 Villeneuve d' Ascq (France)

    2009-02-15

    Corrosion behaviour of biomedical alloys is generally determined in mineral electrolytes: unbuffered NaCl 0.9% (pH 7.4) or artificial saliva (pH 6.8). The assays with exclusive utilization of these electrolytes are of low relevance for the biological condition, to which the alloys will be exposed once implanted in the human organism. As an approach to the biological situation regarding the interaction of proteins, electrolytes and metals, we added the RPMI cell culture medium containing foetal calf serum as a biological electrolyte (pH 7.0). The analysis of corrosion behaviour was also performed in the presence of human lymphoid cells (CEM). The rest potential (E{sub r}) and the global polarization were determined on cp-Ti, micro-arc oxidized cp-Ti (MAO-Ti), four different Ti-alloys (Ti6Al4V, Ti12Zr, Ti(AlMoZr), Ti(NbTaZr)) and 316L stainless steel. The 316L exhibited an appropriate E{sub r} and a good passive current density (I{sub p}), but a high corrosion potential (E{sub c}) and a very low breakdown potential (E{sub b}) in all electrolytes. All Ti-alloys exhibited a much better electrochemical behaviour: better E{sub r} and E{sub c} and very high E{sub b}. No significant differences of the above parameters existed between the Ti-alloys, except for Zr-containing alloys that showed better corrosion behaviour. A remarkable difference, however, was stated with respect to the electrolytes. NaCl 0.9% induced strong variations between the Ti-alloys. More homogeneous results were obtained with artificial saliva and RPMI medium, which induced a favourable E{sub c} and an increased I{sub p}. The presence of cells further decreased these values. The unbuffered NaCl solution seems to be less appropriate for the analysis of corrosion of metals. Additional in vitro biological assessments with CEM cell suspensions and MC3T3-E1 osteoblasts confirmed the advantages of the Ti(AlMoZr) and Ti(NbTaZr) alloys with an improved cell proliferation and vitality rate.

  9. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Goto, Maya; Uchiyama, Satoshi; Nakagawa, Taeko

    2008-05-01

    The effect of zinc sulfate on the mRNA expressions in Runx2, osteocalcin, alpha1(I) collagen, insulin-like growth factor-I (IGF-I), transforming growth factor-beta1 (TGF-beta1), osteoprotegerin (OPG), regucalcin, zinc transporter 1 (ZIP1), or glyceroaldehyde-3-phosphate dehydrogenase (G3PDH) in osteoblastic MC3T3-E1 cells in vitro was investigated. Cells with subconfluency were cultured for 48 h in a medium containing either vehicle or zinc sulfate (10(-6)-10(-4) M) without fetal bovine serum. Culture with zinc sulfate (10(-5) M) caused a significant increase in Runx2, OPG, or regucalcin mRNA expressions in the cells, while it did not have a significant effect on osteocalcin, alpha1(I) collagen, IGF-I, TGF-beta1, ZIP1, or G3PDH mRNA expressions. The effect of zinc sulfate (10(-4) M) in increasing Runx2 mRNA expression was seen at 24-72 h after culture. A significant increase in OPG mRNA expression was observed at 24 or 48 h after culture. Regucalcin mRNA expression was significantly increased at 48 or 72 h after culture with zinc sulfate (10(-4) M). The stimulatory effects of zinc sulfate on Runx2, OPG, or regucalcin mRNAs were significantly prevented in the presence of cycloheximide (10(-7) M), an inhibitor of protein synthesis, or 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (10(-6) M), an inhibitor of transcription activity. Culture with beta-alanyl-L-histidinato zinc (10(-5) M) caused a significant increase in Runx2 or regucalcin mRNA expressions, while zinc acexamate (10(-5) M) did not have a significant effect on Runx2, OPG, ZIP1, or regucalcin mRNA expressions. This study demonstrates that zinc sulfate has a role in the enhancement of Runx2, OPG, or regucalcin mRNA expression in osteoblastic cells in vitro, suggesting its role in the regulation of gene expression in the cells.

  10. 小鼠3T3-L1前脂肪细胞系的增强绿色荧光蛋白标记%The Labeling of 3T3-L1 Preadipocyte Cells with Enhanced Green Fluorescent Protein

    Institute of Scientific and Technical Information of China (English)

    李成建; 成俊英; 张晓岚; 张崇本

    2004-01-01

    A cell model is desired for adipocyte differentiation investigation and for high-throughput screening of anti-obesity and anti-diabetes molecules from chemical resources due to the world wide epidemic of obesity and diabetes. In order to establish such a cell model, a plasmid of pPPARγ2-promoter-EGFP was constructed by inserting a 660bp sequence of mouse PPARγ2 promoter into the AseⅠ and KpnⅠ sites of pEGFP-N3 and transferred into 3T3-L1 preadipocyte cells. The cells were induced to differentiate and the expression of PPARγ2 was detected by the microscopic observation of EGFP and by RT-PCR assays. The results showed that the EGFP gene expression patterns were similar to that of pPPARγ2's, which indicated that the EGFP gene was transferred into the mouse 3T3-L1 preadipocyte cells, and its expression was under the control of pPPARγ2 promoter. RT-PCR assays showed that the EGFP expression authentically represented the stable expression of PPARγ2. In conclusion, a preadipocyte cell line expressing EGFP under the control of the promoter of adipocyte-specific expression gene PPARγ2 was generated. The cell line provides a powerful approach for the research of adipocyte differentiation and for the high-throughput screening of anti-obesity and anti-diabetes chemicals.%细胞模型是研究细胞分化原理以及进行高通量筛选的有效工具.为了建立特异性标记的脂肪细胞分化模型,构建了包括脂肪细胞分化特异性表达基因PPARγ2的启动子在内的载体(pPPARγ2-promoter-EGFP),用电穿孔方法转染小鼠3T3-L1 前脂肪细胞,用显微荧光观察和RT-PCR确认PPARγ2基因的内源表达.结果显示,EGFP基因成功转入3T3-L1前脂肪细胞,观察到细胞分化过程中EGFP表达和脂肪积累,RT-PCR分析表明EGFP代表了稳定而真实的PPARγ2基因的内源性表达.建立了由脂肪组织特异表达基因PPARγ2的表达控制的EGFP标记的小鼠3T3-L1前脂肪细胞系,目前国内外尚未见用同样

  11. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells.

    Science.gov (United States)

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-12-10

    Limonin, one of the major components in dictamni radicis cortex (DRC), has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST) has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca(2+) and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca(2+) and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca(2+) and cAMP levels and phosphorylation of CREB.

  12. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yeo Cho Yoon

    2015-12-01

    Full Text Available Limonin, one of the major components in dictamni radicis cortex (DRC, has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca2+ and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca2+ and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca2+ and cAMP levels and phosphorylation of CREB.

  13. 富血小板纤维蛋白提取液对高糖状态下MC3T3-E1细胞的影响%The effects of platelet-rich fibrin extract(PRFe) on MC3T3-E1 cells in the environment of different concentration glucose

    Institute of Scientific and Technical Information of China (English)

    陈涛; 王中; 刘振华; 高攀

    2015-01-01

    目的:探讨富血小板纤维蛋白提取液(Platelet-rich fibrin extract, PRFe)对不同高糖状态下MC3T3-E1细胞增殖、成骨分化的影响。方法:实验分为对照组(5.5mmol/L糖浓度培养基),高糖组(15.5mmol/L糖浓度培养基)及实验组(含PRFe的15.5mmol/L糖浓度培养基)。甲基噻唑基四唑(MTT)法测定1d,3d,5d的细胞增殖数;碱性磷酸酶(ALP)活性检测1d,3d,5d,7d的成骨分化情况;荧光实时定量PCR测定核心结合蛋白因子2(Runt-related transcription factor-2, RUNX2)和成骨细胞特异性转录因子(Osterix, OSX)基因分别在3d、7d的表达。结果:随培养时间延长,实验组细胞的增殖、分化及成骨基因的表达均高于高糖组,且差异具有统计学意义(P0.05)。结论: PRFe能有效地促进高糖状态下MC3T3-E1细胞的增殖、分化及成骨基因的表达。%Objective: To evaluate the effect of platelet-rich fibrin extract (PRFe) on proliferation and bone differentiation of MC3T3-E1 cells in different concentration glucose environment. Methods: Trials are divided into the control group (5.5mmol/L), the high glucose group (15.5mmol/L)and the experimental group (15.5mmol/L+PRFe), the experimental group use the osteogenic induction α-MEM containing PRFe, while the other two groups just use the osteogenic induction α-MEM without PRFe. MTT assay to detect the number of the osteoblasts at 1d、3d、5d; the activity of alkaline phosphatase(ALP) to detect the differentiation of osteoblast at 1d、3d、5d、7d; mean while, the level of osteogenetic biomarkers Runx2 and OSX at 3d、7d were quantified by real-time PCR. Results: The number、ALP activity and the gene expression level of MC3T3-E1 cells was higher in the experiment group than high glucose group(P0.05). Conclu-sions: Our work confirmed that PRFe is useful in stimulating the proliferation and bone differentiation of MC3T3-E1 cells in the high glucose

  14. Glabridin Alleviates the Toxic Effects of Methylglyoxal on Osteoblastic MC3T3-E1 Cells by Increasing Expression of the Glyoxalase System and Nrf2/HO-1 Signaling and Protecting Mitochondrial Function.

    Science.gov (United States)

    Choi, Eun Mi; Suh, Kwang Sik; Kim, Yu Jin; Hong, Soo Min; Park, So Yong; Chon, Suk

    2016-01-13

    Methylglyoxal (MG) contributes to the pathogenesis of age- and diabetes-associated complications. The present study investigated the effects of glabridin on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. MC3T3-E1 cells were treated with glabridin in the presence of MG, and markers of mitochondrial function and oxidative damage were examined. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin prevented MG-induced cell death, the production of intracellular reactive oxygen species and mitochondrial superoxides, cardiolipin peroxidation, and the production of inflammatory cytokines. The soluble form of receptor for advanced glycation end products (sRAGEs)/RAGE ratio increased upon MG treatment, but less so after pretreatment with glabridin, which also increased the level of reduced glutathione and the activities of glyoxalase I and heme oxygenase-1, all of which were reduced by MG. In addition, glabridin elevated the level of nuclear factor erythroid 2-related factor 2. These findings suggest that glabridin protects against MG-induced cell damage by inhibiting oxidative stress and increasing MG detoxification. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin reduced MG-induced mitochondrial dysfunction. Additionally, the nitric oxide level significantly increased upon glabridin pretreatment. Together, these data show that glabridin may potentially serve to prevent the development of diabetic bone disease associated with MG-induced oxidative stress.

  15. 脉冲电磁场对MC3 T3-E1细胞增殖与分化的影响%Effect of pulsed electromagnetic fields on proliferation and differentiation of MC3 T3-E1 cells

    Institute of Scientific and Technical Information of China (English)

    闫娟丽; 李少锋; 周建; 葛宝丰; 陈克明; 马小妮; 方清清; 成魁; 高玉海; 石文贵

    2015-01-01

    目的:研究不同强度50Hz脉冲电磁场(Pulse electromagnetic fields, PEMFs)对小鼠成骨细胞系MC3T3⁃E1增殖与分化的影响。方法 MC3T3⁃E1传代培养后分成七组,分别采用0�0mT、0�6mT、1�2mT、1�8mT、2�4mT、3�0mT和3�6mT50Hz脉冲电磁场处理,90 min/d。 MTT法检测细胞增殖情况,成骨性分化检测处理3 d、6 d、9 d、12 d后ALP活性和首次处理12 h后BMP⁃2、Runx⁃2、OPG基因表达情况。结果6种强度的脉冲电磁场均促进细胞增殖,其中0�6mT的促增殖效应最强(P<0�01)。在成骨性诱导培养条件下,细胞内ALP活性随电磁场处理时间的延长而逐渐增加,第9 d达到峰值,之后开始回落。0�6 mT、3�0 mT和3�6 mT均能提高ALP活性,其中0�6 mT始终处于最高水平(P<0�01)。三种基因的表达水平在首次处理12h,在0�6mT、1�2mT、3mT和3�6mT组均显著提高,但仍然是0�6mT的增强效应最为明显。结论0�6mT50Hz脉冲电磁场具有最佳的促进MC3T3⁃E1细胞增殖和成骨性分化活性,这可能为采用脉冲电磁场治疗骨质疏松症提供了理想的治疗参数。%Objective To investigate the effect of pulsed electromagnetic fields ( PEMFs) on proliferation and differentiation of MC3T3⁃E1 cells. Methods MC3T3⁃E1 cells were divided into 7 groups after subculture. They were exposed to 50 Hz PEMFs (0�0, 0�6, 1�2, 1�8, 2�4, 3�0, and 3�6 mT, respectively) for 90 min/day. Cell proliferation was assessed using MTT method. ALP activity was examined on 3, 6, 9, and 12 days. Expression levels of BMP⁃2, Runx⁃2, and OPG mRNA were analyzed after 12 hours of PEMFs. Results Six intensities of PEMFs promoted MC3T3⁃E1 cell proliferation. The highest promotion was achieved under 0�6 mT intensity (P<0�01). Under the osteogenic culture condition, ALP activity gradually increased along with the time of exposure PEMFs. The peak was on the 9th day

  16. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    Science.gov (United States)

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-08

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016.

  17. 4,4'-Dichlorodiphenyltrichloroethane (DDT) and 4,4'-dichlorodiphenyldichloroethylene (DDE) promote adipogenesis in 3T3-L1 adipocyte cell culture.

    Science.gov (United States)

    Kim, Jonggun; Sun, Quancai; Yue, Yiren; Yoon, Kyong Sup; Whang, Kwang-Youn; Marshall Clark, J; Park, Yeonhwa

    2016-07-01

    4,4'-Dichlorodiphenyltrichloroethane (DDT), a chlorinated hydrocarbon insecticide, was extensively used in the 1940s and 1950s. DDT is mainly metabolically converted into 4,4'-dichlorodiphenyldichloroethylene (DDE). Even though most countries banned DDT in the 1970s, due to the highly lipophilic nature and very stable characteristics, DDT and its metabolites are present ubiquitously in the environment, including food. Recently, there are publications on relationships between exposure to insecticides, including DDT and DDE, and weight gain and altered glucose homeostasis. However, there are limited reports regarding DDT or DDE and adipogenesis, thus we investigated effects of DDT and DDE on adipogenesis using 3T3-L1 adipocytes. Treatment of DDT or DDE resulted in increased lipid accumulation accompanied by increased expression of CCAAT/enhancer-binding protein α (C/EBPα), peroxisome-proliferator activated receptor-γ (PPARγ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), adipose triglyceride lipase, and leptin. Moreover, treatment of DDT or DDE increased protein levels of C/EBPα, PPARγ, AMP-activated protein kinase-α (AMPKα), and ACC, while significant decrease of phosphorylated forms of AMPKα and ACC were observed. These finding suggest that increased lipid accumulation caused by DDT and DDE may mediate AMPKα pathway in 3T3-L1 adipocytes.

  18. Simultaneous use of two prostaglandin radioimmunoassays employing two antisera of differing specificity. II. Relative stability of prostaglandins E1, E2, and F1alpha in cell cultures of BALB/c 3T3 and SV3T3 mouse fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ritzi, E.M.; Stylos, W.A.

    1976-11-01

    The relative stability of Prostaglandins (PGs) E1, E2 and F1..cap alpha.. in cultures of BALB/c 3T3 and SV3T3 cells has been evaluated using 3 different approaches. First, total recovery of tritium in the ethyl acetate phase following incubation and extraction of PGF1..cap alpha.. and PGE1 demonstrated greater stability for PGF1..cap alpha.. (88.8 percent) than PGE1 (65.9 percent). Second, analysis of incubated, extracted, tritiated PGs by thin layer chromatography revealed decreases of up to 23 percent in the PGE zone following incubation of 3H-PGE1. With increasing time of incubation, decreases in the PGE zone were accompanied by increase in PGA-like compounds. 3H-PGF1..cap alpha.. demonstrated greater stability, having greater than 90 percent recovery of the tritium in the PGF zone. A third approach to the assessment of PG stability in culture was the comparison of the production of individual PGs by radioimmunoassay (RIA). The data obtained by RIA indicated a lag in the increase of PGA and PGB, until an initial rise in PGE was noted, suggesting that PGA and PGB may be secondary products arising from PGE which exhibits only partial stability in culture. By employing two RIAs, one for total PGE and one for PGA and PGB, the composite determination PG (E + (A + B)) can be used to provide a more meaningful determination of PG production because of the instability of the PGs. On the other hand, individual determinations are helpful in assessing the stability of PGEs in cell cultures.

  19. 小鼠前脂肪细胞3T3-L1培养与四联诱导分化方法的探讨%Discussion on cultivation and methodology of four-drug combination-induced differentiation in mouse preadipocytes 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    孙慧誌; 田德润; 孟洁; 赵楠; 韩洁; 甘椿椿; 王勇

    2016-01-01

    Objective To optimize and establish the methodology for culturing and inducing differentiation of mouse preadipocytes 3T3-L1. Methods The mouse cells 3T3-L1 were incubated in DMEM medium contained with 10%FBS, during which the incubation medium was refreshed every 2 to 3 days. Two methods were used to introduce differentiation, including three-drug combination group and four-drug combination group. The protocol of mediumⅠin three-drug combination group including insulin 10 mg/L, IBMX 0.5 mmol/L and DEX 1.0μmol/L. The protocol of mediumⅠin four-drug combination group including indometacin 0.1 mmol/L based on those of three-drug combination group. Both of them were incubated for 2 days and continuous for 2 times. And medium Ⅱ included insulin 10 mg/L for 2-day culturing and continuous for 2 times. Oil red O staining was used to observe the morphological changes of two groups of cells before and after treatment under inverted microscope. Results Mouse preadipocytes 3T3-L1 appeared in good conditions and grew in a paving stone fashion. These cells covered homogeneously the bottom of incubators, the culture medium refreshed every 2 days. The results of four-drug combination group were better than those of three-drug combination group. After three-drug combination induced differentiation, there was no significant change in cell morphology. Comparing with three-drug combination induced differentiation, four-drug combination was successfully achieved in over 90% of the cell inducing, which were round-shaped, with jacinth ester droplets by oil-red O staining. Conclusion We have optimized the method for culturing and inducing differentiation of mouse preadipocytes 3T3-L1 by adding indometacin on the basis of the three-drug combination induced differentiation.%目的:改进小鼠前脂肪细胞3T3-L1的培养并诱导分化为成熟脂肪细胞的方法。方法使用含有10%胎牛血清(FBS)的高糖型DMEM液体培养基常规培养小鼠前脂肪细胞,2

  20. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Li Hailan

    2011-12-01

    Full Text Available Abstract Background Phosphatidylcholine (PPC formulation is used for lipolytic injection, even though its mechanism of action is not well understood. Methods The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD, and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. Results PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations Conclusions PPC results in apoptosis of 3T3-L1 cells.

  1. ROS-induced toxicity: exposure of 3T3, RAW264.7, and MCF7 cells to superparamagnetic iron oxide nanoparticles results in cell death by mitochondria-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Hui-Chen, E-mail: d93548008@ntu.edu.tw; Chen, Chung-Ming, E-mail: chung@ntu.edu.tw [National Taiwan University, Institute of Biomedical Engineering (China); Hsieh, Wen-Yuan, E-mail: hsiehw@itri.org.tw [Industrial Technology Research Institute, Biomedical Technology and Device Research Labs (China); Chen, Ching-Yun, E-mail: chingyun523@gmail.com; Liu, Chia-Ching, E-mail: d95548005@ntu.edu.tw; Lin, Feng-Huei, E-mail: double@ntu.edu.tw [National Taiwan University, Institute of Biomedical Engineering (China)

    2015-02-15

    Superparamagnetic nanoparticles (Fe{sub 3}O{sub 4}, SPIO) have been used as magnetic resonance imaging enhancers for years. However, bio-safety issues concerning nanoparticles remain largely unexplored. Of particular concern is the possible cellular impact of nanoparticles during SPIO uptake and subsequent oxidative stress. SPIO causes cell death by apoptosis via a little understood mitochondrial pathway. To more closely examine this process, three kinds of cells—3T3, RAW264.7, and MCF7—were treated with SPIO coated with polyethylene glycol (SPIO-PEG) and monitored by transmission electron microscopy (TEM), using cytotoxicity evaluation, mitochondrial activity, reactive oxygen species (ROS) generation, and Annexin V assay. TEM revealed that SPIO-PEG nanoparticles surrounded the cellular endosome membrane, creating a bulge in the endosome. Compared to 3T3 cells, greater numbers of SPIO-PEG nanoparticles infiltrated the mitochondria of RAW264.7 and MCF7 cells. SPIO-PEG residency is associated with boosted ROS, with elevated levels of mitochondrial activity, and advancement of cell apoptosis. Furthermore, correlation analysis showed that a polynomial model demonstrates a better fit than a linear model in MCF7, implying that cytotoxicity may have alternative impacts on cell death at different concentrations. Thus, we believe that MCF7 cell death results from the apoptosis pathway triggered by mitochondria, and we find lower cytotoxicity in 3T3. We propose that optimal levels of SPIO-PEG nanoparticles lead to increased levels of ROS and a resulting oxidative stress environment which will kill only cancer cells while sparing normal cells. This finding has great potential for use in cancer therapies in the future.

  2. A Small Molecule Swertisin from Enicostemma littorale Differentiates NIH3T3 Cells into Islet-Like Clusters and Restores Normoglycemia upon Transplantation in Diabetic Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Nidheesh Dadheech

    2013-01-01

    Full Text Available Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC. Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro and decreased fasting blood glucose (FBG (in vivo in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes.

  3. Inhibition of fat cell differentiation in 3T3-L1 pre-adipocytes by all-trans retinoic acid: Integrative analysis of transcriptomic and phenotypic data

    Directory of Open Access Journals (Sweden)

    Katharina Stoecker

    2017-03-01

    Full Text Available The process of adipogenesis is controlled in a highly orchestrated manner, including transcriptional and post-transcriptional events. In developing 3T3-L1 pre-adipocytes, this program can be interrupted by all-trans retinoic acid (ATRA. To examine this inhibiting impact by ATRA, we generated large-scale transcriptomic data on the microRNA and mRNA level. Non-coding RNAs such as microRNAs represent a field in RNA turnover, which is very important for understanding the regulation of mRNA gene expression. High throughput mRNA and microRNA expression profiling was performed using mRNA hybridisation microarray technology and multiplexed expression assay for microRNA quantification. After quantitative measurements we merged expression data sets, integrated the results and analysed the molecular regulation of in vitro adipogenesis. For this purpose, we applied local enrichment analysis on the integrative microRNA-mRNA network determined by a linear regression approach. This approach includes the target predictions of TargetScan Mouse 5.2 and 23 pre-selected, significantly regulated microRNAs as well as Affymetrix microarray mRNA data. We found that the cellular lipid metabolism is negatively affected by ATRA. Furthermore, we were able to show that microRNA 27a and/or microRNA 96 are important regulators of gap junction signalling, the rearrangement of the actin cytoskeleton as well as the citric acid cycle, which represent the most affected pathways with regard to inhibitory effects of ATRA in 3T3-L1 preadipocytes. In conclusion, the experimental workflow and the integrative microRNA–mRNA data analysis shown in this study represent a possibility for illustrating interactions in highly orchestrated biological processes. Further the applied global microRNA–mRNA interaction network may also be used for the pre-selection of potential new biomarkers with regard to obesity or for the identification of new pharmaceutical targets.

  4. Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/β-catenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells.

    Science.gov (United States)

    Lee, Soung-Hoon; Kim, Bora; Oh, Myoung Jin; Yoon, Juyong; Kim, Hyun Yi; Lee, Kye Jong; Lee, Joo Dong; Choi, Kang-Yell

    2011-11-01

    Obesity, which is related to metabolic syndrome and is associated with liver disease, represents an epidemic problem demanding effective therapeutic strategies. Evidence shows that the Wnt/β-catenin pathway is closely associated with obesity and that small molecules regulating the Wnt/β-catenin pathway can potentially control adipogenesis related to obesity. Eleven plant extracts activating the Wnt/β-catenin pathway were screened by using HEK 293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. An extract of Persicaria hydropiper (L.) Spach was found to activate Wnt/β-catenin signaling. P. hydropiper is grown worldwide in temperate climates and is found widely in Southeast Asia. The P. hydropiper extract inhibited the differentiation of adipocyte 3T3-L1 cells. Isoquercitrin and isorhamnetin, constituents of P. hydropiper, also activated Wnt/β-catenin signaling and suppressed the differentiation of 3T3-L1 cells. These results indicate that isoquercitrin in P. hydropiper suppresses the adipogenesis of 3T3-L1 cells via the inhibition of Wnt/β-catenin signaling. P. hydropiper and isoquercitrin may therefore be potential therapeutic agents for obesity and its associated disorders.

  5. Effect of deferasirox on biological activity of murine preosteoblast MC3T3-E1 cells%地拉罗司对小鼠前成骨细胞MC3 T3-E1生物学活性的影响

    Institute of Scientific and Technical Information of China (English)

    赵国阳; 狄东华; 汪升; 徐又佳

    2016-01-01

    目的:探讨铁鳌合剂地拉罗司( deferasirox, DFS)体外对成骨细胞增生、分化、矿化和细胞内铁离子的影响。方法小鼠前成骨样细胞MC3T3-E1在37℃条件下体外培养,在10 mmol/L β-甘油磷酸和50 mg/L抗坏血酸的诱导作用下,分化为成骨细胞,同时用不同浓度(10、20、40μmol/L ) DFS 干预,用CCK-8法检测细胞的增生,碱性磷酸酶( alkaline phosphatase, ALP)活性试剂盒检测细胞ALP活性, Von kos-sa染色法行细胞钙结节染色,实时定量PCR检测细胞膜转铁蛋白受体( transferrin receptor, TfR) mRNA的表达。结果 MC3T3-E1细胞增生结果显示, DMSO溶剂组、对照组(0μmol/L)、10、20、40μmol/L组A值分别为1.41±0.09、1.41±0.09、1.01±0.01、0.79±0.04、0.67±0.04; ALP 活性检测结果显示,对照组(0μmol/L)、10、20、40μmol/L组ALP活性值分别为0.73±0.03、0.65±0.02、0.54±0.03、0.35±0.04;钙结节检测结果显示,对照组(0μmol/L)、10、20、40μmol/L组TfR mRNA钙化面积比值分别为4.22±0.12、3.29±0.14、1.40±0.20、0.86±0.21; TfR mRNA表达检测结果显示,对照组(0μmol/L)、10、20、40μmol/L组TfR mRNA表达比分别为1、1.52±0.23、1.91±0.17、2.98±0.14。 MC3T3-E1细胞的增生、ALP活性、钙结节和钙化面积随DFS干预浓度的增加呈剂量依赖性降低( P<0.05), TfR mRNA的表达随DFS干预浓度的增加呈剂量依赖性升高(P<0.05)。结论 DFS可能通过螯合成骨细胞内的铁离子抑制其增生、分化和矿化。%Objective To investigate the effects of deferasirox ( DFS) on proliferation, differentiation, miner-alization and intracellular iron of osteoblast in vitro.Methods Murine preosteoblast MC3T3-E1 cells were incubated in a medium supplemented with different concentrations (10, 20, 40 μmol/L) of

  6. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of); Jeong, Hyung Jin, E-mail: jhj@andong.ac.kr [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of)

    2010-10-01

    Research highlights: {yields} 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. {yields} 2M4VP inhibited hyper-phosphorylation of Rb protein. {yields} 2M4VP induced cell cycle arrest from G1 to S. {yields} 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. {yields} 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  7. Comparison of the effects of elevated inorganic phosphate on primary human vascular smooth muscle cells and the pre-osteoblastic cell line MC3T3-E1

    DEFF Research Database (Denmark)

    Pedersen, Lasse Ebdrup

    the role of PiT1 in mesenchymal stem cell osteoblastic differentiation/mineralization and found that PiT1 is upstream of Runx2 expression in the osteoblastic differentiation also. While the role of PiT1 as a regulator of Pi-induced Runx2 expression in VSMCs has been interpreted as Pi causes an osteo......-/chondro-genic phenotypic shift in VSMCs, my research, however, suggest that not to be the case. Thus, the exact role of VSMCs in vascular mineralization still requires more research....

  8. Effects of Corroded and Non-Corroded Biodegradable Mg and Mg Alloys on Viability, Morphology and Differentiation of MC3T3-E1 Cells Elicited by Direct Cell/Material Interaction.

    Directory of Open Access Journals (Sweden)

    Sepideh Mostofi

    Full Text Available This study investigated the effect of biodegradable Mg and Mg alloys on selected properties of MC3T3-E1 cells elicited by direct cell/material interaction. The chemical composition and morphology of the surface of Mg and Mg based alloys (Mg2Ag and Mg10Gd were analysed by scanning electron microscopy (SEM and EDX, following corrosion in cell culture medium for 1, 2, 3 and 8 days. The most pronounced difference in surface morphology, namely crystal formation, was observed when Pure Mg and Mg2Ag were immersed in cell medium for 8 days, and was associated with an increase in atomic % of oxygen and a decrease of surface calcium and phosphorous. Crystal formation on the surface of Mg10Gd was, in contrast, negligible at all time points. Time-dependent changes in oxygen, calcium and phosphorous surface content were furthermore not observed for Mg10Gd. MC3T3-E1 cell viability was reduced by culture on the surfaces of corroded Mg, Mg2Ag and Mg10Gd in a corrosion time-independent manner. Cells did not survive when cultured on 3 day pre-corroded Pure Mg and Mg2Ag, indicating crystal formation to be particular detrimental in this regard. Cell viability was not affected when cells were cultured on non-corroded Mg and Mg alloys for up to 12 days. These results suggest that corrosion associated changes in surface morphology and chemical composition significantly hamper cell viability and, thus, that non-corroded surfaces are more conducive to cell survival. An analysis of the differentiation potential of MC3T3-E1 cells cultured on non-corroded samples based on measurement of Collagen I and Runx2 expression, revealed a down-regulation of these markers within the first 6 days following cell seeding on all samples, despite persistent survival and proliferation. Cells cultured on Mg10Gd, however, exhibited a pronounced upregulation of collagen I and Runx2 between days 8 and 12, indicating an enhancement of osteointegration by this alloy that could be valuable for

  9. Nucleophosmin mutation promotes cell proliferation and suppresses apoptosis in NIH3T3 cells%核仁磷酸蛋白突变基因表达对NIH3T3细胞增殖和凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    邵会媛; 杨再林; 高玉洁; 苗宗玉; 覃凤娴; 陈先春; 蔡晓钟; 张伶

    2010-01-01

    目的 探讨核仁磷酸蛋白(nucleophosmin, NPM)突变基因对小鼠NIH3T3成纤维细胞系体外增殖和凋亡的影响以及其分子机制.方法 通过脂质体介导将真核表达载体pEGFP-C1-NPMc+转染NIH3T3细胞,G418筛选稳定表达NPM突变蛋白细胞株,RT-PCR和Western blot检测NPM突变基因和蛋白的表达.MTT、克隆形成实验检测细胞体外增殖能力;FCM检测细胞周期分布及凋亡水平的改变,并通过对周期调控因子p21及凋亡相关分子Caspase-3活性检测,初步探讨NPM突变参与细胞恶性增殖的分子机制.结果 建立了稳定表达NPM突变基因的NIH3T3细胞株.NPM-mA实验组细胞较对照组细胞增殖能力及平板克隆形成率明显增高(P<0.05);甲基纤维素集落形成实验显示各组细胞在甲基纤维素上均不能形成集落;与对照组比较,NPM-mA实验组细胞中G1期细胞比例(42.27±0.86)%显著减低(P<0.01),S期细胞比例(43.08±0.74)%显著增加(P<0.01),同时伴有p21 mRNA水平下降,稳定表达NPM突变基因的NIH3T3细胞凋亡率(1.00±0.13)%明显降低(P<0.01),Caspase-3活性(0.784±0.080)下降(P<0.01).结论 NPM突变基因可促进NIH3T3细胞体外增殖,抑制细胞凋亡发生.

  10. Effects of 2-deoxy-D-glucose and quercetin on the gene expression of bone sialoprotein and osteocalcin during the differentiation in irradiated MC3T3-E1 osteoblastic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Un; Kim, Kyoung A; Koh, Kwang Jun [Department of Oral and Maxillofacial Radiology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju (Korea, Republic of)

    2009-09-15

    To investigate the effects of 2-deoxy-D-glucose (2-DG) and quercetin (QCT) on gene expression of bone sialoprotein (BSP) and osteocalcin (OC) during the differentiation in irradiated MC3T3-E1 osteoblastic cells. When MC3T3-E1 osteoblastic cells had reached 70-80% confluence, cultures were transferred to a differentiating medium supplemented with 5 mM 2-DG or 10 {mu}M QCT, and then irradiated with 2, 4, 6, and 8 Gy. At various times after irradiation, the cells were analyzed for the synthesis of type I collagen, and expression of BSP and OC. The synthesis of type I collagen in cells exposed to 2 Gy of radiation in the presence of 2-DG or QCT showed no significant difference compared with the control group within 15 days post-irradiation. When the cells were irradiated with 8 Gy, 2-DG facilitated the irradiation mediated decrease of type I collagen synthesis, whereas such decrease was inhibited by treating with QCT. During MC3T3-E1 osteoblastic cell differentiation, the mRNA expression of BSP and OC showed the peak value at 14 days and 21 days, respectively. 2-DG or QCT treatment alone decreased the level of BSP mRNA, but increased the OC mRNA level only at early time of differentiation (day 7). In the cells irradiated with 2, 4, 8 Gy, the mRNA expression of BSP and OC decreased at 7 days after the irradiation. The cells were treated with various dose of radiation in the presence of 2-DG or QCT, the mRNA level of both BSP and OC increased although this increase was observed at low dose of radiation (2 Gy) and at the early stage of differentiation. However, when the cells were exposed to 4, 6, or 8 Gy, the increase of BSP and OC mRNAs was detected only in cells co-incubated with QCT. This study demonstrates that 2-DG and QCT affect differently the expression of bone formation related factors, type I collagen, BSP, and OC in the irradiated MC3T3-E1 osteoblasic cells, according to the dose of radiation and the times of differentiation. Overall, the present findings

  11. Loss or gain of function in NIH3T3 and PC12 cells produced by different mutations in the RET tyrosine kinase domain may explain phenotypic diversity between Hirchsprung disease and MEN 2B

    Energy Technology Data Exchange (ETDEWEB)

    Pasini, B.; Seri, M.; Yin, L. [Laboratorio di Genetica Molecolare, Genova (Italy)] [and others

    1994-09-01

    The RET protooncogene encodes a receptor tyrosine kinase involved in the control differentiation of neural crest derived cells. Point mutations of the RET tyrosine kinase domain were identified among others in 2 distinct genetic disorders, Hirchsprung disease (HSCR) and Multiple Endocrine Neoplasia 2B (MEN 2B). In order to test the biological effect of HSCR and MEN 2B mutations we used a system based on RET-PTC2, a chimeric activated form of the RET protoocogene isolated from a papillary thyroid carcinoma, which shows a detectable transforming activity in NIH3T3 cells and induction of differentiation in PC12 cells. By site-direct mutagenesis we introduced into RET-PTC2 cDNA the mutations at codon 918 (Met{yields}thr, typical of MEN 2B), at codon 765 (Ser{yields}Pro, observed in HSCR) and at codon 897 (Arg{yields}Gln, also observed in HSCR). The former mutation appears to increase the transforming activity of RET-PTC2 in NIH3T3 cells. The latter two mutations abolish the oncogenic activity in NIH3T3 cells as well as its differentiating effect in PC12 cells. These results suggest that RET mutations may cause MEN 2B and HSCR phenotypes through a mechanism of gain or loss of function respectively. Finally, co-transfection experiments of wild-type RET-PTC2 with either HSCR mutation are in progress in order to test the hypothesis of a dominant negative effect in heterozygous state.

  12. 脑源性神经营养因子受体trkB在NIH 3T3细胞上的表达%Expression of Brain-derived Neurotrophic Factor Receptor trkB on NIH 3T3 Cells

    Institute of Scientific and Technical Information of China (English)

    马仲才; 吴晓兰; 潘卫; 曹明媚; 朱分禄; 戚中田

    2001-01-01

    构建了克隆有大鼠脑源性神经营养因子(BDNF)受体trkB全长基因的真核表达载体pcDNA3.1(+)-rat trkB. 用脂质体介导法将重组载体转入小鼠NIH 3T3细胞,在mRNA和蛋白质水平检测到了trkB基因在用G418筛选到的抗性NIH 3T3细胞中的表达,表达的trkB蛋白定位于细胞膜上. BDNF能够剂量依赖性地促进NIH 3T3-trkB细胞的增殖,说明表达的trkB是有功能的. 该表达trkB的NIH 3T3细胞为研究BDNF的生理功能、活性测定和从噬菌体展示肽库中筛选BDNF模拟小肽提供了一个简便的细胞模型.

  13. Pre-osteoblastic MC3T3-E1 promote breast cancer cell growth in bone in a murine xenograft model

    Science.gov (United States)

    The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cance...

  14. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes

    OpenAIRE

    Wang, Yanxin; Watford, Malcolm

    2006-01-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. C...

  15. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling.

    Science.gov (United States)

    Watanabe, Marina; Hisatake, Mitsuhiro; Fujimori, Ko

    2015-05-27

    3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.

  16. Preliminary evidence that overexpression of nuclear factor for IL6 expression (NF—IL6) in NIH3T3 cells may be related to malignant transformation

    Institute of Scientific and Technical Information of China (English)

    ZHUMINSHENG; DINGGANLIU; 等

    1994-01-01

    NF-IL6 is a member of c/EBP family and has multiple functions in regulation of cellular gene expression.We have constructed NF-IL6 expression plasmids and trans·fected the NIH3T3 cells with them.The sense NF-IL6 transfectants showed significantly increased tumorigenicity,and the stable integration of NF-IL6 cDNA into cellular DNA and its expression were demonstrated.Our results suggest that NF-IL6 may be related to tumorigenesis.

  17. In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines

    Directory of Open Access Journals (Sweden)

    Tomankova K

    2015-01-01

    Full Text Available Katerina Tomankova,1 Katerina Polakova,2 Klara Pizova,1 Svatopluk Binder,1 Marketa Havrdova,2 Mary Kolarova,2 Eva Kriegova,3 Jana Zapletalova,1 Lukas Malina,1 Jana Horakova,1 Jakub Malohlava,1 Argiris Kolokithas-Ntoukas,4 Aristides Bakandritsos,4 Hana Kolarova,1 Radek Zboril2 1Department of Medical Biophysics, Institute of Translation Medicine, Faculty of Medicine and Dentistry, 2Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, 3Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; 4Department of Materials Science, University of Patras, Patras, Greece Abstract: One of the promising strategies for improvement of cancer treatment is based on magnetic drug delivery systems, thus avoiding side effects of standard chemotherapies. Superparamagnetic iron oxide (SPIO nanoparticles have ideal properties to become a targeted magnetic drug delivery contrast probes, named theranostics. We worked with SPIO condensed colloidal nanocrystal clusters (MagAlg prepared through a new soft biomineralization route in the presence of alginate as the polymeric shell and loaded with doxorubicin (DOX. The aim of this work was to study the in vitro cytotoxicity of these new MagAlg–DOX systems on mouse fibroblast and breast carcinoma cell lines. For proper analysis and understanding of cell behavior after administration of MagAlg–DOX compared with free DOX, a complex set of in vitro tests, including production of reactive oxygen species, comet assay, cell cycle determination, gene expression, and cellular uptake, were utilized. It was found that the cytotoxic effect of MagAlg–DOX system is delayed compared to free DOX in both cell lines. This was attributed to the different mechanism of internalization of DOX and MagAlg–DOX into the cells, together with the fact that the drug is strongly bound on the drug nanocarriers. We

  18. Bone morphogenetic protein-2 (BMP-2 and transforming growth factor-β1 (TGF-β1 alter connexin 43 phosphorylation in MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Rudkin George H

    2001-07-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs and transforming growth factor-βs (TGF-βs are important regulators of bone repair and regeneration. BMP-2 and TGF-β1 have been shown to inhibit gap junctional intercellular communication (GJIC in MC3T3-E1 cells. Connexin 43 (Cx43 has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. We examined the expression, phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF-β1 to investigate a possible mechanism for the inhibition of GJIC. Results Northern blot analysis revealed no detectable change in the expression of Cx43 mRNA. Western blot analysis demonstrated no significant change in the expression of total Cx43 protein. However, significantly higher ratios of unphosphorylated vs. phosphorylated forms of Cx43 were detected after BMP-2 or TGF-β1 treatment. Immunofluorescence and cell protein fractionation revealed no detectable change in the localization of Cx43 between the cytosol and plasma membrane. Conclusions BMP-2 and TGF-β1 do not alter expression of Cx43 at the mRNA or protein level. BMP-2 and TGF-β1 may inhibit GJIC by decreasing the phosphorylated form of Cx43 in MC3T3-E1 cells.

  19. Mechanical loading induced expression of bone morphogenetic protein-2,alkaline phosphatase activity,and collagen synthesis in osteoblastic MC3T3-E1 cells

    Institute of Scientific and Technical Information of China (English)

    LU Hong-fei; MAI Zhi-hui; XU Ye; WANG Wei; AI Hong

    2012-01-01

    Background Bone morphogenetic protein(BMP)-2,alkaline phosphatase(ALP),and collagen typeⅠ?are known to play a critical role in the process of bone remodeling.However,the relationship between mechanical strain and the expression of BMP-2,ALP,and COL-Ⅰ?in osteoblasts was still unknown.The purpose of this study was to investigate the effects of different magnitudes of mechanical strain on osteoblast morphology and on the expression of BMP-2,ALP,and COL-Ⅰ.Methods Osteoblast-like cells were flexed at four deformation rates(0,6%,12%,and 18% elongation).The expression of BMP-2 mRNA,ALP,and COL-Ⅰ?in osteoblast-like cells were determined by real-time quantitative reverse transcription polymerase chain reaction,respectively.The results were subjected to analysis of variance(ANOVA)using SPSS 13.0 statistical software.Results The cells changed to fusiform and grew in the direction of the applied strain after the mechanical strain was loaded.Expression level of the BMP-2,ALP,and COL-Ⅰ?increased magnitude-dependently with mechanical loading in the experimental groups,and the 12% elongation group had the highest expression(P<0.05).Conclusion Mechanical strain can induce morphological change and a magnitude-dependent increase in the expression of BMP-2,ALP,and COL-Ⅰ?mRNA in osteoblast-like cells,which might influence bone remodeling in orthodontic treatment.

  20. Effects of retinoic acid and hydrogen peroxide on sterol regulatory element-binding protein-1a activation during adipogenic differentiation of 3T3-L1 cells

    OpenAIRE

    Eldaim, Mabrouk A. Abd; Okamatsu-Ogura, Yuko; Terao, Akira; Kimura, Kazuhiro

    2010-01-01

    Both retinoic acid (RA) and oxidative stress (H2O2) increased transcription and cleavage of membrane-bound sterol regulatory element-binding protein (SREBP)-1, leading to enhanced transcription of fatty acid synthase (FAS) in hepatoma cells. On the other hand, RA and H2O2 decreased and increased lipogenesis in adipocytes, respectively, although roles of SREBP-1 activation in these effects remain to be elucidated. To elucidate its involvement, we examined the activation of SREBP...

  1. 成纤维细胞系3T3细胞来源exosome对小鼠乳腺癌细胞增殖能力的影响%Effect of exosome Extracted from Fibroblast Cell Line 3T3 on Proliferation of Mouse Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    王雅琴; 陈智

    2016-01-01

    目的 观察小鼠成纤维细胞系3T3来源的外泌小体(exosome)对小鼠乳腺癌细胞4T1增殖能力的影响,并探索其中可能的机制.方法 PureExo Exosome提取试剂盒提取3T3细胞上清液中的exosome,按照不同浓度及时间作用于4T1细胞,CCK8法检测4T1细胞的增殖能力,BrdU/PI双掺入法测定细胞DNA合成及细胞周期;免疫印迹法(Western blot)及荧光定量实时PCR(qPCR)检测人表皮生长因子受体2(epidermal growth factor receptor-2,EGFR2,也称HER2)及下游PI3K/AKT信号转导通路相关蛋白的变化.利用HER2单克隆抗体靶向药物赫赛汀(Herceptin),观察exosome是否影响4T1细胞对于Herceptin敏感度.结果 exosome处理组OD450吸光度值显著高于对照组(P<0.05),细胞增殖及细胞周期进程加快.Western blot及qPCR实验提示随着exosome浓度的增加,HER2表达逐渐升高,AKT磷酸化水平增加.而同时给予exosome可明显增加4T1细胞对Herceptin的敏感度.结论 小鼠成纤维细胞系3T3来源exosome可促进小鼠乳腺癌细胞4T1增殖及周期进程,并且可能通过HER2激活其下游PI3K/AKT信号通路发挥上述作用.

  2. Characterization of the cholera toxin receptor on Balb/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity.

    Science.gov (United States)

    Critchley, D R; Streuli, C H; Kellie, S; Ansell, S; Patel, B

    1982-04-15

    Balb/c 3T3 cells contain a large number [(0.8-1.6) x 10(6)] of high-affinity (half-maximal binding at 0.2 nM) binding sites for cholera toxin that are resistant to proteolysis, but are quantitatively extracted with chloroform/methanol. The following evidence rigorously establishes that the receptor is a ganglioside similar to, or identical with, ganglioside GM1 by the galactose oxidase/NaB3H4 technique on intact cells was inhibited by cholera toxin. (2) Ganglioside GM1 was specifically adsorbed from Nonidet P40 extracts of both surface- (galactose oxidase/NaB3H4 technique) and metabolically ([1-14C]palmitate) labelled cells in the presence of cholera toxin, anti-toxin and Staphylococcus aureus. (3) Ganglioside GM1 was the only ganglioside labelled when total cellular gangliosides separated on silica-gel sheets were overlayed with 125I-labelled cholera toxin, although GM3 and GD1a were the major gangliosides present. In contrast no evidence for a galactoprotein with receptor activity was obtained. Cholera toxin did not protect the terminal galactose residues of cell-surface glycoproteins from labelling by the galactose oxidase/NaB3H4 technique. No toxin-binding proteins could be identified in Nonidet P40 extracts of [35S]-methionine-labelled cells by immunochemical means. After sodium dodecyl sulphate/polyacrylamide-gel electrophoresis none of the major cellular galactoproteins identified by overlaying gels with 125I-labelled ricin were able to bind 125I-labelled cholera toxin. It is concluded that the cholera toxin receptor on Balb/c 3T3 cells is exclusively ganglioside GM1 (or a related species), and that cholera toxin can therefore be used to probe the function and organisation of gangliosides in these cells as previously outlined [Critchley, Ansell, Perkins, Dilks & Ingram (1979) J. Supramol. Struct. 12, 273-291].

  3. Effects of frankincense extract on proliferation and protein expression of ERK1/2 signaling pathway of NIH-3T3 cell%乳香提取物对NIH-3T3细胞增殖及ERK1/2信号通路蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    于文会; 辛秀; 马隽; 康欣; 姜晓文

    2015-01-01

    为研究乳香提取物对NIH-3T3细胞的增殖、细胞周期和ERK1/2蛋白表达及p-ERK1/2蛋白表达的影响,将NIH-3T3细胞传代后,随机分为药物干预组和空白对照组.在药物干预组向NIH-3T3细胞中加入不同浓度的乳香提取物并培养24 h,利用CCK-8法检测细胞的增殖率,利用流式细胞术检测细胞周期比例,利用Western-blot检测ERK1/2蛋白及p-ERK1/2蛋白的表达.结果,分别用4×10-1 g/L和8×10-2 g/L乳香提取物干预细胞24 h,吸光度较对照组差异极显著(P<0.01).用流式细胞术检测细胞周期,乳香提取物质量浓度为4×10-1 g/L、8×10-2 g/L和1.6×10-2 g/L时,S期比例较对照组差异极显著(P<0.01),且随着乳香提取物质量浓度的降低,细胞周期中S期百分比降低,呈现出剂量依赖性.Wes-tern-blot结果显示,ERK1/2蛋白与对照组相比没有发生明显变化;但p-ERK1/2与对照组相比,随着乳香提取物的质量浓度升高,p-ERK1/2增高,且呈剂量依赖性.结果表明,乳香提取物通过激活ERK1/2信号通路促进NIH-3T3细胞的增殖.

  4. 鱿鱼皮胶原蛋白水解肽对镉抑制MC3T3-E1增殖、分化及钙化的影响%Effect of Collagen Peptide Extracted from Dosidicus gigas Skin on Proliferation, Differentiation and Calcification of MC3T3-E1 Cell Induced by Cd

    Institute of Scientific and Technical Information of China (English)

    蔡江佳; 李晔; 全晶晶; 蔺佳良; 张云云; 王峰; 苏秀榕

    2015-01-01

    目的:探究秘鲁鱿鱼皮胶原蛋白水解肽增强MC3T3-E1细胞抗骨质疏松的作用.方法:将培养的MC3T3-E1细胞分为正常对照组、氯化镉损伤组和胶原蛋白水解肽干预组;利用MTT法确定氯化镉的半数抑制浓度,建立细胞损伤模型;根据各组细胞增殖率差异,确定最佳胶原蛋白水解肽的添加量;通过细胞周期、凋亡,碱性磷酸酶活性的测定及Alizarin red染色法分析胶原蛋白水解肽在细胞增殖、分化、钙化阶段拮抗氯化镉的抑制作用.结果:与氯化镉损伤组相比,胶原蛋白水解肽干预组细胞活性升高(P<0.01);处于G1期的细胞数量减小(P<0.05),S期细胞数量增大(P<0.05);凋亡率降低(P<0.05);9,12,15 d时AKP活性升高(P<0.05,P<0.01,P<0.01).结论:摄入一定剂量的氯化镉会抑制MC3T3-E1成骨细胞增殖、分化和钙化.胶原蛋白水解肽在一定程度上可改善此类损伤对MC3T3-E1细胞的影响.

  5. Protective Effects of Collagen Extracted from Dosidicus gigas Skin on MC3T3-E1 Cell Induced by H2O2%鱿鱼皮胶原蛋白对H2O2诱导MC3T3-E1损伤的修复作用

    Institute of Scientific and Technical Information of China (English)

    蔡江佳; 李晔; 张云云; 童茜茜; 王峰; 苏秀榕

    2015-01-01

    目的:探究秘鲁鱿鱼皮胶原蛋白增强MC3T3-E1细胞抗自由基损伤的作用机制.方法:将培养的MC3T3-E1细胞分为正常对照组、H2O2损伤组和胶原蛋白干预组;利用MTT法确定H2O2的半数抑制浓度,建立自由基损伤的细胞模型,通过试剂盒测定SOD活性和MDA含量来确定最佳的胶原蛋白添加量;在倒置显微镜下观察各分组的细胞形态;用流氏细胞仪检测细胞凋亡率,并分析细胞增殖周期;实时荧光定量RT-PCR测定HSP70和Bax的表达水平.结果:与H2O2损伤组相比,胶原蛋白干预组SOD活性升高(P<0.05),MDA含量降低(P<0.05),凋亡率降低(P<0.05),G0-G1期细胞百分率减小(P<0.05),S期细胞百分率增大(P<0.05),Bax表达减弱,HSP70表达增强(P<0.05).结论:摄入一定剂量的H2O2会导致MC3T3-E1成骨细胞的氧化损伤并促进其凋亡,而胶原蛋白可以改善此类损伤对MC3T3-E1细胞的影响.

  6. 3T3-L1脂肪细胞膜FGF-21结合蛋白的初步鉴定%Identification of Binding Partners of Fibroblast Growth Factor-21 in Cell Membrane of 3T3-L1 Cells

    Institute of Scientific and Technical Information of China (English)

    王文飞; 任桂萍; 侯玉婷; 李德山

    2008-01-01

    成纤维细胞生长因子(fibroblast growth factor,FGF)-21是最近发现的1个可以独立调节血糖的细胞因子,有望成为治疗2型糖尿病的备选药物,但是,FGF-21调解血糖的机理尚不十分清楚,为探讨该因子功能受体,应用偶联方法,以313-L1脂肪细胞为靶标,以FGF-21为诱饵,在3T3-L1脂肪细胞膜上寻找结合蛋白,结果表明,生物素标记的FGF-21可与脂肪细胞膜蛋白形成分子质量大小约300 kD以上两组复合物,竞争试验显示,非标记的FGF-21可与生物素标记的FGF-21竞争、抑制标记的FGF-21参入复合物;应用非标记FGF-21剂量越大,抑制后者参入复合物的程度越强,结果提示,该复合物是FGF-21特异性的,此外,随着生物素标记的FGF-21剂量增加,观察到的标记复合物越多;但是,当FGF-21剂量达12.5 mg/L以上时,观察到的复合物数量不再增加,实验结果提示,复合物形成与FGF-21剂量相关;FGF-21特异结合的蛋白质结合位点饱和后,复合物形成量最大,同时,采用FGF受体特异性抑制剂SU5402可特异性抑制FGF-21在3T3-L1脂肪细胞中的促进葡萄糖吸收作用,提示本实验所观察到的FGF-21-膜蛋白复合物可能就是FGF-21-FGF受体.

  7. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3).

    Science.gov (United States)

    Bisht, Gunjan; Rayamajhi, Sagar; Kc, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles. Schematic representation of the conjugation, characterization and cytotoxicity analysis of Fe3O4-ZnO magnetic composite particles (MCPs).

  8. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3)

    Science.gov (United States)

    Bisht, Gunjan; Rayamajhi, Sagar; KC, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G.

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles.

  9. Roles of Na+/H+ exchange in regulation of p38 mitogen-activated protein kinase activity and cell death after chemical anoxia in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Rentsch, Maria L; Ossum, Carlo G; Hoffmann, Else K;

    2007-01-01

    , p38 mitogen-activated protein kinase (MAPK), ERK1/2, p53, and Akt activity, and cell death, after chemical anoxia in NIH3T3 fibroblasts. The NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (EIPA) (5 muM), as well as removal of extracellular Na(+) [replaced by N-methyl-D: -glucamine (NMDG......) and extracellular signal-regulated kinase (ERK) (PD98059). In contrast, chemical anoxia activated p38 MAPK in an NHE-dependent manner, while ERK1/2 activity was unaffected. Anoxia-induced cell death was caspase-3-independent, mildly attenuated by EIPA, potently exacerbated by SB203580, and unaffected by PD98059...

  10. Effects of berberine on PI-3K p85 protein expression in insulin-resistant cell model in 3T3-L1 adipocytes%小檗碱对3T3-L1胰岛素抵抗细胞模型PI-3K p85蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    易屏; 陆付耳; 陈广; 徐丽君; 董慧; 王开富

    2008-01-01

    目的:研究小檗碱对3T3-L1胰岛素抵抗细胞模型PI-3K p85蛋白表达的影响,探讨小檗碱改善胰岛素抵抗的分子机制.方法:分别以0.5 mmol/L软脂酸与25 mmol/L葡萄糖加0.6 nmmol/L胰岛素诱导3T3-L1脂肪细胞产生胰岛素抵抗,予以小檗碱进行干预,同时以阿司匹林作为阳性对照,以2-脱氧-[3H]-D-葡萄糖摄入法观察葡萄糖的转运率,用Western blot检测PI-3K p85蛋白的表达.结果:0.5 mmol/L软脂酸作用24 h或25 mmol/L葡萄糖加0.6 nmmol/L胰岛素作用18 h分别使3T3-L1脂肪细胞胰岛素刺激的葡萄糖转运抑制67%和60%,Westem blot显示PI-3K p85蛋白表达减少,与正常对照组比较有统计学意义(P<0.01);同时加入小檗碱则可逆转上述效应使P1-3K p85蛋白表达增加,与模型组比较有明显差异(P<0.01),并且PI-3K p85蛋白的表达与小檗碱的剂量和作用时间呈依赖关系.结论:小檗碱可以明显改善游离脂肪酸和高糖诱导的胰岛素抵抗,其分子机制可能与小檗碱提高PI-3K p85蛋白的表达有关.

  11. Growth stimulation of 3T3 fibroblasts by Cystatin

    Energy Technology Data Exchange (ETDEWEB)

    Quan Sun (Michigan State Univ., East Lansing (United States) Beijing Medical Univ. (China))

    1989-01-01

    Treatment of cultures of mouse 3T3 fibroblasts with Cystatin C, a thiol-proteinase inhibitor isolated from chicken egg white, resulted in an enhanced rate of cell proliferation. This stimulation was demonstrated using two independent assay systems: (a) assessment of total cell number and (b) measurement of ({sup 3}H)thymidine incorporated into acid-precipitable DNA. In both assays, the dose-response curves of Cystatin stimulation showed a rising function that plateaued at a concentration of {approximately}120 {mu}g/ml. The addition of Cystatin to cultures of Kirsten murine sarcoma virus-transformed 3T3 cells also enhanced DNA synthesis in these target cells. Control experiments showed that the presence of Cystatin did not alter the level of binding of radioactively labeled epidermal growth factor and platelet derived growth factor to 3T3 cells. These results argue against the possibility that the observed growth stimulation by Cystatin was due to growth factor contamination of the Cystatin preparation.

  12. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Hao, Yuhui; Liu, Cong; Huang, Jiawei; Gu, Ying; Li, Hong; Yang, Zhangyou; Liu, Jing; Wang, Weidong; Li, Rong

    2016-01-01

    Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic-pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU, eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway.

  13. Preparation of Preproinsulin Gene Construct Containing the Metallothionein2A (pBINDMTChIns and Its Expression in NIH3T3 Cell Line and Muscle Tissue of Alloxan Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Piri

    2014-08-01

    Full Text Available Background Diabetes mellitus type 1, formerly called insulin-dependent diabetes, is one of the autoimmune diseases where insulin-producing cells are destroyed by autoimmune response via T cells. The new approaches in treatment of diabetes are using the stem cells, cell transplantation of islet β cell, gene transfer by virus based plasmids, and non-viral gene constructs. Objectives The purpose of this study was to construct glucose inducible insulin gene plasmid and use it in the muscle tissue of the rabbit. Materials and Methods To achieve this goal, the preproinsulin, metallothionein2A promoter and the response element to carbohydrate genes were cloned into pBIND plasmid by standard cloning methods, to construct pBINDMTChIns. The gene cloning products were confirmed by the polymerase chain reaction (PCR and restriction enzyme digestion template. The recombinant plasmid, containing the preproinsulin gene, was transferred into NIH3T3 cells and insulin gene expression was evaluated by reverse transcriptase PCR and western blotting techniques. Plasmid naked DNA containing the preproinsulin gene was injected into the rabbits’ thigh muscles, and its expression was confirmed by western blotting method. Results This study shows the prepared gene construct is inducible by glucose. Gene expression of preproinsulin was observed in muscle tissue of rabbits. Conclusions These finding indicated that research in diabetes mellitus gene therapy could be performed on larger animals.

  14. MC3T3-E1 Cell Response to Ti1-xAgx and Ag-TiNx Electrodes Deposited on Piezoelectric Poly(vinylidene fluoride) Substrates for Sensor Applications.

    Science.gov (United States)

    Marques, S M; Rico, P; Carvalho, I; Gómez Ribelles, J L; Fialho, L; Lanceros-Méndez, S; Henriques, M; Carvalho, S

    2016-02-17

    In the sensors field, titanium based coatings are being used for the acquisition/application of electrical signals from/to piezoelectric materials. In this particular case, sensors are used to detect dynamic mechanical loads at early stages after intervention of problems associated with prostheses implantation. The aim of this work is to select an adequate electrode for sensor applications capable, in an initial stage to avoid bone cell adhesion, but at a long stage, permit osteointegration and osteoinduction. This work reports on the evaluation of osteoblast MC3T3-E1 cells behavior in terms of proliferation, adhesion and long-term differentiation of two different systems used as sensor electrodes: Ti1-xAgx and Ag-TiNx deposited by d.c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride) (PVDF). The results indicated an improved effect of Ag-TiNx electrodes compared with Ti1-xAgx and TiN, in terms of diminished cell adhesion and proliferation at an initial cell culture stage. Nevertheless, when cell culture time is longer, cells grown onto Ag-TiNx electrodes are capable to proliferate and also differentiate at proper rates, indicating the suitability of this coating for sensor application in prostheses devices. Thus, the Ag-TiNx system was considered the most promising electrode for tissue engineering applications in the design of sensors for prostheses to detect dynamic mechanical loads.

  15. Combined Effects of Androgen and Growth Hormone on Osteoblast Marker Expression in Mouse C2C12 and MC3T3-E1 Cells Induced by Bone Morphogenetic Protein

    Science.gov (United States)

    Kimura, Kosuke; Terasaka, Tomohiro; Iwata, Nahoko; Katsuyama, Takayuki; Komatsubara, Motoshi; Nagao, Ryota; Inagaki, Kenichi; Otsuka, Fumio

    2017-01-01

    Osteoblasts undergo differentiation in response to various factors, including growth factors and steroids. Bone mass is diminished in androgen- and/or growth hormone (GH)-deficient patients. However the functional relationship between androgen and GH, and their combined effects on bone metabolism, remains unclear. Here we investigated the mutual effects of androgen and GH on osteoblastic marker expression using mouse myoblastic C2C12 and osteoblast-like MC3T3-E1 cells. Combined treatment with dihydrotestosterone (DHT) and GH enhanced BMP-2-induced expression of Runx2, ALP, and osteocalcin mRNA, compared with the individual treatments in C2C12 cells. Co-treatment with DHT and GH activated Smad1/5/8 phosphorylation, Id-1 transcription, and ALP activity induced by BMP-2 in C2C12 cells but not in MC3T3-E1 cells. The insulin-like growth factor (IGF-I) mRNA level was amplified by GH and BMP-2 treatment and was restored by co-treatment with DHT in C2C12 cells. The mRNA level of the IGF-I receptor was not significantly altered by GH or DHT, while it was increased by IGF-I. In addition, IGF-I treatment increased collagen-1 mRNA expression, whereas blockage of endogenous IGF-I activity using an anti-IGF-I antibody failed to suppress the effect of GH and DHT on BMP-2-induced Runx2 expression in C2C12 cells, suggesting that endogenous IGF-I was not substantially involved in the underlying GH actions. On the other hand, androgen receptor and GH receptor mRNA expression was suppressed by BMP-2 in both cell lines, implying the existence of a feedback action. Collectively the results showed that the combined effects of androgen and GH facilitated BMP-2-induced osteoblast differentiation at an early stage by upregulating BMP receptor signaling. PMID:28067796

  16. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    Science.gov (United States)

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  17. 透钙磷石涂层浸提液掺锶对MC3T3-E1细胞VEGF、βFGF和Runx2的影响%Influences of extract of brushite coating mixed with strontium on cells VEGF, βFGC and Runx2 in MC3T3-E1

    Institute of Scientific and Technical Information of China (English)

    文臣娟; 梁永强; 赵坚; 韩东颖

    2015-01-01

    目的 通过体外细胞学实验对透钙磷石与锶二者协同作用于小鼠成骨细胞进行相关研究,为优化锶浓度提供理论依据.方法 利用电化学沉积法制备含透钙磷石涂层的钛片,再利用浸提方法制备不同含锶量的浸提液.将MC3T3-E1细胞于浸提液中进行培养,利用RT-PCR技术检测各组细胞因子:血管生长因子(VEGF)、成纤维细胞生长因子β(βFGF)和侏儒蛋白相关转录因子2(Runx2)的表达情况.结果 透钙磷石对成骨标志物的表达有促进作用,而掺锶透钙磷石则更能促进这一作用.其与锶的浓度有关,当锶浓度为0.5%时其对成骨细胞的作用最明显.结论 透钙磷石具有良好的生物活性,具有良好的诱导成骨细胞分裂、分化的作用.而向透钙磷石中掺入不同浓度的锶,可以在一定程度上促进细胞VEGF、βFGF和Runx2的表达,从而明显增强其对成骨细胞分化的诱导作用.

  18. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents.

  19. Milk-derived tripeptides IPP (Ile-Pro-Pro and VPP (Val-Pro-Pro promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells.

    Directory of Open Access Journals (Sweden)

    Subhadeep Chakrabarti

    Full Text Available Milk derived tripeptides IPP (Ile-Pro-Pro and VPP (Val-Pro-Pro have shown promise as anti-hypertensive agents due to their inhibitory effects on angiotensin converting enzyme (ACE. Due to the key inter-related roles of hypertension, chronic inflammation and insulin resistance in the pathogenesis of metabolic syndrome, there is growing interest in investigating established anti-hypertensive agents for their effects on insulin sensitivity and inflammation. In this study, we examined the effects of IPP and VPP on 3T3-F442A murine pre-adipocytes, a widely used model for studying metabolic diseases. We found that both IPP and VPP induced beneficial adipogenic differentiation as manifested by intracellular lipid accumulation, upregulation of peroxisome proliferator-activated receptor gamma (PPARγ and secretion of the protective lipid hormone adiponectin by these cells. The observed effects were similar to those induced by insulin, suggesting potential benefits in the presence of insulin resistance. IPP and VPP also inhibited cytokine induced pro-inflammatory changes such as reduction in adipokine levels and activation of the nuclear factor kappa B (NF-κB pathway. Taken together, our findings suggest that IPP and VPP exert insulin-mimetic adipogenic effects and prevent inflammatory changes in adipocytes, which may offer protection against metabolic disease.

  20. Wnt/β-catenin signaling plays an important role in the protective effects of FDP-Sr against oxidative stress induced apoptosis in MC3T3-E1 cell.

    Science.gov (United States)

    Qi, Huan-Huan; Bao, Jun; Zhang, Qi; Ma, Bo; Gu, Gui-Ying; Zhang, Peng-Ling; Ou-Yang, Gang; Wu, Zi-Mei; Ying, Han-Jie; Ou-Yang, Ping-Kai

    2016-10-01

    Strontium fructose 1,6-diphosphate (FDP-Sr) is a new strontium-containing compound. The primary aim of this study was to clarify whether the structure component of FDP-Sr, FDP could benefit the protective effect of Sr (II) against oxidative stress induced apoptosis, and meanwhile to further explore the important role of Wnt/β-catenin signaling in the anti-apoptosis effect of FDP-Sr in response to oxidative stress induced by H2O2 in an osteoblastic MC3T3-E1 cell line. Results showed that FDP-Sr could improve the osteoblastic differentiation under oxidative stress with induced cell proliferation and improved mineralization. The inhibition effect of FDP-Sr on cell apoptosis induced by H2O2 was proved by reduced reactive oxygen species production and activated caspase3. Under oxidative stress, mRNA and protein levels of phospho-β-catenin reduced, while β-catenin increased in the FDP-Sr treatment cell, leaded to the up-regulations of Runx2 and OPG at both mRNA and protein levels, finally improved the differentiation of osteoblasts. By the engagement of Wnt/β-catenin pathway's inhibitor (XAV-939), the protective effects of FDP-Sr on osteoblastic differentiation against oxidative stress were repressed along with inhibited wnt/β-catenin signaling and reduced mRNA and protein levels of Runx2 and OPG. In conclusion, FDP-Sr was demonstrated to protect osteoblast differentiation from oxidative damage induced by H2O2 through up-regulation of Wnt/β-catenin signaling, and FDP in FDP-Sr was able to directly improve the oxidative stress injury through its ROS scavenging ability.

  1. Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo.

    Science.gov (United States)

    Lin, Yinan; Xiao, Wei; Bal, B Sonny; Rahaman, Mohamed N

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13-93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0-2.0wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8wt.% CuO in the glass but they were significantly reduced by 2.0wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6weeks in rat calvarial defects (46±8%) was not significantly affected by 0.4 or 0.8wt.% CuO in the glass whereas it was significantly inhibited (0.8±0.7%) in the scaffolds doped with 2.0wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13-93 glass scaffolds with up to 0.8wt.% CuO did not affect their biocompatibility whereas 2.0wt.% CuO was toxic to cells and detrimental to bone regeneration.

  2. Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yinan; Xiao, Wei [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Bal, B. Sonny [Department of Orthopaedic Surgery, University of Missouri, Columbia, MO 65212 (United States); Rahaman, Mohamed N., E-mail: rahaman@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13–93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0–2.0 wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8 wt.% CuO in the glass but they were significantly reduced by 2.0 wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6 weeks in rat calvarial defects (46 ± 8%) was not significantly affected by 0.4 or 0.8 wt.% CuO in the glass whereas it was significantly inhibited (0.8 ± 0.7%) in the scaffolds doped with 2.0 wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0 wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1 μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13–93 glass scaffolds with up to 0.8 wt.% CuO did not affect their biocompatibility whereas 2.0 wt.% CuO was toxic to cells and detrimental to bone regeneration. - Highlights: • First study to evaluate Cu ion release from silicate (13-93) bioactive glass scaffolds on osteogenesis in vivo • Released Cu ions influenced bone regeneration in a dose dependent manner • Lower concentrations of Cu ions had little effect on bone regeneration • Cu ion

  3. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity

    Science.gov (United States)

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  4. Application of the improved BALB/c 3T3 cell transformation assay to the examination of the initiating and promoting activities of chemicals: the second interlaboratory collaborative study by the non-genotoxic carcinogen study group of Japan.

    Science.gov (United States)

    Tsuchiya, Toshiyuki; Umeda, Makoto; Tanaka, Noriho; Sakai, Ayako; Nishiyama, Hiroshi; Yoshimura, Isao; Ajimi, Syozo; Asada, Shin; Asakura, Masumi; Baba, Hiroshi; Dewa, Yasuaki; Ebe, Youji; Fushiwaki, Yuichi; Hagiwara, Yuji; Hamada, Shuichi; Hamamura, Tetsuo; Iwase, Yumiko; Kajiwara, Yoshitsugu; Kasahara, Yasushi; Kato, Yukihiko; Kawabata, Masayoshi; Kitada, Emiko; Kaneko, Kazuko; Kizaki, Yuko; Kubo, Kinya; Miura, Daisaku; Mashiko, Kaori; Mizuhashi, Fukutaro; Muramatsu, Dai; Nakajima, Madoka; Nakamura, Tetsu; Oishi, Hidetoshi; Sasaki, Toshiaki; Shimada, Sawako; Takahashi, Chitose; Takeda, Yuko; Wakuri, Sinobu; Yajima, Nobuhiro; Yajima, Satoshi; Yatsushiro, Tomoko

    2010-03-01

    The Non-genotoxic Carcinogen Study Group in the Environmental Mutagen Society of Japan organised the second step of the inter-laboratory collaborative study on one-stage and two-stage cell transformation assays employing BALB/c 3T3 cells, with the objective of confirming whether the respective laboratories could independently produce results relevant to initiation or promotion. The method was modified to use a medium consisting of DMEM/F12 supplemented with 2% fetal bovine serum and a mixture of insulin, transferrin, ethanolamine and sodium selenite, at the stationary phase of cell growth. Seventeen laboratories collaborated in this study, and each chemical was tested by three to five laboratories. Comparison between the one-stage and two-stage assays revealed that the latter method would be beneficial in the screening of chemicals. In the test for initiating activity with the two-stage assay (post-treated with 0.1microg/ml 12-O-tetradecanoylphorbol-13-acetate), the relevant test laboratories all obtained positive results for benzo[a]pyrene and methylmethane sulphonate, and negative results for phenanthrene. Of those laboratories assigned phenacetin for the initiation phase, two returned positive results and two returned negative results, where the latter laboratories tested up to one dose lower than the maximum dose used by the former laboratories. In the exploration of promoting activity with the twostage assay (pretreated with 0.2microg/ml 3-methylcholanthrene), the relevant test laboratories obtained positive results for mezerein, sodium orthovanadate and TGF-beta1, and negative results for anthralin, phenacetin and phorbol. Two results returned for phorbol 12,13-didecanoate were positive, but one result was negative - again, the maximum dose to achieve the latter result was lower than that which produced the former results. These results suggest that this modified assay method is relevant, reproducible and transferable, provided that dosing issues, such as the

  5. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L show high anti-angiogenic, anti-tumor, brine shrimp and fibroblast NIH/3T3 cell line cytotoxicity

    Directory of Open Access Journals (Sweden)

    Muhammad eAyaz

    2016-03-01

    Full Text Available Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, GC-MS to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr, its subsequent fractions; n-hexane (Ph.Hex, chloroform (Ph.Chf, ethyl acetate (Ph.EtAc, n-Butanol (Ph.Bt, aqueous (Ph.Aq, saponins (Ph.Sp were performed using the chick embryo chorioallantoic membrane (CAM assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed on Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line using brine shrimps and MTT cells viability assays. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt and Ph.EtAc identified 126, 124, 153, 131 and 164 compounds respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75 and 461.53 µg/ml respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19 and 342.53 µg/ml respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50 and 71.50% cytotoxicity respectively at 1000 µg/ml with the LD50 of 140, 160 and 175 µg/ml respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer.

  6. QUANTITATIVE STUDY ON APOPTOSIS INDUCED BY ELECTROMAGNETIC PULSES IN NIH- 3T3 FIBROBLASTS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Mei - lan; CAO Xiao - zhe; WANG De - wen; GU Qing- yang; LIU Jie

    2002-01-01

    Aim: To observe the apoptotic changes following exposure to EMP and to explore the possible injury mechanism in NIH - 3T3 fibroblasts. Methods: Following NIH - 3T3 cells were exposed to EMP,the proliferation and viability of NIH - 3T3 fibroblasts were estimated by hemacytometer and MTT Measurements. Apoptotic rate was measured by flow cytometer. The imnmohistochemical SP method was used to determine bcl- 2, p53. The positively stained cells were analyzed with CMIAS- Ⅱ image analysis system at a magnification 400. All data were analyzed by SPSS8.0 software. Results: The proliferation and viability of NIH- 3T3 cells were markedly inhibited and significant apoptosis was induced following exposure to EMP.EMP could increase the number of non- adherent cells, the highest ratio (33.9%) of non- adherent cells also occurred at 6h. The As70 value of MTT decreased immediately at 1 h, 6h following the cells were exposed as compared with the control (P < 0.05). The highest ratio of apoptosis was 15.07% at 6h, then decreased gradually. Down - regulation of bcl - 2 and up - regulation of p53 were induced by EMP ( P < 0.05). Conclusions: EMP could promote apoptosis of NIH - 3T3 fibroblasts. EMP could also down - regulate bcl - 2 level and up - regulate p53 level in NIH - 3T3 fibroblasts. Bcl - 2 and p53 gene may take part in the process of apoptosis.

  7. Protective Effects of Statins on TNFa-induced Growth Inhibition in MC3T3-E1 Osteoblastic Cells%他汀类药物对TNFα诱导成骨细胞生长抑制的保护作用

    Institute of Scientific and Technical Information of China (English)

    赵奇江; 李芬芬; 董新威; 徐哲荣; 杨云梅; 谢强敏

    2012-01-01

    OBJECTIVE To study if four statins could attenuate TNFa-induced growth inhibition and compare their effects in MC3T3-E1 osteoblastic cells. METHODS Murine osteoblastic MC3T3-E1 cells were cultured in DMEM essential medium supplemented with 10% fetal bovine serum and antibiotics. 3-(4,5-Dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) was used to evaluate cell viability. RESULTS TNFa at concentrations (1-100 ng·mL‐1) inhibited the viability of MC3T3-E1 cells in time and concentration-dependent manners. MC3T3-E1 cells exposed to low concentrations of simvastatin(10‐10-10‐7mol·L‐1), fluvastatin(10‐10-10‐6mol·L‐1) and atorvastatin(l0‐8-10‐6mol·L‐1) increased growth and viability. In contrast, rosuvastatin(10‐10-10‐7 mol·L‐1) had no effect, and high concentration of rosuvastatin(10‐6-10‐5 mol·L‐1) decreased cell growth. MC3T3-E1 cells treated with simvastatin, fluvastatin and atorvastatin in the presence of TNFa concentration-dependently increased cell growth compared with that of untreated control cells. Low concentration of rosuvastatin(10‐l0-10‐8 mol·L‐1) in the presence of TNFa markedly increased cell growth, and high concentration of rosuvastatin(10‐6 mol·L‐1) in the presence of TNFa decreased cell growth. CONCLUSION The results demonstrate that statins can increase growth and viability of osteoblastic cells and decrease TNFa induced growth inhibition in murine osteoblastic MC3T3-E1 cells, and rosuvastatin at low and high concentration had opposite effects.%目的 比较4种他汀类药物对TNF-α诱导的小鼠成骨细胞(MC3T32-E1)生长抑制的影响.方法 小鼠成骨细胞MC3T3-E1用DMEM+10%胎牛血清培养,细胞活性用MTT法测定.结果 TNFα (1~100 ng·mL-1)呈浓度和时间依赖抑制MC3T3-E1细胞生长;低浓度的辛伐他汀(10-1010-7 mol·L-1)、氟伐他汀(10-10~10-6 mol·L-1)和阿托伐他汀(10-8~ 10-6 mol·L-1)处理 MC3T3-E1细胞72 h后能明显促进成骨细

  8. Uncoupling of 3T3-L1 gene expression from lipid accumulation during adipogenesis

    OpenAIRE

    Temple, Karla A.; Basko, Xheni; Allison, Margaret B.; Brady, Matthew J.

    2007-01-01

    Adipocyte differentiation comprises altered gene expression and increased triglyceride storage. To investigate the interdependency of these two events, 3T3-L1 cells were differentiated in the presence of glucose or pyruvate. All adipocytic proteins examined were similarly increased between the two conditions. In contrast, 3T3-L1 adipocytes differentiated with glucose exhibited significant lipid accumulation, which was largely suppressed in the presence of pyruvate. Subsequent addition of gluc...

  9. The effects of Ganoderma lucidum herba pharmacopuncture on 3T3-L1 preadipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Chea-woo Lee

    2008-09-01

    Full Text Available Objective : The purpose of this study is to investigate the effects of Ganoderma lucidum herba pharmacopuncture (GHP on the adipogenesis in 3T3-L1 preadipocytes. Methods : 3T3- L1 preadipocytes were differentiated with adipogenic reagents by incubating for 2 days in the absence or presence of GHP ranging from 1 and 2%. The effect of GHP on cell proliferation of 3T3-L1 preadipocytes was investigated using MTT assay. The effect of GHP on adipogenesis was examined by Oil red O staining and measuring glycerol-3-phosphate dehydrogenase (GPDH and intracellular triglyceride (TG content. Results : Following results were obtained from the preadipocyte proliferation and adipocyte differentiation of 3T3-L1. We observed no effect of GHP on preadipocyte proliferation. GHP inhibited adipogenesis, the activity of GPDH and accumulation of intracellular TG content. Conclusions : These results suggest that GHP inhibit differentiation of preadipocyte.

  10. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L. Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yerra Koteswara Rao

    2011-01-01

    Full Text Available Citrus grandis (L. Osbeck (red wendun leaves have been used in traditional Chinese medicine to treat several illnesses including diabetes. However, there is no scientific evidence supporting these actions and its active compounds. Two flavone glycosides, rhoifolin and cosmosiin were isolated for the first time from red wendun leaves and, identified these leaves are rich source for rhoifolin (1.1%, w/w. In differentiated 3T3-L1 adipocytes, rhoifolin and cosmosiin showed dose-dependent response in concentration range of o.oo1–5 μM and 1–20 μM, respectively, in biological studies beneficial to diabetes. Particularly, rhoifolin and cosmosiin at 0.5 and 20 μM, respectively showed nearly similar response to that 10 nM of insulin, on adiponectin secretion level. Furthermore, 5 μM of rhoifolin and 20 μM of cosmosiin showed equal potential with 10 nM of insulin to increase the phosphorylation of insulin receptor-β, in addition to their positive effect on GLUT4 translocation. These findings indicate that rhoifolin and cosmosiin from red wendun leaves may be beneficial for diabetic complications through their enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and GLUT4 translocation.

  11. mdm-2 gene amplification in 3T3-L1 preadipocytes.

    Science.gov (United States)

    Berberich, S J; Litteral, V; Mayo, L D; Tabesh, D; Morris, D

    1999-05-01

    In this study the regulation of the murine double minute-2 (mdm-2) gene was examined in NIH 3T3-L1 preadipocytes. The 3T3-L1 cell line, under proper conditions, has the capacity to differentiate from fibroblasts into adipocytes [15]. A recent report demonstrated that mdm-2 overexpression could block myogenesis [12]. While examining the regulation of the mdm-2 gene during adipogenesis, it was discovered that 3T3-L1 cells possess a 36-fold elevation of mdm-2 mRNA relative to A31 cells, another immortalized Balb/c 3T3 fibroblast cell line that lacks the capacity to differentiate. Based on Southern blot analysis, the increase in mdm-2 mRNA was the result of a mdm-2 gene amplification. The level of Mdm-2 protein in undifferentiated 3T3-L1 cells was elevated relative to A31 fibroblasts and resulted from translation of mRNA transcripts initiating from the p53-independent P1 promoter. We also examined how mdm-2 and p53 levels changed as undifferentiated fibroblasts converted to adipocytes. While mdm-2 mRNA levels remained elevated, p53 mRNA, protein, and DNA-binding activity decreased. These results suggest that adipogenesis is unaffected by elevated Mdm-2 levels and that the overexpression of mdm-2 mRNA is predominantly p53 independent.

  12. Resveratrol potentiates genistein's antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes.

    Science.gov (United States)

    Rayalam, Srujana; Della-Fera, Mary Anne; Yang, Jeong-Yeh; Park, Hea Jin; Ambati, Suresh; Baile, Clifton A

    2007-12-01

    Genistein (G) and resveratrol (R) individually inhibit adipogenesis in 3T3-L1 adipocytes and induce apoptosis in cancer cells. We investigated whether the combination of G and R resulted in enhanced effects on adipogenesis, lipolysis, and apoptosis in 3T3-L1 cells. Preadipocytes and mature adipocytes were treated with G and R individually at 50 and 100 micromol/L (G100; R100) and in combination. Both in preadipocytes and mature adipocytes, G and R individually decreased cell viability dose-dependently, but G100 + R100 further decreased viability by 59 +/- 0.97% (P < 0.001) and 69.7 +/- 1.2% (P < 0.001) after 48 h compared with G100 and R100, respectively. G100 + R100 induced apoptosis 242 +/- 8.7% (P < 0.001) more than the control after 48 h, whereas G100 and R100 individually increased apoptosis only 46 +/- 9.2 and 46 +/- 7.9%, respectively. G and R did not modulate mitogen-activated protein kinase expression by themselves, but G100 + R100 increased Jun-N-terminal kinase phosphorylation by 38.8 +/- 4.4% (P < 0.001) and decreased extracellular signal-regulating kinase phosphorylation by 48 +/- 3.4% (P < 0.001). Individually, G and R at 25 micromol/L (G25; R25) decreased lipid accumulation by 30 +/- 1.7% and 20.07 +/- 4.27%, respectively (P < 0.001). However, G25 + R25 decreased lipid accumulation by 77.9 +/- 3.4% (P < 0.001). Lipolysis assay revealed that neither G25 nor R25 induced lipolysis, whereas G25 + R25 significantly increased lipolysis by 25.5 +/- 4.6%. The adipocyte-specific proteins PPARgamma and CCAAT/enhancer binding protein-alpha were downregulated after treatment with G + R, but no effect was observed with individual compounds. These results indicate that G and R in combination produce enhanced effects on inhibiting adipogenesis, inducing apoptosis, and promoting lipolysis in 3T3-L1 adipocytes. Thus, the combination of G and R is more potent in exerting antiobesity effects than the individual compounds.

  13. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Akio, E-mail: watanabea@jfrl.or.jp [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan); Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan)

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  14. A comparison of B16 melanoma cells and 3T3 fibroblasts concerning cell viability and ROS production in the presence of melatonin, tested over a wide range of concentrations

    OpenAIRE

    Juan Antonio Madrid; Maria Angeles Rol; Rüdiger Hardeland; Nuria Álvarez-Sánchez; Maria Angeles Bonmati-Carrion

    2013-01-01

    Melatonin is a pleiotropic molecule with many cellular and systemic actions, including chronobiotic effects. Beneficial effects are widely documented concerning the treatment of neoplastic diseases in vivo as well as reductions in viability of cultured cells from melanoma, one of the most aggressive cancers in humans. However, studies of its effects on non-tumor cells in vitro have not focused on viability, except for experiments aiming to protect against oxidotoxicity or other toxicological ...

  15. ROS activate KCl cotransport in nonadherent Ehrlich ascites cells but K+ and Cl- channels in adherent Ehrlich Lettré and NIH3T3 cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Klausen, Thomas Kjær; Bergdahl, Andreas;

    2009-01-01

    the electrochemical driving force for K(+). On the other hand, the H2O2-induced cell shrinkage was impaired in the presence of the KCl cotransport inhibitor DIOA, following substitution of NO3(-) for Cl(-), and when the driving force for KCl cotransport was omitted. It is suggested that H2O2 activates electro neutral...

  16. Uncoupling of 3T3-L1 gene expression from lipid accumulation during adipogenesis.

    Science.gov (United States)

    Temple, Karla A; Basko, Xheni; Allison, Margaret B; Brady, Matthew J

    2007-02-06

    Adipocyte differentiation comprises altered gene expression and increased triglyceride storage. To investigate the interdependency of these two events, 3T3-L1 cells were differentiated in the presence of glucose or pyruvate. All adipocytic proteins examined were similarly increased between the two conditions. In contrast, 3T3-L1 adipocytes differentiated with glucose exhibited significant lipid accumulation, which was largely suppressed in the presence of pyruvate. Subsequent addition of glucose to the latter cells restored lipid accumulation and acute rates of insulin-stimulated lipogenesis. These data indicate that extracellular energy is required for induction of adipocytic proteins, while only glucose sustained the parallel increase in triglyceride storage.

  17. 11 beta-hydroxysteroid dehydrogenase type 1 promotes differentiation of 3T3-L1 preadipocyte

    Institute of Scientific and Technical Information of China (English)

    Yun LIU; Yan SUN; Ting ZHU; Yu XIE; Jing YU; Wen-lan SUN; Guo-xian DING; Gang HU

    2007-01-01

    Aim: To investigate the relationship between 11 beta-hydroxysteroid dehydroge-nase type 1 (1 lbeta-HSD1), a potential link between obesity and type 2 diabetes,and preadipocyte differentiation. Methods: Mouse 11beta-HSD1 siRNA plasmids were transfected into 3T3-L1 preadipocytes (a cell line derived from mouse Swiss3T3 cells that were isolated from mouse embryo), for examination of the effect of targeted 11 beta-HSD1 inhibition on differentiation of 3T3-L1 cells. Dif-ferentiation was stimulated with 3-isobutyl-1-methyxanthine, insulin, and dexamethasone. The transcription level of the genes was detected by real-time PCR. Results: Lipid accumulation was significantly inhibited in cells transfected with mouse 11beta-HSD1 siRNA compared with non-transfected 3T3-L1 cells.Fewer lipid droplets were detected in the transfected cells both prior to stimulation and after stimulation with differentiation-inducing reagents. The expression of adipocyte differentiation-associated markers such as lipoprotein lipase and fatty acid synthetase were downregulated in the transfected cells. Similarly, the expres-sion of preadipocyte factor-1, an inhibitor of adipocyte differentiation, was downregulated upon stimulation of differentiation and had no changes in the transfected cells. Conclusion: 11 beta-HSD1 can promote preadipocyte differentiation. Based on this, we propose that 11 beta-HSD1 may be an important candidate mediator of obesity and obesity-induced insulin resistance.

  18. Effects of putrescine on Atp8a1 gene expression in mouse NTH3T3 cells%腐胺对小鼠成纤维细胞中Atp8a1基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    万涛; 李朝幸; 田园园; 王李英; 秦栋栋; 李凯; 曲嘉琳; 汤华

    2011-01-01

    目的:研究腐胺对小鼠成纤维细胞中Atp8a1基因表达的影响,初步探讨其作用机制.方法:用基因芯片和Real-time PCR检测正常小鼠和Azin1(Antizyme inhibitor1)基因敲除小鼠肝脏组织中Atp8a1基因的在mRNA水平上的表达;构建Atp8a1基因启动子的虫荧光素酶报告质粒pGL3-Atp8a1-P;将重组质粒转染NTH3T3成纤维细胞中,分别在含有4 μg/ml腐胺和不含腐胺的条件下,用双荧光素酶检测系统检测虫荧光素酶活性.结果:在含有腐胺的培养条件下,转染Atp8a1基因启动子虫荧光素酶报告质粒的细胞虫荧光素酶的活性明显改变.结论:腐胺能够抑制Atp8a1基因启动子活性而降低其在NIH3T3成纤维细胞中的表达.%Objective: To investigate the effects of putrescine on the expression of Atp8a1 in NIH3T3 cells and reveal its regulatory mechanism. Methods: DNA microarray and Real-time PCR were performed to detect the Atp8a1 gene expression in normal mouse liver and Azini knockout mouse liver. Atp8al promoter luciferase reporter plasmid, pGL3-Atp8a1-P, was constructed. NTH3T3 cells were transiently transfected with pGL3-Atp8a1-P, and cultured in medium with and without putreseine respectively. Then the luciferase activity was detected. Results: The relative luciferase activity was changed in the cells which were transfected with pGL3-Atp8a1-P when cultured in medium added with putrescine. Conclusion: Putrescine could down-regulate the Atp8a1 gene expression in NIH3T3 cells by inhibiting its promoter's activity.

  19. Lack of evidence for AT1R/B2R heterodimerization in COS-7, HEK293, and NIH3T3 cells: how common is the AT1R/B2R heterodimer?

    DEFF Research Database (Denmark)

    Hansen, Jakob L; Hansen, Jonas T; Speerschneider, Tobias

    2008-01-01

    dimerization using bioluminescence resonance energy transfer and regulated secretion/aggregation technology. However, although both the AT1Rs and B2Rs were functional in our systems and the systems were fine tuned to detect small changes in receptor function, we failed to detect any functional modulation...

  20. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.

    Science.gov (United States)

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm(2)) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections.

  1. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells

    OpenAIRE

    Yeo Cho Yoon; Sung-Hee Kim; Min Jung Kim; Hye Jeong Yang; Mee-Ra Rhyu; Jae-Ho Park

    2015-01-01

    Limonin, one of the major components in dictamni radicis cortex (DRC), has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST) has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST p...

  2. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes.

    Science.gov (United States)

    Kim, So Hui; Shin, Eun-Jung; Kim, Eun-Do; Bayaraa, Tsenguun; Frost, Susan Cooke; Hyun, Chang-Kee

    2007-11-01

    It has recently been known that berberine, an alkaloid of medicinal plants, has anti-hyperglycemic effects. To explore the mechanism underlying this effect, we used 3T3-L1 adipocytes for analyzing the signaling pathways that contribute to glucose transport. Treatment of berberine to 3T3-L1 adipocytes for 6 h enhanced basal glucose uptake both in normal and in insulin-resistant state, but the insulin-stimulated glucose uptake was not augmented significantly. Inhibition of phosphatidylinositol 3-kinase (PI 3-K) by wortmannin did not affect the berberine effect on basal glucose uptake. Berberine did not augment tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS)-1. Further, berberine had no effect on the activity of the insulin-sensitive downstream kinase, atypical protein kinase C (PKCzeta/lambda). However, interestingly, extracellular signal-regulated kinases (ERKs), which have been known to be responsible for the expression of glucose transporter (GLUT)1, were significantly activated in berberine-treated 3T3-L1 cells. As expected, the level of GLUT1 protein was increased both in normal and insulin-resistant cells in response to berberine. But berberine affected the expression of GLUT4 neither in normal nor in insulin-resistant cells. In addition, berberine treatment increased AMP-activated protein kinase (AMPK) activity in 3T3-L1 cells, which has been reported to be associated with GLUT1-mediated glucose uptake. Together, we concluded that berberine increases glucose transport activity of 3T3-L1 adipocytes by enhancing GLUT1 expression and also stimulates the GLUT1-mediated glucose uptake by activating GLUT1, a result of AMPK stimulation.

  3. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes.

    Science.gov (United States)

    Miller, Colette N; Yang, Jeong-Yeh; England, Emily; Yin, Amelia; Baile, Clifton A; Rayalam, Srujana

    2015-01-01

    Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1), enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM) following standard differentiation supplemented with thyroid hormone (T3; 1 nM). The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1) were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.

  4. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Colette N Miller

    Full Text Available Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1, enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM following standard differentiation supplemented with thyroid hormone (T3; 1 nM. The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1 were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.

  5. Octanoate and decanoate induce apoptosis in 3T3-L1 adipocytes.

    Science.gov (United States)

    Yang, Jeong-Yeh; Rayalam, Srujana; Della-Fera, Mary Anne; Ambati, Suresh; Baile, Clifton A

    2009-10-01

    The effect of octanoate and decanoate, respectively, eight- and 10-carbon medium-chain fatty acids (MCFAs), on apoptotic signaling in 3T3-L1 adipocytes was investigated. 3T3-L1 adipocytes were treated with various concentrations of octanoate or decanoate. Cell viability, apoptosis, and expression of apoptosis-related proteins were investigated. Results indicated that both octanoate and decanoate decreased viability, increased apoptosis, and increased reactive oxygen species production. Immunoblotting analysis showed an increase in the levels of cytoplasmic cytochrome c and cleaved poly(ADP-ribose) polymerase by octanoate and decanoate. Concomitantly, we observed that pro-caspase-3 was decreased, resulting in the induced accumulation of the cleaved form of caspase-3 by both octanoate and decanoate. In addition, both octanoate and decanoate increased the expression of pro-apoptotic Bax with an accompanied decrease of anti-apoptotic Bcl-2. These results show that octanoate and decanoate mediate adipocyte apoptosis via a caspase-dependent mitochondrial pathway in 3T3-L1 adipocytes. MCFAs thus decrease adipocyte number by initiating the apoptotic process in 3T3-L1 adipocytes.

  6. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    Science.gov (United States)

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.

  7. Aspartame downregulates 3T3-L1 differentiation.

    Science.gov (United States)

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.

  8. Effects of Berberine on Cell Proliferation, Peroxisome Proliferation Activated Receptorγ, CAAT/Enhan-cer Binding Protein mRNA and Protein Expression in 3T3-L1 Pre-adipocytes%小檗碱对3T3-L1前脂肪细胞增殖及分化相关基因PPARγ、C/EBPαmRNA和蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘毅; 娄少颖; 何燕铭; 陈伟华; 应健; 王文健

    2008-01-01

    目的 探讨小檗碱对脂肪细胞增殖、分化的影响及其机制.方法 以XTT法检测3T3-L1前脂肪细胞的增殖;油红O染色并通过比色定量分析检测313-L1前脂肪细胞分化过程中胞浆脂质的堆积;采用Real-time PCR和蛋白质免疫印迹(Western blotting)技术检测脂肪细胞分化相关基因过氧化物体增殖剂活化受体γ(peroxisome proliferator activated receptor,PPARγ)、CAAT/增强子结合蛋白α(CAAT/enhancer bindingprotein,C/EBPα)mRNA以及蛋白的表达.结果 浓度低于10 μmol/L小檗碱干预24 h,对脂肪细胞增殖的影响不明显(与空白对照组比较,P>0.05),20、40、80 μmol/L小檗碱在作用24 h后即表现出明显的抑制效应;不同浓度的小檗碱作用48、72 h后对脂肪细胞的增殖亦表现出抑制效应,且有一定的量效关系,即小檗碱浓度越高抑制作用越明显,与空白对照组比较差异有统计学意义(P<0.05,P<0.01);10 μmol/L小檗碱处理的前脂肪细胞,分化后胞浆中脂滴明显减少,分化相关基因PPARγmRNA、C/EBPα mRNA和蛋白的表达亦减少,与空白对照组和罗格列酮干预组比较差异有统计学意义(P<0.05,P<0.01).结论 小檗碱能够抑制前脂肪细胞的增殖和分化,减少脂肪细胞分化过程中脂质的堆积,机制可能与其抑制脂肪细胞分化相关基因PPAHγ/、C/EBPα mRNA和蛋白表达有关,实验为小檗碱防治肥胖等代谢相关性疾病提供了依据.

  9. The effects of platelet-rich fibrin extract (PRFe) on osteoblast MC3T3-E1 cells%富血小板纤维蛋白提取液对成骨细胞影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    董凯; 柳忠豪; 张晓洁; 许丰伟

    2013-01-01

    目的:探讨富血小板纤维蛋白提取液(PRFe)对成骨细胞增殖、分化及细胞骨架的影响.方法:将培养中的小鼠成骨细胞MC3T3-E1分为2组,实验组采用50%浓度PRFe,对照组为正常αt-MEM培养液.MTr法检测细胞增殖;碱性磷酸酶(ALP)试剂盒检测ALP活性;茜素红染色观察细胞矿化功能,并用图像分析软件进行半定量分析;激光共聚焦显微镜观察细胞骨架形态.结果:MTT实验显示随时间延长,细胞数目明显增加(P<0.05),在各时间点,实验组细胞数量明显高于对照组(P<0.05);ALP检测显示随时间延长,ALP活性明显增大(P<0.05),在各时间点,实验组A值均显著大于对照组(P<0.05);茜素红染色显示随时间延长,钙结节染色的积分吸光度值逐渐增大(P<0.05),每一时间点,实验组的钙结节积分吸光度值大于对照组(P<0.05);细胞骨架观察显示在各时间点,实验组细胞骨架较对照组更加伸展.结论:PRFe能促进MC3T3-E1细胞的增殖、分化,对细胞骨架的排列和伸展有促进作用.%Objective:To evaluate the effects of platelet-rich fibrin extract (PRFe) on the proliferation and differentiation of osteoblast MC3T3-E1 cells.Methods:MC3T3-E1 cells were cultured in 50% PRFe (test group) and normal α-MEM respectively (controlgroup).The proliferation,alkaline phosphatase (ALP) activity and mineralization were examined by MTT assay,ALP Kit and Alizarin red dye staining respectively; the F-actin cytoskeleton was observed by confocal laser scaning microscopy (CLSM).Results:PRFe treatment increased the proliferation(P < 0.05),ALP activity(P < 0.05),and calcium nodus formation of MC3T3-E1 cells(P <0.05) in a time-dependant manner.At each time point,filaments in PRFe treated cells were more well spread than those in the untreated.Conclusion:PRFe may stimulate the proliferation and differentiation of osteoblasts and can promote the spread of F-actin cytoskeleton.

  10. Isorhamnetin represses adipogenesis in 3T3-L1 cells.

    Science.gov (United States)

    Lee, Jongsung; Jung, Eunsun; Lee, Jienny; Kim, Saebom; Huh, Sungran; Kim, Youngsoo; Kim, Yongwoo; Byun, Sang Yo; Kim, Yeong-Shik; Park, Deokhoon

    2009-02-01

    Adipocyte dysfunction is strongly associated with the development of obesity, which is a major risk factor for many disorders including diabetes, hypertension, and heart disease. It is generally accepted that the regulation of adipogenesis or adipokines expression prevents obesity. In this study, we show that isorhamnetin inhibits adipocyte differentiation, as evidenced by reduced triglyceride (TG) accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity. At the molecular level, the mRNA expression levels of peroxidase proliferator-activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer-binding protein-alpha (C/EBP-alpha), which are the major adipogenic transcription factors, were markedly reduced by isorhamnetin. However, the mRNA levels of C/EBP-beta and -delta, the upstream regulators of PPAR-gamma and C/EBP-alpha, were not reduced by isorhamnetin. Moreover, the mRNA levels of PPAR-gamma target genes such as lipoprotein lipase (LPL), CD36, aP2, and liver X receptor-alpha (LXR-alpha) were downregulated by isorhamnetin. We also showed that isorhamnetin inhibits the expression and secretion of adiponectin, and the results of adiponectin promoter assays suggest the inhibition of PPAR-gamma expression as a possible mechanism underlying the isorhamnetin-mediated effects. Taken together, these results indicate that isorhamnetin inhibits adipogenesis through downregulation of PPAR-gamma and C/EBP-alpha.

  11. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte.

    Science.gov (United States)

    Choi, Bong-Hyuk; Ahn, In-Sook; Kim, Yu-Hee; Park, Ji-Won; Lee, So-Young; Hyun, Chang-Kee; Do, Myoung-Sool

    2006-12-31

    Berberine (BBR), an isoquinoline alkaloid, has a wide range of pharmacological effects, yet its exact mechanism is unknown. In order to understand the anti-adipogenic effect of BBR, we studied the change of expression of several adipogenic enzymes of 3T3-L1 cells by BBR treatment. First, we measured the change of leptin and glycerol in the medium of 3T3-L1 cells treated with 1 micrometer, 5 micrometer and 10 micrometer concentrations of BBR. We also measured the changes of adipogenic and lipolytic factors of 3T3-L1. In 3T3-L1 cells, both leptin and adipogenic factors (SREBP-1c, C/EBP-alpha, PPAR-gamma, fatty acid synthase, acetyl-CoA carboxylase, acyl-CoA synthase and lipoprotein lipase) were reduced by BBR treatment. Glycerol secretion was increased, whereas expression of lipolytic enzymes (hormone-sensitive lipase and perilipin) mRNA was slightly decreased. Next, we measured the change of inflammation markers of 3T3-L1 cells by BBR treatment. This resulted in the down-regulation of mRNA level of inflammation markers such as TNF-alpha, IL-6, C- reactive protein and haptoglobin. Taken together, our data shows that BBR has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect seems to be due to the down-regulation of adipogenic enzymes and transcription factors.

  12. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chian-Jiun Liou

    2015-01-01

    Full Text Available Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK, resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C, ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.

  13. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Nabilatul Hani Mohd-Radzman

    2013-01-01

    Full Text Available Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p<0.001 in normal conditions and up to 4.4 times (p<0.001 in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.

  14. The anti-apoptotic MAP kinase pathway is inhibited in NIH3T3 fibroblasts with increased expression of phosphatidylinositol transfer protein β

    NARCIS (Netherlands)

    Schenning, M.; van Tiel, C.M.; Wirtz, K.W.A.; Snoek, G.T.

    2007-01-01

    Mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein ß (PI-TPß, SPIß cells) demonstrate a low rate of proliferation and a high sensitivity towards UV-induced apoptosis when compared with wtNIH3T3 cells. In contrast, SPIßS262A cells overexpressing a mutant PI-TPß that la

  15. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayoshi [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  16. Traditional Herbal Formula Oyaksungi-San Inhibits Adipogenesis in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Sae-Rom Yoo

    2015-01-01

    Full Text Available Background. Oyaksungi-san (OYSGS is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells. Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH activity, leptin production, mRNA, and protein levels of adipogenesis-related factors. Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH activity, triglyceride (TG content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α, and peroxisome proliferator-activated receptor gamma (PPAR-γ. Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK as well as its substrate acetyl CoA (ACC carboxylase. Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity.

  17. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Sinclair Andrew J

    2010-06-01

    Full Text Available Abstract Background Lipid droplet (LD formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3 in comparison to SFA (STA; stearic acid, C18:0 and MUFA (OLA; oleic acid, C18:1n-9 on 3T3-L1 adipocyte LD formation, regulation of genes central to LD function and adipokine responsiveness. Cells were supplemented with 100 μM FA during 7-day differentiation. Results EPA markedly reduced LD size and total lipid accumulation, suppressing PPARγ, Cidea and D9D/SCD1 genes, distinct from other treatments. These changes were independent of alterations of lipolytic genes, as both EPA and STA similarly elevated LPL and HSL gene expressions. In response to acute lipopolysaccharide exposure, EPA-differentiated adipocytes had distinct improvement in inflammatory response shown by reduction in monocyte chemoattractant protein-1 and interleukin-6 and elevation in adiponectin and leptin gene expressions. Conclusions This study demonstrates that EPA differentially modulates adipogenesis and lipid accumulation to suppress LD formation and size. This may be due to suppressed gene expression of key proteins closely associated with LD function. Further analysis is required to determine if EPA exerts a similar influence on LD formation and regulation in-vivo.

  18. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice.

    Science.gov (United States)

    Ejaz, Asma; Wu, Dayong; Kwan, Paul; Meydani, Mohsen

    2009-05-01

    Angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. We investigated the effect of curcumin, the major polyphenol in turmeric spice, on angiogenesis, adipogenesis, differentiation, apoptosis, and gene expression involved in lipid and energy metabolism in 3T3-L1 adipocyte in cell culture systems and on body weight gain and adiposity in mice fed a high-fat diet (22%) supplemented with 500 mg curcumin/kg diet for 12 wk. Curcumin (5-20 micromol/L) suppressed 3T3-L1 differentiation, caused apoptosis, and inhibited adipokine-induced angiogenesis of human umbilical vein endothelial cells. Supplementing the high-fat diet of mice with curcumin did not affect food intake but reduced body weight gain, adiposity, and microvessel density in adipose tissue, which coincided with reduced expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2. Curcumin increased 5'AMP-activated protein kinase phosphorylation, reduced glycerol-3-phosphate acyl transferase-1, and increased carnitine palmitoyltransferase-1 expression, which led to increased oxidation and decreased fatty acid esterification. The in vivo effect of curcumin on the expression of these enzymes was also confirmed by real-time RT-PCR in subcutaneous adipose tissue. In addition, curcumin significantly lowered serum cholesterol and expression of PPARgamma and CCAAT/enhancer binding protein alpha, 2 key transcription factors in adipogenesis and lipogenesis. The curcumin suppression of angiogenesis in adipose tissue together with its effect on lipid metabolism in adipocytes may contribute to lower body fat and body weight gain. Our findings suggest that dietary curcumin may have a potential benefit in preventing obesity.

  19. Tmed2 accelerates murine MC3T3-E1 pre-osteoblast proliferation in vitro%Tmed2促进体外小鼠前成骨细胞MC3T3-E1增殖

    Institute of Scientific and Technical Information of China (English)

    熊元; 熊霞辉; 卢雅彬; 朱宁; 陈梅红

    2012-01-01

    目的 研究Tmed2基因对小鼠前成骨细胞增殖的影响.方法1)分别在小鼠MC3T3-E1细胞中过表达和抑制Tmed2,检测细胞增殖情况.2)用雌激素处理细胞后,检测细胞的增殖及Tmed2基因的表达量.荧光实时定量PCR检测mRNA水平,MTS法检测细胞活力和增殖,流式细胞术检测细胞周期,Western blot法检测蛋白水平.结果 过表达Tmed2使MC3T3 -E1细胞的增殖速度加快,细胞周期中S期细胞比例明显增加,且Cyclin A的表达升高.而抑制Tmed2基因表达使MC3T3-E1细胞的增殖速度减慢.雌激素处理使细胞增殖速度加快的同时,Tmed2基因的表达显著增高.结论 Tmed2通过上调Cyclin A的表达,使S期细胞比例增加,加快小鼠前成骨细胞MC3T3-E1的增殖.此外,Tmed2的表达受雌激素的调控,可能参与雌激素促进MC3T3-E1细胞增殖的作用.%Objective To study the role of Tmed2 in murine pre-osteoblast proliferation. Methods 1) Over-express and knock down Tmed2, and the proliferation rate of MC3T3-E1 cell was then detected. 2) MC3T3-E1 cells were treated with p-Estradiol, cell number was then counted and the mRNA level of Tmed2 was analyzed. Quantitative real-time PCR was used to measure the mRNA level, MTS assay was used to assess the cell proliferation rate, flow eytometry was used to figure out the cell cycle distribution, and the protein level was evaluated by Western blot. Results Over-expression of Tmed2 accelerated MC3T3-E1 cell proliferation, and the proportion of cells in S phase markedly increased. The expression of Cyclin A also increased. On the contrary, Knockdown of Tmed2 decelerated MC3T3-E1 cell proliferation. In β-Estradiol promoted MC3T3-E1 proliferation, the mRNA level of Tmed2 remarkably increased. Conclusions Tmed2 accelerates murine pre-osteoblast MC3T3-E1 proliferation through up-regulating Cyclin A expression and therefore increasing the proportion of cells in S phase. In addition, the expression of Tmed2 is regulated by

  20. Nih-3T3 Fibroblast Studied by Fourier Transform Infrared Spectroscopy

    CERN Document Server

    Iovenitti, Marco

    2009-01-01

    In this work I present the study of the behaviour response of mouse fibroblasts NIH-3T3 under UVB radiation using Fourier transform infrared spectroscopy (FT-IR), the preferred method of infrared spectroscopy. FT-IR, in fact, it is convenient to study molecular cell processes because it has the potential to provide the identification of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The results show that apoptotic process is induced by UVB radiation.

  1. The protein X4 of severe acute respiratory syndrome-associated coronavirus is expressed on both virus-infected cells and lung tissue of severe acute respiratory syndrome patients and inhibits growth of Balb/c 3T3 cell line

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-yu; GAN Qi-ni; ZHANG Xin; ZHENG Ying; LIU Shun-ai; WANG Xiao-ning; ZHONG Nan-shan; MA Da-long; SHUANG Bao; TAN Ya-xia; MENG Min-jie; HAN Pu; MO Xiao-ning; SONG Quan-sheng; QIU Xiao-yan; LUO Xin

    2005-01-01

    Background The genome of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) includes sequences encoding the putative protein X4 (ORF8, ORF7a), consisting of 122 amino acids. The deduced sequence contains a probable cleaved signal peptide sequence and a C-terminal transmembrane helix, indicating that protein X4 is likely to be a type I membrane protein. This study was conducted to demonstrate whether the protein X4 was expressed and its essential function in the process of SARS-CoV infection.Methods The prokaryotic and eukaryotic protein X4-expressing plasmids were constructed. Recombinant soluble protein X4 was purified from E. Coli using ion exchange chromatography, and the preparation was injected into chicken for rising specific polyclonal antibodies. The expression of protein X4 in SARS-CoV-infected Vero E6 cells and lung tissues from patients with SARS was performed using immunofluorescence assay and immunohistochemistry technique. The preliminary function of protein X4 was evaluated by treatment with and over-expression of protein X4 in cell lines. Western blot was employed to evaluate the expression of protein X4 in SARS-CoV particles. Results We expressed and purified soluble recombinant protein X4 from E.coli, and generated specific antibodies against protein X4. Western blot proved that the protein X4 was not assembled in the SARS-CoV particles. Indirect immunofluorescence assays revealed that the expression of protein X4 was detected at 8 hours after infection in SARS-CoV-infected Vero E6 cells. It was also detected in the lung tissues from patients with SARS. Treatment with and overexpression of protein X4 inhibited the growth of Balb/c 3T3 cells as determined by cell counting and MTT assays. Conclusion The results provide the evidence of protein X4 expression following SARS-CoV infection, and may facilitate further investigation of the immunopathological mechanism of SARS.

  2. Soy pinitol acts partly as an insulin sensitizer or insulin mediator in 3T3-L1 preadipocytes

    OpenAIRE

    Do, Gyeong-Min; Choi, Myung-Sook; Kim, Hye-Jin; Woo, Myung-Nam; Lee, Mi-Kyung; Jeon, Seon-Min

    2007-01-01

    The blood glucose-lowering property of pinitol is mediated via the insulin signaling pathway. This study was carried out to evaluate the effects of soy pinitol on adipogenesis in a 3T3-L1 cell line; 3T3-L1 preadipocytes were treated with pinitol (0–1 mM) together with insulin for 9 days. The regulation of lipid metabolism was assessed by oil-red-O staining of intracellular lipids and real-time PCR of adipogenesis-related factors. The inhibition of cell proliferation was estimated by MTT assay...

  3. A resistin binding peptide selected by phage display inhibits 3T3-L1 preadipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Resistin, a newly discovered cysteine-rich hormone secreted mainly by adipose tissues, has been proposed to form a biochemical link between obesity and type 2 diabetes. However, the resistin receptor has not yet been identified. This study aimed to identify resistin binding proteins/receptor.Methods Three cDNA fragments with the same 11 bp 5' sequence were found by screening a cDNA phage display library of rat multiple tissues. As the reading frames of the same 11 bp 5' sequence were interrupted by a TGA stop codon, plaque lift assay was consequently used to prove the readthrough phenomenon. The stop codon in the same 11 bp 5' sequence was replaced by tryptophan, and the binding activity of the coded peptide [AWIL, which was designated as resistin binding peptide (RBP)] with resistin was identified by the confocal microscopy technique and the affinity chromatography experiment. pDual GC-resistin and pDual GC-resistin binding peptide were co-transfected into 3T3-L1 cells to confirm the function of resistin binding peptide.Results Three cDNA fragments with the same 11 bp 5' sequence were found. The TGA stop codon in reading frames of the same 11 bp 5' sequence was proved to be readthroughed. The binding activity of RBP with resistin was consequently identified. The expression of the resistin binding peptide in 3T3-L1 preadipocytes expressing pDual GC-resistin significantly inhibited the adipogenic differentiation.Conclusion RBP could effectively rescue the promoted differentiation of resistin overxepressed 3T3-L1 preadipocyte.

  4. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Yang, Ying, E-mail: yangying_sh@yahoo.com [Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Shen, Weili, E-mail: weili_shen@hotmail.com [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  5. Protein kinase A suppresses the differentiation of 3T3-L1 preadipocytes

    Institute of Scientific and Technical Information of China (English)

    Fuqiang Li; Dongmei Wang; Yiran Zhou; Bo Zhou; Yanan Yang; Hehua Chen; Jianguo Song

    2008-01-01

    cAMP and protein kinase A (PKA) are widely known as signaling molecules that are important for the induction of adipogenesis. Here we show that a strong increase in the amount of cAMP inhibits the adipogenesis of 3T3-L1 fibroblast cells. Stimulation of PKA activity suppresses adipogenesis and, in contrast, inhibition of PKA activity markedly accelerates the adipogenic process. As adipogenesis progresses, there is a significant increase in the expression level of PKA regulatory subunits and a corresponding decrease in PKA activity. Moreover, treatment of 3T3-L1 cells with epidermal growth factor (EGF) stimulates PKA activity and blocks adipogenesis. Inhibition of PKA activity abolishes this suppressive effect of EGF on adipogenesis. Moreover, activation of PKA induces serine/threonine phosphorylation, reduces tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) and the association between PKA and IRS-1. Taken together, our study demonstrates that PKA has a pivotal role in the suppression of adipogenesis. cAMP at high concentrations can suppress adipogenesis through PKA activation. These findings could be important and useful for understanding the mechanisms of adipogenesis and the relevant physiological events.

  6. Behavior of MC3T3-E1 Osteoblast Cultured on Chitosan Modified with Polyvinylpyrrolidone

    Institute of Scientific and Technical Information of China (English)

    XI Jing; GAO Yuan; KONG Lijun; GONG Yandao; ZHAO Nanming; ZHANG Xiufang

    2005-01-01

    The physical and chemical properties of four kinds of modified chitosan materials made by blending chitosan with polyvinylpyrrolidone (PVP) were investigated. All four of these modified chitosan materials were hydrophilic with water contact angles ranging from 59° to 69°. Fourier transform-infrared spectra of the modified materials showed a new band at 1288 cm-1, implying formation of a surface physical interpenetrating network structure. Enzyme linked immunosorbent assay results indicated that much less fibronectin was adsorbed on the modified materials than on only chitosan. The viability of MC3T3-E1 osteoblasts cultured on the materials was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl- 2H-tetrazolium bromide assay. The results show that adding PVP10000 into the chitosan promotes adhesion of MC3T3-E1 osteoblasts on the modified materials, but has no effect on cell growth and proliferation; while adding PVP40000 reduces cell adhesion, growth, and proliferation. The results suggest that the increased hydrophilicity of the material surface does not always improve its biocompatibility, which will influence the selection and design of biomaterials.

  7. Effect of Tumor Necrosis Factor-α on Resistin Expression in 3T3-L1 Adipocytes and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the effect of tumor necrosis factor-α (TNFα) on resistin expression in 3T3-L1 adipocytes, and further explore its mechanisms, the differentiated 3T3-L1 adipocytes were incubated with 0, 1, 10, 100 ng/mL TNFα respectively for 24 h, and then the expression of resistin was determined. The differentiated 3T3-L1 adipocytes were incubated with 100 ng/mL TNFα for 3, 6, 24 h respectively, and then the expression of resistin mRNA was analyzed.3T3-L1 adipocytes were induced to differentiate into mature adipocytes. The cells were randomly divided into 4 groups for culture. In the control group, no drugs were added. Cells of TNFα group were treated with 100 ng/mL TNFα. In Ro-31-8220 group, 5μmol/L protein kinase C inhibitor Ro-31-8220 was added. With TNFα+Ro-31-8220 group, 100 ng/mL TNFα were added 1 h after the addition of 5 μmol/L Ro-31-8220. All adipocytes were cultured for 24 h. Reverse transcriptionpolymerase chain reaction (RT-PCR) and Western blotting were employed to detect the expression of resistin gene. Our results showed that resistin protein and mRNA in 3T3-L1 adipocytes were inhibited by TNFα at different concentrations (P<0.01), and the inhibitory effect increased with the concentration (P<0.01). At the same concentrations, the inhibitory effect increased with time (P <0.01). Ro-31-8220 could inhibit its expression and the inhibitive effect remained unchanged with addition of TNFα(P>0.05). It was concluded that TNFα could inhibit the expression of resistin in 3T3-L1 adipocytes. The mechanism may be that the expression of resistin is partly controlled by protein kinase C signal conduction pathway.

  8. Casein kinase 2 regulates the active uptake of the organic osmolyte taurine in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Jacobsen, Jack H; Clement, Christian A; Friis, Martin B;

    2008-01-01

    T to ER but has no detectable effect on TauT protein expression. On the other hand, CK2 inhibition increases the affinity of TauT towards Na(+ )and reduces the Na(+)/taurine stoichiometry for active taurine uptake. It is suggested that CK2 controls the cellular taurine uptake in unperturbated NIH3T3 cells...

  9. TC10 is regulated by caveolin in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Dave Bridges

    Full Text Available BACKGROUND: TC10 is a small GTPase found in lipid raft microdomains of adipocytes. The protein undergoes activation in response to insulin, and plays a key role in the regulation of glucose uptake by the hormone. METHODOLOGY/PRINCIPAL FINDINGS: TC10 requires high concentrations of magnesium in order to stabilize guanine nucleotide binding. Kinetic analysis of this process revealed that magnesium acutely decreased the nucleotide release and exchange rates of TC10, suggesting that the G protein may behave as a rapidly exchanging, and therefore active protein in vivo. However, in adipocytes, the activity of TC10 is not constitutive, indicating that mechanisms must exist to maintain the G protein in a low activity state in untreated cells. Thus, we searched for proteins that might bind to and stabilize TC10 in the inactive state. We found that Caveolin interacts with TC10 only when GDP-bound and stabilizes GDP binding. Moreover, knockdown of Caveolin 1 in 3T3-L1 adipocytes increased the basal activity state of TC10. CONCLUSIONS/SIGNIFICANCE: Together these data suggest that TC10 is intrinsically active in vivo, but is maintained in the inactive state by binding to Caveolin 1 in 3T3-L1 adipocytes under basal conditions, permitting its activation by insulin.

  10. Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking.

    Science.gov (United States)

    Sadler, Jessica B A; Bryant, Nia J; Gould, Gwyn W

    2015-02-01

    The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes.

  11. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress.

    Science.gov (United States)

    Baret, Pascal; Septembre-Malaterre, Axelle; Rigoulet, Michel; Lefebvre d'Hellencourt, Christian; Priault, Muriel; Gonthier, Marie-Paule; Devin, Anne

    2013-01-01

    Numerous studies indicate that an increase in reactive oxygen species (ROS) significantly affects white adipose tissue biology and leads to an inflammatory profile and insulin resistance, which could contribute to obesity-associated diabetes and cardiovascular diseases. Mitochondria play a key role in adipose tissue energy metabolism and constitute the main source of cellular ROS such as H(2)O(2). Polyphenols constitute the most abundant antioxidants provided by the human diet. Indeed, they are widely distributed in fruits, vegetables and some plant-derived beverages such as coffee and tea. Thus, the biological effects of dietary polyphenols that may increase the antioxidant capacity of the body against obesity-induced oxidative stress are of high interest. Here, we studied the capacity of polyphenols to modulate the impact of oxidative stress on the mitochondria of preadipocytes, which are important cells governing the adipose tissue development for energy homeostasis. Whereas H(2)O(2) treatment induces a proliferation arrest associated with an increase in mitochondrial content in 3T3-L1 preadipocytes, preconditioning with some major dietary polyphenols totally or partially protects the cells against oxidative stress consequences. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

  12. Effect of Ganoderma applanatum mycelium extract on the inhibition of adipogenesis in 3T3-L1 adipocytes.

    Science.gov (United States)

    Kim, Ji-Eun; Park, Sung-Jin; Yu, Mi-Hee; Lee, Sam-Pin

    2014-10-01

    Ganoderma applanatum (GA) and related fungal species have been used for over 2000 years in China to prevent and treat various human diseases. However, there is no critical research evaluating the functionality of GA grown using submerged culture technology. This study aimed to evaluate the effects of submerged culture GA mycelium (GAM) and its active components (protocatechualdehyde [PCA]) on preadipocyte differentiation of 3T3-L1 cells. Mouse-derived preadipocyte 3T3-L1 cells were treated with differentiation inducers in the presence or absence of GAM extracts. We determined triglyceride accumulations, glycerol-3-phosphate dehydrogenase (GPDH) activities, and differentiation makers. PCA, the active component of GAM extract, was also used to treat 3T3-L1 cells. The MTT assay showed that the GAM extract (0.01-1 mg/mL) was not toxic to 3T3-L1 preadipocyte. Treatment of cells with GAM extracts and its active components significantly decreased the GPDH activity and lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Western blot analysis results showed that the protein expression levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) were inhibited by the GAM extract. In addition, adipogenic-specific genes such as perilipin, fatty acid synthase (FAS), fatty acid transport protein 1 (FATP1), and fatty acid-binding protein 4 (FABP4) decreased in a dose-dependent manner. Quantitative high-performance liquid chromatography analysis showed that the GAM extract contained 1.14 mg/g PCA. GAM extracts suppressed differentiation of 3T3-L1 preadipocytes, in part, through altered regulation of PPARγ, C/EBPα, and SREBP1. These results suggest that GAM extracts and PCA may suppress adipogenesis by inhibiting differentiation of preadipocytes.

  13. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes.

    Science.gov (United States)

    Rayalam, Srujana; Yang, Jeong-Yeh; Ambati, Suresh; Della-Fera, Mary Anne; Baile, Clifton A

    2008-10-01

    Resveratrol, a phytoallexin, has recently been reported to slow aging by acting as a sirtuin activator. Resveratrol also has a wide range of pharmacological effects on adipocytes. In this study, we investigated the effects of resveratrol on adipogenesis and apoptosis using 3T3-L1 cells. In mature adipocytes, 100 and 200 microM resveratrol decreased cell viability dose-dependently by 23 +/- 2.7%, and 75.3 +/- 2.8% (p < 0.0001), respectively, after 48 h treatment, and 100 microM resveratrol increased apoptosis by 76 +/- 8.7% (p < 0.0001). Resveratrol at 25 and 50 microM decreased lipid accumulation in maturing preadipocytes significantly by 43 +/- 1.27% and 94.3 +/- 0.3% (p < 0.0001) and decreased cell viability by 25 +/- 1.3% and 70.4 +/- 1.6% (p < 0.0001), respectively. In order to understand the anti-adipogenic effects of resveratrol, maturing 3T3-L1 preadipocytes were treated with 25 microM resveratrol and the change in the expression of several adipogenic transcription factors and enzymes was investigated using real-time RT-PCR. Resveratrol down-regulated the expression of PPAR gamma, C/EBP alpha, SREBP-1c, FAS, HSL, LPL and up-regulated the expression of genes regulating mitochondrial activity (SIRT3, UCP1 and Mfn2). These results indicate that resveratrol may alter fat mass by directly affecting cell viability and adipogenesis in maturing preadipocytes and inducing apoptosis in adipocytes and thus may have applications for the treatment of obesity.

  14. Recombinant protein of tissue inhibitor of metaIloproteinase-3 induces apoptosis of mouse MC3T3-E1 osteoblasts

    Institute of Scientific and Technical Information of China (English)

    袁凌青

    2006-01-01

    Objective To investigate the action of recombinantprotein of tissue inhibitor of metalloproteinase-3 (TIMP-3) on apoptosis of MC3T3-E1 osteoblasts. Methods Cell survival rate and apoptosis were measured by MTT and ELISA respectively. The expressions of Fas, FasL, Bel-2, Bax, caspase-3 , caspase-8, cytochrome c and phosphorylations of JNK, p38 and extracellular signalregulated kinase (ERK) 1/2 were analysed by Western blotting. Results TIMP-3 reduced survival rate of MC3T3-E1 cells and promoted apoptosis of MC3T3-E1

  15. Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes

    DEFF Research Database (Denmark)

    Mandrup, S; Loftus, T M; MacDougald, O A

    1997-01-01

    3T3-F442A preadipocytes implanted s.c. into athymic mice develop into fat pads that are indistinguishable from normal adipose tissue. Implanted preadipocytes harboring a beta-galactosidase transgene gave rise to fat pads in which almost all adipocytes expressed beta-galactosidase. This finding...... proved that the implanted 3T3-F442A preadipocytes, rather than endogenous preadipose cells, gave rise to the newly developed "adipose tissue." 3T3-F442A preadipocytes, when differentiated into adipocytes in cell culture, express the obese gene at an unexpectedly low level, i.e.,...

  16. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Sandeep Dave

    Full Text Available The phytotherapeutic protein stem bromelain (SBM is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2, fatty acid synthase (FAS, lipoprotein lipase (LPL, CD36, and acetyl-CoA carboxylase (ACC were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B, and GTP binding protein G(iα(1, as well as sustained expression of hormone sensitive lipase (HSL. These data indicate that SBM, together with all-trans retinoic-acid (atRA, may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.

  17. Parabens inhibit fatty acid amide hydrolase: A potential role in paraben-enhanced 3T3-L1 adipocyte differentiation.

    Science.gov (United States)

    Kodani, Sean D; Overby, Haley B; Morisseau, Christophe; Chen, Jiangang; Zhao, Ling; Hammock, Bruce D

    2016-11-16

    Parabens are a class of small molecules that are regularly used as preservatives in a variety of personal care products. Several parabens, including butylparaben and benzylparaben, have been found to interfere with endocrine signaling and to stimulate adipocyte differentiation. We hypothesized these biological effects could be due to interference with the endocannabinoid system and identified fatty acid amide hydrolase (FAAH) as the direct molecular target of parabens. FAAH inhibition by parabens yields mixed-type and time-independent kinetics. Additionally, structure activity relationships indicate FAAH inhibition is selective for the paraben class of compounds and the more hydrophobic parabens have higher potency. Parabens enhanced 3T3-L1 adipocyte differentiation in a dose dependent fashion, different from two other FAAH inhibitors URB597 and PF622. Moreover, parabens, URB597 and PF622 all failed to enhance AEA-induced differentiation. Furthermore, rimonabant, a cannabinoid receptor 1 (CB1)-selective antagonist, did not attenuate paraben-induced adipocyte differentiation. Thus, adipogenesis mediated by parabens likely occurs through modulation of endocannabinoids, but cell differentiation is independent of direct activation of CB1 by endocannabinoids.

  18. Ursolic acid inhibits adipogenesis in 3T3-L1 adipocytes through LKB1/AMPK pathway.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. OBJECTIVE: As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ, peroxisome proliferator-activated receptor γ (PPARγ, CCAAT element binding protein α (C/EBPα and sterol regulatory element binding protein 1c (SREBP-1c, respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC and protein expression of carnitine palmitoyltransferase 1 (CPT1, but decreased protein expression of fatty acid synthase (FAS and fatty acid-binding protein 4 (FABP4. Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK and protein expression of (silent mating type information regulation 2, homolog 1 (Sirt1. Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1, the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. CONCLUSIONS: Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK

  19. Evaluation of chylomicron effect on ASP production in 3T3-L1 adipocytes

    Institute of Scientific and Technical Information of China (English)

    Ying Gao; Danny Gauvreau; Wei Cui; Marc Lapointe; Sabina Paglialunga; Katherine Cianflone

    2011-01-01

    In the past few years,there has been increasing interest in the production and physiological role of acylation-stimu-lating protein(ASP),identical to C3adesArg,a product of the alternative complement pathway generated through C3 cleavage.Recent studies in C3(-/-)mice that are ASP deficient have demonstrated a role for ASP in postprandial triglyceride clearance and fat storage.The aim of the present study was to establish a cell model and sensitive ELISA assay for the evaluation of ASP production using 3T3-L1 adipocytes.3T3-L1 preadipocytes were differentiated into adipocytes,then cultured in different media such as serum-free(SF),Dulbecco's modified Eagle's medium(DMEM)/F12+10% fetal calf serum (FBS),and at varying concentrations of chylomicrons and insulin+chylomicrons up to 48 h.ASP production in SF and DMEM/F12+10% FBS was compared.Chylomicrons stimulated ASP production in a concen-tration- and time-dependent manner.By contrast,chylo-micron treatment had no effect on the production of C3,the precursor protein of ASP,which was constant over 48 h.Addition of insulin(100 nM)to a low-dose of chylomicrons(100 μg TG/ml)significantly increased ASP production compared with chylomicrons alone at 48 h(P<0.001).Furthermore,addition of insulin significantly increased C3 secretion at both 18 and 48 h of incubation (P<0.05,P<0.001,respectively).Overall,the proportion of ASP to C3 remained constant,indicating no change in the ratio of C3 cleaved to generate ASP.This study demonstrated that 3T3-L1 adipocyte is a useful model for the evaluation of C3 secretion and ASP production by using a sensitive mouse-specific ELISA assay.The stimulation of ASP production with chylomicrons demonstrates a physiologically relevant response,and provides a strategy for further studies on ASP production and function.

  20. Berberine Activates AMPK and Inhibits 3T3-L1 Adipocyte Differentiation%小檗碱激活AMPK抑制3T3-L1脂肪细胞分化

    Institute of Scientific and Technical Information of China (English)

    王宁; 张娟; 建方方; 邓儒元; 唐红菊; 刘赟; 李凤英; 王晓; 周丽斌

    2012-01-01

    目的 探讨小檗碱对3T3-L1脂肪分化的作用是否与激活腺苷酸活化蛋白激酶(AMPK)有关.方法 在3T3-L脂肪细胞分化全程加入小檗碱,以油红O染色检测3T3-L1脂肪细胞胞浆中脂肪的堆积,实时定量PCR检测过氧化物酶体增殖物激活受体γ2(PPARγ2)、CCAAT增强子结合蛋白α(CEBPα)和AMPK的mRNA表达,以Western印迹法检测AMPK和乙酰辅酶A羧化酶(ACC)的磷酸化水平.结果 小檗碱剂量依赖性地抑制3T3-L1脂肪细胞分化,10 μmol/L小檗碱几乎完全抑制胞浆中脂肪的堆积.5 μmol/L小檗碱在脂肪细胞诱导分化1、3、5、7d后均显著降低CEBPα mRNA表达(P<0.05或P<0.01),诱导分化3、5、7d时显著降低PPARγ2的mRNA表达(P<0.05或P<0.01).AMPK的mRNA水平在分化过程中未受小檗碱的明显影响,而小檗碱明显增加其蛋白磷酸化水平,其下游靶基因ACC磷酸化水平也明显增加.结论 小檗碱抑制3T3-L1脂肪细胞的分化可能与其激活AMPK有关.%Objective To investigate whether the effect of berberine ( BBR) on 3T3-L1 adipocyte differentiation is related to AMP activated protein (AMPK) activation. Methods The accumulation of lipid in the cytoplasm of differentiated 3T3-L1 adipocytes was observed by oil red 0 staining. Realtime-PCR was used to detect the mRNA ezpiesBions of PPARγ2, CEBPα, and AMPK. The phosphorylation levels of AMPK and acetyl CoA carboxylase (ACC) were detected by Western blot. Result Berberine inhibited 3T3-L1 adipocyte differentiation in a dose-dependent manner. At the concentration of 10μmol/L berberine, the accumulation of lipid in the cytoplasm of adipocytes was almost inhibited. CEBPa mRNA expression was inhibited by 5μmol/L berberine after 1,3,5, and 7day induction differentiation (P<0.05 or P<0.01) and PPARry2 mRNA expression was decreased by berberine after induction differentiation of 3,5, and 7 day (P<0.05 or P< 0.01). There were no changes of AMPK mRNA level after 3T3-IA cells were incubated with

  1. The role of Akt on Arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    Zhi Xin WANG; Chun Sun JIANG; Lei LIU; Xiao Hui WANG; Hai Jing JIN; Qiao WU; Quan CHEN

    2005-01-01

    The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARγ and C/EBPα and disrupting the interaction between PPARγ and RXRα, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARγ. Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.

  2. Soy pinitol acts partly as an insulin sensitizer or insulin mediator in 3T3-L1 preadipocytes.

    Science.gov (United States)

    Do, Gyeong-Min; Choi, Myung-Sook; Kim, Hye-Jin; Woo, Myung-Nam; Lee, Mi-Kyung; Jeon, Seon-Min

    2008-02-01

    The blood glucose-lowering property of pinitol is mediated via the insulin signaling pathway. This study was carried out to evaluate the effects of soy pinitol on adipogenesis in a 3T3-L1 cell line; 3T3-L1 preadipocytes were treated with pinitol (0-1 mM) together with insulin for 9 days. The regulation of lipid metabolism was assessed by oil-red-O staining of intracellular lipids and real-time PCR of adipogenesis-related factors. The inhibition of cell proliferation was estimated by MTT assay. Pinitol treatment did not inhibit lipid accumulation, nor did it affect expression of adipogenesis-related factors, including ADD1, aP2 and FAS, in a dose-dependent manner. Expression of adiponectin, GLUT4, IRS, C/EBPalpha and PPARgamma mRNAs, however, increased in cells treated with 0.5 mM and/or 1 mM pinitol. Pinitol treatment did not affect the inhibition of cell growth and proliferation in a dose-dependent manner. Accordingly, we suggest that pinitol is nontoxic to this cell line, and that it enhances adipogenesis by acting as an insulin sensitizer or insulin mediator via the upregulation of adiponectin, GLUT4, IRS, C/EBPalpha and PPARgamma in 3T3-L1 preadipocytes.

  3. [8-hydroxy-dihydroberberine ameliorated insulin resistance induced by high FFA and high glucose in 3T3-L1 adipocytes].

    Science.gov (United States)

    Xu, Li-jun; Lu, Fu-er; Yi, Ping; Wang, Zeng-si; Wei, Shi-chao; Chen, Guang; Dong, Hui; Zou, Xin

    2009-11-01

    The purpose of the study is to investigate the effect of 8-hydroxy-dihydroberberine on insulin resistance induced by high free fatty acid (FFA) and high glucose in 3T3-L1 adipocytes and its possible molecular mechanism. Palmic acid or glucose in combination with insulin was used to induce insulin resistance in 3T3-L1 adipocytes. 8-Hydroxy-dihydroberberine and berberine were added to the cultured medium separately, which were considered as treated group and positive control group. The rate of glucose uptake was determined by 2-deoxy-[3H]-D-glucose method. The amount of glucose consumption in the medium was measured by glucose oxidase method. Cell growth and proliferation of 3T3-L1 adipocytes were detected with Cell Counting Kit-8 (CCK-8) assay. After incubated with palmic acid for 24 hours or glucose with insulin for 18 hours, the rate of glucose transport in 3T3-L1 adipocytes was inhibited by 67% and 58%, respectively. The amount of glucose consumption in 3T3-L1 adipose cells was decreased by 41% after cells were incubated with palmic acid for 24 h. However, the above changes were reversed by pretreatment with 8-hydroxy-dihydroberberine for 24 and 48 h. Significant difference existed between groups. Insulin resistance in 3T3-L1 adipocytes, which is induced by high FFA and high glucose, could be ameliorated by 8-hydroxy-dihydroberberine.

  4. Effects of Methylmercury exposure in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Theresa Vertigan

    2017-02-01

    Full Text Available Mercury-containing compounds are environmental pollutants that have become increasingly consequential in the Arctic regions of North America due to processes of climate change increasing their release and availability at northern latitudes. Currently, the form of mercury known to be most detrimental to human health is methylmercury, CH3Hg+, which is found in the environment and accumulates in the tissues of piscivores, including those consumed by Alaska Natives through subsistence gathering. Much is known about the neurotoxicity of methylmercury after exposure to high concentrations, but little is known about toxicity to other tissues and cell types, particularly for long-term exposure and the lower concentrations that would occur through fish consumption. Effects of methylmercury exposure on 3T3-L1 adipocytes in culture were assessed using assays for cytotoxicity and an ELISA assay for vascular endothelial growth factor (VEGF, a signaling molecule shown to be important for maintaining metabolic status in adipose tissue. Results showed that exposure to methylmercury leads to significant toxicity in adipocytes at exposures of 100 ng/mL during later stages of differentiation, but lower methylmercury concentrations produced little to no toxicity. Results also showed that VEGF secretion is elevated in adipocytes exposed to methylmercury after the process of differentiating into mature, fat-storing cells. These results provide a basis for further exploration into metabolic consequences of methylmercury exposure on specific cell types and cell models.

  5. Withaferin A induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes.

    Science.gov (United States)

    Park, Hea Jin; Rayalam, Srujana; Della-Fera, Mary Anne; Ambati, Suresh; Yang, Jeong-Yeh; Baile, Clifton A

    2008-01-01

    Withaferin A (WA), a highly oxygenated steroidal lactone that is found in the medicinal plant Withania somnifera (also called ashwagandha) has been reported to have anti-tumor, anti-angiogenesis, and pro-apoptotic activity. We investigated the effects of WA on viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. Pre- and post-confluent preadipocytes and mature adipocytes were treated with WA (1-25 microM) up to 24 hrs. Viability and apoptosis were measured by CellTiter-Blue Cell Viability Assay and single strand DNA ELISA Assay, respectively. WA decreased viability and induced apoptosis in all stages of cells. Induction of apoptosis by WA in mature adipocytes was mediated by increased ERK1/2 phosphorylation and altered Bax and Bcl2 protein expression. The effect of WA on adipogenesis was examined by AdipoRed Assay after treating with WA (0.1-1 microM) during the differentiation period. WA decreased lipid accumulation in a dose-dependent manner and decreased the expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha and adipocyte fatty acid binding protein. The effects on apoptosis and lipid accumulation were also confirmed with Hoechst staining and Oil Red O staining, respectively. These results show that WA acts on adipocytes to reduce cell viability and adipogenesis and also induce apoptosis.

  6. Rapamycin/sodium hyaluronate binding on nano-hydroxyapatite coated titanium surface improves MC3T3-E1 osteogenesis

    Science.gov (United States)

    Liu, Chao; Dong, Jian Yong; Yue, Lin Lin; Liu, Shao Hua; Wan, Yi; Liu, Hong; Tan, Wan Ye; Guo, Qian Qian; Zhang, Dong

    2017-01-01

    Endosseous titanium (Ti) implant failure due to poor biocompatibility of implant surface remains a major problem for osseointegration. Improving the topography of Ti surface may enhance osseointegration, however, the mechanism remains unknown. To investigate the effect of modified Ti surface on osteogenesis, we loaded rapamycin (RA) onto nano-hydroxyapatite (HAp) coated Ti surface which was acid-etched, alkali-heated and HAp coated sequentially. Sodium hyaluronate (SH) was employed as an intermediate layer for the load of RA, and a steady release rate of RA was maintained. Cell vitality of MC3T3-E1 was assessed by MTT. Osteogenesis of MC3T3-E1 on this modified Ti surface was evaluated by alkaline phosphatase (ALP) activity, mineralization and related osteogenesis genes osteocalcin (OCN), osteopontin (OPN), Collagen-I and Runx2. The result revealed that RA/SH-loaded nano-HAp Ti surface was innocent for cell vitality and even more beneficial for cell osteogenesis in vitro. Furthermore, osteogenesis of MC3T3-E1 showed significant association with the mammalian target of rapamycin (mTOR) phosphorylation by RA, which required further study about the mechanism. The approach to this modified Ti surface presented in this paper has high research value for the development of Ti-based implant. PMID:28182765

  7. Mammalian ste20-like kinase and SAV1 promote 3T3-L1 adipocyte differentiation by activation of PPARγ.

    Directory of Open Access Journals (Sweden)

    Byoung Hee Park

    Full Text Available The mammalian ste20 kinase (MST signaling pathway plays an important role in the regulation of apoptosis and cell cycle control. We sought to understand the role of MST2 kinase and Salvador homolog 1 (SAV1, a scaffolding protein that functions in the MST pathway, in adipocyte differentiation. MST2 and MST1 stimulated the binding of SAV1 to peroxisome proliferator-activated receptor γ (PPARγ, a transcription factor that plays a key role in adipogenesis. The interaction of endogenous SAV1 and PPARγ was detected in differentiating 3T3-L1 adipocytes. This binding required the kinase activity of MST2 and was mediated by the WW domains of SAV1 and the PPYY motif of PPARγ. Overexpression of MST2 and SAV1 increased PPARγ levels by stabilizing the protein, and the knockdown of SAV1 resulted in a decrease of endogenous PPARγ protein in 3T3-L1 adipocytes. During the differentiation of 3T3-L1 cells into adipocytes, MST2 and SAV1 expression began to increase at 2 days when PPARγ expression also begins to increase. MST2 and SAV1 significantly increased PPARγ transactivation, and SAV1 was shown to be required for the activation of PPARγ by rosiglitazone. Finally, differentiation of 3T3-L1 cells was augmented by MST2 and SAV1 expression and inhibited by knockdown of MST1/2 or SAV1. These results suggest that PPARγ activation by the MST signaling pathway may be a novel regulatory mechanism of adipogenesis.

  8. Effects of leptin on apoptosis and adipogenesis in 3T3-L1 adipocytes.

    Science.gov (United States)

    Ambati, Suresh; Kim, Hye-Kyeong; Yang, Jeong-Yeh; Lin, Ji; Della-Fera, Mary Anne; Baile, Clifton A

    2007-02-01

    Leptin has been demonstrated to induce adipose tissue apoptosis, which can contribute to the decrease of adiposity, after either central nervous system or peripheral administration. However, it is not known whether leptin acts only centrally to initiate a signal or can also act directly on adipocytes to induce apoptosis. The objective of this study was to determine the direct effect of leptin on adipocyte apoptosis and adipogenesis in vitro using 3T3-L1 cell lines. An ELISA for single stranded DNA, which is highly specific for apoptotic cells, was used to quantify apoptosis. Preconfluent preadipocytes treated with 10(-9), 10(-8), 10(-7), and 10(-6)M leptin showed inhibitory effects on cell viability, and similar observations were also found in maturing preadipocytes treated during day 0-2 and day 2-4 of maturation. After 48 h incubation with 10(-6)M leptin, LDH release was increased by 24.3% (p<0.05) in preconfluent preadipocytes and by 108.5% (p<0.01) in maturing preadipocytes. However, ssDNA analysis revealed no increased apoptosis in preconfluent or maturing preadipocytes or in mature adipocytes treated with leptin. Leptin significantly reduced lipid accumulation and GPDH activity in maturing preadipocytes, demonstrating an inhibitory effect of leptin on adipogenesis. These results indicate that leptin does not act directly to induce adipocyte apoptosis, but can act directly to inhibit maturation of preadipocytes.

  9. High-dose Resveratrol Inhibits Insulin Signaling Pathway in 3T3-L1 Adipocytes

    OpenAIRE

    Lee, Haemi; Kim, Jae-Woo

    2013-01-01

    Background Insulin resistance is a major factor in the development of metabolic syndrome and is associated with central obesity and glucose intolerance. Resveratrol, a polyphenol found in fruits, has been shown to improve metabolic conditions. Although it has been widely studied how resveratrol affects metabolism, little is known about how resveratrol regulates lipogenesis with insulin signaling in 3T3-L1 adipocytes. Methods: We treated differentiated 3T3-L1 adipocytes with resveratrol to obs...

  10. Oxidant-induced DNA damage and the reparation in NIH3T3 mouse fibroblasts by single cell gel electrophoresis%单细胞凝胶电泳技术检测小鼠成纤维细胞DNA的氧化损伤及修复

    Institute of Scientific and Technical Information of China (English)

    陈忻; 西田浩志; 小西徹也

    2007-01-01

    目的 观察小鼠成纤维细胞由过氧化氢(H2O2)引起的DNA损伤及其修复,并详细介绍单细胞凝胶电泳技术.方法 培养NIH3T3细胞,H2O2造成细胞氧化损伤,单细胞凝胶电泳技术(SCGE,Comet Assay)检测细胞DNA的损伤情况.结果 ①建立了H2O2致NIH3T3细胞DNA损伤的分级图谱;②H2O2引起的小鼠成纤维细胞DNA单链断裂与H2O2的浓度呈依赖性关系;③细胞在除去H2O2后15 min已出现明显修复,多数修复可在1 h内完成,但少数修复可能需要较长时间才能完成.结论 单细胞凝胶电泳技术是一种简便、敏感的检测DNA氧化损伤的方法.

  11. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay

    2012-01-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine...... by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low-sodium...

  12. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Kyoung [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Tae-Yoon [Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-gu, Daegu 705-717 (Korea, Republic of); Choi, Jong-Soon [Division of Life Science, Korea Basic Science Institute, 169-148 Gwahakro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Hong, Victor Sukbong [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Jinho, E-mail: jinho@gw.kmu.ac.kr [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Park, Jong-Wook, E-mail: j303nih@dsmc.or.kr [Department of Immunology, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of)

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  13. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guoyue, E-mail: yuanguoyue@hotmail.com [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Jia, Jue; Di, Liangliang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhou, Libin [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Li, Lianxi [Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, 600, Yishan Road, Shanghai 200233 (China); Yang, Ying [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Mao, Chaoming [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Chen, Mingdao, E-mail: mingdaochensh@yahoo.com [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  14. Enhanced effects of guggulsterone plus 1,25(OH)2D3 on 3T3-L1 adipocytes.

    Science.gov (United States)

    Rayalam, Srujana; Della-Fera, Mary Anne; Ambati, Suresh; Boyan, Barbara; Baile, Clifton A

    2007-12-21

    Guggulsterone (GS) and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] have been shown to influence adipogenesis in 3T3-L1 cells. We investigated the ability of GS and 1,25(OH)2D3, alone and in combination to inhibit adipogenesis and induce apoptosis in 3T3-L1 adipocytes. Maturing preadipocytes were treated with 1,25(OH)2D3 in combination with GS for 6 days during differentiation. GS and 1,25(OH)2D3 each inhibited lipid accumulation, but the combination potentiated the inhibition of lipid accumulation. Apoptosis was increased by 1,25(OH)2D3 while GS had no effect, but GS + 1,25(OH)2D3 increased apoptosis more than either compound alone. Furthermore, GS + 1,25(OH)2D3 caused a potentiated decrease in the expression of aP2 and farnesoid X receptor expression more than either compound alone. In addition, 1,25(OH)2D3 increased vitamin D receptor expression after 6 days, while GS had no effect. GS + 1,25(OH)2D3, however, caused a potentiated increase in the expression of VDR. These findings show that GS potentiates 1,25(OH)2D3's anti-adipogenic and pro-apoptotic effects in maturing 3T3-L1 preadipocytes.

  15. Anti-obesity effects of xanthohumol plus guggulsterone in 3T3-L1 adipocytes.

    Science.gov (United States)

    Rayalam, Srujana; Yang, Jeong-Yeh; Della-Fera, Mary Anne; Park, Hea Jin; Ambati, Suresh; Baile, Clifton A

    2009-08-01

    Xanthohumol (XN) and guggulsterone (GS) have each been shown to inhibit adipogenesis and induce apoptosis in adipocytes. In the present study effects of the combination of XN + GS on 3T3-L1 adipocyte apoptosis and adipogenesis were investigated. Mature adipocytes were treated with XN and GS individually and in combination. XN and GS individually decreased cell viability, but XN + GS caused an enhanced decrease in viability and potentiated induction of apoptosis. Likewise, XN + GS caused a potentiated increase in caspase-3/7 activation, whereas neither of the compounds showed any effect individually. In addition, western blot analysis revealed that XN + GS increased Bax expression and decreased Bcl-2 expression, whereas individual compounds did not show any significant effect. XN and GS both decreased lipid accumulation. Individually, XN at 1.5 microM and GS at 3.12 microM decreased lipid accumulation by 26 +/- 4.5% (P < .001) each, whereas XN1.5 + GS3.12 decreased lipid accumulation by 78.2 +/- 1.8% (P < .001). Moreover, expression of the adipocyte-specific proteins was down-regulated with XN1.5 + GS3.12, but no effect was observed with the individual compounds. Finally, XN + GS caused an enhanced stimulation of lipolysis. Thus, combination of XN and GS is more potent in exerting anti-obesity effects than additive effects of the individual compounds.

  16. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    He, Yonghan [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Li, Ying [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Shuocheng [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Perry, Ben [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Zhao, Tiantian [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4 (Canada); Wang, Yanwen, E-mail: yanwen.wang@nrc.ca [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Sun, Changhao, E-mail: sun2002changhao@yahoo.com [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China)

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  17. Inositol hexakisphosphate inhibits mineralization of MC3T3-E1 osteoblast cultures.

    Science.gov (United States)

    Addison, William N; McKee, Marc D

    2010-04-01

    Inositol hexakisphosphate (IP6, phytic acid) is an endogenous compound present in mammalian cells and tissues. Differentially phosphorylated forms of inositol are well-documented to have important roles in signal transduction, cell proliferation and differentiation, and IP6 in particular has been suggested to inhibit soft tissue calcification (specifically renal and vascular calcification) by binding extracellularly to calcium oxalate and calcium phosphate crystals. However, the effects of IP6 on bone mineralization are largely unknown. In this study, we used MC3T3-E1 osteoblast cultures to examine the effects of exogenous IP6 on osteoblast function and matrix mineralization. IP6 at physiologic concentrations caused a dose-dependent inhibition of mineralization without affecting cell viability, proliferation or collagen deposition. Osteoblast differentiation markers, including tissue-nonspecific alkaline phosphatase activity, bone sialoprotein and osteocalcin mRNA levels, were not adversely affected by IP6 treatment. On the other hand, IP6 markedly increased protein and mRNA levels of osteopontin, a potent inhibitor of crystal growth and matrix mineralization. Inositol alone (without phosphate), as well as inositol hexakis-sulphate, a compound with a high negative charge similar to IP6, had no effect on mineralization or osteopontin induction. Binding of IP6 to mineral crystals from the osteoblast cultures, as well as to synthetic hydroxyapatite crystals, was confirmed by a colorimetric assay for IP6. In summary, IP6 inhibits mineralization of osteoblast cultures by binding to growing crystals through negatively charged phosphate groups and by induction of inhibitory osteopontin expression. These data suggest that IP6 may regulate physiologic bone mineralization by directly acting extracellularly, and by serving as a specific signal at the cellular level for the regulation of osteopontin gene expression.

  18. The Differentiation-and Proliferation-Inhibitory Effects of Sporamin from Sweet Potato in 3T3-L1 Preadipocytes

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhi-dong; LI Peng-gao; MU Tai-hua

    2009-01-01

    The aim of this study was to investigate the effect of different concentrations of sporamin on the differentiation and proliferation of 3T3-L1 preadipocytes,providing the theoretical basis for the development of food to treat obesity and diabetes.The isolation and purification of sporamin from sweet potato species 55-2 were performed by ammonium sulphate precipitation in combination with ion-exchange and gel filtration chromatography.With berberine as a positive control,different concentrations of sporamin (0.000,0.125,0.025,0.250,0.500,and 1.000 mg mL-1) were used to treat 3T3-L1 preadipocytes.Intracellular fat accumulation and the degree of adipogenesis were quantified using Oil Red O staining and colorimetry.Preadipocytes differentiation was measured by 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT)spectrophotometric assay.Two sporamin proteins,which were separated into sporamin A (31 kD) and sporamin B (22 kD),could be purified by ion-exchange and gel filtration chromatography.After being treated by different concentrations of sporamin,the differentiation of 3T3-L1 preadipocytes was significantly inhibited,compared with the positive control.When the sporamin solution concentration was 0.500 mg mL-1,the accumulation of lipid droplets within the cells was significantly decreased and the optical density (OD) value of the solution from destained Oil Red O reached to 0.35,which was the lowest value (P < 0.05).The proliferation of 3T3-L1 preadipocytes was significantly inhibited by treating at higher sporamin concentrations.In addition,the inhibitory effect was more obvious with the prolonged treatment time (P< 0.05).The differentiation and proliferation of 3T3-L1 preadipocytes could be inhibited significantly by the addition of higher concentration sporamin.It was,therefore,suggested that the sporamin was potentially effective for weight loss.

  19. Riboflavin and photoproducts in MC3T3-E1 differentiation

    NARCIS (Netherlands)

    Chaves Neto, Antonio Hernandes; Yano, Claudia Lumy; Paredes-Gamero, Edgar Julian; Machado, Daisy; Justo, Giselle Zenker; Peppelenbosch, Maikel P.; Ferreira, Carmen Verissima

    2010-01-01

    Photoderivatives of riboflavin can modulate the proliferation and survival of cancer cells. In this work, we examined the influence of riboflavin and photoderivatives on osteoblast differentiation induced by ascorbic acid and beta-glycerophosphate. These compounds decreased the osteoblast proliferat

  20. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes.

    Science.gov (United States)

    Park, Hea Jin; Yang, Jeong-Yeh; Ambati, Suresh; Della-Fera, Mary Anne; Hausman, Dorothy B; Rayalam, Srujana; Baile, Clifton A

    2008-12-01

    The natural compounds genistein (G), quercetin (Q), and resveratrol (R) have been reported to each exhibit anti-adipogenic activities in adipocytes and antiproliferative and pro-apoptotic activities in several cell types. We studied the combined effects of G, Q, and R on adipogenesis and apoptosis in primary human adipocytes (HAs) and 3T3-L1 murine adipocyte (MAs). Combined treatment with 6.25 microM G, 12.5 microM Q, and 12.5 microM R during the 14-day differentiation period caused an enhanced inhibition of lipid accumulation in maturing HAs that was greater than the responses to individual compounds and to the calculated additive response. Glycerol 3-phosphate dehydrogenase activity, a marker of late adipocyte differentiation, was decreased markedly in HAs treated with the combination of G+Q+R. In addition, combined treatment with 50 microM G, 100 microM Q, and 100 microM R for 3 days decreased cell viability and induced apoptosis in early- and mid- phase maturing and lipid-filled mature HAs. In contrast, no compound alone induced apoptosis. Oil Red O stain and Hoechst 33342 stain were performed to confirm the effects on lipid accumulation and apoptosis, respectively. We also determined whether MAs responded to the combination treatment similarly to HAs. As in HAs, G+Q+R treatment decreased lipid accumulation in maturing MAs and increased apoptosis in pre- and lipid-filled mature MAs more than the responses to G, Q, and R when used separately. These results show that lower concentrations of combined treatments with several natural compounds may be useful for treatments for obesity through the suppression of adipogenesis and enhanced adipocyte apoptosis.

  1. File list: InP.Oth.20.AllAg.3T3_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.20.AllAg.3T3_fibroblasts mm9 Input control Others 3T3 fibroblasts SRX099261...,SRX099262 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.20.AllAg.3T3_fibroblasts.bed ...

  2. File list: ALL.Oth.50.AllAg.3T3_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.3T3_fibroblasts mm9 All antigens Others 3T3 fibroblasts SRX099255,...SRX105582,SRX099259,SRX099260,SRX099261,SRX099262 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.3T3_fibroblasts.bed ...

  3. File list: ALL.Oth.10.AllAg.3T3_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.10.AllAg.3T3_fibroblasts mm9 All antigens Others 3T3 fibroblasts SRX105582,...SRX099255,SRX099259,SRX099260,SRX099261,SRX099262 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.10.AllAg.3T3_fibroblasts.bed ...

  4. File list: His.EmF.10.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.EmF.10.AllAg.NIHSLASH3T3 mm9 Histone Embryonic fibroblast NIH/3T3 SRX890351,SRX...,SRX366570 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.EmF.10.AllAg.NIHSLASH3T3.bed ...

  5. File list: Oth.EmF.50.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.50.AllAg.NIHSLASH3T3 mm9 TFs and others Embryonic fibroblast NIH/3T3 SRX620...SRX262783 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.50.AllAg.NIHSLASH3T3.bed ...

  6. File list: His.EmF.05.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.EmF.05.AllAg.NIHSLASH3T3 mm9 Histone Embryonic fibroblast NIH/3T3 SRX366566,SRX...,SRX366570 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.EmF.05.AllAg.NIHSLASH3T3.bed ...

  7. File list: His.EmF.50.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.EmF.50.AllAg.NIHSLASH3T3 mm9 Histone Embryonic fibroblast NIH/3T3 SRX890349,SRX...,SRX366572 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.EmF.50.AllAg.NIHSLASH3T3.bed ...

  8. File list: Unc.EmF.10.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.EmF.10.AllAg.NIHSLASH3T3 mm9 Unclassified Embryonic fibroblast NIH/3T3 SRX62030...4,SRX620305,SRX620303,SRX620302 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.EmF.10.AllAg.NIHSLASH3T3.bed ...

  9. File list: DNS.EmF.50.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.EmF.50.AllAg.NIHSLASH3T3 mm9 DNase-seq Embryonic fibroblast NIH/3T3 SRX716376,S...RX188658,SRX191035,SRX1054382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.EmF.50.AllAg.NIHSLASH3T3.bed ...

  10. File list: Oth.EmF.10.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.10.AllAg.NIHSLASH3T3 mm9 TFs and others Embryonic fibroblast NIH/3T3 SRX262...SRX262783 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.10.AllAg.NIHSLASH3T3.bed ...

  11. File list: Unc.EmF.50.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.EmF.50.AllAg.NIHSLASH3T3 mm9 Unclassified Embryonic fibroblast NIH/3T3 SRX62030...4,SRX620302,SRX620303,SRX620305 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.EmF.50.AllAg.NIHSLASH3T3.bed ...

  12. File list: Oth.EmF.20.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.20.AllAg.NIHSLASH3T3 mm9 TFs and others Embryonic fibroblast NIH/3T3 SRX620...SRX262783 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.20.AllAg.NIHSLASH3T3.bed ...

  13. File list: Oth.EmF.05.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.05.AllAg.NIHSLASH3T3 mm9 TFs and others Embryonic fibroblast NIH/3T3 SRX366...SRX262781 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.05.AllAg.NIHSLASH3T3.bed ...

  14. File list: DNS.EmF.20.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.EmF.20.AllAg.NIHSLASH3T3 mm9 DNase-seq Embryonic fibroblast NIH/3T3 SRX188658,S...RX716376,SRX191035,SRX1054382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.EmF.20.AllAg.NIHSLASH3T3.bed ...

  15. File list: Unc.EmF.05.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.EmF.05.AllAg.NIHSLASH3T3 mm9 Unclassified Embryonic fibroblast NIH/3T3 SRX62030...3,SRX620305,SRX620302,SRX620304 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.EmF.05.AllAg.NIHSLASH3T3.bed ...

  16. File list: DNS.EmF.10.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.EmF.10.AllAg.NIHSLASH3T3 mm9 DNase-seq Embryonic fibroblast NIH/3T3 SRX188658,S...RX191035,SRX716376,SRX1054382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.EmF.10.AllAg.NIHSLASH3T3.bed ...

  17. File list: Unc.EmF.20.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.EmF.20.AllAg.NIHSLASH3T3 mm9 Unclassified Embryonic fibroblast NIH/3T3 SRX62030...2,SRX620303,SRX620304,SRX620305 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.EmF.20.AllAg.NIHSLASH3T3.bed ...

  18. Polyphosphates inhibit extracellular matrix mineralization in MC3T3-E1 osteoblast cultures.

    Science.gov (United States)

    Hoac, Betty; Kiffer-Moreira, Tina; Millán, José Luis; McKee, Marc D

    2013-04-01

    Studies on various compounds of inorganic phosphate, as well as on organic phosphate added by post-translational phosphorylation of proteins, all demonstrate a central role for phosphate in biomineralization processes. Inorganic polyphosphates are chains of orthophosphates linked by phosphoanhydride bonds that can be up to hundreds of orthophosphates in length. The role of polyphosphates in mammalian systems, where they are ubiquitous in cells, tissues and bodily fluids, and are at particularly high levels in osteoblasts, is not well understood. In cell-free systems, polyphosphates inhibit hydroxyapatite nucleation, crystal formation and growth, and solubility. In animal studies, polyphosphate injections inhibit induced ectopic calcification. While recent work has proposed an integrated view of polyphosphate function in bone, little experimental data for bone are available. Here we demonstrate in osteoblast cultures producing an abundant collagenous matrix that normally show robust mineralization, that two polyphosphates (PolyP5 and PolyP65, polyphosphates of 5 and 65 phosphate residues in length) are potent mineralization inhibitors. Twelve-day MC3T3-E1 osteoblast cultures with added ascorbic acid (for collagen matrix assembly) and β-glycerophosphate (a source of phosphate for mineralization) were treated with either PolyP5 or PolyP65. Von Kossa staining and calcium quantification revealed that mineralization was inhibited in a dose-dependent manner by both polyphosphates, with complete mineralization inhibition at 10μM. Cell proliferation and collagen assembly were unaffected by polyphosphate treatment, indicating that polyphosphate inhibition of mineralization results not from cell and matrix effects but from direct inhibition of mineralization. This was confirmed by showing that PolyP5 and PolyP65 bound to synthetic hydroxyapatite in a concentration-dependent manner. Tissue-nonspecific alkaline phosphatase (TNAP, ALPL) efficiently hydrolyzed the two PolyPs as

  19. Cytotoxic and adhesion-associated response of NIH-3T3 fibroblasts to COOH-functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Zhao, Peipei; Chen, Lusi; Shao, Han; Zhang, Yongnu; Sun, Yuqiao; Ke, Yu; Ramakrishna, Seeram; He, Liumin; Xue, Wei

    2016-02-29

    As novel, promising, man-made nanomaterials with extraordinary properties, carbon nanotubes have been attracting massive attention in regenerative medicine. However, published reports on their potential cytotoxic effects are not concordant and are even conflicting. In the current study, the cytotoxic effects of carboxyl-modified multi-walled carbon nanotubes (COOH-MWCNTs), as well as their influences on the cell adhesion of NIH-3T3 fibroblasts, were thoroughly investigated. Live/dead cell viability assay and cell counting kit-8 assay both indicated that the viability of the NIH-3T3 cells exposed to COOH-MWCNTs in the culture medium was dependent on the latter's concentration. Cell viability increased at COOH-MWCNT concentrations below 50 μg ml(-1) and then decreased with increasing concentration. Scanning electron microscopy and immunofluorescent staining of the NIH-3T3 cells revealed that the cells were well adherent to the substrate after exposure to the COOH-MWCNTs for 48 h. Western blot demonstrated that COOH-MWCNT exposure enhanced the expression of adhesion-associated proteins compared with normal cells, peaking at an intermediate concentration. Our study showed that the cytotoxicity of COOH-MWCNTs, as well as their effects on NIH-3T3 fibroblast adhesion, was dose dependent. Therefore, COOH-MWCNT concentrations in the cell culture medium should be considered in the biomedical application of COOH-MWCNTs.

  20. 催产素对3T3-L1脂肪细胞糖脂代谢的影响%Effect of oxytocin on glucose and lipid metabolism of 3T3-L1 adipocytes

    Institute of Scientific and Technical Information of China (English)

    朱天一; 钱唯韵; 汤冰倩; 胡浩; 俞淑琴; 孙文君; 袁国跃

    2014-01-01

    目的:观察催产素对3T3-L1脂肪细胞糖脂代谢的影响。方法3T3-L1前脂肪细胞体外培养,并诱导其分化成熟为脂肪细胞。研究催产素对脂肪细胞葡萄糖消耗量以及三酰甘油、游离脂肪酸和甘油的影响。采用实时荧光定量PCR法检测糖脂代谢相关基因GLUT-1、GLUT-4、ATGT、HSL的mRNA表达。结果与对照组比较,催产素20、50、100μg/mL组葡萄糖消耗量有所增加,且表现出剂量相关。催产素组较对照组的三酰甘油降低,而甘油和游离脂肪酸增高。催产素50μg/mL组中脂代谢相关基因HSL表达明显高于对照组,糖代谢相关基因GLUT-4 mRNA表达水平增加。结论催产素处理可减少3T3-L1细胞脂质合成、增加脂质分解作用,并可明显改善脂质积聚。%Objective To study the effect of oxytocin on glucose and lipid metabolism in 3T3-L1 adipocytes. Methods Preadipocytes from 3T3-L1 cell line were cultured in vitro and induced to differentiate to adipocytes. Mature adipocytes were treated with oxytocin. Glucose consumption, triglyceride, free fat acid, and glycerol levels were determined. The mRNA expression of differentiation marker genes such as GLUT-1, GLUT-4, ATGT, and HSL were evaluated by RT-PCR method. Results The glucose consumption in the oxytocin (20, 50, and 100μg/mL) groups were increased with dose-dependent relationship compared with control group. Triglyceride in the oxytocin group was lower than that in control group, while glycerol and free fatty acid decreased. There was significant increase of expression levels of lipid metabolism related gene HSL and sugar metabolism related gene GLUT-4 mRNA in the oxytocin (50μg/mL) group compared with control group. Conclusion Treatment of oxytocin may reduce 3T3-L1 cell lipid synthesis, increase lipid decomposition, and obviously improve lipid accumulation.

  1. Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis.

    Science.gov (United States)

    Ambati, Suresh; Yang, Jeong-Yeh; Rayalam, Srujana; Park, Hea Jin; Della-Fera, Mary Anne; Baile, Clifton A

    2009-04-01

    This paper describes effects of several sulfur-containing compounds from garlic on the cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. In both preadipocytes and mature adipocytes, 100 and 200 microM ajoene significantly decreased cell viability and increased apoptosis. The effect on apoptosis was further confirmed with Hoechst staining. In contrast, diallyl sulfide, diallyl disulfide, diallyl trisulfide, deoxyalliin, and allyl methyl sulfide had no significant effect on cell viability or apoptosis in either preadipocytes or mature adipocytes. In maturing preadipocytes ajoene significantly decreased lipid accumulation in a dose-dependent manner and these results were further confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining. There was no significant change in lipid accumulation in maturing preadipocytes treated with other garlic derivatives. Thus, despite the same source of origin, garlic, ajoene was the only one with potent effects on cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes.

  2. The mixed-lineage kinase DLK is a key regulator of 3T3-L1 adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Couture

    Full Text Available BACKGROUND: The mixed-lineage kinase (MLK family member DLK has been proposed to serve as a regulator of differentiation in various cell types; however, its role in adipogenesis has not been investigated. In this study, we used the 3T3-L1 preadipocyte cell line as a model to examine the function of DLK in adipocyte differentiation. METHODS AND FINDINGS: Immunoblot analyses and kinase assays performed on 3T3-L1 cells showed that the expression and activity of DLK substantially increase as differentiation occurs. Interestingly, DLK appears crucial for differentiation since its depletion by RNA interference impairs lipid accumulation as well as expression of the master regulators of adipogenesis C/EBPalpha and PPARgamma2 at both the mRNA and protein levels. In contrast, neither the expression nor the DNA binding activity of C/EBPbeta, an activator for C/EBPalpha and PPARgamma, is affected by DLK loss. CONCLUSIONS: Taken together, these results suggest that DLK is important for expression of mature adipocyte markers and that its action most likely takes place via regulation of C/EBPbeta transcriptional activity and/or initiation of C/EBPalpha and PPARgamma2 gene transcription.

  3. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis.

    Science.gov (United States)

    Yin, Lei; Yu, Kevin Shengyang; Lu, Kun; Yu, Xiaozhong

    2016-04-01

    Benzyl butyl phthalate (BBP) has been known to induce developmental and reproductive toxicity. However, its association with dysregulation of adipogenesis has been poorly investigated. The present study aimed to examine the effect of BBP on the adipogenesis, and to elucidate the underlying mechanisms using the 3T3-L1 cells. The capacity of BBP to promote adipogenesis was evaluated by multiple staining approaches combined with a High Content Cellomics analysis. The dynamic changes of adipogenic regulatory genes and proteins were examined, and the metabolite profile was identified using GC/MC based metabolomic analysis. The High Content analysis showed BBP in contrast with Bisphenol A (BPA), a known environmental obesogen, increased lipid droplet accumulation in a similar dose-dependent manner. However, the size of the lipid droplets in BBP-treated cells was significantly larger than those in cells treated with BPA. BBP significantly induced mRNA expression of transcriptional factors C/EBPα and PPARγ, their downstream genes, and numerous adipogenic proteins in a dose and time-dependent manner. Furthermore, GC/MC metabolomic analysis revealed that BBP exposure perturbed the metabolic profiles that are associated with glyceroneogenesis and fatty acid synthesis. Altogether, our current study clearly demonstrates that BBP promoted the differentiation of 3T3-L1 through the activation of the adipogenic pathway and metabolic disturbance.

  4. H-ras transformation sensitizes volume-activated anion channels and increases migratory activity of NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Schneider, Linda; Klausen, Thomas K; Stock, Christian;

    2008-01-01

    The expression of the H-ras oncogene increases the migratory activity of many cell types and thereby contributes to the metastatic behavior of tumor cells. Other studies point to an involvement of volume-activated anion channels (VRAC) in (tumor) cell migration. In this paper, we tested whether...... VRACs are required for the stimulation of cell migration upon expression of the H-ras oncogene. We compared VRAC activation and migration of wild-type and H-ras-transformed NIH3T3 fibroblasts by means of patch-clamp techniques and time-lapse video microscopy. Both cell types achieve the same degree...... of VRAC activation upon maximal stimulation, induced by reducing extracellular osmolarity from 300 to 190 mOsm/l. However, upon physiologically relevant reductions in extracellular osmolarity (275 mOsm/l), the level of VRAC activation is almost three times higher in H-ras-transformed compared to wild...

  5. Enhancement of ajoene-induced apoptosis by conjugated linoleic acid in 3T3-L1 adipocytes.

    Science.gov (United States)

    Yang, Jeong-Yeh; Della-Fera, Mary Anne; Hausman, Dorothy B; Baile, Clifton A

    2007-06-01

    Ajoene has been shown to induce apoptosis in 3T3-L1 adipocytes. In this report the effects on apoptosis of combinations of ajoene and trans-10, cis-12 conjugated linoleic acid (t10,c12CLA) in 3T3-L1 adipocytes were investigated. Although t10,c12CLA alone had no effect, ajoene plus t10,c12CLA reduced cell viability more than ajoene alone at 24 h (59.1 vs. 85.9% of control, respectively; p<0.05). Compared to treatment with t10,c12CLA, ajoene increased apoptosis 218% after 24 h (p<0.01), whereas ajoene plus t10,c12CLA increased apoptosis 122% over that caused by ajoene alone (p<0.01). Immunoblotting analysis also indicated that ajoene plus t10,c12CLA caused a greater increase in phosphorylation of c-Jun N-terminal kinase (JNK) and Bax expression and a greater release of mitochondrial proteins (cytochrome c, AIF) than additive responses to each compound alone. Ajoene plus t10,c12CLA also increased ROS production more than that resulting from ajoene treatment alone (264 vs 204% after 40 min, respectively; p<0.01). Furthermore, the antioxidant NAC prevented ROS generation and apoptosis by ajoene plus t10,c12CLA. Interestingly, the combination of ajoene and t10,c12CLA increased NF-kappaB activation and decreased the level of phosphorylated Akt more than each compound alone. Altogether, our observations indicate that t10,c12CLA potentiates the effect of ajoene on apoptosis in 3T3-L1 adipocytes.

  6. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  7. Effects of salvianolic acid-A on NIH/3T3 fibroblast proliferation, collagen synthesis and gene expression

    Science.gov (United States)

    Liu, Cheng-Hai; Hu, Yi-Yang; Wang, Xiao-Ling; Xu, Lie-Ming; Liu, Ping

    2000-01-01

    AIM: To investigate the mechanisms of salvianolic acid A (SA-A) against liver fibrosis in vitro. METHODS: NIH/3T3 fibroblasts were cultured routinely, and incubated with 10-4 mol/L-10-7 mol/L SA-A for 22 h. The cell viability was assayed by [3H]proline incorporation, cell proliferation by [3H]TdR incorporation, cell collagen synthetic rate was measured with [3H]proline impulse and collagenase digestion method. The total RNA was prepared from the control cells and the drug treated cells respectively, and α (1) I pro-collagen mRNA expression was semi-quantitatively analyzed with RT-PCR. RESULTS: 10-4 mol/L SA-A decreased cell viability and exerted some cytotoxiciy, while 10-5 mol/L-10-7 mol/L SA-A did not affect cell viability, but inhibited cell proliferation significantly, and 10-6 mol/L SA-A had the best effect on cell viability among these concentrations of drugs. 10-5 mol/L-10-6 mol/L SA-A inhibited intracellular collagen synthetic rate, but no significant influence on extracellular collagen secretion. Both 10-5 mol/L and 10-6 mol/L SA-A could decrease α (1) I pro-collagen mRNA expression remarkably. CONCLUSION: SA-A had potent action against liver fibrosis. It inhibited NIH/3T3 fibroblast proliferation, intracellular collagen synthetic rate and type I pro-collagen gene expression, which may be one of the main mechanisms of the drug. PMID:11819598

  8. 4-Hydroxyisoleucine ameliorates an insulin resistant-like state in 3T3-L1 adipocytes by regulating TACE/TIMP3 expression

    Directory of Open Access Journals (Sweden)

    Gao F

    2015-10-01

    Full Text Available Feng Gao,1 Wen Du,1,4 Mohammad Ishraq Zafar,1 Raja Adeel Shafqat,2 Liumeng Jian,1 Qin Cai,1 Furong Lu3 1Department of Endocrinology, Union Hospital, 2Department of Medicine, Tongji Hospital, 3Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 4Chengdu First People’s Hospital, Sichuan, People’s Republic of China Background: Obesity-associated insulin resistance (IR is highly correlated with soluble tumor necrosis factor-α (sTNF-α, which is released from transmembranous TNF-α by TNF-α converting enzyme (TACE. In vivo, TACE activity is suppressed by tissue inhibitor of metalloproteinase 3 (TIMP3. Agents that can interact with TACE/TIMP3 to improve obesity-related IR would be highly valuable. In the current study, we assessed whether (2S,3R,4S-4-hydroxyisoleucine (4-HIL could modulate TACE/TIMP3 and ameliorate an obesity-induced IR-like state in 3T3-L1 adipocytes. Materials and methods: 3T3-L1 adipocytes were incubated in the presence of 25 mM glucose and 0.6 nM insulin to induce an IR-like state, and were then treated with different concentrations of 4-HIL or 10 µM pioglitazone (positive control. The glucose uptake rate was determined using the 2-deoxy-[3H]-d-glucose method, and the levels of sTNF-α in the cell supernatant were determined using ELISA. The protein expression of TACE, TIMP3, and insulin signaling-related molecules was measured using western blotting. Results: Exposure to high glucose and insulin for 18 hours increased the levels of sTNF-α in the cell supernatant. The phosphorylation of insulin receptor substrate-1 (IRS-1 Ser307 and Akt Ser473 was increased, whereas the protein expression of IRS-1, Akt, and glucose transporter-4 was decreased. The insulin-induced glucose uptake was reduced by 67% in 3T3-L1 adipocytes, which indicated the presence of an IR-like state. The above indexes, which demonstrated the

  9. Differential effects of eicosapentaenoic acid and docosahexaenoic acid in promoting the differentiation of 3T3-L1 preadipocytes.

    Science.gov (United States)

    Murali, Ganesan; Desouza, Cyrus V; Clevenger, Michelle E; Ramalingam, Ramesh; Saraswathi, Viswanathan

    2014-01-01

    The objective of this study was to determine the effects of enrichment with n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the differentiation of 3T3-L1 preadipocytes. Enrichment with DHA but not EPA significantly increased the differentiation markers compared to control differentiated cells. DHA compared to EPA treatment led to a greater increase in adiponectin secretion and, conditioned media collected from DHA treated cells inhibited monocyte migration. Moreover, DHA treatment resulted in inhibition of pro-inflammatory signaling pathways. DHA treated cells predominantly accumulated DHA in phospholipids whereas EPA treatment led to accumulation of both EPA and its elongation product docosapentaenoic acid (DPA), an n-3 fatty acid. Of note, adding DPA to DHA inhibited DHA-induced differentiation. The differential effects of EPA and DHA on preadipocyte differentiation may be due, in part, to differences in their intracellular modification which could impact the type of n-3 fatty acids incorporated into the cells.

  10. Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro.

    Science.gov (United States)

    Takahashi, Tomihisa

    2011-04-01

    Runx2, a transcription factor, is essential for osteoblastic differentiation, bone formation, and maintenance. We examined the effect of Runx2 on transdifferentiation of 3T3-L1 preadipocytes into functional, mature osteoblasts. Forced expression of exogenous Runx2 using a retroviral gene-delivery system showed increases of alkaline phosphatase (ALP) activity and expression of the osteoblastic marker genes osteocalcin (OC), bone sialoprotein (BSP), and osterix (Osx), accompanied by low-level matrix mineralization. In contrast, adipocytic differentiation was completely blocked with downregulation of adipogenic transcription factors PPARγ2, C/EBPα, and C/EBPδ. Treatment of dexamethasone (Dex), a synthetic glucocorticoid, stimulated the formation of mineralized nodules in Runx2-overexpressing 3T3-L1 cells with increases of ALP, OC, BSP, and Osx expression. Here, we focused on a dual specific phosphatase, mitogen-activated protein kinase (MKP-1), since Dex significantly increased MKP-1 expression in Runx2-overexpressing 3T3-L1 cells. Forced expression of exogenous MKP-1 resulted in accumulation of robust matrix mineralization in parallel with induction of ALP activity and expression of OC, BSP, and Osx in Runx2-overexpressing 3T3-L1 cells. These results suggest that simultaneous overexpression of Runx2 and MKP-1 is effective for transdifferentiation of preadipocytes into fully differentiated bone-forming osteoblasts and provide a novel strategy for cell-based therapeutic applications requiring significant numbers of osteogenic cells to synthesize mineralized constructs for the treatment of large bone defects.

  11. Cytotoxicity of MEIC chemicals Nos. 11-30 in 3T3 mouse fibroblasts with and without microsomal activation

    DEFF Research Database (Denmark)

    Rasmussen, Eva

    1999-01-01

    The cytotoxicity of MEIC chemicals Nos, 11-30 was evaluated by determination of neutral red uptake in Balb/c 3T3 mouse fibroblasts with and without the addition of a microsomal activation mixture. The use of microsomes significantly decreased the cytotoxicity of malathion, 2,4-dichlorophenoxyacetic...... acid, propranolol, thioridazine, lithium sulfate, copper sulfate and thallium sulfate, whereas the cytotoxicity of 1,1,1-trichloroethylene, phenol, nicotine, and paraquat was significantly increased by use of the microsomal activation mixture. These cytotoxicity data are in line with observations...... in other studies on microsomal modulation of the cytotoxicity of the test substances. Moderate to good correlations were found between the cytotoxicity data and rodent lethality data, and the addition of microsomes slightly improved the in vitro/in vivo concordance. The evidence to support the relevance...

  12. Effects of Yerba maté, a Plant Extract Formulation (“YGD” and Resveratrol in 3T3-L1 Adipogenesis

    Directory of Open Access Journals (Sweden)

    Juliana C. Santos

    2014-10-01

    Full Text Available We aimed to evaluate the in vitro effects of yerba maté, YGD (a herbal preparation containing yerba maté, guarana and damiana, and resveratrol on adipogenesis. The anti-adipogenic effects of yerba mate, YGD, resveratrol and YGD + resveratrol and yerba mate + resveratrol combinations were evaluated in 3T3-L1 cells by Oil Red staining, cellular triglyceride content, and PCR quantitative array. The results demonstrated that all of the tested compounds inhibited adipogenesis. Yerba maté extract significantly down-regulated the expression of genes that play an important role in regulating adipogenesis, such as Adig, Axin, Cebpa, Fgf10, Lep, Lpl, and Pparγ2. In addition, these genes, YGD also repressed Bmp2, Ccnd1, Fasn, and Srebf1. Resveratrol also modulated the expression of Adig, Bmp2, Ccnd1, C/EBPα, Fasn, Fgf10, Lep, Lpl, and Pparγ2. Moreover, resveratrol repressed Cebpb, Cdk4, Fgf2, and Klf15. The yerba maté extract and YGD up-regulated the expression of genes involved in inhibiting adipogenesis, such as Dlk-1, Klf2, and Ucp1. Resveratrol also induced the expression of Klf2 and Ucp1. In addition resveratrol modulated the Ddit3, Foxo1, Sirt1, and Sirt2. The combined effects of these compounds on gene expression showed similar results observed from individual treatments. Our data indicates that the synergy between the compounds favors the inhibition of adipogenesis.

  13. [Research on construction of sheep lung adenomas virus pEGFP-C1/exJSRV-env and induction of malignant transformation in NIH3T3].

    Science.gov (United States)

    Zhang, Yu-Fei; Liu, Yue; Wang, Zhuan-Jia; Sun, Xiao-Lin; Liu, Shu-Ying

    2014-05-01

    This study aims to construct a eukaryotic expression system for envelope gene of Jaagsiekte sheep retrovirus, observes its localization in 293T cells, and investigates the potential in inducing malignant transformation of NIH3T3 cells. By RT-PCR, the full-length cDNA of envelope gene of Jaagsiekte sheep retrovirus (exJSRV-env) was amplified from the extract of naturally infected sheep lung. The clone of target gene was sub-cloned into eukaryotic expression system pEGFP-C1, and validated by PCR, restriction endonuclease, and sequencing. Bioinformatic analysis concerning biological function and cellular localiza tion of exJSRV-env was also performed. The recombinant clone of exJSRV-env was transfected into 293T cells and NIH3T3 cells by Lipofectamine LTX. The expression and celluar localization in 293T cells were validated by confocal microscopy. Soft agar colony formation assay was employed to test the anchorage-independent growth of NIH3T3. DNA sequencing and restriction enzyme digestion with Kpn I and Hind III indicated the correct construction of the recombinant plasmid, which was named pEGFP-C1/exJSRV-env. Amino acid sequence alignment of exJSRV-env with reference sequences found 85%-100% homogeneity. A YRNM motif was discovered at the cytoplasmic tail of envelope gene, which is exclusively found in exogenous viruses. Phylogenetic tree analysis showed that our clone of exJSRV-env clustered closely with pathogenic exogenous Jaagsiekte sheep retroviruses. Fluorescence microscopy indicated typical membrane localization of exJSRV-env protein. NIH3T3 cells transfected with exJSRV-env lost contact inhibition, and acquired colony forming ability in soft agar. This study indicated that envelope protein of Jaagsiekte sheep retrovirus can induce malignant transformation of mouse fibroblast cell NIH3T3. Discoveries of this study provide a basis for further structural and functional research on Jaagsiekte sheep retrovirus envelope protein.

  14. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    Science.gov (United States)

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size.

  15. Alliin, a Garlic (Allium sativum Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Saray Quintero-Fabián

    2013-01-01

    Full Text Available Garlic (Allium sativum L. has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide, a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS- stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  16. A mutation in signal peptide of rat resistin gene inhibits differentiation of 3T3-L1 preadipocytes

    Institute of Scientific and Technical Information of China (English)

    Xi-rong GUO; Hai-xia GONG; Yan-qin GAO; Li FEI; Yu-hui NI; Rong-hua CHEN

    2004-01-01

    AIM: To detect the resistin expression of white adipose tissue in diet-induced obese (DIO) versus diet-resistant (DR) rats, and to investigate the relationship of mutated resistin and 3T3-L1 preadipocytes differentiation. METHODS:RT-PCR and Western Blot were used to detect gene/protein expression. 3T3-L1 cells were cultured, transfected,and induced to differentiation using 0.5 mmol/L 3-isobutyl-1-methyxanthine (MIX), 1 mg/L insulin, and 1μmol/Ldexamethasone. Oil red O staining was applied to detect the degree of preadipocytes differentiation. RESULTS:Expression of resistin mRNA was upregulated in DIO rats and downregulated in DR rats. However, the expression levels varied greatly within the groups. Sequencing of the resistin genes from DIO and DR rats revealed a Leu9Val (C25G) missense mutation within the signal peptide in one DR rat. The mutant resistin inhibited preadipocyte differentiation. Local experiments and Western blotting with tagged resistin fusion proteins identified both mutant and wild type proteins in the cytoplasm and secreted into the culture medium. Computer predictions using the Proscan and Subloc programs revealed four putative phosphorylation sites and a possible leucine zipper motif within the rat resistin protein. CONCLUSION: Resistin-increased differentiation may be inhibited by the mutationcontaining precursor protein, or by the mutant non-secretory resistin isoform.

  17. 3T3-L1 preadipocytes exhibit heightened monocyte-chemoattractant protein-1 response to acute fatty acid exposure.

    Science.gov (United States)

    Dordevic, Aimee L; Konstantopoulos, Nicky; Cameron-Smith, David

    2014-01-01

    Preadipocytes contribute to the inflammatory responses within adipose tissue. Whilst fatty acids are known to elicit an inflammatory response within adipose tissue, the relative contribution of preadipocytes and mature adipocytes to this is yet to be determined. We aimed to examine the actions of common dietary fatty acids on the acute inflammatory and adipokine response in 3T3-L1 preadipocytes and differentiated mature adipocytes. Gene expression levels of key adipokines in 3T3-L1 preadipocytes and adipocytes were determined following incubation with palmitic acid, myristic acid or oleic acid and positive inflammatory control, lipopolysaccharide for 2 and 4 h. Inflammatory kinase signalling was assessed by analysis of nuclear factor-κB, p38-mitogen-activated protein kinase and c-jun amino-terminal kinase phosphorylation. Under basal conditions, intracellular monocyte chemoattractant protein-1 and interleukin-6 gene expression levels were increased in preadipocytes, whereas mature adipocytes expressed increased gene expression levels of leptin and adiponectin. Fatty acid exposure at 2 and 4 h increased both monocyte chemoattractant protein-1 and interleukin-6 gene expression levels in preadipocytes to greater levels than in mature adipocytes. There was an accompanying increase of inhibitor of κB-α degradation and nuclear factor-κB (p65) (Ser536) phosphorylation with fatty acid exposure in the preadipocytes only. The current study points to preadipocytes rather than the adipocytes as the contributors to both immune cell recruitment and inflammatory adipokine secretion with acute increases in fatty acids.

  18. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes.

    Science.gov (United States)

    Mitsuhashi, Kazuteru; Senmaru, Takafumi; Fukuda, Takuya; Yamazaki, Masahiro; Shinomiya, Katsuhiko; Ueno, Morio; Kinoshita, Shigeru; Kitawaki, Jo; Katsuyama, Masato; Tsujikawa, Muneo; Obayashi, Hiroshi; Nakamura, Naoto; Fukui, Michiaki

    2016-01-01

    Decreases in serum testosterone concentrations in aging men are associated with metabolic disorders. Testosterone has been reported to increase GLUT4-dependent glucose uptake in skeletal muscle cells and cardiomyocytes. However, studies on glucose uptake occurring in response to testosterone stimulation in adipocytes are currently not available. This study was designed to determine the effects of testosterone on glucose uptake in adipocytes. Glucose uptake was assessed with 2-[(3)H] deoxyglucose in 3T3-L1 adipocytes. GLUT4 translocation was evaluated in plasma membrane (PM) sheets and PM fractions by immunofluorescence and immunoblotting, respectively. Activation of GLUT4 translocation-related protein kinases, including Akt, AMPK, LKB1, CaMKI, CaMKII, and Cbl was followed by immunoblotting. Expression levels of androgen receptor (AR) mRNA and AR translocation to the PM were assessed by real-time RT-PCR and immunoblotting, respectively. The results showed that both high-dose (100 nM) testosterone and testosterone-BSA increased glucose uptake and GLUT4 translocation to the PM, independently of the intracellular AR. Testosterone and testosterone-BSA stimulated the phosphorylation of AMPK, LKB1, and CaMKII. The knockdown of LKB1 by siRNA attenuated testosterone- and testosterone-BSA-stimulated AMPK phosphorylation and glucose uptake. These results indicate that high-dose testosterone and testosterone-BSA increase GLUT4-dependent glucose uptake in 3T3-L1 adipocytes by inducing the LKB1/AMPK signaling pathway.

  19. A quantitative description of the extension and retraction of surface protrusions in spreading 3T3 mouse fibroblasts.

    Science.gov (United States)

    Albrecht-Buehler, G; Lancaster, R M

    1976-11-01

    We suggest a method of quantitating the motile actions of surface protrusions in spreading animal cells in culture. Its basis is the determination of the percentage of freshly plated cells which produce particle-free areas around them on a gold particle-coated glass cover slip within 50 min. Studying 3T3 cells with this assay, we found that the presence of Na+, K+, Cl-, and Mg++ or Ca++ in a neutral or slightly alkaline phosphate or bicarbonate buffered solution is sufficient to support the optimal particle removal by the cells for at least 50 min. Two metabolic inhibitors, 2,4-dinitrophenol and Na-azide, inhibit the particle removal. If D-glucose is added along with the inhibitors, particle removal can be restored, whereas the addition of three glucose analogues which are generally believed to be nonmetabolizable cannot restore the activity. Serum is not required for the mechanism(s) of the motile actions of surface protrusions in spreading 3T3 cells. However, it contains components which can neutralize the inhibitory actions of bovine serum albumin and several amino acids, particularly L-cystine or L-cystein and L-methionine. Furthermore, serum codetermines which of the major surface extension, filopodia, lamellipodia, or lobopodia, is predominantly active. We found three distinct classes of extracellular conditions under which the active surface projections are predominantly either lamellipodia, (sheetlike projections), lobopodia (blebs), or filopodia (microspikes). The quantitated dependencies on temperature, pH and the inhibition by cytochalasin B or the particle removal are very similar in all three cases. Preventing the cells from anchoring themselves for 15-20 min before plating in serum-free medium seems to stimulate particle removal threefold.

  20. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko.

    1990-01-24

    This invention concerns a module frame of solar cell and a solar cell module using this frame. In particular, it concerns a frame and a module useful for the CdS/CdTe or CdS/CuInSe {sub 2} based cell. In the existing solar cell module, sealant is packed in between the edges of a glass substrate, a resin layer and a back protective thin film, etc. and a grooved frame of U-shaped section. For the sealant, silicon based resin and butyl rubber based resin are used many times, but either resin has defects such as their overflow from the module structure. In order to solve these defects, this invention proposes to provide stair-shaped protrusions along the four sides of the bottom of the box frame (herein after called the lower frame) of the module and at the same time, provide a groove for pooling the sealant at the portion where such protrusion meets the side wall, furthermore to provide depressions for pooling the sealant at the upper edge inside the side wall of the lower frame or to punch holes at the corners of the bottom of the lower frame. 9 figs.

  1. File list: NoD.EmF.05.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.EmF.05.AllAg.NIHSLASH3T3 mm9 No description Embryonic fibroblast NIH/3T3 SRX475...500,SRX666257,SRX666258,SRX666259,SRX666260,SRX657828,SRX591250 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.EmF.05.AllAg.NIHSLASH3T3.bed ...

  2. File list: NoD.EmF.50.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.EmF.50.AllAg.NIHSLASH3T3 mm9 No description Embryonic fibroblast NIH/3T3 SRX666...257,SRX666258,SRX666259,SRX666260,SRX475500,SRX591250,SRX657828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.EmF.50.AllAg.NIHSLASH3T3.bed ...

  3. File list: NoD.EmF.20.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.EmF.20.AllAg.NIHSLASH3T3 mm9 No description Embryonic fibroblast NIH/3T3 SRX666...257,SRX666258,SRX666259,SRX666260,SRX475500,SRX591250,SRX657828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.EmF.20.AllAg.NIHSLASH3T3.bed ...

  4. File list: NoD.EmF.10.AllAg.NIHSLASH3T3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.EmF.10.AllAg.NIHSLASH3T3 mm9 No description Embryonic fibroblast NIH/3T3 SRX475...500,SRX666257,SRX666258,SRX666259,SRX666260,SRX591250,SRX657828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.EmF.10.AllAg.NIHSLASH3T3.bed ...

  5. Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes.

    Science.gov (United States)

    Park, Sun-Ji; Choe, Young-Geun; Kim, Jung-Hak; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-07-01

    Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells.

  6. Microsomal Triglyceride Transfer Protein (MTP Associates with Cytosolic Lipid Droplets in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Joseph D Love

    Full Text Available Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (MTP, a lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins, was expressed in adipose tissue of humans and mice. In addition, our studies suggested that MTP was associated with lipid droplets in both brown and white fat. Our observations led us to hypothesize that MTP plays a key role in lipid droplet formation and/or turnover. The objective of these studies was to gain insight into the function of MTP in adipocytes. Using molecular, biochemical, and morphologic approaches we have shown: 1 MTP protein levels increase nearly five-fold as 3T3-L1 cells differentiate into adipocytes. 2 As 3T3-L1 cells undergo differentiation, MTP moves from the juxtanuclear region of the cell to the surface of lipid droplets. MTP and perilipin 2, a major lipid droplet surface protein, are found on the same droplets; however, MTP does not co-localize with perilipin 2. 3 Inhibition of MTP activity has no effect on the movement of triglyceride out of the cell either as a lipid complex or via lipolysis. 4 MTP is found associated with lipid droplets within hepatocytes from human fatty livers, suggesting that association of MTP with lipid droplets is not restricted to adipocytes. In summary, our data demonstrate that MTP is a lipid droplet-associated protein. Its location on the surface of the droplet in adipocytes and hepatocytes, coupled with its known function as a lipid transfer protein and its increased expression during adipocyte differentiation suggest a role in lipid droplet biology.

  7. Comparative Culturing of 3T3 Swiss J2 Mouse Embryo Fibroblasts on Modified Chitosan Matrices.

    Science.gov (United States)

    Alekhin, A I; Gaenko, G P

    2016-07-01

    Comparative culturing of mouse embryo fibroblasts on chitosan matrices and culture plastic was carried out. During the first 2 h of culturing (lag phase), cell adhesion to chitosan and chitosan-gelatin matrices was 20-30% higher than adhesion to culture plastic (control). During the stationary phase, 80% cells adhered to chitosan matrices (vs. 60% in the control). Cell culturing on chitosan matrices was carried out without medium replacement with fresh portions. The cells remained viable within 5 days of culturing. Cell death phase was observed on day 6 of culturing on chitosan matrices: cell adhesion dropped to 50%. Culturing on culture plastic was carried out with daily medium replacement with a fresh portion. Cell death phase (50% decrease in the number of adherent cell) under these condition was observed on day 5. It seems that the observed effect was a result of contact interactions of cell integrins and chitosan ligands, modulation of transmembrane signal, eventually modifying the expression of cell genes. This effect can be required in regenerative medicine for production of primary cell culture.

  8. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element.

    Science.gov (United States)

    Nagasaki, Haruka; Yoshimura, Takeshi; Aoki, Naohito

    2012-04-13

    We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-κB) response element. The 3T3-L1 cells named 3T3-L1-NF-κB-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β induced GLuc secretion of 3T3-L1-NF-κB-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-κB-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-κB activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-κB-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  9. 8-Hydroxy-dihydroberberine ameliorated insulin resistance induced by high FFA and high glucose in 3T3-L1 adipocytes%8-羟基二氢小檗碱改善高FFA和高糖诱导的3T3-L1脂肪细胞胰岛素抵抗的作用

    Institute of Scientific and Technical Information of China (English)

    徐丽君; 陆付耳; 易屏; 王增四; 魏世超; 陈广; 董慧; 邹欣

    2009-01-01

    @@ 我国应用小檗碱临床治疗2型糖尿病已有30多年的经验,虽确有疗效,但其药效强度不够,始终不能成为治疗糖尿病的主导药物.小檗碱的口服吸收率太低是其降糖效果不佳的主要原因.%The purpose of the study is to investigate the effect of 8-hydroxy-dihydroberberine on insulin resistance induced by high free fatty acid (FFA) and high glucose in 3T3-L1 adipoeytes and its possible molecular mechanism. Palmic acid or glucose in combination with insulin was used to induce insulin resistance in 3T3-L1 adipocytes. 8-Hydroxy-dihydroberberine and berberine were added to the cultured medium separately, which were considered as treated group and positive control group. The rate of glucose uptake was determined by 2-deoxy-[~3H]-D-glucose method. The amount of glucose consumption in the medium was measured by glucose oxidase method. Cell growth and proliferation of 3T3-L1 adipocytes were detected with Cell Counting Kit-8 (CCK-8) assay. After incubated with palmic acid for 24 hours or glucose with insulin for 18 hours, the rate of glucose transport in 3T3-L1 adipocytes was inhibited by 67% and 58%, respectively. The amount of glucose consumption in 3T3-L1 adipose cells was decreased by 41% after cells were incubated with palmic acid for 24 h. However, the above changes were reversed by pretreatment with 8-hydroxy-dihydroberberine for 24 and 48 h. Significant difference existed between groups. Insulin resistance in 3T3-L1 adipocytes, which is induced by high FFA and high glucose, could be ameliorated by 8-hydroxy-dihydroberberine.

  10. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability

    Science.gov (United States)

    Sabater, David; Arriarán, Sofía; Romero, María Del Mar; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2014-01-01

    White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.

  11. Lactobacillus plantarum LG42 Isolated from Gajami Sik-Hae Inhibits Adipogenesis in 3T3-L1 Adipocyte

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Park

    2013-01-01

    Full Text Available We investigated whether lactic acid bacteria isolated from gajami sik-hae (GLAB are capable of reducing the intracellular lipid accumulation by downregulating the expression of adipogenesis-related genes in differentiated 3T3-L1 cells. The GLAB, Lactobacillus plantarum LG42, significantly decreased the intracellular triglyceride storage and the glycerol-3-phosphate dehydrogenase (GPDH activity in a dose-dependent manner. mRNA expression of transcription factors like peroxisome proliferator-activated receptor (PPAR γ and CCAAT/enhancer-binding protein (C/EBP α involved in adipogenesis was markedly decreased by the GLAB treatment. Moreover, the GLAB also decreased the expression level of adipogenic markers like adipocyte fatty acid binding protein (aP2, leptin, GPDH, and fatty acid translocase (CD36 significantly. These results suggest that the GLAB inhibits lipid accumulation in the differentiated adipocyte through downregulating the expression of adipogenic transcription factors and other specific genes involved in lipid metabolism.

  12. Effect of pycnogenol on glucose transport in mature 3T3-L1 adipocytes.

    Science.gov (United States)

    Lee, Hee-Hyun; Kim, Kui-Jin; Lee, Ok-Hwan; Lee, Boo-Yong

    2010-08-01

    Pycnogenol, a procyanidins-enriched extract of Pinus maritima bark, possesses antidiabetic properties, which improves the altered parameters of glucose metabolism that are associated with type 2 diabetes mellitus (T2DM). Since the insulin-stimulated antidiabetic activities of natural bioactive compounds are mediated by GLUT4 via the phosphatidylinositol-3-kinase (PI3K) and/or p38 mitogen activated protein kinase (p38-MAPK) pathway, the effects of pycnogenol were examined on the molecular mechanism of glucose uptake by the glucose transport system. 3T3-L1 adipocytes were treated with various concentrations of pycnogenol, and glucose uptake was examined using a non-radioisotope enzymatic assay and by molecular events associated with the glucose transport system using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results show that pycnogenol increased glucose uptake in fully differentiated 3T3-L1 adipocytes and increased the relative abundance of both GLUT4 and Akt mRNAs through the PI3K pathway in a dose dependent manner. Furthermore, pycnogenol restored the PI3K antagonist-induced inhibition of glucose uptake in the presence of wartmannin, an inhibitor of the PI3K. Overall, these results indicate that pycnogenol may stimulate glucose uptake via the PI3K dependent tyrosine kinase pathways involving Akt. Further the results suggest that pycnogenol might be useful in maintaining blood glucose control.

  13. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway.

    Science.gov (United States)

    Huang, Cheng; Zhang, Yuebo; Gong, Zhenwei; Sheng, Xiaoyan; Li, Zongmeng; Zhang, Wei; Qin, Ying

    2006-09-22

    Berberine (BBR), a compound purified from Cortidis rhizoma, reduces serum cholesterol, triglycerides, and LDL-cholesterol of hypercholesterolemic patients and high fat diet fed animals, and increases hepatic LDLR mRNA and protein levels through a post-transcriptional mechanism. BBR also enhances the hypoglycemic action of insulin in diabetic animal models. Here, we show that BBR inhibits the differentiation of 3T3-L1 preadipocytes induced by DM and suppresses the mitotic clonal expansion of 3T3-L1 preadipocytes in a time- and dose-dependent manner. Gene expression analysis and Western blot analysis reveal that the BBR inhibits the mRNA and protein levels of adipogenesis related transcription factors PPARgamma and C/EBPalpha and their upstream regulator, C/EBPbeta. Reporter gene assays demonstrate that the full-length PPARgamma and alpha transcription activities are inhibited by BBR. Using real-time PCR, we have also found that the PPAR target genes that are involved in adipocyte differentiation, such as aP2, CD36, ACO, LPL, and other adipocyte markers, are suppressed by BBR. These studies suggest that BBR works on multiple molecular targets as an inhibitor of PPARgamma and alpha, and is a potential weight reducing, hypolipidemic, and hypoglycemic drug.

  14. Regulation of myosin light chain kinase during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Shelly Woody

    Full Text Available Myosin II (MyoII is required for insulin-responsive glucose transporter 4 (GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC of MyoIIA via myosin light chain kinase (MLCK. The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy ethane-N,N,N',N'-tetra acetic acid, (BAPTA (in the presence of insulin impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

  15. The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes.

    Science.gov (United States)

    Pavlikova, Nela; Weiszenstein, Martin; Pala, Jan; Halada, Petr; Seda, Ondrej; Elkalaf, Moustafa; Trnka, Jan; Kovar, Jan; Polak, Jan

    2015-12-01

    Experiments using cultured primary cells or cell lines are a routine in vitro approach used across multiple biological disciplines, However, the structural and functional influences of various cultureware materials on cultured cells is not clearly understood. Surface treatments of cultureware have proven to have profound effects on cell viability and proliferation. In this study, we investigated the impact of polystyrene and fluorocarbon cultureware dishes on the proteomic profile of differentiated 3T3-L1 preadipocytes. After expansion and differentiation of cells on appropriate cultureware dishes, cell lysates were separated using two-dimensional gel electrophoresis and proteins were visualized with Coomassie blue staining. Spots with the highest differential expression between the two culture conditions were subsequently analyzed using matrix-assisted laser desorption/ionization mass spectrometry and the identified proteins were subjected to pathway analysis. We observed that 43% of all spots were differentially expressed depending on the cultureware. Pathway analysis revealed that glucose metabolism, mitochondrial structure and cell differentiation, represented by 14-3-3 protein-mediated signaling and the mitochondrial inner membrane organizing system (MINOS), were significantly affected by cultureware material. These results indicate that cultureware material can have a profound effect on key adipocyte functional pathways. These effects modifications of the cells should be reflected in the design of in vitro experiments and interpretation of their results.

  16. An analysis on fluorine-induced autophagy and apoptosis of MC3T3-E1 and their interaction%氟诱导成骨细胞MC3T3-E1自噬与凋亡及其相互作用分析

    Institute of Scientific and Technical Information of China (English)

    郭晓东; 杨茂伟; 梁单; 郭宝磊; 杨蕾; 曹军军

    2012-01-01

    目的 主要研究氟诱导成骨细胞MC3T3-E1发生自噬、凋亡及两者之间的关系.方法 利用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)比色法检测氟对成骨细胞MC3T3-E1的增殖活性影响,探寻氟引起凋亡的浓度;流式细胞术检测细胞凋亡;western blot免疫印记技术检测凋亡相蛋白;利用western blot免疫印记技术检测Beclin 1蛋白及LC3蛋白表达水平及变化.结果 氟能明显抑制成骨细胞MC3T3-E1增殖,诱发细胞凋亡,其抑制作用呈时间、剂量依赖性;氟在促进细胞凋亡的同时也促进自噬产生;3-甲基腺素(3-MA)抑制自噬后,氟诱导的凋亡进一步增多.结论 氟明显抑制MC3T3-E1细胞增殖,同时诱发细胞凋亡和自噬;氟诱导的自噬部分拮抗其诱导的凋亡.%Objectives; To explore Fluorine - induced apoptosis and autophagy of MC3T3 - E1 cells and the relationship between them. Methods To explore the concentration of fluorine that caused cell apoptosis the influence of fluorine on proliferative vitality of MC3T3 - E1 was assessed by MTT assay. The apoptosis of MC3T3 - E1 was delected by flow cytometry;The expression of apoptosic protein was determined by Western Blot ;The LC3 and the Beclinl protein level and variation were analyzed by west-em blot assay. Results Fluorine inhibited the proliferation of MC3T3 - E1