Suhasini, T.; Jamalaiah, B. C.; Sasikala, T.; Reddy, G. V. Lokeswara; Moorthy, L. Rama
2012-03-01
This paper reports the visible luminescence properties of 1D 2 state of Tm 3 + -doped lead borate titanate aluminumfluoride (LBTAFTm) glasses. The absorption and luminescence was analyzed within the frame work of Judd-Ofelt model. The reliability of J-O intensity parameters obtained from the experimental oscillator strengths have satisfactorily been correlated with the calculated oscillator strengths with small r.m.s deviation of ± 0.12 × 10 -6 by the least square fit analysis. Upon 359 nm excitation, the luminescence spectra show only one emission band at 458 nm (blue) corresponding to the 1D 2 → 3 F 4 transition in the spectral region 400-500 nm. No luminescence quenching has been observed with the increase of Tm 3 + concentration. The decay profiles of the 1D 2 level have shown single-exponential nature for all the concentrations and the decay times were found to decrease with the increase of concentration. The stimulated emission cross-section ( σe) for the observed emission transition has also been computed. The large quantum efficiency (η) of the 1D 2 level suggests the utility of LBTAFTm glass as a potential host for optical device applications at 458 nm emission wavelength.
Lim, Edward C
1974-01-01
Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab
Lim, Edward C
1982-01-01
Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho
Lim, Edward C
2013-01-01
Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo
Lim, Edward C
2013-01-01
Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic
Lee, H.K.; Song, M.H.; Kang, M.; Lee, J.T.; Kong, K.A.; Choi, S.J.; Lee, K.Y.; Venselaar, H.; Vriend, G.; Lee, W.S.; Park, H.J.; Kwon, T.K.; Bok, J.; Kim, U.K.
2009-01-01
X-linked deafness type 3 (DFN3), the most prevalent X-linked form of hereditary deafness, is caused by mutations in the POU3F4 locus, which encodes a member of the POU family of transcription factors. Despite numerous reports on clinical evaluations and genetic analyses describing novel POU3F4 mutat
Excited state Intramolecular Proton Transfer in Anthralin
Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens
1998-01-01
Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
The mechanisms of Excited states in enzymes
Petersen, Frederic Nicolas Rønne; Bohr, Henrik
2010-01-01
Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....
Excited states rotational effects on the behavior of excited molecules
Lim, Edward C
2013-01-01
Excited States, Volume 7 is a collection of papers that discusses the excited states of molecules. The first paper reviews the rotational involvement in intra-molecular in vibrational redistribution. This paper analyzes the vibrational Hamiltonian as to its efficacy in detecting the manifestations of intra-molecular state-mixing in time-resolved and time-averaged spectroscopic measurements. The next paper examines the temporal behavior of intra-molecular vibration-rotation energy transfer (IVRET) and the effects of IVRET on collision, reaction, and the decomposition processes. This paper also
Local pair natural orbitals for excited states
Helmich, Benjamin; Hättig, Christof
2011-12-01
We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10-8-10-7, corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.
Local pair natural orbitals for excited states.
Helmich, Benjamin; Hättig, Christof
2011-12-07
We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10(-8)-10(-7), corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.
Excited States in Staggered Meson Propagators
Bernard, C; De Tar, C; Gottlieb, Steven; Gregory, E B; Heller, U M; Osborn, J; Sugar, R; Toussaint, D; Louis, St; Gottlieb, Steven
2003-01-01
We report on preliminary results from multi-particle fits to meson propagators with three flavors of light dynamical quarks. We are able to measure excited states in propagators with pion quantum numbers, which we interpret as the pion 2S state, and is evidence of locality of the action. In the a_0 (0^{++}) propagators we find evidence for excited states which are probably the expected decay channels, pi+eta and K+Kbar.
Hydrogen Bonds in Excited State Proton Transfer
Horke, D. A.; Watts, H. M.; Smith, A. D.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R. T.; Minns, R. S.
2016-10-01
Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.
Rearrangements in ground and excited states
de Mayo, Paul
1980-01-01
Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;
Pou3f4-mediated regulation of ephrin-b2 controls temporal bone development in the mouse.
Steven Raft
Full Text Available The temporal bone encases conductive and sensorineural elements of the ear. Mutations of POU3F4 are associated with unique temporal bone abnormalities and X-linked mixed deafness (DFNX2/DFN3. However, the target genes and developmental processes controlled by POU3F4 transcription factor activity have remained largely uncharacterized. Ephrin-B2 (Efnb2 is a signaling molecule with well-documented effects on cell adhesion, proliferation, and migration. Our analyses of targeted mouse mutants revealed that Efnb2 loss-of-function phenocopies temporal bone abnormalities of Pou3f4 hemizygous null neonates: qualitatively identical malformations of the stapes, styloid process, internal auditory canal, and cochlear capsule were present in both mutants. Using failed/insufficient separation of the stapes and styloid process as a quantitative trait, we found that single gene Efnb2 loss-of-function and compound Pou3f4/Efnb2 loss-of-function caused a more severe phenotype than single gene Pou3f4 loss-of-function. Pou3f4 and Efnb2 gene expression domains overlapped at the site of impending stapes-styloid process separation and at subcapsular mesenchyme surrounding the cochlea; at both these sites, Efnb2 expression was attenuated in Pou3f4 hemizygous null mutants relative to control. Results of immunoprecipitation experiments using chromatin isolated from nascent middle ear mesenchyme supported the hypothesis of a physical association between Pou3f4 and specific non-coding sequence of Efnb2. We propose that Efnb2 is a target of Pou3f4 transcription factor activity and an effector of mesenchymal patterning during temporal bone development.
On the nature of an excited state
Blossier, Benoit
2016-01-01
In many lattice simulations with dynamical quarks, radial or orbital excitations of hadrons lie near multihadron thresholds: it makes the extraction of excited states properties more challenging and can introduce some systematics difficult to estimate without an explicit computation of correlators using interpolating fields strongly coupled to multihadronic states. In a recent study of the strong decay of the first radial excitation of the $B^*$ meson, this issue has been investigated and we have clues that a diquark interpolating field $\\bar{b} \\gamma^i q$ is very weakly coupled to a $B \\pi$ $P$-wave state while the situation is quite different if we consider an interpolating field of the kind $\\bar{b} \
Nodal Variational Principle for Excited States
Zahariev, Federico; Levy, Mel
2016-01-01
It is proven that the exact excited-state wavefunction and energy may be obtained by minimizing the energy expectation value of a trial wave function that is constrained only to have the correct nodes of the state of interest. This excited-state nodal minimum principle has the advantage that it requires neither minimization with the con- straint of wavefunction orthogonality to all lower eigenstates nor the antisymmetry of the trial wavefunctions. It is also found that the minimization over the entire space can be partitioned into several in- terconnected minimizations within the individual nodal regions, and the exact excited-state energy may be obtained by a minimization in just one or several of these nodal regions. For the proofs of the the- orem, it is observed that the many-electron eigenfunction, restricted to a nodal region, is equivalent to a ground state wavefunction of one electron in a higher dimensional space; and an explicit excited-state energy variational expression is obtained by generalizing...
Electronic Excited States of Tungsten(0) Arylisocyanides
2015-01-01
W(CNAryl)_6 complexes containing 2,6-diisopropylphenyl isocyanide (CNdipp) are powerful photoreductants with strongly emissive long-lived excited states. These properties are enhanced upon appending another aryl ring, e.g., W(CNdippPh^(OMe)_2)_6; CNdippPh^(OMe)_2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide (Sattler et al. J. Am. Chem. Soc. 2015, 137, 1198−1205). Electronic transitions and low-lying excited states of these complexes were investigated by time-dependent density fun...
Computing Correct Truncated Excited State Wavefunctions
Bacalis, N C; Zang, J; Karaoulanis, D
2016-01-01
We demonstrate that, if a truncated expansion of a wave function is small, then the standard excited states computational method, of optimizing one root of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.
Paramagnetic excited vortex states in superconductors
Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.
2016-06-01
We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.
Excited singlet states of "hairpin" polyenes
Froelich, Wolfgang; Dewey, Harry J.; Deger, Hans; Dick, Bernhard; Klingensmith, Kenneth A.; Puettmann, Wilhelm; Vogel, Emanuel; Hohlneicher, Georg; Michl, Josef
1983-01-01
The synthesis and UV-visible, polarized-fluorescence and MCD spectra of 6 U-shaped hairpin polyenes (e.g., I) are reported. Qual. arguments and results of p-electron calcns. permit the identification of 4 excited singlet states and their assignment to mixts. of singly and doubly excited configurations. The hairpin polyenes represent a link between the all-trans-polyenes on the 1 hand and the annulenes and acenes on the other; they have the topol. of the former and a geometry near that of the ...
STIRAP on helium: Excitation to Rydberg states
Yuan, Deqian
Research in optically induced transitions between dierent atomic levels has a long history. For transitions between states driven by a coherent optical eld, the theoretical eciency could be ideally high as 100% but there could be many factors preventing this. In the three state helium atom excitation process, i.e. 23S→33P→nL , the stimulated emission from intermediate state makes it hard to achieve ecient population transfer to the nal state through an intuitive excitation order. One technique to achieve a higher eciency is Stimulated Raman Adiabatic Passage (STIRAP) which is being studied and under research in our lab. Unlike traditional three level excitation processes, STIRAP actually uses a counter intuitive pulsed laser beams timing arrangement. The excitation objects are metastable helium atoms traveling in a vacuum system with a longitudinal velocity of ~ 1070 m/s. We are using a 389 nm UV laser to connect the 23S and the 33P state and a frequency tunable ~790 nm IR laser to connect the 33P state and the dierent Rydberg states. A third 1083 nm wavelength laser beam drives the 23S → 23P transition to transversely separate the residual metastable atoms and the Rydberg atoms for eciency measurements. The data is taken by a stainless steel detector in the vacuum system. As the Rydberg atoms will get ionized by blackbody radiation under room temperature, we can utilize this for their detection. An ion detector sitting on the eld plate is capable to collect the ion signals of the Rydberg atoms for detection. So far the whole system has not been ready for data collection and measurement, so here we are using data and results from previous theses for discussions. The highest transition frequency that has ever been achieved in our lab is around 70% after corrections.
Excited-state relaxation of some aminoquinolines
2006-01-01
Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.
Rearrangements in ground and excited states
de Mayo, Paul
1980-01-01
Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.
Identification of excited states in conjugated polymers
Hartwell, L J
2003-01-01
This thesis reports quasi steady state photoinduced absorption measurements from three conjugated polymers: polypyridine (PPy), polyfluorene (PFO) and the emeraldine base (EB) form of polyaniline. The aim of these experiments was to determine the nature of the photoexcited states existing in these materials in the millisecond time domain, as this has important consequences for the operation of real devices manufactured using these materials. The results from the photoinduced absorption experiments are closely compared with published results from pulse radiolysis experiments. In all cases there is very good correspondence between the two data sets, which has enabled the photoexcited states to be assigned with a high degree of confidence. Quasi steady-state photoinduced absorption involves the measurement of the change in absorption of a material in response to optical excitation with a laser beam. The changes in absorption are small, so a instrument was developed and optimised for each different sample. Lock-i...
Holographic Construction of Excited CFT States
Christodoulou, Ariana
2016-01-01
We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on $R \\times S^1$ or on $R^{1,1}$. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.
PROPENSITY RULES IN Ar—IMPACT EXCITATION OF H— IN DOUBLY EXCITED STATES
NaotoKoyama; MotoiMaeda; 等
1990-01-01
We have theoretically investigated excitation processes of H- ions in the doubly excited states by Ar-impact,using the impulse approximation and employing the hyperspherical wavefunctions.We have found that the H- ion in the double excited states tends to conserve its initial states as a “floppy linear triatomic molecule” during excitation processes except for the restriction arising from the Pauli exclusion principle for two atomic electrons.
Excited states of muonium in atomic hydrogen
V S Kulhar
2006-06-01
Muonium formation in excited states in muon-hydrogen charge-exchange collision is investigated using a method developed in a previous paper. Differential cross-section results are found to resemble positronium formation cross-section results of positron-hydrogen charge-exchange problem. Forward differential and integrated cross-sections are computed for muon energy of 2 keV and higher. Total muonium formation cross-sections are computed using Jackson and Schiff scaling rules. Muonium formation cross-section results obtained from proton-hydrogen charge-exchange cross-section results, using velocity scaling are compared with the results of the present calculation.
The polaron: Ground state, excited states, and far from equilibrium
Trugman, S.A. [Los Alamos National Lab., NM (United States). Theory Div.; Bonca, J. [Univ. of Ljubljana (Slovenia)]|[Jozef Stefan Inst., Ljubljana (Slovenia)
1998-12-01
The authors describe a variational approach for solving the Holstein polaron model with dynamical quantum phonons on an infinite lattice. The method is simple, fast, extremely accurate, and gives ground and excited state energies and wavefunctions at any momentum k. The method can also be used to calculate coherent quantum dynamics for inelastic tunneling and for strongly driven polarons far from equilibrium.
Relaxed excited states of color centers
Baldacchini, G.
1992-12-31
Color centers in alkali halides display an optical cycle which has been, and it is still today, a model case for similar processes in other materials. Moreover, the luminescence of some color centers is so efficient that it has been used in laser applications. However, the quantum state from which the emission of light is originated, the so called relaxed excited state (RES), is not very well known. Indeed, in spite of the wealth of experimental results collected and of the theoretical approaches attempted, an exact description of the RES is still missing. This paper, confined mainly to F centers which are the simplest point defects in crystals, contains a review of the main experimental evidences which has some light on the nature of the RES, with special emphasis on the latest magneto-optical experiments. Also, a description of the theoretical models is attempted whenever required by a particular argument.
How much double excitation character do the lowest excited states of linear polyenes have?
Starcke, Jan Hendrik; Wormit, Michael; Schirmer, Jochen; Dreuw, Andreas
2006-10-01
Doubly excited states play important roles in the low-energy region of the optical spectra of polyenes and their investigation has been subject of theoretical and experimental studies for more than 30 years now and still is in the focus of ongoing research. In this work, we address the question why doubly excited states play a role in the low-energy region of the optical spectrum of molecular systems at all, since from a naive point of view one would expect their excitation energy approximately twice as large as the one of the corresponding single excitation. Furthermore, we show that extended-ADC(2) is well suited for the balanced calculation of the low-lying excited 21Ag-, 11Bu- and 11Bu+ states of long all- trans polyenes, which are known to possess substantial double excitation character. A careful re-investigation of the performance of TDDFT calculations for these states reveals that the previously reported good performance for the 21Ag- state relies heavily on fortuitous cancellation of errors. Finally, the title question is answered such that for short polyenes the lowest excited 21Ag- and 11Bu- states can clearly be classified as doubly excited, whereas the 11Ag- ground state is essentially represented by the (ground-state) HF determinant. For longer polyenes, in addition to increasing double excitation contributions in the 21Ag- and 11Bu- states, the ground state itself aquires substantial double excitation character (45% in C 22H 24), so that the transition from the ground state to these excited states should not be addressed as the excitation of two electrons relative to the 11Ag- ground state.
Excitation and ionization of hydrogen Rydberg states in a plasma
Glab, W.; Nayfeh, M.H.
1982-08-01
Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic, which are due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.
Excitation and ionization of hydrogen Rydberg states in a plasma.
Glab, W; Nayfeh, M H
1982-08-01
Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic ionization, which is due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.
Excited State Properties of Hybrid Perovskites.
Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni
2016-01-19
Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide
Excited State Dynamics in Carbon Nanotubes
Miyamoto, Yoshiyuki
2004-03-01
Carbon nanotube, one of the most promising materials for nano-technology, still suffers from its imperfection in crystalline structure that will make performance of nanotube behind theoretical limit. From the first-principles simulations, I propose efficient methods to overcome the imperfection. I show that photo-induced ion dynamics can (1) identify defects in nanotubes, (2) stabilize defected nanotubes, and (3) purify contaminated nanotubes. All of these methods can be alternative to conventional heat treatments and will be important techniques for realizing nanotube-devices. Ion dynamics under electronic excitation has been simulated with use of the computer code FPSEID (First-Principles Simulation tool for Electron Ion Dynamics) [1], which combines the time-dependent density functional method [2] to classical molecular dynamics. This very challenging approach is time-consuming but can automatically treat the level alternation of differently occupied states, and can observe initiation of non-adiabatic decay of excitation. The time-dependent Kohn-Sham equation has been solved by using the Suzuki-Trotter split operator method [3], which is a numerically stable method being suitable for plane wave basis, non-local pseudopotentials, and parallel computing. This work has been done in collaboration with Prof. Angel Rubio, Prof. David Tomanek, Dr. Savas Berber and Mina Yoon. Most of present calculations have been done by using the SX5 Vector-Parallel system in the NEC Fuchu-plant, and the Earth Simulator in Yokohama Japan. [1] O. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, B66 089901(E) (2001) [2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). [3] M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992).
Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes
Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren
1994-01-01
A combination of steady-state and dynamic spectral measurements are used to provide new insights into the nature of the excited-state processes of all-trans-1,4-diphenyl-1,3-butadiene and several analogs: 1,4-diphenyl- 1,3-cyclopentadiene, 1,1,4,4-tetraphenylbutadiene, 1,2,3,4-tetraphenyl-1,3-cyc...... indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....
Excited states in DNA strands investigated by ultrafast laser spectroscopy.
Chen, Jinquan; Zhang, Yuyuan; Kohler, Bern
2015-01-01
Ultrafast laser experiments on carefully selected DNA model compounds probe the effects of base stacking, base pairing, and structural disorder on excited electronic states formed by UV absorption in single and double DNA strands. Direct π-orbital overlap between two stacked bases in a dinucleotide or in a longer single strand creates new excited states that decay orders of magnitude more slowly than the generally subpicosecond excited states of monomeric bases. Half or more of all excited states in single strands decay in this manner. Ultrafast mid-IR transient absorption experiments reveal that the long-lived excited states in a number of model compounds are charge transfer states formed by interbase electron transfer, which subsequently decay by charge recombination. The lifetimes of the charge transfer states are surprisingly independent of how the stacked bases are oriented, but disruption of π-stacking, either by elevating temperature or by adding a denaturing co-solvent, completely eliminates this decay channel. Time-resolved emission measurements support the conclusion that these states are populated very rapidly from initial excitons. These experiments also reveal the existence of populations of emissive excited states that decay on the nanosecond time scale. The quantum yield of these states is very small for UVB/UVC excitation, but increases at UVA wavelengths. In double strands, hydrogen bonding between bases perturbs, but does not quench, the long-lived excited states. Kinetic isotope effects on the excited-state dynamics suggest that intrastrand electron transfer may couple to interstrand proton transfer. By revealing how structure and non-covalent interactions affect excited-state dynamics, on-going experimental and theoretical studies of excited states in DNA strands can advance understanding of fundamental photophysics in other nanoscale systems.
The sex-linked fidget mutation abolishes Brn4/Pou3f4 gene expression in the embryonic inner ear.
Phippard, D; Boyd, Y; Reed, V; Fisher, G; Masson, W K; Evans, E P; Saunders, J C; Crenshaw, E B
2000-01-01
We have demonstrated that the phenotype of the mouse mutant sex-linked fidget ( slf ) is caused by developmental malformations of the inner ear that result in hearing loss and vestibular dysfunction. Recently, pilot mapping experiments suggested that the mouse Brn4 / Pou3f4 gene co-segregated with the slf locus on the mouse X chromosome. These mapping data, in conjunction with the observation that the vertical head-shaking phenotype of slf mutants is identical to that observed in mice with a targeted deletion of the Brn4 gene, suggested that slf is a mutant allele of the Brn4 gene. In this paper, we have identified the nature of the slf mutation, and demonstrated that it is an X chromosomal inversion with one breakpoint close to Brn4. This inversion selectively eliminates the expression of the Brn4 gene in the developing inner ear, but not the neural tube. Finally, these results demonstrate that the slf mutation is a good mouse model for the most prevalent form of X-linked congenital deafness in man, which is associated with mutations in the human Brn4 ortholog, POU3F4.
Excited-State Effective Masses in Lattice QCD
George Fleming, Saul Cohen, Huey-Wen Lin
2009-10-01
We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.
Systematics of α -decay transitions to excited states
Delion, D. S.; Dumitrescu, A.
2015-08-01
We systematize the available experimental material concerning α -decay transitions to low-lying excited states in even-even and odd-mass emitters. We generalize our previous theoretical prediction concerning the linear dependence between hindrance factors and the excitation energy for transitions in even-even α emitters. Thus, we show that α intensities for transitions to excited states depend linearly upon the excitation energy for all known even-even and odd-mass α emitters. It turns out that the well-known Viola-Seaborg law for α -decay transitions between ground states can be generalized for transitions to excited states. This rule can be used to predict any α -decay half-life to a low-lying excited state.
Radially Excited States of 1P Charmonium and X(3872)
Chen, Y; Liu, Y; Ma, J; Zhang, J; Chen, Ying; Liu, Chuan; Liu, Yubin; Ma, Jianping; Zhang, Jianbo
2007-01-01
The first excited states of charmonium in $0^{++}$, $1^{++}$, $1^{+-}$ channels are numerically investigated with lattice QCD of improved gauge and Wilson fermion actions, formulated on anisotropic lattices. Having determined the mass of ground states, the masses of excited states can be extracted by a constrained curve fitting algorithm which gives the masses 3.825(88) GeV, 3.853(57) GeV, and 3.858(70) Gev for the first excited states in $0^{++}$, $1^{++}$, $1^{+-}$ channels, respectively. A node structure is also observed in the Bethe-Salpeter wave-function of the $1^{++}$ state. The mass of the radically excited $1^{++}$ state is close to the mass of the newly observed X(3872). It indicates that X(3872) can be the first excited state of $\\chi_{c1}$.
Excited electronic states and spectroscopy of unsymmetrically substituted polyenes
Itoh, Takao
2013-09-01
α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π*) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.
A novel mutation in POU3F4 in a Chinese family with X-linked non-syndromic hearing loss
Bang-qing Huang; Jia-ling Zeng; Yong-yi Yuan; Pu Dai
2015-01-01
Objective:Based on the clinical manifestations of a hearing loss patient, the POU3F4 gene was tested for diagnosis of etiology. Methods:A comprehensive physical examination was performed on the proband to exclude abnormalities of other organs, and detailed audi-ological testing and temporal bone CT scan were also performed. Genomic DNA was extracted using the proband's peripheral blood leukocytes. Polymerase chain reactions (PCR) were performed in the coding sequence of the POU3F4 gene. Direct DNA sequencing was subsequently applied to screen the entire coding region of the POU3F4 gene. Results:The proband had severe sensorineural hearing loss. Temporal CT showed bilateral cochlear incomplete partition, vestibule dysplasia, internal auditory canal fundus expansion, and cochlear interlink with the internal auditory canal fundus. A novel mutation (c.530C > A (p.S177X)) in the POU3F4 gene was found in this patient, creating an new stop codon and was predicted to result in a truncated protein lacking normal POU3F4 transcription factor function. Conclusion: Through analysis of the POU3F4 gene and clinical manifestations in the patient, we conclude that a novel mutation may have resulted in a premature stop codon, contributing to the mutation of POU3F4 gene.
Three-photon excitation of hydrogen Rydberg states.
Glab, W L; Nayfeh, M H
1983-01-01
A three-photon process using radiation at 2430 and 3660 A and with a 1s-2s two-photon resonance is used to excite atomic hydrogen from the ground state to Rydberg states of high principal quantum number. Collision-induced ionization is used to monitor the excitation.
Three-photon excitation of hydrogen Rydberg states
Glab, W.L.; Nayfeh, M.H.
1983-01-01
A three-photon process using radiation at 2430 and 3660 A and with a 1s-2s two-photon resonance is used to excite atomic hydrogen from the ground state to Rydberg states of high principal quantum number. Collision-induced ionization is used to monitor the excitation.
DILEPTON YIELD FROM THE DECAY OF EXCITED SI-28 STATES
BACELAR, JC; BUDA, A; BALANDA, A; KRASZNAHORKAY, A; VANDERPLOEG, H; SUJKOWSKI, Z; VANDERWOUDE, A
1994-01-01
The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in Si-28, with an initial excitation energy E* = 50 MeV, were populated via the isospin T = 0 reaction He-4 + Mg-24 and the mixed
Exact ensemble density-functional theory for excited states
Yang, Zeng-hui; Pribram-Jones, Aurora; Burke, Kieron; Needs, Richard J; Ullrich, Carsten A
2014-01-01
We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) of excited states from the ground and excited states of helium. The exchange-correlation potential is compared with current approximations, which miss prominent features. The ensemble derivative discontinuity is tested, and the virial theorem is proven and illustrated.
Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium
Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; /UC, Berkeley; Zolotorev, M.; /SLAC
2011-11-15
Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.
Role of Excited States In High-order Harmonic Generation
Beaulieu, S.; Camp, S.; Descamps, D.; Comby, A.; Wanie, V.; Petit, S.; Légaré, F.; Schafer, K. J.; Gaarde, M. B.; Catoire, F.; Mairesse, Y.
2016-11-01
We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.
Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states
Nelson, Tammie; Naumov, Artem; Fernandez-Alberti, Sebastian; Tretiak, Sergei
2016-12-01
The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop "on-the-fly" state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.
Ultrafast excited state relaxation in long-chain polyenes
Antognazza, Maria Rosa, E-mail: mariarosa.antognazza@polimi.it [Center for Nano Science and Technology of IIT-PoliMI, via Pascoli 70/3, 20133 Milano (Italy); Lueer, Larry [National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano (Italy); Madrid Institute of Advanced Studies, IMDEA Nanociencia, Faculdad de Ciencias, Av. Tomas y Valiente 7, 28049 Madrid (Spain); Polli, Dario [National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano (Italy); Christensen, Ronald L. [Department of Chemistry, Bowdoin College, Brunswick, ME 04011 (United States); Schrock, Richard R. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lanzani, Guglielmo [Center for Nano Science and Technology of IIT-PoliMI, via Pascoli 70/3, 20133 Milano (Italy); National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano (Italy); Cerullo, Giulio [National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano (Italy)
2010-07-19
Graphical abstract: Excited state dynamics of a long-chain polyene studied by femtosecond pump-probe spectroscopy. - Abstract: We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S{sub 0} {yields} S{sub 2} transition, we observe rapid loss of stimulated emission from the bright excited state S{sub 2}, followed by population of the hot S{sub 1} state within 150 fs. Vibrational cooling of S{sub 1} takes place within 500 fs and is followed by decay back to S{sub 0} with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.
Primary optical excitations and excited-state interaction energies in sexithiophene
Loi, MA; Martin, C; Chandrasekhar, HR; Chandrasekhar, M; Graupner, W; Garnier, F; Mura, A; Bongiovanni, G
2002-01-01
Based on a unique combination of angle-resolved transmission spectroscopy and transmission data at high pressure, we identify the primary photoexcitations and the relevant excited-state interaction energies in a sexithiophene crystal. Optical excitations include charge-transfer excitons and Davydov
Inelastic scattering of {sup 9}Li and excitation mechanism of its first excited state
Al Falou, H. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Kanungo, R., E-mail: ritu@triumf.ca [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Andreoiu, C.; Cross, D.S. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Davids, B.; Djongolov, M. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Gallant, A.T. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of British Columbia, British Columbia V6T 1Z4 (Canada); Galinski, N.; Howell, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Kshetri, R.; Niamir, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Orce, J.N. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of the Western Cape, P/B X17, Bellville, ZA-7535 (South Africa); Shotter, A.C. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Sjue, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Tanihata, I. [Research Center for Nuclear Physics, Osaka University, Mihogaoka, Ibaraki, Osaka 567 0047 (Japan); Thompson, I.J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Triambak, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Uchida, M. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Walden, P. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Wiringa, R.B. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2013-04-25
The first measurement of inelastic scattering of {sup 9}Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution.
Charge-displacement analysis for excited states
Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)
2014-02-07
We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.
Bogoliubov Excited States and the Lyth Bound
Aravind, Aditya; Paban, Sonia
2014-01-01
We show that Bogoliubov excited scalar and tensor modes do not alleviate Planckian evolution during inflation if one assumes that $r$ and the Bogoliubov coefficients are approximately scale invariant. We constrain the excitation parameter for the scalar fluctuations, $\\beta$, and tensor perturbations, $\\tilde{\\beta}$, by requiring that there be at least three decades of scale invariance in the scalar and tensor power spectrum. For the scalar fluctuations this is motivated by the observed nearly scale invariant scalar power spectrum. For the tensor fluctuations this assumption may be shown to be valid or invalid by future experiments.
Population of highly excited intermediate resonance states by electron transfer and excitation
Schuch, R. (Manne Siegbahn Institute of Physics, S-104 05 Stockholm, Sweden (SE)); Justiniano, E. (Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353 (USA)); Schulz, M.; Datz, S.; Dittner, P.F.; Giese, J.P.; Krause, H.F.; Schoene, H.; Vane, R. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6377 (USA)); Shafroth, S. (Department of Physics, North Carolina University, Chapel Hill, North Carolina 27599-3255 (USA))
1991-05-01
Coincidences between two sulfur {ital K} x rays were detected from collisions of hydrogenlike S ions with H{sub 2} gas in the projectile energy range between 150 and 225 MeV. These {ital K} x rays are emitted in the decay of doubly excited states formed in the collisions via transfer and excitation. The excitation function for two coincident {ital K}{beta} transitions peaks at about 175 MeV, slightly above the expected {ital KMM} resonance energy for resonant transfer and excitation (RTE). This demonstrates the occurrence of {Delta}{ital N}{ge}2 transitions (i.e., {ital KMM} and higher resonances) in the RTE process. The cross sections for the population of the very highly excited states are higher than those predicted by theoretical calculations that use dielectronic recombination rates folded with the Compton profile for the bound electrons.
Origin of ultrafast excited state dynamics of 1-nitropyrene.
Murudkar, Sushant; Mora, Aruna K; Singh, Prabhat K; Nath, Sukhendu
2011-10-01
Time-resolved emission measurements in subpicosecond time domain have been carried out for 1-nitropyrene in different solvents to understand the mechanism for the observed ultrafast decay of its first excited singlet state. Excited-state dynamics of 1-nitropyrene is found to be independent of the solvent viscosity. This result contradicts the proposition in the literature (J. Phys. Chem. A 2007, 111, 552) that the ultrafast decay in 1-nitropyrene is due to the large amplitude torsional motion of the nitro group around the pyrene moiety. Excited-state dynamics of 1-nitropyrene in solvents with different dielectric constants shows that excited-state lifetime suddenly increases after a certain value of the dielectric constant. Detailed quantum chemical calculations have been carried out to understand the process that is responsible for the observed effect of the dielectric constant on the excited-state dynamics of 1-nitropyrene. It is seen that the excited-state lifetime and the singlet-triplet energy gap follow similar variation with the dielectric constant of the medium. Such a correlation between the excited-state lifetime and the singlet-triplet energy gap supports the fact that the observed ultrafast decay for 1-nitropyrene is due to an efficient intersystem crossing rather than to the torsional motion of the nitro group as proposed in the literature.
Photoionization of excited states of neon-like Mg III
Narendra Singh; Man Mohan
2002-04-01
The close coupling -matrix method is used to calculate cross-sections for photoionization of Mg III from its ﬁrst three excited states. Conﬁguration interaction wave functions are used to represent two target states of Mg III retained in the -matrix expansion. The positions and effective quantum numbers for the Rydberg series converging to the excited state 2226 \\ 2 of the residual ion, are predicted.
A Simple Hubbard Model for the Excited States of Dibenzoterrylene
Sadeq, Z S
2016-01-01
We use a simple Hubbard model to characterize the electronic excited states of the dibenzoterrylene (DBT) molecule; we compute the excited state transition energies and oscillator strengths from the ground state to several singlet excited states. We consider the lowest singlet and triplet states of the molecule, examine their wavefunctions, and compute the density correlation functions that describe these states. We find that the DBT ground state is mostly a closed shell singlet with very slight radical character. We predict a relatively small singlet-triplet splitting of 0.75 eV, which is less than the mid-sized -acenes but larger than literature predictions for this state; this is because the Hubbard interaction makes a very small correction to the singlet and triplet states.
Study of excited nucleon states at EBAC: status and plans
Hiroyuki Kamano
2009-12-01
We present an overview of a research program for the excited nucleon states in Excited Baryon Analysis Center (EBAC) at Jefferson Lab. Current status of our analysis of the meson production reactions based on the unitary dynamical coupled-channels model is summarized, and the N* pole positions extracted from the constructed scattering amplitudes are presented. Our plans for future developments are also discussed.
Vibronic coupling in the excited-states of carotenoids.
Miki, Takeshi; Buckup, Tiago; Krause, Marie S; Southall, June; Cogdell, Richard J; Motzkus, Marcus
2016-04-28
The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2 to the optically dark state S1. Extending this picture, some additional dark states (3A(g)(-) and 1B(u)(-)) and their interaction with the S2 state have also been suggested to play a major role in the ultrafast deactivation of carotenoids and their properties. Here, we investigate the interaction between such dark and bright electronic excited states of open chain carotenoids, particularly its dependence on the number of conjugated double bonds (N). We focus on the ultrafast wave packet motion on the excited potential surface, which is modified by the interaction between bright and dark electronic states. Such a coupling between electronic states leads to a shift of the vibrational frequency during the excited-state evolution. In this regard, pump-degenerate four-wave mixing (pump-DFWM) is applied to a series of carotenoids with different numbers of conjugated double bonds N = 9, 10, 11 and 13 (neurosporene, spheroidene, lycopene and spirilloxanthin, respectively). Moreover, we demonstrate in a closed-chain carotenoid (lutein) that the coupling strength and therefore the vibrational shift can be tailored by changing the energy degeneracy between the 1B(u)(+) and 1B(u)(-) states via solvent interaction.
Ultrafast excited state relaxation in long-chain polyenes
Antognazza, Maria Rosa; Lüer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio
2010-07-01
We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2, followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.
The examination of berberine excited state by laser flash photolysis
Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong
2009-07-01
The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.
Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay, E-mail: jagarwal@uga.edu [Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602 (United States)
2015-02-07
Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.
Investigation into chromophore excited-state coupling in allophycocyanin
Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin
1994-08-01
Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.
Excited States of the divacancy in SiC
Bockstedte, Michel; Garratt, Thomas; Ivady, Viktor; Gali, Adam
2014-03-01
The divacancy in SiC - a technologically mature material that fulfills the necessary requirements for hosting defect based quantum computing - is a good candidate for implementing a solid state quantum bit. Its ground state is isovalent to the NV center in diamond as demonstrated by density functional theory (DFT). Furthermore, coherent manipulation of divacancy spins in SiC has been demonstrated. The similarities to NV might indicate that the same inter system crossing (ICS) from the high to the low spin state is responsible for its spin-dependent fluorescent signal. By DFT and a DFT-based multi-reference hamiltonian we analyze the excited state spectrum of the defects. In contrast to the current picture of the spin dynamics of the NV center, we predict that a static Jahn-Teller effect in the first excited triplet states governs an ICS both with the excited and ground state of the divacancy.
Microwave spectroscopy of furfural in vibrationally excited states
Motiyenko, R. A.; Alekseev, E. A.; Dyubko, S. F.
2007-07-01
The results of microwave spectrum investigation of the excited vibrational states of furfural in the frequency range between 49 and 149 GHz are reported. In total 15 excited vibrational states (9 for trans-furfural and 6 for cis-furfural) were assigned and analyzed. Six of the 15 investigated states were assigned for the first time. Accurate values of rigid rotor and quartic centrifugal distortion constants of asymmetric top Hamiltonian have been determined for 13 excited states. Also for some states several sextic and octic level constants were needed in order to fit the data within experimental accuracy. The vt = 3 and vs = 1, va = 1 states of trans-furfural were found to be strongly perturbed and only rotational transitions with low Ka values can be reliably identified in this study.
Characterizing RNA Excited States using NMR Relaxation Dispersion
Xue, Yi; Kellogg, Dawn; Kimsey, Isaac J; Sathyamoorthy, Bharathwaj; Stein, Zachary W; McBrairty, Mitchell; Al-Hashimi, Hashim M.
2016-01-01
Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of non-coding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as “excited states”. Compared to larger-scale changes in RNA secondary structure, transitions towards excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around non-canonical motifs. Here we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25–3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data is then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited state. Application is illustrated with a focus on the transactivation response element (TAR) from the human immune deficiency virus type 1 (HIV-1), which exists in dynamic equilibrium with at least two distinct excited states. PMID:26068737
2002-01-01
Neutron capture processes on carbon isotope play an important role in astrophysics ranging fromnucleosynthesis in the stellar helium and carbon burning stages to possibly inhomogeneous big bangmodels. The capture rate in astrophysical environments strongly depends on the structure of these carbonnuclei. For example, the first 1/2+ state in 13C is a neutron halo state, and these results in an enormous
Targeting excited states in all-trans polyenes with electron-pair states
Boguslawski, Katharina
2016-12-01
Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.
Excited state correlations of the finite Heisenberg chain
Pozsgay, Balázs
2017-02-01
We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.
Shape vibrations and quasiparticle excitations in the lowest 0+ excited state of the Erbium isotopes
Chen, Fang-Qi
2016-01-01
The ground and first excited 0+ states of the {156-172}Er isotopes are analyzed in the framework of the generator coordinate method. The shape parameter beta is used to generate wave functions with different deformations which together with the two-quasiparticle states built on them provide a set of states. An angular momentum and particle number projection of the latter spawn the basis states of the generator coordinate method. With this ansatz and using the separable pairing plus quadrupole interaction we obtain a good agreement with the experimental spectra and E2 transition rates up to moderate spin values. The structure of the wave functions suggests that the first excited 0+ states in the soft Er isotopes are dominated by shape fluctuations, while in the well deformed Er isotopes the two-quasiparticle states are more relevant. In between both degrees of freedom are necessary .
Neutron halos in the excited states for N=127 isotones
SUN Qin; GUO Jian-You
2009-01-01
Properties of the ground states and the excited states of N=127 isotones are investigated by using the nonlinear relativistic mean field theory with the interactions PK1. By analyzing the rms of proton and neutron, the single particle energies of valence nucleon and the density distributions of neutron, proton and the last neutron, it can be found that there exists a neutron halo in the excited states of 3d5/2, 4s1/2 and 3d3/2 in 209Pb. It is also predicted that there exists a neutron halo in the excited states of 3d5/2, 4s1/2 and 3d3/2 in 207Hg, 208Tl, 210Bi and 211Po.
Super-atom molecular orbital excited states of fullerenes.
Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B
2016-09-13
Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.
Excited states of Ne isoelectronic ions: SAC-CI study
Das, A.K.; Ehara, M.; Nakatsuji, H. [Kyoto Univ. (Japan). Faculty of Engineering
2001-02-01
Excited states of the s, p, and d symmetries up to principal quantum number n = 4 are studied for the first eight members of Ne isoelectronic sequence (Ne to Cl{sup 7+}) by the SAC-CI (symmetry-adapted-cluster configuration-interaction) method. The valence STO basis sets of Clementi et al. and the optimized excited STO are used by the STO-6G expansion method. The calculated transition energies agree well with the experimental values wherever available. (orig.)
Ultrafast excited-state intramolecular proton transfer of aloesaponarin I.
Nagaoka, Shin-ichi; Uno, Hidemitsu; Huppert, Dan
2013-04-25
Time-resolved emission of aloesaponarin I was studied with the fluorescence up-conversion and time-correlated single-photon-counting techniques. The rates of the excited-state intramolecular proton transfer, of the solvent and molecular rearrangements, and of the decay from the excited proton-transferred species were determined and interpreted in the light of time-dependent density functional calculations. These results were discussed in conjunction with UV protection and singlet-oxygen quenching activity of aloe.
Electronic excited states and relaxation dynamics in polymer heterojunction systems
Ramon, John Glenn Santos
The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally
Excited-state dynamics of astaxanthin aggregates
Fuciman, Marcel; Durchan, Milan; Šlouf, Václav; Keşan, Gürkan; Polívka, Tomáš
2013-05-01
Astaxanthin forms three types of aggregates in hydrated dimethyl sulfoxide (DMSO). In DMSO/water ratio of 1:1, a red-shifted J-aggregate with maximum at 570 nm is generated, while a ratio of 1:9 produces blue-shifted H-aggregates with peaks at 386 nm (H1) and 460 nm (H2). Monomeric astaxanthin in DMSO has an S1 lifetime of 5.3 ps, but a long-lived (33 ps) S∗ signal was also identified. Aggregation changes the S1 lifetimes to 17 ps (H1), 30 ps (H2), and 14 ps (J). Triplet state of astaxanthin, most likely generated via singlet homofission, was observed in H1 and H2 aggregates.
State-Selective Excitation of Quantum Systems via Geometrical Optimization.
Chang, Bo Y; Shin, Seokmin; Sola, Ignacio R
2015-09-08
We lay out the foundations of a general method of quantum control via geometrical optimization. We apply the method to state-selective population transfer using ultrashort transform-limited pulses between manifolds of levels that may represent, e.g., state-selective transitions in molecules. Assuming that certain states can be prepared, we develop three implementations: (i) preoptimization, which implies engineering the initial state within the ground manifold or electronic state before the pulse is applied; (ii) postoptimization, which implies engineering the final state within the excited manifold or target electronic state, after the pulse; and (iii) double-time optimization, which uses both types of time-ordered manipulations. We apply the schemes to two important dynamical problems: To prepare arbitrary vibrational superposition states on the target electronic state and to select weakly coupled vibrational states. Whereas full population inversion between the electronic states only requires control at initial time in all of the ground vibrational levels, only very specific superposition states can be prepared with high fidelity by either pre- or postoptimization mechanisms. Full state-selective population inversion requires manipulating the vibrational coherences in the ground electronic state before the optical pulse is applied and in the excited electronic state afterward, but not during all times.
Two-Mode Excited Entangled Coherent State: Nonclassicality and Entanglement
Zhang, Hao-Liang; Wu, Jia-Ni; Liu, Cun-Jin; Hu, Yin-Quan; Hu, Li-Yun
2017-03-01
Two-mode excited entangled coherent states (TME-ECSs) are introduced by operating repeatedly the photon-excited operator on the ECSs. It is shown that the normalization constant is related to the product of two Laguerre polynomials. The influence of the operation on nonclassical behaviour of the ECSs is investigated in terms of cross-correlation function, anti-bunching effect and the negativity of Wigner function, which show that nonclassical properties can be enhanced. In addition, inseparability properties of the TME-ECSs are discussed by using Bell inequality and concurrence. It is found that the degree of quantum entanglement of even ECSs increases with the increase of the total excited photon number, and the violation of Bell inequality can be present for both even and odd case only when the total excited photon numbers are even and odd, respectively.
First-principles Calculation of Excited State Spectra in QCD
Jozef Dudek,Robert Edwards,Michael Peardon,David Richards,Christopher Thomas
2011-05-01
Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I=2 pion-pion energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.
Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.
Robinson, David
2014-12-09
A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.
Coherent excitation of a single atom to a Rydberg state
Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles
2010-01-01
We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...... ground and Rydberg states of the atom. We analyze the observed oscillations in detail and compare them to numerical simulations which include imperfections of our experimental system. Strategies for future improvements on the coherent manipulation of a single atom in our settings are given....
A Neutron Halo in 12B Excited State
2001-01-01
Nonlinear relativistic mean field(RMF) theory with a new effective interaction NL3 has been used to investigate the bulk properties of 12B nucleus and its daughter nuclei. The results obtained in RMF indicate one neutron halo in 12B nucleus at an excited state. The density distribution of neutrons in the excited state of 12B has a long tail and the nucleon in 2s1/2 state has very small separation energy. The rms radius of halo neutron is about twice larger than that of matter. Meanwhile, it becomes more apparent that nuclear halo is a general feature of loosely bound nuclei. As the binding energy becomes smaller, to form a bound state the nucleon tends to occupy a state with a low angular momentum. It
Octupole correlations in excited 0{sup +} states of the actinides
Spieker, Mark; Endres, Janis; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Bucurescu, Dorel; Pascu, Sorin; Zamfir, Nicolae-Victor [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Faestermann, Thomas [Physik Department, Technische Universitaet Muenchen, Munich (Germany); Hertenberger, Ralf; Wirth, Hans-Friedrich [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany)
2014-07-01
New experimental data has once again shown the importance of the octupole degree of freedom in the actinides. To further study possible admixtures of double-octupole structures to the wave function of positive-parity states, a high-resolution (p,t) experiment on {sup 242}Pu has been recently performed at the Q3D magnetic spectrograph in Munich. Excited 0{sup +} states were populated in {sup 240}Pu up to an excitation energy of 3 MeV. The new data allowed for a stringent test of the predictions of the spdf interacting boson model. In order to find possible double-octupole 0{sup +} candidates in the actinides, the signature of close-lying first and second excited 0{sup +} states has been proposed. It is found that the observation of this signature coincides with an E1 γ-decay of the first excited 0{sup +} state, while this state is strongly populated in the (p,t) reaction.
Electronically excited negative ion resonant states in chloroethylenes
Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.
2015-02-15
Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.
Excited state tautomerization of 7-azaindole catalyzed by pyrazole
Karmakar, Shreetama; Mukherjee, Moitrayee; Chakraborty, Tapas
2013-03-01
Pyrazole, a five member cyclic azole, is reported here as an efficient catalyst for excited state tautomeric conversion of 7-azaindole. In hydrocarbon solution the two compounds efficiently form a doubly hydrogen-bonded 1:1 cyclic complex whose association constant value is found comparable with 7-azaindole dimerization constant, and according to B3LYP/6-311G++∗∗ calculation the binding energies of the complex and dimer are nearly same. In the excited state (S1), the TDDFT calculation predicts tautomer of the complex to be 13.4 kcal/mol more stable than normal form. Fluorescence spectra reveal that upon UV excitation the complex emits exclusively from the tautomeric form.
Estimation of correlation energy for excited-states of atoms
Hemanadhan, M
2014-01-01
The correlation energies of various atoms in their excited-states are estimated by modelling the Coulomb hole following the previous work by Chakravorty and Clementi. The parameter in the model is fixed by making the corresponding Coulomb hole to satisfy the exact constraint of charge neutrality.
Size dependent deactivation of the excited state of DHICA
Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia;
2008-01-01
Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...
Lowest energy excited singlet state of isolated cis-hexatriene
Kohler, B.E.; Song, K.; Buma, W.J.
1991-01-01
In a previous letter [J. Chem. Phys. 92, 4622 (1990)] we reported the first observation of the 2 1Ag state of cis-hexatriene in a supersonic jet expansion by using resonance enhanced multiphoton ionization spectroscopy. Here, the vibrational analysis of the 1 1Ag2 1Ag excitation spectrum of cis-hexa
Excited-state quantum phase transition in the Rabi model
Puebla, Ricardo; Hwang, Myung-Joong; Plenio, Martin B.
2016-08-01
The Rabi model, a two-level atom coupled to a harmonic oscillator, can undergo a second-order quantum phase transition (QPT) [M.-J. Hwang et al., Phys. Rev. Lett. 115, 180404 (2015), 10.1103/PhysRevLett.115.180404]. Here we show that the Rabi QPT accompanies critical behavior in the higher-energy excited states, i.e., the excited-state QPT (ESQPT). We derive analytic expressions for the semiclassical density of states, which show a logarithmic divergence at a critical energy eigenvalue in the broken symmetry (superradiant) phase. Moreover, we find that the logarithmic singularities in the density of states lead to singularities in the relevant observables in the system such as photon number and atomic polarization. We corroborate our analytical semiclassical prediction of the ESQPT in the Rabi model with its numerically exact quantum mechanical solution.
Direct excitation of butterfly states in Rydberg molecules
Lippe, Carsten; Niederpruem, Thomas; Thomas, Oliver; Eichert, Tanita; Ott, Herwig
2016-05-01
Since their first theoretical prediction Rydberg molecules have become an increasing field of research. These exotic states originate from the binding of a ground state atom in the electronic wave function of a highly-excited Rydberg atom mediated by a Fermi contact type interaction. A special class of long-range molecular states, the butterfly states, were first proposed by Greene et al.. These states arise from a shape resonance in the p-wave scattering channel of a ground state atom and a Rydberg electron and are characterized by an electron wavefunction whose density distribution resembles the shape of a butterfly. We report on the direct observation of deeply bound butterfly states of Rydberg molecules of 87 Rb. The butterfly states are studied by high resolution spectroscopy of UV-excited Rydberg molecules. We find states bound up to - 50 GHz from the 25 P1/2 , F = 1 state, corresponding to binding lengths of 50a0 to 500a0 and with permanent electric dipole moments of up to 500 Debye. This distinguishes the observed butterfly states from the previously observed long range Rydberg molecules in rubidium.
Optimized resonating valence bond state in square lattice: correlations & excitations
Z Nourbakhsh
2009-09-01
Full Text Available We consider RVB state as a variational estimate for the ground state of Heisenberg antiferromagnet in square lattice. We present numerical calculation of energy, spin-spin correlation function and spin excitation spectrum. We show, that the quantum flactuations reduce of magnetization respect to Neel order. Our results are in good agreement with other methods such as spin-wave calculation and series expansions.
On the excited-state multi-dimensionality in cyanines
Dietzek, Benjamin; Brüggemann, Ben; Persson, Petter; Yartsev, Arkady
2008-03-01
Vibrational coherences in a photoexcited cyanine dye are preserved for the time-scale of diffusive torsional motion to the bottom of the excited-state potential. The coherently excited modes are virtually unaffected by solvent friction and thus distinct from the bond-twisting motion, which is strongly coupled to the surrounding solvent. We correlate the modes apparent in the resonance Raman and the four-wave mixing signal of 1,1'-diethyl-2,2'-cyanine with the understanding of optimal control of isomerization. In turn, the experimental results illustrate that optimal control might be used to obtain vibrational information complementary to conventional spectroscopic data.
Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.
Mondal, Sayan; Puranik, Mrinalini
2016-05-18
The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first
MULTIPLY CHARGED IONS COLLISIONS WITH ATOMS INTO EXCITED STATES
PanGuangyan
1990-01-01
The emission spectra in collisions between Ions and Atoms have been measured by an Optical Multichannel Analysis System (OMA).The experimental results demonstrate that there are two channels of excitation in collision between single charged ions and atoms and three channels of excitation in collision between double charged ions and atoms.Emission cross cestions and excitation cross sections have been obtained.K.Kadota et al and R.Shingal et al suggested that,under the appropriate conditions,the H42+-Li and He2++Na collision systems can be used efficiently to produce a laser of Lyman-α(30,4nm) and Lyman-β(25.6nm)lines via cascade to He+(2P)state.
Observation of the First Excited State in 23O
Frank, N; Baumann, T; Bazin, D; Brown, J; DeYoung, P A; Finck, J E; Gade, A; Hinnefeld, J; Howes, R; Lecouey, J -L; Luther, B; Peters, W A; Scheit, H; Thoennessen, M
2007-01-01
The first excited state in neutron-rich 23O was observed in a (2p1n) knock-out reaction from 26Ne on a beryllium target at a beam energy of 86 MeV/A. The state is unbound with respect to neutron emission and was reconstructed from the invariant mass from the 22O fragment and the neutron. It is unbound by 45(2) keV corresponding to an excitation energy of 2.8(1) MeV. The non-observation of further resonances implies a predominantly direct reaction mechanism of the employed three-nucleon-removal reaction which suggests the assignment of the observed resonance to be the 5/2+ hole state.
Optical nanoscopy with excited state saturation at liquid helium temperatures
Yang, B.; Trebbia, J.-B.; Baby, R.; Tamarat, Ph.; Lounis, B.
2015-10-01
Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy. Compared with super-localization approaches, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement.
Embedding potentials for excited states of embedded species.
Wesolowski, Tomasz A
2014-05-14
Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.
Controlling Excited-State Contamination in Nucleon Matrix Elements
Yoon, Boram; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank
2016-01-01
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_...
Controlling excited-state contamination in nucleon matrix elements
Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank
2016-06-01
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.
Excited state dynamics of the astaxanthin radical cation
Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef
2010-07-01
Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.
Controlling excited-state contamination in nucleon matrix elements
Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank; Nucleon Matrix Elements NME Collaboration
2016-06-01
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2 +1 -flavor ensemble with lattices of size 323×64 generated using the rational hybrid Monte Carlo algorithm at a =0.081 fm and with Mπ=312 MeV . The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep→∞ estimates is presented.
Reexamination of the excited states of C12
Freer, M.; Boztosun, I.; Bremner, C. A.; Chappell, S. P. G.; Cowin, R. L.; Dillon, G. K.; Fulton, B. R.; Greenhalgh, B. J.; Munoz-Britton, T.; Nicoli, M. P.; Rae, W. D. M.; Singer, S. M.; Sparks, N.; Watson, D. L.; Weisser, D. C.
2007-09-01
An analysis of the C12(C12,3α)C12 reaction was made at beam energies between 82 and 106 MeV. Decays to both the ground state and the excited states of Be8 were isolated, allowing states of different characters to be identified. In particular, evidence was found for a previously observed state at 11.16 MeV. An analysis of the angular distributions of the unnatural parity states at 11.83 and 13.35 MeV, previously assigned Jπ=2-, calls into question the validity of these assignments, suggesting that at least one of the states may correspond to Jπ=4-. Evidence is also found for 1- and 3- strengths associated with broad states between 11 and 14 MeV.
Negative-parity nucleon excited state in nuclear matter
Ohtani, Keisuke; Gubler, Philipp; Oka, Makoto
2016-10-01
Spectral functions of the nucleon and its negative-parity excited state in nuclear matter are studied by using QCD sum rules and the maximum entropy method (MEM). It is found that in-medium modifications of the spectral functions are attributed mainly to density dependencies of the and condensates. The MEM reproduces the lowest-energy peaks of both the positive- and negative-parity nucleon states at finite density up to ρ ˜ρN (normal nuclear matter density). As the density grows, the residue of the nucleon ground state decreases gradually while the residue of the lowest negative-parity excited state increases slightly. On the other hand, the positions of the peaks, which correspond to the total energies of these states, are almost density independent for both parity states. The density dependencies of the effective masses and vector self-energies are also extracted by assuming phenomenological mean-field-type propagators for the peak states. We find that, as the density increases, the nucleon effective mass decreases while the vector self-energy increases. The density dependence of these quantities for the negative-parity state on the other hand turns out to be relatively weak.
Lifetimes and structure of excited states of 115Sb
Lobach, Yu. N.; Bucurescu, D.
1998-06-01
Lifetimes of excited states of 115Sb were measured by the Doppler shift attenuation method in the (α,2nγ) reaction at Eα = 27.2 MeV. The experimental level scheme and the electromagnetic transition probabilities have been interpreted in terms of the interacting boson-fermion model. A reasonable agreement with the experiment was obtained for the positive-parity states. The experimental data also show the applicability of the cluster-vibrational model for the mixing of two 9/2+ states having different intrinsic configurations.
Controlling autoionization in strontium two-electron-excited states
Fields, Robert; Zhang, Xinyue; Dunning, F. Barry; Yoshida, Shuhei; Burgdörfer, Joachim
2016-05-01
One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high- n, n ~ 300 - 600 , high- L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high- n strontium Rydberg atoms is examined during excitation of the core ion 5 s 2S1 / 2 - 5 p 2P3 / 2 transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20 . The data are analyzed with the aid of calculations undertaken using complex scaling. Research supported by the NSF and Robert A. Welch Foundation.
The electronic excited states of green fluorescent protein chromophore models
Olsen, Seth Carlton
We explore the properties of quantum chemical approximations to the excited states of model chromophores of the green fluorescent protein of A. victoria. We calculate several low-lying states by several methods of quantum chemical calculation, including state-averaged complete active space SCF (CASSCF) methods, time dependent density functional theory (TDDFT), equation-of motion coupled cluster (EOM-CCSD) and multireference perturbation theory (MRPT). Amongst the low-lying states we identify the optically bright pipi* state of the molecules and examine its properties. We demonstrate that the state is dominated by a single configuration function. We calculate zero-time approximations to the resonance Raman spectrum of GFP chromophore models, and assign published spectra based upon these.
Negative-parity nucleon excited state in nuclear matter
Ohtani, Keisuke; Oka, Makoto
2016-01-01
Spectral functions of the nucleon and its negative parity excited state in nuclear matter are studied using QCD sum rules and the maximum entropy method (MEM). It is found that in-medium modifications of the spectral functions are attributed mainly to density dependencies of the $\\langle \\bar{q}q \\rangle $ and $\\langle q^{\\dagger}q \\rangle $ condensates. The MEM reproduces the lowest-energy peaks of both the positive and negative parity nucleon states at finite density up to $\\rho \\sim \\rho_N$ (normal nuclear matter density). As the density grows, the residue of the nucleon ground state decreases gradually while the residue of the lowest negative parity excited state increases slightly. On the other hand, the positions of the peaks, which correspond to the total energies of these states, are almost density independent for both parity states. The density dependencies of the effective masses and vector self-energies are also extracted by assuming the mean-field green functions for the peak states. We find that,...
On the nature of highly vibrationally excited states of Thiophosgene
Keshavamurthy, Srihari
2011-01-01
In this work an analysis of the highly vibrationally excited states of thiophosgene (SCCl$_{2}$) is made in order to gain insights into some of the experimental observations and spectral features. The states analyzed herein lie in a spectrally complex region where strong mode mixings are expected due to the overlap of several strong anharmonic Fermi resonances. Two recent techniques, a semiclassical angle space representation of the eigenstates and the parametric variation of the eigenvalues (level-velocities) are used to identify eigenstate sequences exhibiting common localization characteristics. Preliminary results on the influence of highly excited out-of-plane bending modes on the nature of the eigenstates suggest a possible bifurcation in the system.
On the nature of highly vibrationally excited states of thiophosgene
Srihari Keshavamurthy
2012-01-01
In this work an analysis of the highly vibrationally excited states of thiophosgene (SCCl2) is made in order to gain insights into some of the experimental observations and spectral features. The states analysed here lie in a spectrally complex region where strong mode mixings are expected due to the overlap of several strong anharmonic Fermi resonances. Two recent techniques, a semiclassical angle space representation of the eigenstates and the parametric variation of the eigenvalues (level-velocities) are used to identify eigenstate sequences exhibiting common localization characteristics. Preliminary results on the influence of highly excited out-of-plane bending modes on the nature of the eigenstates suggest a possible bifurcation in the system.
Precision study of excited state effects in nucleon matrix elements
Dinter, Simon; Drach, Vincent; Jansen, Karl; Renner, Dru B. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Insitute, Nicosia (Cyprus). Computation-Based Science and Technology Research Center; Constantinou, Martha [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics
2011-08-15
We present a dedicated analysis of the influence of excited states on the calculation of nucleon matrix elements. This calculation is performed at a fixed value of the lattice spacing, volume and pion mass that are typical of contemporary lattice computations. We focus on the nucleon axial charge, g{sub A}, for which we use about 7,500 measurements, and on the average momentum of the unpolarized isovector parton distribution, left angle x right angle {sub u-d}, for which we use about 23,000 measurements. All computations are done employing N{sub f}=2+1+1 maximally-twisted-mass Wilson fermions and using nonperturbatively calculated renormalization factors. Excited state e ects are shown to be negligible for g{sub A}, whereas they lead to an O(10%) downward shift for left angle x right angle {sub u-d}. (orig.)
The effects of doubly excited states on ionization balance
无
2006-01-01
The effects of highly doubly excited states on ionization balance are investigated. In the calculation, A Collisional-Radiative model in Detailed-Configuration-Accounting (DCA) is applied to population calculations for NLTE plasmas. Configuration-averaged rate coefficients that needed in the rate equations are obtained based on the first order perturbation theory. The Hatree-Fock-Slater self-consistent-field method is used to calculate the electron wave functions. The mean ionization stage of high-Z plasma Lu is presented. The comparison shows that the mean ionization stage increases more than 3 stages when doubly excited states 5l6l' and 5l5l' are not included in the population calculations.
Stark spectrum of barium in highly excited Rydberg states
Yang Hai-Feng; Gao Wei; Cheng Hong; Liu Xiao-Jun; Liu Hong-Ping
2013-01-01
We present observations of Stark spectra of barium in highly excited Rydberg states in the energy region around n =35.The one-photon excitation concerns the π transition.The observed Stark spectra at electric fields ranging from 0 to 60 V·cm-1 are well explained by the diagonalization of the Hamiltonian incorporating the core effects.From the Stark maps,the anti-crossings between energy levels are identified experimentally and theoretically.The time of flight spectra at the specified Stark states are recorded,where the deceleration and acceleration of barium atoms are observed.This is very consistent with the prediction derived from the Stark maps from the point of view of energy conservation.
Nonlinear Optical Spectroscopy of Excited States in Polyfluorene
Tong, M; Vardeny, Z V
2006-01-01
We used a variety of nonlinear optical (NLO) spectroscopies to study the singlet excited states order, and primary photoexcitations in polyfluorene; an important blue emitting p-conjugated polymer. The polarized NLO spectroscopies include ultrafast pump-probe photomodulation, two-photon absorption, and electroabsorption. For completeness we also measured the linear absorption and photoluminescence spectra. We found that the primary photoexcitations in polyfluorene are singlet excitons.
Excited states in large molecular systems through polarizable embedding
List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob
2016-01-01
In this perspective, we provide an overview of recent work within the polarizable embedding scheme to describe properties of molecules in realistic environments of increasing complexity. After an outline of the theoretical basis for the polarizable embedding model, we discuss the importance of us...... theory. We finally discuss aspects related to two recent extensions of the model (i) effective external field and (ii) polarizable density embedding emphasizing their importance for efficient yet accurate description of excited-state properties in complex environments....
First observation of excited states in 173Hg93
O'Donnell, D; Scholey, C; Bianco, L; Capponi, L; Carroll, R J; Darby, I G; Donosa, L; Drummond, M; Ertugral, F; Greenlees, P T; Grahn, T; Hauschild, K; Herzan, A; Jakobsson, U; Jones, P; Joss, D T; Julin, R; Juutinen, S; Ketelhut, S; Labiche, M; Leino, M; Lopez-Martens, A; Mullholland, K; Nieminen, P; Peura, P; Rahkila, P; Rinta-Antila, S; Ruotsalainen, P; Sandzelius, M; Saren, J; Saygi, B; Simpson, J; Sorri, J; Thornthwaite, A; Uusitalo, J
2012-01-01
The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.
Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods.
Prlj, Antonio; Sandoval-Salinas, María Eugenia; Casanova, David; Jacquemin, Denis; Corminboeuf, Clémence
2016-06-14
The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard electronic structure methods do not provide a balanced description of the two (typically) lowest singlet state (La and Lb) excitations. While the Lb state is highly sensitive to correlation effects, La suffers from the same drawbacks as charge transfer excitations. We show that the comparison between CIS/CIS(D) can serve as a diagnostic for detecting the two problematic excited states. Standard TD-DFT and even its spin-flip variant lead to inaccurate excitation energies and interstate gaps, with only a double hybrid functional performing somewhat better. The complication inherent to a balanced description of these states is so important that even CC2 and ADC(2) do not necessarily match the ADC(3) reference.
Féraud, Géraldine; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe; Grégoire, Gilles; Soorkia, Satchin
2015-06-11
The electronic spectroscopy and the electronic excited state properties of cold protonated phenylalanine and protonated tyrosine have been revisited on a large spectral domain and interpreted by comparison with ab initio calculations. The protonated species are stored in a cryogenically cooled Paul trap, maintained at ∼10 K, and the parent and all the photofragment ions are mass-analyzed in a time-of-flight mass spectrometer, which allows detecting the ionic species with an improved mass resolution compared to what is routinely achieved with a quadrupole mass spectrometer. These new results emphasize the competition around the band origin between two proton transfer reactions from the ammonium group toward either the aromatic chromophore or the carboxylic acid group. These reactions are initiated by the coupling of the locally excited ππ* state with higher charge transfer states, the positions and coupling of which depend on the conformation of the protonated molecules. Each of these reaction processes gives rise to specific fragmentation channels that supports the conformer selectivity observed in the photofragmentation spectra of protonated tyrosine and phenylalanine.
Unnatural parity resonance states in positron-excited hydrogen scattering
Ma Jia; Zhou Ya-Jun; Wang Yuan-Cheng
2012-01-01
The coupled-channels optical method for positron scattering has been applied to investigate resonance states with unnatural parities in a positron-excited hydrogen system.The positronium formation channels and continuum channel are included via a complex equivalent local potential.Resonance states with angular momenta L =1 to L =2 and parities (-1)L+1 are calculated.Resonance energies and widths are reported and compared with other theoretical calculations.We found that the opening positronium formation channels play an important role in forming nondipole Feshbach resonances.
Modular Hamiltonian for Excited States in Conformal Field Theory.
Lashkari, Nima
2016-07-22
We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.
Modular Hamiltonian of Excited States in Conformal Field Theory
Lashkari, Nima
2015-01-01
We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the replica Z_n symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.
The investigation of interactions in the excited state of flavins using time-resolved spectroscopy
Visser, A.J.W.G.
1975-01-01
In paper I the results obtained with a very short (3 nsec) intense laser pulse as excitation source are described. This pulse excites such a large amount of flavin molecules into higher excited singlet and triplet states that changes in absorption of these higher excited states can be analyzed with
Quantum Entanglement of Locally Excited States in Maxwell Theory
Nozaki, Masahiro
2016-01-01
In 4 dimensional Maxwell gauge theory, we study the changes of (Renyi) entangle-ment entropy which are defined by subtracting the entropy for the ground state from the one for the locally excited states generated by acting with the gauge invariant local operators on the state. The changes for the operators which we consider in this paper reflect the electric-magnetic duality. The late-time value of changes can be interpreted in terms of electromagnetic quasi-particles. When the operator constructed of both electric and magnetic fields acts on the ground state, it shows that the operator acts on the late-time structure of quantum entanglement differently from free scalar fields.
Excited-State Properties of Molecular Solids from First Principles
Kronik, Leeor; Neaton, Jeffrey B.
2016-05-01
Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion.
Initial state-resolved excited state absorption spectroscopy of ZBLAN:Ho3+ glass
Piatkowski, D.; Wisniewski, K.; Koepke, C.; Piramidowicz, R.; Klimczak, M.; Malinowski, M.
2008-12-01
Phase-sensitive and frequency-resolved detection techniques are used for the initial state-resolved excited state absorption (ESA) measurements in ZBLAN:Ho3+ glass. Both experimental techniques were applied simultaneously in a broad spectral range (550 1750 nm) for the first time. Estimated results are compared and discussed in detail. A simple kinetic model, used for qualitative considerations, is presented and successfully compared with the experimental data. The measured spectra will be useful for identifying new up-conversion excitation channels in the considered system, where ESA transitions originating from several excited levels are observed.
Application of spectroscopy and super-resolution microscopy: Excited state
Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)
2016-02-19
Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10^{-9} s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.
Metastable excited states of OBr2- and OCl2- dianions
Noorisafa, Zeinab; Sabzyan, Hassan; Keshavarz, Elham
2014-11-01
Electronic stabilities, structures, properties, and spectroscopic constants of the halogen oxide dianions OBr2- and OCl2- and their singly charged anions which are of astrophysical and laboratory interests have been studied. The X2Σ states of OBr2- and OCl2- are metastable with PECs having smooth wells with minima located at R = 1.859 Å and 1.776 Å, and Coulomb barriers of 40402.54987 cm-1 and 43746.63462 cm-1 heights located at RRCB = 2.100 Å and 1.922 Å, respectively, both without any vibrational states. While, the B2Σ state of OBr2- and the A2Σ state of OCl2- are metastable with PECs having wells deep enough to suite several bound states, with minima located at Re = 1.773 Å and 1.6430 Å, and Coulomb barriers of 191437.45813 cm-1 and 180550.70294 cm-1 heights located at RRCB = 2.658 Å and 2.4480 Å, with De = 1.26470 eV and 1.60837 eV, respectively. The OBr- and OCl- singly charged anions are stable in their ground states. Based on the calculated Frank-Condon factors, it is concluded that metastable excited state OBr2- and OCl2- dianions and ground state OBr- and OCl- singly charged anions can be formed via electron capture processes.
Excited-state proton transfer of firefly dehydroluciferin.
Presiado, Itay; Erez, Yuval; Simkovitch, Ron; Shomer, Shay; Gepshtein, Rinat; Pinto da Silva, Luís; Esteves da Silva, Joaquim C G; Huppert, Dan
2012-11-08
Steady-state and time-resolved emission techniques were used to study the protolytic processes in the excited state of dehydroluciferin, a nonbioluminescent product of the firefly enzyme luciferase. We found that the ESPT rate coefficient is only 1.1 × 10(10) s(-1), whereas those of d-luciferin and oxyluciferin are 3.7 × 10(10) and 2.1 × 10(10) s(-1), respectively. We measured the ESPT rate in water-methanol mixtures, and we found that the rate decreases nonlinearly as the methanol content in the mixture increases. The deprotonated form of dehydroluciferin has a bimodal decay with short- and long-time decay components, as was previously found for both D-luciferin and oxyluciferin. In weakly acidic aqueous solutions, the deprotonated form's emission is efficiently quenched. We attribute this observation to the ground-state protonation of the thiazole nitrogen, whose pK(a) value is ~3.
Excited states above the proton threshold in {sup 26}Si
Komatsubara, T. [Institute for Basic Science (IBS), Rare Isotope Science Project, Yuseong-gu Daejeon (Korea, Republic of); Kubono, S.; Ito, Y. [RIKEN, Saitama (Japan); Hayakawa, T.; Shizuma, T. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Ozawa, A.; Ishibashi, Y. [University of Tsukuba, Institute of Physics, Tsukuba, Ibaraki (Japan); Moriguchi, T. [National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka (Japan); Yamaguchi, H.; Kahl, D. [University of Tokyo, Wako Branch, Center for Nuclear Study (CNS), Wako, Saitama (Japan); Hayakawa, S. [Laboratori Nazionali del Sud-INFN, Catania (Italy); Nguyen Binh, Dam [Vietnamese Academy for Science and Technology, Institute of Physics, Hanoi (Viet Nam); Chen, A.A.; Chen, J. [McMaster University, Hamilton, Ontario (Canada); Setoodehnia, K. [University of Notre Dame, Department of Physics, Notre Dame, Indiana (United States); Kajino, T. [National Astronomical Observatory, Tokyo (Japan); University of Tokyo, Department of Astronomy, Graduate School of Science, Tokyo (Japan)
2014-09-15
The level scheme above the proton threshold in {sup 26}Si is crucial for evaluating the {sup 25}Al(p, γ){sup 26}Si stellar reaction, which is important for understanding the astrophysical origin of the long-lived cosmic radioactivity {sup 26}Al(T{sub 1/2} = 7.17 x 10{sup 5} y) in the Galaxy. The excited states in {sup 26}Si have been studied using an in-beam γ-ray spectroscopy technique with the {sup 24}Mg({sup 3}He, nγ){sup 26}Si reaction. γ-rays with energies up to 4.6 MeV emitted from excited states in {sup 26}Si have been measured using large volume HPGe detectors. The spin-parity of one of the most important states reported recently at 5890.0keV has been assigned as 0{sup +} by γ-γ angular correlation measurements in this work. (orig.)
Excited-State Dynamics of Oxyluciferin in Firefly Luciferase
Snellenburg, Joris J.
2016-11-23
The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.
Radiative Decays of Low-Lying Excited-State Hyperons
Taylor, Simon [Rice Univ., Houston, TX (United States)
2000-05-01
The quark wave-functions of the lower-lying excited-state hyperons Lambda(1405), Sigma(1385), and Lambda(1520) are not well understood. For example, the Lambda(1405) may not be a regular three-quark state but a $\\bar{K}$N molecule. Several competing models have been proposed, but none have been convincingly eliminated. Measuring radiative decays provides a means of discriminating between the models. The radiative branching of ratios are predicted to be small (~1%), but the radiative widths vary by factors of 2-10 from model to model. The existing experimental data is sparse and inconsistent; moreover, the radiative decay of the Sigma(1385) has never been observed before (except for one event). These lower-lying excited state hypersons were produced in a tagged photon-beam experiment in the CLAS detector at TJNAF in the reaction gamma p → K^{+} Y* for photon energies from threshold to 2.4 GeV. The radiative branching ration for the Sigma^{0}(1385) relative to the Sigma^{0}(1385) → Lambda pi^{0} channel was measured to be 0.021 ± 0.008$+0.004\\atop{-0.007}$, corresponding to a partial width of 640 ± 270$+130\\atop{-220}$ keV.
Proton Decay from Excited States in Spherical Nuclei
Misicu, S; Talou, P
1998-01-01
Based on a single particle model which describes the time evolution of the wave function during tunneling across a one dimensional potential barrier we study the proton decay of $^{208}$Pb from excited states with non-vanishing angular momentum $\\ell$. Several quantities of interest in this process like the decay rate $\\lambda$, the period of oscillation $T_{osc}$, the transient time $t_{tr}$, the tunneling time $t_{tun}$ and the average value of the proton packet position $ r_{av} $ are computed and compared with the WKB results.
Triaxiality near the 110Ru ground state from Coulomb excitation
Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.
2017-03-01
A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.
Averaging in Parametrically Excited Systems – A State Space Formulation
Pfau Bastian
2016-01-01
Full Text Available Parametric excitation can lead to instabilities as well as to an improved stability behavior, depending on whether a parametric resonance or anti-resonance is induced. In order to calculate the stability domains and boundaries, the method of averaging is applied. The problem is reformulated in state space representation, which allows a general handling of the averaging method especially for systems with non-symmetric system matrices. It is highlighted that this approach can enhance the first order approximation significantly. Two example systems are investigated: a generic mechanical system and a flexible rotor in journal bearings with adjustable geometry.
Excited-State Upconversion of Pr(0.5) Yb(1.5): ZB LAN under Two-Colour Excitation
CHEN Xiao-Bo; SONG Zeng-Fu
2005-01-01
@@ We report the excited-state upconversion in Pr(0.5)Yb(1.5):ZBLAN under two-colour excitation of 960nm laser and xenon lamp light.Three obvious upconversion excitation peaks around 856.0, 804.2 and 787.1 nm were observed and the involved mechanism has been explained.The measured upconversion excitation peak 856.0nm corresponds to the sum of theoretical values 852nm and 866nm owing to the 1G4(Pr3+)→ 1I6(Pr3+) and 1G4(Pr3+ )→ 3 P1 (Pr3+ ) excited state absorption transitions.The measured 804.2 and 787.1 nm upconversion excitation peaks originate from the excited state absorption transitions 3H6 (Pr3+ )→ 1 D2 (Pr3+) and 1G4 (Pr3+ )→ 3P2 (Pr3+), respectively.The excited state absorption upconversion 1 G4(Pr3+)→ 1 I6 (Pr3+) is strong because of its large oscillator strength f = 23.040 × 10-6.
Bohr, Henrik; Malik, F. Bary
2013-01-01
The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...
Excited-state relaxation in π-conjugated polymers
Frolov, S. V.; Bao, Z.; Wohlgenannt, M.; Vardeny, Z. V.
2002-05-01
We study ultrafast relaxation processes of odd- (Bu) and even-parity (Ag) exciton states in poly(p-phenylene vinylene) derivatives. The Bu states are studied using a regular two-beam pump-and-probe spectroscopy, which can monitor vibronic relaxation and exciton diffusion. In order to observe the Ag states, a three-beam femtosecond transient spectroscopy is developed, in which two different excitation pulses successively generate odd-parity (1Bu) excitons at 2.2 eV and then reexcite them to higher Ag states. We are able to distinguish two different classes of Ag states: one class (mAg) experiences ultrafast internal conversion back to the lowest singlet exciton, whereas the other class (kAg) in violation of the Vavilov-Kasha's rule undergoes a different relaxation pathway. The excitons subsequently dissociate into long-lived polaron pairs, which results in emission quenching with the action spectrum similar to that of the intrinsic photoconductivity. We conclude that the Ag states above 3.3 eV (kAg) are charge-transfer states, that mediate carrier photogeneration.
Photoionization spectroscopy of excited states of cold cesium dimers
Bouloufa, Nadia; Viteau, Matthieu; Chotia, Amodsen; Fioretti, Andrea; Gabbanini, Carlo; Allegrini, Maria; Aymar, Mireille; Comparat, Daniel; Dulieu, Olivier; Pillet, Pierre
2010-01-01
Photoionization spectroscopy of cold cesium dimers obtained by photoassociation of cold atoms in a magneto-optical trap is reported here. In particular, we report on the observation and on the spectroscopic analysis of all the excited states that have actually been used for efficient detection of cold molecules stabilized in the triplet a^3Sigma_u^+ ground state. They are: the (1)^3Sigma_g^+ state connected to the 6s+6p asymptote, the (2)^3Sigma_g^+ and (2)^3Pi_g states connected to the 6s+5d asymptote and finally the (3)^3Sigma_g^+ state connected to the 6s + 7s asymptote. The detection through these states spans a wide range of laser energies, from 8000 to 16500 cm-1, obtained with different laser dyes and techniques. Information on the initial distribution of cold molecules among the different vibrational levels of the a^3Sigma_u^+ ground state is also provided. This spectroscopic knowledge is important when conceiving schemes for quantum manipulation, population transfer and optical detection of cold cesi...
State-to-state kinetics and transport properties of electronically excited N and O atoms
Istomin, V. A.; Kustova, E. V.
2016-11-01
A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.
Atomic GHZ States Prepared in Two Directly Coupled Cavities with Virtual Excitations in One Step
杨榕灿; 黄志平; 郭强; 张鹏飞; 钟纯勇; 张天才
2011-01-01
A scheme for one-step preparation of atomic GHZ states in two directly coupled cavities via virtual excitations is proposed. In the whole procedure, the information is carried only in two ground states of A-type atoms, while the excited states of atoms and cavity modes are virtually excited, leading the system to be insensitive to atomic spontaneous emission and photon loss.
Optical Generation of Single- or Two-Mode Excited Entangled Coherent States
REN Zhen-Zhong; JING Hui; ZHANG Xian-Zhou
2008-01-01
With nonlinear Mach-Zehnder interferometer (NLMZI) and a type-Ⅰ beta-barium borate (BBO) crystal, we optically generate single-mode excited entangled coherent states. This scheme can be easily generalized to generate two-mode excited entangled coherent states. We simply analyse different influences of single- and two-mode photon excitations on entangled coherent states.
Breathing-like excited state of the Hoyle state in 12C
Zhou, Bo; Tohsaki, Akihiro; Horiuchi, Hisashi; Ren, Zhongzhou
2016-10-01
The existence of the 03+ and 04+ states around 10 MeV excitation energy in 12C is confirmed by a fully microscopic 3 α cluster model. Firstly, a generator coordinate method (GCM) calculation is performed by superposing optimized 2 α +α Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave functions with the radius-constraint method. The obtained two excited 0+ states above the Hoyle state are consistent with the recently observed states by experiment. Secondly, a variational calculation using the single 2 α +α THSR wave function orthogonalized to the ground and Hoyle states is made and it also supports the existence of the 03+ state obtained by the GCM calculation. The analysis of the obtained 03+ state is made by studying its 2 α -α reduced width amplitude, its 2 α correlation function, and the large monopole matrix element between this state and the Hoyle state, which shows that this 03+ state is a breathing-like excited state of the Hoyle state. This character of the 03+ state is very different from the 04+ state which seems to have a bent-arm 3 α structure.
Probing the Locality of Excited States with Linear Algebra.
Etienne, Thibaud
2015-04-14
This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.
Excited state mass spectra of singly charmed baryons
Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)
2016-10-15
Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)
Universal crossover from ground-state to excited-state quantum criticality
Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain
2017-01-01
We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover.
Jianzhong Li; Dongyi Han; Huijun Yuan; Jing Cheng; Yanping Lu; Yu Lu; Aiting Chen; Yi Sun; Dongyang Kang; Xin Zhang; Pu Dai
2010-01-01
We present the clinical and genetic findings for a Chinese family with X-linked non-syndromic hearing loss in which the affected males showed congenital profound sensorineural hearing impairment. In two affected brothers, the computer tomography of temporal bone showed bilateral dilation of the internal auditory canal with fistulous communication between the lateral canal and the basal cochlear turn, which is consistent with the typical DFNX2 phenotype. A missense mutation (c.647G→A) in the POU3F4 gene caused a substitution from glycine to glutamic acid at position 216 (p.G216E), and this mutation was found to consistently cosegregate with the deafness phenotype in the family. The mutation resulted in the loss of function of the POU3F4 by decreasing the affinity between the protein and DNA, as shown in silico by the structural analysis. Prenatal diagnosis of pregnant proband of this family revealed the C.647G→A mutation in DNA extracted from the amniotic fluid surrounding the fetus. The appropriate use of genetic testing and prenatal diagnosis plays a key role in reducing the recurrence of genetic defects in high-risk families.
Proton Halo or Skin in the Excited States of Light Nuclei
陈金根; 蔡翔舟; 张虎勇; 沈文庆; 任中洲; 蒋维洲; 马余刚; 钟晨; 魏义彬; 郭威; 周星飞; 马国亮; 王鲲
2003-01-01
Properties of nuclei 13,15N and 9B are investigated in the relativistic mean-field theory with NLZ and NL3 force parameters. The calculated binding energies are very close to the experimental ones. The calculations show that the first excited state (1p1/2) in 9B, the first excited state (2s1/2) in 13N and the second excited state (2s1/2) in 15N are weakly bound. In particular, for 13N and 15N, the proton density distributions in the two above excited states have a long tail and the rms radii of the last proton are greatly larger compared with their respective matter radii. It is predicted that a proton halo exists in the first excited state of 13N and in the second excited state of 15N, respectively. It also indicates that the first excited state in 9B is a proton skin state.
Excited state properties of the astaxanthin radical cation: A quantum chemical study
Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef
2010-07-01
Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.
Excited state properties of the astaxanthin radical cation: A quantum chemical study
Dreuw, Andreas, E-mail: andreas.dreuw@theochem.uni-frankfurt.de [Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max von Laue-Str. 7, 60438 Frankfurt am Main (Germany); Starcke, Jan Hendrik; Wachtveitl, Josef [Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max von Laue-Str. 7, 60438 Frankfurt am Main (Germany)
2010-07-19
Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT{sup {center_dot}+}) are investigated. While the optically allowed excited D{sub 1} and D{sub 3} states are typical {pi}{pi}* excited states, the D{sub 2} and D{sub 4} states are n{pi}* states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed {pi}{pi}* states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.
Kondo, Jorge M; Guttridge, Alex; Wade, Christopher G; De Melo, Natalia R; Adams, Charles S; Weatherill, Kevin J
2015-01-01
We report on the observation of Electromagnetically Induced Transparency (EIT) and Absorption (EIA) of highly-excited Rydberg states in thermal Cs vapor using a 4-step excitation scheme. The advantage of this 4-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to 2 or 3 step excitation schemes using two orders of magnitude less laser power. Consequently each step is driven by a relatively low power infra-red diode laser opening up the prospect for new applications. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.
Selective population and neutron decay of the first excited state of semi-magic O-23
Schiller, A; Bazin, D; Brown, B A; Brown, J; DeYoung, P A; Finck, J E; Frank, N; Gade, A; Hinnefeld, J; Howes, R; Lecouey, J L; Luther, B; Peters, W A; Scheit, H; Thoennessen, M; Tostevin, J A
2006-01-01
We have observed an excited state in the neutron-rich semi-magic nucleus O-23 for the first time. No such states have been found in previous searches using gamma-ray spectroscopy. The observation of a resonance in n-fragment coincidence measurements confirms the speculation in the literature that the lowest excited state is neutron unbound and establishes positive evidence for a 2.8(1) MeV excitation energy of the first excited state in O-23. The non-observation of a predicted second excited state is explained assuming selectivity of inner-shell knockout reactions.
Breathing-like excited state of the Hoyle state in ${^{12}{\\rm C}}$
Zhou, Bo; Horiuchi, Hisashi; Ren, Zhongzhou
2016-01-01
The existence of the $0_3^+$ and $0_4^+$ states around 10 MeV excitation energy in ${^{12}{\\rm C}}$ is confirmed by a fully microscopic 3$\\alpha$ cluster model. Firstly, a GCM (generator coordinate method) calculation is performed by superposing optimized 2$\\alpha$+$\\alpha$ THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave functions with the radius-constraint method. The obtained two excited $0^+$ states above the Hoyle state are consistent with the recently observed states by experiment. Secondly, a variational calculation using the single 2$\\alpha$+$\\alpha$ THSR wave function orthogonalized to the ground and Hoyle states is made and it also supports the existence of the $0_3^+$ state obtained by the GCM calculation. The analysis of the obtained $0_3^+$ state is made by studying its 2$\\alpha$-$\\alpha$ reduced width amplitude, its 2$\\alpha$ correlation function, and the large monopole matrix element between this state and the Hoyle state, which shows that this $0_3^+$ state is a breathing-like excited state of th...
New excited states in the halo nucleus {sup 6}He
Mougeot, X. [CEA, Centre de Saclay, IRFU, Service de Physique Nucleaire, F-91191 Gif-sur-Yvette (France); Lapoux, V., E-mail: valerie.lapoux@cea.fr [CEA, Centre de Saclay, IRFU, Service de Physique Nucleaire, F-91191 Gif-sur-Yvette (France); Mittig, W. [GANIL, Bld. Henri Becquerel, BP 5027, F-14021 Caen Cedex (France); Alamanos, N.; Auger, F.; Avez, B. [CEA, Centre de Saclay, IRFU, Service de Physique Nucleaire, F-91191 Gif-sur-Yvette (France); Beaumel, D.; Blumenfeld, Y. [Institut de Physique Nucleaire, CNRS-IN2P3, F-91406 Orsay (France); Dayras, R.; Drouart, A. [CEA, Centre de Saclay, IRFU, Service de Physique Nucleaire, F-91191 Gif-sur-Yvette (France); Force, C. [GANIL, Bld. Henri Becquerel, BP 5027, F-14021 Caen Cedex (France); Gaudefroy, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Gillibert, A. [CEA, Centre de Saclay, IRFU, Service de Physique Nucleaire, F-91191 Gif-sur-Yvette (France); Guillot, J. [Institut de Physique Nucleaire, CNRS-IN2P3, F-91406 Orsay (France); Iwasaki, H. [CEA, Centre de Saclay, IRFU, Service de Physique Nucleaire, F-91191 Gif-sur-Yvette (France); Al Kalanee, T. [GANIL, Bld. Henri Becquerel, BP 5027, F-14021 Caen Cedex (France); Keeley, N. [Department of Nuclear Reactions, National Centre for Nuclear Research, PL-00681, Warsaw (Poland); Nalpas, L.; Pollacco, E.C. [CEA, Centre de Saclay, IRFU, Service de Physique Nucleaire, F-91191 Gif-sur-Yvette (France); Roger, T. [GANIL, Bld. Henri Becquerel, BP 5027, F-14021 Caen Cedex (France); and others
2012-12-05
The low-lying spectroscopy of {sup 6}He was investigated via the 2-neutron transfer reaction p({sup 8}He,t) with the {sup 8}He beam delivered by the SPIRAL facility at 15.4 AMeV. The light charged particles produced by the direct reactions were measured using the MUST2 Si-strip telescope array. Above the known 2{sup +} state, two new resonances were observed: at E{sup Low-Asterisk }=2.6{+-}0.3 MeV (width {Gamma}=1.6{+-}0.4 MeV) and at 5.3{+-}0.3 MeV with {Gamma}=2{+-}1 MeV. Through the analysis of the angular distributions, they correspond to a 2{sup +} state and to an L=1 state, respectively. These new states, challenging the nuclear theories, could be used as benchmarks for checking the microscopic inputs of the newly improved structure models, and should trigger development of models including the treatments of both core excitation and continuum coupling effects.
Excited state effects in nucleon matrix element calculations
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, Martha [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leontiou, Theodoros [Frederick Univ., Nicosia (Cyprus). General Dept.; Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2011-12-15
We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution left angle x right angle {sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f}=2+1+1 maximally twisted mass Wilson fermions. (orig.)
Alpha-particle decays from excited states in 24Mg
LIOTTA; R; J
2011-01-01
Using a cluster model based on the Woods-Saxon potential, alpha-particle decays from excited states in 24Mg have been system atically investigated. Calculations can in general reproduce experimental data, noticing the fact that the preformation factor P of alpha particle in alpha-decaying nuclei is of order from 100 to 10?2. This can be the evidence for the α+20Ne structure in 24Mg. Meanwhile, the results also show the existence of other configurations, such as 16O+2α. Since the calculated decay widths are very sensitive to the angular momentum carried by the outgoing cluster (α particle), our results could serve as a guide to experimental spin assignments.
Theoretical studies of excited state 1,3 dipolar cycloadditions
Belluccci, Michael A.
The 1,3 dipolar photocycloaddition reaction between 3-hydroxy-4',5,7-trimethoxyflavone (3-HTMF) and methyl cinnamate is investigated in this work. Since its inception in 2004 [JACS, 124, 13260 (2004)], this reaction remains at the forefront in the synthetic design of the rocaglamide natural products. The reaction is multi-faceted in that it involves multiple excited states and is contingent upon excited state intramolecular proton transfer (ESIPT) in 3-HTMF. Given the complexity of the reaction, there remain many questions regarding the underlying mechanism. Consequently, throughout this work we investigate the mechanism of the reaction along with a number of other properties that directly influence it. To investigate the photocycloaddition reaction, we began by studying the effects of different solvent environments on the ESIPT reaction in 3-hydroxyflavone since this underlying reaction is sensitive to the solvent environment and directly influences the cycloaddition. To study the ESIPT reaction, we developed a parallel multi-level genetic program to fit accurate empirical valence bond (EVB) potentials to ab initio data. We found that simulations with our EVB potentials accurately reproduced experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all solvents. Furthermore, we found that the ultrafast ESIPT process results from a combination of ballistic transfer and intramolecular vibrational redistribution. To investigate the cycloaddition reaction mechanism, we utilized the string method to obtain minimum energy paths on the ab initio potential. These calculations demonstrated that the reaction can proceed through formation of an exciplex in the S1 state, followed by a non-adiabatic transition to the ground state. In addition, we investigated the enantioselective catalysis of the reaction using alpha,alpha,alpha',alpha'-tetraaryl-1,3-dioxolan-4,5-dimethanol alcohol (TADDOL). We found that TADDOL lowered the energy
Ultracold Heteronuclear Mixture of Ground and Excited State Atoms
Khramov, Alexander; Dowd, William; Roy, Richard; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana; Gupta, Subhadeep
2014-01-01
We report on the realization of an ultracold mixture of lithium atoms in the ground state and ytterbium atoms in the excited metastable 3P2 state. Such a mixture can support broad magnetic Feshbach resonances which may be utilized for the production of ultracold molecules with an electronic spin degree of freedom, as well as novel Efimov trimers. We investigate the interaction properties of the mixture in the presence of an external magnetic field and find an upper limit for the background interspecies two-body inelastic decay coefficient of K'2 < 3e-12 cm^3/s for the 3P2 m_J=-1 substate. We calculate the dynamic polarizabilities of the Yb 3P2 magnetic substates for a range of wavelengths, and find good agreement with our measurements at 1064nm. Our calculations also allow the identification of magic frequencies where Yb ground and metastable states are identically trapped and the determination of the interspecies van der Waals coefficients.
Excited-State Wigner Crystals in One Dimension
Rogers, Fergus J M
2016-01-01
Wigner crystals (WC) are electronic phases peculiar to low-density systems, particularly in the uniform electron gas. Since its introduction in the early twentieth century, this model has remained essential to many aspects of electronic structure theory and condensed-matter physics. Although the (lowest-energy) ground-state WC (GSWC) has been thoroughly studied, the properties of excited-state WCs (ESWCs) are basically unknown. To bridge this gap, we present a well-defined procedure to obtain an entire family of ESWCs in a one-dimensional electron gas using a symmetry-broken mean-field approach. While the GSWC is a commensurate crystal (i.e.~the number of density maxima equals the number of electrons), these ESWCs are incommensurate crystals exhibiting more or less maxima. Interestingly, they are lower in energy than the (uniform) Fermi fluid state. For some of these ESWCs we have found asymmetrical band gaps, which would lead to anisotropic conductivity. These properties are associated to unusual characteris...
Transfer matrices and excitations with matrix product states
Zauner, V.; Draxler, D.; Vanderstraeten, L.; Degroote, M.; Haegeman, J.; Rams, M. M.; Stojevic, V.; Schuch, N.; Verstraete, F.
2015-05-01
We use the formalism of tensor network states to investigate the relation between static correlation functions in the ground state of local quantum many-body Hamiltonians and the dispersion relations of the corresponding low-energy excitations. In particular, we show that the matrix product state transfer matrix (MPS-TM)—a central object in the computation of static correlation functions—provides important information about the location and magnitude of the minima of the low-energy dispersion relation(s), and we present supporting numerical data for one-dimensional lattice and continuum models as well as two-dimensional lattice models on a cylinder. We elaborate on the peculiar structure of the MPS-TM’s eigenspectrum and give several arguments for the close relation between the structure of the low-energy spectrum of the system and the form of the static correlation functions. Finally, we discuss how the MPS-TM connects to the exact quantum transfer matrix of the model at zero temperature. We present a renormalization group argument for obtaining finite bond dimension approximations of the MPS, which allows one to reinterpret variational MPS techniques (such as the density matrix renormalization group) as an application of Wilson’s numerical renormalization group along the virtual (imaginary time) dimension of the system.
Ground-state and excited-state structures of tungsten-benzylidyne complexes
Lovaasen, B. M.; Lockard, J. V.; Cohen, B. W.; Yang, S.; Zhang, X.; Simpson, C. K.; Chen, L. X.; Hopkins, M. D. (Chemical Sciences and Engineering Division); ( XSD); (The Univ. of Chicago)
2012-01-01
The molecular structure of the tungsten-benzylidyne complex trans-W({triple_bond}CPh)(dppe){sub 2}Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d{sub xy}){sup 2} ground state and luminescent triplet (d{sub xy}){sup 1}({pi}*(WCPh)){sup 1} excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W {yields} P {pi}-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d{sub xy}){sup 1}-configured 1{sup +}, and (d{sub xy}){sup 2} [W(CPh)(dppe){sub 2}(NCMe)]{sup +} (2{sup +}). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 {angstrom} in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M({triple_bond}E)L{sub n} (E = O, N) compounds with analogous (d{sub xy}){sup 1}({pi}*(ME)){sup 1} excited states is due to the {pi} conjugation within the WCPh unit, which lessens the local W-C {pi}-antibonding character of the {pi}*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1{sup +}, and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.
Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto
2017-01-01
state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...... iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. We...
Excited-State Dynamics in Colloidal Semiconductor Nanocrystals.
Rabouw, Freddy T; de Mello Donega, Celso
2016-10-01
Colloidal semiconductor nanocrystals have attracted continuous worldwide interest over the last three decades owing to their remarkable and unique size- and shape-, dependent properties. The colloidal nature of these nanomaterials allows one to take full advantage of nanoscale effects to tailor their optoelectronic and physical-chemical properties, yielding materials that combine size-, shape-, and composition-dependent properties with easy surface manipulation and solution processing. These features have turned the study of colloidal semiconductor nanocrystals into a dynamic and multidisciplinary research field, with fascinating fundamental challenges and dazzling application prospects. This review focuses on the excited-state dynamics in these intriguing nanomaterials, covering a range of different relaxation mechanisms that span over 15 orders of magnitude, from a few femtoseconds to a few seconds after photoexcitation. In addition to reviewing the state of the art and highlighting the essential concepts in the field, we also discuss the relevance of the different relaxation processes to a number of potential applications, such as photovoltaics and LEDs. The fundamental physical and chemical principles needed to control and understand the properties of colloidal semiconductor nanocrystals are also addressed.
Ground States and Excited States in a Tunable Graphene Quantum Dot
WANG Lin-Jun; CAO Gang; TU Tao; LI Hai-Ou; ZHOU Cheng; HAO Xiao-Jie; GUO Guang-Can; GUO Guo-Ping
2011-01-01
We prepare an etched gate tunable quantum dot in single-layer graphene and present transport measurement in this system. We extract the information of the ground states and excited states of the graphene quantum dot, as denoted by the presence of characteristic Coulomb blockade diamond diagrams. The results demonstrate that the quantum dot in single-layer graphene bodes well in future quantum transport study and quantum computing applications.%@@ We prepare an etched gate tunable quantum dot in single-layer graphene and present transport measurement in this system.We extract the information of the ground states and excited states of the graphene quantum dot, as denoted by the presence of characteristic Coulomb blockade diamond diagrams.The results demonstrate that the quantum dot in single-layer graphene bodes well in future quantum transport study and quantum computing applications.
Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I
2015-02-12
Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.
Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations
Starcke, Jan Hendrik; Wormit, Michael; Dreuw, Andreas
2009-10-01
Due to the close relation of the polyenyl radicals C2n+1H2n+3• and polyene radical cations C2nH2n+2•+ to the neutral linear polyenes, one may suspect their excited states to possess substantial double excitation character, similar to the famous S1 state of neutral polyenes and thus to be equally problematic for simple excited state theories. Using the recently developed unrestricted algebraic-diagrammatic construction scheme of second order perturbation theory and the equation-of-motion coupled-cluster method, the vertical excitation energies, their corresponding oscillator strengths, and the nature of the wave functions of the lowest excited electronic states of the radicals are calculated and analyzed in detail. For the polyenyl radicals two one-photon allowed states are found as D1 and D4 states, with two symmetry-forbidden D2 and D3 states in between, while in the polyene radical cations D1 and D2 are allowed and D3 is forbidden. The order of the states is conserved with increasing chain length. It is found that all low-lying excited states exhibit a significant but similar amount of doubly excited configuration in their wave functions of 15%-20%. Using extrapolation, predictions for the excitation energies of the five lowest excited states of the polyene radical cations are made for longer chain lengths.
Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.
Feixas, Ferran; Vandenbussche, Jelle; Bultinck, Patrick; Matito, Eduard; Solà, Miquel
2011-12-14
Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.
Wallace-Williams, Stacie E.; Møller, Søren; Goldbeck, Robert A.;
1993-01-01
The shapes of the fluorescence emission and lowest excited singlet-state absorption spectra of all-trans-1,4- diphenylbutadiene (DPB) in hydrocarbon solvents vary with excitation wavelength when exciting on the extreme red edge of the ground-state absorption spectrum. This contrasts with the wave......The shapes of the fluorescence emission and lowest excited singlet-state absorption spectra of all-trans-1,4- diphenylbutadiene (DPB) in hydrocarbon solvents vary with excitation wavelength when exciting on the extreme red edge of the ground-state absorption spectrum. This contrasts...... changes in DPB can be explained in terms of an excitation wavelength-dependent production of s-cis and s-trans rotamer populations in the excited state. The DPB fluorescence emission spectrum was resolved into s-cis and s-trans components. The vibronic structure of the s-cis fluorescence spectrum...
Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho
1994-08-01
The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.
Filatov, Mikhail A.
2015-10-13
The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.
Hu, Weifeng
2015-01-01
We describe and extend the formalism of state-specific analytic density matrix renormalization group (DMRG) energy gradients, first used by Liu et al (J. Chem. Theor.Comput. 9, 4462 (2013)). We introduce a DMRG wavefunction maximum overlap following technique to facilitate state-specific DMRG excited state optimization. Using DMRG configuration interaction (DMRG-CI) gradients we relax the low-lying singlet states of a series of trans-polyenes up to C20H22. Using the relaxed excited state geometries as well as correlation functions, we elucidate the exciton, soliton, and bimagnon ("single-fission") character of the excited states, and find evidence for a planar conical intersection.
Two-mode excited entangled coherent states and their entanglement properties
Zhou Dong-Lin; Kuang Le-Man
2009-01-01
This paper introduces two types of two-mode excited entangled coherent states(TMEECSs)|Ψ±(α,m,n)>,studies their entanglement characteristics,and investigates the influence of photon excitations on quantum entanglement.It shows that for the state|Ψ+(α,m,m)>the two-mode photon excitations affect seriously entanglement character while the state |Ψ-(α,m,m)>is always a maximally entangled state,and shows how such states can be produced by using cavity quantum electrodynamics and quantum measurements.It finds that the entanglement amount of the TMEECSs is larger than that of the single-mode excited entangled coherent states with the same photon excitation number.
Excited-state lifetime of adenine near the first electronic band origin.
Kang, Hyuk; Chang, Jinyoung; Lee, Sang Hak; Ahn, Tae Kyu; Kim, Nam Joon; Kim, Seong Keun
2010-10-21
The excited-state lifetime of supersonically cooled adenine was measured in the gas phase by femtosecond pump-probe transient ionization as a function of excitation energy between 36 100 and 37 500cm(-1). The excited-state lifetime of adenine is ∼2ps around the 0-0 band of the (1)L(b) ππ(∗) state (36 105cm(-1)). The lifetime drops to ∼1ps when adenine is excited to the (1)L(a) ππ(∗) state with the pump energy at 36 800cm(-1) and above. The excited-state lifetimes of (1)L(a) and (1)L(b) ππ(∗) states are differentiated in accordance with previous frequency-resolved and computational studies.
Femtosecond Twisting and Coherent Vibrational Motion in the Excited State of Tetraphenylethylene
Lenderink, E; Duppen, K.; Wiersma, D. A.
1995-01-01
The initial dynamics after excitation to the S-1 state of tetraphenylethylene is studied using femtosecond pump-probe spectroscopy. From the rapid spectral changes during the first few hundred femtoseconds, we conclude that a fast ethylenic twisting motion occurs in the excited state within this tim
Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping
2017-02-14
Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.
Roy, Khokan; Kayal, Surajit; Ariese, Freek; Beeby, Andrew; Umapathy, Siva
2017-02-01
Femtosecond transient absorption (fs-TA) and Ultrafast Raman Loss Spectroscopy (URLS) have been applied to reveal the excited state dynamics of bis(phenylethynyl)benzene (BPEB), a model system for one-dimensional molecular wires that have numerous applications in opto-electronics. It is known from the literature that in the ground state BPEB has a low torsional barrier, resulting in a mixed population of rotamers in solution at room temperature. For the excited state this torsional barrier had been calculated to be much higher. Our femtosecond TA measurements show a multi-exponential behaviour, related to the complex structural dynamics in the excited electronic state. Time-resolved, excited state URLS studies in different solvents reveal mode-dependent kinetics and picosecond vibrational relaxation dynamics of high frequency vibrations. After excitation, a gradual increase in intensity is observed for all Raman bands, which reflects the structural reorganization of Franck-Condon excited, non-planar rotamers to a planar conformation. It is argued that this excited state planarization is also responsible for its high fluorescence quantum yield. The time dependent peak positions of high frequency vibrations provide additional information: a rapid, sub-picosecond decrease in peak frequency, followed by a slower increase, indicates the extent of conjugation during different phases of excited state relaxation. The CC triple (-C≡C-) bond responds somewhat faster to structural reorganization than the CC double (>C=Cwires."
Dereka, Bogdan; Rosspeintner, Arnulf; Li, Zhiquan; Liska, Robert; Vauthey, Eric
2016-04-01
Most symmetric quadrupolar molecules designed for two-photon absorption behave as dipolar molecules in the S1 electronic excited state. This is usually explained by a breakup of the symmetry in the excited state. However, the origin of this process and its dynamics are still not fully understood. Here, excited-state symmetry breaking in a quadrupolar molecule with a D-π-A-π-D motif, where D and A are electron donating and accepting units, is observed in real time using ultrafast transient infrared absorption spectroscopy. The nature of the relaxed S1 state was found to strongly depend on the solvent polarity: (1) in nonpolar solvents, it is symmetric and quadrupolar; (2) in weakly polar media, the quadrupolar state observed directly after excitation transforms to a symmetry broken S1 state with one arm bearing more excitation than the other; and (3) in highly polar solvents, the excited state evolves further to a purely dipolar S1 state with the excitation localized entirely on one arm. The time scales associated with the transitions between these states coincide with those of solvation dynamics, indicating that symmetry breaking is governed by solvent fluctuations.
Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite
Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru
2016-08-01
When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxyκxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2ṡṡ2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxyκxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxyκxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons.
Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex.
Ben Amor, Nadia; Soupart, Adrien; Heitz, Marie-Catherine
2017-02-01
The singlet valence excited states of an iron-porphyrin-pyrazine-carbonyl complex are investigated up to the Soret band (about 3 eV) using multi-state complete active space with perturbation at the second order (MS-CASPT2). This complex is a model for the active site of carboxy-hemoglobin/myoglobin. The spectrum of the excited states is rather dense, comprising states of different nature: d→π* transitions, d→d states, π→π* excitations of the porphyrin, and doubly excited states involving simultaneous intra-porphyrin π→π* and d→d transitions. Specific features of the MS-CASPT2 method are investigated. The effect of varying the number of roots in the state average calculation is quantified as well as the consequence of targeted modifications of the active space. The effect of inclusion of standard ionization potential-electron affinity (IPEA) shift in the perturbation treatment is also investigated.
Betowski, Leon D; Enlow, Mark; Riddick, Lee
2002-06-01
Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHs) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calculated for ten PAHs by several ab initio methods. The main method used for these calculations was the Configuration Interaction approach, modeling excited states as combinations of single substitutions out of the Hartree-Fock ground state. These calculations correlate well with both experimentally measured singlet and triplet state energies and also previous HOMO-LUMO gap energies that approximate the singlet state energies. The excited state calculations then correlate well with general models of photo-induced toxicity based for the PAHs.
Zhang, Mingzhen; Yang, Dapeng; Ren, Baiping; Wang, Dandan
2013-07-01
One important issue of current interest is the excited-state equilibrium for some ESITP dyes. However, so far, the information about the driving forces for excited-state equilibrium is very limited. In this work, the time-dependent density functional theory (TDDFT) method was employed to investigate the nature of the excited-state intramolecular proton transfer (ESIPT). The geometric structures, vibrational frequencies, frontier molecular orbitals (MOs) and the potential-energy curves for 1-hydroxy-11H-benzo[b]fluoren-11-one (HHBF) in the ground and the first singlet excited state were calculated. Analysis of the results shows that the intramolecular hydrogen bond of HHBF is strengthened from E to E*. Moreover, it is found that electron density swing between the proton acceptor and donor provides the driving forces for the forward and backward ESIPT, enabling the excited-state equilibrium to be established. Furthermore, we proposed that the photoexcitation and the interchange of position for electron-donating and electron-withdrawing groups are the main reasons for the electron density swing. The potential-energy curves suggest that the forward ESIPT and backward ESIPT may happen on the similar timescale, which is faster than the fluorescence decay of both E* and K* forms.
Continuum excitations of $^{26}$O in a three-body model: $0^+$ and $2^+$ states
Grigorenko, L V
2015-01-01
The structure and decay dynamics for $0^+$ and $2^+$ continuum excitations of $^{26}$O are investigated in a three-body $^{24}$O+$n$+$n$ model. Validity of a simple approximation for the cross section profile for long-lived $2n$ emission is demonstrated. Sequence of three $0^+$ monopole ("breathing mode" type) excited states is predicted. These states could probably be interpreted as analogues of Efimov states pushed into continuum by insufficient binding. The possible energies of the $2^+$ states are related to excitation spectrum of $^{25}$O. We discuss possible connection of predicted $^{26}$O spectrum with observations.
Ground and Excited States of Bipolarons in Two and Three Dimensions
RUAN Yong-Hong; CHEN Qing-Hu
2007-01-01
The properties of large bipolarons in two and three dimensions are investigated by averaging over the relative wavefunction of the two electrons and using the Lee-Low-Pines-Huybrechts variational method. The groundstate (GS) and excited-state energies of the Fr(o)hlich bipolaron for the whole range of electron-phonon coupling constants can be obtained. The energies of the first relaxed excited state (RES) and Franck-Condon (FC) excited state of the bipolaron are also calculated. It is found that the first RES energy is lower than the FC state energy. The comparison of our GS and RES energies with those in literature is also given.
Ultrafast internal conversion of excited cytosine via the lowest pipi electronic singlet state.
Merchán, Manuela; Serrano-Andrés, Luis
2003-07-09
Computational evidence at the CASPT2 level supports that the lowest excited state pipi* contributes to the S1/S0 crossing responsible for the ultrafast decay of singlet excited cytosine. The computed radiative lifetime, 33 ns, is consistent with the experimentally derived value, 40 ns. The nOpi* state does not play a direct role in the rapid repopulation of the ground state; it is involved in a S2/S1 crossing. Alternative mechanisms through excited states pisigma* or nNpi* are not competitive in cytosine.
Electric field enhancement of depolarization of excited states
Nayfeh, M.H.; Hillard, G.B.; Glab, W.L.
1985-12-01
Our calculations show that an external dc electric field can enhance by many orders of magnitude the depolarization cross section of highly excited atoms by charged particles. The enhancement is due to the fact that the electric field extends and shifts the electronic charge distribution along its direction, thus effectively creating a giant electric dipole in the atom.
Szczepanik, Beata
2015-11-01
The excited state proton transfer (ESPT) has been extensively studied for hydroxyarenes, phenols, naphthols, hydroxystilbenes, etc., which undergo large enhancement of acidity upon electronic excitation, thus classified as photoacids. The changes of acidic character in the excited state of cyano-substituted derivatives of phenol, hydroxybiphenyl and naphthol are reviewed in this paper. The acidity constants pKa in the ground state (S0), pKa∗ in the first singlet excited state (S1) and the change of the acidity constant in the excited state ΔpKa for the discussed compounds are summarized and compared. The results of the acidity studies show, that the "electro-withdrawing" CN group in the molecules of naphthol, hydroxybiphenyl and phenol causes dramatic increase of their acidity in the excited state in comparison to the ground state. This effect is greatest for the cyanonaphthols (the doubly substituted CN derivatives are almost as strong as a mineral acid in the excited state), comparable for cyanobiphenyls, and smaller for phenol derivatives. The increase of acidity enables proton transfer to various organic solvents, and the investigation of ESPT can be extended to a variety of solvents besides water. The results of theoretical investigations were also presented and used for understanding the protolytic equilibria of cyano derivatives of naphthol, hydroxybiphenyl and phenol.
Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics
Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.
2016-10-01
We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.
Joshi, Sunita; Pant, Debi D.
2012-06-01
Ground and excited state dipole moments of probe quinine sulphate (QS) was obtained using Solvatochromic shift method. Higher dipole moment is observed for excited state as compared to the ground state which is attributed to the higher polarity of excited state.
Optically Excited Entangled States in Organic Molecules Illuminate the Dark.
Upton, L; Harpham, M; Suzer, O; Richter, M; Mukamel, S; Goodson, T
2013-06-20
We utilize quantum entangled photons to carry out nonlinear optical spectroscopy in organic molecules with an extremely small number of photons. For the first time, fluorescence is reported as a result of entangled photon absorption in organic nonlinear optical molecules. Selectivity of the entangled photon absorption process is also observed and a theoretical model of this process is provided. Through these experiments and theoretical modeling it is found that while some molecules may not have strong classical nonlinear optical properties due to their excitation pathways; these same excitation pathways may enhance the entangled photon processes. It is found that the opposite is also true. Some materials with weak classical nonlinear optical effects may exhibit strong non-classical nonlinear optical effects. Our entangled photon fluorescence results provide the first steps in realizing and demonstrating the viability of entangled two-photon microscopy, remote sensing, and optical communications.
Femtosecond Excited State Dynamics of Size Selected Neutral Molecular Clusters.
Montero, Raúl; León, Iker; Fernández, José A; Longarte, Asier
2016-07-21
The work describes a novel experimental approach to track the relaxation dynamics of an electronically excited distribution of neutral molecular clusters formed in a supersonic expansion, by pump-probe femtosecond ionization. The introduced method overcomes fragmentation issues and makes possible to retrieve the dynamical signature of a particular cluster from each mass channel, by associating it to an IR transition of the targeted structure. We have applied the technique to study the nonadiabatic relaxation of pyrrole homoclusters. The results obtained exciting at 243 nm, near the origin of the bare pyrrole electronic absorption, allow us to identify the dynamical signature of the dimer (Py)2, which exhibits a distinctive lifetime of τ1 ∼ 270 fs, considerably longer than the decays recorded for the monomer and bigger size clusters (Py)n>2. A possible relationship between the measured lifetime and the clusters geometries is tentatively discussed.
High-energy excited states in 98Cd
Blazhev, A.; Braun, N.; Grawe, H.; Boutachkov, P.; Nara Singh, B. S.; Brock, T.; Liu, Zh; Wadsworth, R.; Górska, M.; Jolie, J.; Nowacki, F.; Pietri, S.; Domingo-Pardo, C.; Kojouharov, I.; Caceres, L.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Hoischen, R.; Kurz, N.; Nociforo, C.; Prochazka, A.; Schaffner, H.; Steer, S.; Weick, H.; Wollersheim, H.-J.; Ataç, A.; Bettermann, L.; Eppinger, K.; Faestermann, T.; Finke, F.; Geibel, K.; Hinke, C.; Gottardo, A.; Ilie, G.; Iwasaki, H.; Krücken, R.; Merchan, E.; Nyberg, J.; Pfützner, M.; Podolyák, Zs; Regan, P.; Reiter, P.; Rinta-Antila, S.; Rudolph, D.; Scholl, C.; Söderström, P.-A.; Warr, N.; Woods, P.
2010-01-01
In 98Cd a new high-energy isomeric γ-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the 98Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around 100Sn are discussed.
Solution photochemistry of OCIO: excited-state dissociation and isomerization
Dunn, Robert C.; Flanders, Bret N.; Simon, John D.
1992-04-01
The photodissociation dynamics of OClO in room temperature water solution were investigated using picosecond transient absorption spectroscopy. The time dependent data are consistent with the conclusion that following excitation at 355 nm, 90% of the OCIO molecules photodissociate forming ClO and 0 and 10% isomerize forming CIOO. The photochemically generated CIOO thermally decomposes into Cl and 02 with a rate constant of -6.7 x 1O9 s-1.
High-energy excited states in {sup 98}Cd
Blazhev, A; Braun, N; Jolie, J [Universitaet zu Koeln, Cologne (Germany); Grawe, H; Boutachkov, P; Gorska, M; Pietri, S; Domingo-Pardo, C; Kojouharov, I; Caceres, L; Engert, T; Farinon, F; Gerl, J; Goel, N [GSI, Darmstadt (Germany); Singh, B S Nara; Brock, T; Wadsworth, R [University of York, York (United Kingdom); Liu, Zh [University of Edinburgh, Edinburgh (United Kingdom); Nowacki, F [IPHC, Strasbourg (France); Grebosz, J, E-mail: a.blazhev@ikp.uni-koeln.d [IFJ PAN, Krakow (Poland)
2010-01-01
In {sup 98}Cd a new high-energy isomeric {gamma}-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the {sup 98}Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around {sup 100}Sn are discussed.
Fang Chao; Sun Li-Feng
2011-01-01
An algorithm has been introduced to calculate molecular bond polarizabilities of thiourea, which supply essential electronic information about the nonresonant Raman excited virtual states.The main dynamical behaviour of the excited virtual states of thiourea is that the Raman excited electrons tend to flow to the N-H bonds and C-N bonds from the S-C bonds because of the electronic repulsion effect. The difference in Raman excited electron relaxation time of thiourea under 514.5-nm and 325-nm excitations has been observed, which quantitatively shows that the Raman scattering process is dependent on the wavelength of the pumping laser. Finally, the distribution of the electrons at the final stage of relaxation is given out through the comparison between the bond electronic densities of the ground states and the bond polarizabilities after deexcitation.
Carbazole-containing light- emitting polymers: Properties of excited states
无
2003-01-01
A series of light-emitting conjugated polymers alternatively involving carbazole and bivinylene arylene moieties in the main chain were synthesized via Wittig-Horner type copolymerization. The photoinduced charge transfer process relating to these polymers was investigated by using the technique of fluorescence spectroscopy. The interaction between excited copolymers and C60 in benzene solution was studied. The fluorescence quenching can be well described by the "sphere-of-action" mechanism. It is believed that two basic steps are involved in the quenching process, i.e. the diffusion of excitation within the conjugated polymers and the dissociation of the exctions trapped by fullerene. The radius of the sphere-of-action can be related to the excitation diffusion length, which depends on the lifetime of the exciton. The dynamic fluorescence quenching of the copolymers by another quencher, 1,4-dicyanobenzene (DCB) was also surveyed. Copolymers with different chain conformations show different temperature effects in the dynamic quenching. A planar conformation is beneficial for the quenching via bimolecular collision.
Modelling excited states of weakly bound complexes with density functional theory.
Briggs, Edward A; Besley, Nicholas A
2014-07-28
The binding within the ethene-argon and formaldehyde-methane complexes in the ground and electronically excited states is studied with equation of motion coupled cluster theory (EOM-CCSD), second-order Møller-Plesset perturbation theory (MP2) and density functional theory with dispersion corrections (DFT-D). Electronically excited states are studied within MP2 and Kohn-Sham DFT formalisms by exploiting a procedure called the maximum overlap method that allows convergence of the relevant self-consistent field equations to higher energy (or excited state) solutions. Potential energy curves computed using MP2 are in good agreement with the EOM-CCSD calculations for both the valence and Rydberg excited states studied. For the DFT-D approach, B3LYP-D3/aug-cc-pVTZ calculations are found to be in agreement with EOM-CCSD for the ground and valence excited states. However, for the π3s Rydberg state of ethene-argon and the n3s Rydberg state of formaldehyde-methane significant deviation is observed, and this disagreement with EOM-CCSD is present for a variety of DFT-D based approaches. Variation of the parameters within the D2 dispersion correction results in closer agreement with EOM-CCSD for the Rydberg states but demonstrates that a different parameterisation from the ground state is required for these states. This indicates that time-dependent density functional theory calculations based upon a DFT-D reference may be satisfactory for excitations to valence states, but will potentially be inaccurate for excitations to Rydberg states, or more generally states where the nature of the electron density is significantly different from the ground state.
Ferrighi, Lara; Frediani, Luca; Ruud, Kenneth
2010-01-01
The theory and an implementation of the solvent contribution to the cubic response function for the polarizable continuum model for multiconfigurational self-consistent field wave functions is presented. The excited-state polarizability of benzene, para-nitroaniline, and nitrobenzene has been obtained from the double residue of the cubic response function calculated in the presence of an acetonitrile and dioxane solvent. The calculated excited-state polarizabilities are compared to results obtained from the linear response function of the explicitly optimized excited states.
Characterization of ground state entanglement by single-qubit operations and excitation energies
Giampaolo, S M; Illuminati, F; Verrucchi, P; Giampaolo, Salvatore M.; Illuminati, Fabrizio; Siena, Silvio De; Verrucchi, Paola
2006-01-01
We consider single-qubit unitary operations and study the associated excitation energies above the ground state of interacting quantum spins. We prove that there exists a unique operation such that the vanishing of the corresponding excitation energy determines a necessary and sufficient condition for the separability of the ground state. We show that the energy difference associated to factorization exhibits a monotonic behavior with the one-tangle and the entropy of entanglement, including non analiticity at quantum critical points. The single-qubit excitation energy thus provides an independent, directly observable characterization of ground state entanglement, and a simple relation connecting two universal physical resources, energy and nonlocal quantum correlations.
Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.; Glynn, Stephen; Kuciauskas, Darius
2016-11-21
We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.
Banerji, Natalie; Duvanel, Guillaume; Perez-Velasco, Alejandro; Maity, Santanu; Sakai, Naomi; Matile, Stefan; Vauthey, Eric
2009-07-23
The photophysical properties of two hybrid multichromophoric systems consisting of an oligophenylethynyl (OPE) scaffold decorated by 10 red or blue naphthalene diimides (NDIs) have been investigated using femtosecond spectroscopy. Ultrafast charge separation was observed with both red and blue systems. However, the nature of the charge-separated state and its lifetime were found to differ substantially. For the red system, electron transfer occurs from the OPE scaffold to an NDI unit, independently of whether the OPE or an NDI is initially excited. However, charge separation upon OPE excitation is about 10 times faster, and takes place with a 100 fs time constant. The average lifetime of the ensuing charge-separated state amounts to about 650 ps. Charge separation in the blue system depends on which of the OPE scaffold or an NDI is excited. In the first case, an electron is transferred from the OPE to an NDI and the hole subsequently shifts to another NDI unit, whereas in the second case symmetry-breaking charge separation between two NDI units occurs. Although the charges are located on two NDIs in both cases, different recombination dynamics are observed. This is explained by the location of the ionic NDI moieties that depends on the charge separation pathway, hence on the excitation wavelength. The very different dynamics observed with red and blue systems can be accounted for by the oxidation potentials of the respective NDIs that are higher and lower than that of the OPE scaffold. Because of this, the relative energies of the two charge-separated states (hole on the OPE or an NDI) are inverted.
Multiple-resonance local wave functions for accurate excited states in quantum Monte Carlo
Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia
2016-01-01
We introduce a novel class of local multideterminant Jastrow–Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to
On the nature of excited electronic states in cyanine dyes: implications for visual pigment spectra
Dinur, Uri; Honig, Barry; Schulten, Klaus
1980-06-01
CNDO/S CI calculations are carried out on polyenes and on cyanine dyes. In contrast to polyenes, doubly excited configurations have a strong effect on the first optically allowed excited state in cyanines. Protonated Schiff bases of retinal are closely related to cyanine dyes, with important consequences for models of visual pigment spectra and photochemistry.
Iterative Solutions for Low Lying Excited States of a Class of Schroedinger Equation
Friedberg, R; Zhao, W Q
2006-01-01
The convergent iterative procedure for solving the groundstate Schroedinger equation is extended to derive the excitation energy and the wave function of the low-lying excited states. The method is applied to the one-dimensional quartic potential problem. The results show that the iterative solution converges rapidly when the coupling $g$ is not too small.
Iterative solutions for low lying excited states of a class of Schr(o)dinger equation
R.Friedberga; T.D.Lee; Zhao Wei-Qin
2006-01-01
The convergent iterative procedure for solving the groundstate Schr(o)dinger equation is extended to derive the excitation energy and the wavefunction of the low-lying excited states. The method is applied to the one-dimensional quartic potential problem. The results show that the iterative solution converges rapidly when the coupling g is not too small.
Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states.
Podlesnyak, A; Streule, S; Mesot, J; Medarde, M; Pomjakushina, E; Conder, K; Tanaka, A; Haverkort, M W; Khomskii, D I
2006-12-15
A gradual spin-state transition occurs in LaCoO3 around T approximately 80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering and found that with increasing temperature an excitation at approximately 0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal-field interaction and spin-orbit coupling, we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (t(2g)(5)e(g)(1), S=1) versus high-spin (t(2g)(4)e(g)(2), S=2) states. Since the g factor obtained from the field dependence of the inelastic neutron scattering is g approximately 3, the second interpretation is definitely favored.
Slow Intramolecular Vibrational Relaxation Leads to Long-Lived Excited-State Wavepackets.
Rafiq, Shahnawaz; Scholes, Gregory D
2016-09-01
Broadband optical pump and compressed white light continuum probe were used to measure the transient excited-state absorption, ground-state bleach, and stimulated emission signals of cresyl violet solution in methanol. Amplitude oscillations caused by wavepacket motion in the ground and excited electronic states were analyzed. It was found that vibrational coherences in the excited state persist for more than the experimental waiting time window of 6 ps, and the strongest mode had a dephasing time constant of 2.4 ps. We hypothesize the dephasing of the wavepacket in the excited state is predominantly caused by intramolecular vibrational relaxation (IVR). Slow IVR indicates weak mode-mode coupling and therefore weak anharmonicity of the potential of this vibration. Thus, the initially prepared vibrational wavepacket in the excited state is not significantly perturbed by nonadiabatic coupling to other electronic states, and hence the diabatic and adiabatic representations of the system are essentially identical within the Born-Oppenheimer approximation. The wavepacket therefore evolves with time in an almost harmonic potential, slowly dephased by IVR and the pure vibrational decoherence. The consistency in the position of node (phase change in the wavepacket) in the excited-state absorption and stimulated emission signals without undergoing any frequency shift until the wavepacket is completely dephased conforms to the absence of any reactive internal conversion.
$\\sigma$-SCF: A Direct Energy-targeting Method To Mean-field Excited States
Ye, Hong-Zhou; Ricke, Nathan D; Van Voorhis, Troy
2016-01-01
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g.\\ Hartree-Fock) solutions. Energy-based optimization methods for excited states, like $\\Delta$-scf, tend to fall into the lowest solution consistent with a given symmetry -- a problem known as "variational collapse". In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, $\\sigma$-scf, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find \\emph{all} excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states -- ground or excited -- are treated on an equal footing. Third, it provides an alternate approach to locate $\\Delta$-scf solutions that are otherwise inaccessible by the...
The Millimeter-Wave Spectrum of Methacrolein. Torsion-Rotation Effects in the Excited States
Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.
2015-06-01
Last year we reported the analysis of the rotational spectrum of s-trans conformer of methacrolein CH2=C(CH3)CHO in the ground vibrational state. In this talk we report the study of its low lying excited vibrational states. The study is based on room-temperature absorption spectra of methacrolein recorded in the frequency range 150 - 465 GHz using the spectrometer in Lille. The new results include assignment of the first excited torsional state (131 cm-1), and the joint analysis of the vt = 0 and vt = 1 states, that allowed us to improve the model in the frame of Rho-Axis-Method (RAM) Hamiltonian and to remove some strong correlations between parameters. Also we assigned the first excited vibrational state of the skeletal torsion mode (170 cm-1). The inverse sequence of A and E tunneling substates as well as anomalous A-E splittings observed for the rotational lines of vsk = 1 state clearly indicate a coupling between methyl torsion and skeletal torsion. However we were able to fit within experimental accuracy the rotational lines of vsk = 1 state using the RAM Hamiltonian. Because of the inversion of the A and E tunneling substates the rotational lines of the vsk = 1 states were assumed to belong to a virtual first excited torsional state. Finally, we assigned several low-Ka rotational transitions of the excited vibrational states above 200 cm-1 but their analysis is complicated by different rotation-vibration interactions. In particular there is an evidence of the Fermi-type resonance between the second excited torsional state and the first excited state of the in-plane skeletal bending mode (265 cm-1). Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged. Zakharenko O. et al., 69th ISMS, 2014, TI01
Metastable states in parametrically excited multimode Hamiltonian systems
Kirr, E
2003-01-01
Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...
Inelastic WIMP-nucleus scattering to the first excited state in $^{125}$Te
Vergados, J D; Kortelainen, M; Pirinen, P; Srivastava, P C; Suhonen, J; Thomas, A W
2016-01-01
The direct detection of dark matter constituents, in particular the weakly interacting massive particles (WIMPs), is considered central to particle physics and cosmology. In this paper we study transitions to the excited states, possible in some nuclei, which have sufficiently low lying excited states. Examples considered previously were the first excited states of $^{127}$I and $^{129}$Xe and $^{83}$Kr. Here we examine $^{125}$Te, which offers some advantages and is currently being considered as a target.In all these cases the extra signature of the gamma rays following the de-excitation of these states has definite advantages over the purely nuclear recoil and, in principle, such a signature can be exploited experimentally. A brief discussion of the experimental feasibility is given in the context of the CUORE experiment.
Collective magnetic excitations of C4-symmetric magnetic states in iron-based superconductors
Scherer, Daniel D.; Eremin, Ilya; Andersen, Brian M.
2016-11-01
We study the collective magnetic excitations of the recently discovered C4-symmetric spin-density-wave states of iron-based superconductors with particular emphasis on their orbital character based on an itinerant multiorbital approach. This is important since the C4-symmetric spin-density-wave states exist only at moderate interaction strengths where damping effects from a coupling to the continuum of particle-hole excitations strongly modify the shape of the excitation spectra compared to predictions based on a local moment picture. We uncover a distinct orbital polarization inherent to magnetic excitations in C4-symmetric states, which provide a route to identify the different commensurate magnetic states appearing in the continuously updated phase diagram of the iron-pnictide family.
Interception of excited vibrational quantum states by O2 in atmospheric association reactions.
Glowacki, David R; Lockhart, James; Blitz, Mark A; Klippenstein, Stephen J; Pilling, Michael J; Robertson, Struan H; Seakins, Paul W
2012-08-31
Bimolecular reactions in Earth's atmosphere are generally assumed to proceed between reactants whose internal quantum states are fully thermally relaxed. Here, we highlight a dramatic role for vibrationally excited bimolecular reactants in the oxidation of acetylene. The reaction proceeds by preliminary adduct formation between the alkyne and OH radical, with subsequent O(2) addition. Using a detailed theoretical model, we show that the product-branching ratio is determined by the excited vibrational quantum-state distribution of the adduct at the moment it reacts with O(2). Experimentally, we found that under the simulated atmospheric conditions O(2) intercepts ~25% of the excited adducts before their vibrational quantum states have fully relaxed. Analogous interception of excited-state radicals by O(2) is likely common to a range of atmospheric reactions that proceed through peroxy complexes.
Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.
2016-01-01
Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically b...
Inelastic WIMP-nucleus scattering to the first excited state in 125Te
Vergados, J. D.; Avignone, F. T., III; Kortelainen, M.; Pirinen, P.; Srivastava, P. C.; Suhonen, J.; Thomas, A. W.
2016-11-01
The direct detection of dark matter constituents, in particular the weakly interacting massive particles (WIMPs), is considered central to particle physics and cosmology. In this paper we study transitions to the excited states, possible in nuclei which have sufficiently low-lying excited states. Examples considered previously were the first excited states of 127I, 129Xe and 83Kr. Here, we examine 125Te, which offers some advantages and is currently being considered as a target. In all these cases the extra signature of the gamma rays following the de-excitation of these states has definite advantages over the purely nuclear recoil and in principle such a signature can be exploited experimentally. A brief discussion of the experimental feasibility is given in the context of the CUORE experiment.
Notes on entanglement entropy for excites holographic states in 2d
Rashkov, Radoslav C
2016-01-01
In this work we revisit the problem of contributions of excited holographic states to the entanglement entropy in two-dimensional conformal field theories. Using the results of replica trick method we find three expressions for these contributions. First, we express the contribution of the excited states in terms of Aharonov invariants. It is shown that beside the Schwarzian, the one-point functions of descendants of energy-momentum also contribute. Given Schwarz-Christoffel map, the contributions to any order can be easily computed. The second expression relates the entanglement entropy of excited states to Faber polynomials and Grunsky coefficients. Based on the relation of Grunsky coefficiens to tau-funcion of dispersionless Toda hierarchy, we find the third expression for contributions of excited holographic states to the entanglement entropy.
Sakai S.
2013-03-01
Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.
Ultrafast excited state dynamics of S2 and S1 states of triphenylmethane dyes.
Singhal, Pallavi; Ghosh, Hirendra N
2014-08-21
Excited state dynamics of S2 and S1 states for a series of TPM dyes, pyrogallol red (PGR), bromopyrogallol red (Br-PGR) and aurin tricarboxylic acid (ATC), have been monitored by using ultrafast transient absorption and fluorescence up-conversion techniques. Optical absorption studies indicate that all the TPM dyes exist as keto-enol tautomers depending upon the pH of the solution. Interestingly, all the TPM dyes give S2 emission (major emitting state) in addition to weak S1 emission. S2 emission lifetimes as fast as ∼150-300 fs and S1 emission lifetimes of 2-5 ns were observed depending upon the molecular structure of the dyes. Femtosecond transient absorption studies suggest the presence of an ultrafast non-radiative decay channel from the S2 state in addition to S2 luminescence. The vibrational relaxation time from hot S1 state is found to be 2-6 ps. The heavy atom effect has been observed in ultrafast relaxation dynamics of Br-PGR.
Permanent Magnet Synchronous Condenser with Solid State Excitation
Hsu, Ping; Muljadi, Eduard; Wu, Ziping; Gao, Wenzhong
2015-10-05
A synchronous condenser consists of a free-spinning wound-field synchronous generator and a field excitation controller. In this paper, we propose a synchronous generator that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage source converter connected in series with the PMSG and the grid. The converter varies the phase voltage of the PMSG so as to create the same effect of over or under excitation in a wound-field machine. The converter output voltage level controls the amount and the direction of the produced reactive power and the voltage's phase is kept in-phase with the grid voltage except a slight phase can be introduced so that some power can be drawn from the grid for maintaining the DC bus voltage level of the converter. Since the output voltage of the converter is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulation.
Zheng, Greg Y.; Rillema, D. Paul; DePriest, Jeff; Woods, Clifton
1998-07-13
Direct access to the triplet emitting state from the ground state is observed for Pt(II) complexes containing heterocyclic (CwedgeC', CwedgeN, NwedgeN') and bis(diphenylphosphino)alkane (PwedgeP') ligands. Extinction coefficients for such transitions are in the range 4-25 M(-)(1) cm(-)(1). Emission quantum yields resulting from singlet-to-triplet excitation are as high as 61-77 times the emission quantum yields resulting from singlet-to-singlet excitation at 296 K. The intersystem crossing quantum yield from the singlet excited state to triplet emitting state is lower than 2% at 296 K but is greatly enhanced at 77 K. The forbidden electronic transition observed for Pt(II) complexes is attributed to result from spin-orbit coupling due to the presence of Pt(II) in the skeleton structure. The importance of excitation spectra on the computation of emission quantum yields is discussed.
Mixed symmetry states and isospin excitation in N = Z nucleus 52Fe
2008-01-01
The interacting boson model with isospin (IBM-3) was applied to study the band structure and electromagnetic transition properties of the low-lying states in the even-even N = Z nucleus 52Fe. The isospin excitation states with T = 0, 1 and 2 were identified, and compared with the available data. The study shows that the 2+3 state is the lowest mixed symmetry state in 52Fe. The excitation energy of the second 0+2 state with T = 0 in nucleus 52Fe was identified. The model calculations with the data show a reasonably good agreement.
Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.
Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia
2016-03-08
We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions. The excitations are further grouped into classes, which are ordered in importance and can be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of interest. We assess the performance of the proposed wave function in the calculation of vertical excitation energies and excited-state geometry optimization of retinal models whose π → π* state has a strong intramolecular charge-transfer character. We find that our multiresonance wave functions recover the reference values of the total energies of the ground and excited states with only a small number of excitations and that the same expansion can be flexibly used at very different geometries. Furthermore, significant computational saving can also be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial considerations without loss of accuracy on the excitation energy. Our multiresonance wave functions are therefore compact, accurate, and very promising for the calculation of multiple excited states of different character in large molecules.
Distribution of populations in excited states of electrodeless discharge lamp of Rb atoms
TAO ZhiMing; WANG YanFei; HONG YeLong; WANG DongYing; ZHANG ShengNan; ZHUANG Wei; CHEN JingBiao
2013-01-01
The intensity of fluorescence spectral lines of Rb atoms in the region of 350-1110 nm is measured in eletrodeless discharge lamp.The population ratio between the excited states is calculated according to the spontaneous transition probabilities with rate equations.At the same time,the population density of energy level is also obtained.The results provide the potential applications of electrodeless discharge lamp in atomic filter and optical frequency reference at higher excited states without a pumping laser.
Structures of 17F and 17O, 17Ne and 17N in the Ground State and the First Excited State
张虎勇; 沈文庆; 任中洲; 马余刚; 陈金根; 蔡翔舟; 卢照辉; 钟晨; 郭威; 魏义彬; 周星飞; 马国亮; 王鲲
2003-01-01
The structures of two couples of mirror nuclei 17 F and 17 O, 17 Ne and 17 N in the ground state and in the first excited state are investigated using the relativistic mean-field approach. Two-proton halo in 17Ne in the first excited state and in the ground state and two-neutron halo in 17N in the first excited state are suggested.Meanwhile, one-proton halo in 17 F in the first excited state and one-neutron halo in 17 O in the first excited state are also suggested. The skin structure appears in 17F and 17N in the ground state.
REN; Yanliang; CHENG; Lin; WAN; Jian; LI; Yongjian; LIU; Junjun; YANG; Guangfu; ZHANG; Lihua; YANG; Song
2006-01-01
The electronic singlet vertical excited states of photosynthetic reaction center (PSRC) in Rhodopseudomonas (Rps.) viridis were investigated by ZINDO and INDO/S methods. The effects of the interactions of pigment-pigment and pigment-protein on the electronic excitations were examined. The calculation results showed that the interactions of pigment-pigment and pigment-protein play an important role in reasonably assigning the experimental absorption and circular dichroism (CD) spectra of PSRC in Rps. virids. By comparing the theoretically computed excited states with the experimental absorption and CD spectra, satisfactory assignments of the experimental spectroscopic peaks were achieved.
Ground State and Elementary Excitations of the S=1 Kagome Heisenberg Antiferromagnet
Hida, Kazuo
2000-01-01
Low energy spectrum of the S=1 kagom\\'e Heisenberg antiferromagnet (KHAF) is studied by means of exact diagonalization and the cluster expansion. The magnitude of the energy gap of the magnetic excitation is consistent with the recent experimental observation for \\mpynn. In contrast to the $S=1/2$ KHAF, the non-magnetic excitations have finite energy gap comparable to the magnetic excitation. As a physical picture of the ground state, the hexagon singlet solid state is proposed and verified b...
Non-orthogonal configuration interaction for the calculation of multielectron excited states
Sundstrom, Eric J.; Head-Gordon, Martin
2014-03-01
We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing ⟨S2⟩ for the ground and excited states.
Non-orthogonal configuration interaction for the calculation of multielectron excited states
Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2014-03-21
We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.
Feng, Qiang; Xu, Yun-Feng; Sun, Jin-Da; Tian, Shan-Xi; Shan, Xiao-Bin; Liu, Fu-Yi; Sheng, Liu-Si
2009-10-01
Photodissociation efficiency spectrum of anionic oxygen atom produced via ion-pair dissociations of carbon dioxide is recorded by means of the synchrotron radiation excitation (XUV photon energy 17.40-20.00 eV). The present spectrum is assigned as the Rydberg-like excited ion-pair states, i.e., Tanaka-Ogawa and Henning series, tilde C2Σg+ (CO+2) vibrational ground-state and excitation series. Three Rydberg series, npσu, npπu, and nfu, converging to tilde C2Σg+ (0, 0, 0), show the higher cross sections.
Laser pulse trains for controlling excited state dynamics of adenine in water.
Petersen, Jens; Wohlgemuth, Matthias; Sellner, Bernhard; Bonačić-Koutecký, Vlasta; Lischka, Hans; Mitrić, Roland
2012-04-14
We investigate theoretically the control of the ultrafast excited state dynamics of adenine in water by laser pulse trains, with the aim to extend the excited state lifetime and to suppress nonradiative relaxation processes. For this purpose, we introduce the combination of our field-induced surface hopping method (FISH) with the quantum mechanical-molecular mechanical (QM/MM) technique for simulating the laser-driven dynamics in the condensed phase under explicit inclusion of the solvent environment. Moreover, we employ parametric pulse shaping in the frequency domain in order to design simplified laser pulse trains allowing to establish a direct link between the pulse parameters and the controlled dynamics. We construct pulse trains which achieve a high excitation efficiency and at the same time keep a high excited state population for a significantly extended time period compared to the uncontrolled dynamics. The control mechanism involves a sequential cycling of the population between the lowest and higher excited states, thereby utilizing the properties of the corresponding potential energy surfaces to avoid conical intersections and thus to suppress the nonradiative decay to the ground state. Our findings provide a means to increase the fluorescence yield of molecules with an intrinsically very short excited state lifetime, which can lead to novel applications of shaped laser fields in the context of biosensing.
Collective and single-particle states at high excitation energy
van den Berg, AM; Akimune, H; Daito, [No Value; Fujimura, H; Fujiwara, M; Fujita, Y; Harakeh, MN; Ihara, F; Inomata, T; Ishibashi, K; Janecke, J; Kalantar-Nayestanaki, N; Laurent, H; Lhenry, [No Value; van der Molen, HKT; O'Donnell, T; Rodin, VA; Tamii, A; Toyokawa, H; Urin, MH; Yoshida, H; Yosoi, M
2001-01-01
Damping of high-lying single-particle states was investigated by the study of decay by proton emission from high-lying states in Nb-91, populated by the Zr-90(alpha, t) reaction at E-alpha = 180 MeV. In addition to decay to the ground state of Zr-90, semi-direct decay was observed to the low-lying (
Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin
2013-11-01
Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening.
Steady-state photoluminescent excitation characterization of semiconductor carrier recombination
Bhosale, J. S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Moore, J. E.; Wang, X.; Bermel, P.; Lundstrom, M. S. [Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)
2016-01-15
Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.
Level density parameters from excitation cross sections of isomeric states
Skakun, E. A.; Batij, V. G.
1992-03-01
Cross section ratios were measured for the production of the isomeric pairs99m,gRh,101m,gRh,102m,gRh,104m,gRh and108m,gIn in the (p,n)-reaction,107m,gIn and109m,gIn in the ( p, γ)-reaction over the energy range up to 9 MeV, and116m,gSb and118m,gSb in the (α, n)-reaction up to 24 MeV. The experimental results for these nuclei as well as for other isometric pairs excited in the ( p, n)-reaction were analysed in the frame of the statistical model for extracting the level density parameter values in the vicinity of closed nucleon shells. The level density parameter behaviour is discussed in the range of nuclear mass numbers under study.
High-energy excited states in {sup 98}Cd
Braun, Norbert; Blazhev, Andrey; Jolie, Jan [Institut fuer Kernphysik, Universitaet Koeln (Germany); Boutachkov, Plamen; Gorska, Magda; Grawe, Hubert; Pietri, Stephane [GSI, Darmstadt (Germany); Brock, Tim; Nara Singh, B.S.; Wadsworth, Robert [Department of Physics, University of York, York (United Kingdom); Liu, Zhong [University of Edinburgh, Edinburgh (United Kingdom)
2009-07-01
Studies of isomerism in the proton-rich N {approx_equal}Z nuclei around {sup 100}Sn give important insights into the role of proton-neutron pairing and also serve as testing grounds for nuclear models. In summer 2008, an experiment on {sup 96,97,98}Cd was performed using the FRS fragment separator and the RISING germanium array at GSI. These exotic nuclei of interest were produced using fragmentation of a 850 MeV/u {sup 124}Xe beam on a 4 g/cm{sup 2} {sup 9}Be target and finally implanted into an active stopper consisting of 9 double-sided silicon strip detectors. In {sup 98}Cd, a new high-energy isomeric transition was identified. Preliminary results on {sup 98}Cd are presented and their implications for the high-excitation level scheme are discussed.
Hu, Weifeng; Chan, Garnet Kin-Lic
2015-07-14
We describe and extend the formalism of state-specific analytic density matrix renormalization group (DMRG) energy gradients, first used by Liu et al. [J. Chem. Theor. Comput. 2013, 9, 4462]. We introduce a DMRG wave function maximum overlap following technique to facilitate state-specific DMRG excited-state optimization. Using DMRG configuration interaction (DMRG-CI) gradients, we relax the low-lying singlet states of a series of trans-polyenes up to C20H22. Using the relaxed excited-state geometries, as well as correlation functions, we elucidate the exciton, soliton, and bimagnon ("single-fission") character of the excited states, and find evidence for a planar conical intersection.
One Neutron Halo in a 12B Excited State
陈宝秋; 马中玉
2001-01-01
The nonlinear relativistic mean field (RMF) theory with a new effective interaction NL3 has been used to inves tigate the bulk properties of the 12B nucleus. The results obtained in the RMF predict one neutron halo in a 12Bexcited state. 12B does not show the neutron halo structure if it is in its ground state.
First-order derivative couplings between excited states from adiabatic TDDFT response theory.
Ou, Qi; Bellchambers, Gregory D; Furche, Filipp; Subotnik, Joseph E
2015-02-14
We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.
Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy
Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)
2014-03-15
Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.
Wurstbauer, U.; Levy, A. L.; Pinczuk, A.; West, K. W.; Pfeiffer, L. N.; Manfra, M. J.; Gardner, G. C.; Watson, J. D.
2015-12-01
We report the observation of low-lying collective charge and spin excitations in the second Landau level at ν =2 +1 /3 and also for the very fragile states at ν =2 +2 /5 and 2 +3 /8 in inelastic light scattering experiments. These modes exhibit a clear dependence on filling factor and temperature substantiating the unique access to the characteristic neutral excitation spectra of the incompressible fractional quantum Hall effect (FQHE) states. A detailed mode analysis reveals low-energy modes at around 70 μ eV and a sharp mode slightly below the Zeeman energy interpreted as gap and spin-wave excitation, respectively. The lowest-energy collective charge excitation spectrum at ν =2 +1 /3 exhibits significant qualitative similarities with its cousin state in the lowest Landau level at ν =1 /3 suggesting similar magnetoroton minima in the neutral excitations. The mode energies differ by a scaling of 0.15 indicating different interaction physics in the N =0 and N =1 Landau levels. The striking polarization dependence in elastic and inelastic light scattering is discussed in the framework of anisotropic electron phases that allow for the stabilization of nematic FQHE states. The observed excitation spectra provide new insights by accessing quantum phases in the bulk of electron systems and facilitate comparison with different theoretical descriptions of those enigmatic FQHE states.
Control of multiple excited image states around segmented carbon nanotubes
Knörzer, J., E-mail: johannes.knoerzer@physnet.uni-hamburg.de; Fey, C., E-mail: christian.fey@physnet.uni-hamburg.de [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761 (Germany); Sadeghpour, H. R. [ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Schmelcher, P. [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761 (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761 (Germany)
2015-11-28
Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems.
A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems
Liu, Wenlan; Köhn, Andreas [Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); InnovationLab GmbH, Speyerer St. 4, D-69115 Heidelberg (Germany); Lunkenheimer, Bernd [InnovationLab GmbH, Speyerer St. 4, D-69115 Heidelberg (Germany); Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz (Germany); Settels, Volker; Engels, Bernd [Institute of Physical and Theoretical Chemistry, University of Würzburg, Emil-Fischer-St. 42, D-97074 Würzburg (Germany); Fink, Reinhold F. [Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen (Germany)
2015-08-28
We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the target system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.
7/3 fractional quantum Hall effect: topology, trion excitations and edge states
Balram, Ajit C.; Wu, Ying-Hai; Sreejith, G. J.; Wójs, Arkadiusz; Jain, J. K.
2013-03-01
Exact diagonalization studies on finite systems show that the quasihole and quasiparticle excitations in the 7/3 fractional quantum Hall (FQH) state are qualitatively distinct from those of the 1/3 state, suggesting the possibility of different topological origins for the two states. We perform composite-fermion diagonalization on larger systems and also evaluate the entanglement spectrum, which shows that in spite of these strong finite size deviations, the 7/3 and 1/3 FQH states have the same topological structure in the thermodynamic limit. Nonetheless, there are substantial non-topological differences between the two, arising from the stronger residual interaction between composite fermions at 7/3. In particular, we show that the lowest energy charged excitations of the 7/3 state are complex trions of composite fermions, which have a much larger size than the charged excitations at 1/3. We discuss many observable consequences of our results.
Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.
1981-12-16
Resonance Raman and electronic absorption spectra are reported for the S/sub 0/ and T/sub 1/ states of the carotenoids ..beta..-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C/sub 50/)-..beta..-carotene, ..beta..-apo-8'-carotenal, and ethyl ..beta..-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S/sub 0/ and T/sub 1/, regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S/sub 0/ and T/sub 1/ reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T/sub 1/ states of carotenoids and in the S/sub 1/ states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S/sub 1/ lifetime (of the /sup 1/B/sub u/ and/or the /sup 1/A/sub g/* states) of ..beta..-carotene in benzene is less than 1 ps.
Permanent Magnet Synchronous Condenser with Solid State Excitation: Preprint
Hsu, P.; Muljadi, E.; Wu, Z.; Gao, W.
2015-04-07
A typical synchronous condenser (SC) consists of a free-spinning, wound-field synchronous generator and a field excitation controller. In this paper, we propose an SC that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage converter controller connected in series to the PMSG. The controller varies the phase voltage of the PMSG and creates the same effect on the reactive power flow as that of an over- or underexcited wound-field machine. The controller’s output voltage magnitude controls the amount of the reactive power produced by the SC. The phase of the controller’s output is kept within a small variation from the grid voltage phase. This small phase variation is introduced so that a small amount of power can be drawn from the grid into the controller to maintain its DC bus voltage. Because the output voltage of the controller is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulations.
Accounting for highly excited states in detailed opacity calculations
Pain, Jean-Christophe
2015-01-01
In multiply-charged ion plasmas, a significant number of electrons may occupy high-energy orbitals. These "Rydberg" electrons, when they act as spectators, are responsible for a number of satellites of X-ray absorption or emission lines, yielding a broadening of the red wing of the resonance lines. The contribution of such satellite lines may be important, because of the high degeneracy of the relevant excited configurations which give these large Boltzmann weights. However, it is in general difficult to take these configurations into account since they are likely to give rise to a large number of lines. We propose to model the perturbation induced by the spectators in a way similar to the Partially-Resolved-Transition-Array approach recently published by C. Iglesias. It consists in a partial detailed-line-accounting calculation in which the effect of the Rydberg spectators is included through a shift and width, expressed in terms of the canonical partition functions, which are key-ingredients of the Super-Tr...
Tada, M; Ogawa, I; Funahashi, H; Yamamoto, K; Matsuki, S
2000-01-01
Coherent time evolution of highly excited Rydberg states in Rb (98 < n < 150) under pulsed electric field in high slew-rate regime was investigated with the field ionization detection. The electric field necessary to ionize the Rydberg states was found to take discrete values successively depending on the slew rate. Specifically the slew-rate dependence of the ionization field varies with the quantum defect value of the states, i.e. with the energy position of the states relative to the adjacent manifold. This discrete transitional behavior of the ionization field observed for the first time is considered to be a manifestation of the strong coherence effect in the time evolution of the Rydberg states in pulsed electric field and opens a new effective way to stringently select a low-l state from the nearby states by field ionization.
Mikhailov, Ivan A.; Tafur, Sergio; Masunov, Artëm E.
2008-01-01
The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes ( C4H6 , C6H8 , and C8H10 ). Symmetry-forbidden singlet nAg states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1Bu-2Ag and 1Bu-mAg , where mAg is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower- nAg states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to π orbitals. When dynamic σ-π correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules.
Nelson, Tammie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Nonlinear Studies (CNLS) and Center for Integrated Nanotechnologies (CINT), Theoretical Division; Fernandez-Alberti, Sebastian [Univ. Nacional de Quilmes, Buenos Aires (Argentina); Chernyak, Vladimir [Wayne State Univ., Detroit, MI (United States). Dept. of Chemistry; Roitberg, Adrian E. [Univ. of Florida, Gainesville, FL (United States). Depts. of Physics and Chemistry. Quantum Theory Project; Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Nonlinear Studies (CNLS) and Center for Integrated Nanotechnologies (CINT), Theoretical Division
2011-01-10
Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully’s fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA{sub g} state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature.
Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3
Schreiber, Marko; Silva-Junior, Mario R.; Sauer, Stephan P. A.; Thiel, Walter
2008-04-01
A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP2/6-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.
Collective excitations, instabilities, and ground state in dense quark matter
Gorbar, E V; Miransky, V A; Shovkovy, I A; Hashimoto, Michio
2006-01-01
We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.
Search for excited states in $^{3}H$ and $^{3}He$
Csoto, A; Csoto, Attila
1999-01-01
The d+N systems are studied in a three-body model, using phenomenological N-N interactions. The scattering matrices are calculated by using the Kohn-Hulthen variational method. Then, they are analytically continued to complex energies and their singularities are localized. We find a virtual state at E=-1.66 MeV in H-3 and a pair of states at E=(-0.42+-i0.52) MeV in He-3 relative to the d+N thresholds, respectively. In addition, we discuss some general aspects and problems of virtual states which may be useful also in the study of other systems, like Li-10.
Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R
1999-01-01
The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...
Yuyuan Zhang
2016-11-01
Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.
Zhang, Yuyuan; Beckstead, Ashley A; Hu, Yuesong; Piao, Xijun; Bong, Dennis; Kohler, Bern
2016-11-30
Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.
The dispersed fluorescence spectrum of NaAr - Ground and excited state potential curves
Tellinghuisen, J.; Ragone, A.; Kim, M. S.; Auerbach, D. J.; Smalley, R. E.; Wharton, L.; Levy, D. H.
1979-01-01
Potential curves for the ground state and the first excited state of NaAr were determined. The van der Waals molecule NaAr was prepared by supersonic free jet expansion of a mixture of sodium, argon, and helium. The electronic transition from the ground state to the first excited state A2pi was excited by a tunable dye laser and the resulting fluorescence was studied. The dispersed fluorescence spectra show discrete and diffuse features, corresponding to transitions from excited vibrational levels of the A state to bound and unbound levels of the x state. The characteristic reflection structure in the bound-free spectra permits an unambiguous assignment of the vibrational numbering in the A state, and this assignment together with previously measured spectroscopic constants are used to calculate the potential curve of the A state. The discrete structure in the fluorescence spectra is used to determine the potential curve of the x state in the well region, and the repulsive part of the X curve is then deduced through trial-and-error simulation of the bound-free spectra.
Indirect predissociation of highly excited singlet states of N2
Heays A.N.
2015-01-01
Full Text Available Indirect predissociation of the b′ 1Σu+(v = 20 level of N2 is studied experimentally by vacuum-ultraviolet photoabsorption employing synchrotron radiation and a Fourier-transform spectrometer, and interpreted with the aid of a quantitative model of interacting 1Πu and 1Σu+, bound and unbound states which solves the coupled Schrödinger equation. An observed rotationally-localised peak in the b′(20 predissociation linewidths is identified by the model as arising from an interaction with a strongly predissociated and unobserved bound level of the mixed c3 1Πu and o3 1Πu Rydberg states. This leads to the dissociation of b′(20 into the continuum of the b 1Πu valence state. The residual observed predissociation of b′ 1Σu+(v = 20 apart from the rotationally-localised peak cannot be explained by a mechanism of 1Πu and 1Σu+ interaction, and must involve states of higher multiplicity.
Excited state proton transfer in the Cinchona alkaloid cupreidine
J. Qian; A.M. Brouwer
2010-01-01
Photophysical properties of the organocatalyst cupreidine (CPD) and its chromophoric building block 6-hydroxyquinoline (6HQ) in protic and nonprotic polar solvents (methanol and acetonitrile) were investigated by means of UV-vis absorption, and steady state and time resolved fluorescence spectroscop
Mean values of local operators in highly excited Bethe states
Pozsgay, B.
2011-01-01
We consider expectation values of local operators in (continuum) integrable models in a situation when the mean value is calculated in a single Bethe state with a large number of particles. We develop a form factor expansion for the thermodynamic limit of the mean value, which applies whenever the d
Lifetime measurement of excited low-spin states via the $(p,p^{\\prime}\\gamma$) reaction
Hennig, A; Mineva, M N; Petkov, P; Pickstone, S G; Spieker, M; Zilges, A
2015-01-01
In this article a method for lifetime measurements in the sub-picosecond regime via the Doppler-shift attenuation method (DSAM) following the inelastic proton scattering reaction is presented. In a pioneering experiment we extracted the lifetimes of 30 excited low-spin states of $^{96}$Ru, taking advantage of the coincident detection of scattered protons and de-exciting $\\gamma$-rays as well as the large number of particle and $\\gamma$-ray detectors provided by the SONIC@HORUS setup at the University of Cologne. The large amount of new experimental data shows that this technique is suited for the measurement of lifetimes of excited low-spin states, especially for isotopes with a low isotopic abundance, where $(n,n^{\\prime}\\gamma$) or - in case of investigating dipole excitations - ($\\gamma,\\gamma^{\\prime}$) experiments are not feasible due to the lack of sufficient isotopically enriched target material.
Zhu, Xi-Ming; Cheng, Zhi-Wen; Carbone, Emile; Pu, Yi-Kang; Czarnetzki, Uwe
2016-08-01
Electron-impact excitation processes play an important role in low-temperature plasma physics. Cross section and rate coefficient data for electron-impact processes from the ground state to excited states or between two excited states are required for both diagnostics and modeling works. However, the collisional processes between excited states are much less investigated than the ones involving the ground state due to various experimental challenges. Recently, a method for determining electron excitation rate coefficients between Ar excited states in afterglow plasmas was successfully implemented and further developed to obtain large sets of collisional data. This method combines diagnostics for electron temperature, electron density, and excited species densities and kinetic modeling of excited species, from which the electron excitation rate coefficients from one of the 1s states to the other 1s states or to one of 2p or 3p states are determined (states are in Paschen’s notation). This paper reviews the above method—namely the combined diagnostics and modeling in afterglow plasmas. The results from other important approaches, including electron-beam measurement of cross sections, laser pump-probe technique for measuring rate coefficients, and theoretical calculations by R-matrix and distorted-wave models are also discussed. From a comparative study of these results, a fitted mathematical expression of excitation rate coefficients is obtained for the electron temperature range of 1-5 eV, which can be used for the collisional-radiative modeling of low-temperature Ar plasmas. At last, we report the limitations in the present dataset and give some suggestions for future work in this area.
Excited-state hydroxyl maser polarimetry: Who ate all the {\\pi}s?
Green, James A; McClure-Griffiths, Naomi M
2015-01-01
We present polarimetric maser observations with the Australia Telescope Compact Array (ATCA) of excited-state hydroxyl (OH) masers. We observed 30 fields of OH masers in full Stokes polarization with the Compact Array Broadband Backend (CABB) at both the 6030 and 6035 MHz excited-state OH transitions, and the 6668-MHz methanol maser transition, detecting 70 sites of maser emission. Amongst the OH we found 112 Zeeman pairs, of which 18 exhibited candidate {\\pi} components. This is the largest single full polarimetric study of multiple sites of star formation for these frequencies, and the rate of 16% {\\pi} components clearly indicates the {\\pi} component exists, and is comparable to the percentage recently found for ground-state transitions. This significant percentage of {\\pi} components, with consistent proportions at both ground- and excited-state transitions, argues against Faraday rotation suppressing the {\\pi} component emission. Our simultaneous observations of methanol found the expected low level of p...
Excited state absorption of Sm2+ in SrF2
Payne, Stephen A.; Chase, L. L.; Krupke, William F.
1988-10-01
The excited state absorption spectrum of Sm2+ in SrF2 has been observed. The absorption peaks associated with the 5D0(4f6) excited state were found to be displaced by approximately 3000 cm-1 from the absorption bands arising from the 7F0(4f6) ground state (after taking the 5D0-7F0 energy separation into account). The observed peak separation is ascribed to the 4f-5d exchange interaction. From the measured peak positions, the exchange energy for the Sm2+ impurity was determined to be about the same order of magnitude as expected for the free ion. The implications of the properties of the excited state absorption bands for the performance of the SrF2:Sm2+ laser are considered.
Effect of solvents on the barrierless reaction in the excited state of cyanine dye
无
2003-01-01
UV-Vis, fluorescence spectroscopy and time resolved spectroscopic technique on picosecond and femto- second scales have been utilized to investigate the effect of steric hindrance and multiple hydroxyl groups of solvents on the barrierless isomerization in excited state of 3, 3′- di(3-sulfopropyl)thiacyanine triethylaminium salt. The results show that the factors mentioned above may be responsible for a different "short-time behavior" of the bleaching signal on the ground state and nonlinear viscosity dependence of the excited-state lifetime in isopropanol and glycol. These phenomena are distinguished from the situation reported in the long-chained monohydroxyl alcohol solvents. However, the dye molecule still exhibits the analyzing- wavelength dependence of the observed fluorescence lifetime, that is, the fluorescence lifetime increases with the increasing of analyzing-wavelength. The conclusions are in agreement with those drawn from femtosecond upconversion fluorescence experiments and further exemplify the barrierless isomerization model in the excited state.
Fluorescence following excited-state protonation of riboflavin at N(5).
Quick, Martin; Weigel, Alexander; Ernsting, Nikolaus P
2013-05-09
Excited-state protonation of riboflavin in the oxidized form is studied in water. In the -1 < pH < 2 range, neutral and N(1)-protonated riboflavin coexist in the electronic ground state. Transient absorption shows that the protonated form converts to the ground state in <40 fs after optical excitation. Broadband fluorescence upconversion is therefore used to monitor solvation and protonation of the neutral species in the excited singlet state exclusively. A weak fluorescence band around 660 nm is assigned to the product of protonation at N(5). Its radiative rate and quantum yield relative to neutral riboflavin are estimated. Protonation rates agree with proton diffusion times for H(+) concentrations below 5 M but increase at higher acidities, where the average proton distance is below the diameter of the riboflavin molecule.
Cui, Yanling; Li, Yafei; Dai, Yumei; Verpoort, Francis; Song, Peng; Xia, Lixin
2016-02-01
In the present work, TDDFT has been used to investigate the excited state intramolecular proton transfer (ESIPT) mechanism of a new chromophore II [Sensors and Actuators B: Chemical. 202 (2014) 1190]. The calculated absorption and fluorescence spectra agree well with experimental results. In addition, two types of II configurations are found in the first excited state (S1), which can be ascribed to the ESIPT reaction. Based on analysis of the calculated infrared (IR) spectra of O-H stretching vibration as well as the hydrogen bonding energies, the strengthening of the hydrogen bond in the S1 state has been confirmed. The frontier molecular orbitals (MOs), Hirshfeld charge distribution and the Natural bond orbital (NBO) have also been analyzed, which displays the tendency of the ESIPT process. Finally, potential energy curves of the S0 and S1 states were constructed, demonstrating that the ESIPT reaction can be facilitated based on the photo-excitation.
Tracking excited-state charge and spin dynamics in iron coordination complexes
Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe
2014-01-01
to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...
Vibronic resonances sustain excited state coherence in light harvesting proteins at room temperature
Novelli, Fabio; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A
2015-01-01
Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semi-classical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we report a series of experiments that unambiguously identify excited state coherent superpositions that dephase on the timescale of the excited state lifetime. Low energy (56 cm-1) oscillations on the signal intensity provide direct experimental evidence for the role of vibrational modes resonant with excitonic splittings in sustaining coherences involving different excited excitonic states at physiological temperature.
Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E
2013-01-01
Recent work from our research group has demonstrated that symmetry-projected Hartree--Fock (HF) methods provide a compact representation of molecular ground state wavefunctions based on a superposition of non-orthogonal Slater determinants. The symmetry-projected ansatz can account for static correlations in a computationally efficient way. Here we present a variational extension of this methodology applicable to excited states of the same symmetry as the ground state. Benchmark calculations on the C$_2$ dimer with a modest basis set, which allows comparison with full configuration interaction results, indicate that this extension provides a high quality description of the low-lying spectrum for the entire dissociation profile. We apply the same methodology to obtain the full low-lying vertical excitation spectrum of formaldehyde, in good agreement with available theoretical and experimental data, as well as to a challenging model $C_{2v}$ insertion pathway for BeH$_2$. The variational excited state methodolo...
Chien-Hao Lin
2015-09-01
Full Text Available In the present work, we report an investigation on quantum entanglement in the doubly excited 2s2 1Se resonance state of the positronium negative ion by using highly correlated Hylleraas type wave functions, determined by calculation of the density of resonance states with the stabilization method. Once the resonance wave function is obtained, the spatial (electron-electron orbital entanglement entropies (von Neumann and linear can be quantified using the Schmidt decomposition method. Furthermore, Shannon entropy in position space, a measure for localization (or delocalization for such a doubly excited state, is also calculated.
Probing excited states dynamics in CO cations using few-cycle IR and EUV laser pulses
Alnaser, A S [Department of Physics, American University in Sharjah, Sharjah (United Arab Emirates); Bocharova, I; Singh, K P; Wei, C; Cocke, C L; Litvinyuk, I V [J. R. Macdonald Laboratory, Physics Department, Kansas State University (United States); Kling, M, E-mail: aalnaser@aus.ed [Max-Planck Institute for Quantum Optics, Garching (Germany)
2009-11-01
We have used few-cycle IR and EUV laser pulses in pump-probe arrangement to trace out the dissociation pathways in CO when exploded by strong laser fields. We present two preliminary sets of data of different pump pulses. In these sets, different excited state of CO cations are populated using (< 10 fs) IR, and EUV pulses respectively. We followed the time evolution of these states using the time-resolved Coulomb explosion imaging technique. We compare the time evolution of IR- and EUV-induced excited states by measuring the KER of the fragment ions as a function of the time delay between the pump and the IR probe pulse.
Linear-scaling computation of excited states in time-domain
YAM ChiYung; CHEN GuanHua
2014-01-01
The applicability of quantum mechanical methods is severely limited by their poor scaling.To circumvent the problem,linearscaling methods for quantum mechanical calculations had been developed.The physical basis of linear-scaling methods is the locality in quantum mechanics where the properties or observables of a system are weakly influenced by factors spatially far apart.Besides the substantial efforts spent on devising linear-scaling methods for ground state,there is also a growing interest in the development of linear-scaling methods for excited states.This review gives an overview of linear-scaling approaches for excited states solved in real time-domain.
Photoionization cross sections of the excited 3s3p 3Po state for atomic Mg
Wang, Guoli; Wan, Jianjie; Zhou, Xiaoxin
2017-01-01
The photoionization cross sections of the excited levels (3s3p 0,1,2,o 3P) of atomic Mg have been studied theoretically using both the nonrelativistic and fully relativistic R-matrix method. For the threshold cross sections, as previous nonrelativistic studies, present calculations show significant differences (a factor of 3) from former experimental values. Large discrepancies with experiment calls for additional measurements of the photoionization cross sections from the excited states of Mg.
Localized excitations in nonlinear complex systems current state of the art and future perspectives
Cuevas-Maraver, Jesús; Frantzeskakis, Dimitri; Karachalios, Nikos; Kevrekidis, Panayotis; Palmero-Acebedo, Faustino
2014-01-01
The study of nonlinear localized excitations is a long-standing challenge for research in basic and applied science, as well as engineering, due to their importance in understanding and predicting phenomena arising in nonlinear and complex systems, but also due to their potential for the development and design of novel applications. This volume is a compilation of chapters representing the current state-of-the-art on the field of localized excitations and their role in the dynamics of complex physical systems.
Structural Influence on Excited State Dynamics in Simple Amines
Klein, Liv Bærenholdt
is femtosecond time-resolved photoelectron velocity map imaging (VMI), which is a newtechnique in the Copenhagen lab. The design, building and implementation of the VMI spectrometer has been a very substantial part of the thesis work. This techniques oers enhanced information content in the form of ecient......Simple amines are basic model system of nitrogen-containing chromophores that appear widely in nature. They are also ideal systems for detailed investigation of nonadiabatic dynamical processes and ultrafast temporal evolution of electronic states of the Rydberg type. This investigation, combining...... experiments with calculations, provides new insight into the nature of the internal conversion processes that mediate the dynamical evolution between Rydberg states, and how structural variations in simple amine system have a large impact on the non-adiabatic processes. The experimental method of choice...
Coupled state analysis of electron excitations in asymmetric collision systems
Mehler, G.; Reus, T. de; Mueller, U.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.
1985-11-01
A coupled channel formalism is presented, using relativistic basis states of the target atom. Screening effects are incorporated by means of an effective potential of the Hartree-Fock-Slater type. Relativistic wave packets are employed for the description of the continuum. The impact parameter dependence of the K-hole production in p-Ag collisions is calculated, including quadrupole contributions of the projectile Coulomb potential. The results are compared with experimental data. (orig.).
Determination of Leu Side-Chain Conformations in Excited Protein States by NMR Relaxation Dispersion
Hansen, D. Flemming; Neudecker, Philipp; Vallurupalli, Pramodh; Mulder, Frans A. A.; Kay, Lewis E.
2010-01-01
Fits of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion profiles allow extraction of the kinetics and thermodynamics of exchange reactions that interconvert highly populated, ground state and low Populated, excited state conformers. Structural information is also available in the form of chem
EXCITATION OF LOW-LYING STATES IN ND-144 BY MEANS OF (E,E') SCATTERING
PERRINO, R; BLASI, N; DELEO, R; HARAKEH, MN; DEJAGER, CW; MICHELETTI, S; MIEREMET, J; PIGNANELLI, M; PONOMAREV, VY; SANDOR, RKJ; DEVRIES, H
1993-01-01
The low-lying states of Nd-144 have been investigated up to an excitation energy of 3.1 MeV by means of high-resolution inelastic electron scattering. Transition charge densities have been extracted for natural-parity states. The experimental data have been compared with the predictions of the quasi
Thermality and excited state Rényi entropy in two-dimensional CFT
Lin, Feng-Li; Wang, Huajia; Zhang, Jia-ju
2016-11-01
We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.
Polarization and dissociation of a high energy photon-excited state in conjugated polymers
Li, Xiao-xue, E-mail: sps_lixx@ujn.edu.cn
2015-02-20
We use the tight-binding Su–Schrieffer–Heeger model for the one-dimensional conjugated polymers to explore the static polarization behavior of a high energy photon-excited state under the electric field. An obvious reverse polarization is obtained although the electric field is weak. With the increase of field strength, the degree of polarization increases first and then decreases. When the electric field is strong enough, the excited state is dissociated into the polaron pair. In addition, the effects of electron–electron interaction and interchain coupling are also discussed. The results indicate that the electron–electron interaction could weaken the reverse polarization of the high energy photon-excited state, which tends to be dissociated into a high-energy exciton and a pair of solitons with the including of interchain coupling. - Highlights: • We explore the polarization of a high energy photon-excited state in polymers. • An obvious reverse polarization under the moderate electric field is obtained. • High energy photon-excited state is dissociated into polaron pair at strong field. • Increasing electron–electron interaction will weaken the reverse polarization. • Interchain coupling induces dissociation into high-energy exciton and solitons.
Bandyopadhyay, Subhajit; Roy, Saswata
2014-01-01
This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…
Coherent secondary emission from resonantly excited two-exciton states
Birkedal, Dan
2000-01-01
The coherent interaction of light and the electronic states of semiconductors near the fundamental bandgap has been a very active topic of research since the advent of ultrafast lasers. While many of the ultrafast nonlinear properties of semiconductors have been well explained within mean field...... theories as e.g. the semiconductor Bloch equations, recent experimental and theoretical developments have demonstrated contributions to the third order nonlinear susceptibility from exciton-exciton correlations beyond the mean field approximation. Ultrafast transient four-wave mixing (TFWM)has been...
Excitation of exciton states on a curved surface
Silotia, Poonam; Prasad, Vinod
2016-05-01
Excitonic transitions on the surface of a sphere have been studied in he presence of external static electric and laser fields. The spectrum and the various coupling matrix elements, (for n = 1 , 2 , 3), between few states of exciton have been evaluated in the absence and presence of excitonic Coulombic interaction with different values of dielectric constant. Variation of various physical quantities: energy eigenvalues, transition probability, orientational and alignment parameter, has been shown to have strong dependence on the laser field and static electric field.
Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes
Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov
2014-01-01
We report on the synthesis and characterization of fluorescent halogen substituted anthracene-bridge-aniline (ABA) supermolecules that undergo structural reorganization on photoexcitation to form transient complexes. The syntheses were achieved in high yields on a large scale and the molecular...... structures were confirmed by single crystal X-ray diffraction. The photophysics of the ABA supermolecules were investigated using steady state and time resolved optical spectroscopy. Despite the presence of heavy atoms the series of ABA molecules have high quantum yields of fluorescence from both a locally...
Godunov, I A; Yakovlev, N N; Terentiev, R V; Maslov, D V; Abramenkov, A V
2016-06-01
We have obtained and analyzed the S1 ← S0 fluorescence excitation spectra of jet-cooled propanal-h1 (CH3CH2CHO) and -d1 (CH3CH2CDO). Using the results of theoretical studies of the structure of propanal molecule in the S1 lowest excited singlet electronic state, we have assigned the bands of both spectra to the vibronic transitions of the cis conformer (in the S0 ground electronic state) to the 1 and 3 conformers (in the S1 state) differed by the angle of the C2H5 ethyl group rotation around the central C-C bond. The origins of the 1 ← cis and 3 ← cis electronic transitions have been observed at 29 997 and 30 075 cm(-1) for propanal-h1 and at 30 040 and 30 115 cm(-1) for propanal-d1, respectively. The high activity of torsional (C2H5 ethyl groups) and inversional (CCHO/CCDO carbonyl fragments) vibrations and the intensity distribution of the bands in torsional sequences (passing through maximum) are in agreement with the theoretical prediction that the S1 ← S0 electronic excitation of the cis conformer causes (after geometrical relaxation) the pyramidalization of carbonyl fragments and the rotation of ethyl groups around the central C-C bond. A number of energy levels have been found for torsional and inversional vibrations, and also fundamentals of ν10 (CCO bend) and ν13 (CCC bend) for the both 1 and 3 conformers of propanal-h1 and -d1 have been found. Then the "experimental" potential functions of inversion for the pair of the 1 and 3 conformers have been determined. The heights of potential barriers to inversion and the angle values corresponding to the minima of potential functions of inversion are 900 cm(-1) and 35° for propanal-h1 and 820 cm(-1) and 34° for propanal-d1, respectively.
Production of excited beauty states in Z decays
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rossowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Van Gemmeren, P; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
A data sample of about 3.0 million hadronic Z decays collected by the ALEPH experiment at LEP in the years 1991 through 1994, is used to make an inclusive selection of B~hadron events. In this event sample 4227 \\pm 140 \\pm 252 B^* mesons in the decay B^* \\to B \\gamma and 1944 \\pm 108 \\pm 161 B^{**} mesons decaying into a B~meson and a charged pion are reconstructed. For the well established B^* meson the following quantities areobtained: \\Delta M = M_{B^*} - M_{B} = (45.30\\pm 0.35\\pm 0.87)~\\mathrm{MeV}/c^2 and N_{B^*}/(N_B+N_{B^*}) = (77.1 \\pm 2.6 \\pm 7.0)\\%. The angular distribution of the photons in the B^* rest frame is used to measure the relative contribution of longitudinal B^* polarization states to be \\sigma_L/(\\sigma_L + \\sigma_T)= (33 \\pm 6 \\pm 5)\\%. \\\\ Resonance structure in the M(B\\pi)-M(B) mass difference is observed at (424 \\pm 4 \\pm 10)~\\mathrm{MeV}/c^2. Its shape and position is in agreement with the expectation for B^{**}_{u,d} states decaying into B_{u,d}^{(*)} \\pi^\\pm. The signal is therefo...
Horke, Daniel A; Roberts, Gareth M; Verlet, Jan R R
2011-08-04
The spectroscopy and ultrafast relaxation dynamics of excited states of the radical anion of a representative charge-transfer acceptor molecule, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, have been studied in the gas phase using time-resolved photoelectron spectroscopy. The photoelectron spectra reveal that at least two anion excited states are bound. Time-resolved studies show that both excited states are very short-lived and internally convert to the anion ground state, with the lower energy state relaxing within 200 fs and a near-threshold valence-excited state relaxing on a 60 fs time scale. These excited states, and in particular the valence-excited state, present efficient pathways for electron-transfer reactions in the highly exergonic inverted region which commonly displays rates exceeding predictions from electron-transfer theory.
Shuai, Zhigang, E-mail: zgshuai@tsinghua.edu.cn [MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing (China); Peng, Qian, E-mail: qpeng@iccas.ac.cn [Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing (China)
2014-04-01
Photo- or electro-excited states in polyatomic molecules, aggregates, and conjugated polymers are at the center of organic light-emitting diodes (OLEDs). These can decay radiatively or non-radiatively, determining the luminescence quantum efficiency of molecular materials. According to Kasha’s rule, light-emission is dictated by the lowest-lying excited state. For conjugated polymers, the electron correlation effect can lead the lowest-lying excited state to the even-parity 2A{sub g} state which is non-emissive. To understand the nature of the low-lying excited state structure, we developed the density matrix renormalization group (DMRG) theory and its symmetrization scheme for quantum chemistry applied to calculate the excited states structure. We found there are three types of 1B{sub u}/2A{sub g} crossover behaviors: with electron correlation strength U, with bond length alternation, and with conjugation length. These directly influence the light-emitting property. For the electro-excitation, carriers (electron and hole) are injected independently, forming both singlet and triplet excited bound states with statistically 25% and 75% portions, respectively. We found that the exciton formation rate can depend on spin manifold, and for conjugated polymers, the singlet exciton can have larger formation rate leading to the internal electroluminescence quantum efficiency larger than the 25% spin statistical limit. It is originated from the interchain electron correlation as well as intrachain lattice relaxation. For the dipole allowed emissive state, the radiative decay process via either spontaneous emission or stimulated emission can be computed from electronic structure plus vibronic couplings. The challenging issue lies in the non-radiative decay via non-adiabatic coupling and/or spin–orbit coupling. We developed a unified correlation function formalism for the excited state radiative and non-radiative decay rates. We emphasized the low-frequency mode mixing
Excited states from quantum Monte Carlo in the basis of Slater determinants
Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de [Institut für Physikalische und Theoretische Chemie, Julius-Maximilians Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg (Germany)
2014-11-21
Building on the full configuration interaction quantum Monte Carlo (FCIQMC) algorithm introduced recently by Booth et al. [J. Chem. Phys. 131, 054106 (2009)] to compute the ground state of correlated many-electron systems, an extension to the computation of excited states (exFCIQMC) is presented. The Hilbert space is divided into a large part consisting of pure Slater determinants and a much smaller orthogonal part (the size of which is controlled by a cut-off threshold), from which the lowest eigenstates can be removed efficiently. In this way, the quantum Monte Carlo algorithm is restricted to the orthogonal complement of the lower excited states and projects out the next highest excited state. Starting from the ground state, higher excited states can be found one after the other. The Schrödinger equation in imaginary time is solved by the same population dynamics as in the ground state algorithm with modified probabilities and matrix elements, for which working formulae are provided. As a proof of principle, the method is applied to lithium hydride in the 3-21G basis set and to the helium dimer in the aug-cc-pVDZ basis set. It is shown to give the correct electronic structure for all bond lengths. Much more testing will be required before the applicability of this method to electron correlation problems of interesting size can be assessed.
D. A. Horke; Roberts, G.M.; Verlet, J. R. R.
2011-01-01
The spectroscopy and ultrafast relaxation dynamics of excited states of the radical anion of a representative charge-transfer acceptor molecule, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, have been studied in the gas phase using time-resolved photoelectron spectroscopy. The photoelectron spectra reveal that at least two anion excited states are bound. Time-resolved studies show that both excited states are very short-lived and internally convert to the anion ground state, with the ...
Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.
Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M
2016-09-27
Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.
Avison, A; Fuller, G A; Caswell, J L; Green, J A; Breen, S L; Ellingsen, S P; Gray, M D; Pestalozzi, M; Thompson, M A; Voronkov, M A
2016-01-01
We present the results of the first complete unbaised survey of the Galactic Plane for 6035-MHz excited-state hydroxyl masers undertaken as part of the Methanol Multibeam Survey. These observations cover the Galactic longitude ranges $186^{\\circ}< l < 60^{\\circ}$ including the Galactic Centre. We report the detection of 127 excited-state hydroxyl masers within the survey region, 47 being new sources. The positions of new detections were determined from interferometric observations with the Australia Telescope Compact Array. We discuss the association of 6035-MHz masers in our survey with the 6668-MHz masers from the MMB Survey, finding 37 likely methanol-excited-state hydroxyl masers maser pairs with physical separations of <=0.03pc and 55 pairings separated by <=0.1pc. Using these we calculate for the first time an excited-state hydroxyl maser life time of between 3.3x10^3 and 8.3x10^3 years. We also discuss the variability of the 6035-MHz masers and detection rates of counterpart 6030-MHz excite...
Yu, Xiongjie; Pekker, David; Clark, Bryan K.
2017-01-01
A key property of many-body localized Hamiltonians is the area law entanglement of even highly excited eigenstates. Matrix product states (MPS) can be used to efficiently represent low entanglement (area law) wave functions in one dimension. An important application of MPS is the widely used density matrix renormalization group (DMRG) algorithm for finding ground states of one-dimensional Hamiltonians. Here, we develop two algorithms, the shift-and-invert MPS (SIMPS) and excited state DMRG which find highly excited eigenstates of many-body localized Hamiltonians. Excited state DMRG uses a modified sweeping procedure to identify eigenstates, whereas SIMPS applies the inverse of the shifted Hamiltonian to a MPS multiple times to project out the targeted eigenstate. To demonstrate the power of these methods, we verify the breakdown of the eigenstate thermalization hypothesis in the many-body localized phase of the random field Heisenberg model, show the saturation of entanglement in the many-body localized phase, and generate local excitations.
Wilke, Josefin; Wilke, Martin; Meerts, W Leo; Schmitt, Michael
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54(∘) showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.
Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks
Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy
2016-05-01
Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.
Electron energy-loss spectroscopy of excited states of the pyridine molecules
Linert, Ireneusz; Zubek, Mariusz
2016-04-01
Electron energy-loss spectra of the pyridine, C5H5N, molecules in the gas phase have been measured to investigate electronic excitation in the energy range 3.5-10 eV. The applied wide range of residual electron energy and the scattering angle range from 10° to 180° enabled to differentiate between optically-allowed and -forbidden transitions. These measurements have allowed vertical excitation energies of the triplet excited states of pyridine to be determined and tentative assignments of these states to be proposed. Some of these states have not been identified in the previous works. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Di-lepton yield from the decay of excited [sup 28]Si states
Bacelar, J.C. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Buda, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Balanda, A.; Krasznahorkay, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Ploeg, H. van der (Kernfysisch Versneller Inst., Groningen (Netherlands)); Sujkowski, Z.; Woude, A. van der (Kernfysisch Versneller Inst., Groningen (Netherlands))
1994-03-07
The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in [sup 28]Si, with an initial excitation energy E[sup *] =50 MeV, were populated via the isospin T=0 reaction [sup 4]He+[sup 24]Mg and the mixed-isospin [sup 3]He+[sup 25]Mg reaction. In both reactions the dilepton (e[sup +]e[sup -]) and photon decay yields were measured concurrently. An excess of counts in the e[sup +]e[sup -] spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states. (orig.)
Is dipole moment a valid descriptor of excited state's charge-transfer character?
Petelenz, Piotr; Pac, Barbara
2013-11-20
In the ongoing discussion on excited states of the pentacene crystal, dipole moment values have been recently invoked to gauge the CT admixture to excited states of Frenkel parentage in a model cluster. In the present paper, a simple dimer model is used to show that, in general, the dipole moment is not a valid measure of the CT contribution. This finding eliminates some apparent disagreement between the computational results published by different research groups. The implications of our results and other related aspects of cluster-type quantum chemistry calculations are discussed in the context of the standing literature dispute concerning the mechanism of singlet fission in the pentacene crystal, notably the role of charge transfer contributions vs the involvement of an excimer-like doubly excited intermediate (D state).
Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao
2009-12-03
Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption.
Jing, Yuanyuan; Chen, Liping; Bai, Shuming; Shi, Qiang
2013-01-28
The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.
Energies of low-lying excited states of linear polyenes.
Christensen, Ronald L; Galinato, Mary Grace I; Chu, Emily F; Howard, Jason N; Broene, Richard D; Frank, Harry A
2008-12-11
Room temperature absorption and emission spectra of the all-trans isomers of decatetraene, dodecapentaene, tetradecahexaene, and hexadecaheptaene have been obtained in a series of nonpolar solvents. The resolved vibronic features in the optical spectra of these model systems allow the accurate determination of S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) and S(1) (2(1)A(g)(-)) --> S(0) (1(1)A(g)(-)) electronic origins as a function of solvent polarizability. These data can be extrapolated to predict the transition energies in the absence of solvent perturbations. The effects of the terminal methyl substituents on the transition energies also can be estimated. Franck-Condon maxima in the absorption and emission spectra were used to estimate differences between S(0) (1(1)A(g)(-)) --> S(1) (2(1)A(g)(-)) and S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) electronic origins and "vertical" transition energies. Experimental estimates of the vertical transition energies of unsubstituted, all-trans polyenes in vacuum as a function of conjugation length are compared with long-standing multireference configuration interaction (MRCI) treatments and with more recent ab initio calculations of the energies of the 2(1)A(g)(-) (S(1)) and 1(1)B(u)(+) (S(2)) states.
Excited states in the doubly closed shell nucleus $^{132}_{50}Sn_{82}$
Bjørnstad, T; Ewan, G T; Jonson, B; Kawade, K; Kérek, A; Mattsson, S; Sistemich, K
1982-01-01
New excited states in the nucleus /sup 1/ /sup 32/Sn have been identified from gamma gamma coincidence measurements. Strong beta feeding to a state at 7.210 keV was established. This level is interpreted as a 6^{-} state formed after a\\pig/sup -1//sub 9/2/ to nu g/sup -1//sub 7/2/GT beta ^{-} transition from the 7^{-} ground state of /sup 132/In. The deexcitation of the 7210 keV state passes through a 4351 keV state, providing support for a 3^{-} assignment of this level.
Rapid excited state structural reorganization captured by pulsed x-rays.
Chen, L. X.; Jennings, G.; Liu, T.; Gosztola, D. J.; Hessler, J. P.; Scaltrito, D. V.; Meyer, G. J.; Johns Hopkins Univ.
2002-09-11
Visible light excitation of [CuI(dmp)2](BArF), where dmp is 2,9-dimethyl-1,10-phenanthroline and BArF is tetrakis(3,5-bis(trifluoromethylphenyl))borate, in toluene produces a photoluminescent, metal-to-ligand charge-transfer (MLCT) excited state with a lifetime of 98 {+-} 5 ns. Probing this state within 14 ns after photoexcitation with pulsed X-rays establishes that a CuII center, borne in a CuI geometry, binds an additional ligand to form a five-coordinate complex with increased bond lengths and a coordination geometry of distorted trigonal bipyramid. The average Cu-N bond length increases in the excited state by 0.07 Angstroms. The transiently formed five-coordinate MLCT state is photoluminescent under the condition studied, indicating that the absorptive and emissive states have distinct geometries. The data represent the first X-ray characterization of a molecular excited state in fluid solution on a nanosecond time scale.
Even-parity states of the Sm atom with stepwise excitation
Li Ming; Dai Chang-Jian; Xie Jun
2011-01-01
Two-colour stepwise excitation and photoionization schemes are adopted to study the spectra of high-lying states of the Sm atom. These bound even-parity states are excited with three different excitation paths from the 4f66s6p7DJ (J = 1, 2, 3) intermediate states, respectively. They are probed by photoionization process with an extra photon driving them to the continuum states. In this experiment, 270 states are detected in an energy range from 36160 cm-1 to 42250 cm-1, 109 of which are newly discovered, while the rest of them are confirmed to be the energy levels reported previously. Furthermore, based on the J-momentum selection rules of three excitation paths, a unique assignment of J-momentum for all observed states is determined, eliminating all remaining ambiguities in the literature. Finally, 53 single-colour transitions originating from the scanning laser are also identified. For all the relevant transitions, the information about their relative intensities is also given in the paper.
Vura-Weis, Josh; Newton, M. D.; Wasielewski, Michael R; Subotnik, J.E.
2010-12-09
A common strategy to calculate electronic coupling matrix elements for charge or energy transfer is to take the adiabatic states generated by electronic structure computations and rotate them to form localized diabatic states. In this paper, we show that, for intermolecular transfer of singlet electronic excitation, usually we cannot fully localize the electronic excitations in this way. Instead, we calculate putative initial and final states with small excitation tails caused by weak interactions with high energy excited states in the electronic manifold. These tails do not lead to substantial changes in the total diabatic coupling between states, but they do lead to a different partitioning of the total coupling between Coulomb (Förster), exchange (Dexter), and one-electron components. The tails may be reduced by using a multistate diabatic model or eliminated entirely by truncation (denoted as “chopping”). Without more information, we are unable to conclude with certainty whether the observed diabatic tails are a physical reality or a computational artifact. This research suggests that decomposition of the diabatic coupling between chromophores into Coulomb, exchange, and one-electron components may depend strongly on the number of states considered, and such results should be treated with caution.
Resonance search for quark excitation in the gamma + jet final state at CMS
Sharma, Varun
2014-01-01
This poster presents a search for excited quarks (q*) decaying into a $\\gamma$ + jet final state at $\\sqrt{\\rm s}$= 8 TeV with the CMS experiment, using the dataset corresponding to an integrated luminosity of 19.7 $\\,\\text{fb}^\\text{-1}$ collected during 2012 data taking at the LHC. Photons and jets with high transverse momentum are selected to search for a resonance peak in the $\\gamma$ + jet invariant mass distribution. The 95\\% confidence level upper limits on cross section times branching ratio are evaluated as a function of excited quark mass (Mq*). We exclude at 95\\% CL excited quarks with 0.7 $<$ Mq* $<$ 3.5 TeV for standard model couplings, and present exclusions of excited quark mass as a function of coupling strength.
Pulsed radiation studies of carotenoid radicals and excited states
Burke, M
2001-04-01
The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number
Ultrafast excited state dynamics of Pt(II) chromophores bearing multiple infrared absorbers.
Glik, Elena A; Kinayyigit, Solen; Ronayne, Kate L; Towrie, Michael; Sazanovich, Igor V; Weinstein, Julia A; Castellano, Felix N
2008-08-04
The paper reports the synthesis, structural characterization, electrochemistry, ultrafast time-resolved infrared (TRIR) and transient absorption (TA) spectroscopy associated with two independent d (8) square planar Pt(II) diimine chromophores, Pt(dnpebpy)Cl 2 ( 1) and Pt(dnpebpy)(C[triple bond]Cnaph) 2 ( 2), where dnpebpy = 4,4'-(CO 2CH 2- (t) Bu) 2-2,2'-bipyridine and CCnaph = naphthylacetylide. The neopentyl ester substitutions provided markedly improved complex solubility relative to the corresponding ethyl ester which facilitates synthetic elaboration as well as spectroscopic investigations. Following 400 nm pulsed laser excitation in CH 2Cl 2, the 23 cm (-1) red shift in the nu C=O vibrations in 1 are representative of a complex displaying a lowest charge-transfer-to-diimine (CT) excited state. The decay kinetics in 1 are composed of two time constants assigned to vibrational cooling of the (3)CT excited-state concomitant with its decay to the ground state (tau = 2.2 +/- 0.4 ps), and to cooling of the formed vibrationally hot ground electronic state (tau = 15.5 +/- 4.0 ps); we note that an assignment of the latter to a ligand field state cannot be excluded. Ultrafast TA data quantitatively support these assignments yielding an excited-state lifetime of 2.7 +/- 0.4 ps for the (3)CT excited-state of 1 and could not detect any longer-lived species. The primary intention of this study was to develop a Pt (II) complex ( 2) bearing dual infrared spectroscopic tags (C[triple bond]C attached to the metal and CO (ester) attached to the diimine ligand) to independently track the movement of charge density in different segments of the molecule following pulsed light excitation. Femtosecond laser excitation of 2 in CH 2Cl 2 at 400 nm simultaneously induces a red-shift in both the nu C=O (-30 cm (-1)) and the nu C[triple bond]C (-61 cm (-1)) vibrations. The TRIR data in 2 are consistent with a charge transfer assignment, and the significant decrease of the energy of the nu
Excited state absorption in glasses activated with rare earth ions: Experiment and modeling
Piatkowski, Dawid; Mackowski, Sebastian
2012-10-01
We present semiempirical approach based on the Judd-Ofelt theory and apply it for modeling the spectral properties of fluoride glasses activated with the rare earth (RE) ions. This method provide a powerful tool for simulating both ground state absorption (GSA) and excited state absorption (ESA) spectra of RE ions, e.g. Nd3+, Ho3+, Er3+ and Tm3+ in the ZBLAN glass matrix. The results of theoretical calculations correspond to the experimentally measured data. We also demonstrate that the spectra obtained using the presented approach are applicable in the analysis of up-conversion excitation schemes in these optoelectronically relevant materials.
Influence of Temperature and Magnetic Field on the First Excited State of a Quantum Pseudodot
Cai, Chun-Yu; Zhao, Cui-Lan; Xiao, Jing-Lin
2016-10-01
Investigations on the properties of excited states of complex quantum systems can not only reveal the internal structure and properties of the system but also verify the accuracy of quantum theory. In the case of strong electron-longitudinal optical phonon coupling in a quantum pseudodot with an external magnetic field, the first excited state and transition frequency can be obtained by using the Pekar variational method and quantum statistics theory. Numerical calculations for CsI crystal show that (1) they are increasing functions of the magnetic field, and (2) they will first decrease and then increase as the temperature is increased from a low value.
Influence of Temperature and Magnetic Field on the First Excited State of a Quantum Pseudodot
Cai, Chun-Yu; Zhao, Cui-Lan; Xiao, Jing-Lin
2017-02-01
Investigations on the properties of excited states of complex quantum systems can not only reveal the internal structure and properties of the system but also verify the accuracy of quantum theory. In the case of strong electron-longitudinal optical phonon coupling in a quantum pseudodot with an external magnetic field, the first excited state and transition frequency can be obtained by using the Pekar variational method and quantum statistics theory. Numerical calculations for CsI crystal show that (1) they are increasing functions of the magnetic field, and (2) they will first decrease and then increase as the temperature is increased from a low value.
Autoionizing Distribution of the Triply Excited Double Rydberg States in La Atom
SUN Wei; XIE Xiu-Ping; HUANG Wen; ZHONG Zhi-Ping; XU Cheng-Bin; XUE Ping; XU Xiang-Yuan
2000-01-01
The autoionization distribution of the triply excited double Rydberg states (TEDRS) 5d5/2NLnl (N _< 22; n _<50; L, l < 4) of La has been investigated by using five-laser resonance excitation in combination with a method of sequential ionization by a pulsed electric field and a constant electric field. The experimental results exhibit that the La atoms in TEDRS predominantly single-autoionize to the ionic Rydberg states located in a few Rydberg manifolds. Furthermore, a difference of autoionization mechanisms between TEDRS above and those below the double ionization threshold is found.
Shozo Tsunekawa
2003-01-01
Full Text Available The microwave spectrum of methyl formate has been observed in the 7-200 GHz region, and new 437 lines have been assigned to the first excited A torsional substate. Both excited state lines and ground state lines reported previously were analyzed simultaneously on the basis of an internal axis method Hamiltonian. A total of 3514 lines were fitted to a 10th-order reduced Hamiltonian model involving 67 molecular parameters to a 1s standard deviation of 179 kHz.
Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Shao, Yihan; Subotnik, Joseph E.
2014-07-01
Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the {T}1/{T}2 conical intersection of benzaldehyde.
Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco; Sorella, Sandro; Casula, Michele
2015-06-07
We study the ionization energy, electron affinity, and the π → π(∗) ((1)La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the (1)La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral (1)La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.
Dupuy, Nicolas, E-mail: nicolas.dupuy@impmc.upmc.fr [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie, case 115, 4 place Jussieu, 75252 Paris Cedex 05 (France); Bouaouli, Samira, E-mail: samira.bouaouli@lct.jussieu.fr [Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, case 115, 4 place Jussieu, 75252 Paris Cedex 05 (France); Mauri, Francesco, E-mail: francesco.mauri@impmc.upmc.fr; Casula, Michele, E-mail: michele.casula@impmc.upmc.fr [CNRS and Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie, case 115, 4 place Jussieu, 75252 Paris Cedex 05 (France); Sorella, Sandro, E-mail: sorella@sissa.it [International School for Advanced Studies (SISSA), Via Beirut 2-4, 34014 Trieste, Italy and INFM Democritos National Simulation Center, Trieste (Italy)
2015-06-07
We study the ionization energy, electron affinity, and the π → π{sup ∗} ({sup 1}L{sub a}) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the {sup 1}L{sub a} excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral {sup 1}L{sub a} excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.
Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco; Sorella, Sandro; Casula, Michele
2015-06-01
We study the ionization energy, electron affinity, and the π → π∗ (1La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the 1La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral 1La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.
Variation of Excited-State Dynamics in Trifluoromethyl Functionalized C60 Fullerenes
Park, Jaehong; Ramirez, Jessica J.; Clikeman, Tyler T.; Larson, Bryon W.; Boltalina, Olga V.; Strauss, Steven H.; Rumbles, Garry
2016-09-07
We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1--T1 intersystem crossing quantum yield (..phi..ISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1--S0 relaxation mechanism and negligible ..phi..ISC, therefore decreasing the average excited-state lifetime (..tau..avg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (..tau..avg approx. 17 us and 54 us for C60/4-1 and C60/6-2, respectively, whereas ..tau..avg approx. 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited- state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.
Bellinger, Daniel; Settels, Volker; Liu, Wenlan; Fink, Reinhold F; Engels, Bernd
2016-06-30
To tune the efficiency of organic semiconductor devices it is important to understand limiting factors as trapping mechanisms for excitons or charges. An understanding of such mechanisms deserves an accurate description of the involved electronical states in the given environment. In this study, we investigate how a polarizable surrounding influences the relative positions of electronically excited states of dimers of different perylene dyes. Polarization effects are particularly interesting for these systems, because gas phase computations predict that the CT states lie slightly above the corresponding Frenkel states. A polarizable environment may change this energy order because CT states are thought to be more sensitive to a polarizable surrounding than Frenkel states. A first insight we got via a TD-HF approach in combination with a polarizable continuum model (PCM). These give limited insights because TD-HF overestimates excitation energies of CT states. However, SCS-CC2 approaches, which are sufficiently accurate, cannot easily be used in combination with continuum solvent models. Hence, we developed two approaches to combine gas phase SCS-CC2 results with solvent effects based on TD-HF computations. Their accuracies were finally checked via ADC(2)//COSMO computations. The results show that for perylene dyes a polarizable surrounding alone does not influence the energetic ordering of CT and Frenkel states. Variations in the energy order of the states only result from nuclear relaxation effects after the excitation process. © 2016 Wiley Periodicals, Inc.
Kreitner, Christoph; Heinze, Katja
2016-09-21
Deactivation pathways of the triplet metal-to-ligand charge transfer ((3)MLCT) excited state of cyclometalated polypyridine ruthenium complexes with [RuN5C](+) coordination are discussed on the basis of the available experimental data and a series of density functional theory calculations. Three different complex classes are considered, namely with [Ru(N^N)2(N^C)](+), [Ru(N^N^N)(N^C^N)](+) and [Ru(N^N^N)(N^N^C)](+) coordination modes. Excited state deactivation in these complex types proceeds via five distinct decay channels. Vibronic coupling of the (3)MLCT state to high-energy oscillators of the singlet ground state ((1)GS) allows tunneling to the ground state followed by vibrational relaxation (path A). A ligand field excited state ((3)MC) is thermally accessible via a (3)MLCT →(3)MC transition state with the (3)MC state being strongly coupled to the (1)GS surface via a low-energy minimum energy crossing point (path B). Furthermore, a (3)MLCT →(1)GS surface crossing point directly couples the triplet and singlet potential energy surfaces (path C). Charge transfer states either with higher singlet character or with different orbital parentage and intrinsic symmetry restrictions are thermally populated which promote non-radiative decay via tunneling to the (1)GS state (path D). Finally, the excited state can decay via phosphorescence (path E). The dominant deactivation pathways differ for the three individual complex classes. The implications of these findings for isoelectronic iridium(iii) or iron(ii) complexes are discussed. Ultimately, strategies for optimizing the emission efficiencies of cyclometalated polypyridine complexes of d(6)-metal ions, especially Ru(II), are suggested.
Bacalis, Naoum C
2016-01-01
The computation of small concise and comprehensible excited state wave functions is needed because many electronic processes occur in excited states. But since the excited energies are saddle points in the Hilbert space of wave functions, the standard computational methods, based on orthogonality to lower lying approximants, resort to huge and incomprehensible wave functions, otherwise, the truncated wave function is veered away from the exact. The presented variational principle for excited states, Fn, is demonstrated to lead to the correct excited eigenfunction in necessarily small truncated spaces. Using Hylleraas coordinates for He 1S 1s2s, the standard method based on the theorem of Hylleraas - Unheim, and MacDonald, yields misleading main orbitals 1s1s' and needs a series expansion of 27 terms to be corrected, whereas minimizing Fn goes directly to the corect main orbitals, 1s2s, and can be adequately improved by 8 terms. Fn uses crude, rather inaccurate, lower lying approximants and does not need ortho...
Charge-Transfer Excited States in Aqueous DNA: Insights from Many-Body Green's Function Theory
Yin, Huabing; Ma, Yuchen; Mu, Jinglin; Liu, Chengbu; Rohlfing, Michael
2014-06-01
Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (˜1 eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.
Vibronic structure and coupling of higher excited electronic states in carotenoids
Krawczyk, Stanisław; Luchowski, Rafał
2013-03-01
Absorption spectra of all-trans carotenoids (lycopene, violaxanthin, ζ-carotene) at low temperature exhibit peculiar features in the UV range. The transition to the 11Ag+ state ('cis-band') weakens on cooling, indicating that it is induced by thermal deformations of the conjugated chain. The higher energy band has unique vibrational structure indicating the vibronic coupling of nBu with another electronic state. The electroabsorption spectra point to the electric field-induced mixing of the nBu state with the vibrational continuum of a lower-lying excited state (Fano effect). These observations widen the basis for elucidation of the vibronic coupling effects in the lower excited states.
An excited-state approach within full configuration interaction quantum Monte Carlo
Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali
2015-10-01
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available.
Scaling of collision strengths for highly-excited states of ions of the H- and He-like sequences
Fernandez-Menchero, L; Badnell, N R
2016-01-01
Emission lines from highly-excited states (n >= 5) of H- and He-like ions have been detected in astrophysical sources and fusion plasmas. For such excited states, R-matrix or distorted wave calculations for electron-impact excitation are very limited, due to the large size of the atomic basis set needed to describe them. Calculations for n >= 6 are also not generally available. We study the behaviour of the electron-impact excitation collision strengths and effective collision strengths for the most important transitions used to model electron collision dominated astrophysical plasmas, solar, for example. We investigate the dependence on the relevant parameters: the principal quantum number n or the nuclear charge Z. We also estimate the importance of coupling to highly-excited states and the continuum by comparing the results of different sized calculations. We provide analytic formulae to calculate the electron-impact excitation collision strengths and effective collision strengths to highly-excited states ...
Carbon nanorings with inserted acenes: breaking symmetry in excited state dynamics
Franklin-Mergarejo, R.; Alvarez, D. Ondarse; Tretiak, S.; Fernandez-Alberti, S.
2016-08-01
Conjugated cycloparaphenylene rings have unique electronic properties being the smallest segments of carbon nanotubes. Their conjugated backbones support delocalized electronic excitations, which dynamics is strongly influenced by cyclic geometry. Here we present a comparative theoretical study of the electronic and vibrational energy relaxation and redistribution in photoexcited cycloparaphenylene carbon nanorings with inserted naphthalene, anthracene, and tetracene units using non-adiabatic excited-state molecular dynamics simulations. Calculated excited state structures reflect modifications of optical selection rules and appearance of low-energy electronic states localized on the acenes due to gradual departure from a perfect circular symmetry. After photoexcitation, an ultrafast electronic energy relaxation to the lowest excited state is observed on the time scale of hundreds of femtoseconds in all molecules studied. Concomitantly, the efficiency of the exciton trapping in the acene raises when moving from naphthalene to anthracene and to tetracene, being negligible in naphthalene, and ~60% and 70% in anthracene and tetracene within the first 500 fs after photoexcitation. Observed photoinduced dynamics is further analyzed in details using induced molecular distortions, delocatization properties of participating electronic states and non-adiabatic coupling strengths. Our results provide a number of insights into design of cyclic molecular systems for electronic and light-harvesting applications.
Extended Eckart Theorem and New Variation Method for Excited States of Atoms
Xiong, Zhuang; Bacalis, N C; Zhou, Qin
2016-01-01
We extend the Eckart theorem, from the ground state to excited statew, which introduces an energy augmentation to the variation criterion for excited states. It is shown that the energy of a very good excited state trial function can be slightly lower than the exact eigenvalue. Further, the energy calculated by the trial excited state wave function, which is the closest to the exact eigenstate through Gram-Schmidt orthonormalization to a ground state approximant, is lower than the exact eigenvalue as well. In order to avoid the variation restrictions inherent in the upper bound variation theory based on Hylleraas, Undheim, and McDonald [HUM] and Eckart Theorem, we have proposed a new variation functional Omega-n and proved that it has a local minimum at the eigenstates, which allows approaching the eigenstate unlimitedly by variation of the trial wave function. As an example, we calculated the energy and the radial expectation values of Triplet-S(even) Helium atom by the new variation functional, and by HUM a...
Marco Lamperti
2014-08-01
Full Text Available Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.
Renormalization of operators for excited-state hadrons in lattice QCD.
Ekaterina Mastropas, David Richards
2012-04-01
One of the primary aims of lattice QCD is to accurately compute the spectrum of hadronic excitations from first principles. However, obtaining an accurate resolution of excited states using methods of lattice QCD is not a trivial problem due to faster decay of excited-states correlation functions in Euclidean space in comparison to those of ground states. To overcome this difficulty, anisotropic lattices with a finer temporal discretization are used. To go beyond the spectrum, in order to study the properties of the states, one needs to compute corresponding matrix elements. Thus, for example, the quark distribution amplitudes in mesons are given by matrix elements of quark bilinear operators, while in baryons, the corresponding quark distribution amplitudes are related to matrix elements of three-quark operators. To relate the matrix elements calculated on the lattice to those in the continuum, and hence to relate to the measured experimentally, it is necessary to evaluate matching coefficients. In this work we describe the calculation of the matching coefficients using perturbation theory for the improved anisotropic-clover fermion action used for our studies of excited states.
Analytical derivative techniques for TDDFT excited-state properties：Theory and application
CHEN DanPing; LIU Jie; MA HuiLi; ZENG Qiao; LIANG WanZhen
2014-01-01
We review our recent work on the methodology development of the excited-state properties for the molecules in vacuum and liquid solution.The general algorithms of analytical energy derivatives for the specific properties such as the first and second geometrical derivatives and IR/Raman intensities are demonstrated in the framework of the time-dependent density functional theory（TDDFT）.The performance of the analytical approaches on the calculation of excited-state energy Hessian has also been shown.It is found that the analytical approaches are superior to the finite-difference method on the computational accuracy and efficiency.The computational cost for a TDDFT excited-state Hessian calculation is only 2–3 times as that for the DFT ground-state Hessian calculation.With the low computational complexity of the developed analytical approaches,it becomes feasible to realize the large-scale numerical calculations on the excited-state vibrational frequencies,vibrational spectroscopies and the electronic-structure parameters which enter the spectrum calculations of electronic absorption and emission,and resonance Raman spectroscopies for medium-to large-sized systems.
Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems
Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)
2006-01-01
This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.
Kullie, Ossama, E-mail: kullie@uni-kassel.de [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg (France); Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel (Germany)
2013-03-29
Highlights: ► The achievement of CAMB3LYP functional for excited states in framework of TD-DFT. ► Relativistic 4-components calculations for the excited states of the Cd{sub 2} dimer. ► Relativistic Spin-Free calculations for the excited states of Cd{sub 2} dimer. ► A comparison of the achievements of different types of DFT approximations upon Cd{sub 2}. - Abstract: In this paper we present a time-dependent density functional study for the ground-state as well the 20-lowest laying excited states of the cadmium dimer Cd{sub 2}, we analyze its spectrum obtained from all electrons calculations performed with time-depended density functional for the relativistic Dirac-Coulomb- and relativistic spin-free-Hamiltonian as implemented in DIRAC-PACKAGE. The calculations were obtained with different density functional approximations, and a comparison with the literature is given as far as available. Our result is very encouraging, especially for the lowest excited states of this dimer, and is expected to be enlightened for similar systems. The result shows that only long-range corrected functionals such as CAMB3LYP, gives the correct asymptotic behavior for the higher states. A comparable but less satisfactory results were obtained with B3LYP and PBE0 functionals. Spin-free-Hamiltonian is shown to be very efficient for systems containing heavy elements such as Cd{sub 2} in frameworks of (time-dependent) density functional without introducing large errors.
Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy.
Miannay, Francois-Alexandre; Gustavsson, Thomas; Banyasz, Akos; Markovitsi, Dimitra
2010-03-11
The room-temperature fluorescence of 2'-deoxyguanosine 5'-monophosphate (dGMP) in aqueous solution is studied by steady-state and time-resolved fluorescence spectroscopy. The steady-state fluorescence spectrum of dGMP shows one band centered at 334 nm but has an extraordinary long red tail, extending beyond 700 nm. Both the fluorescence quantum yield and the relative weight of the 334 nm peak increase with the excitation wavelength. The initial fluorescence anisotropy after excitation at 267 nm is lower than 0.2 for all emission wavelengths, indicating an ultrafast S(2) --> S(1) internal conversion. The fluorescence decays depend strongly on the emission wavelength, getting longer with the wavelength. A rise time of 100-150 fs was observed for wavelengths longer than 450 nm, in accordance with a gradual red shift of the time-resolved spectra. The results are discussed in terms of a relaxation occurring mainly on the lowest excited (1)pi pi*-state surface toward a conical intersection with the ground state, in line with recent theoretical predictions. Our results show that the excited-state population undergoes a substantial "spreading out" before reaching the CI, explaining the complex dynamics observed.
Selective two-photon excitation of a vibronic state by correlated photons.
Oka, Hisaki
2011-03-28
We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.
无
2009-01-01
Kr atoms were produced in their metastable states 4p55s [3/2]2 and 4p55s’ [1/2]0 in a pulsed DC dis-charge in a beam,and subsequently excited to the even-parity autoionizing Rydberg states 4p5np’ [3/2]1,2,[1/2]1 and 4p5nf’ [5/2]3 using single photon excitation.The excitation spectra of the even-parity autoionizing resonance series from the metastable Kr were obtained by recording the autoionized Kr+ ions with time-of-flight ion detection in the photon energy range of 29000-40000 cm1.A wealth of autoionizing resonances were newly observed,from which more precise and more systematic spec-troscopic data of the level energy and quantum defects were derived.
LI ChunYan; WANG TingTing; ZHEN JunFeng; ZHANG Qun; CHEN Yang
2009-01-01
Kr atoms were produced in their metastable states 4p55s [3/2]2 and 4p55s' [1/2]0 in a pulsed DC discharge in a beam, and subsequently excited to the even-parity autoionizing Rydberg states 4p5np' [3/2]1,2, [1/2]1 and 4p5nf' [5/2]3 using single photon excitation. The excitation spectra of the even-parity autoionizing resonance series from the metastable Kr were obtained by recording the autoionized Kr+ ions with time-of-flight ion detection in the photon energy range of 29000-40000 cm-1. A wealth of autoionizing resonances were newly observed, from which more precise and more systematic spec-troscopic data of the level energy and quantum defects were derived.
Chun-yan Li; Ting-ting Wang; Jun-feng Zhen; Qun Zhang; Yang Chen
2008-01-01
Xenon atoms were produced in their metastable states 5p56s[3/2]2 and 5p56s'[1/2]0 in a pulsed DC discharge in a beam, and subsequently excited to the even-parity autoionizing Rydberg states 5p5np' [3/2] 1 ,[1/2]1, t, and 5p5 nf'[5/2]3 using single photon excitation. The excitation spectra of the even-parity autoionizing resonance series from the metastable 129Xe were obtained by recording the autoionized Xe+ with time-of-flight ion detection in the photon energy range of 28000-42000 cm-1. A wealth of autoionizing resonances were newly observed, from which more precise and systematic spectroscopic data of the level energies and quantum defects were derived.
Kuhlman, Thomas Scheby; Mikkelsen, Kurt V.; Møller, Klaus Braagaard;
2009-01-01
We present a study on the excited states of an ethylene dimer as to investigate the presence of and perturbation from low-lying charge-resonance states calculated by linear response density functional theory (DFT) using the B3LYP and CAM-B3LYP functionals. The calculations are compared to a refer......We present a study on the excited states of an ethylene dimer as to investigate the presence of and perturbation from low-lying charge-resonance states calculated by linear response density functional theory (DFT) using the B3LYP and CAM-B3LYP functionals. The calculations are compared...
Istomin, V. A.; Kustova, E. V.
2017-03-01
State-to-state approach for theoretical study of transport properties in atomic gases with excited electronic degrees of freedom of both neutral and ionized species is developed. The dependence of atomic radius on the electronic configuration of excited atoms is taken into account in the transport algorithm. Different cutoff criteria for increasing atomic radius are discussed and the limits of applicability for these criteria are evaluated. The validity of a Slater-like model for the calculation of state-resolved transport coefficients in neutral and ionized atomic gases is shown. For ionized flows, a method of evaluation for effective cross-sections of resonant charge-transfer collisions is suggested. Accurate kinetic theory algorithms for modelling the state-specific transport properties are applied for the prediction of transport coefficients in shock heated flows. Based on the numerical observations, different distributions over electronic states behind the shock front are considered. For the Boltzmann-like distributions at temperatures greater than 14,000 K, an important effect of electronic excitation on the partial thermal conductivity and viscosity coefficients is found for both neutral and ionized atomic gases: increasing radius of excited atoms causes a strong decrease in these transport coefficients. Similarly, the presence of electronically excited states with increased atomic radii leads to reduced diffusion coefficients. Nevertheless the overall impact of increasing effective cross-sections on the transport properties just behind the shock front under hypersonic reentry conditions is found to be minor since the populations of high-lying electronic energy levels behind the shock waves are low.
Non-Monotonicity of Excited State Populations Observed in a Cu-He Hollow Cathode Discharge
ZHENG Xu-Tao
2005-01-01
@@ An interesting non-monotonic structure in the distribution of excited state populations is observed in a Cu-He hollow cathode discharge, and this is explained by l-changing collisions of the excited states with background gas atoms. At helium pressure of 0.1 Torr and cathode current of 200-300mA, relative populations of He I 1snp 1p (n = 2-16) states are measured with the corresponding VUV radiation intensities, and are plotted against excitation energies. As energy levels increase, populations of high-n (n ＞ 10) states are found to decrease much more quickly than low-n (n ＜ 7) populations. For intermediate states (n = 7-10), the declining tendency is interfered by population transfers from 1sns 1 S states due to l-changing collisions, and an obvious non-monotonic structure is formed at relatively low electric current. Measurements have also been carried out for He Ⅱ np 2 p (n = 2-14) series, in which the l-changing collisions are overwhelmed by Stark quenching of the n2S states and thus population interference does not occur.
Thermality and excited state R\\'enyi entropy in two-dimensional CFT
Lin, Feng-Li; Zhang, Jia-ju
2016-01-01
We evaluate one-interval R\\'enyi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate R\\'enyi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the R\\'enyi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its R\\'enyi entropy to the thermal state one. As the R\\'enyi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on ho...
Wilkinson, Iain; Boguslavskiy, Andrey E; Mikosch, Jochen; Bertrand, Julien B; Wörner, Hans Jakob; Villeneuve, David M; Spanner, Michael; Patchkovskii, Serguei; Stolow, Albert
2014-05-28
The excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (B̃)(1)B1/(Ã)(1)A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.28 eV (308 nm and 290 nm, respectively). The resulting wavepacket dynamics were monitored using a multiphoton ionisation probe. The extensive literature associated with the Clements bands has been summarised and a detailed time domain description of the ultrafast relaxation pathways occurring from the optically bright (B̃)(1)B1 diabatic state is presented. Signatures of the oscillatory motion on the (B̃)(1)B1/(Ã)(1)A2 lower adiabatic surface responsible for the Clements band structure were observed. The recorded spectra also indicate that a component of the excited state wavepacket undergoes intersystem crossing from the Clements manifold to the underlying triplet states on a sub-picosecond time scale. Photoelectron signal growth time constants have been predominantly associated with intersystem crossing to the (c̃)(3)B2 state and were measured to vary between 750 and 150 fs over the implemented pump photon energy range. Additionally, pump beam intensity studies were performed. These experiments highlighted parallel relaxation processes that occurred at the one- and two-pump-photon levels of excitation on similar time scales, obscuring the Clements band dynamics when high pump beam intensities were implemented. Hence, the Clements band dynamics may be difficult to disentangle from higher order processes when ultrashort laser pulses and less-differential probe techniques are implemented.
Ponderomotive dressing of doubly-excited states with intensity-controlled laser light
Ding Thomas
2013-03-01
Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.
A Theoretical Study of Super-Excited States of F2
ZHANG Wei-Hua; HE Chun-long; HAO Yu-Song; MO Yu-Xiang; Li Jia-Ming
2007-01-01
In the framework of quantum defect theory, we study super-excited states of F2 molecules which can dissociate into F+(3P2,1,0) and F-(1So) ion-pair. Based on our calculation, we present a vibrational resolved assignment of the high precision photofragment yield spectra for F- from the F2 ion-pair production.
Excited state nonlinear integral equations for an integrable anisotropic spin-1 chain
Suzuki, J [Department of Physics, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka (Japan)
2004-12-17
We propose a set of nonlinear integral equations to describe the excited states of an integrable the spin-1 chain with anisotropy. The scaling dimensions, evaluated numerically in previous studies, are recovered analytically by using the equations. This result may be relevant to the study of the supersymmetric sine-Gordon model.
Excited State Mass spectra and Regge trajectories of Bottom Baryons in Hypercentral quark Model
Thakkar, Kaushal; Rai, Ajay Kumar; Vinodkumar, P C
2016-01-01
We present the mass spectra of excited states of singly heavy baryons consist of a bottom quark and light quarks (u, d and s). The QCD motivated hypercentral quark model is employed for the three body description of baryons. The form of confinement potential is hyper coloumb plus power potential with potential index $\
Short-range correlations in low-lying nuclear excited states
Mokhtar, S R; Lallena, A M; Mokhtar, Sherif R.; Co', Giampaolo; Lallena, Antonio M.
2000-01-01
The electromagnetic transitions to various low-lying excited states of 16O, 48Ca and 208Pb are calculated within a model which considers the short-range correlations. In general the effects of the correlations are small and do not explain the required quenching to describe the data.
Stark effect of interfering electronic states: Localization of the nπ* excitations in toluquinone
Galaup, J. P.; Trommsdorff, H. P.
1984-04-01
High-precision Stark measurements on oriented single crystals of toluquinone at low temperatures have been performed and lead to an assessment of the electronic parenthood of the levels giving rise to the complex spectral region of interference between the two nearby nπ* excited states. The origin bands of the lowest excited singlet and triplet states are characterized by a measure of their factor-group splittings and an evaluation of the change in dipole moment and in polarizability upon excitation. The value of the change in dipole moment is shown to vary strongly between different vibrational levels of the lower state and an evaluation of the degree of localization of the electronic excitation on one CO group is made. The previous assignment of the second nπ* state is confirmed by the sign of the corresponding Stark shift. From measurements on crystals having been oriented in an electric field the absolute orientation of the polar crystal as well as the sign of the pyroelectric coefficient are proposed.
THE ACQM THEORETICAL CALCULATION OF LOW—LYING EXCITED STATES FOR HeH
Q.Q.GOU; Z.Y.Huang; 等
1990-01-01
The Low-lying excited states of HeH have been calculated by arrangement channel quantum mechanics(ACQM),The calculated potential curves,equilibrium geometry,Rc.dissociation energy Dc.harmonic vibration frequency ω0 and quadratic force coustant F2 are comparable with Ci calculations.
Generation of motional Fock states of a trappedion in the mediate-excitation regime
Zheng Shi-Biao
2004-01-01
We propose a scheme to prepare Fock states for the vibrational motion of a trapped ion. Unlike previous schemes,the present scheme works in the mediate-excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Thus, the required time is greatly shortened, which is important in view of decoherence.
Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads
Whited, Matthew T.
2012-01-01
We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.
Ab Initio Excited States from the In-Medium Similarity Renormalization Group
Parzuchowski, N M; Bogner, S K
2016-01-01
We present two new methods for performing \\emph{ab initio} calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of $1$p$1$h excitations) becomes exact for a subset of eigenvalues. In the second approach, equations-of-motion (EOM) techniques are applied to the ground-state-decoupled IMSRG Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two-dimensions and the closed shell nuclei $^{16}$O and $^{22}$O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but is...
Excited-state proton transfer and ion pair formation in a Cinchona organocatalyst
Kumpulainen, T.; Brouwer, A.M.
2012-01-01
The excited-state proton transfer and subsequent intramolecular ion pair formation of a cupreidine-derived Cinchona organocatalyst (BnCPD) were studied in THF-water mixtures using picosecond time-resolved fluorescence together with global analysis. Full spectral and kinetic characterization of all t
Double Beta Decays into Excited States in $^{110}$Pd and $^{102}$Pd
Lehnert, B; Degering, D; Hult, M; Laubenstein, M; Wester, T; Zuber, K
2016-01-01
A search for double beta decays of $^{110}$Pd and $^{102}$Pd into excited states of the daughter nuclides has been performed using three ultra-low background gamma-spectrometry measurements in the Felsenkeller laboratory, Germany, the HADES laboratory, Belgium and at the LNGS, Italy. The combined Bayesian analysis of the three measurements sets improved half-life limits for the $2\
Time-resolved spectroscopy of doubly-excited states in helium
Ding Thomas
2013-03-01
Full Text Available A two-electron wave packet among the lowest-lying doubly-excited states in helium is experimentally observed. It creates a 1-femtosecond modulation in the transient-absorption signal modified by a time-delayed coupling laser.
Ab initio organic chemistry : a survey of ground- and excited states and aromaticity
Havenith, R.W.A.
2001-01-01
This thesis describes the application of quantum mechanical methods on organic chemistry. The ground- and excited states of functionalized oligo(cyclohexylidenes) have been explored as in function of chain length, conformation and substitution. VB theory has been used to study the effect of cyc
Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD
Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College
2014-07-01
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.
Booth, George H; Chan, Garnet Kin-Lic
2012-11-21
In this communication, we propose a method for obtaining isolated excited states within the full configuration interaction quantum Monte Carlo framework. This method allows for stable sampling with respect to collapse to lower energy states and requires no uncontrolled approximations. In contrast with most previous methods to extract excited state information from quantum Monte Carlo methods, this results from a modification to the underlying propagator, and does not require explicit orthogonalization, analytic continuation, transient estimators, or restriction of the Hilbert space via a trial wavefunction. Furthermore, we show that the propagator can directly yield frequency-domain correlation functions and spectral functions such as the density of states which are difficult to obtain within a traditional quantum Monte Carlo framework. We demonstrate this approach with pilot applications to the neon atom and beryllium dimer.
无
2006-01-01
Sub-microsecond time-resolved absorption spectroscopy has been used to study the electronically excited state behavior of soluble multiwalled carbon nanotube (MWNTsCON((CH2)9- CH3)2, denoted as MDDA) in chloroform, toluene and cyclohexane. Following pulsed photo-excitation of MDDA at 355 nm, three major spectral components are clearly identified with the help of global analysis carried out over 7 representative kinetics curves from 450 to 700 nm. The solvent dependence of decay associated difference spectra (DADS) and the corresponding lifetimes help to assign these transient species to singlet state (S1), triplet state (T1) and charge-separated state (CS), respectively. Preliminary discussion had been made to explore the involved photophysical and electron transfer processes.
Impact of Electric Fields on Highly Excited Rovibrational States of Polar Dimers
Gonzalez-Ferez, Rosario
2008-01-01
We study the effect of a strong static homogeneous electric field on the highly excited rovibrational levels of the LiCs dimer in its electronic ground state. Our full rovibrational investigation of the system includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. We explore the evolution of the states next to the dissociation threshold as the field strength is increased. The rotational and vibrational dynamics are influenced by the field; effects such as orientation, angular motion hybridization and squeezing of the vibrational motion are demonstrated and analyzed. The field also induces avoided crossings causing a strong mixing of the electrically dressed rovibrational states. Importantly, we show how some of these highly excited levels can be shifted to the continuum as the field strength is increased, and reversely how two atoms in the continuum can be brought into a bound state by lowering the electric field strength.
Influence of axial coordination on the photophysical property of excited state of zinc porphyrin
FENG; Juan; (冯娟); ZHANG; Huijuan; (张慧娟); XIANG; Junfeng; (向俊峰); AI; Xicheng; (艾希成); ZHANG; Xingkang; (张兴康); XU; Guangzhi; (徐广智); ZHANG; Jianping; (张建平)
2003-01-01
The effect of axial ligand 4-N,N-dimethyl aminopyridine (DMAP) on the fluorescence property of the second singlet excited state (S2) and first singlet excited state (S1) of 5,10,15, 20-tetra(p-methoxyl)phenyl zinc porphyrin has been investigated using steady-state absorption, fluorescence spectroscopy and picosecond time-resolved fluorescence spectroscopy. Hot fluorescence is clearly observed and is then reasonably assigned to the higher vibronic level from S1 state. A further analysis of fluorescence kinetics results shows that the coordination of DMAP to the zinc ion results in a decrease of hot fluorescence lifetime and an increase of the relative content of hot fluorescence. Similar phenomenon was observed with respects to S1 fluorescence upon the addition of DMAP in toluene. For a complete understanding of such an effect, a possible mechanism has been put forward and discussed in detail.
{beta} decay of 129Cd and excited states in 129In
Taprogge, J.; Jungclaus, A.; Grawe, H.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Soderstrom, P. A.; Sumikama, T.; Xu, Z. Y.; Kondev, F. G.
2015-05-26
The β decay of Cd 129 , produced in the relativistic fission of a U 238 beam, was experimentally studied at the RIBF facility at the RIKEN Nishina Center. From the γ radiation emitted after the β decays, a level scheme of In 129 was established comprising 31 excited states and 69 γ -ray transitions. The experimentally determined level energies are compared to state-of-the-art shell-model calculations. The half-lives of the two β -decaying states in Cd 129 were deduced and the β feeding to excited states in In 129 were analyzed. It is found that, as in most cases in the Z<50 , N≤82 region, both decays are dominated by the ν0g 7/2 →π0g 9/2 Gamow–Teller transition, although the contribution of first-forbidden transitions cannot be neglected.
Excited states and electrochromism of radical cation of the carotenoid astaxanthin
Krawczyk, Stanisław
1998-09-01
Radical cations of the carotenoid astaxanthin were generated by chemical oxidation with Fe(Cl) 3, and their absorption and electroabsorption (Stark) spectra at temperatures about 150 K were recorded in the spectral range from 5900 to 26000 cm -1 (380 to 1700 nm), covering two absorptive electronic transitions from D 0 (ground) to D 1 and D 2 excited states. The changes in static polarizability are negative and equal -40±10 A 3 for D 0→D 1 and -105±15 A 3 for D 0→D 2, pointing that dominant contribution to polarizabilities results from the coupling of D 1 and D 2 with the ground state. An approximate localization of the next excited state with ground-state parity is estimated based on arguments from perturbation theory.
Excited-state proton transfer from pyranine to acetate in methanol
Sudip Kumar Mondal; Subhadip Ghosh; Kalyanasis Sahu; Pratik Sen; Kankan Bhattacharyya
2007-03-01
Excited-state proton transfer (ESPT) of pyranine (8-hydroxypyrene-1,3,6-trisulphonate, HPTS) to acetate in methanol has been studied by steady-state and time-resolved fluorescence spectroscopy. The rate constant of direct proton transfer from pyranine to acetate (1) is calculated to be ∼ 1 × 109 M-1 s-1. This is slower by about two orders of magnitude than that in bulk water (8 × 1010 M-1 s-1) at 4 M acetate.
Mayer, G. V.; Plotnikov, V. G.; Artyukhov, V. Ya.
2016-08-01
Models of quantum-chemical calculation of rate constants for internal processes and intersystem crossing in polyatomic molecules are considered. The influence of the nature of electronically excited states in organic compounds is investigated. It is shown that the explicit allowance for the nature of wave functions of electronic states for estimation of electronic matrix elements of nonadiabaticity operators and spin-orbit interaction allows photophysical processes in organic compounds to be considered in detail.
Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores
Cekli, Seda
2016-02-12
A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.
Addison, Kiri; Heisler, Ismael A; Conyard, Jamie; Dixon, Tara; Page, Philip C Bulman; Meech, Stephen R
2013-01-01
Fluorescent proteins exhibit a very diverse range of photochemical behaviour, from efficient fluorescence through photochromism to photochemical reactivity. Remarkably this diverse behaviour arises from chromophores which have very similar structures. Here we describe measurements and modelling of the excited state dynamics in the chromophores of GFP (HBDI) and the kindling fluorescent protein, KFP (FHBMI). The methods are ultrafast fluorescence spectroscopy with sub 50 fs time resolution and the modelling is based on the Smoluchowski equation. The excited state decays of both chromophores are very fast, longer for their anions than for the neutral form and independent of wavelength. Detailed studies show the mean fluorescence wavelength to be independent of time. The excited state decay times are also observed to be a very weak function of solvent polarity and viscosity. These results are modelled utilising recently calculated potential energy surfaces for the ground and excited states as a function of the twist coordinates about the two bridging bonds of the chromophore. For FHBMI and the scarce data on the neutral HBDI the calculations are not successful suggesting the need for refinement of these potential energy surfaces. For HBDI in methanol the simulation is successful provided a strong dependence of the radiationless decay rate on the coordinate is assumed. Such dependence should be included in future calculations of excited state dynamics. When the simulations are extended to more viscous solvents they fail to reproduce the observed weak viscosity dependence. The implications of these results for the nature of the coordinate leading to radiationless decay in the chromophore and for the photodynamics of fluorescent proteins are discussed.
HU Li-Yun; FAN Hong-Yi
2008-01-01
We find that the squeezed two-mode number state is just a two-variable Hermite polynomial excitation of the two-mode squeezed vacuum state (THPES). We find that the Wigner function of THPES and its marginal distributions are just related to two-variable Hermite polynomials (or Laguerre polynomials) and that the tomogram of THPES can be expressed by one-mode Hermite polynomial.
Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Higashi, Toshio
2013-09-01
We aimed to investigate whether motor learning induces different excitability changes in the human motor cortex (M1) between two different muscle contraction states (before voluntary contraction [static] or during voluntary contraction [dynamic]). For the same, using motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS), we compared excitability changes during these two states after pinch-grip motor skill learning. The participants performed a force output tracking task by pinch grip on a computer screen. TMS was applied prior to the pinch grip (static) and after initiation of voluntary contraction (dynamic). MEPs of the following muscles were recorded: first dorsal interosseous (FDI), thenar muscle (Thenar), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles. During both the states, motor skill training led to significant improvement of motor performance. During the static state, MEPs of the FDI muscle were significantly facilitated after motor learning; however, during the dynamic state, MEPs of the FDI, Thenar, and FCR muscles were significantly decreased. Based on the results of this study, we concluded that excitability changes in the human M1 are differentially influenced during different voluntary contraction states (static and dynamic) after motor learning.
An excited-state approach within full configuration interaction quantum Monte Carlo
Blunt, N S; Booth, George H; Alavi, Ali
2015-01-01
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method, due to a comparable computational cost, while the excited states follow a similar sub-linear scaling of computational effort with system size to converge. As a first application we consider the carbon dimer in basis sets up to quadruple-zeta quality, and compare to exis...
Odd-spin yrast states as multiple quadrupole-phonon excitations
Pietralla, N; Otsuka, T; Casten, R F
1995-01-01
The wavefunctions of the lowest odd spin positive parity yrast states in the IBA are shown to be nearly pure multiple quadrupole-phonon excitations even outside the three dynamical symmetries. The empirical data for collective nuclei with 30 < Z < 80 confirm these predictions. The quadrupole-phonon purity of the 2^+_1 state can be measured from E2-branching ratios of the 3^+_1 state. These data show a high correlation to the 2^+_1 Q-phonon purity deduced from the E2-decay of 2^+ states.
Quantum-chemical study of electronically excited states of protolytic forms of vanillic acid
Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Y.
2015-12-01
The paper describes an analysis of possible ways of deactivation of electronically excited states of 4-hydroxy- 3-methoxy-benzoic acid (vanillic acid) and its protolytic forms with the use of quantum-chemical methods INDO/S (intermediate neglect of differential overlap with a spectroscopic parameterization) and MEP (molecular electrostatic potential). The ratio of radiative and non-radiative deactivation channels of the electronic excitation energy is established. The rate constants of photophysical processes (internal and intercombination conversions) occurring after the absorption of light in these forms are evaluated.
Excited state absorption spectroscopy of ZBLAN:Er3+ glass - Experiment and simulation
Piatkowski, D.; Wisniewski, K.; Rozanski, M.; Koepke, Cz.
2009-08-01
We present the excited state absorption (ESA) spectroscopy of ZBLAN:Er3+ glass. The experimental spectra were measured in broad spectral range (500-1800 nm) by the CW pump-probe technique. Judd-Ofelt (JO) approach was employed to interpret the results and to simulate the ESA spectra which were successfully confronted with the experiment. We also propose a systematic approach for prediction of various types of up-conversion mechanisms such as ESA up-conversion and photon avalanche (PA). Careful investigations were made to indicate possible up-conversion excitation channels in a wide spectral range, from 400 nm up to 2 μm.
The finite volume spectrum of excited states from lattice QCD simulations
Bulava, John; Jhang, You-Cyuan; Lenkner, David; Morningstar, Colin J; Foley, Justin; Juge, Keisuke J; Wong, Chik Him
2014-01-01
We present results for the spectrum of excited mesons obtained from temporal correlations of spatially-extended single-hadron and multi-hadron operators computed in lattice QCD. The stochastic LapH algorithm is implemented on anisotropic, dynamical lattices for isovectors for pions of mass $390$ MeV. A large correlation matrix with single-particle and two-particle probe operators is diagonalized to identify resonances. The masses of excited states in the $I=1, S=0, T_{1u}^+$ channel as well as the mixing of single and multi-particle probe operators are presented.
Godunov, I. A.; Bataev, V. A.; Maslov, D. V.; Yakovlev, N. N.
2016-12-01
The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.
Assessing Accuracy of Exchange-Correlation Functionals for the Description of Atomic Excited States
Makowski, Marcin; Hanas, Martyna
2016-09-01
The performance of exchange-correlation functionals for the description of atomic excitations is investigated. A benchmark set of excited states is constructed and experimental data is compared to Time-Dependent Density Functional Theory (TDDFT) calculations. The benchmark results show that for the selected group of functionals good accuracy may be achieved and the quality of predictions provided is competitive to computationally more demanding coupled-cluster approaches. Apart from testing the standard TDDFT approaches, also the role of self-interaction error plaguing DFT calculations and the adiabatic approximation to the exchange-correlation kernels is given some insight.
Parniak, Michał; Wasilewski, Wojciech
2015-01-01
We demonstrate an interface between light coupled to transition between excited states of rubidium and long-lived ground-state atomic coherence. In our proof-of-principle experiment a non-linear process of four-wave mixing in an open-loop configuration is used to achieve light emission proportional to independently prepared ground-state atomic coherence. We demonstrate strong correlations between Raman light heralding generation of ground-state coherence and the new four-wave mixing signal. Dependance of the efficiency of the process on laser detunings is studied.
Coherent Excitation of Lithium to Rydberg States and Application to Rydberg Atom Optics
Stevens, G.; Widmer, M.; Tudorica, F.; Iu, C.-H.; Metcalf, H.
1996-05-01
We present a theoretical analysis of several schemes for coherently exciting lithium atoms in a thermal beam to Rydberg states in a four level/three laser system, previously discussed by Oreg et al.(J. Oreg et al.), Phys. Rev. A 45, 4888 (1992). The time evolution of the dressed states and their populations are calculated numerically, solving the optical Bloch equations by a fourth order Runge-Kutta integration. Our code closely models actual experimental conditions, including spontaneous decay, beam profiles, intensities and detunings. Large Rydberg populations (50%) around n=15 may be obtained by non-adiabatic excitation, with each laser power on the order of 1 mW. We discuss the effects of an externally controlled time dependent detuning in the Rydberg state, for example as produced by atoms traversing an inhomogeneous electric field. An understanding of this excitation mechanism is important for large angle reflection of coherently excited atoms using field gradients. Some primitive ideas of Stark-Rydberg atom optics are presented.
Observation of excited state charge transfer with fs/ps-CARS
Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)
2009-01-01
Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.
Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift
Li, Tanping; Kumar, Revati
2015-11-01
We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaks down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.
Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift
Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
2015-11-07
We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaks down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.
Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions
Ryabtsev, I I; Tretyakov, D B; Entin, V M; Yakshina, E A
2011-01-01
Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a star-like geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S_{1/2}->5P_{3/2}->6S_{1/2}->nP in Rb atoms have shown that compared to the one- and two-photon laser excitation this approach provides much narrower line width and longer coherence time for both cold atom samples and hot vapors, if the intermediate one-photon resonances of the three-photon transition are detuned by more than respective single-photon Doppler widths. This method can be used to improve fidelity of Rydberg quantum gates and precision of spectroscopic measurements in Rydberg atoms.
Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Ratnavelu, K. [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-05-21
We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.
Constraining nuclear photon strength functions by the decay properties of photo-excited states
Isaak, J., E-mail: j.isaak@gsi.de [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt (Germany); Savran, D. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt (Germany); Krtička, M. [Faculty of Mathematics and Physics, Charles University, Prague 8 (Czech Republic); Ahmed, M.W. [Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Beller, J. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Fiori, E. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt (Germany); Glorius, J. [Institut für Angewandte Physik, Goethe-Universität Frankfurt, 60438 Frankfurt (Germany); Kelley, J.H. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Löher, B. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt (Germany); and others
2013-12-18
A new approach for constraining the low-energy part of the electric dipole Photon Strength Function (E1-PSF) is presented. Experiments at the Darmstadt High-Intensity Photon Setup and the High Intensity γ{sup →}-Ray Source have been performed to investigate the decay properties of {sup 130}Te between 5.50 and 8.15 MeV excitation energy. In particular, the average γ-ray branching ratio to the ground state and the population intensity of low-lying excited states have been studied. A comparison to the statistical model shows that the latter is sensitive to the low-energy behavior of the E1-PSF, while the average ground state branching ratio cannot be described by the statistical model in the energy range between 5.5 and 6.5 MeV.
Highly selective population of two excited states in nonresonant two-photon absorption
Zhang Hui; Zhang Shi-An; Sun Zhen-Rong
2011-01-01
A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse.In this paper,we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution.Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value.We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption,such as resonance-mediated(2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization.
Unconventional decay law for excited states in closed many-body systems
Flambaum, V V
2001-01-01
We study the time evolution of an initially excited many-body state in a finite system of interacting Fermi-particles in the situation when the interaction gives rise to the ``chaotic'' structure of compound states. This situation is generic for highly excited many-particle states in quantum systems, such as heavy nuclei, complex atoms, quantum dots, spin systems, and quantum computers. For a strong interaction the leading term for the return probability $W(t)$ has the form $W(t)\\simeq \\exp (-\\Delta_E^2t^2)$ with $\\Delta_E^2$ as the variance of the strength function. The conventional exponential linear dependence $W(t)=C\\exp (-\\Gamma t)$ formally arises for a very large time. However, the prefactor $C$ turns out to be exponentially large, thus resulting in a strong difference from the conventional estimate for $W(t)$.
Excited-state solvation and proton transfer dynamics of DAPI in biomimetics and genomic DNA.
Banerjee, Debapriya; Pal, Samir Kumar
2008-08-14
The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.
Equation-of-motion coupled cluster method for the description of the high spin excited states
Musiał, Monika; Lupa, Łukasz; Kucharski, Stanisław A.
2016-04-01
The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R1 and R2 singlet equations in the case of quintets, only R2 operator survives with 5 diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C2 molecule and quintet states of C and Si atoms.
The ground and excited state electron affinities of cytosine and trans-azobenzene
Chen, Edward C. M.; Herder, Charles; Chen, Edward S.
2007-06-01
The electron capture detector, reduction potential, electron transfer and photon methods of determining electron affinities are compared. The adiabatic electron affinities are (in eV): t-azobenzene(O 2), 1.578(5); t-azobenzene, 1.378(5); cytosine, 1.043(5) from anion photoelectron spectra. The largest or ground state value for trans-azobenzene and an excited state electron affinity for cytosine, 0.70 eV are also determined by reduction potentials. Other excited state energies are (in eV): t-azobenzene, 0.328(5), 0.589(5), 0.690(5), 0.768(5), 0.954(5), 1.038(5), 1.150(5), 1.275(5) and cytosine, 0.089(5), 0.098(5), 0.198(5), 0.235(5). The cytosine values are consistent with electron transport and radiation damage and repair in DNA.
On the effect of excited states in lattice calculations of the nucleon axial charge
Hansen, Maxwell T
2016-01-01
Excited-state contamination is one of the dominant uncertainties in lattice calculations of the nucleon axial-charge, $g_A$. Recently published results in leading-order chiral perturbation theory (ChPT) predict the excited-state contamination to be independent of the nucleon interpolator and positive. However, empirical results from numerical lattice calculations show negative contamination (downward curvature), indicating that present-day calculations are not in the regime where the leading-order ChPT predictions apply. In this paper we show that, under plausible assumptions, one can reproduce the behavior of lattice correlators by taking into account final-state $N \\pi$ interactions, in particular the effect of the Roper resonance, and by postulating a sign change in the infinite-volume $N \\to N \\pi$ axial-vector transition amplitude.
Spectroscopy of ground and excited states of pseudoscalar and vector charmonium and bottomonium
Negash, Hluf; Bhatnagar, Shashank
2016-07-01
In this paper, we calculate the mass spectrum, weak decay constants, two photon decay widths, and two-gluon decay widths of ground (1S) and radially excited (2S, 3S,…) states of pseudoscalar charmoniuum and bottomonium such as ηc and ηb, as well as the mass spectrum and leptonic decay constants of ground state (1S), excited (2S, 1D, 3S, 2D, 4S,…, 5D) states of vector charmonium and bottomonium such as J/ψ, and Υ, using the formulation of Bethe-Salpeter equation under covariant instantaneous ansatz (CIA). Our results are in good agreement with data (where ever available) and other models. In this framework, from the beginning, we employ a 4 × 4 representation for two-body (qq¯) BS amplitude for calculating both the mass spectra as well as the transition amplitudes. However, the price we have to pay is to solve a coupled set of equations for both pseudoscalar and vector quarkonia, which we have explicitly shown get decoupled in the heavy-quark approximation, leading to mass spectral equation with analytical solutions for both masses, as well as eigenfunctions for all the above states, in an approximate harmonic oscillator basis. The analytical forms of eigenfunctions for ground and excited states so obtained are used to evaluate the decay constants and decay widths for different processes.
Excited state mass spectra of doubly heavy baryons {Ω _{cc}}, {Ω _{bb}}, and {Ω _{bc}}
Shah, Zalak; Thakkar, Kaushal; Rai, Ajay Kumar
2016-10-01
We discuss the mass spectrum of Ω baryon with two heavy quarks and one light quark ( ccs, bbs, and bcs). The main goal of the paper is to calculate the ground state masses and after that, the positive and negative parity excited states masses are also obtained within a hypercentral constituent quark model, using Coulomb plus linear potential framework. We also added a first order correction to the potential. The mass spectra up to 5S for radial excited states and 1P-5P, 1D-4D, and 1F-2F states for orbital excited states are computed for Ω _{cc}, Ω _{bb}, and Ω _{bc} baryons. Our obtained results are compared with other theoretical predictions, which could be a useful complementary tool for the interpretation of experimentally unknown heavy baryon spectra. The Regge trajectory is constructed in both the (n_r, M2) and the ( J, M2) planes for Ω _{cc}, Ω _{bb}, and Ω _{bc} baryons and their slopes and intercepts are also determined. Magnetic moments of doubly heavy Ω 's are also calculated.
Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László
1987-01-01
The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.
Excited-state proton transfer of fluorescein anion as an ionic liquid component.
Rodrigues, Catarina A B; Graça, Cátia; Maçôas, Ermelinda; Fedorov, Alexander; Afonso, Carlos A M; Martinho, José M G
2013-11-14
Fluorescent ionic liquids (FILs) incorporating the fluorescein anion have been prepared by anion exchange of the parent quaternary ammonium chloride (Quat(+)Cl(-)) ionic liquid. By controlling the molar ratio of fluorescein to Quat(+)Cl(-), ionic liquids incorporating different prototropic forms of fluorescein were prepared. The 1:1 molar ratio ionic liquid (FIL1) is essentially composed of monoanionic fluorescein, while dianionic fluorecein is predominant in the FIL with a 1:2 molar ratio (FIL2). The fluorescence excitation spectrum of FIL2 is markedly different from its absorption spectrum. Absorption features the fluorescein dianion, while the excitation spectrum is exclusively due to the monoanion. In FIL1, the absorption and excitation spectra are both characteristic of the monoanion. In both FILs, emission of the dianion is observed upon excitation of the monoanion. This unusual behavior is interpreted in the context of a fast deprotonation of the monoanion in the excited state. The presence of residual water in the ionic liquid is important for the proton transfer process. By lowering the pH of FIL1, the transient proton transfer is inhibited, and the emission of the monoanion could be observed. The FILs have completely different spectroscopic properties from solvated fluorescein in Quat(+)Cl(-), where the prototropic equilibrium is shifted toward the neutral forms.
Measurements of photoionization cross sections from the 4p, 5d and 7s excited states of potassium
Amin, Nasir [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, University of Agriculture, Faisalabad (Pakistan); Mahmood, S. [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, UAJ and K, Muzaffarabad (Pakistan); Haq, S.U.; Kalyar, M.A.; Rafiq, M. [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Baig, M.A. [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: baig@qau.edu.pk
2008-03-15
New measurements of the photoionization cross sections from the 4p {sup 2}P{sub 1/2,3/2}, 5d {sup 2}D{sub 5/2,3/2} and 7s {sup 2}S{sub 1/2} excited states of potassium are presented. The cross sections have been measured by two-step excitation and ionization using a Nd:YAG laser in conjunction with a thermionic diode ion detector. By applying the saturation technique, the absolute values of the cross sections from the 4p {sup 2}P{sub 3/2} and 4p {sup 2}P{sub 1/2} states at 355 nm are determined as 7.2{+-}1.1 and 5.6{+-}0.8 Mb, respectively. The photoionization cross section from the 5d {sup 2}D{sub 5/2,3/2} excited state has been measured using two excitation paths, two-step excitation and two-photon excitation from the ground state. The measured values of the cross sections from the 5d {sup 2}D{sub 5/2} state by two-photon excitation from the ground state is 28.9{+-}4.3 Mb, whereas in the two-step excitation, the cross section from the 5d {sup 2}D{sub 3/2} state via the 4p {sup 2}P{sub 1/2} state and from the 5d {sup 2}D{sub 5/2,3/2} states via the 4p {sup 2}P{sub 3/2} state are determined as 25.1{+-}3.8 and 30.2{+-}4.5 Mb, respectively. Besides, we have measured the photoionization cross sections from the 7s {sup 2}S{sub 1/2} excited state using the two-photon excitation from the ground state as 0.61{+-}0.09 Mb.
Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen
Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.
2012-12-01
Collisions between electrons and neutral N2 molecules result in emissions that provide an important diagnostic probe for understanding the ionospheric energy balance and the effects of space weather in upper atmospheres. Also, transitions to singlet ungerade states cause N2 to be a strong absorber of solar radiation in the EUV spectral range where many ro-vibrational levels of these Rydberg-valence (RV) states are predissociative. Thus, their respective excitation and emission cross sections are important parameters for understanding the [N]/[N2] ratio in the thermosphere of nitrogen dominated atmospheres. The following work provides improved constraints on absolute and relative excitation cross sections of numerous RV states of N2, enabling more physically accurate atmospheric modeling. Here, we present recent integral cross sections (ICSs) for electron impact excitation of RV states of N2 [6], which were based on the differential cross sections (DCSs) derived from electron energy-loss (EEL) spectra of [5]. This work resulted in electronic excitation cross sections over the following measured vibrational levels: b 1Πu (v‧=0-14), c3 1Πu (v‧=0-3), o3 1Πu (v‧=0-3), b‧ 1Σu+ (v‧=0-10), c‧4 1Σu+ (v‧=0-3), G 3Πu (v‧=0-3), and F 3Πu (v‧=0-3). We further adjusted the cross sections of the RV states by extending the vibronic contributions to unmeasured v‧-levels via the relative excitation probabilities (REPs) as discussed in [6]. This resulted in REP-scaled ICSs over the following vibrational levels for the singlet ungerade states: b(0-19), c3(0-4), o3(0-4), b‧(0-16), and c‧4(0-8). Comparison of the ICSs of [6] with available EEL based measurements, theoretical calculations, and emission based work generally shows good agreement within error estimations, except with the recent reevaluation provided by [1]. Further, we have extended these results, using the recent EEL data of [3], to include the unfolding of better resolved features above ~13
Phonon-like excitations in the two-state Bose-Hubbard model
I.V. Stasyuk
2015-12-01
Full Text Available The spectrum of phonon-like collective excitations in the system of Bose-atoms in optical lattice (more generally, in the system of quantum particles described by the Bose-Hubbard model is investigated. Such excitations appear due to displacements of particles with respect to their local equilibrium positions. The two-level model taking into account the transitions of bosons between the ground state and the first excited state in potential wells, as well as interaction between them, is used. Calculations are performed within the random phase approximation in the hard-core boson limit. It is shown that excitation spectrum in normal phase consists of the one exciton-like band, while in the phase with BE condensate an additional band appears. The positions, spectral weights and widths of bands strongly depend on chemical potential of bosons and temperature. The conditions of stability of a system with respect to the lowering of symmetry and displacement modulation are discussed.
Radiative capture studies of the electromagnetic decays of highly excited states
Snover, K.A.
1980-01-01
Selected examples of interesting E1, M1, and E2 resonance studies in (p,..gamma..) and (..cap alpha..,..gamma..) reactions are discussed. These include a unique determination of E1 amplitudes in the /sup 12/C(P,..gamma../sub 0/)/sup 13/N reaction, E2 strength in light nuclei, M1 decays to the ground states and to the excited O/sup +/ states of the doubly magic /sup 16/O and /sup 40/Ca nuclei, second harmonic E1 resonances in (p,..gamma..), and M1 ..gamma..-decay of stretched particle-hole states in /sup 16/O and /sup 28/Si.
Excited-state charge coupled proton transfer reaction in dipole-functionalized salicylideneaniline
Chen, Kew-Yu, E-mail: kyuchen@fcu.edu.tw; Hu, Jiun-Wei
2015-03-15
Based on design and synthesis of salicylideneaniline derivatives 1–4, we demonstrate an exceedingly useful system to investigate the excited-state intramolecular charge transfer (ESICT) coupled with excited-state intramolecular proton transfer (ESIPT) reaction via the dipolar functionality of Schiff base salicylideneaniline. In solid and aprotic solvents 1–4 exist mainly as E conformers that possess a strong intramolecular six-membered-ring hydrogen bond. Compounds 2–4 exhibit solely a long-wavelength proton-transfer tautomer emission, while dipole-functionalized Schiff base 1 exhibits remarkable dual emission due to the different solvent-polarity environments between ESICT and ESIPT states. Moreover, the geometric structures, frontier molecular orbitals (MOs) and the potential energy curves for 1–4 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT) and time-dependent DFT calculations. - Highlights: • A dipole-functionalized salicylideneaniline derivative was synthesized. • The Schiff base exhibits remarkable dual emission. • A novel ESICT/ESIPT coupled system was created.
Excited state absorption of Sm2+ in SrF2 and SrCl2
Payne, Stephen A.; Chase, L. L.; Krupke, William F.; Boatner, L. A.
1988-06-01
The excited state absorption spectrum of Sm2+ diluted as an impurity in the single crystal hosts SrF2 and SrCl2 has been observed. The absorption peaks associated with the 5D0(4f6) excited state were found to be displaced by approximately 3000 cm-1 from the absorption bands arising from the 7F0(4f6) ground state when the 5D0-7F0 energy was taken into account. The observed peak separation is ascribed to the 4f-5d exchange interaction. From the measured peak positions and band intensities, the exchange energy for the Sm2+ impurity in the two host crystals was determined to be about the same order of magnitude as that expected for the free ion. The implications of the properties of the excited state absorption bands for the performance of CaF2:Sm2+ and SrF2:Sm2+ lasers are considered.
Excited State Potential Energy Surfaces of Polyenes and Protonated Schiff Bases.
Send, Robert; Sundholm, Dage; Johansson, Mikael P; Pawłowski, Filip
2009-09-08
The potential energy surface of the (1)Bu and (1)A' states of all-trans-polyenes and the corresponding protonated Schiff bases have been studied at density functional theory and coupled cluster levels. Linear polyenes and protonated Schiff bases with 4 to 12 heavy atoms have been investigated. The calculations show remarkable differences in the excited state potential energy surfaces of the polyenes and the protonated Schiff bases. The excited states of the polyenes exhibit high torsion barriers for single-bond twists and low torsion barriers for double-bond twists. The protonated Schiff bases, on the other hand, are very flexible molecules in the first excited state with low or vanishing torsion barriers for both single and double bonds. Calculations at density functional theory and coupled cluster levels yield qualitatively similar potential energy surfaces. However, significant differences are found for some single-bond torsions in longer protonated Schiff bases, which indicate a flaw of the employed time-dependent density functional theory methods. The close agreement between the approximate second and third order coupled cluster levels indicates that for these systems calculations at second order coupled cluster level are useful in the validation of results based on time-dependent density functional theory.
López, A; Kisiel, Z; Daly, A M; Bermúdez, C; Calcutt, H; Marcelino, N; Viti, S; Drouin, B J; Medvedev, I R; Neese, C F; Pszczółkowski, L; Alonso, J L; Cernicharo, J
2014-01-01
New laboratory data of CH$_2$CHCN (vinyl cyanide) in its ground and vibrationally excited states at the microwave to THz domain allow searching for these excited state transitions in the Orion-KL line survey. Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz spectrum provided measurements of CH$_2$CHCN covering a spectral range of 18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of CH$_2$CHCN species detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The total column density of CH$_2$CHCN in the ground state is (3.0$\\pm$0.9)x10$^{15}$ cm$^{-2}$. We report on the first interstellar ...
Charge state dynamics of the nitrogen vacancy center in diamond under near-infrared excitation
Ji, Peng; Dutt, M. V. Gurudev
2016-05-01
The negatively charged NV defect center (NV-) in diamond has become prominent for applications in quantum information, nanoscale magnetic and electric field sensing, and fluorescent biological markers. Switching between NV- and neutral charge states (NV0) have been extensively studied and modeled using exciting laser wavelengths that are shorter than the NV- zero-phonon line (ZPL), and typically result in decreased fluorescence from the NV- state. In this work, we report on the experimental observation that NV0 converts to NV- under excitation with near-infrared (1064 nm) light, resulting in increased fluorescence from the NV- state. We have observed this effect in both ensembles of NVs in bulk diamond, and in diamond nanocrystals, and find that it is robust both at room and low temperature. We carried out microwave and two-color excitation combined with spectral and time-resolved experimental studies. We used rate-equation modeling and find evidence for competition between one-photon and two-photon processes for hole and electron ionization. This finding may help elucidate the study of the NV energy level structure, and impact recently emerging research in single-shot measurement of the NV- spin state via spin-to-charge conversion.
Excited-State Dipole and Quadrupole Moments: TD-DFT versus CC2.
Jacquemin, Denis
2016-08-09
The accuracies of the excited-state dipole and quadrupole moments obtained by TD-DFT are assessed by considering 16 different exchange-correlation functionals and more than 30 medium and large molecules. Except for excited-state presenting a significant charge-transfer character, a relatively limited dependency on the nature of the functional is found. It also turns out that while DFT ground-state dipole moments tend to be too large, the reverse trend is obtained for their excited-state counterparts, at least when hybrid functionals are used. Consequently, the TD-DFT excess dipole moments are often too small, an error that can be fortuitously corrected for charge-transfer transition by selecting a pure or a hybrid functional containing a small share of exact exchange. This error-cancelation phenomena explains the contradictory conclusions obtained in previous investigations. Overall, the largest correlation between CC2 and TD-DFT excess dipoles is obtained with M06-2X, but at the price of a nearly systematic underestimation of this property by ca. 1 D. For the excess quadrupole moments, the average errors are of the order of 0.2-0.6 D·Å for the set of small aromatic systems treated.
Pulsed excitation of Rydberg-atom-pair states in an ultracold Cs gas
Saßmannshausen, Heiner; Deiglmayr, Johannes
2015-01-01
Pulsed laser excitation of a dense ultracold Cs vapor has been used to study the pairwise interactions between Cs atoms excited to $n$p$_{3/2}$ Rydberg states of principal quantum numbers in the range $n=22-36$. Molecular resonances were observed that correspond to excitation of Rydberg-atom-pair states correlated not only to the $n$p$_{3/2}+n$p$_{3/2}$ dissociation asymptotes, but also to $n$s$_{1/2}+(n+1)$s$_{1/2}$, $n$s$_{1/2}+n'$f$_{j}$, and $(n-4)$f$_{j}+(n-3)$f$_{j}$ $(j=5/2,7/2)$ dissociation asymptotes. These pair resonances are interpreted as arising from dipole-dipole, and higher long-range-interaction terms between the Rydberg atoms on the basis of i) their spectral positions, ii) their response to static and pulsed electric fields, and iii) millimeter-wave spectra between pair states correlated to different pair-dissociation asymptotes. The Rydberg-atom--pair states were found to spontaneously decay by Penning ionization and the dynamics of the ionization process were investigated during the first...
Omidyan, Reza; Iravani, Maryam
2016-11-01
The MP2/CC2 and CASSCF theoretical approaches have been employed to determine the excited state proton transfer and photophysical nature of the four organic compounds, having the main frame of hydroxyphenyl-imidzaopyridine (HPIP). The nitrogen insertion effect, in addition to amine (-NH2) substitution has been investigated extensively by following the transition energies and deactivation pathways of resulted HPIP derivatives. It has been predicted that the excited state intramolecular proton transfer with or without small barrier is the most important feature of these compounds. Also, for all of the considered HPIP derivatives, a conical intersection (CI) between ground and the S1 excited state has been predicted. The strong non-adiabatic coupling in the CI (S1/S0), drives the system back to the ground state in which the proton may either return to the phenoxy unit and thus close the photocycle, or the system can continue the twisting motion that results in formation of a γ-photochromic species. This latter species can be responsible for photochromism of HPIP derivative systems.
Photoactivated excited states of DNA repair photolyase: Dynamical and semiempircal identification
Zheng, Xuehe; Ly, Ngan M.; Stuchebrukhov, Alexei A.
DNA damage caused by UV light radiation is often naturally repaired in a process initiated by excited state electron transfer from the photoactivated photolyase enzyme to the DNA cyclobutane pyrimidine dimer lesion. The active cofactor in the excited state electron transfer in the photolyase is the two-electron fully reduced form of the flavin adenine dinucleotide (FADH-). To calculate electron tunneling matrix element and model the DNA binding with photolyase, the LUMO of the FADH- calculated using extended Huckel method was previously chosen from the SCF wavefunctions. Recently, the DNA-photolyase complex was crystallized in its bound form, in good agreement with our previous model in even minute details at the active site. Here we carry out molecular dynamics simulation of the entire complex using the new experimental structure of Anacystis nidulans and identify the low-lying photoactivated states of the enzyme for the dynamical confirmations. Our results from ZINDO/S CIS calculations are compared with experimental UV spectra, and their implications for excited state electron transfer and energy transfer are discussed.0
Probing ground and low-lying excited states for HIO{sub 2} isomers
Souza, Gabriel L. C. de [Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900 (Brazil); Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas 69100-000 (Brazil); Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Brown, Alex, E-mail: alex.brown@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)
2014-12-21
We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})
Probing ground and low-lying excited states for HIO2 isomers
de Souza, Gabriel L. C.; Brown, Alex
2014-12-01
We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10-3).
A relativistic time-dependent density functional study of the excited states of the mercury dimer
Kullie, Ossama, E-mail: kullie@uni-kassel.de, E-mail: ossama.kullie@unistra.fr [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg, France and Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel, D-34127 Kassel (Germany)
2014-01-14
In previous works on Zn{sub 2} and Cd{sub 2} dimers we found that the long-range corrected CAMB3LYP gives better results than other density functional approximations for the excited states, especially in the asymptotic region. In this paper, we use it to present a time-dependent density functional (TDDFT) study for the ground-state as well as the excited states corresponding to the (6s{sup 2} + 6s6p), (6s{sup 2} + 6s7s), and (6s{sup 2} + 6s7p) atomic asymptotes for the mercury dimer Hg{sub 2}. We analyze its spectrum obtained from all-electron calculations performed with the relativistic Dirac-Coulomb and relativistic spinfree Hamiltonian as implemented in DIRAC-PACKAGE. A comparison with the literature is given as far as available. Our result is excellent for the most of the lower excited states and very encouraging for the higher excited states, it shows generally good agreements with experimental results and outperforms other theoretical results. This enables us to give a detailed analysis of the spectrum of the Hg{sub 2} including a comparative analysis with the lighter dimers of the group 12, Cd{sub 2}, and Zn{sub 2}, especially for the relativistic effects, the spin-orbit interaction, and the performance of CAMB3LYP and is enlightened for similar systems. The result shows, as expected, that spinfree Hamiltonian is less efficient than Dirac-Coulomb Hamiltonian for systems containing heavy elements such as Hg{sub 2}.
Electronically excited states and photochemical reaction mechanisms of β-glucose.
Tuna, Deniz; Sobolewski, Andrzej L; Domcke, Wolfgang
2014-01-07
Carbohydrates are important molecular components of living matter. While spectroscopic and computational studies have been performed on carbohydrates in the electronic ground state, the lack of a chromophore complicates the elucidation of the excited-state properties and the photochemistry of this class of compounds. Herein, we report on the first computational investigation of the singlet photochemistry of β-glucose. It is shown that low-lying singlet excited states are of nσ* nature. Our computations of the singlet vertical excitation energies predict absorption from 6.0 eV onward. Owing to a dense manifold of weakly-absorbing states, a sizable and broad absorption in the ultraviolet-C range arises. We have explored two types of photochemical reaction mechanisms: hydrogen-detachment processes for each of the five O-H groups and a C-O ring-opening process. Both types of reactions are driven by repulsive nσ* states that are readily accessible from the Franck-Condon region and lead to conical intersections in a barrierless fashion. We have optimized the geometries of the conical intersections involved in these photochemical processes and found that these intersections are located around 5.0 eV for the O-H hydrogen-detachment reactions and around 4.0 eV for the C-O ring-opening reaction. The energies of all conical intersections are well below the computed absorption edge. The calculations were performed using linear-response methods for the computation of the vertical excitation energies and multiconfigurational methods for the optimization of conical intersections and the computation of energy profiles.
Ruberti, M.; Yun, R.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.
2014-05-01
Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.
Ultrafast Excited State Dynamics in Molecular Motors: Coupling of Motor Length to Medium Viscosity.
Conyard, Jamie; Stacko, Peter; Chen, Jiawen; McDonagh, Sophie; Hall, Christopher R; Laptenok, Sergey P; Browne, Wesley R; Feringa, Ben L; Meech, Stephen R
2017-03-07
Photochemically driven molecular motors convert the energy of incident radiation to intramolecular rotational motion. The motor molecules considered here execute four step unidirectional rotational motion. This comprises a pair of successive light induced isomerizations to a metastable state followed by thermal helix inversions. The internal rotation of a large molecular unit required in these steps is expected to be sensitive to both the viscosity of the medium and the volume of the rotating unit. In this work, we describe a study of motor motion in both ground and excited states as a function of the size of the rotating units. The excited state decay is ultrafast, highly non-single exponential, and is best described by a sum of three exponential relaxation components. The average excited state decay time observed for a series of motors with substituents of increasing volume was determined. While substitution does affect the lifetime, the size of the substituent has only a minor effect. The solvent polarity dependence is also slight, but there is a significant solvent viscosity effect. Increasing the viscosity has no effect on the fastest of the three decay components, but it does lengthen the two slower decay times, consistent with them being associated with motion along an intramolecular coordinate displacing a large solvent volume. However, these slower relaxation times are again not a function of the size of the substituent. We conclude that excited state decay arises from motion along a coordinate which does not necessarily require complete rotation of the substituents through the solvent, but is instead more localized in the core structure of the motor. The decay of the metastable state to the ground state through a helix inversion occurs 14 orders of magnitude more slowly than the excited state decay, and was measured as a function of substituent size, solvent viscosity and temperature. In this case neither substituent size nor solvent viscosity influences
It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.
Herbert, John M; Zhang, Xing; Morrison, Adrian F; Liu, Jie
2016-05-17
Single-excitation methods, namely, configuration interaction singles and time-dependent density functional theory (TDDFT), along with semiempirical versions thereof, represent the most computationally affordable electronic structure methods for describing electronically excited states, scaling as [Formula: see text] absent further approximations. This relatively low cost, combined with a treatment of electron correlation, has made TDDFT the most widely used excited-state quantum chemistry method over the past 20+ years. Nevertheless, certain inherent problems (beyond just the accuracy of this or that exchange-correlation functional) limit the utility of traditional TDDFT. For one, it affords potential energy surfaces whose topology is incorrect in the vicinity of any conical intersection (CI) that involves the ground state. Since CIs are the conduits for transitions between electronic states, the TDDFT description of photochemistry (internal conversion and intersystem crossing) is therefore suspect. Second, the [Formula: see text] cost can become prohibitive in large systems, especially those that involve multiple electronically coupled chromophores, for example, the antennae structures of light-harvesting complexes or the conjugated polymers used in organic photovoltaics. In such cases, the smallest realistic mimics might already be quite large from the standpoint of ab initio quantum chemistry. This Account describes several new computational methods that address these problems. Topology around a CI can be rigorously corrected using a "spin-flip" version of TDDFT, which involves an α → β spin-flipping transition in addition to occupied → virtual excitation of one electron. Within this formalism, singlet states are generated via excitation from a high-spin triplet reference state, doublets from a quartet, etc. This provides a more balanced treatment of electron correlation between ground and excited states. Spin contamination is problematic away from the
Jahur A Mondal; Sandeep Verma; Hirendra N Ghosh; Dipak K Palit
2008-01-01
Relaxation dynamics of the excited singlet states of 2,5-bis-(N-methyl-N-1,3-propdienylaniline)-cyclopentanone (MPAC), a ketocyanine dye, have been investigated using steady-state absorption and emission as well as femtosecond time-resolved absorption spectroscopic techniques. Following photoexcitation using 400 nm light, the molecule is excited to the S2 state, which is fluorescent in rigid matrices at 77 K. S2 state is nearly non-fluorescent in solution and has a very short lifetime (0.5 ± 0.2 ps). In polar aprotic solvents, the S1 state follows a complex multi-exponential relaxation dynamics consisting of torsional motion of the donor groups, solvent re-organization as well as photoisomerization processes. However, in alcoholic solvents, solvent re-organization via intermolecular hydrogen-bonding interaction is the only relaxation process observed in the S1 state. In trifluoroethanol, a strong hydrogen bonding solvent, conversion of the non-hydrogen-bonded form, which is formed following photoexcitation, to the hydrogen-bonded complex has been clearly evident in the relaxation process of the S1 state.
The investigation of excited state proton transfer mechanism in water-bridged 7-azaindole
Zhang, Yong-Jia; Zhao, Jin-Feng; Li, Yong-Qing
2016-01-01
Based on the time-dependent density functional theory (TDDFT), the excited-state intermolecular proton transfer (ESIPT) mechanism of water-bridged 7-azaindole has been investigated theoretically. The calculations of primary bond lengths and the IR vibrational spectra between the S0 state and the S1 state that verified the intramolecular hydrogen bond were strengthened. The fact that reproduced experimental absorbance and fluorescence emission spectra well theoretically demonstrate that the TDDFT theory we adopted is reasonable and effective. In addition, intramolecular charge transfer based on the frontier molecular orbitals demonstrated the indication of the ESIPT reaction. The constructed potential energy curves of ground state and the first excited state based on keeping the H2···O3 and H6···N7 distances fixed at a series of values have been used to illustrate the ESIPT process. A relative lower barrier of 5.94 kcal/mol in the S1 state potential energy curve for type II (lower than that of 9.82 kcal/mol in the S1 state for type I) demonstrates that type II ESIPT process occurs firstly in 7Al-2H2O complex.
Survey of Excited State Neutron Spectroscopic Factors for Z=8-28 Nuclei
Tsang, M. B.; Lee, Jenny; Su, S. C.; Dai, J. Y.; Horoi, M.; Liu, H.; Lynch, W. G.; Warren, S.
2009-02-01
We have extracted 565 neutron spectroscopic factors of sd and fp shell nuclei by systematically analyzing more than 2000 measured (d, p) angular distributions. We are able to compare 125 of the extracted spectroscopic factors to values predicted by large-basis shell-model calculations and evaluate the accuracies of spectroscopic factors predicted by different shell-model interactions in these regions. We find that the spectroscopic factors predicted for most excited states of sd-shell nuclei using the latest USDA or USDB interactions agree with the experimental values. For fp shell nuclei, the inability of the current models to account for the core excitation and fragmentation of the states leads to considerable discrepancies. In particular, the agreement between data and shell-model predictions for Ni isotopes is not better than a factor of 2 using either the GXPF1A or the XT interaction.
Zdyb, Agata; Krawczyk, Stanisław
2016-03-01
Adsorption of quercetin on colloidal titanium dioxide nanoparticles in ethanol and its excited-state electronic structure were investigated by means of electronic and vibrational spectroscopies. The changes in electronic charge redistribution as reflected by the dipole moment difference, ∆μ, between the ground and excited electronic states were measured with electroabsorption spectroscopy and analyzed using results of TD DFT computations. Adsorption of quercetin causes a red shift of its absorption spectrum. Raman spectra of quercetin analyzed with reference to analogous data for morin indicate binding of quercetin through the hydroxy groups of the catechol moiety. The difference dipole moment, which is 5.5 D in free quercetin, increases to 11.8 D in opposite direction in adsorbed quercetin, and is associated with charge-transfer to the Ti atom. The computed transition energy, intensity, vector Δμ and molecular orbitals involved in the electronic transition at different molecular configurations indicate a bidentate chelating mode of binding of quercetin.
Fröhlich, Flavio; Bazhenov, Maxim; Timofeev, Igor; Steriade, Mircea; Sejnowski, Terrence J.
2010-01-01
Little is known about the dynamics and mechanisms of transitions between tonic firing and bursting in cortical networks. Here, we use a computational model of a neocortical circuit with extracellular potassium dynamics to show that activity-dependent modulation of intrinsic excitability can lead to sustained oscillations with slow transitions between two distinct firing modes: fast run (tonic spiking or fast bursts with few spikes) and slow bursting. These transitions are caused by a bistability with hysteresis in a pyramidal cell model. Balanced excitation and inhibition stabilizes a network of pyramidal cells and inhibitory interneurons in the bistable region and causes sustained periodic alternations between distinct oscillatory states. During spike-wave seizures, neocortical paroxysmal activity exhibits qualitatively similar slow transitions between fast run and bursting. We therefore predict that extracellular potassium dynamics can cause alternating episodes of fast and slow oscillatory states in both normal and epileptic neocortical networks. PMID:16763023
The repopulation of electronic states upon vibrational excitation of niobium carbide clusters
Chernyy, V.; Logemann, R.; Bakker, J. M.; Kirilyuk, A.
2016-07-01
We study the infrared (IR) resonant heating of neutral niobium carbide clusters probed through ultraviolet photoionization spectroscopy. The IR excitation not only changes the photoionization spectra for the photon energies above the ionization threshold, but also modulates ion yield for energies significantly below it. An attempt to describe the experimental spectra using either Fowler's theory or thermally populated vibrational states was not successful. However, the data can be fully modeled by vibrationally and rotationally broadened discrete electronic levels obtained from Density Functional Theory (DFT) calculations. The application of this method to spectra with different IR pulse energies not only yields information about the excited electronic states in the vicinity of the HOMO level, populated by manipulation of the vibrational coordinates of a cluster, but also can serve as an extra indicator for the cluster isomeric structure and corresponding DFT-calculated electronic levels.
Excitation of high orbital angular momentum Rydberg states with Laguerre-Gauss beams
Rodrigues, J D; Mendonça, J T
2015-01-01
We consider the excitation of Rydberg states through photons carrying an intrinsic orbital angular momentum degree of freedom. Laguerre-Gauss modes, with a helical wave-front structure, correspond to such a set of laser beams, which carry some units of orbital angular momentum in their propagation direction. We demonstrate that, in a proper geometrical setting, this orbital angular momentum can be transferred to the internal degrees of freedom of the atoms, thus violating the standard dipolar selection rules. Higher orbital angular momentum states become accessible through a single photon excitation process. We investigate how the spacial structure of the Laguerre-Gauss beam affects the radial coupling strength, assuming the simplest case of hydrogen-like wavefunctions. Finally we discuss a generalization of the angular momentum coupling, in order to include the effects of the fine and hyperfine splitting, in the context of the Wigner-Eckart theorem.
Excited states in {sup 31}S studied via beta decay of {sup 31}Cl
Kankainen, A.; Eronen, T.; Hager, U.; Hakala, J.; Huikari, J.; Jokinen, A.; Kopecky, S.; Moore, I.; Nieminen, A.; Penttilae, H.; Rinta-Antila, S.; Wang, Y.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics (Finland); Fox, S.P.; Jenkins, D.G. [University of York, Department of Physics, Heslington, York (United Kingdom); Fynbo, H.O.U. [University of Aarhus, Department of Physics and Astronomy, Aarhus (Denmark); Tengblad, O. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain)
2006-01-15
The beta decay of {sup 31}Cl has been studied with a silicon detector array and a HPGe detector at the IGISOL facility. Previously controversial proton peaks have been confirmed to belong to {sup 31}Cl and a new proton group with an energy of 762(14) keV has been found. Proton captures to this state at 6921(15) keV in {sup 31}S can have an effect on the reaction rate of {sup 30}P(p,{gamma}) in ONe novae. Gamma rays of 1249.1(14) keV and 2234.5(8) keV corresponding to the de-excitations of the first two excited states in {sup 31}S have been measured. No beta-delayed protons from the IAS have been observed. (orig.)
Excited State Lifetime Measurements in Rare Earth Nuclei with Fast Electronics
Werner, V.; Cooper, N.; Bonett-Matiz, M.; Williams, E.; Régis, J.-M.; Rudigier, M.; Ahn, T.; Anagnostatou, V.; Berant, Z.; Bunce, M.; Elvers, M.; Heinz, A.; Ilie, G.; Jolie, J.; Radeck, D.; Savran, D.; Smith, M.
2011-09-01
We investigated the collectivity of the lowest excited 2+ states of even-even rare earth nuclei. The B(E2) excitation strengths of these nuclei should directly correlate to the size of the valence space, and maximize at mid-shell. The previously identified saturation of B(E2) strength in well-deformed rotors at mid-shell is put to a high precision test in this series of measurements. Lifetimes of the 2+1 states in 168Hf and 174W have been measured using the newly developed LaBr3 scintillation detectors. The excellent energy resolution in conjunction with superb time properties of the new material allows for reliable handling of background, which is a source of systematic error in such experiments. Preliminary lifetime values are obtained and discussed in the context of previous and ongoing work.
Demchenko, Alexander P; Tang, Kuo-Chun; Chou, Pi-Tai
2013-02-01
Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.
Importance of local exact exchange potential in hybrid functionals for accurate excited states
Kim, Jaewook; Hwang, Sang-Yeon; Ryu, Seongok; Choi, Sunghwan; Kim, Woo Youn
2016-01-01
Density functional theory has been an essential analysis tool for both theoretical and experimental chemists since accurate hybrid functionals were developed. Here we propose a local hybrid method derived from the optimized effective potential (OEP) method and compare its distinct features with conventional nonlocal ones from the Hartree-Fock (HF) exchange operator. Both are formally exact for ground states and thus show similar accuracy for atomization energies and reaction barrier heights. For excited states, the local version yields virtual orbitals with N-electron character, while those of the nonlocal version have mixed characters between N- and (N+1)-electron orbitals. As a result, the orbital energy gaps from the former well approximate excitation energies with a small mean absolute error (MAE = 0.40 eV) for the Caricato benchmark set. The correction from time-dependent density functional theory with a simple local density approximation kernel further improves its accuracy by incorporating multi-config...
LI Yuan-Zuo; SUN Yu; LI Yong-Qing; MA Feng-Cai
2006-01-01
The first fluorine-substituted hexabenzocoronene has been synthesized and its electronic structure and optical properties have been reported [Q. Zhang, et al., Org. Lett.7 (2005) 5019]. In this letter, the electronic structure and excited state properties of the fluorine-substituted hexabenzocoronene are studied with quantum chemistry method as well as the transition and the charge difference densities. The transition densities show the orientations and strength of the dipole moments and the charge difference densities reveal the orientation and results of the intramolecular charge transfer. The calculated transition energies and oscillator strengths are consistent with the experimental data, and the theoretical results of transition and charge difference densities are valuable to understanding the excited state properties of the fluorine-substituted hexabenzocoronene.
Hot electron mediated desorption rates calculated from excited state potential energy surfaces
Olsen, Thomas; Schiøtz, Jakob
2008-01-01
We present a model for Desorption Induce by (Multiple) Electronic Transitions (DIET/DIMET) based on potential energy surfaces calculated with the Delta Self-Consistent Field extension of Density Functional Theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various transition metal surfaces, and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system, with parameters obtained from the excited state potential energy surface, and show that this model can describe desorption dynamics in both the DIET and DIMET regime, and reproduce the power law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong.
Comparison of calculation methods for the tunnel splitting at excited states of biaxial spin models
Cui Xiao-Bo; Chen Zhi-De
2004-01-01
We present the calculation and comparison of tunnel splitting at excited levels of biaxial spin models by various methods, including the generalized instanton method, the generalized path integral method for coherent spin states,the perturbation method, and the exact method by numerical diagonalization of the Hamiltonian. It is found that,for integer spin with spin number around 10, tunnel splitting predicted by the generalized path integral for coherent spin states is about 10-n times of the exact numerical result for the nth excited level, while the ratio of the results of the perturbation method and the exact numerical method diverges in the large spin limit. We thus conclude that the generalized instanton method is the best approximate way for calculating tunnel splitting in spin models.
On large amplitude motions of simplest amides in the ground and excited electronic states
Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.
2016-12-01
For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.
The repopulation of electronic states upon vibrational excitation of niobium carbide clusters.
Chernyy, V; Logemann, R; Bakker, J M; Kirilyuk, A
2016-07-14
We study the infrared (IR) resonant heating of neutral niobium carbide clusters probed through ultraviolet photoionization spectroscopy. The IR excitation not only changes the photoionization spectra for the photon energies above the ionization threshold, but also modulates ion yield for energies significantly below it. An attempt to describe the experimental spectra using either Fowler's theory or thermally populated vibrational states was not successful. However, the data can be fully modeled by vibrationally and rotationally broadened discrete electronic levels obtained from Density Functional Theory (DFT) calculations. The application of this method to spectra with different IR pulse energies not only yields information about the excited electronic states in the vicinity of the HOMO level, populated by manipulation of the vibrational coordinates of a cluster, but also can serve as an extra indicator for the cluster isomeric structure and corresponding DFT-calculated electronic levels.
Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Shao, Yihan [Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588 (United States)
2014-07-14
Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the T{sub 1}/T{sub 2} conical intersection of benzaldehyde.
Han, Rui-Min; Tian, Yu-Xi; Wu, Yi-Shi; Wang, Peng; Ai, Xi-Cheng; Zhang, Jian-Ping; Skibsted, Leif H
2006-01-01
The C-40 xanthophylls zeaxanthin and astaxanthin were confirmed to form radical cations, Car.+, in the electron-accepting solvent chloroform by direct excitation using subpicosecond time-resolved absorption spectroscopy in combination with spectroelectrochemical determination of the near-infrared absorption of Car.+. For the singlets, the S2(1B(u+) state and most likely the S(x)(3A(g)-) state directly eject electrons to chloroform leading to the rapid formation of Car.+ on a timescale of approximately 100 fs; the lowest-lying S1(2A(g)-) state, however, remains inactive. Standard reduction potential for Car.+ was determined by cyclic voltametry to have the value 0.63 V for zeaxanthin and 0.75 V for astaxanthin from which excited state potentials were calculated, which confirmed the reactivity toward radical cation formation. On the other hand, Car.+ formation from the lowest triplet excited state T1 populated through anthracene sensitization is mediated by a precursor suggested to be a solute-solvent complex detected with broad near-infrared absorption to the shorter wavelength side of the characteristic Car.+ absorption. However, ground state carotenoids are able to react with a secondary solvent radical to yield Car.+, a process occurring within 16 micros for zeaxanthin and within 21 mus for astaxanthin. Among the two xanthophylls together with lycopene and beta-carotene, all having 11 conjugated double bonds, zeaxanthin ranks with the highest reactivity in forming Car.+ from either the S2(1B(u+)) or the ground state. The effects of substituent groups on the reactivity are discussed.
Olsen, Seth; Schwarzer, Dirk; Troe, Jürgen; Smith, Sean C
2010-04-01
Recent experiments have revealed the existence of an excited state dissociative mechanism for certain peroxycarbonates, with the demonstration that the lifetime of the excited state matches the picosecond time scale for appearance of nascent carbon dioxide product. The data infer that the photoreaction proceeds via an effectively concerted three-body dissociation within the lifetime of the singlet excited state. Many other arylperoxides decay sequentially via [(aryloxy)carbonyl]oxy radical intermediates on nanosecond-microsecond time scales. Uncertainty as to the lifetime of the excited state relates to the character and the relative energetic ordering of states of the parent molecule, since the spectra and photochemistry imply that low-lying states may exist on each of the aryl, carbonate, and peroxide chemical functionalities. We employ many-body electronic structure calculations to determine the energies and characters of the low-lying valence states of a minimal aryl peroxycarbonate model germane to the above-mentioned experiments, methyl phenyl peroxycarbonate (MPC). Our results indicate that the lowest-lying state is an intrinsically nondissociative aryl pipi* excited state. We identify additional low-lying states that are expected to be dissociative in nature and propose that the time scales observed for the dissociation reaction may correspond to the time scale for transfer of excited state population to these states.
Dynamics of the Chemistry of Electronically Excited Atoms in Defined Quantum States.
1978-05-01
laser development . In essence, this research concerns itself with the elucidation of the role of electronic energy in affecting the chemistry or photochemistry of excited halogen atoms and molecules. While much is known about the dynamics of chemical and physical processes which are carried out on the lowest potential energy hypersurface correlating with reactants and products in their electronic ground state, relatively little is known about the dynamics of such phenomena as energy transfer and chemical reactivity on higher-lying potential
Dynamics of the higher lying excited states of cyanine dyes. An ultrafast fluorescence study.
Guarin, Cesar A; Villabona-Monsalve, Juan P; López-Arteaga, Rafael; Peon, Jorge
2013-06-20
The electronic relaxation dynamics of the second singlet excited states of several cyanine dyes was studied through the femtosecond fluorescence up-conversion technique. Our interest in these molecules comes from the potential applications of systems with upper excited singlet states with a long lifetime, which can include electron and energy transfer from the higher lying singlets after one- or two-photon absorption. We studied three series of cyanines with 4-quinolyl, 2-quinolyl, or benzothiazolyl type end groups, each with varying sp(2) carbon conjugation lengths in the methinic bridge. The dynamics after electronic excitation to singlet states above the fluorescent state vary significantly as a function of cyanine structure and conjugation length. In particular, for the 4-quinolyl series the cyanine with an intermediate conjugation length (three methinic carbons) has the slowest S2 decays with lifetimes of 5.4 ps in ethanol and 6.6 ps in ethylene glycol. On the other hand, we observed that the 2-quinolyl family has S2 decay times in the subpicosecond range independent of the conjugation length between the end groups. The slowest internal conversion was observed for the benzothiazolyl type cyanine with five methinic carbons, with an S2 lifetime of 17.3 ps in ethanol. For the planar cyanines of this study we observed for the first time a clear systematic trend in the S2 decay times which closely follow the energy gap law. It was also demonstrated that a slow S2 decay is as well observed upon excitation through degenerate two-photon absorption with near-IR pulses. The present study isolates the most important variables for the design of cyanines with long S2 lifetimes.
Quenching of the excited state of hydrated Europium(III) ions by electron transfer
Christensen, K.
1993-08-01
This thesis explores the oxidation-reduction chemistry of the excited state of Eu(III) ions, *Eu{sub aq}{sup 3+}, in aqueous solutions. Evidence is presented for the quenching of *Eu{sup 3+} by reductive electron transfer. It is concluded that *Eu{sup 3+} is not a strong energy transfer reagent. The reactivity of *Eu{sub aq}{sup 3+} is compared with that of *UO{sub 2}{sup 2+}.
Population of bound excited states in intermediate-energy fragmentation reactions
Obertelli, A; Bazin, D; Campbell, C M; Cook, J M; Cottle, P D; Davies, A D; Dinca, D C; Glasmacher, T; Hansen, P G; Hoagland, T; Kemper, K W; Lecouey, J L; Müller, W F; Reynolds, R R; Roeder, B T; Terry, J R; Tostevin, J A; Yoneda, K; Zwahlen, H
2006-01-01
Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a wide range of reaction mechanisms, ranging from direct reactions to statistical processes. We examine this transition by measuring the relative population of excited states in several sd-shell nuclei produced by fragmentation with the number of removed nucleons ranging from two to sixteen. The two-nucleon removal is consistent with a non-dissipative process whereas the removal of more than five nucleons appears to be mainly statistical.
Heat capacity for systems with excited-state quantum phase transitions
Cejnar, Pavel; Stránský, Pavel
2017-03-01
Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity.
Ab initio organic chemistry : a survey of ground- and excited states and aromaticity
Havenith, R.W.A.
2001-01-01
This thesis describes the application of quantum mechanical methods on organic chemistry. The ground- and excited states of functionalized oligo(cyclohexylidenes) have been explored as in function of chain length, conformation and substitution. VB theory has been used to study the effect of cyclopentafusion on pyrene on its aromatic characteristics. Finally, the relevant part of the C6 H6 potentional energy surface has been explored to shed light on the reaction mechanism of the thermal elect...
Electron-phonon interaction and excited states relaxation in carbon nanotubes
Perebeinos, Vasili
2008-03-01
We will discuss the role of electron-phonon interaction on excited states relaxation and phonon spectra in carbon nanotubes (CNTs). The electron-phonon interaction leads to the polaronic effects of the charge carriers, but it also renormalizes the energy and the lifetime of phonons. We present a theoretical model that predicts the changes induced in the phonon modes of CNTs as a function of the charge carrier doping, i.e. position of the Fermi level. In agreement with the predictions, our experiments show sharpening and blue shifts of the G-phonons of metallic CNTs, but only blue shifts for semiconducting CNTs, making the Raman scattering a useful probe of local doping of CNTs [1]. The non-equilibrium dynamics of charge carriers under external electric field is determined by the electron-phonon scattering. The hot carriers under unipolar transport conditions can be produced, leading to the strong impact excitation and light emission, which intensity is determined by electric field, phonon scattering, and impact excitation cross section [2, 3]. In the reverse process of photoconductivity, light is absorbed creating excited states. We will discuss electronic relaxation of high energy excited states leading to the free carriers, contributing to the photoconductivity, and phonon relaxation, leading to the bound excitons [4]. The later can contribute to the photocurrent only after ionization by the external field [5]. Finally, we will discuss the role of phonons in the long puzzling question regarding the nature of the dominant decay channel of the low energy excited states and the potential of optoelectronic applications of CNTs. [1] J.C. Tsang, M. Freitag, V. Perebeinos, J. Liu, and Ph. Avouris, Nature Nanotechnology 2, 725 (2007); [2] J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, Ph. Avouris, Science 310, 1171 (2005); [3] V. Perebeinos and Ph. Avouris, Phys. Rev. B. 74, 121410(R), (2006); [4] T. Hertel, V. Perebeinos, J. Crochet, K. Arnold, M. Kappes
Highlighting short-lived excited electronic states with pump-degenerate-four-wave-mixing.
Marek, Marie S; Buckup, Tiago; Southall, June; Cogdell, Richard J; Motzkus, Marcus
2013-08-21
Detection of short-lived transient species is a major challenge in femtosecond spectroscopy, especially when third-order techniques like transient absorption are used. Higher order methods employ additional interactions between light and matter to highlight such transient species. In this work we address numerically and experimentally the detection of ultrafast species with pump-Degenerate Four Wave Mixing (pump-DFWM). In this respect, conclusive identification of ultrafast species requires the proper determination of time-zero between all four laser pulses (pump pulse and the DFWM sequence). This is addressed here under the light of experimental parameters as well as molecular properties: The role of pulse durations, amount of pulse chirp as well as excited state life time is investigated by measuring a row of natural pigments differing mainly in the number of conjugated double bonds (N = 9 to 13). A comparison of the different signals reveals a strikingly unusual behavior of spheroidene (N = 10). Complete analysis of the pump-DFWM signal illustrates the power of the method and clearly assigns the uniqueness of spheroidene to a mixing of the initially excited state with a dark excited electronic state.
Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane
Mohapatra, Monalisa; Mishra, Ashok K.
2012-03-01
Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.
The Microwave Spectroscopy of Aminoacetonitrile in the Vibrational Excited States 2
Fujita, Chiho; Higurashi, Haruka; Ozeki, Hiroyuki; Kobayashi, Kaori
2016-06-01
Aminoacetonitrile (NH_2CH_2CN) is a potential precursor of the simplest amino acid, glycine in the interstellar space and was detected toward SgrB2(N). We have extended measurements up to 1.3 THz so that the strongest transitions that may be found in the terahertz region should be covered. Aminoacetonitrile has a few low-lying vibrational excited states and indeed the pure rotational transitions in these vibrational excited states were found. The pure rotational transitions in six vibrational excited states in the 80-180 GHz range have been assigned and centrifugal distortion constants up to the sextic terms were determined. Based on spectral intensities and the vibrational information from Bak et al., They were assigned to the 3 low-lying fundamentals, 1 overtone and 2 combination bands. In the submillimeter wavelength region, perturbations were recognized and some of the lines were off by more than a few MHz. At this moment, these perturbed transitions are not included in our analysis. A. Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, and C. Hieret, 2008, Astronom. & Astrophys. 482, 179 (2008). Y. Motoki, Y. Tsunoda, H. Ozeki, and K. Kobayashi, Astrophys. J. Suppl. Ser. 209, 23 (2013). B. Bak, E. L. Hansen, F. M. Nicolaisen, and O. F. Nielsen, Can. J. Phys. 53, 2183 (1975) C. Fujita, H. Ozeki, and K. Kobayashi, 70th International Symposium on Molecular Spectroscopy (2015), MH14.
Theoretical direct WIMP detection rates for transitions to nuclear excited states
Vergados, J D; Pirinen, P; Srivastava, P C; Kortelainen, M; Suhonen, J
2015-01-01
The recent WMAP and Planck data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Many extensions of the standard model provide dark matter candidates, in particular Weakly Interacting Massive Particles (WIMPs). Thus the direct dark matter detection is central to particle physics and cosmology. Most of the research on this issue has hitherto focused on the detection of the recoiling nucleus. In this paper we study transitions to the excited states, possible in some nuclei, which have sufficiently low lying excited states. Examples considered previously were the first excited states of $^{127}$I and $^{129}$Xe. We examine here $^{83}$Kr, which offers some kinematical advantages and is currently considered as a possible target. We find appreciable branching ratios for the inelastic scattering mediated by the spin cross sections, with an inelastic event rate of $4.4\\times 10^{-4}$kg$^{-1}$d$^{-1}$. So, the extra signature of the gamma ra...
Excited states from range-separated density-functional perturbation theory
Rebolini, Elisa; Teale, Andrew M; Helgaker, Trygve; Savin, Andreas
2014-01-01
We explore the possibility of calculating electronic excited states by using perturbation theory along a range-separated adiabatic connection. Starting from the energies of a partially interacting Hamiltonian, a first-order correction is defined with two variants of perturbation theory: a straight-forward perturbation theory, and an extension of the G{\\"o}rling--Levy one that has the advantage of keeping the ground-state density constant at each order in the perturbation. Only the first, simpler, variant is tested here on the helium and beryllium atoms and on the dihydrogene molecule. The first-order correction within this perturbation theory improves significantly the total ground-and excited-state energies of the different systems. However, the excitation energies are mostly deterio-rated with respect to the zeroth-order ones, which may be explained by the fact that the ionization energy is no longer correct for all interaction strengths. The second variant of the perturbation theory should improve these re...
Proton coupled electron transfer from the excited state of a ruthenium(II) pyridylimidazole complex.
Pannwitz, Andrea; Wenger, Oliver S
2016-04-28
Proton coupled electron transfer (PCET) from the excited state of [Ru(bpy)2pyimH](2+) (bpy = 2,2'-bipyridine; pyimH = 2-(2'-pyridyl)imidazole) to N-methyl-4,4'-bipyridinium (monoquat, MQ(+)) was studied. While this complex has been investigated previously, our study is the first to show that the formal bond dissociation free energy (BDFE) of the imidazole-N-H bond decreases from (91 ± 1) kcal mol(-1) in the electronic ground state to (43 ± 5) kcal mol(-1) in the lowest-energetic (3)MLCT excited state. This makes the [Ru(bpy)2pyimH](2+) complex a very strong (formal) hydrogen atom donor even when compared to metal hydride complexes, and this is interesting for light-driven (formal) hydrogen atom transfer (HAT) reactions with a variety of different substrates. Mechanistically, formal HAT between (3)MLCT excited [Ru(bpy)2pyimH](2+) and monoquat in buffered 1 : 1 (v : v) CH3CN/H2O was found to occur via a sequence of reaction steps involving electron transfer from Ru(ii) to MQ(+) coupled to release of the N-H proton to buffer base, followed by protonation of reduced MQ(+) by buffer acid. Our study is relevant in the larger contexts of photoredox catalysis and light-to-chemical energy conversion.
Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison
Khvostenko, O.G., E-mail: khv@mail.ru
2014-08-15
Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy.
Youker, Diane Greer
The research presented in this dissertation focuses on elucidating the parameters affecting dynamics and yield of electron transfer reactions in semiconducting nanoparticle assemblies through the use of time-resolved spectroscopy. In particular, the dissertation focuses on photoinduced electron injection in assemblies of CdSe, CdS, or PbS quantum dots covalently bound to either metal oxide films or each other through the use of bifunctional molecular linkers. Chapter 2 elucidates the influence of electronic coupling on excited-state electron transfer from CdS quantum dots to TiO2 nanoparticles via molecular linkers with phenylene bridges. We establish that the efficiency of electron injection from CdS quantum dots to TiO2 nanoparticle varies dramatically with electronic coupling, which can be controlled by tuning the properties of molecular linkers. Chapter 3 presents the role of excitation energy on interfacial electron transfer in tethered assemblies of CdSe quantum dots and TiO2 nanoparticles. Through this work, we determined that injection efficiency from band-edge states is independent of excitation energy. However, the efficiency of injection from trap-states decreases at lower-energy excitation. We attribute the decrease to a lower energy distribution of emissive trap-states from which injection is less efficient. Chapter 4 presents the observation of multiphasic electron injection dynamics from photoexcited PbS quantum dots to TiO2 nanoparticles. In this collaborative study with Dr. Masumoto from the University of Tsukuba we observed electron injection on multiple timescales. We determined that electron injection occurred in this system through two different mechanisms. The first involved injection from thermalized PbS excited states and the second through injection of hot electrons through Auger recombination of biexcitons that creates high lying excitonic states. Chapter 5 investigates charge transfer in covalently bound quantum dot assemblies. We utilize
Ab Initio Investigations of the Excited Electronic States of CaOCa
Fawzy, Wafaa M.; Heaven, Michael
2016-06-01
Chemical bonding in alkaline earth hypermetalic oxides is of fundamental interest. Previous Ab initio studies of CaOCa predicted a centrosymmetric linear geometry for both the 1Σg^+ ground state and the low lying triplet 3Σu^+ state. However, there have been no reports concerning the higher energy singlet and triplet states. The present work is focused on characterization of the potential energy surface (PES) of the excited 1Σu^+ state (assuming a centrosymmetric linear geometry) and obtaining predictions for the 1Σu^+←1Σg^+ vibronic transitions. We employed the multireference configuration interaction (MRCISD) method with state-averaged, full-valence complete active space self-consistent field (SA-FV-CASSCF) wavefunctions. In these calculations, the active space consisted of ten valence electrons in twelve orbitals, where all the valence electrons were correlated. Contributions of higher excitation and relativistic effects were taken into account using the Davidson correction and the Douglas-Kroll (DK) Hamiltonian, respectively. The correlation-consistent polarized weighed core-valence quadruple zeta basis set (cc-pwCVQZ-DK) was used for all three atoms. The full level of theory is abbreviated as SA-FV-CASSCF (10,12)-MRCISD-Q/cc-pwCVQZ-DK. The calculations were carried out using the MOLPRO2012 suite of programs. For the centrosymmetric linear geometry in all states, initial investigations of one-dimensional radial cuts provided equilibrium bond distances of 2.034 {Å}, 2.034 {Å}, and 1.999 {Å} for the 1Σg^+ , 3Σu^+ , and 1Σu^+ states, respectively. The vertical excitation frequency of the 1Σu^+←1Σg^+ optical transition was calculated to occur at 14801 wn. These predictions were followed by spectroscopic searches by Heaven et al. Indeed, rotationally resolved vibronic progressions were recorded in the vicinity of the predicted electronic band origin. Calculation of the three-dimensional PES showed that the potential minimum in the 1Σu^+ corresponds
R-matrix with Pseudo-States Calculations for Electron Impact Excitation of Helium.
Bartschat, Klaus
1998-05-01
We have extended our previous R-matrix with pseudo-states work on electron impact excitation of the n=2 states of helium [1] to include transitions to the physical n=3 states. The predictions for total cross sections from both the ground state and the metastable (1s2s)^1,3S states agree very well with the convergent-close-coupling results of Fursa and Bray [2], while some disagreement remains with the recent experimental data of Lagus et al. [3]. However, excellent agreement between theory and experiment [2,4] is obtained for various electron impact coherence parameters, particularly for excitation of the 3^1,3D states. 1. K. Bartschat, E.T. Hudson, M.P. Scott, P.G. Burke, and V.M. Burke, 1. Phys. Rev. A 54 (1996), R998-1001; J. Phys. B29 (1996), 2875 & 5513 2. D.V. Fursa and I. Bray, J. Phys. B 30 (1997), 757-785 3. M.E. Lagus, J.B. Boffard, L.W. Anderson, and C.C. Lin, Phys. Rev. 3. A 53 (1996), 1505-18 4. A. Crowe (1997), private communication
Keane, Páraic M; Baptista, Frederico R; Gurung, Sarah P; Devereux, Stephen J; Sazanovich, Igor V; Towrie, Michael; Brazier, John A; Cardin, Christine J; Kelly, John M; Quinn, Susan J
2016-05-01
UV-generated excited states of cytosine (C) nucleobases are precursors to mutagenic photoproduct formation. The i-motif formed from C-rich sequences is known to exhibit high yields of long-lived excited states following UV absorption. Here the excited states of several i-motif structures have been characterized following 267 nm laser excitation using time-resolved infrared spectroscopy (TRIR). All structures possess a long-lived excited state of ∼300 ps and notably in some cases decays greater than 1 ns are observed. These unusually long-lived lifetimes are attributed to the interdigitated DNA structure which prevents direct base stacking overlap.
Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls
Niedzwiedzki, Dariusz; Blankenship, R. E.
2010-11-18
Ten naturally occurring chlorophylls (a, b, c{sub 2}, d) and bacteriochlorophylls (a, b, c, d, e, g) were purified and studied using the optical spectroscopic techniques of both steady state and time-resolved absorption and fluorescence. The studies were carried out at room temperature in nucleophilic solvents in which the central Mg is hexacoordinated. The comprehensive studies of singlet excited state lifetimes show a clear dependency on the structural features of the macrocycle and terminal substituents. The wide-ranging studies of triplet state lifetime demonstrate the existence of an energy gap law for these molecules. The knowledge of the dynamics and the energies of the triplet state that were obtained in other studies allowed us to construct an energy gap law expression that can be used to estimate the triplet state energies of any (B)chlorophyll molecule from its triplet lifetime obtained in a liquid environment.
Configuration interaction with Kohn Sham orbitals and their relation to excited electronic states
Bouř, Petr
2001-09-01
Kohn-Sham (KS) orbitals in CH 2, formaldehyde and acetone molecules were used as reference states for configuration interaction (CI) instead of the usual Hartree-Fock (HF) orbitals. A little difference in overall accuracy of electronic excitation energies was found between these schemes. However, analysis of the wave functions indicated that Slater determinant with the KS orbitals is more suitable for construction of the electronic states. Typically, the main expansion coefficients for the CI/KS procedure were closer to unity than those for HF. The difference was most pronounced for the lowest-energy transitions, while the two methods provided more comparable results for the higher-energy states. Similar behaviour of singlet and triplet states was observed. The results justify the common practice of using the KS determinant as a wave function, for example in sum-over-states theories.
Decoherence of quantum excitation of even/odd coherent states in thermal environment
Mohammadbeigi A; Tavassoly M K
2016-04-01
In this paper, we study the decoherence of quantum excitation (photon-added)even/odd coherent states, $((\\^{a})^m|\\alpha_{\\pm}\\rangle)$, in a thermal environment by investigating the variation of negative part of the Wigner quasidistribution function vs. the rescaled time. For this purpose, at first we obtain the time-dependent Wigner function corresponding to the mentioned states in the framework of standard master equation. Then, the time evolution of the Wigner function associated with photon-added even/odd coherent states, as well as the number of added photons $m$ are analysed. It is shown that, in both states, the negative part of the Wigner function decreases with time. By deriving the threshold value of the rescaled time for single photon-added even/odd coherent states, it is also found that, if the rescaled time exceeds the threshold value, the associated Wigner function becomes positive, i.e., the decoherence occurs completely.
Hybrid CIS-DFT method to study electric field effects on electronic excited states of ethylene
Ma Mei-Zhong; Zhu Zheng-He; Chen Xiao-Jun; Xu Guo-Liang; Zhang Yong-Bin; Mao Hua-Ping; Shen Xiao-Hong
2005-01-01
The present work is devoted to the study of the effects of external dipole electric field on the molecular structure of ethylene using a hybrid method which combines the single-excitation configuration interactions (CIS) with density functional theory (DFT), i.e. CIS-DFT(B3LYP). It is found that the effects of electric dipole field on the molecular geometry (D2h, D2d and C2v), dipole moment, transition dipole moment, polarizability and, particularly, excitation energy of ethylene are remarkable. The advantages of the hybrid CIS-DFT method are that it can determine the symmetry of molecule and the correct order of excitation as well as the Molecular Orbital (MO) electron configuration;thereby the electronic excitation states of ethylene are easily derived, and most of them are in agreement with those obtained in experiments or references. It may be the first time the effects of external electric field on ethylene molecule have been considered. Compared with other ab initio methods, the CIS-DFT method is relatively accurate and low cost in computation. We expect that it can be used to study other closed-shell molecules.
Gemmell, D S
1979-01-01
A brief review is given of recent high resolution measurements on fragments arising from the collision-induced dissociation of fast (MeV) molecular ions. For solid targets, strong wake effects are observed. For gaseous targets, excited electronic states of the projectile ions play an important role. Measurements of this type provide useful information on the charge states of fast ions traversing matter. The experimental techniques show promise as a unique method for determining the geometrical structures of the molecular-ion projectiles. 41 references.
Relative entropy of excited states in conformal field theories of arbitrary dimensions
Sárosi, Gábor
2016-01-01
Extending our previous work, we study the relative entropy between the reduced density matrices obtained from globally excited states in conformal field theories of arbitrary dimensions. We find a general formula in the small subsystem size limit. When one of the states is the vacuum of the CFT, our result matches with the holographic entanglement entropy computations in the corresponding bulk geometries, including AdS black branes. We also discuss the first asymmetric part of the relative entropy and comment on some implications of the results on the distinguishability of black hole microstates in AdS/CFT.
Electron impact excitation of the states of Mg, Ca and Sr atoms: Complete experiment results
Sachin Saxena; Kshamata Muktavat; Rajesh Srivastava
2004-11-01
We have used non-relativistic and relativistic distorted wave approximation methods to study the excitation of the 1 states of magnesium ( = 3), calcium ( = 4) and strontium ( = 5) from the ground 1 state. Calculations have been performed for the complete set of parameters $(, \\tilde{L}_{\\bot}^{+}, \\tilde{L}_{\\bot}^{-}, \\tilde{}^{+}, \\tilde{}^{-})$. The results are presented for electron impact energies of 20 and 40 eV. We compare our results obtained from both the non-relativistic and relativistic methods with each other. Good agreement is found on comparison and the importance of relativistic effects is also explored.
Trapped ions in the strong-excitation regime: Ion interferometry and nonclassical states
Poyatos, J.F.; Cirac, J.I. [Departamento de Fisica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Blatt, R. [Institut fuer Experimental Physik, Universitaet Goettingen, 37073 Goettingen (Germany); Zoller, P. [Institut fuer Theoretische Physik, Universitaet Innsbruck, 6020 Innsbruck (Austria)
1996-08-01
The interaction of a trapped ion with a laser beam in the strong-excitation regime is analyzed. In this regime, a variety of nonclassical states of motion can be prepared either by using laser pulses of well defined area, or by an adiabatic passage scheme based on the variation of the laser frequency. We show how these states can be used to investigate fundamental properties of quantum mechanics. We also study possible applications of this system to build an ion interferometer. {copyright} {ital 1996 The American Physical Society.}
Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass
Gomes, Laércio; Librantz, André Felipe Henriques; Jackson, Stuart D.
2010-03-01
The primary excited state decay processes relating to the H613/2→H615/2˜3 μm laser transition in singly Dy3+-doped fluoride (ZBLAN) glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the F69/2, H67/2 energy levels at 1125 nm and F611/2, H69/2 energy levels at 1358 nm established that the energy levels above the H611/2 level, excluding the F49/2 level, are entirely quenched by multiphonon emission in ZBLAN glass. The H611/2 and H613/2 energy levels emit luminescence with peaks at ˜1700 and ˜2880 nm, respectively, but at low quantum (luminescence) efficiencies. The quantum efficiency of the H611/2 level and H613/2 level is ˜9×10-5 and ˜1.3×10-2, respectively, for [Dy3+]=0.5 mol % based on calculations of the radiative lifetimes using the Judd-Ofelt theory. Excited state absorption (ESA) was detected by monitoring the rise time of the 1700 nm luminescence after tuning the probe wavelength across the spectral range from 1100 to 1400 nm. As a result of nonradiative decay of the higher excited states, ESA contributes to the heating of ˜3 μm fiber lasers based on Dy3+-doped fluoride glass. For [Dy3+] up to 4 mol %, we found no evidence of energy transfer processes between Dy3+ ions that influence the decay characteristics of the H611/2 and H613/2 energy levels.
Steady-state responses of a belt-drive dynamical system under dual excitations
Ding, Hu
2016-02-01
The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the firing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Furthermore, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numerical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pulley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foundation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.
Nelson, Tammie Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-06
Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.
Suo, Bingbing; Han, Huixian
2014-01-01
We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest states for four spin-orbit components 1/2, 3/2, 5/2, and 7/2 are calculated intensively to clarify the ground state of IrO. Our calculation suggests that the ground state is of 1/2 spin-orbit component, which is highly mixed with $^4\\Sigma^-$ and $^2\\Pi$ states in $\\Lambda-S$ notation. The two low-lying states of the 5/2 and 7/2 spin-orbit components are nearly degenerate with the ground state and locate only 234 and 260 cm$^{-1}$ above, respectively. The equilibrium bond length 1.712 \\AA \\ and harmonic vibrational frequency 903 cm$^{-1}$ of the 5/2 spin-orbit component are close to the experimental measurement of 1.724 \\AA \\ and 909 cm$^{-1}$, which suggests the 5/2 state should be the low-lying state contributed to spectra in experimental study. Moreover, the electronic states that give rise to the observed trans...
2νββ decay of 76Ge into excited states with GERDA phase I
GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Mi, Y.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.
2015-11-01
Two neutrino double beta decay of {}76{Ge} to excited states of {}76{Se} has been studied using data from Phase I of the GERDA experiment. An array composed of up to 14 germanium detectors including detectors that have been isotopically enriched in {}76{Ge} was deployed in liquid argon. The analysis of various possible transitions to excited final states is based on coincidence events between pairs of detectors where a de-excitation γ ray is detected in one detector and the two electrons in the other. No signal has been observed and an event counting profile likelihood analysis has been used to determine Frequentist 90% C.L. bounds for three transitions: {0}{{g}.{{s}}.}+-{2}1+: {T}1/22ν \\gt 1.6× {10}23 yr, {0}{{g}.{{s}}.}+-{0}1+: {T}1/22ν \\gt 3.7× {10}23 yr and {0}{{g}.{{s}}.}+-{2}2+: {T}1/22ν \\gt 2.3× {10}23 yr. These bounds are more than two orders of magnitude larger than those reported previously. Bayesian 90% credibility bounds were extracted and used to exclude several models for the {0}{{g}.{{s}}.}+-{0}1+ transition.
Guharay, Jayanti; Dennison, S. Moses; Sengupta, Pradeep K.
1999-05-01
The influence of different protic and aprotic solvent environments on the excited-state intramolecular proton transfer (ESIPT) leading to a dual fluorescence behaviour of a biologically important, naturally occurring, polyhydroxyflavone, fisetin (3,3',4',7-tetrahydroxyflavone), has been investigated. The normal fluorescence band, in particular, is extremely sensitive to solvent polarity with νmax shifting from 24 510 cm -1 in dioxane ( ET(30)=36.0) to 20 790 cm -1 in methanol ( ET(30)=55.5). This is rationalized in terms of solvent dipolar relaxation process, which also accounts for the red edge excitation shifts (REES) observed in viscous environments such as glycerol at low temperatures. Significant solvent dependence of the tautomer fluorescence properties ( νmax, yield and decay kinetics) reveals the influence of external hydrogen bonding perturbation on the internal hydrogen bond of the molecule. These excited-state relaxation phenomena and their relevant parameters have been used to probe the microenvironment of fisetin in a membrane mimetic system, namely AOT reverse micelles in n-heptane at different water/surfactant molar ratio ( w0).
Characterization of excited-state reactions with instant spectra of fluorescence kinetics
Tomin, Vladimir I., E-mail: tomin@apsl.edu.pl; Ushakou, Dzmitryi V.
2015-10-15
Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state
Extended M1 sum rule for excited symmetric and mixed-symmetry states in nuclei
Smirnova, N A; Leviatan, A; Ginocchio, J N; Fransen, C
2002-01-01
A generalized M1 sum rule for orbital magnetic dipole strength from excited symmetric states to mixed-symmetry states is considered within the proton-neutron interacting boson model of even-even nuclei. Analytic expressions for the dominant terms in the B(M1) transition rates from the first and second $2^+$ states are derived in the U(5) and SO(6) dynamic symmetry limits of the model, and the applicability of a sum rule approach is examined at and in-between these limits. Lastly, the sum rule is applied to the new data on mixed-symmetry states of 94Mo and a quadrupole d-boson ratio $nd(0^+_1)/nd(2^+_2) \\approx 0.6$ is obtained in a largely parameter-independent way
Excited state potential energy surfaces and their interactions in Fe(IV)=O active sites.
Srnec, Martin; Wong, Shaun D; Solomon, Edward I
2014-12-21
The non-heme ferryl active sites are of significant interest for their application in biomedical and green catalysis. These sites have been shown to have an S = 1 or S = 2 ground spin state; the latter is functional in biology. Low-temperature magnetic circular dichroism (LT MCD) spectroscopy probes the nature of the excited states in these species including ligand-field (LF) states that are otherwise difficult to study by other spectroscopies. In particular, the temperature dependences of MCD features enable their unambiguous assignment and thus determination of the low-lying excited states in two prototypical S = 1 and S = 2 NHFe(IV)[double bond, length as m-dash]O complexes. Furthermore, some MCD bands exhibit vibronic structures that allow mapping of excited-state interactions and their effects on the potential energy surfaces (PESs). For the S = 2 species, there is also an unusual spectral feature in both near-infrared absorption and MCD spectra - Fano antiresonance (dip in Abs) and Fano resonance (sharp peak in MCD) that indicates the weak spin-orbit coupling of an S = 1 state with the S = 2 LF state. These experimental data are correlated with quantum-chemical calculations that are further extended to analyze the low-lying electronic states and the evolution of their multiconfigurational characters along the Fe-O PESs. These investigations show that the lowest-energy states develop oxyl Fe(III) character at distances that are relevant to the transition state (TS) for H-atom abstraction and define the frontier molecular orbitals that participate in the reactivity of S = 1 vs. S = 2 non-heme Fe(IV)[double bond, length as m-dash]O active sites. The S = 1 species has only one available channel that requires the C-H bond of a substrate to approach perpendicular to the Fe-oxo bond (the π channel). In contrast, there are three channels (one σ and two π) available for the S = 2 non-heme Fe(IV)[double bond, length as m-dash]O system allowing C-H substrate approach
Excited state absorption spectroscopy of ZBLAN:Ho{sup 3+} glass-experiment and simulation
Piatkowski, D; Wisniewski, K; Rozanski, M; Koepke, Cz [Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Kaczkan, M; Klimczak, M; Piramidowicz, R; Malinowski, M [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland)], E-mail: dapi@fizyka.umk.pl
2008-04-16
The excited state absorption (ESA) spectra of ZBLAN glass activated by trivalent holmium ions have been measured in a wide spectral range (550-1750 nm) and simulated using such theoretical tools as the Judd-Ofelt formalism and McCumber theory of stimulated emission. We also propose a systematic approach for prediction of various types of up-conversion mechanisms in a given type of material. Experimental results on ESA up-conversion processes in ZBLAN:Ho{sup 3+} under red and infrared laser excitation, which confirm theoretical analysis, are presented. The optical linewidths were studied using high resolution laser spectroscopy at low temperatures and the existence of different crystallographic sites for Ho{sup 3+} ions was revealed.
Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation
Piatkowski, D.; Wisniewski, K.; Rozanski, M.; Koepke, Cz; Kaczkan, M.; Klimczak, M.; Piramidowicz, R.; Malinowski, M.
2008-04-01
The excited state absorption (ESA) spectra of ZBLAN glass activated by trivalent holmium ions have been measured in a wide spectral range (550-1750 nm) and simulated using such theoretical tools as the Judd-Ofelt formalism and McCumber theory of stimulated emission. We also propose a systematic approach for prediction of various types of up-conversion mechanisms in a given type of material. Experimental results on ESA up-conversion processes in ZBLAN:Ho3+ under red and infrared laser excitation, which confirm theoretical analysis, are presented. The optical linewidths were studied using high resolution laser spectroscopy at low temperatures and the existence of different crystallographic sites for Ho3+ ions was revealed.
Parkin, E R
2012-01-01
Global three dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when non-linear motions - perhaps triggered by the onset of turbulence - upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with...
Dewald, A.; Pissulla, T.; Hackstein, M.; Fransen, C.; Rother, W.; Iwasaki, H.; Jolie, J.; Zell, K.O. [IKP, Koeln (Germany); Gadea, A.; Valiente Dobon, J.J. [INFN-LNL, Legnaro (Italy); Starosta, K. [NSCL, MSU, (United States); Korten, W.; Goergen, A. [SPhN, CEA Saclay (France); Ur, C.A. [University of Padova, Padova (Italy); Petkov, P. [INRNE, Sofia (Bulgaria)
2009-07-01
The recoil distance Doppler-shift (RDDS) method is an important technique for the measurement of lifetimes of excited nuclear states from which absolute transition strengths can be derived. In order to use this technique for nuclei far from stability it has to be adapted to the special requirements imposed by the specific nuclear reactions in which these exotic nuclei can be produced and excited. E.g., reactions with radioactive beams or deep inelastic reactions have been successfully applied for this purpose in the past. In this presentation we give an overview over recent developments of plunger experiments with radioactive beams at intermediate energies ({approx}100 MeV/u). In addition we report on recent developments made for measurements at PRISMA-CLARA (LNL, Legnaro, Italy) and EXOGAM-VAMOS (GANIL, Caen, France) where deep inelastic reactions have been used. Future plans for plunger experiments at PRESPEC and HISPEC (GSI) are discussed.
Santhosh, K.P., E-mail: drkpsanthosh@gmail.co [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India); Sahadevan, Sabina; Joseph, Jayesh George [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India)
2011-01-15
Alpha half lives, branching ratios and hindrance factors of even-even nuclei in the range 78{<=}Z{<=}102 from ground state to ground state and ground state to excited states of daughter nuclei are computed using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half life values and branching ratios are compared with experimental data and they are in good agreement. The standard deviation of half life and branching ratio are 0.79 and 0.94 respectively. It is found that the standard deviation of branching ratio for the ground state to ground state transition is only 0.25 and it increases as we move to the higher excited states which are due to the effect of nuclear structure. It is evident from the study that our ground state decay model is apt for describing not only the ground state to ground state decay but also decay to excited state.
Greenfield, Margo
Energetic materials play an important role in aeronautics, the weapon industry, and the propellant industry due to their broad applications as explosives and fuels. RDX (1,3,5-trinitrohexahydro-s-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) are compounds which contain high energy density. Although RDX and HMX have been studied extensively over the past several decades a complete understanding of their decomposition mechanisms and dynamics is unknown. Time of flight mass spectroscopy (TOFMS) UV photodissociation (ns) experiments of gas phase RDX, HMX, and CL-20 generate the NO molecule as the initial decomposition product. Four different vibronic transitions of the initial decomposition product, the NO molecule, are observed: A2Sigma(upsilon'=0)←X 2pi(upsilon"=0,1,2,3). Simulations of the rovibronic intensities for the A←X transitions demonstrate that NO dissociated from RDX, HMX, and CL-20 is rotationally cold (˜20 K) and vibrationally hot (˜1800 K). Conversely, experiments on the five model systems (nitromethane, dimethylnitramine (DMNA), nitropyrrolidine, nitropiperidine and dinitropiperazine) produce rotationally hot and vibrationally cold spectra. Laser induced fluorescence (LIF) experiments are performed to rule out the possible decomposition product OH, generated along with NO, perhaps from the suggested HONO elimination mechanism. The OH radical is not observed in the fluorescence experiments, indicating the HONO decomposition intermediate is not an important pathway for the excited electronic state decomposition of cyclic nitramines. The NO molecule is also employed to measure the dynamics of the excited state decomposition. A 226 nm, 180 fs light pulse is utilized to photodissociate the gas phase systems. Stable ion states of DMNA and nitropyrrolidine are observed while the energetic materials and remaining model systems present the NO molecule as the only
Tagawa, S.; Washio, M.; Tabata, Y.; Kobayashi, H.
Transient absorption spectra of the solute anion, cation and triplet state and the solute fluorescence in the pulse radiolysis of 0.1 mole 1 -1 biphenyl in cyclohexane were observed on a nanosecond timescale longer than 1 ns after a 20 ps pulse. The formation of the solute excited singlet state is mainly due to the geminate ion recombination reaction even in the high concentrated solutions. The decay of the solute ions obeys the reciprocal square root dependence on time longer than 10 ns from the end of a 10 ps pulse. The slope of this reciprocal square root plots agrees with the literature value on a longer timescale obtained by microwave absorption. The yield of free ions obtained from the intercept of the slope agrees also with the literature values obtained by the field clearing method. Ratio of the formation rate of the solute excited triplet state to the decay rate of the solute anion changes in a time range between 5 and 20 ns. It is very well correlated with a theoretical calculation of spin correlation decay of the germinate ion pairs by Brocklehurst, although the formation of the solute triplet state was observed even on a timescale shorter than 5 ns from the end of a 20 ps pulse, where loss of spin correlation is negligibly small.
Natsume, Yuhei; Tada, Shinichiro; Suzuki, Toshihiko [Chiba Univ., Graduate School of Science and Technology, Chiba (Japan)
2002-06-01
Characteristic properties of excited states in antiferromagnetic ladder systems with spin-1/2 are investigated in relation with the theoretical analysis of the quite asymmetric shape of the peak for twice the spin gap {delta}{sub g} in magnetic Raman spectra. Here, the structure of exchange-scattering spectra are reproduced by the numerical calculation for the finite Heisenberg ladder, in which legs with antiferromagnetic bond J{sub c} is connected by rungs with antiferromagnetic bond J{sub r}. The singlet ground state in this system can be expressed as the ordering of singlet dimers on rungs in the ladder for J{sub c}/J{sub r} {yields} +0. In fact, the value of 0.1 is adopted to be the ratio of J{sub c}/J{sub r} in order to discuss the experimental work of the magnetic Raman spectra for the ladder of V{sup 4+} ions in the oxide compound CaV{sub 2}O{sub 5} reported in Konstantinovic et al., Phys. Rev. B61 (2000), 15185. As for this peak of 2{delta}{sub g}, quite an asymmetric observed shape is explained by the present calculation. According to the analysis of spectra, we discuss the expression of excited states by triplet dimers on rungs: The dominant contribution of the pair of triplet dimers on adjacent rungs to the corresponding state for 2{delta}{sub g} peak is pointed out. (author)
Entanglement entropy of disjoint regions in excited states: an operator method
Shiba, Noburo
2014-12-01
We develop the computational method of entanglement entropy based on the idea that is written as the expectation value of the local operator, where ρ Ω is a density matrix of the subsystem Ω. We apply it to consider the mutual Rényi information I ( n)( A, B) = S {/A ( n)} + S {/B ( n)} - S {/A ∪ B ( n)} of disjoint compact spatial regions A and B in the locally excited states defined by acting the local operators at A and B on the vacuum of a ( d + 1)-dimensional field theory, in the limit when the separation r between A and B is much greater than their sizes R A,B . For the general QFT which has a mass gap, we compute I ( n)( A, B) explicitly and find that this result is interpreted in terms of an entangled state in quantum mechanics. For a free massless scalar field, we show that for some classes of excited states, I ( n)( A, B) - I ( n)( A, B)| r → ∞ = C {/AB ( n)}/ r α( d - 1) where α = 1 or 2 which is determined by the property of the local operators under the transformation ϕ → - ϕ and α = 2 for the vacuum state. We give a method to compute C {/AB (2)} systematically.
Tirrito, Emanuele; Ran, Shi-Ju
2016-01-01
We demonstrate an efficient method that allows for simultaneous determination of the ground state, low energy excitation properties and excitation gap in quantum many body systems. To this aim we first use the \\textit{ab-initio} optimization principle of tensor networks (TN), to show that the infinite density matrix renormalization group (iDMRG) in the real space is associated in a natural manner to the infinite time-evolving block decimation (iTEBD) implemented on a continuous matrix product state (MPS), and defined in imaginary time. We illustrate this association showing that the (imaginary) time matrix product state (MPS) in iTEBD reproduces accurately the properties of the two-dimensional (2D) classical Ising model, verifying in this way that the time MPS corresponds to a well-defined physical state. We apply then our scheme to the one-dimensional (1D) quantum Ising chain, where the time MPS is defined in continuous imaginary time. It is found that the time MPS at or close to the critical point is always...
Manser, Joseph S.
The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to
Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)
2016-01-07
The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.
Ultrafast excited state dynamics of tris-(2,2'-bipyridine) Ruthenium (II)
Yeh, Alvin T.W. [Univ. of California, Berkeley, CA (United States)
2000-03-01
Time resolved anisotropy measurements and time dependent transient absorption measurements are used to study the evolution of the photoexcited Franck-Condon state to the formation of the long-lived triplet metal-to-ligand charge-transfer (^{3}MLCT) state in tris-(2,2’-bipyridine) ruthenium. [Ru(bpy)_{3}]^{2+} represents a large class of inorganic compounds with interesting and potentially applicable photophysical properties. These compounds have generated much interest in the inorganic chemistry community because their photophysical properties are easily manipulated by synthetic chemistry methods. However, little remains known about the processes which govern the evolution horn initial photoexcitation to the formation of the long-lived excited state.
Three-dimensional quantum calculations on the ground and excited state vibrations of ethylene
Groenenboom, Gerrit Cornelis
Three dimensional potential energy surfaces of the ground and excited states of ethylene were calculated at the MRCEPA (Multi Reference Coupled Electronic Pair Approximation) level. The modes included are the torsion, the CC stretch, and the symmetric scissors. Full vibrational calculations were performed using the Lanczos/grid method. The avoided crossing between the V and the R state was dealt with in a diabetic model. The ground state results agree within 3 up to the highest vibrational level known experimentally. The origin and the maximum of the V back arrow N band are calculated at 5.68 and 7.82 eV, respectively, approximately 0.2 eV above the somewhat ambiguous experimental values. This work considerably diminishes the existing gap of approximately 0.5 eV between theory and experiment.
Dielectronic recombination rate coefficients to excited states of Be-like oxygen
Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako
2001-05-01
We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)
[Electron transfer, ionization, and excitation in atomic collisions]. [Pennsylvania State Univ
1992-01-01
Fundamental processes of electron transfer, ionization, and excitation in ion-atom and ion-ion collisions are studied. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-ion core can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. At intermediate collision energies (e.g., proton energies for p-He[sup +] collisions on the order of 100 kilo-electron volts), many electronic states are strongly coupled during the collision, a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. At higher collision energies (million electron-volt energies) the coupling is weaker with, however, many more states being coupled together, so that high-order perturbation theory is essential.
Morgan, W James; Fortenberry, Ryan C
2015-01-25
Quartic force fields (QFFs) have been shown to be an effective, accurate, and relatively compact means of computing rovibrational spectroscopic data for numerous molecules with numerous applications. However, excited states have been nearly excluded from the this approach since most accurate QFFs are based on the "gold standard" coupled cluster singles, doubles, and perturbative triples [CCSD(T)] method which is not readily extended to excited states. In this work, rovibronic spectroscopic data is provided for the isoformyl radical, a molecule of significance in combustion and astrochemistry, both through the traditional means of variational access to excited states with CCSD(T) and in the novel extension of QFFs routinely to treat electronically excited states through the standard coupled cluster excited state approach, equation of motion (EOM) CCSD. It is shown here that the new EOM-based QFF provides structural parameters and rotational constants that are quite close to those from a related CCSD(T)-based QFF for the 1 (2)A(″) excited state of HOC. The anharmonic vibrational frequency percent differences between the two QFFs are less than 0.4% for the O-H stretch, less than 1.9% for the C-O stretch, and around 3.0% for the bend. Even so, the pure excited state EOM-QFF anharmonic frequencies are still very good abinitio representations that may be applied to systems where electronically excited states are not variationally accessible. Additionally, rovibrational spectroscopic data is provided for the 1 (2)A(') ground state of HOC and for both the ground and excited state of DOC.
Han, Fangyuan; Liu, Weimin; Fang, Chong, E-mail: Chong.Fang@oregonstate.edu
2013-08-30
Highlights: • A number of low – frequency modes are sequentially observed in photoexcited HPTS. • Evidence of coherent quantum beat in several low – frequency modes with anharmonic coupling. • The most transient low – frequency mode is the symmetric ring breathing of HPTS. • Excited – state proton transfer occurs nonadiabatically on the 5–200 ps timescale. • Kinetic isotope effect is 3–4 for the two-stage ESPT components in water. - Abstract: We use femtosecond stimulated Raman spectroscopy (FSRS) to illuminate the choreography of intermolecular excited-state proton transfer (ESPT) of photoacid pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS) in water. The multidimensional reaction coordinate responsible for photoacidity is revealed to involve sequential activation of characteristic skeletal motions during the ca. 1 ps preparation stage preceding ESPT. The initial ring-coplanarity breaking follows in-plane ring breathing (191 cm{sup −1}), and is facilitated by HPTS ring wagging (108 cm{sup −1}) and ring-H out-of-plane motions (321, 362, 952 cm{sup −1}), which largely decay within ∼1 ps. ESPT then occurs with intrinsic inhomogeneity via various number of intervening water molecules over relatively larger distances than those in acetate–water system. The intricate relationship between the time-resolved excited-state vibrational modes of HPTS reveals the essential role of coherent low-frequency skeletal motions gating ESPT, and the multi-staged proton-transfer process having the kinetic isotope effect (KIE) value of 3–4 in aqueous solution on the 5–200 ps timescale.
Excited state absorption and energy transfer in Ho3+-doped indium fluoride glass
Gomes, Laercio; Fortin, Vincent; Bernier, Martin; Maes, Frédéric; Vallée, Réal; Poulain, Samuel; Poulain, Marcel; Jackson, Stuart D.
2017-04-01
This investigation examines in detail the rates of energy transfer relevant to the 5I5 → 5I6 transition (at 3930 nm) in Ho3+-doped InF3 glass as a function of the Ho3+ concentration. The decay times, branching ratios and rate parameters for energy transfer were measured in this investigation for Ho3+ (x)-doped InF3 glass with x = 2, 4 and 10 mol.% and they were used as the input parameters for a rate equation analysis. Excited state absorption (ESA) initiating from the lower laser level is included in the study. Numerical simulation of CW laser emission at 3.9 μm was performed using two pump wavelengths, one for upper laser level excitation (i.e., 5I8 → 5I5 = λP1) and the other for lower laser level de-excitation (i.e., 5I6 → 5S2 = λP2). The pump wavelength λP2 = 962 nm was chosen based on the measurements of ESA and the application of the McCumber method. Critically, the estimated ESA cross section at λP2 = 962 nm (σESA = 7.1 × 10-21 cm2) is approximately sixteen times larger than ground state (5I8) absorption cross section (σGSA = 4.3 × 10-22 cm2) and ESA does not overlap with any ground state absorption process. Our calculations suggest that even for high Ho3+ concentration in which cross relaxation has been shown in a previous study to quench the 5I5 level, ESA is nevertheless strong enough to allow a sufficient population inversion required for practical CW emission.
Experimental determination of the lowest excited Xe2 molecular states from VUV absorption spectra
Castex, Marie-Claude
1981-01-01
A quantitative analysis of absorption by Xe2 pairs in the wings of the two first resonant lines (1469.6 and 1295.6 Å) is presented as a function of pressure (P<760 Torr) and temperature (130 K
Entanglement entropy of excited states in conformal perturbation theory and the Einstein equation
Speranza, Antony J
2016-01-01
For a conformal field theory (CFT) deformed by a relevant operator, the entanglement entropy of a ball-shaped region may be computed as a perturbative expansion in the coupling. A similar perturbative expansion exists for excited states near the vacuum. Using these expansions, this work investigates the behavior of excited state entanglement entropies of small, ball-shaped regions. The motivation for these calculations is Jacobson's recent work on the equivalence of the Einstein equation and the hypothesis of maximal vacuum entropy [arXiv:1505.04753], which relies on a conjecture stating that the behavior of these entropies is sufficiently similar to a CFT. In addition to the expected type of terms which scale with the ball radius as $R^d$, the entanglement entropy calculation gives rise to terms scaling as $R^{2\\Delta}$, where $\\Delta$ is the dimension of the deforming operator. When $\\Delta\\leq\\frac{d}{2}$, the latter terms dominate the former, and suggest that a modification to the conjecture is needed.
Entanglement Entropy of Disjoint Regions in Excited States : An Operator Method
Shiba, Noburo
2014-01-01
We develop the computational method of entanglement entropy based on the idea that $Tr\\rho_{\\Omega}^n$ is written as the expectation value of the local operator, where $\\rho_{\\Omega}$ is a density matrix of the subsystem $\\Omega$. We apply it to consider the mutual Renyi information $I^{(n)}(A,B)=S^{(n)}_A+S^{(n)}_B-S^{(n)}_{A\\cup B}$ of disjoint compact spatial regions $A$ and $B$ in the locally excited states defined by acting the local operators at $A$ and $B$ on the vacuum of a $(d+1)$-dimensional field theory, in the limit when the separation $r$ between $A$ and $B$ is much greater than their sizes $R_{A,B}$. For the general QFT which has a mass gap, we compute $I^{(n)}(A,B)$ explicitly and find that this result is interpreted in terms of an entangled state in quantum mechanics. For a free massless sacalar field, we show that for some classes of excited states, $I^{(n)}(A,B)-I^{(n)}(A,B)|_{r \\rightarrow \\infty} =C^{(n)}_{AB}/r^{\\alpha (d-1)}$ where $\\alpha=1$ or 2 which is determined by the property of t...
Chakraborti, Himadri; Bramhaiah, Kommula; John, Neena Susan; Pal, Suman Kalyan
2013-12-01
The quenching of the fluorescence of 1-aminopyrene (1-Ap) by reduced graphene oxide (rGO) has been investigated using spectroscopic techniques. In spite of the upward curvature in the Stern-Volmer plot, the unchanged spectral signature of the absorption of 1-Ap in the presence of rGO and the decrease in fluorescence lifetime with increasing rGO concentration point toward the dynamic nature of the quenching. Detailed analysis of steady state and time-resolved spectroscopic data has shown that the quenching arises due to the photoinduced electron transfer from 1-Ap to rGO. This is again supported by estimating the Gibb's free energy change for the ground as well as excited state electron transfer. Ab initio calculations under the density functional theory (DFT) formalism reveal that the possibility of π-π stacking is very slim in the 1-Ap-rGO system and the electron density resides completely on 1-Ap in the highest occupied molecular orbital (HOMO) and on graphene in the lowest unoccupied molecular orbital (LUMO), supporting the experimental findings of the intermolecular electron transfer between 1-Ap and rGO in the excited state.
Ground- and excited-state structural orientation of 2-(2`-hydroxyphenyl)benzazoles in cyclodextrins
Roberts, E.L.; Dey, J.; Warner, I.M. [Louisiana State Univ., Baton Rouge, LA (United States)
1996-12-12
The effects of {alpha}-, {beta}-, {gamma}-, and 2,6-di-O-methyl-{beta}-cyclodextrins (CDs) on the ground- and excited-state properties of 2-(2`-hydroxyphenyl)benzoxazole, 2-(2`-hydroxyphenyl)benzothiazole, and 2-(2`-hydroxyphenyl)benzimidazole in aqueous media are investigated. Steady-state fluorescence measurements are used to characterize the interaction of CDs with these azoles. Absorbance measurements indicate increased solubility of the azoles in aqueous solutions of CDs. Measurements of acidity constants (pK{sub a}) and data from induced circular dichroism indicate increased ground- and excited-state acidities of the phenolic protons of the molecules in the presence of CDs and axial orientation of the molecules within the CD cavity, respectively. The data further suggest a planar structure for HBO and a twisted confirmation for both HBT and HBI. The association constants of the inclusion complexes have also been estimated. These studies are further supplemented by comparative spectroscopic studies of 2-(2`-methoxyphenyl)benzothiazole in aqueous solutions of CDs. On the basis of the spectral data acquired, it is believed that the HBA molecules exist as zwitterionic tautomers in the presence of CDs. 35 refs., 6 figs., 2 tabs.
Photoexcited breathers in conjugated polyenes: an excited-state molecular dynamics study.
Tretiak, S; Saxena, A; Martin, R L; Bishop, A R
2003-03-04
pi-conjugated polymers have become an important class of materials for electronic devices. Design of these devices requires understanding such processes as photochemical reactions, spatial dynamics of photoexcitations, and energy and charge transport, which in turn involve complex coupled electron-vibrational dynamics. Here we study nonlinear photoexcitation dynamics in the polyene oligomers by using a quantum-chemical method suitable for the simulation of excited-state molecular dynamics in extended molecular systems with sizes up to hundreds of atoms. The method is based on the adiabatic propagation of the ground-state and transition single-electron density matrices along the trajectory. The simulations reveal formation of a self-localized vibronic excitation ("breather" or multiquanta bound state) with a typical period of 34 fs and allows us to identify specific slow and fast nuclear motions strongly coupled to the electronic degrees of freedom. The effect of chain imperfections and chemical defects on the dynamics is also investigated. A complementary two-dimensional analysis of corresponding transition density matrices provides an efficient way to monitor time-dependent real-space localization of the photoexcitation by identifying the underlying changes in charge densities and bond orders. Possible correlated electronic and vibrational spectroscopic signatures of photoexcited breathers are predicted, and generalizations to energy localization in complex macromolecules are discussed.
Xia, Shu-Hua; Xie, Bin-Bin; Fang, Qiu; Cui, Ganglong; Thiel, Walter
2015-04-21
Excited-state intramolecular proton transfer (ESIPT) between two highly electronegative atoms, for example, oxygen and nitrogen, has been intensely studied experimentally and computationally, whereas there has been much less theoretical work on ESIPT to other atoms such as carbon. We have employed CASSCF, MS-CASPT2, RI-ADC(2), OM2/MRCI, DFT, and TDDFT methods to study the mechanistic photochemistry of 2-phenylphenol, for which such an ESIPT has been observed experimentally. According to static electronic structure calculations, irradiation of 2-phenylphenol populates the bright S1 state, which has a rather flat potential in the Franck-Condon region (with a shallow enol minimum at the CASSCF level) and may undergo an essentially barrierless ESIPT to the more stable S1 keto species. There are two S1/S0 conical intersections that mediate relaxation to the ground state, one in the enol region and one in the keto region, with the latter one substantially lower in energy. After S1 → S0 internal conversion, the transient keto species can return back to the S0 enol structure via reverse ground-state hydrogen transfer in a facile tautomerization. This mechanistic scenario is verified by OM2/MRCI-based fewest-switches surface-hopping simulations that provide detailed dynamic information. In these trajectories, ESIPT is complete within 118 fs; the corresponding S1 excited-state lifetime is computed to be 373 fs in vacuum. Most of the trajectories decay to the ground state via the S1/S0 conical intersection in the keto region (67%), and the remaining ones via the enol region (33%). The combination of static electronic structure computations and nonadiabatic dynamics simulations is expected to be generally useful for understanding the mechanistic photophysics and photochemistry of molecules with intramolecular hydrogen bonds.
Santos, Javier; Bu, Xiu R.; Mintz, Eric A.
2001-01-01
The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.
Dirac Coupled Channel Analyses of the high-lying excited states at $^{22}$Ne(p,p$'$)$^{22}$Ne
Shim, Sugie
2015-01-01
Dirac phenomenological coupled channel analyses are performed using an optical potential model for the high-lying excited vibrational states at 800 MeV unpolarized proton inelastic scatterings from $^{22}$Ne nucleus. Lorentz-covariant scalar and time-like vector potentials are used as direct optical potentials and the first-order vibrational collective model is used for the transition optical potentials to describe the high-lying excited vibrational collective states. The complicated Dirac coupled channel equations are solved phenomenologically using a sequential iteration method by varying the optical potential and the deformation parameters. Relativistic Dirac coupled channel calculations are able to describe the high-lying excited states of the vibrational bands in $^{22}$Ne clearly better than the nonrelativistic coupled channel calculations. The channel-coupling effects of the multistep process for the excited states of the vibrational bands are investigated. The deformation parameters obtained from the ...
Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas
2009-01-01
Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other properties such as quantum yield and radiative rates have been found to be insensitive to the solvent isotope substitution in all these solvents. The origin of the solvent isotope insensitivity of the reaction is discussed and correlated with the observed slowing down of the solvation dynamics upon isotope substitution.
Study of highly-excited string states at the Large Hadron Collider
Gingrich, Douglas M
2008-01-01
In TeV-scale gravity scenarios with large extra dimensions, black holes may be produced at future colliders. Good arguments have been made for why general relativistic black holes may be just out of reach of the Large Hadron Collider (LHC). However, in weakly-coupled string theory, highly excited string states - string balls - could be produced at the LHC with high rates and decay thermally, not unlike general relativistic black holes. In this paper, we simulate and study string ball production and decay at the LHC. We specifically emphasize the experimentally-detectable similarities and differences between string balls and general relativistic black holes at a TeV scale.
Study of the effect of excited state concentration on photodegradation of the p3ht polymer
Peters, V. N.; Alexander, Rohan; Peters, D.'Angelo A.; Noginov, M. A.
2016-09-01
We have studied photoinduced reduction of absorption and emission in p3ht, a semiconducting polymer, and found that the rate of photodegradation (destruction of the constituent thiophene rings) does not correlate with the luminescence intensity and, correspondingly, does not depend on the excited state concentration. This conclusion rules out Purcell enhancement of radiative decay rate as a possible explanation of the recently discovered reduction of the p3ht photodegradation rate in the vicinity of metallic substrates and lamellar metal-dielectric metamaterials.