MAXWELL3, 3-D FEM Electromagnetism
International Nuclear Information System (INIS)
1 - Description of program or function: MAXWELL3 is a linear, time domain, finite element code designed for simulation of electromagnetic fields interacting with three-dimensional objects. The simulation region is discretized into 6-sided, 8-nodded elements which need not form a logically regular grid. Scatterers may be perfectly conducting or dielectric. Restart capability and a Muer-type radiating boundary are included. MAXWELL3 can be run in a two-dimensional mode or on infinitesimally thin geometries. The output of time histories on surfaces, or shells, in addition to volumes, is allowed. Two post-processors are included - HIST2XY, which splits the MAXWELL3 history file into simple xy data files, and FFTABS, which performs fast Fourier transformations on the xy data. 2 - Method of solution: The numerical method requires that the model be discretized with a mesh generator. MAXWELL3 then uses the mesh and computes the time domain electric and magnetic fields by integrating Maxwell's divergence-free curl equations over time. The output from MAXWELL3 can then be used with a post-processor to get the desired information in a graphical form. The explicit time integration is done with a leap-frog technique that alternates evaluating the electric and magnetic fields at half time steps. This allows for centered time differencing accurate in second order. The algorithm is naturally robust and requires no parameters. 3 - Restrictions on the complexity of the problem: MAXWELL3 has no mesh generation capabilities. Anisotropic, nonlinear, and magnetic materials cannot be modeled. Material interfaces only account for dielectric changes and neglect any surface charges that would be present at the surface of a partially conducting material. The radiation boundary algorithm is only accurate for normally incident fields and becomes less accurate as the angle of incidence increases. Thus, only models using scattered fields should use the radiation boundary. This limits MAXWELL3's
ESTABLISHMENT OF 3D FEM MODEL OF MULTI-PASS SPINNING
Institute of Scientific and Technical Information of China (English)
ZHAN Mei; ZHOU Qiang; YANG He; ZHANG Jinhui
2007-01-01
In order to improve the computational accuracy and efficiency, it is necessary to establish a reasonable 3D FEM model for multi-pass spinning including not only spinning process but also springback and annealing processes. A numerical model for multi-pass spinning is established using the combination of explicit and implicit FEM, with the advantages of them in accuracy and efficiency. The procedures for model establishment are introduced in detail, and the model is validated. The application of the 3D FEM model to a two-pass spinning shows the following: The field variables such as the stress, strahl and wall thickness during the whole spinning process can be obtained, not only during spinning process but also during springback and annealing processes, and the trends of their distributions and variations are in good agreement with a practical multi-spinning process. Thus the 3D FEM model for multi-pass spinning may be a helpful tool for determination and optimization of process Parameters of multi-pass spinning process.
3D FEM Simulation of Rolling Load Working on Piercer Plug in Mannesmann Piercing Process
Yoshida, Motohisa
2010-06-01
This paper presents 3D FEM simulation of piercer plug in Mannesmann piercing process. Target is establishment of a virtual piercing experiment tool to assistant piercer plug development. FEM simulation analysis has been applied to Mannesmann piercing process previously. Aspect of those studies is how to simulate material flow in piercing process, especially focused on how to describe ductile fracture which is known as Mannesmann effect. Thus far, simulation of rolling tools has not been focused. Present piercer plugs, made of special alloys, are damaged severely and quickly in case of piercing higher Cr contented alloys in seamless steel tube production process. Therefore, development of FEM simulation on rolling tools has been demanded in production side. 3D FEM analysis of piercer plug is performed with ALE (Arbitrary Lagrangian—Eulerian) method by using ABAQUS/Explicit 6.9. Simulations are thermo-mechanical, elasto-plastic coupled, and dynamic calculation. Piercer plug and the billet are modeled by solid elements to analyze various factors on stress, strain and temperature. Ductile fracture is not considered in the simulations. Simulation results are correlated sufficiently to experimental results on damage of piercer plugs. Verifying absolute value of simulated factors is hard since there are few empirical methods to measure them. As a conclusion, studied simulations are sufficient as a virtual piercing experiment tool to develop higher performance piercer plugs.
International Nuclear Information System (INIS)
This paper presents an investigation of the welding sequence effect on induced angular distortion using FEM and experiments. The specimen of a combined joint geometry was modeled and simulated using Multipass Welding Advisor (MWA) in SYSWELD 2010 based on the thermal-elastic-plastic approach with low manganese carbon steel S3355J2G3 as specimen material and Goldak's double ellipsoid as heat source model. To validate the simulation results, a series of experiments was conducted with two different welding sequences using automated welding process, low carbon steel as parent metal, digital GMAW power source with premixed shielding gas and both-sided clamping technique. Based on the results, it was established that the thermo-elastic-plastic 3D FEM analysis shows good agreement with experimental results and the welding sequence “from outside to inside” induced less angular distortion compared to “from inside to outside”. -- Highlights: • 3D FEM was used to analyze the welding distortion on two different sequences. • Simulation results were validated with experiments using automated welding system. • Simulation results and experiments showed acceptable accuracy. • Welding sequence “outside–inside” showed less distortion than “inside–outside”
A 2D-3D FEM approach of fuel rod thermomechanical behaviour during a RIA
International Nuclear Information System (INIS)
For better understanding of the fuel rod behaviour during a RIA and to extrapolate the CABRI tests results to PWR conditions, a pellet and its corresponding cladding part have been modelled by means of a 2D axisymmetric meshing, with EDF's finite element code ASTER. The pellet rim region, which is modelled with a 3D meshing, is represented in the global 2D-model with an equivalent homogenized material. The stress distribution is calculated by applying a thermal radial profile computed with the CEA/IPSN SCANAIR code. Then, the local stresses are determined in the rim region, in the neighbourhood of a gas bubble. This 2D-3D FEM approach has been applied successively to REP Na1 rod, at the time and location of the first failure, and to the postulated RCCA ejection accident in a PWR. (R.P.)
Evaluation of Bogie Frame Safety of Shanghai Metro Line 1 by 3D FEM Analysis
Xiongyao, Xie; Guolong, Jin; Rulu, Wang
2010-05-01
The vehicle bogies of Shanghai metro line 1 began to crack just in the third year after the trains operated. More than 50 cracks occurred in the succeeding six year during the train operation. This paper evaluated the safety of the motorized bogies. First, the loading conditions imposed on the vehicle structure were calculated based on the measured data in service of the train, and compared with the original design load. Then, this paper calculated simulated the stress of the vehicle bogie by 3D FEM, and presented the distribution of every stress concentration point in Goodman fatigue diagram. The computational locations of the strength less than the safety are agreed with where cracks have happened. Finally, this paper calculated the fatigue life of the motor bracket of the bogie through S-N curve based on revised Miner theory. In conclusion, this paper think that the bogie cracks of Shanghai metro line 1 are contributed by the overburden fatigue load, and ignoring the lateral vibration load in the design of the vehicle bogie is the important cause that bogie cracks occurred far earlier than in the designed time.
Frequency domain nonlinear optics
Legare, Francois
2016-05-01
The universal dilemma of gain narrowing occurring in fs amplifiers prevents ultra-high power lasers from delivering few-cycle pulses. This problem is overcome by a new amplification concept: Frequency domain Optical Parametric Amplification - FOPA. It enables simultaneous up-scaling of peak power and amplified spectral bandwidth and can be performed at any wavelength range of conventional amplification schemes, however, with the capability to amplify single cycles of light. The key idea for amplification of octave-spanning spectra without loss of spectral bandwidth is to amplify the broad spectrum ``slice by slice'' in the frequency domain, i.e. in the Fourier plane of a 4f-setup. The striking advantages of this scheme, are its capability to amplify (more than) one octave of bandwidth without shorting the corresponding pulse duration. This is because ultrabroadband phase matching is not defined by the properties of the nonlinear crystal employed but the number of crystals employed. In the same manner, to increase the output energy one simply has to increase the spectral extension in the Fourier plane and to add one more crystal. Thus, increasing pulse energy and shortening its duration accompany each other. A proof of principle experiment was carried out at ALLS on the sub-two cycle IR beam line and yielded record breaking performance in the field of few-cycle IR lasers. 100 μJ two-cycle pulses from a hollow core fibre compression setup were amplified to 1.43mJ without distorting spatial or temporal properties. Pulse duration at the input of FOPA and after FOPA remains the same. Recently, we have started upgrading this system to be pumped by 250 mJ to reach 40 mJ two-cycle IR few-cycle pulses and latest results will be presented at the conference. Furthermore, the extension of the concept of FOPA to other nonlinear optical processes will be discussed. Frequency domain nonlinear optics.
Oshikane, Y.; Murai, K.; Nakano, M.
2014-09-01
3D-electromagnetic (EM) analysis of surface plasmon polaritons (SPPs) excited by a single-mode (SM) propagation of visible lightwave in an optical fiber has been studied with a 3D-FEM package based on a finite element method. End of the fiber is formed to be a circular cone by wet etching process, and is FIBed to make a circular truncated conical shape with a flat circular surface a few micrometers in diameter. The flat end is covered with three layers of asymmetric metalinsulator- metal structure, thin metallic layer (M1), thick insulator layer (I), and thick metallic layer (M2), respectively. The outermost M2 layer has FIBed nanoholes to convert light waves at the extremity of the fiber into SPPs efficiently, and a bright tiny point light source will be generated on the surface of the M2 layer. In this study, the 3D-FEM models consists of both the MIM structure and the shrinking optical fiber tip coated with a metallic thin film has been designed and analyzed numerically. By applying perfect electric conductor and perfect magnetic conductor to planes containing the axis of rotation, the FEM model has a quarter of the circular truncated conical shape. The FEM analysis is formed in two steps. At the first step, a FEM mode analysis is performed to obtain a solution corresponding to the SM propagation in the fiber. The second level of action is the FEM analysis of EM field in the whole of model to find a stationary solution with the solution of mode analysis. Characteristic of wavelength-dependent excitation, propagation, and focusing of the SPPs will be presented with several experimental results of trial products of the fiber tip.
Katagi, T.; Hashimoto, M.; Hashizume, M.; Choosakul, N.; Takemoto, S.; Fukuda, Y.; Fujimori, K.; Satomura, M.; Wu, P.; Otsuka, Y.; Takiguchi, H.; Saito, S.; Maruyama, T.; Kato, T.
2007-12-01
We have studied postseismic displacement following the Sumatra-Andaman earthquake of December 26, 2004 in Thailand and other Southeast Asian countries using continuous GPS observation. We will report the results of our GPS analysis from the beginning of 2001 to the end of October 2007. We have also constructed 3D-FEM to evaluate the effect of viscoelastic relaxation following the earthquake. We will also report this result. We used continuous GPS data from 6 sites operated by Chulalongkorn Univ. and Kyoto Univ. or JAMSTEC, 2 sites by Shizuoka Univ. and JAMSTEC, 3 sites by NICT in Thailand and Myanmar, 1 site by STE-Lab, Nagoya Univ., and IGS sites which are located in countries surrounding the Indian Ocean include Japan, China and Australia. Bernese 5.0 was used for the processing of 30 sec. sampling data to obtain static solutions. From our analysis, no significant motions were detected at each site until the day of the earthquake. Although postseismic displacements still have been detected at CHMI and SIS2 in northern Thailand, far from the epicenter, they seem to be decelerated. On the other hand, at SAMP and PHKT, close to the epicenter, where postseismic displacements also became smaller, but still may take a time to stop. An about 29 cm SW-ward motion was detected at PHKT from just after the Sumatra-Andaman earthquake to June 2007, which is larger than its coseismic displacement, about 26 cm. We have constructed 3D-FEM model to estimate how much viscoelastic relaxation affects postseismic displacements after the earthquake. We adopted a Maxwell viscoelastic body as well as Katagi et al. (2006), and modeled around the Andaman-Sea area using isoparametric hexahedral elements with 8 nodes (Zienkiewicz and Cheng, 1967). The Andaman-Sea is well known as a back arc basins, and its ocean floor is still spreading. Therefore, the mantle viscosity under the Sunda-plate may be smaller because of upwelling warm mantle. We are going to investigate and report the
Comparison of the domain and frequency domain state feedbacks
International Nuclear Information System (INIS)
In this paper, we present explicitly the equivalence of the time domain and frequency domain state feedbacks, as well as the dynamic state feedback and a modified frequency domain state feedback, from the closed-loop transfer function point of view. The difference of the two approaches is also shown
Energy Technology Data Exchange (ETDEWEB)
Zhang, Dongping
2009-10-26
Lateral forced cooling can significantly increase the temporary overload capacity of a cable system, but the design of such systems requires a time-dependent 3D analysis of the nonlinear thermal behavior as the cooling water along the cable is heated up, resulting in position-dependent and time-dependent heat uptake. For this, a new calculation method was developed on the basis of an available 3D FEM software. The new method enables 3D simulation of force-cooled cables in consideration of the potential partial dryout of soil and of thermal stabilizations. The new method was first applied to a 110 kV wind power transmission cable for different configurations and grid conditions. It was found that with lateral forced cooling, the 110 kV will have a temporal 50 percent overload capacity. Further, the thermal characteristics and limiting capacity of a force-cooled 380 kV cable system were investigated. According to the results so far, laterally cooled cable systems open up new operating options, with advantages in terms of availability, economic efficiency, and flexibility. (orig.) [German] Eine laterale Zwangskuehlung kann die temporaere Ueberlastbarkeit einer Kabelanlage signifikant erhoehen. Der Entwurf solcher zwangsgekuehlter Kabelanlagen erfordert jedoch eine zeitabhaengige, dreidimensionale Analyse des nichtlinearen thermischen Verhaltens, da sich das Kuehlwasser entlang der Trasse erwaermt und sich so eine orts- und zeitabhaengige Waermeaufnahme ergibt. Zu diesem Zweck wurde auf der Basis eines vorhandenen zweidimensionalen FEM-Programms ein neues Berechnungsverfahren entwickelt, das die dreidimensionale Simulation zwangsgekuehlter Kabelanlagen unter Beruecksichtigung einer moeglicherweise auftretenden partiellen Bodenaustrocknung und von thermischen Stabilisierungen erlaubt. Mit Hilfe dieses Berechnungsverfahrens wurde zuerst eine 110-kV-Kabelanlage zur Windenergieuebertragung bei unterschiedlichen Anordnungen und unterschiedlichen Netzsituationen untersucht
Time- vs. frequency-domain femtosecond surface sum frequency generation
Roke, S.; Kleyn, A. W.; Bonn, M.
2003-01-01
We present an experimental and theoretical investigation into time- vs. frequency-domain ferntosecond sum frequency spectroscopy at the metal-liquid interface. Although frequency and time-domain measurements are theoretically equivalent it is demonstrated here experimentally that the two approaches
Frequency domain image filtering using cuda
International Nuclear Information System (INIS)
In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA's CUDA (Compute Unified Device Architecture). In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform) which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA's parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butter worth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output) image quality on both the processing architectures. (author)
Frequency Domain Image Filtering Using CUDA
Directory of Open Access Journals (Sweden)
Muhammad Awais Rajput
2014-10-01
Full Text Available In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA?s CUDA (Compute Unified Device Architecture. In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA?s parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butterworth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output image quality on both the processing architectures
System Identification A Frequency Domain Approach
Pintelon, Rik
2012-01-01
System identification is a general term used to describe mathematical tools and algorithms that build dynamical models from measured data. Used for prediction, control, physical interpretation, and the designing of any electrical systems, they are vital in the fields of electrical, mechanical, civil, and chemical engineering. Focusing mainly on frequency domain techniques, System Identification: A Frequency Domain Approach, Second Edition also studies in detail the similarities and differences with the classical time domain approach. It high??lights many of the important steps in the identi
Domain Decomposition Solvers for Frequency-Domain Finite Element Equations
Copeland, Dylan
2010-10-05
The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.
Detector nonlinearity in frequency-domain fluorometry.
Wirth, M J; Burbage, J D; Zulli, S L
1993-02-20
Frequency-domain fluorometry relies on the measurement of the phase and amplitudes of the Fourier components of the time-dependent fluorescence signal. Experimental results that show that a conventional photomultiplier is subject to intensity-dependent phase shifts are presented. The measurements indicate that this is a problem well below the maximum linear current of the photomultiplier response. These results have important implications in frequency-domain fluorescence anisotropy experiments, in which the parallel and the perpendicular components of the emission intensity are inherently different from one another: a phase shift can be introduced by the photomultiplier. PMID:20802776
Load Estimation by Frequency Domain Decomposition
DEFF Research Database (Denmark)
Pedersen, Ivar Chr. Bjerg; Hansen, Søren Mosegaard; Brincker, Rune;
2007-01-01
When performing operational modal analysis the dynamic loading is unknown, however, once the modal properties of the structure have been estimated, the transfer matrix can be obtained, and the loading can be estimated by inverse filtering. In this paper loads in frequency domain are estimated by...... analysis of simulated responses of a 4 DOF system, for which the exact modal parameters are known. This estimation approach entails modal identification of the natural eigenfrequencies, mode shapes and damping ratios by the frequency domain decomposition technique. Scaled mode shapes are determined by use...
Frequency-Domain Robust Control Toolbox
Karimi, Alireza
2013-01-01
A new frequency-domain robust control toolbox is introduced and compared with some features of the robust control toolbox of Matlab. A summary of the theoretical background for H-infinity controller design using the spectral models is given. The main advantage of this toolbox is that almost all types of model uncertainties like unmodelled dynamics, multimodel uncertainty, spectral uncertainty and parametric uncertainty can be taken into account without conservatism. As a result, the uncertain...
Robust Image Watermarking in Frequency Domain
Directory of Open Access Journals (Sweden)
G. Dayalin Leena
2013-04-01
Full Text Available The spreading out of internet these days has raised the worth of digital media all over the planet. Digital watermarking has been a boon to digital media world as it endows various benefits like authentication, copy control and rights management of digital media. Digital images a category under digital media can be watermarked either in time domain or in frequency domain. The goal is to produce an efficient, secure and invisible watermarked image using digital watermarking thereby improving the quality and increasing the robustness of watermarked image. Here, digital image is watermarked using wavelet transforms which is an efficient multi-resolution frequency domain techniques. The low frequencies of wavelet decomposition of the carrier image which is a color image is watermarked with a color logo shuffled using a chaotic map technique. Embedding process is highly secured as chaotic map technique shuffles the watermark in order to confuse any unauthorized person who tries to modify or remove the corresponding watermark. The Peak Signal to Noise Ratio (PSNR of watermarked image has proved that the original image and the watermarked image are visually indistinguishable by human observers. Robustness is checked well by extracting the original watermark perfectly without any degradation in the original image.
Frequency domain analysis of knock images
International Nuclear Information System (INIS)
High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity. (paper)
Communicating oscillatory networks: frequency domain analysis
Directory of Open Access Journals (Sweden)
Ihekwaba Adaoha EC
2011-12-01
Full Text Available Abstract Background Constructing predictive dynamic models of interacting signalling networks remains one of the great challenges facing systems biology. While detailed dynamical data exists about individual pathways, the task of combining such data without further lengthy experimentation is highly nontrivial. The communicating links between pathways, implicitly assumed to be unimportant and thus excluded, are precisely what become important in the larger system and must be reinstated. To maintain the delicate phase relationships between signals, signalling networks demand accurate dynamical parameters, but parameters optimised in isolation and under varying conditions are unlikely to remain optimal when combined. The computational burden of estimating parameters increases exponentially with increasing system size, so it is crucial to find precise and efficient ways of measuring the behaviour of systems, in order to re-use existing work. Results Motivated by the above, we present a new frequency domain-based systematic analysis technique that attempts to address the challenge of network assembly by defining a rigorous means to quantify the behaviour of stochastic systems. As our focus we construct a novel coupled oscillatory model of p53, NF-kB and the mammalian cell cycle, based on recent experimentally verified mathematical models. Informed by online databases of protein networks and interactions, we distilled their key elements into simplified models containing the most significant parts. Having coupled these systems, we constructed stochastic models for use in our frequency domain analysis. We used our new technique to investigate the crosstalk between the components of our model and measure the efficacy of certain network-based heuristic measures. Conclusions We find that the interactions between the networks we study are highly complex and not intuitive: (i points of maximum perturbation do not necessarily correspond to points of maximum
Institute of Scientific and Technical Information of China (English)
代燕; 张超; 赵华强
2011-01-01
目的 应用三维有限元方法,对不同固定方式的下颌角骨折进行生物力学分析,为临床选择下颌角骨折固定方式提供理论依据.方法 应用螺旋CT扫描及相关软件,建立下颌角骨折内固定系统三维有限元模型,并利用MSC.Marc软件对模型进行应力分析.结果 张力带固定时应力集中分布于钛板中部,而双列小型板固定时最大应力位于上缘钛板中部.张力带固定时骨折断端的最大相对位移大于双列小型板固定.在健侧后牙咬(牙合)和前牙咬(牙合)情况下,张力带固定的安全咬(牙合)力范围分别在102.7 N和40.3 N以下.结论 下颌角骨折时,双列小型板固定的稳定性优于张力带固定.选取适当的咬(牙合)方式,张力带固定也可以达到下颌骨骨折固定的安全范围.%Objective To observe the stress distribution of mandibular angle fracture under different rigid internal fixation (RIF) methods by developing a three-dimensional finite-element method (3-D FEM). Methods CT scan technology and related software were used to develop a 3 -D FEM of mandibular angle fracture under different RIF. On this basis, the mandibular stress distributions were analyzed by MSC.Marc software. Results The von Mises stress mainly concentrated on the middle of the titanium plate in tension band fixation, while in two mini-plate fixation, it concentrated on the middle of the superior titanium plate. In the tension band fixation, the max-values of displacement was more than that in the two mini-plate fixation. When the biting force dropped to 102.7 N (LMOL) and 40.3 N (ICP), the furthest fracture mobility got into margin of safety under the tension band fixation. Conclusion The two mini-plate fixation was more stable than the tension band fixation. Choosing the suitable occlusion, tension band fixation could also provide sufficient stability for the mandibular angle fracture.
On frequency and time domain models of traveling wave tubes
Théveny, Stéphane; Elskens, Yves
2016-01-01
We discuss the envelope modulation assumption of frequency-domain models of traveling wave tubes (TWTs) and test its consistency with the Maxwell equations. We compare the predictions of usual frequency-domain models with those of a new time domain model of the TWT.
Linear dispersion codes in space-frequency domain for SCFDE
DEFF Research Database (Denmark)
Marchetti, Nicola; Cianca, Ernestina; Prasad, Ramjee
2007-01-01
This paper presents a general framework for applying the Linear Dispersion Codes (LDC) in the space and frequency domains to Single Carrier - Frequency Domain Equalization (SCFDE) systems. Space-Frequency (SF)LDC are more suitable than Space-Time (ST)-LDC in high mobility environment. However, th...
Transformation Algorithm of Dielectric Response in Time-Frequency Domain
Directory of Open Access Journals (Sweden)
Ji Liu
2014-01-01
Full Text Available A transformation algorithm of dielectric response from time domain to frequency domain is presented. In order to shorten measuring time of low or ultralow frequency dielectric response characteristics, the transformation algorithm is used in this paper to transform the time domain relaxation current to frequency domain current for calculating the low frequency dielectric dissipation factor. In addition, it is shown from comparing the calculation results with actual test data that there is a coincidence for both results over a wide range of low frequencies. Meanwhile, the time domain test data of depolarization currents in dry and moist pressboards are converted into frequency domain results on the basis of the transformation. The frequency domain curves of complex capacitance and dielectric dissipation factor at the low frequency range are obtained. Test results of polarization and depolarization current (PDC in pressboards are also given at the different voltage and polarization time. It is demonstrated from the experimental results that polarization and depolarization current are affected significantly by moisture contents of the test pressboards, and the transformation algorithm is effective in ultralow frequency of 10−3 Hz. Data analysis and interpretation of the test results conclude that analysis of time-frequency domain dielectric response can be used for assessing insulation system in power transformer.
Estimated Frequency Domain Model Uncertainties used in Robust Controller Design
DEFF Research Database (Denmark)
Tøffner-Clausen, S.; Andersen, Palle; Stoustrup, Jakob;
1994-01-01
This paper deals with the combination of system identification and robust controller design. Recent results on estimation of frequency domain model uncertainty are......This paper deals with the combination of system identification and robust controller design. Recent results on estimation of frequency domain model uncertainty are...
Frequency Domain Electroretinography in Retinitis Pigmentosa versus Normal Eyes
Directory of Open Access Journals (Sweden)
Homa Hassan-Karimi
2012-01-01
Full Text Available Purpose: To compare electroretinogram (ERG characteristics in patients with retinitis pigmentosa (RP and normal subjects using frequency domain analysis. Methods: Five basic ERG recordings were performed in normal subjects and patients with a clinical diagnosis of RP according to the ISCEV (International Society of Clinical Electrophysiology of Vision protocol. Frequency domain analysis was performed by MATLAB software. Different frequency domain parameters were compared between the study groups. Results: Peak frequency (Fmod of flicker and oscillatory responses in RP patients showed significant (P<0.0001 high pass response as compared to normal controls. Peak frequency (Fmod of the other responses was not significantly different between the two groups. Conclusion: In addition to conventional ERG using time domain methods, frequency domain analysis may be useful for diagnosis of RP. Oscillatory and flicker responses may be analyzed in frequency domain. Fast Fourier transform may reveal two distinct high pass responses (shift to higher frequencies in Fmod. Time and frequency domain analyses may be performed simultaneously with many modern ERG machines and may therefore be recommended in RP patients.
Two-photon experiments in the frequency domain
Mbodji, I.; Olislager, L.; Woodhead, E.; Galmes, B.; Cussey, J.; Furfaro, L.; Emplit, P.; Massar, S.; Phan Huy, K.; Merolla, J.-M.
2012-06-01
We report on the study of two-photon interference in the frequency domain. Bell and Hong-Ou-Mandel experiments are investigated. These experiments involve the manipulation of photons in the frequency domain, using off-the-shelf telecommunication components such as electro-optic phase modulators and narrow-band frequency filters. In the first experiment, photon pairs entangled in frequency are created and separated. Each photon is then directed through an independent electro-optic phase modulator. Variation of the radio-frequency parameters of the modulation gives rise to a well-controlled Bessel-shape two-photon interference pattern in the frequency domain. This is efficiently measured with narrow-band frequency filters and superconducting single photon detectors. Experimental measurements exhibit high visibilities (over 99 percent both for net and raw visibilities) and allow the (theoretically proven) optimal violation of a Bell inequality for our setup (by more than 18 standard deviations). The second experiment is a Hong-Ou-Mandel experiment in the frequency domain. We show that a grating (spatial domain) or a phase modulator (temporal domain) can be seen as a frequency beam splitter. A broadband spectrum of photon pairs is divided into two interleaved frequency combs, each one used as an independent input to this acting beam splitter. A theoretical calculation shows clear photon anti-bunching behavior.
On Frequency Domain Models for TDOA Estimation
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Nielsen, Jesper Kjær; Christensen, Mads Græsbøll;
2015-01-01
much more general method. In this connection, we establish the conditions under which the cross-correlation method is a statistically efficient estimator. One of the conditions is that the source signal is periodic with a known fundamental frequency of 2π/N radians per sample, where N is the number of...
Frequency-domain method for separating signal and noise
Institute of Scientific and Technical Information of China (English)
王正明; 段晓君
2000-01-01
A new method for separation of signal and noise (SSN) is put forward. Frequency is redefined according to the features of signal and its derivative in the sampling time interval, thus double orthogonal basis (DOB) is constructed so that a signal can be precisely signified with a linear combination of low-frequency DOB. Under joint consideration in time domain (TD) and frequency domain (FD), a method on SSN with high accuracy is derived and a matched algorithm is designed and analyzed. This method is applicable to SSN in multiple frequency bands, and convenient in applying signal characteristics in TD and FD synthetically with higher accuracy.
Frequency-domain method for separating signal and noise
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new method for separation of signal and noise (SSN) is put forward. Frequency is redefined according to the features of signal and its derivative in the sampl ing time interval, thus double orthogonal basis (DOB) is constructed so that a signal can be precisely signified with a linear combination of low-frequency DOB . Under joint consideration in time domain (TD) and frequency domain (FD), a method on SSN with high accuracy is derived and a matched algorithm is designed and analyzed. This method is applicable to SSN in multiple frequency bands, and convenient in applying signal characteristics in TD and FD synthetically with highe raccuracy.
Incoherent Optical Frequency Domain Reflectometry for Distributed Thermal Sensing
Karamehmedovic, Emir; Jeppesen, Palle; Peucheret, Christophe; Bjarklev, Anders Overgaard
2006-01-01
This thesis reports the main results from an investigation of a fibre-optic distributed temperature sensor based on spontaneous Raman scattering. The technique used for spatial resolving is the incoherent optical frequency domain reflectometry, where a pump laser is sine modulated with a stepwise increasing frequency, after which the inverse Fourier transform is applied to the signal from the backscattered light. This technique is compared with the more conventional optical time domain reflec...
Robust time and frequency domain estimation methods in adaptive control
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
Optimal System Realization in Frequency Domain
Juang, Jer-Nan; Maghami, Peiman G.
1999-01-01
Several approaches are presented to identify an experimental system model directly from frequency response data. The formulation begins with a matrix-fraction description as the model structure. Frequency weighting such as exponential weighting is introduced to solve a weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction description. A multi-variable state-space model can then be formed using the coefficient matrices of the matrix-fraction description. An approach is introduced to fine-tune the model using non-linear programming methods to minimize the desired cost function. The method deals with the model in the real Schur or modal form and reassigns a subset of system poles using a nonlinear optimizer. At every optimization step, the input and output influence matrices are refined through least-squares procedures. The proposed approaches are used to identify an analytical model for a NASA testbed from experimental data.
Estimation of luminescence lifetime in frequency domain
Institute of Scientific and Technical Information of China (English)
Zhang Fu-Jun; Xu Zheng; Zhao Su-Ling; Lou Zhi-Dong; Yang Sheng-Yi; Xu Xu-Rong
2006-01-01
Absorption is the origin of luminescence. But it must be noticed that the lifetime of luminescence might reversely influence the rate of absorption. In this paper, it is reported that the luminescence intensity of copper and manganese changes with the driving frequency at constant voltage. The variation of luminescent intensity depends only on the lifetime of luminescence but not on the type of quenching or other factors. Generally the rate of absorption is dominantly determined by the material property and the lifetime of luminescence centres, the absorption of shorter lifetime centre will be larger than that of the longer lifetime centre at the same excited condition.
Methodology of time-domain and frequency-domain calibration and equivalence for EMP sensor
International Nuclear Information System (INIS)
In order to measure the waveform and amplitude of EMP accurately, the sensors need to be calibrated under the standard fields in the TEM or GTEM cell. A set of calibration system is discussed. A highly accurate method of calibrating such sensors is applicable to techniques in both the frequency domain and in the time domain. The complete frequency-domain transfer function or the time-domain impulse response function of sensor system can be obtained, thus allowing deconvolution processes to be used to remove perturbations from the measurement waveform by the instrumentation and TEM cell. (authors)
On the Compensation of Delay in the Discrete Frequency Domain
Directory of Open Access Journals (Sweden)
Gareth Parker
2004-10-01
Full Text Available The ability of a DFT filterbank frequency domain filter to effect time domain delay is examined. This is achieved by comparing the quality of equalisation using a DFT filterbank frequency domain filter with that possible using an FIR implementation. The actual performance of each filter architecture depends on the particular signal and transmission channel, so an exact general analysis is not practical. However, as a benchmark, we derive expressions for the performance for the particular case of an allpass channel response with a delay that is a linear function of frequency. It is shown that a DFT filterbank frequency domain filter requires considerably more degrees of freedom than an FIR filter to effect such a pure delay function. However, it is asserted that for the more general problem that additionally involves frequency response magnitude modifications, the frequency domain filter and FIR filters require a more similar number of degrees of freedom. This assertion is supported by simulation results for a physical example channel.
Vector optical fields broken in the spatial frequency domain
Gao, Xu-Zhen; Pan, Yue; Li, Si-Min; Wang, Dan; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-03-01
We theoretically and experimentally explore the redistribution of polarization states and orbital angular momentum (OAM) in the output plane, induced by the symmetry breaking in the spatial frequency domain. When the vector fields are obstructed by sector-shaped filters in the spatial frequency domain, the local polarization states in the output plane undergo an abrupt transition from linear to circular polarization. The results reveal the polarization-dependent splitting and the appearance of a series of opposite OAMs in the output plane. We also find the self-healing effect of the vector fields broken in the spatial frequency domain and further explore its potential application. If the vector optical fields are used for information transferring or for imaging, even if the optical field carrying the information or image is partially blocked, the complete information or image can still be obtained, implying that which may increase the robustness of the information transferring and the imaging.
Finite-Difference Frequency-Domain Method in Nanophotonics
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra
often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers is...... obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes in a...
Frequency domain optical tomography using a Monte Carlo perturbation method
Yamamoto, Toshihiro; Sakamoto, Hiroki
2016-04-01
A frequency domain Monte Carlo method is applied to near-infrared optical tomography, where an intensity-modulated light source with a given modulation frequency is used to reconstruct optical properties. The frequency domain reconstruction technique allows for better separation between the scattering and absorption properties of inclusions, even for ill-posed inverse problems, due to cross-talk between the scattering and absorption reconstructions. The frequency domain Monte Carlo calculation for light transport in an absorbing and scattering medium has thus far been analyzed mostly for the reconstruction of optical properties in simple layered tissues. This study applies a Monte Carlo calculation algorithm, which can handle complex-valued particle weights for solving a frequency domain transport equation, to optical tomography in two-dimensional heterogeneous tissues. The Jacobian matrix that is needed to reconstruct the optical properties is obtained by a first-order "differential operator" technique, which involves less variance than the conventional "correlated sampling" technique. The numerical examples in this paper indicate that the newly proposed Monte Carlo method provides reconstructed results for the scattering and absorption coefficients that compare favorably with the results obtained from conventional deterministic or Monte Carlo methods.
Fast Cycle Frequency Domain Feature Detection for Cognitive Radio Systems
Da, Shan; Xiaoying, Gan; Hsiao-Hwa, Chen; Liang, Qian
2009-01-01
In cognitive radio systems, one of the main requirements is to detect the presence of the primary users' transmission, especially in weak signal cases. Cyclostationary detection is always used to solve weak signal detection, however, the computational complexity prevents it from wide usage. In this paper, a fast cycle frequency domain feature detection algorithm has been proposed, in which only feature frequency with significant cyclic signature is considered for a certain modulation mode. Si...
Frequency Domain Storage Ring Method for Electric Dipole Moment Measurement
Talman, Richard
2015-01-01
Precise measurement of the electric dipole moments (EDM) of fundamental charged particles would provide a significant probe of physics beyond the standard model. Any measurably large EDM would imply violation of both time reversal and parity conservation, with implications for the matter/anti-matter imbalance of the universe, not currently understood within the standard model. A frequency domain (i.e. difference of frequencies) method is proposed for measuring the EDM of electrons or protons ...
Broadband Beamspace DOA Estimation: Frequency-Domain and Time-Domain Processing Approaches
Directory of Open Access Journals (Sweden)
Yan Shefeng
2007-01-01
Full Text Available Frequency-domain and time-domain processing approaches to direction-of-arrival (DOA estimation for multiple broadband far field signals using beamspace preprocessing structures are proposed. The technique is based on constant mainlobe response beamforming. A set of frequency-domain and time-domain beamformers with constant (frequency independent mainlobe response and controlled sidelobes is designed to cover the spatial sector of interest using optimal array pattern synthesis technique and optimal FIR filters design technique. These techniques lead the resulting beampatterns higher mainlobe approximation accuracy and yet lower sidelobes. For the scenario of strong out-of-sector interfering sources, our approaches can form nulls or notches in the direction of them and yet guarantee that the mainlobe response of the beamformers is constant over the design band. Numerical results show that the proposed time-domain processing DOA estimator has comparable performance with the proposed frequency-domain processing method, and that both of them are able to resolve correlated source signals and provide better resolution at lower signal-to-noise ratio (SNR and lower root-mean-square error (RMSE of the DOA estimate compared with the existing method. Our beamspace DOA estimators maintain good DOA estimation and spatial resolution capability in the scenario of strong out-of-sector interfering sources.
Modal Identification from Ambient Responses Using Frequency Domain Decomposition
DEFF Research Database (Denmark)
Brincker, Rune; Zhang, Lingmi; Andersen, Palle
2000-01-01
In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, i.e. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical...
Modal Identification from Ambient Responses using Frequency Domain Decomposition
DEFF Research Database (Denmark)
Brincker, Rune; Zhang, L.; Andersen, P.
In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, ie. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical...
Frequency-domain thermal modelling of power semiconductor devices
DEFF Research Database (Denmark)
Ma, Ke; Blaabjerg, Frede; Andresen, Markus;
2015-01-01
to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...
A Frequency Domain Design Method For Sampled-Data Compensators
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Jannerup, Ole Erik
1990-01-01
A new approach to the design of a sampled-data compensator in the frequency domain is investigated. The starting point is a continuous-time compensator for the continuous-time system which satisfy specific design criteria. The new design method will graphically show how the discrete...
Automated Frequency Domain Decomposition for Operational Modal Analysis
DEFF Research Database (Denmark)
Brincker, Rune; Andersen, Palle; Jacobsen, Niels-Jørgen
2007-01-01
The Frequency Domain Decomposition (FDD) technique is known as one of the most user friendly and powerful techniques for operational modal analysis of structures. However, the classical implementation of the technique requires some user interaction. The present paper describes an algorithm for...
Incoherent Optical Frequency Domain Reflectometry for Distributed Thermal Sensing
DEFF Research Database (Denmark)
Karamehmedovic, Emir
2006-01-01
This thesis reports the main results from an investigation of a fibre-optic distributed temperature sensor based on spontaneous Raman scattering. The technique used for spatial resolving is the incoherent optical frequency domain reflectometry, where a pump laser is sine modulated with a stepwise...
Charge domain filter operating up to 20 MHz clock frequency
Gal, R.A.J.; Wallinga, H.
1983-01-01
An analog sampled data low pass third order Butterworth filter has been realised in a buried channel CCD technology. This Charge Domain Filter, composed of transversal and recursive CCD filter sections, has been tested at clock frequencies up to 20 MHz.
High frequency resolution terahertz time-domain spectroscopy
Sangala, Bagvanth Reddy
2013-12-01
A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.
A Frequency-domain test for long range dependence
Gromykov, G; Ould Haye, M; Philippe, Anne
2016-01-01
A new frequency-domain test statistic is introduced to test for short memory versus long memory. We provide its asymptotic distribution under the null hypothesis and show that it is consistent under any long memory alternative. Some simulation studies show that this test is more robust than various standard tests in terms of empirical size when the normality of observed process is lost.
SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS
Brownlow, J. D.
1994-01-01
The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval
Hybrid time/frequency domain modeling of nonlinear components
DEFF Research Database (Denmark)
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth;
2007-01-01
This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...... model is used as a basis for its implementation. First, the linear network part is replaced with an ideal voltage source and a time domain (EMT) simulation is performed. During the initial oscillations, harmonic content of the converter currents is calculated at every period by a fast Fourier transform...... and the periodic steady state is identified. Obtained harmonic currents are assigned to current sources and used in the frequency domain calculation in the linear network. The obtained three-phase bus voltage is then inverse Fourier transformed and assigned to the voltage source and the time domain simulation...
Time-domain control of ultrahigh-frequency nanomechanical systems.
Liu, N; Giesen, F; Belov, M; Losby, J; Moroz, J; Fraser, A E; McKinnon, G; Clement, T J; Sauer, V; Hiebert, W K; Freeman, M R
2008-12-01
Nanoelectromechanical systems could have applications in fields as diverse as ultrasensitive mass detection and mechanical computation, and can also be used to explore fundamental phenomena such as quantized heat conductance and quantum-limited displacement. Most nanomechanical studies to date have been performed in the frequency domain. However, applications in computation and information storage will require transient excitation and high-speed time-domain operation of nanomechanical systems. Here we show a time-resolved optical approach to the transduction of ultrahigh-frequency nanoelectromechanical systems, and demonstrate that coherent control of nanomechanical oscillation is possible through appropriate pulse programming. A series of cantilevers with resonant frequencies ranging from less than 10 MHz to over 1 GHz are characterized using the same pulse parameters. PMID:19057589
Thermal Loss of High-Q Antennas in Time Domain vs. Frequency Domain Solver
DEFF Research Database (Denmark)
Bahramzy, Pevand; Pedersen, Gert Frølund
High-Q structures pose great challenges to their loss simulations in Time Domain Solvers (TDS). Therefore, in this work the thermal loss of high-Q antennas is calculated both in TDS and Frequency Domain Solver (FDS), which are then compared with each other and with the actual measurements. The...... thermal loss calculation in FDS is shown to be more accurate for high-Q antennas....
Energy Technology Data Exchange (ETDEWEB)
Feng, Xiaobing [Univ. of Tennessee, Knoxville, TN (United States)
1996-12-31
A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.
Frequency-domain waveform inversion using the phase derivative
Choi, Yun Seok
2013-09-26
Phase wrapping in the frequency domain or cycle skipping in the time domain is the major cause of the local minima problem in the waveform inversion when the starting model is far from the true model. Since the phase derivative does not suffer from the wrapping effect, its inversion has the potential of providing a robust and reliable inversion result. We propose a new waveform inversion algorithm using the phase derivative in the frequency domain along with the exponential damping term to attenuate reflections. We estimate the phase derivative, or what we refer to as the instantaneous traveltime, by taking the derivative of the Fourier-transformed wavefield with respect to the angular frequency, dividing it by the wavefield itself and taking the imaginary part. The objective function is constructed using the phase derivative and the gradient of the objective function is computed using the back-propagation algorithm. Numerical examples show that our inversion algorithm with a strong damping generates a tomographic result even for a high ‘single’ frequency, which can be a good initial model for full waveform inversion and migration.
Statistical multiresolution analysis in amplitude-frequency domain
Institute of Scientific and Technical Information of China (English)
SUN Hong; GUAN Bao; Henri Maitre
2004-01-01
A concept of statistical multiresolution analysis in amplitude-frequency domain is proposed, which is to employ the wavelet transform on the statistical character of a signal in amplitude domain. In terms of the theorem of generalized ergodicity, an algorithm to estimate the transform coefficients based on the amplitude statistical multiresolution analysis (AMA) is presented. The principle of applying the AMA to Synthetic Aperture Radar (SAR) image processing is described, and the good experimental results imply that the AMA is an efficient tool for processing of speckled signals modeled by the multiplicative noise.
High-speed frequency-domain terahertz coherence tomography.
Yahng, Ji Sang; Park, Choon-Su; Don Lee, Hwi; Kim, Chang-Seok; Yee, Dae-Su
2016-01-25
High-speed frequency-domain terahertz (THz) coherence tomography is demonstrated using frequency sweeping of continuous-wave THz radiation and beam steering. For axial scanning, THz frequency sweeping with a kHz sweep rate and a THz sweep range is executed using THz photomixing with an optical beat source consisting of a wavelength-swept laser and a distributed feedback laser diode. During the frequency sweep, frequency-domain THz interferograms are measured using coherent homodyne detection employing signal averaging for noise reduction and used as axial-scan data via fast Fourier transform. Axial-scan data are acquired while scanning a transverse range of 100 × 100 mm2 by use of a THz beam scanner with moving neither sample nor THz transmitter/receiver unit. It takes 100 s to acquire axial-scan data for 100 × 100 points with 5 averaged traces at a sweep rate of 1 kHz. THz tomographic images of a glass fiber reinforced polymer sample with artificial internal defects are presented, acquired using the tomography system. PMID:26832489
Single SQUID frequency-domain multiplexer for large bolometer arrays
International Nuclear Information System (INIS)
We describe the development of a frequency-domain superconducting quantum interference device (SQUID) multiplexer which monitors a row of low-temperature sensors simultaneously with a single SQUID. Each sensor is ac biased with a unique frequency and all the sensor currents are added in a superconducting summing loop. A single SQUID measures the current in the summing loop, and the individual signals are lock-in detected after the room temperature SQUID electronics. The current in the summing loop is nulled by feedback to eliminate direct crosstalk. We have built an eight-channel prototype and demonstrated channel separation and signal recovery
Speaker Identification using Frequency Dsitribution in the Transform Domain
Directory of Open Access Journals (Sweden)
Dr. H B Kekre
2012-02-01
Full Text Available In this paper, we propose Speaker Identification using the frequency distribution of various transforms like DFT (Discrete Fourier Transform, DCT (Discrete Cosine Transform, DST (Discrete Sine Transform, Hartley, Walsh, Haar and Kekre transforms. The speech signal spoken by a particular speaker is converted into frequency domain by applying the different transform techniques. The distribution in the transform domain is utilized to extract the feature vectors in the training and the matching phases. The results obtained by using all the seven transform techniques have been analyzed and compared. It can be seen that DFT, DCT, DST and Hartley transform give comparatively similar results (Above 96%. The results obtained by using Haar and Kekre transform are very poor. The best results are obtained by using DFT (97.19% for a feature vector of size 40.
Buried object location based on frequency-domain UWB measurements
International Nuclear Information System (INIS)
In this paper, a wideband ground penetrating radar (GPR) system and a proposed frequency-domain data analysis technique are presented for the detection of shallow buried objects such as anti-personnel landmines. The GPR system uses one transmitting antenna and an array of six monopole receiving antenna elements and operates from 1 GHz to 20 GHz. This system is able to acquire, save and analyse data in the frequency domain. A common source or wide-angle reflection and refraction technique has been used for acquiring and processing the data. This technique is effective for the rejection of ground surface clutter. By applying the C-scan scheme, metallic and plastic mine-like targets buried in dry soil will be located
Research on the frequency domain ∑△-DPCA
Institute of Scientific and Technical Information of China (English)
Shen Mingwei; Zhu Daiyin; Zhu Zhaoda
2008-01-01
The frequency domain ∑△-DPCA processing (F-∑△-DPCA) is investigated in detail, and an im-proved scheme for the F-]EA-DPCA is proposed, which can significantly reduce the computational burden. In practice, because of the sum and difference beam pattern designed independently and other system errors, the clutter suppression of the time domain ∑△-DPCA processing (T-∑△-DPCA) is significantly degraded. However,the F-∑△-DPCA adaptively calculates the optimum gain ratio for motion compensation within each Doppler cell,which is robust to system errors. Theoretical analysis and simulation results are presented to validate that the F-∑△-DPCA can achieve superior performance of clutter cancellation than the time domain processing, and its performance can be significantly increased if more pulses are used for the Doppler filtering. The improved approach is efficient, and feasible for real-time application.
Frequency-domain modelling of floating wind turbines
Lupton, Richard
2015-01-01
The development of new types of offshore wind turbine on floating platforms requires the development of new approaches to modelling the combined platform-turbine system. In this thesis a linearised frequency-domain approach is developed which gives fast but approximate results: linearised models of the structural dynamics, hydrodynamics, aerodynamics and control system dynamics are brought together to find the overall response of the floating wind turbine to harmonic wind...
Frequency domain stability criteria for fractional-order control systems
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability criterion in a wider sense and obtain a more common means to analyze the stability of fractional-order systems conveniently. Finally, this paper illustrates the generalized stability criteria with an example to show the effect of the parameters variation on the fractional-order control systems.
Kumar, Anand T. N.
2013-01-01
It is demonstrated that high spatial frequency filtering of time domain fluorescence signals can allow efficient detection of intrinsic fluorescence lifetimes from turbid media and the rejection of diffuse excitation leakage. The basis of this approach is the separation of diffuse fluorescence signals into diffuse and fluorescent components with distinct spatiotemporal behavior.
Frequency-domain waveform inversion using the unwrapped phase
Choi, Yun Seok
2011-01-01
Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion, with reduced local minima. We propose a waveform inversion algorithm using the unwrapped phase objective function in the frequency-domain. The unwrapped phase, or what we call the instantaneous traveltime, is given by the imaginary part of dividing the derivative of the wavefield with respect to the angular frequency by the wavefield itself. As a result, the objective function is given a traveltime-like function, which allows us to smooth it and reduce its nonlinearity. The gradient of the objective function is computed using the back-propagation algorithm based on the adjoint-state technique. We apply both our waveform inversion algorithm using the unwrapped phase and the conventional waveform inversion and show that our inversion algorithm gives better convergence to the true model than the conventional waveform inversion. © 2011 Society of Exploration Geophysicists.
Spatial frequency domain spectroscopy of two layer media
Yudovsky, Dmitry; Durkin, Anthony J.
2011-10-01
Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.
A review of time-domain and frequency-domain component mode synthesis method
Craig, R. R., Jr.
1985-01-01
Hurty (1965) has conducted a dynamic analysis of structural systems using component modes. The component mode synthesis (CMS) procedure considered by him represents a form of substructure coupling analysis which is often utilized in structural dynamics. Time-domain CMS methods employing real modes are discussed, taking into account real component modes, normal modes, redundant constraint modes, rigid-body modes, attachment modes, inertia-relief modes, statically-complete interface mode sets, dynamic component mode supersets, component modal models, the coupling of components, and the classification of methods. Attention is also given to the experimental determination of component mode synthesis parameters, time-domain CMS methods for damped systems, and frequency-domain CMS methods for damped systems.
Numerical methods for time-domain and frequency-domain analysis: applications in engineering
Tamas, R. D.
2015-11-01
Numerical methods are widely used for modeling different physical phenomena in engineering, especially when an analytic approach is not possible. Time-domain or frequency- domain type variations are generally investigated, depending on the nature of the process under consideration. Some methods originate from mechanics, although most of their applications belong to other fields, such as electromagnetism. Conversely, other methods were firstly developed for electromagnetism, but their field of application was extended to other fields. This paper presents some results that we have obtained by using a general purpose method for solving linear equations, i.e., the method of moments (MoM), and a time-domain method derived for electromagnetism, i.e., the Transmission Line Matrix method (TLM).
Frequency Domain LED Compensation for Nonlinearity Mitigation in DMT Systems
Peng, Linning; Haese, Sylvain; Hélard, Maryline
2013-01-01
In this letter, a novel linear frequency-domain compensation (FDC) of the resonant cavity light emitting diode (RC-LED) for discrete multi-tone (DMT) modulation has been used for the first time in the nonlinearity mitigation of step-index polymer optical fiber (SI-POF) communication systems. The proposed FDC method can be easily implemented in any multi-carrier communication system. Compared to the classical DMT scheme, FDC DMT benefits from higher power efficiency in terms of clipping for pe...
Frequency domain quantum optimal control under multiple constraints
Shu, Chuan-Cun; Ho, Tak-San; Xing, Xi; Rabitz, Herschel
2016-03-01
Optimal control of quantum systems with complex constrained external fields is one of the longstanding theoretical and numerical challenges at the frontier of quantum control research. Here, we present a theoretical method that can be utilized to optimize the control fields subject to multiple constraints while guaranteeing monotonic convergence towards desired physical objectives. This optimization method is formulated in the frequency domain in line with the current ultrafast pulse shaping technique, providing the possibility for performing quantum optimal control simulations and experiments in a unified fashion. For illustrations, this method is successfully employed to perform multiple constraint spectral-phase-only optimization for maximizing resonant multiphoton transitions with desired pulses.
A frequency domain approach to handling qualities design
Wolovich, W. A.
1978-01-01
A method for designing linear multivariable feedback control systems based on desired closed loop transfer matrix information is introduced. The technique which was employed to achieve the final design was based on a theoretical result, known as the structure theorem. The structure theorem was a frequency domain relationship which simplified the expression for the transfer matrix (matrix of transfer functions) of a linear time-invariant multivariable system. The effect of linear state variable feedback on the closed loop transfer matrix of the system was also clarified.
Causality between regional stock markets: A frequency domain approach
Directory of Open Access Journals (Sweden)
Gradojević Nikola
2013-01-01
Full Text Available Using a data set from five regional stock exchanges (Serbia, Croatia, Slovenia, Hungary and Germany, this paper presents a frequency domain analysis of a causal relationship between the returns on the CROBEX, SBITOP, CETOP and DAX indices, and the return on the major Serbian stock exchange index, BELEX 15. We find evidence of a somewhat dominant effect of the CROBEX and CETOP stock indices on the BELEX 15 stock index across a range of frequencies. The results also indicate that the BELEX 15 index and the SBITOP index interact in a bi-directional causal fashion. Finally, the DAX index movements consistently drive the BELEX 15 index returns for cycle lengths between 3 and 11 days without any feedback effect.
Frequency domain identification for robust large space structure control design
Yam, Y.; Bayard, D. S.; Scheid, R. E.
1991-01-01
A methodology is demonstrated for frequency domain identification of large space structures which systematically transforms experimental raw data into a form required for synthesizing H(infinity) controllers using modern robust control design software (e.g., Matlab Toolboxes). A unique feature of this approach is that the additive uncertainty is characterized to a specified statistic confidence rather than with hard bounds. In this study, the difference in robust performance is minimal between the two levels of confidence. In general cases, the present methodology provides a tool for performance/confidence level tradeoff studies. For simplicity, the additive uncertainty on a frequency grid is considered and the interpolation error in between grid points is neglected.
Frequency Domain Storage Ring Method for Electric Dipole Moment Measurement
Talman, Richard
2015-01-01
Precise measurement of the electric dipole moments (EDM) of fundamental charged particles would provide a significant probe of physics beyond the standard model. Any measurably large EDM would imply violation of both time reversal and parity conservation, with implications for the matter/anti-matter imbalance of the universe, not currently understood within the standard model. A frequency domain (i.e. difference of frequencies) method is proposed for measuring the EDM of electrons or protons or, with modifications, deuterons. Anticipated precision (i.e. reproducibility) is $10^{-30}\\,$e-cm for the proton EDM, with comparable accuracy (i.e. including systematic error). This would be almost six orders of magnitude smaller than the present upper limit, and will provide a stringent test of the standard model. Resonant polarimetry, made practical by the large polarized beam charge, is the key (most novel, least proven) element of the method. Along with the phase-locked, rolling polarization "Koop spin wheel," reso...
Frequency-Wavenumber Domain Filtering for Improved Damage Visualization
International Nuclear Information System (INIS)
This paper presents a technique for the analysis of full wavefield data in the wavenumber/frequency domain as an effective tool for damage detection, visualization and characterization. Full wavefield data contain a wealth of information regarding the space and time variation of propagating waves in damaged structural components. Such information can be used to evaluate the response spectrum in the frequency/wavenumber domain, which effectively separates incident waves from reflections caused by discontinuities encountered along the wave paths. This allows removing the injected wave from the overall response through simple filtering strategies, thus highlighting the presence of reflections associated to damage. The concept is first illustrated on analytical and numerically simulated data, and then tested on experimental results. In the experiments, full wavefield measurements are conveniently obtained using a Scanning Laser Doppler Vibrometer, which allows the detection of displacements and/or velocities over a user-defined grid, and it is able to provide the required spatial and time information in a timely manner. Tests performed on a simple aluminum plate with artificially seeded slits simulating longitudinal cracks, and on a disbonded tongue and groove joint show the effectiveness of the technique and its potential for application to the inspection of a variety of structural components
Frequency-wavenumber domain phase inversion along reflection wavepaths
Yu, Han
2014-12-01
A background velocity model containing the correct low-wavenumber information is desired for both the quality of the migration image and the success of waveform inversion. To achieve this goal, the velocity is updated along the reflection wavepaths, rather than along both the reflection ellipses and transmission wavepaths as in conventional FWI. This method allows for reconstructing the low-wavenumber part of the background velocity model, even in the absence of long offsets and low-frequency component of the data. Moreover, in gradient-based iterative updates, instead of forming the data error conventionally, we propose to exploit the phase mismatch between the observed and the calculated data. The phase mismatch emphasizes a kinematic error and varies quasi-linearly with respect to the velocity error. The phase mismatch is computed (1) in the frequency-wavenumber (f-k) domain replacing the magnitudes of the calculated common shot gather by those of the observed one, and (2) in the temporal-spatial domain to form the difference between the transformed calculated common-shot gather and the observed one. The background velocity model inverted according to the proposed methods can serve as an improved initial velocity model for conventional waveform inversion. Tests with synthetic and field data show both the benefits and limitations of this method.
Propagation of Optical Pulses and Pulsed Beams in the Frequency Domain
Institute of Scientific and Technical Information of China (English)
林强; 王立刚
2001-01-01
The diffraction integral formulae in the temporal and spatial-temporal frequency domains are derived by using a Fourier transform and tensor analysis method. Based on these formulae, the abcd law in the temporal frequency domain and the tensor ABCD law in the four-dimensional spatial-temporal frequency domain are derived. An application example of the derived formulae is provided.
Institute of Scientific and Technical Information of China (English)
Pan Jin; Wang De-yu
2006-01-01
In this paper, adaptive genetic algorithm (AGA) is applied to topology optimization of truss structure with frequency domain excitations. The optimization constraints include fundamental frequency, displacement responses under force excitations and acceleration responses under foundation acceleration excitations. The roulette wheel selection operator, adaptive crossover and mutation operators are used as genetic operators. Some heuristic strategies are put forward to direct the deletion of the extra bars and nodes on truss structures. Three examples demonstrate that the proposed method can yield the optimum structure form and the lightest weight of the given ground structure while satisfying dynamic response constraints.
Noise characteristics of heterodyne/homodyne frequency-domain measurements
Kang, Dongyel; Kupinski, Matthew A.
2012-01-01
We theoretically develop and experimentally validate the noise characteristics of heterodyne and/or homodyne measurements that are widely used in frequency-domain diffusive imaging. The mean and covariance of the modulated heterodyne output are derived by adapting the random amplification of a temporal point process. A multinomial selection rule is applied to the result of the temporal noise analysis to additionally model the spatial distribution of intensified photons measured by a charge-coupled device (CCD), which shows that the photon detection efficiency of CCD pixels plays an important role in the noise property of detected photons. The approach of using a multinomial probability law is validated from experimental results. Also, experimentally measured characteristics of means and variances of homodyne outputs are in agreement with the developed theory. The developed noise model can be applied to all photon amplification processes.
Iterative procedures for wave propagation in the frequency domain
Energy Technology Data Exchange (ETDEWEB)
Kim, Seongjai [Rice Univ., Houston, TX (United States); Symes, W.W.
1996-12-31
A parallelizable two-grid iterative algorithm incorporating a domain decomposition (DD) method is considered for solving the Helmholtz problem. Since a numerical method requires choosing at least 6 to 8 grid points per wavelength, the coarse-grid problem itself is not an easy task for high frequency applications. We solve the coarse-grid problem using a nonoverlapping DD method. To accelerate the convergence of the iteration, an artificial damping technique and relaxation parameters are introduced. Automatic strategies for finding efficient parameters are discussed. Numerical results are presented to show the effectiveness of the method. It is numerically verified that the rate of convergence of the algorithm depends on the wave number sub-linearly and does not deteriorate as the mesh size decreases.
Synchronous machine parameter identification in frequency and time domain
Directory of Open Access Journals (Sweden)
Hasni M.
2007-01-01
Full Text Available This paper presents the results of a frequency and time-domain identification procedure to estimate the linear parameters of a salient-pole synchronous machine at standstill. The objective of this study is to use several input signals to identify the model structure and parameters of a salient-pole synchronous machine from standstill test data. The procedure consists to define, to conduct the standstill tests and also to identify the model structure. The signals used for identification are the different excitation voltages at standstill and the flowing current in different windings. We estimate the parameters of operational impedances, or in other words the reactance and the time constants. The tests were carried out on synchronous machine of 1.5 kVA 380V 1500 rpm.
Spike sorting in the frequency domain with overlap detection
Rinberg, D; Davidowitz, H; Tishby, N; Rinberg, Dima; Bialek, William; Davidowitz, Hanan; Tishby, Naftali
2003-01-01
This paper deals with the problem of extracting the activity of individual neurons from multi-electrode recordings. Important aspects of this work are: 1) the sorting is done in two stages - a statistical model of the spikes from different cells is built and only then are occurrences of these spikes in the data detected by scanning through the original data, 2) the spike sorting is done in the frequency domain, 3) strict statistical tests are applied to determine if and how a spike should be classiffed, 4) the statistical model for detecting overlaping spike events is proposed, 5) slow dynamics of spike shapes are tracked during long experiments. Results from the application of these techniques to data collected from the escape response system of the American cockroach, Periplaneta americana, are presented.
Spectrally balanced detection for optical frequency domain imaging.
Chen, Yueli; de Bruin, Daniel M; Kerbage, Charles; de Boer, Johannes F
2007-12-10
In optical frequency domain imaging (OFDI) or swept-source optical coherence tomography, balanced detection is required to suppress relative intensity noise (RIN). A regular implementation of balanced detection by combining reference and sample arm signal in a 50/50 coupler and detecting the differential output with a balanced receiver is however, not perfect. Since the splitting ratio of the 50/50 coupler is wavelength dependent, RIN is not optimally canceled at the edges of the wavelength sweep. The splitting ratio has a nearly linear shift of 0.4% per nanometer. This brings as much as +/-12% deviation at the margins of wavelength-swept range centered at 1060nm. We demonstrate a RIN suppression of 33dB by spectrally corrected balanced detection, 11dB more that regular balanced detection. PMID:19550929
Face identification with frequency domain matched filtering in mobile environments
Lee, Dong-Su; Woo, Yong-Hyun; Yeom, Seokwon; Kim, Shin-Hwan
2012-06-01
Face identification at a distance is very challenging since captured images are often degraded by blur and noise. Furthermore, the computational resources and memory are often limited in the mobile environments. Thus, it is very challenging to develop a real-time face identification system on the mobile device. This paper discusses face identification based on frequency domain matched filtering in the mobile environments. Face identification is performed by the linear or phase-only matched filter and sequential verification stages. The candidate window regions are decided by the major peaks of the linear or phase-only matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering test, which verify color and shape information of the candidate regions in order to remove false alarms. All algorithms are built on the mobile device using Android platform. The preliminary results show that face identification of East Asian people can be performed successfully in the mobile environments.
An Improved Frequency Domain Technique for Determining Soil Water Content
Institute of Scientific and Technical Information of China (English)
SUN Yu-Rui; MA Dao-Kun; LIN Jian-Hui; P. SCHULZE LAMMERS; L. DAMEROW
2005-01-01
For many years a soil water content sensor with low cost, reliability and sufficient accuracy has been desirable. Thus,an improved measurement method based on the frequency domain (FD) principle for determining soil water content was considered. Unlike other measurement principles, a new measurable index, η, which was independent of the output impedance and the amplitude of the oscillator while relying on the electrical impedance of a multi-pin probe, was proposed. Moreover, a model for processing the impedance of the multi-pin soil probe was developed, and several important electrical parameters for establishing their operating ranges applicable to this probe were evaluated. In order to confirm the theoretical analysis, an experiment was conducted with a 4-pin probe. Using the developed model, the relationship between the proposed indexηand soil volumetric water content was shown to be linear (R2 = 0.9921). Thus, as the measurable index, ηseemed satisfactory.
A Frequency Domain Steganography using Z Transform (FDSZT)
Mandal, J K
2012-01-01
Image steganography is art of hiding information onto the cover image. In this proposal a transformed domain based gray scale image authentication/data hiding technique using Z transform (ZT) termed as FDSZT, has been proposed. ZTransform is applied on 2x2 masks of the source image in row major order to transform original sub image (cover image) block to its corresponding frequency domain. One bit of the hidden image is embedded in each mask of the source image onto the fourth LSB of transformed coefficient based on median value of the mask. A delicate handle has also been performed as post embedding operation for proper decoding. Stego sub image is obtained through a reverse transform as final step of embedding in a mask. During the process of embedding, dimension of the hidden image followed by the content of the message/hidden image are embedded. Reverse process is followed during decoding. High PSNR obtained for various images conform the quality of invisible watermark of FDSZT.
Broadband MC DS-CDMA Using Space-Time and Frequency-Domain Spreading
Yang, L-L.; Hanzo, L.
2002-01-01
In this contribution multicarrier direct-sequence codedivision multiple-access (MC DS-CDMA) using space-time spreading (STS) assisted transmit diversity and frequency-domain (F-domain) spreading is investigated in the context of broadband communications over frequency-selective Rayleigh fading channels. We consider the attainable capacity extension of broadband MC DS-CDMA with the advent of using Time-Frequency-domain (TF-domain) spreading. The BER performance of STS assisted broadband MC DS-...
An Analog Filter Approach to Frequency Domain Fluorescence Spectroscopy.
Trainham, R; O'Neill, M; McKenna, I J
2015-11-01
The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modelled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as SPICE can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modelling of the entire system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. The techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response. The simplification of the analysis mathematics, and the ability to model the entire detection chain, make it possible to develop more compact instruments for remote sensing applications. PMID:26429345
On time-domain and frequency-domain MMSE-based TEQ design for DMT transmission
Vanbleu, K; Moonen, M; Ysebaert, G; 10.1109/TSP.2005.851161
2005-01-01
We reconsider the minimum mean square error (MMSE) time-domain equalizer (TEQ), bitrate maximizing TEQ (BM-TEQ), and per-tone equalizer design (PTEQ) for discrete multitone (DMT) transmission and cast them in a common least-squares (LS) based framework. The MMSE- TEQ design criterion can be formulated as a constrained linear least-squares (CLLS) criterion that minimizes a time-domain (TD) error energy. From this CLLS-based TD-MMSE-TEQ criterion, we derive two new least-squares (LS) based frequency-domain (FD) MMSE-TEQ design criteria: a CLLS-based FD-MMSE-TEQ criterion and a so-called separable nonlinear LS (SNLLS) based FD-MMSE-TEQ design. Finally, the original BM-TEQ design is shown to be equivalent to a so-called iteratively-reweighted (IR) version of the SNLLS-based FD-MMSE-TEQ design. This LS-based framework then results in the following contributions. The new, IR-SNLLS-based BM-TEQ design criterion gives rise to an elegant, iterative, fast converging, Gauss-Newton-based design algorithm that exploits th...
Sreenivas, Kidambi; Whitfield, David L.
1995-01-01
Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.
Directory of Open Access Journals (Sweden)
Sukanya Ray
2012-05-01
Full Text Available In recent years there has been a massive growth in textual information in textual information especially in the internet. People now tend to read more e-books than hard copies of the books. While searching for some topic especially some new topic in the internet it will be easier if someone knows the pre-requisites and post- requisites of that topic. It will be easier for someone searching a new topic. Often the topics are found without any proper title and it becomes difficult later on to find which document was for which topic. A text categorization method can provide solution to this problem. In this paper domain based ontology is created so that users can relate to different topics of a domain and an automated text categorization technique is proposed that will categorize the uncategorized documents. The proposed idea is based on Term Frequency – Inverse Document Frequency (tf -idf method and a dependency graph is also provided in the domain based ontology so that the users can visualize the relations among the terms.
Kiyono, Ken; Tsujimoto, Yutaka
2016-07-01
We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.
Non-stationary frequency domain system identification using time-frequency representations
Guo, Yanlin; Kareem, Ahsan
2016-05-01
System properties of buildings and bridges may vary with time due to temperature changes, aging or extreme loadings. To identify these time-varying system properties, this study proposes a new output-only non-stationary system identification (SI) framework based on instantaneous or marginal spectra derived from the time-frequency representation, e.g., short time Fourier or wavelet transform. Spectra derived from these time-frequency representations are very popular in tracking time-varying frequencies; however, they have seldom been used to identify the time-varying damping ratio because a short window needed to capture the time-varying information amplifies the bandwidth significantly, which may lead to considerably overestimating the damping ratio. To overcome this shortcoming, this study modifies the theoretical frequency response function (FRF) to explicitly account for the windowing effect, and therefore enables SI directly using instantaneous or marginal spectra derived from the wavelet or short time Fourier transform. The response spectrum estimated using the short time window and the modified FRF are both influenced by the same time window, thus the instantaneous or time-localized marginal spectrum of response can be fitted to the modified FRF to identify frequency and damping ratio at each time instant. This spectral-based SI framework can reliably identify damping in time-varying systems under non-stationary excitations. The efficacy of the proposed framework is demonstrated by both numerical and full-scale examples, and also compared to the time-domain SI method, stochastic subspace identification (SSI), since the time-domain SI approaches and their extensions are popular in identifying time-varying systems utilizing recursive algorithms or moving windows.
Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai
2016-01-01
Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid. PMID:27375465
Frequency domain methods applied to forecasting electricity markets
International Nuclear Information System (INIS)
The changes taking place in electricity markets during the last two decades have produced an increased interest in the problem of forecasting, either load demand or prices. Many forecasting methodologies are available in the literature nowadays with mixed conclusions about which method is most convenient. This paper focuses on the modeling of electricity market time series sampled hourly in order to produce short-term (1 to 24 h ahead) forecasts. The main features of the system are that (1) models are of an Unobserved Component class that allow for signal extraction of trend, diurnal, weekly and irregular components; (2) its application is automatic, in the sense that there is no need for human intervention via any sort of identification stage; (3) the models are estimated in the frequency domain; and (4) the robustness of the method makes possible its direct use on both load demand and price time series. The approach is thoroughly tested on the PJM interconnection market and the results improve on classical ARIMA models. (author)
Multiscale Point Correspondence Using Feature Distribution and Frequency Domain Alignment
Directory of Open Access Journals (Sweden)
Zeng-Shun Zhao
2012-01-01
Full Text Available In this paper, a hybrid scheme is proposed to find the reliable point-correspondences between two images, which combines the distribution of invariant spatial feature description and frequency domain alignment based on two-stage coarse to fine refinement strategy. Firstly, the source and the target images are both down-sampled by the image pyramid algorithm in a hierarchical multi-scale way. The Fourier-Mellin transform is applied to obtain the transformation parameters at the coarse level between the image pairs; then, the parameters can serve as the initial coarse guess, to guide the following feature matching step at the original scale, where the correspondences are restricted in a search window determined by the deformation between the reference image and the current image; Finally, a novel matching strategy is developed to reject the false matches by validating geometrical relationships between candidate matching points. By doing so, the alignment parameters are refined, which is more accurate and more flexible than a robust fitting technique. This in return can provide a more accurate result for feature correspondence. Experiments on real and synthetic image-pairs show that our approach provides satisfactory feature matching performance.
Application of frequency domain analysis to transient response of nuclear containment structures
International Nuclear Information System (INIS)
A combination of frequency domain and time domain analyses is proposed to obtain the dynamic responses of nuclear power plant containment structures. A soil-structure model of a boiling water reactor containment subjected to an assumed safety relief valve blowdown load is used as illustration. Linear time-invariant systems are analysed using input forcing functions with varying frequency contents. Time domain analysis is performed using a synthesized input forcing function. The system characteristic function is generated in the frequency domain through Fourier transforms of the response time history and the synthesized input time history. The frequency response due to any other forcing function is obtained in frequency domain by using the system characteristic function, and the response time history is obtained by inverse Fourier transforms of the frequency response. The results obtained by the proposed method are in close agreement with the conventional time domain dynamic finite element analysis. (Auth.)
DEFF Research Database (Denmark)
Madsen, Kristoffer Hougaard; Hansen, Lars Kai; Mørup, Morten
2009-01-01
We propose the Time Frequency Gradient Method (TFGM) which forms a framework for optimization of models that are constrained in the time domain while having efficient representations in the frequency domain. Since the constraints in the time domain in general are not transparent in a frequency......-negative Matrix Factorization, Convolutive Sparse Coding as well as Smooth and Sparse Matrix Factorization. Matlab implementation of the proposed algorithms are available for download at www.erpwavelab.org....
Polyphase decompositions and shift-invariant discrete wavelet transforms in the frequency domain
Wink, Alle Meije; Roerdink, Jos B.T.M.
2010-01-01
Given a signal and its Fourier transform, we derive formulas for its polyphase decomposition in the frequency domain and for the reconstruction from the polyphase representation back to the Fourier representation. We present two frequency-domain implementations of the shift-invariant periodic discrete wavelet transform (SI-DWT) and its inverse: one that is based on frequency-domain polyphase decomposition and a more efficient 'direct' implementation, based on a reorganisation of the a trous a...
Performance of Downlink Frequency Domain Packet Scheduling for the UTRAN Long Term Evolution
DEFF Research Database (Denmark)
Pokhariyal, Akhilesh; Kolding, Troels E.; Mogensen, Preben
2006-01-01
In this paper we investigate the potential of downlink frequency-domain packet scheduling (FDPS) for the 3GPP UTRAN long term evolution. Utilizing frequency-domain channel quality reports, the scheduler flexibly multiplexes users on different portions of the system bandwidth. Compared to frequen...
Inamori, Mamiko; Takayama, Shuzo; Sanada, Yukitoshi
Direct conversion receivers in orthogonal frequency division multiplexing (OFDM) systems suffer from direct current (DC) offset, frequency offset, and IQ imbalance. We have proposed an IQ imbalance estimation scheme in the presence of DC offset and frequency offset, which uses preamble signals in the time domain. In this scheme, the DC offset is eliminated by a differential filter. However, the accuracy of IQ imbalance estimation is deteriorated when the frequency offset is small. To overcome this problem, a new IQ imbalance estimation scheme in the frequency domain with the differential filter has been proposed in this paper. The IQ imbalance is estimated with pilot subcarriers. Numerical results obtained through computer simulation show that estimation accuracy and bit error rate (BER) performance can be improved even if the frequency offset is small.
Multiple Binary Images Watermarking in Spatial and Frequency Domains
Directory of Open Access Journals (Sweden)
K.Ganesan
2012-12-01
Full Text Available Editing, reproduction and distribution of the digital multimedia are becoming extremely easier and faster with the existence of the internet and the availability of pervasive and powerful multimedia tools. Digital watermarking has emerged as a possible method to tackle these issues. This paper proposes a scheme using which more data can be inserted into an image in different domains using different techniques. This increases the embedding capacity. Using the proposed scheme 24 binary images can be embedded in the DCT domain and 12 binary images can be embedded in the spatial domain using LSB substitution technique in a single RGB image. The proposed scheme also provides an extra level of security to the watermark image by scrambling the image before embedding it into the host image. Experimental results show that the proposed watermarking method results in almost invisible difference between the watermarked image and the original image and is also robust against various image processing attacks.
Multiple Binary Images Watermarking in Spatial and Frequency Domains
Directory of Open Access Journals (Sweden)
K.Ganesan
2011-02-01
Full Text Available Editing, reproduction and distribution of the digital multimedia are becoming extremely easier and fasterwith the existence of the internet and the availability of pervasive and powerful multimedia tools. Digitalwatermarking has emerged as a possible method to tackle these issues. This paper proposes a schemeusing which more data can be inserted into an image in different domains using different techniques. Thisincreases the embedding capacity. Using the proposed scheme 24 binary images can be embedded in theDCT domain and 12 binary images can be embedded in the spatial domain using LSB substitutiontechnique in a single RGB image. The proposed scheme also provides an extra level of security to thewatermark image by scrambling the image before embedding it into the host image. Experimental resultsshow that the proposed watermarking method results in almost invisible difference between thewatermarked image and the original image and is also robust against various image processing attacks.
Frequency Domain Fatigue Assessment of Vehicle Component under Random Load Spectrum
International Nuclear Information System (INIS)
This research is focused on the application of frequency domain based fatigue life predict methods on vehicle component. The basic theory of these approaches is based on the frequency-based signals, the probability density function (PDF) of signals and Miner cumulative damage criterion. A typical suspension virtual prototype model is established to derive dynamic loading arisen from random road exciting. Several kinds of fatigue life predicting approaches in frequency domain are applied and compared. The influence factors for these methods, such as PSD average methods, frequency ranges and frequency intervals are also discussed. Appropriate results can be obtained at last.
Calculating thin-bed thickness in frequency domain
Energy Technology Data Exchange (ETDEWEB)
Jianyang, Y. (Shanghai Offshore Geological Survey Bureau, Ministry of Geology and Minerals, No. 340 Shenjia lu Alley, Pudong District, Shanghai City (CN))
1991-01-01
Thin-bed thickness can be quantitatively calculated by using amplitude information when the seismic waves were recorded in simple surface seismic-geological condition and stable shot-receiving condition. However, Seismic waves are rarely recorded on such ideal conditions. In this paper a method for calculating thin-bed thickness with the use of frequency information is proposed as a result of thin-bed model research. This method uses amplitude spectrum values of low frequency contents in seismic frequency spectrum to determine bed thickness error is minutely analyzed which may be caused by thin interbedding and different wavelets. This method is proved feasible.
Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets
Directory of Open Access Journals (Sweden)
Ning Chao
2014-04-01
Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.
Frequency-Domain Identification of XV-15 Tilt-Rotor Aircraft Dynamics in Hovering Flight
Tischler, Mark B.; Leung, Joseph G. M.; Dugan, Daniel C.
1985-01-01
Frequency-domain methods are used to identify the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight tests. Piloting and data analysis techniques are presented to determine frequency response plots and equivalent transfer function models. The open-loop pitch and roll dynamics for the hover flight condition exhibit unstable low-frequency oscillations, whereas the dynamics in the remaining degrees of freedom are lightly damped and generally decoupled. Comparisons of XV-15 flight-test and simulator data are more favorable for high-frequency inputs (omega greater than 1.0 rad/sec) than low-frequency inputs. Time-domain comparisons of the extracted transfer functions with step response flight data are very favorable, even for large amplitude motions. The results presented in this paper demonstrate the utility of the frequency-domain techniques for dynamics identification and simulator fidelity studies.
Frequency-domain generelaized singular peruturbation method for relative error model order reduction
Institute of Scientific and Technical Information of China (English)
Hamid Reza SHAKER
2009-01-01
A new mixed method for relative error model order reduction is proposed.In the proposed method the frequency domain balanced stochastic truncation method is improved by applying the generalized singular perturbation method to the frequency domain balanced system in the reduction procedure.The frequency domain balanced stochastic truncation method,which was proposed in [15] and [17] by the author,is based on two recently developed methods,namely frequency domain balanced truncation within a desired frequency bound and inner-outer factorization techniques.The proposed method in this paper is a carry over of the frequency-domain balanced stochastic truncation and is of interest for practical model order reduction because in this context it shows to keep the accuracy of the approximation as high as possible without sacrificing the computational efficiency and important system properties.It is shown that some important properties of the frequency domain stochastic balanced reduction technique are extended to the proposed reduction method by using the concept and properties of the reciprocal systems.Numerical results show the accuracy,simplicity and flexibility enhancement of the method.
Hays, J. R.
1969-01-01
Lumped parametric system models are simplified and computationally advantageous in the frequency domain of linear systems. Nonlinear least squares computer program finds the least square best estimate for any number of parameters in an arbitrarily complicated model.
A MATLAB GUI for learning controller design in the frequency domain
Mitchell, Richard
2014-01-01
A MATLAB GUI is presented which is used to help students learn to design controllers in the frequency domain. It complements the author’s two previous GUIs for plotting and identification of systems in the frequency domain. It also incorporates the concept used in the “electronic calculator that makes students think” to assist learning. Positive student feedback affirms that the GUI has helped their understanding.
Frequency domain volume rendering by the wavelet X-ray transform
Westenberg, Michel A.; Roerdink, Jos B. T. M.
2000-01-01
We describe a wavelet-based X-ray rendering method in the frequency domain with a smaller time complexity than wavelet splatting. Standard Fourier volume rendering is summarized and interpolation and accuracy issues are briefly discussed. We review the implementation of the fast wavelet transform in the frequency domain. The wavelet X-ray transform is derived, and the corresponding Fourier-wavelet volume rendering algorithm (FWVR) is introduced. FWVR uses Haar or B-spline wavelets and linear ...
Book, W. J.; Majett, M.
1982-01-01
The potential benefits of the ability to control more flexible mechanical arms are discussed. A justification is made in terms of speed of movement. A new controller design procedure is then developed to provide this capability. It uses both a frequency domain representation and a state variable representation of the arm model. The frequency domain model is used to update the modal state variable model to insure decoupled states. The technique is applied to a simple example with encouraging results.
Zeguang YI; Pan, Nan; Liu, Feng
2015-01-01
Aiming at fault diagnosis problems caused by complex machinery parts, serious background noises and the application limitations of traditional blind signal processing algorithm to the mechanical acoustic signal processing, a failure acoustic diagnosis based on reference signal frequency domain semi-blind extraction is proposed. Key technologies are introduced: Based on frequency-domain blind deconvolution algorithm, the artificial fish swarm algorithm which is good for global optimization is ...
BER Performance of Frequency Domain Differential Demodulation OFDM in Flat Fading Channel
Institute of Scientific and Technical Information of China (English)
SONG Lijun; TANG Youxi; LI Shaoqian; HUANG Shunji
2003-01-01
A closed form expression for the bit error rate (BER) performance of frequency domain differential demodulation(FDDD) for orthogonal frequency division multiplexing system in flat fading channel is derived. The performance is evaluated by computer simulation and compared with the time domain differential demodulation(TDDD). The results indicate that the performance of FDDD is better than that of TDDD, and the lower band of BER in the former is lower than that of the latter.
Meta-model-based Design Method for Frequency-domain Performance Reliability Improvement
Energy Technology Data Exchange (ETDEWEB)
Son, Young Kap [Andong National University, Andong (Korea, Republic of)
2015-01-15
This paper proposes a design method for improving the frequency-domain performance reliability of dynamic systems with uncertain and degrading components. Discrete frequencies are used in this method as surrogates for the frequency band of interest, and the conformance of the frequency responses to the specification at these frequencies is utilized to model the frequency-domain performance reliability. A meta-model for the frequency responses, an extreme-value event, and the set-theory are integrated to improve the computational efficiency of the reliability estimation. In addition, a sample-based approach is presented to evaluate and optimize the estimated performance reliability. A case study of a vibration absorber system showed that the proposed design method has engineering applications.
Direction of arrival estimation using array model in time-frequency domain
Institute of Scientific and Technical Information of China (English)
LIU Yun; LI Zhishun
2004-01-01
Time-frequency analysis is combined with array processing to develop a direction of arrival (DOA) estimation method. The array data model is constructed in time-frequency domain by cross time-frequency distribution between the output of a reference sensor and those of two symmetric sub-arrays. Accordingly a subspace method is presented based on the average of two sub-arrays' time-frequency data vector model instead of the conventional array model, to estimate DOAs of multiple signals. Because the array data is processed both in spatial domain and 2-D time-frequency domain, the proposed method has an ability to select the signal of interesting, and is suitable for non-stationary signal. Additionally, the method is robust to noise and holds an advantage of low computational load. Simulations are conducted to verify the efficiency of the method and comparision is made with other methods.
Asymptotically Exact Localized Expansions for Signals in Time-Frequency Domain
Muzhikyan, Aramazd H
2011-01-01
Based on a unique waveform with strong exponential localization property, an exact mathematical method for solving problems in signal analysis in time-frequency domain is presented. An analogue of the Gabor frame exposes the non-commutative geometry of the time-frequency plane. Signals are visualized using graphical representation constructed.
Simulation of power fluctuation of wind farms based on frequency domain
DEFF Research Database (Denmark)
Lin, Jin; Sun, Yuanzhang; Li, Guojie;
2011-01-01
With the capacity of installed wind power generators steadily increasing in China, power fluctuation from wind farms will significantly affect the security and reliability of the power system. Traditional modeling of power fluctuation is based on the time domain or statistics methodology which......, however, is incapable of completely explaining the physical mechanism of randomness of power fluctuation. To remedy such a situation, fluctuation modeling based on the frequency domain is proposed. The frequency domain characteristics of stochastic fluctuation on large wind farms are studied using the...... power spectral density of wind speed, the frequency domain model of a wind power generator and the information on weather and geography of the wind farms. The correctness and effectiveness of the model are verified by comparing the measurement data with simulation results of a certain wind farm. © 2011...
Soil-structure interaction analysis of NPP containments: substructure and frequency domain methods
International Nuclear Information System (INIS)
Substructure and frequency domain methods for soil-structure interaction are addressed in this paper. After a brief description of mathematical models for the soil and of excitation, the equations for dynamic soil-structure interaction are developed for a rigid surface foundation and for an embedded foundation. The equations for the frequency domain analysis of MDOF systems are provided. An example of soil-structure interaction analysis with frequency-dependent soil properties is given and examples of identification of foundation impedance functions and soil properties are presented. (orig.)
Soil-structure interaction analysis of NPP containments: substructure and frequency domain methods
Energy Technology Data Exchange (ETDEWEB)
Venancio-Filho, F.; Almeida, M.C.F.; Ferreira, W.G. [Universidade Federal, Rio de Janeiro, RJ (Brazil); De Barros, F.C.P. [IME/CNEN, Pc. General Tiburcio, 80, 22290-270 Rio de Janeiro (Brazil)
1997-10-01
Substructure and frequency domain methods for soil-structure interaction are addressed in this paper. After a brief description of mathematical models for the soil and of excitation, the equations for dynamic soil-structure interaction are developed for a rigid surface foundation and for an embedded foundation. The equations for the frequency domain analysis of MDOF systems are provided. An example of soil-structure interaction analysis with frequency-dependent soil properties is given and examples of identification of foundation impedance functions and soil properties are presented. (orig.) 17 refs.
Klein, V.
1980-01-01
A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.
Institute of Scientific and Technical Information of China (English)
S.Ali Ghafari Oskoei; Ghyslaine McClure
2008-01-01
At present,high.speed computing capabilities and advanced nonlinear dynamic finite element procedures enable detailed dynamic analysis of cable structures.Although deterministic approaches require considerable analysis time and effort in relation to modeling,running,and data processing,they seem to be the only alternative to obtain high accuracy.Detailed dynamic analysis of cable roof networks is sophisticated and requires advanced modeling expertise.This paper presents a comparison between detailed nonlinear dynamic analysis and a simplified frequency domain approach to estimate the maximum probable response of weakly nonlinear cable roofs.The approach can be considered as alternative to detailed time-domain analysis in the preliminary design phase,or can be used to validate results obtained from more elaborated numerical models.The proposed method is illustrated with two examples of cable net roofs that were also analysed in the time domain.
Comparison of Frequency-Domain Array Methods for Studying Earthquake Rupture Process
Sheng, Y.; Yin, J.; Yao, H.
2014-12-01
Seismic array methods, in both time- and frequency- domains, have been widely used to study the rupture process and energy radiation of earthquakes. With better spatial resolution, the high-resolution frequency-domain methods, such as Multiple Signal Classification (MUSIC) (Schimdt, 1986; Meng et al., 2011) and the recently developed Compressive Sensing (CS) technique (Yao et al., 2011, 2013), are revealing new features of earthquake rupture processes. We have performed various tests on the methods of MUSIC, CS, minimum-variance distortionless response (MVDR) Beamforming and conventional Beamforming in order to better understand the advantages and features of these methods for studying earthquake rupture processes. We use the ricker wavelet to synthesize seismograms and use these frequency-domain techniques to relocate the synthetic sources we set, for instance, two sources separated in space but, their waveforms completely overlapping in the time domain. We also test the effects of the sliding window scheme on the recovery of a series of input sources, in particular, some artifacts that are caused by the sliding window scheme. Based on our tests, we find that CS, which is developed from the theory of sparsity inversion, has relatively high spatial resolution than the other frequency-domain methods and has better performance at lower frequencies. In high-frequency bands, MUSIC, as well as MVDR Beamforming, is more stable, especially in the multi-source situation. Meanwhile, CS tends to produce more artifacts when data have poor signal-to-noise ratio. Although these techniques can distinctly improve the spatial resolution, they still produce some artifacts along with the sliding of the time window. Furthermore, we propose a new method, which combines both the time-domain and frequency-domain techniques, to suppress these artifacts and obtain more reliable earthquake rupture images. Finally, we apply this new technique to study the 2013 Okhotsk deep mega earthquake
Time domain acoustic contrast control implementation of sound zones for low-frequency input signals
DEFF Research Database (Denmark)
Schellekens, Daan H. M.; Møller, Martin Bo; Olsen, Martin
2016-01-01
-of-the-art time domain broadband acoustic contrast control (BACC) methods are designed for anechoic environments. These methods are not able to realize a flat frequency response in a limited frequency range within a reverberant environment. Sound field control in a limited frequency range is a requirement to...... accommodate the effective working range of the loudspeakers. In this paper, a new BACC method is proposed which results in an implementation realizing a flat frequency response in the target zone. This method is applied in a bandlimited low-frequency scenario where the loudspeaker layout surrounds two...
Online Identification of a Mechanical System in the Frequency Domain with Short-Time DFT
Directory of Open Access Journals (Sweden)
Niko Nevaranta
2015-07-01
Full Text Available A proper system identification method is of great importance in the process of acquiring an analytical model that adequately represents the characteristics of the monitored system. While the use of different time-domain online identification techniques has been widely recognized as a powerful approach for system diagnostics, the frequency domain identification techniques have primarily been considered for offline commissioning purposes. This paper addresses issues in the online frequency domain identification of a flexible two-mass mechanical system with varying dynamics, and a particular attention is paid to detect the changes in the system dynamics. An online identification method is presented that is based on a recursive Kalman filter configured to perform like a discrete Fourier transform (DFT at a selected set of frequencies. The experimental online identification results are compared with the corresponding values obtained from the offline-identified frequency responses. The results show an acceptable agreement and demonstrate the feasibility of the proposed identification method.
McKelvey, Tomas
1995-01-01
This paper deals with the analysis of a frequency domain identication algorithm The algorithm identies statespace models given samples of the frequency response given at equidistant frequencies A rst order per turbation analysis is performed revealing an explicit expression of resulting transfer function perturbation Stochastic analysis show that the estimate is asymptotically in data normal distributed and an explicit expression of the resulting variance is given Monte Carlo simulations illu...
Fatigue of wind turbines in the frequency domain
Energy Technology Data Exchange (ETDEWEB)
Bishop, N.W.M. [Univ. College London (United Kingdom)
1996-09-01
Fatigue damage is traditionally determined from time signals of loading, usually in the form of stress or strain. However, there are three design scenarios when a spectral form of loading is more appropriate. In this case the loading is defined in terms of its magnitude at different frequencies in the form of a Power Spectral Density (PSD) plot. First, the measurement engineer recording responses from in-service components or structures may be interested in PSD`s because they are a efficient way of defining a random stress or strain time history. Secondly, the test engineer assessing the reliability of prototypes may be interested in spectral tools because such an approach allows the structural condition of the component to be monitored by continuous inspection of the system transfer function. However, the most important benefit of working with PSD`s is relevant to the structural analysis or designer because of the more sophisticated analysis options with which they can be use. For all three of these design scenarios the fatigue designer is presented with a PSD of stress or strain with which to perform his fatigue calculation. There is therefore a requirement for a reliable, accurate and robust spectral fatigue design tool. Such a tool allows the designer to estimate the rainflow range content and hence content and hence fatigue damage from the PSD. (EG)
Digital Frequency Domain Multiplexer for mm-Wavelength Telescopes
Dobbs, Matt; Spieler, Helmuth
2007-01-01
An FPGA based digital signal processing (DSP) system for biasing and reading out multiplexed bolometric detectors for mm-wavelength telescopes is presented. This readout system is being deployed for balloon-borne and ground based cosmology experiments with the primary goal of measuring the signature of inflation with the Cosmic Microwave Background Radiation. The system consists of analog superconducting electronics running at 250mK and 4K, coupled to digital room temperature backend electronics described here. The digital electronics perform the real time functionality with DSP algorithms implemented in firmware. A soft embedded processor provides all of the slow housekeeping control and communications. Each board in the system synthesizes multi-frequency combs of 8 to 32 carriers in the MHz band to bias the detectors. After the carriers have been modulated with the sky-signal by the detectors, the same boards digitize the comb directly. The carriers are mixed down to base-band and low pass filtered. The sig...
Frequency-domain deviational Monte Carlo method for linear oscillatory gas flows
Ladiges, Daniel R.; Sader, John E.
2015-10-01
Oscillatory non-continuum low Mach number gas flows are often generated by nanomechanical devices in ambient conditions. These flows can be simulated using a range of particle based Monte Carlo techniques, which in their original form operate exclusively in the time-domain. Recently, a frequency-domain weight-based Monte Carlo method was proposed [D. R. Ladiges and J. E. Sader, "Frequency-domain Monte Carlo method for linear oscillatory gas flows," J. Comput. Phys. 284, 351-366 (2015)] that exhibits superior statistical convergence when simulating oscillatory flows. This previous method used the Bhatnagar-Gross-Krook (BGK) kinetic model and contains a "virtual-time" variable to maintain the inherent time-marching nature of existing Monte Carlo algorithms. Here, we propose an alternative frequency-domain deviational Monte Carlo method that facilitates the use of a wider range of molecular models and more efficient collision/relaxation operators. We demonstrate this method with oscillatory Couette flow and the flow generated by an oscillating sphere, utilizing both the BGK kinetic model and hard sphere particles. We also discuss how oscillatory motion of arbitrary time-dependence can be simulated using computationally efficient parallelization. As in the weight-based method, this deviational frequency-domain Monte Carlo method is shown to offer improved computational speed compared to the equivalent time-domain technique.
Wang, W.; Wen, L.
2013-12-01
Back projection is a method to back project the seismic energy recorded in a seismic array back to the earthquake source region and determine the rupture process of a large earthquake. The method takes advantage of the coherence of seismic energy in a seismic array and is quick in determining some important properties of earthquake source. The method can be performed in both time and frequency domains. In time domain, the most conventional procedure is beam forming with some measures of suppressing the noise, such as the Nth root stacking, etc. In the frequency domain, the multiple signal classification method (MUSIC) estimates the direction of arrivals of multiple waves propagating through an array using the subspace method. The advantage of this method is the ability to study rupture properties at various frequencies and to resolve simultaneous arrivals making it suitable for detecting biliteral rupture of an earthquake source. We present a comparison of back projection results on some large earthquakes between the methods in time domain and frequency domain. The time-domain procedure produces an image that is smeared and exhibits some artifacts, although some enhancing stacking methods can at some extent alleviate the problem. On the other hand, the MUSIC method resolves clear multiple arrivals and provides higher resolution of rupture imaging.
GMAW process stability evaluation through acoustic emission by time and frequency domain analysis
Directory of Open Access Journals (Sweden)
E. Huanca Cayo
2009-06-01
Full Text Available Purpose: In the present work was made the comparative analysis in time domain and frequency domain to the acoustical pressure generate by the electric arc to determinate which of the two analysis methods is better to evaluates the stability in GMAW process.Design/methodology/approach: Welds had been made with the parameters adjusted to get the highest stability. In these conditions, were simulated instabilities that had been generated by the grease presence in the weld trajectory. In both experimental groups was acquired the acoustical pressure signal produced by electric arc to made analysis based in time domain and frequency domain.Findings: After this comparative study we conclude that the acoustical evaluation of the stability on the GMAW process presents more clarity for the analysis based in the time domain that the frequency domain.Research limitations/implications: In the gotten results, the time domain analysis method could represent adequately the stability and the instability of the process. The stability characterizes for the continuity and minim variation of the statistical parameters, but in the presence of instabilities, these parameters present chaotic changes. In the frequency domain method the variations are imperceptible for steady and unstable regions, but it presents little definite variations in the amplitude of determined bands of frequencies.Originality/value: The stability evaluation in welding is crucial because it is responsible in the weld quality. The non contact methods as the acoustical method have a potentiality extraordinary to monitoring and detect instabilities in welding. The acoustical sensing has the capacity to make an on-line monitoring of the weld process.
A hybrid analysis method for linear dynamic soil-structure interaction in time and frequency domain
Institute of Scientific and Technical Information of China (English)
丁海平; 廖振鹏
2001-01-01
A hybrid analysis method in time and frequency domains for linear soil-structure interaction is presented. First, the time domain solution of the system with Rayleigh damping excited by a short time impulse is obtained by the decoupling numerical simulation technique of near-field wave motion. Then, the corresponding frequency domain solution can be got by Fourier transform. According to the relationship between damping value and dynamic re-sponse of a system, the solution of the system with complex damping can be got by Taylor expansion. The hybrid method makes the best of decoupling and explicit algorithm in time domain, and increases the calculation efficien-cy for linear soil-structure interaction analysis.
Fractional Fourier transform for partially coherent beam in spatial-frequency domain
Institute of Scientific and Technical Information of China (English)
Cai Yang-Jian; Lin Qiang
2004-01-01
By using Fourier transform and the tensor analysis method, the fractional Fourier transform (FRT) in the spatialfrequency domain for partially coherent beams is derived. Based on the FRT in the spatial-frequency domain, an analytical transform formula is derived for a partially coherent twisted anisotropic Gaussian-Schell model (GSM) beam passing through the FRT system. The connections between the FRT formula and the generalized diffraction integral formulae for partially coherent beams through an aligned optical system and a misaligned optical system in the spatialfrequency domain are discussed, separately. By using the derived formula, the intensity distribution of partially coherent twisted anisotropic GSM beams in the FRT plane are studied in detail. The formula derived provide a convenient tool for analysing and calculating the FRTs of the partially coherent beams in spatial-frequency domain.
Analysis of wave packet motion in frequency and time domain: oxazine 1.
Braun, Markus; Sobotta, Constanze; Dürr, Regina; Pulvermacher, Horst; Malkmus, Stephan
2006-08-17
Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion. PMID:16898679
Frequency Domain Criteria for Absolute Stability A Delay-integral-quadratic Constraints Approach
Altshuller, Dmitry
2013-01-01
Frequency Domain Criteria for Absolute Stability focuses on recently-developed methods of delay-integral-quadratic constraints to provide criteria for absolute stability of nonlinear control systems. The known or assumed properties of the system are the basis from which stability criteria are developed. Through these methods, many classical results are naturally extended, particularly to time-periodic but also to nonstationary systems. Mathematical prerequisites including Lebesgue-Stieltjes measures and integration are first explained in an informal style with technically more difficult proofs presented in separate sections that can be omitted without loss of continuity. The results are presented in the frequency domain – the form in which they naturally tend to arise. In some cases, the frequency-domain criteria can be converted into computationally tractable linear matrix inequalities but in others, especially those with a certain geometric interpretation, inferences concerning stability can be made direc...
Four-channel magnetic resonance imaging receiver using frequency domain multiplexing
He, Wang; Qin, Xu; Jiejing, Ren; Gengying, Li
2007-01-01
An alternative technique that uses frequency domain multiplexing to acquire phased array magnetic resonance images is discussed in detail. The proposed method has advantages over traditional independent receiver chains in that it utilizes an analog-to-digital converter and a single-chip multicarrier receiver with high performance to reduce the size and cost of the phased array receiver system. A practical four-channel digital receiver using frequency domain multiplexing was implemented and verified on a home-built 0.3T magnetic resonance imaging system. The experimental results confirmed that the cross talk between each channel was below -60dB, the phase fluctuations were about 1°, and there was no obvious signal-to-noise ratio degradation. It is demonstrated that the frequency domain multiplexing is a valuable and economical technique, particularly for array coil systems where the multichannel receiver is indispensable and dynamic range is not a critical problem.
Frequency-Domain Adaptive Algorithm for Network Echo Cancellation in VoIP
Directory of Open Access Journals (Sweden)
Patrick A. Naylor
2008-05-01
Full Text Available We propose a new low complexity, low delay, and fast converging frequency-domain adaptive algorithm for network echo cancellation in VoIP exploiting MMax and sparse partial (SP tap-selection criteria in the frequency domain. We incorporate these tap-selection techniques into the multidelay filtering (MDF algorithm in order to mitigate the delay inherent in frequency-domain algorithms. We illustrate two such approaches and discuss their tradeoff between convergence performance and computational complexity. Simulation results show an improvement in convergence rate for the proposed algorithm over MDF and significantly reduced complexity. The proposed algorithm achieves a convergence performance close to that of the recently proposed, but substantially more complex improved proportionate MDF (IPMDF algorithm.
Frequency-Domain Adaptive Algorithm for Network Echo Cancellation in VoIP
Directory of Open Access Journals (Sweden)
Doroslovăcki Milŏs
2008-01-01
Full Text Available We propose a new low complexity, low delay, and fast converging frequency-domain adaptive algorithm for network echo cancellation in VoIP exploiting MMax and sparse partial (SP tap-selection criteria in the frequency domain. We incorporate these tap-selection techniques into the multidelay filtering (MDF algorithm in order to mitigate the delay inherent in frequency-domain algorithms. We illustrate two such approaches and discuss their tradeoff between convergence performance and computational complexity. Simulation results show an improvement in convergence rate for the proposed algorithm over MDF and significantly reduced complexity. The proposed algorithm achieves a convergence performance close to that of the recently proposed, but substantially more complex improved proportionate MDF (IPMDF algorithm.
Practical iterative learning control with frequency domain design and sampled data implementation
Wang, Danwei; Zhang, Bin
2014-01-01
This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much h...
Frequency-domain ultrasonic NDE of three-layered media : the inverse problem
Kinra, V.; Zhu, C
1994-01-01
This paper presents a frequency-domain ultrasonic technique for a simultaneous determination of the thickness (h) and wavespeed (c) of the individual layers comprising a multilayered medium using the entire complex spectrum. Each of the layers may be "thin" ; by thin we mean that the successive reflections of an ultrasonic pulse from the two faces of a layer are non-separable in the time domain. Plane longitudinal waves which are normally incident upon the medium are considered. A systematic ...
Characterization of ZnSe(Te) scintillators by frequency domain luminescence lifetime measurements
Energy Technology Data Exchange (ETDEWEB)
Mickevicius, J. [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio 9-III, LT-10222 Vilnius (Lithuania)], E-mail: juras.mickevicius@ff.vu.lt; Tamulaitis, G; Vitta, P.; Zukauskas, A. [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio 9-III, LT-10222 Vilnius (Lithuania); Starzhinskiy, N.; Ryzhikov, V. [STC for Radiation Instruments, ST Complex ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkov (Ukraine)
2009-10-21
Dynamics of photoluminescence (PL) decay in Te-doped ZnSe scintillator crystal is studied using frequency domain luminescence lifetime measurement technique, which enables simultaneous characterization of components in multicomponent PL decay in a wide time window ranging from millisecond to nanosecond domain. Evolution of decay times and relative contributions of the decay components corresponding to different PL decay mechanisms was revealed as a function of temperature.
Time-domain representation of frequency dependent inertial forces on offshore structures
DEFF Research Database (Denmark)
Krenk, Steen
2013-01-01
located above the peak frequency of the wave spectrum, and the frequency dependence of the inertial force coefficient can then result in a substantial reduction of the resonant part of the response. It is of interest to represent this effect in the time domain for response analysis including finite height...... waves and drag forces. The inertia coefficient has been determined within linear wave theory in terms of the wave-number by MacCamy and Fuchs. For diameters less than about half the water depth this solution can be transformed to frequency form by use of the deep-water dispersion relation. The frequency...
Simulation of power fluctuation of wind farms based on frequency domain
DEFF Research Database (Denmark)
Lin, Jin; Sun, Yuanzhang; Li, Guojie;
2011-01-01
-frequency transformation related to the power spectrum density (PSD), which is more special and complicated than normal transformations. Meanwhile, the computational complexity also increases significantly, more computation resources are needed. These problems negatively affect the engineering application of the model. To...... Grid Electric Power Research Institute Press.......The wind power fluctuation model built up in the frequency domain is mathematically equivalent with that in the time domain, and has a clearer physical meaning therefore describes the fluctuation more accurately. However, the simulation of this model is required to deal with the time...
Gastric Emptying Assessment in Frequency and Time Domain Using Bio-impedance: Preliminary Results
Huerta-Franco, R.; Vargas-Luna, M.; Hernández, E.; Córdova, T.; Sosa, M.; Gutiérrez, G.; Reyes, P.; Mendiola, C.
2006-09-01
The impedance assessment to measure gastric emptying and in general gastric activity has been reported since 1985. The physiological interpretation of these measurements, is still under research. This technique usually uses a single frequency, and the conductivity parameter. The frequency domain and the Fourier analysis of the time domain behavior of the gastric impedance in different gastric conditions (fasting state, and after food administration) has not been explored in detail. This work presents some insights of the potentiality of these alternative methodologies to measure gastric activity.
Investigation of Frequency-Domain Link Adaptation for a 5-MHz OFDMA/HSDPA system
DEFF Research Database (Denmark)
Pokhariyal, Akhilesh; Kolding, Troels E.; Frederiksen, Frank;
2005-01-01
In this paper, we investigate frequency domain link adaptation (FDLA), e.g. utilizing the frequency selectivity of the channel in an OFDMA system. To make the study specific and based on realistic parameters, we re-use the specifications from a recent 3GPP 5-MHz OFDMA study item. The link...... adaptation and the frequency domain link adaptation are developed in a way compliant with the basic HSDPA specifications. With FDLA we show up to 75% cell throughput gain over the OFDMA reference system at the cost of increased uplink channel quality signaling overhead for frequency selective channels. We...... find that optimum waterfilling power distribution only provides a marginal gain over a simpler on/off equal power distribution algorithm per sub-carrier pool when signaling imperfections are taken into account....
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede;
2016-01-01
For the efficiency and simplicity of electric systems, the dc power electronic systems are widely used in a variety of applications such as electric vehicles, ships, aircraft and also in homes. In these systems, there could be a number of dynamic interactions and frequency coupling between network...... and loads and other converters. Hence, time-domain simulations are usually required to consider such a complex system behavior. However, simulations in the time-domain may increase the calculation time and the utilization of computer memory. Furthermore, frequency coupling driven by multiple...... converters with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space...
A Frequency Domain Test for Propriety of Complex-Valued Vector Time Series
Chandna, Swati; Walden, Andrew T.
2016-01-01
This paper proposes a frequency domain approach to test the hypothesis that a complex-valued vector time series is proper, i.e., for testing whether the vector time series is uncorrelated with its complex conjugate. If the hypothesis is rejected, frequency bands causing the rejection will be identified and might usefully be related to known properties of the physical processes. The test needs the associated spectral matrix which can be estimated by multitaper methods using, say, $K$ tapers. S...
Small, Matthew David
2001-01-01
A new method to predict the transport of non-uniform total pressure distributions through an axial flow compressor is presented. The method relies on frequency-domain transformations of total pressure distortion patterns, and the use of digital filter techniques to capture the effect of a blade row on the total pressure distortion. Compressor characteristics, described by a frequency response function, are obtained from experimental data and are related to fundamental blade row flow phenomena...
Elastic wave attenuation and velocity of Berea sandstone measured in the frequency domain
Energy Technology Data Exchange (ETDEWEB)
Shankland, T.J. (Institut de Physique du Globe, Paris (France)); Johnson, P.A.; Hopson, T.M. (Los Alamos National Lab., NM (United States))
1993-03-05
Using measurements in the frequency domain the authors have measured quality factor Q and travel times of direct and side-reflected elastic waves in a 1.8 m long sample of Berea sandstone. The frequency domain travel rime (FDTT) method produces the continuous-wave (cw) response of a propagating wave by stepwise sweeping frequency of a driving source and detecting amplitude and phase of the received signal in reference to the source. Each separate travel path yields a characteristic repetition cycle in frequency space as its wave vector-distance product is stepped; an inverse fast Fourier transform (IFFT) reveals the corresponding travel time at the group velocity. Because arrival times of direct and reflected elastic waves appear as spikes along the time axis, travel times can be obtained precisely, and different arrivals can be clearly separated. Q can be determined from the amplitude vs. frequency response of each peak as obtained from a moving window IFFT of the frequency-domain signal. In this sample at ambient conditions compressional velocity V[sub P] is 2380 m/s and Q[sub P] is 55. 15 refs., 4 figs.
Elastic wave attenuation and velocity of Berea sandstone measured in the frequency domain
Shankland, T. J.; Johnson, P. A.; Hopson, T. M.
1993-03-01
Using measurements in the frequency domain we have measured quality factor Q and travel times of direct and side-reflected elastic waves in a 1.8 m long sample of Berea sandstone. The frequency domain travel time (FDTT) method produces the continuous-wave (CW) response of a propagating wave by stepwise sweeping frequency of a driving source and detecting amplitude and phase of the received signal in reference to the source. Each separate travel path yields a characteristic repetition cycle in frequency space as its wave vector-distance product is stepped; an inverse fast Fourier transform (IFFT) reveals the corresponding travel time at the group velocity. Because arrival times of direct and reflected elastic waves appear as spikes along the time axis, travel times can be obtained precisely, and different arrivals can be clearly separated. Q can be determined from the amplitude vs frequency response of each peak as obtained from a moving window IFFT of the frequency-domain signal. In this sample at ambient conditions compressional velocity Vp is 2380 m/s and Qp is 55.
Directory of Open Access Journals (Sweden)
Trautmann Steffen
2004-01-01
Full Text Available We propose a zero-forcing frequency domain block equalizer for discrete multitone (DMT systems with a guard interval of insufficient length. In addition to the insufficient guard interval in the time domain, the equalizer takes advantage of frequency domain redundancy in the form of subcarriers that do not transmit any data. After deriving sufficient conditions for zero-forcing equalization, that is, complete removal of intersymbol and intercarrier interference, we calculate the noise enhancement of the equalizer by evaluating the signal-to-noise ratio (SNR for each subcarrier. The SNRs are used by an adaptive loading algorithm. It decides how many bits are assigned to each subcarrier in order to achieve a maximum data rate at a fixed error probability. We show that redundancy in the time domain can be traded off for redundancy in the frequency domain resulting in a transceiver with a lower system latency time. The derived equalizer matrix is sparse, thus resulting in a low computational complexity.
Frequency domain volume rendering by the wavelet X-ray transform
Westenberg, Michel A.; Roerdink, Jos B.T.M.
2000-01-01
We describe a wavelet-based X-ray rendering method in the frequency domain with a smaller time complexity than wavelet splatting. Standard Fourier volume rendering is summarized and interpolation and accuracy issues are briefly discussed. We review the implementation of the fast wavelet transform in
Postural Analysis in Time and Frequency Domains in Patients with Ehlers-Danlos Syndrome
Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo
2011-01-01
The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30 s in two conditions: open eyes (OE) and closed…
Modal Identification of Output-only Systems Using Frequency Domain Decomposition
DEFF Research Database (Denmark)
Brincker, Rune; Zhang, L.M.; Andersen, Palle
2001-01-01
In this paper a new frequency domain technique is introduced for the modal identification of output-only systems, i.e. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classica...
Simulation of power fluctuation of wind farms based on frequency domain
DEFF Research Database (Denmark)
Lin, Jin; Sun, Yuanzhang; Li, Guojie; Cheng, Lin; Li, Xiong; Sørensen, Poul Ejnar
2011-01-01
power spectral density of wind speed, the frequency domain model of a wind power generator and the information on weather and geography of the wind farms. The correctness and effectiveness of the model are verified by comparing the measurement data with simulation results of a certain wind farm. © 2011...
Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media
Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...
Doclo, Simon; Spriet, Ann; Wouters, Jan; Moonen, Marc
2007-01-01
Frequency-Domain Criterion for the Speech Distortion Weighted Multichannel Wiener Filter for Robust Noise Reduction correspondence: Corresponding author. Tel.: +32 16 32 1899; fax: +32 16 32 1970. (Doclo, Simon) (Doclo, Simon) Katholieke Universiteit Leuven, Dept. of Electrical Engineering (ESAT - SCD) - Kasteelpark Arenberg 10 bus 2446--> , 3001 Heverlee (Leuven)--> - BELGIUM (Doclo, Simon) B...
Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback
DEFF Research Database (Denmark)
Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo
The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small...
Totally Coded Algorithm for Switched-Current Network Analysis in Frequency Domain
Institute of Scientific and Technical Information of China (English)
XU Jing-bo
2007-01-01
Based on mirror-blocks, a totally coded algorithm (TCA) for switched-current (SI) network analysis in frequency domain is presented. The algorithm is simple, available, and suitable for any switched-current networks.A basis of analysis and design for switched-current networks via this algorithm is provided.
Simultaneous storage of medical images in the spatial and frequency domain: A comparative study
Directory of Open Access Journals (Sweden)
Acharya U Rajendra
2004-06-01
Full Text Available Abstract Background Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. Methods The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT, Discrete Cosine Transform (DCT and Discrete Wavelet Transform (DWT coefficients is studied. Differential pulse code modulation (DPCM is employed for data compression as well as encryption and results are tabulated for a specific example. Results It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain. Conclusion The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient.
Florez, H M; Martinelli, M
2016-01-01
Correlation spectroscopy has been proposed as a spectroscopic technique for measuring the coherence between the ground states in electromagnetically induced transparency (EIT). While in time domain the steep dispersion in EIT condition accounts for the robustness of the correlation linewidth against power broadening, such physical insight was not directly established in the frequency domain. We propose a perturbative approach to describe the correlation spectroscopy of two noisy lasers coupled to a $\\Lambda$-transition in cold atoms, leading to EIT. Such approach leads to an analytical expression that maps the intensity correlation directly in terms of the absorption and dispersion of the light fields. Low and high perturbative regimes are investigated and demonstrate that, for coherent light sources, the first oder term in perturbation expansion represents a sufficient description for the correlation. Sidebands resonances are also observed, showing the richness of the frequency domain approach.
Quantitative modulated imaging of turbid media in the high spatial frequency domain
Lin, Weihao; Cao, Zili; Zeng, Bixin; Xu, M.
2016-03-01
The Spatial-frequency dependence of turbid media reflectance encodes both optical properties and depth information. The high spatial frequency domain imaging (HSFDI) can, in particular, extract key characteristics of the phase function of the scattering medium which carries the ultimate structural information of the medium. We first outline the principle of HSFDI and then present here a compact optical configuration integrating the modulated illumination and imaging systems, facilitating quantitative wide-field optical properties mapping at high spatial frequencies. The performance of HSFDI is assessed on both tissue phantoms and in vivo.
Frequency domain modeling and dynamic characteristics evaluation of existing wind turbine systems
Chiang, Chih-Hung; Yu, Chih-Peng
2016-04-01
It is quite well accepted that frequency domain procedures are suitable for the design and dynamic analysis of wind turbine structures, especially for floating offshore wind turbines, since random wind loads and wave induced motions are most likely simulated in the frequency domain. This paper presents specific applications of an effective frequency domain scheme to the linear analysis of wind turbine structures in which a 1-D spectral element was developed based on the axially-loaded member. The solution schemes are summarized for the spectral analyses of the tower, the blades, and the combined system with selected frequency-dependent coupling effect from foundation-structure interactions. Numerical examples demonstrate that the modal frequencies obtained using spectral-element models are in good agreement with those found in the literature. A 5-element mono-pile model results in less than 0.3% deviation from an existing 160-element model. It is preliminarily concluded that the proposed scheme is relatively efficient in performing quick verification for test data obtained from the on-site vibration measurement using the microwave interferometer.
The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation?
Directory of Open Access Journals (Sweden)
Bart Peeters
2004-01-01
Full Text Available Recently, a new non-iterative frequency-domain parameter estimation method was proposed. It is based on a (weighted least-squares approach and uses multiple-input-multiple-output frequency response functions as primary data. This so-called “PolyMAX” or polyreference least-squares complex frequency-domain method can be implemented in a very similar way as the industry standard polyreference (time-domain least-squares complex exponential method: in a first step a stabilisation diagram is constructed containing frequency, damping and participation information. Next, the mode shapes are found in a second least-squares step, based on the user selection of stable poles. One of the specific advantages of the technique lies in the very stable identification of the system poles and participation factors as a function of the specified system order, leading to easy-to-interpret stabilisation diagrams. This implies a potential for automating the method and to apply it to “difficult” estimation cases such as high-order and/or highly damped systems with large modal overlap. Some real-life automotive and aerospace case studies are discussed. PolyMAX is compared with classical methods concerning stability, accuracy of the estimated modal parameters and quality of the frequency response function synthesis.
Dynamics of spintronic materials: Exploration in the time and frequency domain
Energy Technology Data Exchange (ETDEWEB)
Zabel, Hartmut, E-mail: hartmut.zabel@rub.de [Ruhr-Universität Bochum, 44780 Bochum, Germany and Graduate School of Excellence, Materials Science in Mainz, 55128 Mainz (Germany)
2014-12-14
X-ray and neutron reflectivity are mature experimental techniques for the exploration of film thicknesses and interface roughnesses on the nanoscale. Combining with photon and neutron polarization, these methods can be carried forward to the analysis of magnetic thin films and magnetic domain structures. New opportunities open up when these methods are used either in the time or in the frequency domain. Then dynamical processes can be studied such as domain oscillations, domain propagation, precession of spins, and damping effects. Two methods are discussed which have been developed recently: polarized neutron reflectivity from magnetic films in an alternating magnetic field and time resolved resonant magnetic x-ray reflectivity of the free precessional dynamics in films and multilayers.
Dynamics of spintronic materials: Exploration in the time and frequency domain
International Nuclear Information System (INIS)
X-ray and neutron reflectivity are mature experimental techniques for the exploration of film thicknesses and interface roughnesses on the nanoscale. Combining with photon and neutron polarization, these methods can be carried forward to the analysis of magnetic thin films and magnetic domain structures. New opportunities open up when these methods are used either in the time or in the frequency domain. Then dynamical processes can be studied such as domain oscillations, domain propagation, precession of spins, and damping effects. Two methods are discussed which have been developed recently: polarized neutron reflectivity from magnetic films in an alternating magnetic field and time resolved resonant magnetic x-ray reflectivity of the free precessional dynamics in films and multilayers
Simulation of power fluctuation of wind farms based on frequency domain
DEFF Research Database (Denmark)
Lin, Jin; Sun, Yuanzhang; Li, Guojie; Cheng, Lin; Li, Xiong; Sørensen, Poul Ejnar
2011-01-01
-frequency transformation related to the power spectrum density (PSD), which is more special and complicated than normal transformations. Meanwhile, the computational complexity also increases significantly, more computation resources are needed. These problems negatively affect the engineering application of the model. To......The wind power fluctuation model built up in the frequency domain is mathematically equivalent with that in the time domain, and has a clearer physical meaning therefore describes the fluctuation more accurately. However, the simulation of this model is required to deal with the time...... overcome these disadvantages, the physical meaning of PSD based on fundamental concepts is presented, so that the specialties of this model compared with conventional ones can be understood. Then the time-frequency transformation algorithm is derived, which is fast to be implemented in digital computers...
Zarei, Ali Asghar; Foroutan, Seyyed Abbas; Foroutan, Seyyed Mohsen; Erfanian Omidvar, Abbas
2011-01-01
Pyridostigmine bromide (PB) is a reversible cholinesterase inhibitor. The aim of this study was to determine the effect of orally administration of single dose sustained-released tablet of pyridostigmine bromide (PBSR) on the frequency domain indices of heart rate variability (HRV). Thirty-two healthy young men were participated in this study. They were divided into 2 groups; the pyridostigmine group (n = 22) and the placebo group (n = 10). Electrocardiogram (ECG) was recorded at 10, 30, 60, 90, 120, 150, 180, 210, 240, 300 and 420 min after PBSR administration. At each time, simultaneously, a blood sample was prepared and PB plasma concentration was measured by high-performance liquid chromatography (HPLC) method. Statistical analysis showed that in different indices of HRV, there is a significant increase in low frequency (LF) band at 300 min, but no difference in high frequency band (HF). It also showed significant decreases in normalized high frequency band (Hfnu), normalized low frequency band (Lfnu) and LF/HF ratio at 120, 240 and 300 min after PBSR administration. Maximum plasma concentration of PB was 150 min after the administration. In conclusion, administration of a single dose PBSR can enhance the frequency domains indices of HRV and improvesympathovagal balance. PMID:24250427
Adaptive grid artifact reduction in the frequency domain with spatial properties for x-ray images
Kim, Dong Sik; Lee, Sanggyun
2012-03-01
By applying band-rejection filters (BRFs) in the frequency domain, we can efficiently reduce the grid artifacts, which are caused by using the antiscatter grid in obtaining x-ray digital images. However, if the frequency component of the grid artifact is relatively close to that of the object, then simply applying a BRF may seriously distort the object and cause the ringing artifacts. Since the ringing artifacts are quite dependent on the shape of the object to be recovered in the spatial domain, the spatial property of the x-ray image should be considered in applying BRFs. In this paper, we propose an adaptive filtering scheme, which can cooperate such different properties in the spatial domain. In the spatial domain, we compare several approaches, such as the mangnitude, edge, and frequency-modulation (FM) model-based algorithms, to detect the ringing artifact or the grid artifact component. In order to perform a robust detection whether the ringing artifact is strong or not, we employ the FM model for the extracted signal, which corresponds to a specific grid artifact. A detection of the position for the ringing artifact is then conducted based on the slope detection algorithm, which is commonly used as an FM discriminator in the communication area. However, the detected position of the ringing artifact is not accurate. Hence, in order to obtain an accurate detection result, we combine the edge-based approach with the FM model approach. Numerical result for real x-ray images shows that applying BRFs in the frequency domain in conjunction with the spatial property of the ringing artifact can successfully remove the grid artifact, distorting the object less.
Baumeister, K. J.; Kreider, K. L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Baumeister, Kenneth J.; Kreider, Kevin L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Frequency-domain correction of sensor dynamic error for step response
Yang, Shuang-Long; Xu, Ke-Jun
2012-11-01
To obtain accurate results in dynamic measurements it is required that the sensors should have good dynamic performance. In practice, sensors have non-ideal dynamic characteristics due to their small damp ratios and low natural frequencies. In this case some dynamic error correction methods can be adopted for dealing with the sensor responses to eliminate the effect of their dynamic characteristics. The frequency-domain correction of sensor dynamic error is a common method. Using the existing calculation method, however, the correct frequency-domain correction function (FCF) cannot be obtained according to the step response calibration experimental data. This is because of the leakage error and invalid FCF value caused by the cycle extension of the finite length step input-output intercepting data. In order to solve these problems the data splicing preprocessing and FCF interpolation are put forward, and the FCF calculation steps as well as sensor dynamic error correction procedure by the calculated FCF are presented in this paper. The proposed solution is applied to the dynamic error correction of the bar-shaped wind tunnel strain gauge balance so as to verify its effectiveness. The dynamic error correction results show that the adjust time of the balance step response is shortened to 10 ms (shorter than 1/30 before correction) after frequency-domain correction, and the overshoot is fallen within 5% (less than 1/10 before correction) as well. The dynamic measurement accuracy of the balance is improved significantly.
Linearized Aeroelastic Computations in the Frequency Domain Based on Computational Fluid Dynamics
Amsallem, David; Choi, Youngsoo; Farhat, Charbel
2015-01-01
An iterative, CFD-based approach for aeroelastic computations in the frequency domain is presented. The method relies on a linearized formulation of the aeroelastic problem and a fixed-point iteration approach and enables the computation of the eigenproperties of each of the wet aeroelastic eigenmodes. Numerical experiments on the aeroelastic analysis and design optimization of two wing configurations illustrate the capability of the method for the fast and accurate aeroelastic analysis of aircraft configurations and its advantage over classical time-domain approaches.
Al-Fahoum, Amjed S; Al-Fraihat, Ausilah A
2014-01-01
Technically, a feature represents a distinguishing property, a recognizable measurement, and a functional component obtained from a section of a pattern. Extracted features are meant to minimize the loss of important information embedded in the signal. In addition, they also simplify the amount of resources needed to describe a huge set of data accurately. This is necessary to minimize the complexity of implementation, to reduce the cost of information processing, and to cancel the potential need to compress the information. More recently, a variety of methods have been widely used to extract the features from EEG signals, among these methods are time frequency distributions (TFD), fast fourier transform (FFT), eigenvector methods (EM), wavelet transform (WT), and auto regressive method (ARM), and so on. In general, the analysis of EEG signal has been the subject of several studies, because of its ability to yield an objective mode of recording brain stimulation which is widely used in brain-computer interface researches with application in medical diagnosis and rehabilitation engineering. The purposes of this paper, therefore, shall be discussing some conventional methods of EEG feature extraction methods, comparing their performances for specific task, and finally, recommending the most suitable method for feature extraction based on performance. PMID:24967316
DEFF Research Database (Denmark)
Pokhariyal, Akhilesh; Pedersen, Klaus I.; Monghal, Guillaume Damien; Kovacs, Istvan Z.; Rosa, Claudio; Kolding, Troels E.; Mogensen, Preben
2007-01-01
In this paper we evaluate the performance of downlink channel dependent scheduling in both time and frequency domains. The investigation is based on 3GPP UTRAN long term evolution parameters. A scheduler framework is developed encompassing frequency domain packet scheduling, HARQ management and ...
Clinical skin imaging using color spatial frequency domain imaging (Conference Presentation)
Yang, Bin; Lesicko, John; Moy, Austin J.; Reichenberg, Jason; Tunnell, James W.
2016-02-01
Skin diseases are typically associated with underlying biochemical and structural changes compared with normal tissues, which alter the optical properties of the skin lesions, such as tissue absorption and scattering. Although widely used in dermatology clinics, conventional dermatoscopes don't have the ability to selectively image tissue absorption and scattering, which may limit its diagnostic power. Here we report a novel clinical skin imaging technique called color spatial frequency domain imaging (cSFDI) which enhances contrast by rendering color spatial frequency domain (SFD) image at high spatial frequency. Moreover, by tuning spatial frequency, we can obtain both absorption weighted and scattering weighted images. We developed a handheld imaging system specifically for clinical skin imaging. The flexible configuration of the system allows for better access to skin lesions in hard-to-reach regions. A total of 48 lesions from 31 patients were imaged under 470nm, 530nm and 655nm illumination at a spatial frequency of 0.6mm^(-1). The SFD reflectance images at 470nm, 530nm and 655nm were assigned to blue (B), green (G) and red (R) channels to render a color SFD image. Our results indicated that color SFD images at f=0.6mm-1 revealed properties that were not seen in standard color images. Structural features were enhanced and absorption features were reduced, which helped to identify the sources of the contrast. This imaging technique provides additional insights into skin lesions and may better assist clinical diagnosis.
Chládek, J; Brázdil, M; Halámek, J; Plešinger, F; Jurák, P
2013-01-01
We present an off-line analysis procedure for exploring brain activity recorded from intra-cerebral electroencephalographic data (SEEG). The objective is to determine the statistical differences between different types of stimulations in the time-frequency domain. The procedure is based on computing relative signal power change and subsequent statistical analysis. An example of characteristic statistically significant event-related de/synchronization (ERD/ERS) detected across different frequency bands following different oddball stimuli is presented. The method is used for off-line functional classification of different brain areas. PMID:24109865
Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs.
Burghoff, David; Yang, Yang; Hayton, Darren J; Gao, Jian-Rong; Reno, John L; Hu, Qing
2015-01-26
Recently, much attention has been focused on the generation of optical frequency combs from quantum cascade lasers. We discuss how fast detectors can be used to demonstrate the mutual coherence of such combs, and present an inequality that can be used to quantitatively evaluate their performance. We discuss several technical issues related to shifted wave interference Fourier Transform spectroscopy (SWIFTS), and show how such measurements can be used to elucidate the time-domain properties of such combs, showing that they can possess signatures of both frequency-modulation and amplitude-modulation. PMID:25835878
Estimating C-CAPM and the equity premium over the frequency domain
Ekaterini Panopoulou; Sarantis Kalyvitis
2013-01-01
In this paper we estimate the single-factor Consumption Capital Asset Pricing Model (C-CAPM) over the frequency domain. We modify the standard two-step methodology (Fama and French, 1992) to account for the spectral properties of consumption risk and we find that its lower frequencies explain up to 98% of the cross-sectional variation of expected returns and that the equity premium puzzle is eliminated. These results are robust to the definitions of the variables, the sample span and the set ...
Reducing Dataset Size in Frequency Domain for Brain Computer Interface Motor Imagery Classification
Directory of Open Access Journals (Sweden)
Ch.Aparna
2010-12-01
Full Text Available Brain computer interface is an emerging area of research where the BCI system is able to detect and interpret the mental activity into computer interpretable signals opening a wide area of applications where activities can be completed without using muscular movement. In Brain Computer Interface research, for classification of EEG signals the raw signals captured has to undergo some preprocessing, to obtain the right attributes for classification. In this paper, we present a system which allows for classification of mental tasks based on a statistical data obtained in frequency domain using Discrete cosine transform and extracting useful frequencies from the same with application of decision tree algorithms for classification.
Power System Harmonic Detection Using Frequency-Domain Interpolation Wavelet Transform
Institute of Scientific and Technical Information of China (English)
DU Tian-jun; CHEN Guang-ju
2005-01-01
Aiming at harmonic detection, fast Fourier transform can only detect integer harmonics precisely, short time Fourier transform can detect non-integer harmonics with low resolution, and some former wavelet based methods have no aliasing-reduction scheme which result in low measurement precision and poor robustness. A frequency-domain interpolation algorithm to detect harmonics is proposed by choosing Shannon wavelet. Shannon wavelet is an orthogonal wavelet possessing best ideal frequency domain localization ability, it can restrict wavelet aliasing but bring about Gibbs oscillation phenomenon simultaneously. An interpolation algorithm is developed to overcome this problem. Simulation reveals that the proposed method can effectively cancel aliasing, spectral leakage and Gibbs phenomenon, so it provides an effective means for power system harmonic analysis.
Surrogate model reduction for linear dynamic systems based on a frequency domain modal analysis
Kim, T.
2015-10-01
A novel model reduction methodology for linear dynamic systems with parameter variations is presented based on a frequency domain formulation and use of the proper orthogonal decomposition. For an efficient treatment of parameter variations, the system matrices are divided into a nominal and an incremental part. It is shown that the perturbed part is modally equivalent to a new system where the incremental matrices are isolated into the forcing term. To account for the continuous changes in the parameters, the single-composite-input is invoked with a finite number of predetermined incremental matrices. The frequency-domain Karhunen-Loeve procedure is used to calculate a rich set of basis modes accounting for the variations. For demonstration, the new procedure is applied to a finite element model of the Goland wing undergoing oscillations and shown to produce extremely accurate reduced-order surrogate model for a wide range of parameter variations.
Distributed vibration sensing with time-resolved optical frequency-domain reflectometry.
Zhou, Da-Peng; Qin, Zengguang; Li, Wenhai; Chen, Liang; Bao, Xiaoyi
2012-06-01
The distributed vibration or dynamic strain information can be obtained using time-resolved optical frequency-domain reflectometry. Time-domain information is resolved by measuring Rayleigh backscatter spectrum in different wavelength ranges which fall in successive time sequence due to the linear wavelength sweep of the tunable laser source with a constant sweeping rate. The local Rayleigh backscatter spectrum shift of the vibrated state with respect to that of the non-vibrated state in time sequence can be used to determine dynamic strain information at a specific position along the fiber length. Standard single-mode fibers can be used as sensing head, while the measurable frequency range of 0-32 Hz with the spatial resolution of 10 cm can be achieved up to the total length of 17 m. PMID:22714342
A comparison of frequency domain design and l1-optimal control
Jayasuriya, Suhada; Sobhani, Massoud; Zentgraf, Peter
1991-01-01
A frequency-domain design methodology is applied to a DC motor-speed control system and the results are compared to those obtained using l1-optimal control theory (Pearson and Bamieh, 1990). Both methods synthesize controllers that maximize the allowable size of an unknown-but-bounded disturbance while satisfying prespecified constraints on the control, the control rate, and the outputs. The frequency-domain design technique in general results in much lower-order compensators than those required by the l1-optimal method for a given size of disturbance. Also, the design trade-offs regarding the bandwidth of the system, the size of the disturbance input, and the structural complexity of the controller transfer function become quite transparent.
Frequency-space domain acoustic wave simulation with the BiCGstab (ℓ) iterative method
Du, Zengli; Liu, Jianjun; Liu, Wenge; Li, Chunhong
2016-02-01
The vast computational cost and memory requirements of LU decomposition are major obstacles to 3D seismic modelling in the frequency-space domain. BiCGstab (ℓ) is an effective bi-conjugate gradient method to solve the giant sparse linear equations, but the convergence rate is extremely low when the threshold value is set small enough. The BiCGstab (ℓ) iterative method was introduced into 3D numerical simulation to overcome these problems in this paper. Numerical examples have shown that the precision of the BiCGstab (ℓ) iterative method meets the demand of seismic modelling and the result is equivalent to that of LU decomposition. The computational cost and memory resource demands of the BiCGstab (ℓ) iterative method are superior to that of LU decomposition. It is an effective method of 3D seismic modelling in the frequency-space domain.
Tanay, Sashwat; Gopakumar, Achamveedu
2016-01-01
Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the post-circular scheme of Yunes {\\it et al.} [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasi-circular time-domain {\\texttt{TaylorT4}} approximant at 2PN o...
NEW FREQUENCY DOMAIN POST-FILTERS FOR NOISE CANCELLATION USING TWO CLOSELY SPACED MICROPHONES
Djendi, Mohamed; Gilloire, A.; Pascal, Scalart
2009-01-01
International audience This paper addresses the problem of speech enhancement in a moving car through a blind source separation (BSS) scheme involving two closely spaced microphones. We propose two frequency domain methods to reduce the distortion caused by the forward BSS structure, which is most important when microphones are closely spaced. Both methods aim at estimating post-filters to compensate for the distortion by equalization. The first method is based on an open-loop estimation. ...
Lu, Yujie; Zhu, Banghe; Shen, Haiou; Rasmussen, John C.; WANG, GE; Sevick-Muraca, Eva M.
2010-01-01
Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to...
Benoit Boulet; Vahid Raissi Dehkordi
2009-01-01
This paper deals with the robust performance problem of a linear time-invariant control system in the presence of robust controller uncertainty. Assuming that plant uncertainty is modeled as an additive perturbation, a geometrical approach is followed in order to find a necessary and sufficient condition for robust performance in the form of a bound on the magnitude of controller uncertainty. This frequency domain bound is derived by converting the problem into an optimization problem, whose ...
Soil-structure-interaction analysis in frequency domain using fixed base eigenvalues
International Nuclear Information System (INIS)
Dynamic soil-structure-interaction analyses are usually performed in the frequency domain. Solutions for large buildings require much computer time because of the many degrees of freedom that are needed to represent the dynamic behaviour of the structure. The method presented takes advantage of the fact, that for seismic loading the behaviour of the structure can be represented by only a few natural modes. Thus the number of the equations of motion that have to be solved are drastically reduced. (author)
A frequency domain bootstrap for ratio statistics in time series analysis
Dahlhaus, R.; Janas, D.
1996-01-01
The asymptotic properties of the bootstrap in the frequency domain based on Studentized periodogram ordinates are studied. It is proved that this bootstrap approximation is valid for ratio statistics such as autocorrelations. By using Edgeworth expansions it is shown that the bootstrap approximation even outperforms the normal approximation. The results carry over to Whittle estimates. In a simulation study the behavior of the bootstrap is studied for empirical correlations and Whittle estima...
bouoiyour, jamal; Selmi, Refk; Tiwari, Aviral
2014-01-01
The present study addresses one of the most problematic phenomena: Bitcoin price. We explore the Granger causality for two relationships (Bitcoin price and transactions; Bitcoin price and investors’ attractiveness) from a frequency domain perspective using Breitung and Candelon’s (2006) approach. Intuitively, this research gauges empirically the causal links between these variables unconditionally on the one hand and conditionally to the Chinese stock market and the processing power of Bitcoi...
JAMAL BOUOIYOUR; REFK SELMI; AVIRAL KUMAR TIWARI
2015-01-01
The present study addresses one of the most problematic phenomena: Bitcoin price. We explore the Granger causality for two relationships (Bitcoin price and trade transactions; Bitcoin price and investors' attractiveness) from a frequency domain perspective-based on unconditional and conditional data analysis. Accurately, this research empirically assesses the causal links between these variables unconditionally on the one hand and conditioning upon relevant control variables (recorded in lite...
Stabilization of Inverted Cart-Pendulum System Using Controller: A Frequency-Domain Approach
Dinesh Chandra; Sunil Kumar Mishra
2013-01-01
This paper focuses on the angular stabilization of inverted cart-pendulum system using controller. The tuning of controller is formulated as a nonlinear optimization problem, in which the objective function is composed of five design conditions in frequency domain. Particle swarm optimization technique has been used for optimizing parameters. Also a PID controller has been designed based on same specifications, and a comparative study has been carried out. All the responses have been calculat...
Effective post-processing for single-channel frequency-domain speech enhancement
Li, Weifeng
2007-01-01
Conventional frequency-domain speech enhancement filters improve signal-to-noise ratio (SNR), but also produce speech distortions. This paper describes a novel post-processing algorithm devised for the improvement of the quality of the speech processed by a conventional filter. In the proposed algorithm, the speech distortion is first compensated by adding the original noisy speech, and then the noise is reduced by a post-filter. Experimental results on speech quality show the effectiveness o...
Improvement of Reading Performance of Frequency-Domain Chipless RFID Transponders
Havlicek, J.; Svanda, M.; J. Machac; M. Polivka
2016-01-01
This review paper presents the summary of our investigations in several topics of frequency-domain chipless RFID transponders. The performance comparison of various types of scatterers used in the literature and recently proposed by the authors is presented. The issue of proper location of adjacent resonant elements in the scatterer array to reduce the mutual coupling and consequently ensure the robust RCS response for reliable reading of coded information is addressed. A major improvement in...
High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing
MacLachlan, Robert A.; Riviere, Cameron N.
2009-01-01
Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large ...
DEFF Research Database (Denmark)
Jacobsen, Niels-Jørgen; Andersen, Palle; Brincker, Rune
2006-01-01
The presence of harmonic components in the measured responses is unavoidable in many applications of Operational Modal Analysis. This is especially true when measuring on mechanical structures containing rotating or reciprocating parts. This paper describes a new method based on the popular...... Enhanced Frequency Domain Decomposition technique for eliminating the influence of these harmonic components in the modal parameter extraction process. For various experiments, the quality of the method is assessed and compared to the results obtained using broadband stochastic excitation forces. Good...
Time and Frequency-Domain Cross-Verification of SLS 6DOF Trajectory Simulations
VanZwieten, Tannen; Johnson, Matthew D.; McCullough, John P.; Gilligan, Eric T.
2014-01-01
The SLS GNC team and its partners have developed several time- and frequency-based simulations for development and analysis of the proposed SLS launch vehicle. The simulations differ in fidelity and some have unique functionality that allows them to perform specific analyses. Some examples of the purposes of the various models are: trajectory simulation, multi-body separation, Monte Carlo, hardware in the loop, loads, and frequency domain stability analyses. While no two simulations are identical, many of the models are essentially six degree-of-freedom (6DOF) representations of the SLS plant dynamics, hardware implementation, and flight software. Thus at a high level all of those models should be in agreement. Comparison of outputs from several SLS trajectory and stability analysis tools are ongoing as part of the program's current verification effort. The purpose of these comparisons is to highlight modeling and analysis differences, verify simulation data sources, identify inconsistencies and minor errors, and ultimately to verify output data as being a good representation of the vehicle and subsystem dynamics. This paper will show selected verification work in both the time and frequency domain from the current design analysis cycle of the SLS for several of the design and analysis simulations. In the time domain, the tools that will be compared are MAVERIC, CLVTOPS, SAVANT, STARS, ARTEMIS, and POST 2. For the frequency domain analysis, the tools to be compared are FRACTAL, SAVANT, and STARS. The paper will include discussion of these tools including their capabilities, configurations, and the uses to which they are put in the SLS program. Determination of the criteria by which the simulations are compared (matching criteria) requires thoughtful consideration, and there are several pitfalls that may occur that can severely punish a simulation if not considered carefully. The paper will discuss these considerations and will present a framework for responding to
Photon acceleration versus frequency-domain interferometry for laser wakefield diagnostics
Energy Technology Data Exchange (ETDEWEB)
Dias, J.M.; Oliveira e Silva, L.; Mendonca, J.T. [GoLP/Centro de Fisica de Plasmas, Inst. Superior Tecnico, Lisbon (Portugal)
1998-03-01
A detailed comparison between the photon acceleration diagnostic technique and the frequency-domain interferometric technique for laser wakefield diagnostics, by using ray-tracing equations is presented here. The dispersion effects on the probe beam and the implications of an arbitrary phase velocity of the plasma wave are discussed for both diagnostic techniques. In the presence of large amplitude plasma wave and long interaction distances significant frequency shifts can be observed. The importance of this effect on the determination of the phase and frequency shifts measurements given by each of the two diagnostic techniques, is also analyzed. The accuracy of both diagnostic techniques is discussed and some of their technical problems are reviewed. (author)
Spectral evolution of two-dimensional kinetic plasma turbulence in the wavenumber-frequency domain
Energy Technology Data Exchange (ETDEWEB)
Comişel, H. [Institut für Theoretische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, D-38016 Braunschweig (Germany); Institute for Space Sciences, Atomiştilor 409, P.O. Box MG-23, Bucharest-Măgurele RO-077125 (Romania); Verscharen, D. [Space Science Center, University of New Hampshire, 8 College Rd., Durham, New Hampshire 03824 (United States); Narita, Y. [Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz (Austria); Motschmann, U. [Institut für Theoretische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, D-38016 Braunschweig (Germany); Deutsches Zentrum für Luft- und Raumfahrt, Institut für Planetenforschung, Rutherfordstr. 2, D-12489 Berlin (Germany)
2013-09-15
We present a method for studying the evolution of plasma turbulence by tracking dispersion relations in the energy spectrum in the wavenumber-frequency domain. We apply hybrid plasma simulations in a simplified two-dimensional geometry to demonstrate our method and its applicability to plasma turbulence in the ion kinetic regime. We identify four dispersion relations: ion-Bernstein waves, oblique whistler waves, oblique Alfvén/ion-cyclotron waves, and a zero-frequency mode. The energy partition and frequency broadening are evaluated for these modes. The method allows us to determine the evolution of decaying plasma turbulence in our restricted geometry and shows that it cascades along the dispersion relations during the early phase with an increasing broadening around the dispersion relations.
A Ray-Tracing Technique to Characterize GPS Multipath in the Frequency Domain
Directory of Open Access Journals (Sweden)
Naveen S. Gowdayyanadoddi
2015-01-01
Full Text Available Multipath propagation is one of the major sources of error in GPS measurements. In this research, a ray-tracing technique is proposed to study the frequency domain characteristics of multipath propagation. The Doppler frequency difference, also known as multipath phase rate and fading frequency, between direct (line-of-sight, LOS and reflected (non-line-of-sight, NLOS signals is studied as a function of satellite elevation and azimuth, as well as distance between the reflector and the static receiver. The accuracy of the method is verified with measured Doppler differences from real data collected in a downtown environment. The use of ray-tracing derived predicted Doppler differences in a receiver, as a means of alleviating the multipath induced errors in the measurement, is presented and discussed.
Effects of laser frequency drift in phase-sensitive optical time-domain reflectometry fiber sensors
Zhirnov, Andrey; Stepanov, Konstantin; Nesterov, Evgeny; Karasik, Valery; Svelto, Cesare; Pnev, Alexey
2016-01-01
The present work studies the influence of laser frequency drifts on operating of phase-sensitive optical time-domain reflectometry ($\\Phi$-OTDR) fiber sensors. A mathematical model and numerical simulations are employed to highlight the influence of frequency drifts of light sources on two characteristic scales: large-time (minutes) and short-time (milliseconds) frequency drifts. Numerical simulation results are compared with predictions given by the fluctuation ratio coefficient (FRC), and they are in a qualitative agreement. In addition to qualitative criteria for light sources given by the FRC, quantitive requirements for optimal light sources for $\\Phi$-OTDR sensors are obtained. Numerical simulation results are verified by comparison with experimental data for three significantly different types of light source.
Kodama, Kazuto; An, Zhisheng; Chang, Hong; Qiang, Xiaoke
2015-04-01
Measurement of low-field magnetic susceptibility over a wide band of frequencies spanning four orders of magnitude is a useful method for the assessment of the grain size distribution of ultrafine magnetic particles smaller than the SP/SSD boundary. This method has been applied to a loess/paleosol sequence at Luochuan in the Chinese Loess Plateau. The studied succession consists of sequences from the latest paleosol unit to the upper part of the loess unit, spanning the last glacial-interglacial cycle. Reconstructed grain size distributions (GSDs) consist of volume fractions on the order of 10-24 m3, and the mean GSDs are modal but with distinctive skewness among the loess, the weakly developed paleosol (weak paleosol), and the mature paleosol. This indicates that the mean volume of SP particles in this sequence tends to increase during the transition from the loess to the paleosol. An index, defined as the difference between χ130 at the lowest (130 Hz) and χ500k at the highest (500 kHz) frequencies normalized to χ130, is judged to be a more suitable index than previous frequency dependence parameters for the concentration of SP particles. This index has a strong correlation with χ130, showing a continuous 'growth curve' with the rate of increase being highest for the loess, moderate for the weak paleosol, and saturated for the paleosol. The characteristic curve suggests that smaller SP particles are preferentially formed in the earlier stage of pedogenesis rather than the later phase when even larger particles are formed in the mature paleosol. These results demonstrate that the broad-band-frequency susceptibility measurement will be useful for the quantitative assessment of magnetic nanoparticles in soils and sediments. Additionally, we point out that the measurement in the frequency domain generally requires time and may not be most suitable to routine measurements. We thus propose an alternative manner, the measurement in the time domain that can be
Phase Analysis for Frequency Standards in the Microwave and Optical Domains
Kazda, M; Huntemann, N; Lipphardt, B; Weyers, S
2015-01-01
Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a FPGA-based phase analyzer to investigate these effects and conducted measurements on two frequency standards. For the caesium fountain PTB-CSF2 we were able to exclude phase variations of the microwave source at the level of a few $\\mu$rad, corresponding to relative frequency shifts of less than 10$^{-16}$. In the optical domain, we investigated phase variations in PTB's Yb$^+$ optical frequency standard and made detailed measurements of AOM chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larg...
Analysis on the time and frequency domains of the acceleration in front crawl stroke.
Gil, Joaquín Madera; Moreno, Luis-Millán González; Mahiques, Juan Benavent; Muñoz, Víctor Tella
2012-05-01
The swimming involves accelerations and decelerations in the swimmer's body. Thus, the main objective of this study is to make a temporal and frequency analysis of the acceleration in front crawl swimming, regarding the gender and the performance. The sample was composed by 31 male swimmers (15 of high-level and 16 of low-level) and 20 female swimmers (11 of high-level and 9 of low-level). The acceleration was registered from the third complete cycle during eight seconds in a 25 meters maximum velocity test. A position transducer (200Hz) was used to collect the data, and it was synchronized to an aquatic camera (25Hz). The acceleration in the temporal (root mean square, minimum and maximum of the acceleration) and frequency (power peak, power peak frequency and spectral area) domains was calculated with Fourier analysis, as well as the velocity and the spectrums distribution in function to present one or more main peaks (type 1 and type 2). A one-way ANOVA was used to establish differences between gender and performance. Results show differences between genders in all the temporal domain variables (p<0.05) and only the Spectral Area (SA) in the frequency domain (p<0.05). Between gender and performance, only the Root Mean Square (RMS) showed differences in the performance of the male swimmers (p<0.05) and in the higher level swimmers, the Maximum (Max) and the Power Peak (PP) of the acceleration showed differences between both genders (p<0.05). These results confirms the importance of knowing the RMS to determine the efficiency of the swimmers regarding gender and performance level. PMID:23487001
Dynamic analysis of offshore structures with non-zero initial conditions in the frequency domain
Liu, Fushun; Lu, Hongchao; Li, Huajun
2016-03-01
The state of non-zero conditions is typically treated as fact when considering the dynamic analysis of offshore structures. This article extends a newly proposed method [1] to manage the non-zero initial conditions of offshore structures in the frequency domain, including new studies on original environmental loads reconstruction, response comparisons with the commercial software ANSYS, and a demonstration using an experimental cantilever beam. The original environmental loads, such as waves, currents, and winds, that act on a structure are decomposed into multiple complex exponential components are represented by a series of poles and corresponding residues. Counter to the traditional frequency-domain method, the non-zero initial conditions of offshore structures could be solved in the frequency domain. Compared with reference [1], an improvement reported in this article is that practical issues, including the choice of model order and central-processing-unit (CPU) time consumption, are further studied when applying this new method to offshore structures. To investigate the feasibility of the representation of initial environmental loads by their poles and corresponding residues, a measured random wave force collected from a column experiment at the Lab of Ocean University of China is used, decomposed, reconstructed and then compared with the original wave force; then, a numerical offshore platform is used to study the performance of the proposed method in detail. The numerical results of this study indicate that (1) a short duration of environmental loads are required to obtain their constitutive poles and residues, which implies good computational efficiency; and (2) the proposed method has a similar computational efficiency to traditional methods due to the use of the inverse Fourier transform technique. To better understand the performance, of time consumption and accuracy of the proposed method, the commercial software ANSYS is used to determine responses
Directory of Open Access Journals (Sweden)
Shanhai Jin
2012-01-01
Full Text Available This paper presents the results of quantitative performance evaluation of an authors’ new parabolic sliding mode filter, which is for removing noise from signals in robotics and mechatronics applications, based on the frequency and time domain characteristics. Based on the evaluation results, the paper presents selection guidelines of two parameters of the filter. The evaluation results show that, in the frequency domain, the noise removing capability of the filter is almost the same as that of the second-order Butterworth low-pass filter (2-LPF, but its phase lag is smaller (maximum 150 degree than that of 2-LPF (maximum 180 degree. Moreover, the filter produces smaller phase lag than a conventional parabolic sliding mode filter with appropriate selection of the parameters. In the time domain, the filter produces smaller overshoot than 2-LPF and the conventional one, while maintaining short transient time, by using an appropriately selected parameter. The presented parameter selection guidelines state that the values of the parameters should be chosen according to some estimated characteristics of the input and some desired characteristics of the output. The effectiveness of the filter and the presented guidelines is validated through numerical examples and their application to a closed-loop, force control of a robot manipulator.
Feasible Frequency-domain Compensation Scheme for IQ Imbalances in OFDM Receivers
Feng, Shu; Xiajie, Shi; Weixin, Sheng; Renhong, Xie
2011-01-01
A pilot pattern across two OFDM symbols with special structure is devised for channel estimation in OFDM systems with IQ imbalance at receiver. Based on this pilot pattern, a high-efficiency time-domain (TD) least square (LS) channel estimator is proposed to significantly suppress channel noise by a factor N/(L+1) in comparison with the frequency-domain LS one in [1] where N and L+1 are the total number of subcarriers and the length of cyclic prefix, respectively. Following this, a low-complexity frequency-domain (FD) Gaussian elimination (GE) equalizer is proposed to eliminate IQ distortion by using only 2N complex multiplications per OFDM symbol. From simulation, the proposed scheme TD-LS/FD-GE using only two pilot OFDM symbols achieves the same bit error rate (BER) performance under ideal channel knowledge and no IQ imbalances at low and medium signal-to-noise ratio (SNR) regions whereas these compensation schemes including FD-LS/Post-FFT LS, FD-LS/Pre-FFT Corr, and SPP/Pre-FFT Corr in [1] require about tw...
Not extinct yet: innovations in frequency domain HEM triggered by sea ice studies
Pfaffhuber, Andreas A.; Hendricks, Stefan
2015-10-01
The last 15 years have brought major innovations in helicopter towed time domain electromagnetics (EM), while few further developments have been made within the classic frequency domain segment. Operational use of frequency domain EM for sea ice thickness mapping acted as a driving force to develop new concepts such as the system under our consideration. Since its introduction we have implemented new concepts aiming at noise reduction and drift elimination. We decreased signal noise base levels by one to two orders of magnitude with changes to the signal transmission concept. Further, we increased the receiver coil dynamic range creating an EM setup without the need for primary field bucking. Finally, we implemented control signals inside the receiver coils to potentially eliminate system drift. Ground tests demonstrate the desired noise reduction and demonstrate drift control, leading to essentially drift free data. Airborne field data confirm these results, yet also show that the procedures can still be improved. The remaining quest is whether these specialised system improvements could also be implemented in exploration helicopter EM (HEM) systems to increase accuracy and efficiency.
Comparison of geometrical and diffraction imaging in the space and frequency domains.
Mahajan, Virendra N; Díaz, José A
2016-04-20
The geometrical and diffraction point-spread functions of an optical imaging system have been reviewed and compared in the past [Proc. SPIE3729, 434 (1999)PSISDG0277-786X10.1117/12.346821]. In this paper, we review and compare corresponding optical transfer functions. While the truth lies with the diffraction optical-transfer functions (OTF), it is considered easier and quicker to calculate the geometrical OTF, especially for large aberrations. We describe the theory of the two OTFs and explore the range of spatial frequencies and the magnitude of the primary aberrations over which the geometrical OTF may provide a reasonable approximation of the diffraction OTF. Moreover, balancing of spherical aberration with defocus for optimum diffraction OTF is studied as a function of both the aberration value as well as the spatial frequency. How to gauge the progress of an optical design in the frequency domain based on the geometrical OTF is outlined as the ray spot size is used in the space domain. PMID:27140094
Hanus, Robert; Zych, Marcin; Petryka, Leszek; Jaszczur, Marek; Hanus, Paweł
2016-03-01
Knowledge of the structure of a flow is really significant for the proper conduct a number of industrial processes. In this case a description of a two-phase flow regimes is possible by use of the time-series analysis e.g. in frequency domain. In this article the classical spectral analysis based on Fourier Transform (FT) and Short-Time Fourier Transform (STFT) were applied for analysis of signals obtained for water-air flow using gamma ray absorption. The presented method was illustrated by use data collected in experiments carried out on the laboratory hydraulic installation with a horizontal pipe of 4.5 m length and inner diameter of 30 mm equipped with two 241Am radioactive sources and scintillation probes with NaI(Tl) crystals. Stochastic signals obtained from detectors for plug, bubble, and transitional plug - bubble flows were considered in this work. The recorded raw signals were analyzed and several features in the frequency domain were extracted using autospectral density function (ADF), cross-spectral density function (CSDF), and the STFT spectrogram. In result of a detail analysis it was found that the most promising to recognize of the flow structure are: maximum value of the CSDF magnitude, sum of the CSDF magnitudes in the selected frequency range, and the maximum value of the sum of selected amplitudes of STFT spectrogram.
Directory of Open Access Journals (Sweden)
Lin Wang
2010-01-01
Full Text Available Frequency-domain blind source separation (BSS performs poorly in high reverberation because the independence assumption collapses at each frequency bins when the number of bins increases. To improve the separation result, this paper proposes a method which combines two techniques by using beamforming as a preprocessor of blind source separation. With the sound source locations supposed to be known, the mixed signals are dereverberated and enhanced by beamforming; then the beamformed signals are further separated by blind source separation. To implement the proposed method, a superdirective fixed beamformer is designed for beamforming, and an interfrequency dependence-based permutation alignment scheme is presented for frequency-domain blind source separation. With beamforming shortening mixing filters and reducing noise before blind source separation, the combined method works better in reverberation. The performance of the proposed method is investigated by separating up to 4 sources in different environments with reverberation time from 100 ms to 700 ms. Simulation results verify the outperformance of the proposed method over using beamforming or blind source separation alone. Analysis demonstrates that the proposed method is computationally efficient and appropriate for real-time processing.
Time-domain electromagnetic energy in a frequency-dispersive left-handed medium
International Nuclear Information System (INIS)
From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain
Time domain and frequency analysis of RTS noise in deep submicron SiGe HBTs
International Nuclear Information System (INIS)
Our work is focused on the identification of defects responsible for the current fluctuations at the origin of low-frequency noise or random telegraphic signals in industrial 0.35 μm BiCMOS technologies. Gummel plots are modelled in order to identify generation-recombination or trap-assisted tunnelling process in the base current. We show that devices having excess base current present random discrete fluctuations on the base current. The analysis of the RTS noise parameters (amplitude, high and low state time durations) as a function of temperature and bias voltage allow us to characterize the traps involved. The conventional technique consists of a statistical treatment of the RTS time domain data. The single trap capture cross-sections and activation energy are deduced with an Arrhenius plot. In order to improve the RTS analysis, we have developed an FFT-based method. The technique allows us to calculate the noise spectrum and to measure the cut-off frequency of a single trap even at very low frequencies (from 0.1 Hz). Finally, it is shown that the frequency analysis of the random telegraphic signals is a well-suited tool for the study of single defects in very small devices. Furthermore, it is complementary with conventional LFN measurements and extended to the very-low-frequency range
Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J
2016-04-01
This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. PMID:26746160
International Nuclear Information System (INIS)
This two part study introduces new developments in frequency domain optical tomography to take into account the collimated source direction in the computation of both the forward and the adjoint models. The solution method is based on the least square finite element method associated to the discrete ordinates method where no empirical stabilization is needed. In this first part of the study, the solution method of the forward model is highlighted with an easy handling of complex boundary condition through a penalization method. Gradient computation from an adjoint method is developed rigorously in a continuous manner through a lagrangian formalism for the deduction of the adjoint equation and the gradient of the objective function. The proposed formulation can be easily generalized to stationary and time domain optical tomography by keeping the same expressions.
Multiobjective Optimization for Electronic Circuit Design in Time and Frequency Domains
Directory of Open Access Journals (Sweden)
J. Dobes
2013-04-01
Full Text Available The multiobjective optimization provides an extraordinary opportunity for the finest design of electronic circuits because it allows to mathematically balance contradictory requirements together with possible constraints. In this paper, an original and substantial improvement of an existing method for the multiobjective optimization known as GAM (Goal Attainment Method is suggested. In our proposal, the GAM algorithm itself is combined with a procedure that automatically provides a set of parameters -- weights, coordinates of the reference point -- for which the method generates noninferior solutions uniformly spread over an appropriately selected part of the Pareto front. Moreover, the resulting set of obtained solutions is then presented in a suitable graphic form so that the solution representing the most satisfactory tradeoff can be easily chosen by the designer. Our system generates various types of plots that conveniently characterize results of up to four-dimensional problems. Technically, the procedures of the multiobjective optimization were created as a software add-on to the CIA (Circuit Interactive Analyzer program. This way enabled us to utilize many powerful features of this program, including the sensitivity analyses in time and frequency domains. As a result, the system is also able to perform the multiobjective optimization in the time domain and even highly nonlinear circuits can be significantly improved by our program. As a demonstration of this feature, a multiobjective optimization of a C-class power amplifier in the time domain is thoroughly described in the paper. Further, a four-dimensional optimization of a video amplifier is demonstrated with an original graphic representation of the Pareto front, and also some comparison with the weighting method is done. As an example of improving noise properties, a multiobjective optimization of a low-noise amplifier is performed, and the results in the frequency domain are shown
Frequency-domain analysis of intrinsic neuronal properties using high-resistant electrodes
Directory of Open Access Journals (Sweden)
Christian Rössert
2009-08-01
Full Text Available Intrinsic cellular properties of neurons in culture or slices are usually studied by the whole cell clamp method using low-resistant patch pipettes. These electrodes allow detailed analyses with standard electrophysiological methods such as current- or voltage-clamp. However, in these preparations large parts of the network and dendritic structures may be removed, thus preventing an adequate study of synaptic signal processing. Therefore, intact in vivo preparations or isolated in vitro whole brains have been used in which intracellular recordings are usually made with sharp, high-resistant electrodes to optimize the impalement of neurons. The general non-linear resistance properties of these electrodes, however, severely limit accurate quantitative studies of membrane dynamics especially needed for precise modelling. Therefore, we have developed a frequency-domain analysis of membrane properties that uses a Piece-wise Non-linear Electrode Compensation (PNEC method. The technique was tested in second-order vestibular neurons and abducens motoneurons of isolated frog whole brain preparations using sharp potassium chloride- or potassium acetate-filled electrodes. All recordings were performed without online electrode compensation. The properties of each electrode were determined separately after the neuronal recordings and were used in the frequency-domain analysis of the combined measurement of electrode and cell. This allowed detailed analysis of membrane properties in the frequency-domain with high-resistant electrodes and provided quantitative data that can be further used to model channel kinetics. Thus, sharp electrodes can be used for the characterization of intrinsic properties and synaptic inputs of neurons in intact brains.
Moghimirad, Elahe; Mahloojifar, Ali; Mohammadzadeh Asl, Babak
2016-05-01
A new frequency-domain implementation of a synthetic aperture focusing technique is presented in the paper. The concept is based on synthetic aperture radar (SAR) and sonar that is a developed version of the convolution model in the frequency domain. Compared with conventional line-by-line imaging, synthetic aperture imaging has a better resolution and contrast at the cost of more computational load. To overcome this problem, point-by-point reconstruction methods have been replaced by block-processing algorithms in radar and sonar; however, these techniques are relatively unknown in medical imaging. In this paper, we extended one of these methods called wavenumber to medical ultrasound imaging using a simple model of synthetic aperture focus. The model, derived here for monostatic mode, can be generalized to multistatic as well. The method consists of 4 steps: a 2D fast Fourier transform of the data, frequency shift of the data to baseband, interpolation to convert polar coordinates to rectangular ones, and returning the data to the spatial-domain using a 2D inverse Fourier transform. We have also used chirp pulse excitation followed by matched filtering and spotlighting algorithm to compensate the effect of differences in parameters between radar and medical imaging. Computational complexities of the two methods, wavenumber and delay-and-sum (DAS), have been calculated. Field II simulated point data have been used to evaluate the results in terms of resolution and contrast. Evaluations with simulated data show that for typical phantoms, reconstruction by the wavenumber algorithm is almost 20 times faster than classical DAS while retaining the resolution. PMID:25900969
Directory of Open Access Journals (Sweden)
Vahid Raissi Dehkordi
2009-01-01
Full Text Available This paper deals with the robust performance problem of a linear time-invariant control system in the presence of robust controller uncertainty. Assuming that plant uncertainty is modeled as an additive perturbation, a geometrical approach is followed in order to find a necessary and sufficient condition for robust performance in the form of a bound on the magnitude of controller uncertainty. This frequency domain bound is derived by converting the problem into an optimization problem, whose solution is shown to be more time-efficient than a conventional structured singular value calculation. The bound on controller uncertainty can be used in controller order reduction and implementation problems.
Time and frequency domains dc conductivity analysis in thin dielectric films at high temperature
International Nuclear Information System (INIS)
Electrical conductivity of a thin dielectric film has been analysed at high temperature in both time and frequency domains (TD/FD). Two disturbing ionic space-charge phenomena have been highlighted in two different temperature ranges and a correlation of their electrical signature between TD and FD is carried out. These two phenomena were related to the thermal activation of ions coming from two different trap levels (shallow and deep traps). We validate here also the fact that the FD method is a powerful way to estimate the dc conductivity in dielectric solids at high temperature thanks to a better discrimination of ionic contributions and injection phenomena.
Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry
2011-01-01
Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built...... easily to better resolve mode features. We explore the convergence of the eigenmode wavelength $lambda $ and quality factor $Q$ of an open dielectric sphere and of a very-high- $Q$ photonic crystal cavity calculated with different mesh density distributions. On a grid having, for example, 10 nodes per...
Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy
Du, S. Q.; Li, H.; Xie, L.; Chen, L.; Peng, Y.; Zhu, Y. M.; Li, H.; Dong, P.; Wang, J. T.
2012-04-01
By using terahertz time-domain spectroscopy, the absorption spectra of seven anti-diabetic pills have been investigated. For gliquidone, glipizide, gliclazide, and glimepiride, an obvious resonance peak is found at 1.37 THz. Furthermore, to overcome the limit of density functional theory that can analyze the normal mode frequencies of the ground state of organic material, we also present a method that relies on pharmacophore recognition, from which we can obtain the resonance peak at 1.37 THz can be attributed to the vibration of sulfonylurea group. The results indicate that the veracity of density functional theory can be increased by combining pharmacophore recognition.
24 mm depth range discretely swept optical frequency domain imaging in dentistry
Kakuma, Hideo; Choi, DongHak; Furukawa, Hiroyuki; Hiro-Oka, Hideaki; Ohbayashi, Kohji
2009-02-01
A large depth range is needed if optical coherence tomography (OCT) is to be used to observe multiple teeth simultaneously. A discretely swept optical frequency domain imaging system with a 24-mm depth range was made by using a superstructure-grating distributed Bragg reflector (SSG-DBR) laser as the light source and setting the frequencystep interval to be 3.13 GHz (λ ~ 0.026 nm). The swept wavelength range was 40 nm centered at 1580 nm, the resolution was 29 μm, and the A-scan rate was 1.3 kHz. Application of the OCT system to a dental phantom was demonstrated.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Optical frequency domain phase conjugation(FDPC) is based on phase conjuga-tion of spectrum of an input signal.It is equivalent to the phase conjugation and the time reversal of the temporal envelope of an input signal.The use of FDPC to con-trol polarization signal distortion in birefringent optical fiber systems is proposed.Evolution of polarization signals in the system using midway FDPC is analyzed theoretically and simulated numerically.It is shown that the distortion of polariza-tion signals can be controlled effectively by FDPC.The impairments due to disper-sion and nonlinear effects can be suppressed simultaneously.
Institute of Scientific and Technical Information of China (English)
BU Yang; WANG XiangZhao
2008-01-01
Optical frequency domain phase conjugation (FDPC) is based on phase conjugation of spectrum of an input signal. It is equivalent to the phase conjugation and the time reversal of the temporal envelope of an input signal. The use of FDPC to con-trol polarization signal distortion in birefringent optical fiber systems is proposed. Evolution of polarization signals in the system using midway FDPC is analyzed theoretically and simulated numerically. It is shown that the distortion of polariza-tion signals can be controlled effectively by FDPC. The impairments due to disper-sion and nonlinear effects can be suppressed simultaneously.
Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments.
Benuzzi-Mounaix, A; Koenig, M; Boudenne, J M; Hall, T A; Batani, D; Scianitti, F; Masini, A; Di Santo, D
1999-09-01
We show the simultaneous applicability of the frequency domain interferometry and the chirped pulse reflectometry techniques to measure shock parameters. The experiment has been realized with the laser at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) with a 550-ps pulse duration and an intensity on target approximately 5 x 10(13) W/cm(2) to produce a shock in a layered aluminum-fused silica target. A second low energy, partially compressed chirped probe beam was used to irradiate the target rear side and the reflected light has been analyzed with a spectrometer, achieving a temporal resolution of the order of 1 ps. PMID:11970183
Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments
Benuzzi-Mounaix, A.; Koenig, M.; Boudenne, J. M.; Hall, T. A.; Batani, D.; Scianitti, F.; Masini, A.; di Santo, D.
1999-09-01
We show the simultaneous applicability of the frequency domain interferometry and the chirped pulse reflectometry techniques to measure shock parameters. The experiment has been realized with the laser at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) with a 550-ps pulse duration and an intensity on target ~5×1013 W/cm2 to produce a shock in a layered aluminum-fused silica target. A second low energy, partially compressed chirped probe beam was used to irradiate the target rear side and the reflected light has been analyzed with a spectrometer, achieving a temporal resolution of the order of 1 ps.
Transformation optics: a time- and frequency-domain analysis of electron-energy loss spectroscopy
Kraft, Matthias; Pendry, J B
2016-01-01
Electron energy loss spectroscopy (EELS) and Cathodoluminescence (CL) play a pivotal role in many of the cutting edge experiments in plasmonics. EELS and CL experiments are usually supported by numerical simulations, which, whilst accurate, may not provide as much physical insight as analytical calculations do. Fully analytical solutions to EELS and CL systems in plasmonics are rare and difficult to obtain. This paper aims to narrow this gap by introducing a new method based on Transformation optics that allows to calculate the quasi-static frequency and time-domain response of plasmonic particles under electron beam excitation.
Xu, Tianhua; Popov, Sergei; Forzati, Marco; Martensson, Jonas; Mussolin, Marco; Li, Jie; Wang, Ke; Zhang, Yimo; Friberg, Ari T
2016-01-01
The frequency domain equalizers (FDEs) employing two types of overlap-add zero-padding (OLA-ZP) methods are applied to compensate the chromatic dispersion in a 112-Gbit/s non-return-to-zero polarization division multiplexed quadrature phase shift keying (NRZ-PDM-QPSK) coherent optical transmission system. Simulation results demonstrate that the OLA-ZP methods can achieve the same acceptable performance as the overlap-save method. The required minimum overlap (or zero-padding) in the FDE is derived, and the optimum fast Fourier transform length to minimize the computational complexity is also analyzed.
A Novel Ship Wake Detection Method of SAR Images Based on Frequency Domain
Institute of Scientific and Technical Information of China (English)
Liu Hao; Zhu Minhui
2003-01-01
Moving ships produce a set of waves of "V' pattern on the ocean. These waves can often be seen by Synthetic Aperture Radar (SAR). The detection of these wakes can provide important information for surveillance of shipping, such as ship traveling direction and speed. A novel approach to the detection of ship wakes in SAR images based on frequency domain is provided in this letter. Compared with traditional Radon-based approaches, computation is reduced by 20%-40% without losing nearly any of detection performance. The testing results using real data and simulation of synthetic SAR images test the algorithm's feasibility and robustness.
Takahashi, Ryosuke; Okajima, Takaharu
2016-08-01
We investigated how stress relaxation mapping is quantified compared with the force modulation mapping of confluent epithelial cells using atomic force microscopy (AFM). Using a multi-frequency AFM technique, we estimated the power-law rheological behaviors of cells simultaneously in time and frequency domains. When the power-law exponent α was low ( 0.1), α in the time domain was underestimated relative to that in the frequency domain, and the difference increased with α, whereas the cell modulus was overestimated in the time domain. These results indicate that power-law rheological parameters estimated by stress relaxation are sensitive to lag time during initial indentation, which is inevitable in time-domain AFM experiments.
International Nuclear Information System (INIS)
Highlights: → Passive battery-ultracapacitor hybrids are examined. → Frequency domain analysis is employed. → The ultracapacitor branch operates as a low-pass filter for the battery. → The battery supplies the average load demand. → Design requirements are discussed. - Abstract: A Fourier-based analysis of passive battery-ultracapacitor hybrid sources is introduced in the manuscript. The approach is first introduced for a general load, and then is followed by a study for a case of periodic pulsed current load. It is shown that the ultracapacitor branch is perceived by the battery as a low-pass filter, which absorbs the majority of the high frequency harmonic current and letting the battery to supply the average load demand in addition to the small part of dynamic current. Design requirements influence on the ultracapacitor capacitance and internal resistance choice are quantitatively discussed. The theory is enforced by simulation and experimental results, showing an excellent agreement.
Energy Technology Data Exchange (ETDEWEB)
Kuperman, Alon, E-mail: alonku@ariel.ac.il [Hybrid Energy Sources Center, Dept. of Electrical Engineering and Electronics, Ariel University Center, Kiryat Hamada, Ariel 40700 (Israel); Aharon, Ilan; Kara, Avi; Malki, Shalev [Hybrid Energy Sources Center, Dept. of Electrical Engineering and Electronics, Ariel University Center, Kiryat Hamada, Ariel 40700 (Israel)
2011-11-15
Highlights: {yields} Passive battery-ultracapacitor hybrids are examined. {yields} Frequency domain analysis is employed. {yields} The ultracapacitor branch operates as a low-pass filter for the battery. {yields} The battery supplies the average load demand. {yields} Design requirements are discussed. - Abstract: A Fourier-based analysis of passive battery-ultracapacitor hybrid sources is introduced in the manuscript. The approach is first introduced for a general load, and then is followed by a study for a case of periodic pulsed current load. It is shown that the ultracapacitor branch is perceived by the battery as a low-pass filter, which absorbs the majority of the high frequency harmonic current and letting the battery to supply the average load demand in addition to the small part of dynamic current. Design requirements influence on the ultracapacitor capacitance and internal resistance choice are quantitatively discussed. The theory is enforced by simulation and experimental results, showing an excellent agreement.
A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution
Directory of Open Access Journals (Sweden)
Vandewalle Patrick
2006-01-01
Full Text Available Super-resolution algorithms reconstruct a high-resolution image from a set of low-resolution images of a scene. Precise alignment of the input images is an essential part of such algorithms. If the low-resolution images are undersampled and have aliasing artifacts, the performance of standard registration algorithms decreases. We propose a frequency domain technique to precisely register a set of aliased images, based on their low-frequency, aliasing-free part. A high-resolution image is then reconstructed using cubic interpolation. Our algorithm is compared to other algorithms in simulations and practical experiments using real aliased images. Both show very good visual results and prove the attractivity of our approach in the case of aliased input images. A possible application is to digital cameras where a set of rapidly acquired images can be used to recover a higher-resolution final image.
Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy
Morgan, S. P.; Yong, K. Y.
2001-04-01
Changes in phase that occur with changes in amplitude impose severe limitations on the accuracy of frequency domain near-infrared spectrometers. Phase is related to the photon pathlength in tissue and phase errors introduced by the instrument can be interpreted as changes in tissue oxygenation. The instrument described in this article employs a reference radio frequency modulated laser diode to eliminate the effects of amplitude-phase crosstalk and requires no feedback. Light from the reference laser diode does not pass through the medium under investigation but passes directly onto the detector. The reference and medium signals follow a common path through the detector and so the same phase error is imposed on both. Summing the reference and medium phase eliminates the crosstalk and enables the resultant to be attributed only to the photon pathlength within the medium. It is also demonstrated that elimination of amplitude-phase crosstalk is a natural consequence of a phased array configuration.
Energy Technology Data Exchange (ETDEWEB)
RL Campbell; SA Hambric
2004-02-05
Frequency domain substructure synthesis is a modeling technique that enables the prediction of a combined response of individual structures using experimentally measured or numerically predicted frequency response functions (FRFs). The traditional synthesis algorithm [1,2] operates on component impedances and thus generally requires several matrix inversions. An improved algorithm, developed by Jetmundsen et al. [3], requires a single matrix inversion with a completely arbitrary interface definition that can easily incorporate connection impedances. The main limitations of the method are the large data requirements and sensitivity to data truncation. The utility of this technique is demonstrated through a comparison of synthesized and measured admittances of an edge-stiffened plate with attached equipment. The plate mobilities are obtained from a numerical analysis because of the ability to accurately model this structure using a finite element representation. The attachments are characterized experimentally because of their complexity. The sections describe the synthesis technique and show numerical and experimental results for the plate and equipment.
Frequency Domain MMSE one-tap Equalizer for FBMC-OQAM System
Directory of Open Access Journals (Sweden)
Nisha Varghese
2005-07-01
Full Text Available The need for higher data rate in the modern communication world leads to the development of multicarrier modulation. OFDM, the most popular MCM technique, has some disadvantages like inefficiency due to the insertion of cyclic prefix, spectral leakage among the subchannels due to the poor stopband attenuation of prototype filter etc. Due to these drawbacks of OFDM, a Filter Bank based Multi Carrier system with Offset Quadrature Amplitude Modulation has been proposed. The analysis and synthesis filter banks in FBMC- OQAM system is designed using exponential modulation of a single prototype filter which is designed using frequency sampling method of filter design. In the presence of fading channels, Frequency Domain MMSE one-tap equalizer is designed. Simulation results for Vehicular A and Pedestrian B channels show that the proposed equalizer gives better results for BER performance for the system.
Merchant, Gabrielle R.; Siegel, Jonathan H.; Neely, Stephen T.; Rosowski, John J.; Nakajima, Hideko H.
2015-12-01
Wideband immittance and reflectance have not been well described at frequencies above 6-8 kHz, and past analyses of these measurements have focused on the responses to stimulus frequencies below 3-4 kHz, while ignoring high-frequency or time-domain information. This work uses a novel approach to measure reflectance that utilizes high-frequency signals and analyzes reflectance in both the frequency and the time domains. Experiments were performed with fresh normal human temporal bones before and after simulating various middle-ear pathologies. In addition to experimental data, novel model analyses were used to obtain fitted parameter values of middle-ear elements that vary systematically due to simulations and thus may have diagnostic implications. Our results show that high-frequency measurements improve temporal resolution of reflectance measurements, and this data combined with novel modeling techniques provides separation of three major conductive pathologies.
Tromberg, Bruce J.; Berger, Andrew J.; Cerussi, Albert E.; Bevilacqua, Frederic; Jakubowski, Dorota
2008-09-23
A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.
Frequency domain ultrasound waveform tomography: breast imaging using a ring transducer
International Nuclear Information System (INIS)
Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed of 1500 m s−1, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). (paper)
Frequency-Domain Assessment of Integration Schemes for Earthquake Engineering Problems
Directory of Open Access Journals (Sweden)
Juana Arias-Trujillo
2015-01-01
Full Text Available Although numerical integration is a technique commonly employed in many time-dependent problems, usually its accuracy relied on a time interval small enough. However, taking into account that time integration formulae can be considered to be recursive digital filters, in this research a criterion based on transfer functions has been employed to characterize a wide range of integration algorithms from a frequency approach, both in amplitude and in phase. By adopting Nyquist’s criterion to avoid the aliasing phenomena, a total of seven integration schemes have been reviewed in terms of accuracy and distortion effects on the frequency content of the signal. Some of these schemes are very well-known polynomial approximations with different degrees of interpolation, but others have been especially defined for solving earthquake engineering problems or have been extracted from the digital signal processing methodology. Finally, five examples have been developed to validate this frequency approach and to investigate its influence on practical dynamic problems. This research, focused on earthquake and structural engineering, reveals that numerical integration formulae are clearly frequency-dependent, a conclusion that obviously has a relevant interest in all dynamic engineering problems, even when they are formulated and solved in the time-domain.
Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen
2016-03-01
Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.
DeLong, K.L.; Quinn, T.M.; Mitchum, G.T.; Poore, R.Z.
2009-01-01
Do the chronological methods used in the construction of paleoclimate records influence the results of the frequency analysis applied to them? We explore this phenomenon using the Dongge Cave speleothem record (U-series chronology with variable time steps, ??t) and the El Malpais tree-ring index (cross-dating of ring-width series). Interpolation of the Dongge Cave record to a constant ??t resulted in the suppression of periodicities (<20 years) altering the red noise model used for significance testing. Frequency analysis of temporal subsets of the El Malpais tree-ring index revealed that concentrations of variance varied with the number of ring-width series. Frequency analyses of these records identified significant periodicities, some common to both (???25 and ???69 years). Cross-wavelet analysis, which examines periodicities in the time domain, revealed that coherency between these records occurs intermittently. We found the chronology methods can influence the ability of frequency analysis to detect periodicities and tests for coherency. Copyright 2009 by the American Geophysical Union.
DEFF Research Database (Denmark)
Steuner, Annika; Siemon, Bernhard; Auken, Esben
2010-01-01
Two different airborne electromagnetic methods were applied in the same area: the frequency-domain helicopter-borne electromagnetic (HEM)system operated by the Federal Institute for Geosciences and Natural Resources, Germany, and the time-domain SkyTEM system of theHydroGeophysics Group at the Un...
A Unified Frequency Domain Model to Study the Effect of Demyelination on Axonal Conduction.
Chaubey, Saurabh; Goodwin, Shikha J
2016-01-01
Multiple sclerosis is a disease caused by demyelination of nerve fibers. In order to determine the loss of signal with the percentage of demyelination, we need to develop models that can simulate this effect. Existing time-based models does not provide a method to determine the influences of demyelination based on simulation results. Our goal is to develop a system identification approach to generate a transfer function in the frequency domain. The idea is to create a unified modeling approach for neural action potential propagation along the length of an axon containing number of Nodes of Ranvier (N). A system identification approach has been used to identify a transfer function of the classical Hodgkin-Huxley equations for membrane voltage potential. Using this approach, we model cable properties and signal propagation along the length of the axon with N node myelination. MATLAB/Simulink platform is used to analyze an N node-myelinated neuronal axon. The ability to transfer function in the frequency domain will help reduce effort and will give a much more realistic feel when compared to the classical time-based approach. Once a transfer function is identified, the conduction as a cascade of each linear time invariant system-based transfer function can be modeled. Using this approach, future studies can model the loss of myelin in various parts of nervous system. PMID:27103847
2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data
Li, Wen-Ben; Zeng, Zhao-Fa; Li, Jing; Chen, Xiong; Wang, Kun; Xia, Zhao
2016-03-01
Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity—depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.
DOMAIN KEYWORD EXTRACTION TECHNIQUE: A NEW WEIGHTING METHOD BASED ON FREQUENCY ANALYSIS
Directory of Open Access Journals (Sweden)
Rakhi Chakraborty
2013-02-01
Full Text Available On-line text documents rapidly increase in size with the growth of World Wide Web. To manage such a huge amount of texts,several text miningapplications came into existence. Those applications such as search engine, text categorization, summarization, and topic detection are based on feature extraction.It is extremely time consuming and difficult task to extract keyword or feature manually.So an automated process that extracts keywords or features needs to be established.This paper proposes a new domain keyword extraction technique that includes a new weighting method on the base of the conventional TF•IDF. Term frequency-Inverse document frequency is widely used to express the documentsfeature weight, which can’t reflect the division of terms in the document, and then can’t reflect the significance degree and the difference between categories. This paper proposes a new weighting method to which a new weight is added to express the differences between domains on the base of original TF•IDF.The extracted feature can represent the content of the text better and has a better distinguished ability.
Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators
Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael
2011-10-01
Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.
High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing.
Maclachlan, Robert A; Riviere, Cameron N
2009-06-01
Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling. PMID:20428484
International Nuclear Information System (INIS)
A practical strategy to implement frequency-domain full waveform inversion (FWI) with a scattering-integral approach is presented in this paper. A typical implementation of FWI is the adjoint-state approach, where the data residual at receiver locations are back-propagated into the media to form the gradient. With the scattering-integral (SI) approach, the gradient is formed with a data-weighted Fréchet kernel, which involves calculation of Green's functions for all source and receiver locations. The computational cost and memory requirement of this approach are comparable to the adjoint-state approach using a shot-profile implementation in the frequency-domain. SI implementation can be more efficient if the number of sources is larger than the number of receivers. Sensitivity analysis can also be easily applied without additional cost because the Fréchet kernel has been calculated and stored during the gradient calculation process. We demonstrate the effectiveness of this approach with synthetic data. (paper)
Improved free-surface expression for frequency-domain elastic optimal mixed-grid modeling
Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue
2016-07-01
An accurate and efficient forward modeling is the foundation of full-waveform inversion (FWI). In elastic wave modeling, one of the key problems is how to deal with the free-surface boundary condition appropriately. For the representation of the free-surface boundary condition, conventional displacement-based approaches and staggered-grid approaches are often used in time-domain. In frequency-domain, considering the saving of storage and CPU time, we integrate the idea of physical parameter-modified staggered-grid approach in time-domain with an elastic optimal mixed-grid modeling scheme to design an improved parameter-modified free-surface expression. Accuracy analysis shows that an elastic optimal mixed-grid modeling scheme using the parameter-modified free-surface expression can provide more accurate solutions with only 4 grid points per smallest shear wavelength than conventional displacement-based approaches and is stable for most Poisson ratios. Besides, it also yields smaller condition number of the resulting impedance matrix than conventional displacement-based approaches in laterally varying complex media. These advantages reveal great potential of this free-surface expression in big-data practical application.
Ground penetrating radar data analyzed in frequency and time domain for engineering issues
Capozzoli, Luigi; Giampaolo, Valeria; Votta, Mario; Rizzo, Enzo
2014-05-01
Non-destructive testing (NDT) allows to analyze reinforced concrete and masonry structures, in order to identify gaps, defects, delaminations, and fracture. In the field of engineering, non-invasive diagnostic is used to test the processes of construction and maintenance of buildings and artifacts of the individual components, to reduce analysis time and costs of intervention (Proto et al., 2010). Ground penetrating radar (GPR) allows to evaluate with a good effectiveness the state of conservation of engineering construction (Mellet 1995)). But there are some uncertainties in GPR data due to the complexity of artificial objects. In this work we try to evaluate the capability of GPR for the characterization of building structures in the laboratory and in-situ. In particular the focus of this research consists in integrate spectral analysis to time domain data to enhance information obtained in a classical GPR processing approach. For this reason we have applied spectral analysis to localize and characterize the presence of extraneous bodies located in a test site rebuilt in laboratory to simulate a part of a typical concrete road. The test site is a segment of a road superimposed on two different layers of sand and gravel of varying thickness inside which were introduced steel rebar, PVC and aluminium pipes. This structure has also been cracked in a predetermined area and hidden internal fractures were investigated. The GPR has allowed to characterize the panel in a non-invasive mode and radargrams were acquired using two-dimensional and three-dimensional models from data obtained with the use of 400, 900, 1500 and 2000 Mhz antennas. We have also studied with 2 GHz antenna a beam of 'to years precast bridge characterized by a high state of decay. The last case study consisted in the characterization of a radiant floor analyzed with an integrated use of GPR and infrared thermography. In the frequency domain analysis has been possible to determine variations in the
Marwani, Hadi M; Lowry, Mark; Xing, Baoshan; Warner, Isiah M; Cook, Robert L
2009-01-01
In this study, the association behavior of pyrene with different dissolved humic materials (DHM) was investigated utilizing the recently developed segmented frequency-domain fluorescence lifetime method. The humic materials involved in this study consisted of three commercially available International Humic Substances Society standards (Suwannee River fulvic acid reference, SRFAR, Leonardite humic acid standard, LHAS, and Florida peat humic acid standard, FPHAS), the peat derived Amherst humic acid (AHA), and a chemically bleached Amherst humic acid (BAHA). It was found that the three commercial humic materials displayed three lifetime components, while both Amherst samples displayed only two lifetime components. In addition, it was found that the chemical bleaching procedure preferentially removed red wavelength emitting fluorophores from AHA. In regards to pyrene association with the DHM, different behavior was found for all commercially available humics, while AHA and BAHA, which displayed strikingly similar behavior in terms of fluorescence lifetimes. It was also found that there was an enhancement of pyrene's measured lifetime (combined with a decrease in pyrene emission) in the presence of FPHAS. The implications of this long lifetime are discussed in terms of (1) quenching mechanism and (2) use of the fluorescence quenching method used to determine the binding of compounds to DHM. PMID:18546063
Template-based CTA X-ray angio rigid registration of coronary arteries in frequency domain
Aksoy, Timur; Demirci, Stefanie; Degertekin, Muzaffer; Navab, Nassir; Unal, Gozde
2013-03-01
This study performs 3D to 2D rigid registration of segmented pre-operative CTA coronary arteries with a single segmented intra-operative X-ray Angio frame in both frequency and spatial domains for real-time Angiography interventions by C-arm fluoroscopy. Most of the work on rigid registration in literature required a close initial- ization of poses and/or positions because of the abundance of local minima and high complexity that searching algorithms face. This study avoids such setbacks by transforming the projections into translation-invariant Fourier domain for estimating the 3D pose. First, template DRRs as candidate poses of 3D vessels of segmented CTA are produced by rotating the camera (image intensifier) around the DICOM angle values with a wide range as in C-arm setup. We have compared the 3D poses of template DRRs with the real X-ray after equalizing the scales (due to disparities in focal length distances) in 3 domains, namely Fourier magnitude, Fourier phase and Fourier polar. The best pose candidate was chosen by one of the highest similarity measures returned by the methods in these domains. It has been noted in literature that these methods are robust against noise and occlusion which was also validated by our results. Translation of the volume was then recovered by distance-map based BFGS optimization well suited to convex structure of our objective function without local minima due to distance maps. Final results were evaluated in 2D projection space rather than with actual values in 3D due to lack of ground truth, ill-posedness of the problem which we intend to address in future.
Frequency domain design of gain scheduling control for large wind systems in full-load region
International Nuclear Information System (INIS)
Highlights: • A large wind energy system, operating under full-load regime, is considered. • According to its particularities in frequency domain, control law design is provided. • These particularities are influenced by the interactions of wind–tower–blade ensemble. • Control low, within gain scheduling strategy, is achieved imposing stability reserve. • Supplementary a criterion, aimed at reducing mechanical loads, is imposed. - Abstract: The paper presents the issue of power control law synthesis, in the case of a large wind system that operates under full-load regime, based on dynamic properties details in frequency domain. Solving this problem involves two phases: the establishment of a linearized model as faithfully as possible in various operating points of the full-load region, and synthesis of the power controller, considered with classic structure, taking into account frequency particularities of the obtained linearized model. Obtained linear model of the controlled process is of order 16 and encloses subsystems for tower fore-aft oscillations damping, and for drive-train torsion oscillations damping. The designed controller contains a PI component and a lag compensator for dynamic correction at high frequencies. It is known that the main features of wind system dynamics generated by the interaction of wind–tower–blade ensemble cause a gap in the gain characteristic of the model and complex conjugate zeros, which can move between right and left half-planes, depending on the average wind speed value. Consequently, for control law synthesis an interactive frequency solution is adopted. This is “transparent” in relation to particularities induced by wind–tower–blade interaction. This solution allows evaluation of the extent to which control law is affected by the subsystem for tower oscillations damping. Given the strong dependence between the model and the mean wind speed value, a gain scheduling control law is designed. At
Siemon, Bernhard; Steuer, Annika; Ullmann, Angelika; Vasterling, Margarete; Voß, Wolfgang
Airborne geophysical methods have been used successfully in groundwater exploration over the last decades. Particularly airborne electromagnetics is appropriate for large-scale and efficient groundwater surveying. Due to the dependency of the electrical conductivity on both the clay content of the host material and the mineralisation of the water, airborne electromagnetics is suitable for providing information on groundwater resources, water quality, aquifer conditions and protection levels. Frequency-domain helicopter-borne electromagnetic systems are used to investigate near-surface groundwater occurrences in detail even in rough terrain and populated areas. In order to reveal the subsurface conductivity distribution, the quantities measured, the secondary magnetic fields, are generally inverted into resistivity-depth models. Due to the skin-effect the penetration depths of the electromagnetic fields depend on the system characteristics used: high-frequency data describe the shallower parts of the conducting subsurface and the low-frequency data the deeper parts. Typical maximum investigation depths range from some ten metres (highly conductive saltwater saturated sediments) to several hundred metres (resistive hard rocks). In urban areas there are a number of man-made sources affecting the electromagnetic measurements. These effects on the secondary field values are discussed on the basis of synthetic data as well as uncorrected and corrected field data. The case histories of different hydrogeological setups in Indonesia, The Netherlands and Germany demonstrate that airborne electromagnetics can be applied to groundwater exploration purposes even in urban areas.
An advanced frequency-domain code for boiling water reactor (BWR) stability analysis and design
International Nuclear Information System (INIS)
The two-phase flow instability is of interest for the design and operation of many industrial systems such as boiling water reactors (BWRs), chemical reactors, and steam generators. In case of BWRs, the flow instabilities are coupled to the power instabilities via neutronic-thermal hydraulic feedbacks. Since these instabilities produce also local pressure oscillations, the coolant flashing plays a very important role at low pressure. Many frequency-domain codes have been used for two-phase flow stability analysis of thermal hydraulic industrial systems with particular emphasis to BWRs. Some were ignoring the effect of the local pressure, or the effect of 3D power oscillations, and many were not able to deal with the neutronics-thermal hydraulics problems considering the entire core and all its fuel assemblies. The new frequency domain tool uses the best available nuclear, thermal hydraulic, algebraic and control theory methods for simulating BWRs and analyzing their stability in either off-line or on-line fashion. The novel code takes all necessary information from plant files via an interface, solves and integrates, for all reactor fuel assemblies divided into a number of segments, the thermal-hydraulic non-homogenous non-equilibrium coupled linear differential equations, and solves the 3D, two-energy-group diffusion equations for the entire core (with spatial expansion of the neutron fluxes in Legendre polynomials).It is important to note that the neutronics equations written in terms of flux harmonics for a discretized system (nodal-modal equations) generate a set of large sparse matrices. The eigenvalue problem associated to the discretized core statics equations is solved by the implementation of the implicit restarted Arnoldi method (IRAM) with implicit shifted QR mechanism. The results of the steady state are then used for the calculation of the local transfer functions and system transfer matrices. The later are large-dense and complex matrices, (their size
Real-time frequency domain temperature and oxygen sensor with a single optical fiber.
Liao, S C; Xu, Z; Izatt, J A; Alcala, J R
1997-11-01
The combined excited-state phosphorescence life-times of an alexandrite crystal and platinum tetraphenylporphyrin Pt(TPP) in a single-fiber sensor are used to monitor temperature and oxygen concentration in the physiological range from 15-45 degrees C and 0-50% O2 with precision of 0.24 degree C and 0.15% O2 and accuracy of 0.28 degree C and 0.2% O2. A 500-micron cubic alexandrite crystal bound to the distal end of a 750-micron-diameter optical fiber core and the Pt(TPP) coated circumferentially with a length of 1 cm from the end of the same fiber are excited with pulsed super-bright blue LED light. This apparatus uses a 125-kHz sampler for data acquisition and frequency domain methods for signal processing. The instrument amplifies both the dc and ac components of the photomultiplier output and band limits the signal to 20 kHz. The fundamental frequency of the excitation is set to 488.3 Hz and the highest harmonic used is the 35th. This bandlimited signal is sampled and averaged over a few hundred cycles in the time domain. The frequency domain representation of the data is obtained by employing fast Fourier transform algorithms. The phase delay and the modulation ratio of each sampled harmonic are then computed. At least four log-spaced harmonic phases or modulations are averaged before decoding the two lifetimes of temperature and oxygen phosphorescent sensors. A component of zero lifetime is introduced to account for the excitation backscatter leakage through optical interference filters seen by the photodetector. Linear and second-order empirical polynomials are employed to compute the temperatures and oxygen concentrations from the inverse lifetimes. In the situation of constant oxygen concentration, the lifetime of Pt(TPP) changes with temperature but can be compensated using the measured temperature lifetime. The system drift is 0.24 degree C for the temperature measurement and 0.59% for the oxygen concentration measurement over 30 h of continuous operation
Directory of Open Access Journals (Sweden)
Jong-Seob Baek
2008-01-01
Full Text Available This paper presents a new block iterative/adaptive frequency-domain channel estimation scheme, in which a channel frequency response (CFR is estimated iteratively by the proposed weighted element-wise block adaptive frequency-domain channel estimation (WEB-CE scheme using the soft information obtained by a soft-input soft-output (SISO decoder. In the WEB-CE, an equalizer coefficient is calculated by minimizing a weighted conditional squared-norm of the a posteriori error vector with respect to its correction term. Simulation results verify the superiority of the WEB-CE in a time-varying typical urban (TU channel.
Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems
Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.
2016-03-01
Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use
Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems
Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.
2016-07-01
Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use
Jing, Xingjian
2015-01-01
This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis a...
Cai, Liufei; Garanin, D.A.; Chudnovsky, E. M.
2012-01-01
We report numerical and analytical studies of the reversal of the magnetic moment of a single-domain magnetic particle by a circularly polarized ac field of time-dependent frequency. For the time-linear frequency sweep, the phase diagrams are computed that illustrate the dependence of the reversal on the frequency sweep rate v, the amplitude of the ac field h, the magnetic anisotropy field d, and the damping parameter alpha. It is shown that the most efficient magnetization reversal requires ...
Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Shi, Yan
2016-06-01
In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.
Frequency and Time Domain Packet Scheduling Based on Channel Prediction with Imperfect CQI in LTE
Directory of Open Access Journals (Sweden)
Yongxin Wang
2013-08-01
Full Text Available Channel-dependent scheduling of transmission of data packets in a wireless system is based onmeasurement and feedback of the channel quality. To alleviate the performance degradation due tosimultaneous multiple imperfect channel quality information (CQI, a simple and efficient packetscheduling (PS algorithm is developed in downlink LTE system for real time traffic. A frequency domainchannel predictor based on Kalman filter is first developed to restore the true CQI from erroneous channelquality feedback. Then, a time domain grouping technique employing the joint of Proportional Fair (PFand Modified Largest Weighted Delay First (M-LWDF algorithms is used. It was proved this proposalachieves better performance in terms of system throughput and packet loss ratio by simulation results.
Design of nuclear reactor power regulator based on frequency-domain method
International Nuclear Information System (INIS)
The reactor power control system is the core of the reactor control system in the nuclear power plant. Based on an experimental reactor as the research object, the simulation model of the power regulating system was built, and the power regulator in the nuclear power plant by using the frequency domain method was designed. Compared with the traditional PID control structure, this method has the obvious advantages, such as the clear and simple design steps, the wider industrial control requirements, etc. The simulation results show that this method has the better tracking control performance, strong robustness, and can eliminate uncertain interference. It is also practically significant for the reactor participating in the peak shaving of the power grid. (authors)
Frequency-domain multiplexing development for high-count-rate microcalorimeters
International Nuclear Information System (INIS)
Future X-ray telescopes like XEUS will require a microcalorimeter array capable of handling a high photon-count-rate (250cps per pixel, τeff=100μs). This requirement, combined with an energy resolution of 1-2eV and an energy range up to 3keV, leads to very demanding requirements for the readout bandwidth and dynamic range. We discuss the development of a frequency-domain multiplexing (FDM) compatible TES bias circuit and bias and readout electronics, and focus on the effects of nonlinearity of the system. Furthermore, we compare between the experimentally observed IV characteristics of a TES under AC and DC bias
Copot, Cosmin; Zhong, Yu; Ionescu, Clara; Keyser, Robin
2013-06-01
In this paper, two methods to tune a fractional-order PI λ D μ controller for a mechatronic system are presented. The first method is based on a genetic algorithm to obtain the parameter values for the fractionalorder PI λ D μ controller by global optimization. The second method used to design the fractional-order PI λ D μ controller relies on an auto-tuning approach by meeting some specifications in the frequency domain. The real-time experiments are conducted using a Steward platform which consists of a table tilted by six servo-motors with a ball on the top of the table. The considered system is a 6 degrees of freedom (d.o.f.) motion platform. The feedback on the position of the ball is obtained from images acquired by a visual sensor mounted above the platform. The fractional-order controllers were implemented and the performances of the steward platform are analyzed.
Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry
Jiang, Shoulin; Ma, Lin; Fan, Xinyu; Wang, Bin; He, Zuyuan
2016-05-01
We propose and experimentally demonstrate real-time locating and speed measurement of fibre fuse by analysing the Doppler shift of reflected light using optical frequency-domain reflectometry (OFDR). Our method can detect the start of a fibre fuse within 200 ms which is equivalent to a propagation distance of about 10 cm in standard single-mode fibre. We successfully measured instantaneous speed of propagating fibre fuses and observed their subtle fluctuation owing to the laser power instability. The resolution achieved for speed measurement in our demonstration is 1 × 10‑3 m/s. We studied the fibre fuse propagation speed dependence on the launched power in different fibres. Our method is promising for both real time fibre fuse monitoring and future studies on its propagation and termination.
Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry.
Jiang, Shoulin; Ma, Lin; Fan, Xinyu; Wang, Bin; He, Zuyuan
2016-01-01
We propose and experimentally demonstrate real-time locating and speed measurement of fibre fuse by analysing the Doppler shift of reflected light using optical frequency-domain reflectometry (OFDR). Our method can detect the start of a fibre fuse within 200 ms which is equivalent to a propagation distance of about 10 cm in standard single-mode fibre. We successfully measured instantaneous speed of propagating fibre fuses and observed their subtle fluctuation owing to the laser power instability. The resolution achieved for speed measurement in our demonstration is 1 × 10(-3) m/s. We studied the fibre fuse propagation speed dependence on the launched power in different fibres. Our method is promising for both real time fibre fuse monitoring and future studies on its propagation and termination. PMID:27146550
Frequency domain analysis of lightning protection using four lightning protection rods
Directory of Open Access Journals (Sweden)
Javor Vesna
2008-01-01
Full Text Available In this paper the lightning discharge channel is modeled as a vertical monopole antenna excited by a pulse generator at its base. The lightning electromagnetic field of a nearby lightning discharge in the case of lightning protection using four vertical lightning protection rods was determined in the frequency domain. Unknown current distributions were determined by numerical solving of a system of integral equations of two potentials using the Point Matching Method and polynomial approximation of the current distributions. The influence of the real ground, treated as homogeneous loss half-space of known electrical parameters, expressed through a Sommerfeld integral kernel, was modeled using a new Two-image approximation which gives good results in both near and far fields.
Experimental research on anti-vibration interferometry based on time-frequency-domain analysis
Hu, Yao; Hao, Qun; Zhang, Fanghua; Tian, Yuhan
2013-10-01
Phase-shifting interferometry is a non-contact precision precise measuring method for optical surface, but it is highly sensitive to external vibrations. A time-and-frequency-domain (TFD) anti-noise phase-shifting interferometry is proposed to eliminate the effect of vibrations and improve the precision of measurement. According to simulations and preliminary experiments, active phase-shifting speed as well as interferogram capture speed should be increased to improve the anti-vibration capability of the TFD method. In this paper, a fast phase-shifting approach based on PZT actuator and interferogram detection with high-speed camera is proposed. Preliminary experimental results are given to demonstrate the approach.
Iterative Receiver in Time-Frequency Domain for Shallow Water Acoustic Channel
Zhao, Liang; Ge, Jianhua
2012-03-01
Inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel, degrades the performance of underwater acoustic (UWA) communication systems. In this paper, we combine soft minimum mean squared error (MMSE) equalization and the serially concatenated trellis coded modulation (SCTCM) decoding to develop an iterative receiver in time-frequency domain (TFD) for underwater acoustic point to point communications. Based on sound speed profile (SSP) measured in the lake and finite-element ray (FER) tracing method (Bellhop), the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. The results suggest that the proposed iterative receiver can reduce the calculation complexity of the equalizer and obtain better performance using less receiving elements.
Granet, Gérard
2013-01-01
This paper focuses on scatterometry problems arising in lithography production of periodic gratings. Namely, the paper introduces a theoretical and numerical-modeling-oriented approach to scatterometry problems and discusses its capabilities. The approach allows for reliable detection of deviations in gratings\\' critical dimensions (CDs) during the manufacturing process. The core of the approach is the one-to-one correspondence between the electromagnetic (EM) characteristics and the geometric/material properties of gratings. The approach is based on highly accurate solutions of initial boundary-value problems describing EM waves\\' interaction on periodic gratings. The advantage of the approach is the ability to perform simultaneously and interactively both in frequency and time domains under conditions of possible resonant scattering of EM waves by infinite or finite gratings. This allows a detection of CDs for a wide range of gratings, and, thus is beneficial for the applied scatterometry. (C) 2013 Optical Society of America
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin;
2013-01-01
further simulations we demonstrate few-cycle compressed solitons in extremely short crystals, where spectral phenomena, such as blue/red shifting, nonstationary radiation in accordance with the nonlocal phase-matching condition, and dispersive-wave generation are observed and marked, which helps improve......We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due to...
Amplitude-phase cross-talk cancellation in frequency domain instrumentation
Morgan, Stephen P.; Yong, Kai Y.
2001-06-01
Changes in phase that occurs with changes in amplitude impose severe limitations on the accuracy of frequency domain near infrared spectrometers. Phase is related to the photon pathlength in tissue and phase errors introduced by the instrument can be interpreted as changes in tissue oxygenation. The instrument described employs a reference RF modulated laser diode to eliminate the effects of amplitude- phase crosstalk and requires no feedback. Light from the reference and medium channels follow a common path through the detector and so the same phase error is imposed on both. Summing the reference and medium phase eliminates the crosstalk and enables the resultant to be attributed only to photon pathlength within the medium. It is also demonstrated that elimination of amplitude-phase crosstalk is a natural consequence of a phased array configuration.
Energy Technology Data Exchange (ETDEWEB)
Kedem, Yaron [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Nordic Institute for Theoretical Physics (NORDITA), Roslagstullsbacken 23, S-106 91 Stockholm (Sweden)
2014-06-13
Weak measurements with imaginary weak values are reexamined in light of recent experimental results. The shift of the meter, due to the imaginary part of the weak value, is derived via the probability of post-selection, which allows considering the meter as a distribution of a classical variable. The derivation results in a simple relation between the change in the distribution and its variance. By applying this relation to several experimental results, in which the meter involved the time and frequency domains, it is shown to be especially suitable for scenarios of that kind. The practical and conceptual implications of a measurement method, which is based on this relation, are discussed. - Highlights: • We present a method to obtain imaginary weak values using classical meter. • A simple relation between the shift of the meter and its variance is derived. • Recent experimental results are analyzed using the new formalism. • The scheme is discussed as a new model for quantum measurement.
Parallel full-waveform inversion in the frequency domain by the Gauss-Newton method
Zhang, Wensheng; Zhuang, Yuan
2016-06-01
In this paper, we investigate the full-waveform inversion in the frequency domain. We first test the inversion ability of three numerical optimization methods, i.e., the steepest-descent method, the Newton-CG method and the Gauss- Newton method, for a simple model. The results show that the Gauss-Newton method performs well and efficiently. Then numerical computations for a benchmark model named Marmousi model by the Gauss-Newton method are implemented. Parallel algorithm based on message passing interface (MPI) is applied as the inversion is a typical large-scale computational problem. Numerical computations show that the Gauss-Newton method has good ability to reconstruct the complex model.
International Nuclear Information System (INIS)
A method for determining delayed neutrons source in the frequency domain based on measuring power oscillations in a non-critical reactor is presented. This method is unique in the sense that the delayed neutrons source is derived from the dynamic behavior of the reactor, which serves as the measurement system. An algorithm for analyzing power oscillation measurements was formulated, which avoids the need for a multi-parameter non-linear fit process used by other methods. Using this algorithm results of two sets of measurements performed in IRR-I and IRR-II (Israeli Research Reactors I and II) are presented. The agreement between measured values from both reactors and calculated values based on Keepin (and JENDL-3.3) group parameters is very good. (authors)
International Nuclear Information System (INIS)
By applying the frequency conversion technique to 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal, a monochromatic terahertz (THz) measurement system, including both generation and detection, has been developed over quite a broad frequency band, from 1.85 to 30 THz. In the case of frequency upconversion detection of THz waves, for the first time, we used gratings instead of filters to tackle the tough phase-matching conditions for broadband operations. By synchronizing the rotation of two gratings to extract the frequency upconverted signal, the infrared (IR) pumping beam can be tuned freely over 300 nm with decent diffraction efficiency and sufficient isolation between the weak frequency upconversion signal and the strong IR pumping beam to be realized. Such a large tuning range has overcome the limit of commercial filters with a fixed passband, while such a high optical density value has been beyond the limit of commercial tunable filters. Consequently, the proposed frequency domain system gives the largest THz frequency band. Unlike THz time-domain spectroscopy systems in which a fs laser is applied and broadband THz pulses are applied, our system works based on a ns laser and it can function at a single THz frequency with random frequency access ability from pulse to pulse. (letter)
Frequency-Domain Intravascular Optical Coherence Tomography of the Femoropopliteal Artery
International Nuclear Information System (INIS)
Purpose: Optical coherence tomography (OCT) is a catheter-based imaging method that employs near-infrared light to produce high-resolution intravascular images. The authors report the safety and feasibility and illustrate common imaging findings of frequency-domain OCT (FD-OCT) imaging of the femoropopliteal artery in a series of 20 patients who underwent infrainguinal angioplasty. Methods: After crossing the lesion of interest, OCT was performed with a dextrose saline flush technique with simultaneous obstructive manual groin compression. An automatic pullback FD-OCT device was employed (each scan acquiring 54 mm of vessel lumen in 271 consecutive frames). OCT images were acquired before and after balloon dilatation and following provisional stenting if necessary and were evaluated for baseline characteristics of plaque or in-stent restenosis (ISR), vessel wall trauma after angioplasty, presence of thrombus, stent apposition, and tissue prolapse. Imaging follow-up was not included in this study’s protocol. Results: Twenty-seven obstructive lesions (18 cases of de novo atherosclerosis and 9 of ISR) of the femoropopliteal artery were imaged and 148 acquisitions were analyzed in total. High-resolution intravascular OCT imaging with effective blood clearance was achieved in 93.9%. Failure was mainly attributed to preocclusive proximal lesions and/or collateral flow. Mixed features of lipid pool areas, calcium deposits, necrotic core, and fibrosis were identified in all of the imaged atherosclerotic lesions, whereas ISR was purely fibrotic. After balloon angioplasty, OCT identified extensive intimal tears in all cases and one case of severe dissection that biplane subtraction angiography failed to identify. Conclusions: Infrainguinal frequency-domain optical coherence tomography is safe and feasible and may provide intravascular high-resolution imaging of the femoropopliteal artery during infrainguinal angioplasty procedures.
An Image Authentication Technique in Frequency Domain using Genetic Algorithm (IAFDGA
Directory of Open Access Journals (Sweden)
J. K. Mandal
2012-10-01
Full Text Available In this paper Genetic Algorithm based image authentication technique in frequency domain using Ztransformation (IAFDGA has been proposed. A 2×2 mask is taken from the source image in row majororder. Z transformation is applied to transform it into frequency domain. Six bits are embedded in each submask into the second and third transformed coefficients. The sub mask is then transformed into spatialdomain using inverse Z transform. Embedded image mask of size 32 bits are taken as initial population.New Generation followed by Crossover and Mutation are applied on it. To obtain New Generation ,minimum coefficient of the mask is chosen, if the minimum coefficient is negative then subtract theminimum coefficient from each coefficient of the mask so that extraction of hidden bits are ensured. For theCrossover operation consecutive bit-wise XOR is performed on the rightmost three bits of each byte inthree steps. It will form a triangular form and the first bit of each step is taken as the output. Right most twoLSBs of two consecutive pixels are swapped with each other as a part of Mutation operation. Geneticalgorithm is applied to enhance a layer of security level. At the time of embedding dimension of theauthenticating image followed by the content are embedded. Reverse process is followed at the time ofextraction. High PSNR obtained for various images compared to existing Chin-Chen Chang et al.[2]conform the quality of invisible watermark IAFDGA. Large capacity as compared to existing algorithm [1]ensured the high payload of the scheme.
Finite element solution of a Schelkunoff vector potential for frequency domain, EM field simulation
Kordy, M. A.; Wannamaker, P. E.; Cherkaev, E.
2011-12-01
A novel method for the 3-D diffusive electromagnetic (EM) forward problem is developed and tested. A Lorentz-gauge, Schelkunoff complex vector potential is used to represent the EM field in the frequency domain and the nodal finite element method is used for numerical simulation. The potential allows for three degrees of freedom per node, instead of four if Coulomb-gauge vector and scalar potentials are used. Unlike the finite-difference method, which minimizes error at discrete points, the finite element method minimizes error over the entire domain cell volumes and may easily adapt to complex topography. Existence and uniqueness of this continuous Schelkunoff potential is proven, boundary conditions are found and a governing equation satisfied by the potential in weak form is obtained. This approach for using a Schelkunoff potential in the finite element method differs from other trials found in the literature. If the standard weak form of the Helmholtz equation is used, the obtained solution is continuous and has continuous normal derivative across boundaries of regions with different physical properties; however, continuous Schelkunoff potential components do not have continuous normal derivative, divergence of the potential divided by (complex) conductivity and magnetic permeability is continuous instead. The weak form of governing equation used here imposes proper boundary conditions on the solution. Moreover, as the solution is continuous, nodal shape functions are used instead of edge elements. Magnetotelluric (MT) simulation results using the new method are compared with those from other MT forward codes
Directory of Open Access Journals (Sweden)
Rie Saotome
2015-01-01
Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.
The simulation of far-field wavelets using frequency-domain air-gun array near-field wavelets
Institute of Scientific and Technical Information of China (English)
Song Jian-Guo; Deng Yong; Tong Xin-Xin
2013-01-01
Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine-seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms;then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.
Analysis of cardiac signals using spatial filling index and time-frequency domain
Directory of Open Access Journals (Sweden)
Krishnan SM
2004-09-01
Full Text Available Abstract Background Analysis of heart rate variation (HRV has become a popular noninvasive tool for assessing the activities of the autonomic nervous system (ANS. HRV analysis is based on the concept that fast fluctuations may specifically reflect changes of sympathetic and vagal activity. It shows that the structure generating the signal is not simply linear, but also involves nonlinear contributions. These signals are essentially non-stationary; may contain indicators of current disease, or even warnings about impending diseases. The indicators may be present at all times or may occur at random in the time scale. However, to study and pinpoint abnormalities in voluminous data collected over several hours is strenuous and time consuming. Methods This paper presents the spatial filling index and time-frequency analysis of heart rate variability signal for disease identification. Renyi's entropy is evaluated for the signal in the Wigner-Ville and Continuous Wavelet Transformation (CWT domain. Results This Renyi's entropy gives lower 'p' value for scalogram than Wigner-Ville distribution and also, the contours of scalogram visually show the features of the diseases. And in the time-frequency analysis, the Renyi's entropy gives better result for scalogram than the Wigner-Ville distribution. Conclusion Spatial filling index and Renyi's entropy has distinct regions for various diseases with an accuracy of more than 95%.
Weighted least-squares algorithm for phase unwrapping based on confidence level in frequency domain
Wang, Shaohua; Yu, Jie; Yang, Cankun; Jiao, Shuai; Fan, Jun; Wan, Yanyan
2015-12-01
Phase unwrapping is a key step in InSAR (Synthetic Aperture Radar Interferometry) processing, and its result may directly affect the accuracy of DEM (Digital Elevation Model) and ground deformation. However, the decoherence phenomenon such as shadows and layover, in the area of severe land subsidence where the terrain is steep and the slope changes greatly, will cause error transmission in the differential wrapped phase information, leading to inaccurate unwrapping phase. In order to eliminate the effect of the noise and reduce the effect of less sampling which caused by topographical factors, a weighted least-squares method based on confidence level in frequency domain is used in this study. This method considered to express the terrain slope in the interferogram as the partial phase frequency in range and azimuth direction, then integrated them into the confidence level. The parameter was used as the constraints of the nonlinear least squares phase unwrapping algorithm, to smooth the un-requirements unwrapped phase gradient and improve the accuracy of phase unwrapping. Finally, comparing with interferometric data of the Beijing subsidence area obtained from TerraSAR verifies that the algorithm has higher accuracy and stability than the normal weighted least-square phase unwrapping algorithms, and could consider to terrain factors.
Burke, K D; Thompson, M J
2011-01-01
Pulsation frequencies of acoustic modes are calculated for realistic rotating stellar models using both a perturbative and a two-dimensional approach. A comparison between the two yields validity domains which are similar to those previously obtained in Reese, Lignieres and Rieutord (2006) for polytropic models. One can also construct validity domains based on polynomial fits to the frequencies from the two-dimensional approach, and these also turn out to be similar, thus further confirming the agreement between the perturbative and two-dimensional approach at low rotation rates. Furthermore, as was previously shown in Espinosa, Perez Hernandez and Roca Cortes (2004), adjacent frequencies in multiplets come close together, thus forming pairs. This phenomena, exclusive to two-dimensional calculations, is shown to be an unlikely explanation of the close frequency pairs observed in delta Scuti stars. A systematic search for all close frequency pairs in the calculated spectrum is also carried out. The number of c...
Telenkov, Sergey A.; Alwi, Rudolf; Mandelis, Andreas; Shi, Willa; Chen, Emily; Vitkin, Alex I.
2012-02-01
We report the development of a novel frequency-domain biomedical photoacoustic (PA) system that utilizes a continuous-wave laser source with a custom intensity modulation pattern for spatially-resolved imaging of biological tissues. The feasibility of using relatively long duration and low optical power laser sources for spatially-resolved PA imaging is presented. We demonstrate that B-mode PA imaging can be performed using an ultrasonic phased array coupled with multi-channel correlation processing and a frequency-domain beamforming algorithm. Application of the frequency-domain PA correlation methodology is shown using tissue-like phantoms with embedded optical contrast, tissue ex-vivo samples and a small animal model in-vivo.
Time-variable frequency of events in domains of Tilia cambium
Directory of Open Access Journals (Sweden)
Wiesław Włoch
2014-02-01
Full Text Available In the cambium of linden, producing xylem with interlocked grain, domains active, as regards the occurrence of events, and inactive ones can be distinguished. The area of the cambium investigated was an assemblage of small domains among which at certain periods domains Z, and, at another period, domains S were active. The inclination of the grain was changing in the direction corresponding to the type of the active domains. Alternative occurrence of periods of activity of Z and S domains led to the formation of interlocked grain in the xylem, with a much longer wave than the height of a pair domains.
Directory of Open Access Journals (Sweden)
Gul Ar Navi Khan
2014-08-01
Full Text Available Background: Preeclampsia is a disorder characterized by development of hypertension to the extent of 140/90 mmHg or more with proteinuria after 20th weeks of pregnancy in a previously normotensive and non proteinuric woman. Physiologically blood pressure is controlled by Autonomic Nervous System (ANS so study of ANS during pregnancy plays a significant role to extract some vital information which may be helpful to deal with Pregnancy Induced Hypertension (PIH or preeclampsia. The autonomic nervous system and changes in ANS during different pathophysiological conditions could be evaluated with heart rate variability analysis test. The modification in the autonomic control occurs during pregnancy and its evaluation through Heart Rate Variability (HRV analysis is very informative technique now a day but studied little thus the main objective of our project is to compare the maternal HRV changes between normal pregnancy and pre-eclamptic pregnancy. Methods: 48 subjects (33 of normotensive pregnant women i.e., control group and 15 pre-eclamptic pregnant women i.e, study group of more than 20 weeks pregnancy were recruited from the outpatients, antenatal unit and wards of obstetrics and gynaecology department of JNMC, AMU, Aligarh. Physical examination was done and anthropometric measurement like height and weight were taken. BMI was calculated as per Quetlet's index. Urine test was conducted to every pregnant woman for urine albumin and we designated the pregnant women as pre-eclamptic women on the basis of definition. The subject was advised to take complete bed rest in supine position for 15 minutes in a cool and calm environment. The recording of short term HRV was done according to recommendation of the task force on HRV. The data was transferred from Medicaid machine to window based computer with HRV analysis software. Frequency domain analysis of HRV was taken for further statistical analysis. Results: There was no significant difference of
Zhao, Huijuan; Zhang, Shunqi; Wang, Zhaoxia; Miao, Hui; Du, Zhen; Jiang, Jingying
2008-02-01
This article aims at the optical parameter reconstruction technology for the frequency- domain measurement of near-infrared diffused light. For mimicking the cervix, a cylindrical model with hole in the middle is used in the simulation and experiments. Concerning the structure of the cervix, Monte-Carlo simulation is adopted for describing the photon migration in tissue and Perturbation Monte-Carlo is used for the reconstruction of the optical properties of cervix. The difficulties in the reconstruction of cervical optical properties with frequency domain measurement are the description of the tissue boundary, expression of the frequency-domain signal, and development of rapid reconstruction method for clinical use. To get the frequency domain signal in Monte Carlos simulation, discrete Fourier transformation of the photon migration history in time-domain is employed. By combining the perturbation Monte-Carlo simulation and the LM optimization technology, a rapid reconstruction algorithm is constructed, by which only one Monte-Carlo simulation is needed. The reconstruction method is validated by simulation and experiments on solid phantom. Simulation results show that the inaccuracy in reconstruction of absorption coefficient is less than 3% for a certain range of optical properties. The algorithm is also proved to be robust to the initial guess of optical properties and noise. Experimental results showed that the absorption coefficient can be reconstructed with inaccuracy of less than 10%. The absorption coefficient reconstruction for one set of measurement data can be fulfilled within one minute.
Lakowicz, Joseph R.; Wiczk, Wieslaw M.; Gryczynski, Ignacy; Szmacinski, Henryk; Johnson, Michael L.
1990-05-01
We investigated the influence of end-to-end diffusion on intramolecular energy transfer between a naphthalene donor and dansyl acceptor linked by polymethylene chain. A range of viscosities of 0.6 - 200cP were obtained using propylene glycol at different temperatures (0-80°C) and methanol at 20°C. The intensity decays of naphthalene were measured in frequency-domain. Several theoretical models, including distance distributions were used to fit the data. The results indicate that end-to-end diffusion of flexible donor - acceptor pairs can be readily detected and quantified using frequency-domain fluorometry.
Double-grid finite-difference frequency-domain (DG-FDFD) method for scattering from chiral objects
Alkan, Erdogan; Elsherbeni, Atef
2013-01-01
This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid
International Nuclear Information System (INIS)
An alternative technique in interpreting thin-bed structure has been developed. The technique involved stochastic inversions which use frequency domain energy spectral attribute as a constraint instead of time domain seismic amplitude. Maximum Amplitude Weighed Integrated Energy Spectra is a proposed energy spectral attribute which was used to constrain the stochastic process. Amplitude Weighed Integrated Energy Spectra is a deployed seismic attribute obtained by multiplying integrated energy spectra with maximum amplitude of a seismic trace. It is shown that Amplitude Weighed Integrated Energy Spectra provides a more separable signature in responding to bed thickness changes than seismic signature. A lower degree of ambiguity of Amplitude Weighed Integrated Energy Spectra in sensing thin-bed seismic is a potential method of reducing thin bed interpretation uncertainty. Qualitatively, Amplitude Weighed Integrated Energy Spectra is capable of showing one of the reported very thin meandered channel complexes of gas reservoir of Stratton field which is difficult to be seen in seismic amplitude. In this research, Amplitude Weighed Integrated Energy Spectra is incorporated in a stochastic seismic inversion to improve both accuracy and precision (certainty) of thin-bed interpretation. The signature of Amplitude Weighed Integrated Energy Spectra is used to constrain the degree of match (likelihood) between seismic model and data. Synthetic data testing shows that the proposed method significantly improves both accuracy and precision of a single wedge model seismic inversion. The thickness and reflection coefficient are estimated more accurately, although limited information is used. The proposed method was tested to invert a structurally subtle gas production zone of Stratton field. Confirmed by well log data, a cross section of inverted impedance showed that some channel complex structure of gas reservoirs are able to be imaged
Voltage-clamp frequency domain analysis of NMDA-activated neurons.
Moore, L E; Hill, R H; Grillner, S
1993-02-01
1. Voltage and current-clamp steps were added to a sum of sine waves to measure the tetrodotoxin-insensitive membrane properties of neurons in the intact lamprey spinal cord. A systems analysis in the frequency domain was carried out on two types of cells that have very different morphologies in order to investigate the structural dependence of their electrophysiological properties. The method explicitly takes into account the geometrical shapes of (i) nearly spherical dorsal cells with one or two processes and (ii) motoneurons and interneurons that have branched dendritic structures. Impedance functions were analysed to obtain the cable properties of these in situ neurons. These measurements show that branched neurons are not isopotential and, therefore, a conventional voltage-clamp analysis is not valid. 2. The electrophysiological data from branched neurons were curve-fitted with a lumped soma-equivalent cylinder model consisting of eight equal compartments coupled to an isopotential cell body to obtain membrane parameters for both passive and active properties. The analysis provides a quantitative description of both the passive electrical properties imposed by the geometrical structure of neurons and the voltage-dependent ionic conductances determined by ion channel kinetics. The model fitting of dorsal cells was dominated by a one-compartment resistance and capacitance in parallel (RC) corresponding to the spherical, non-branched shape of these cells. Branched neurons required a model that contained both an RC compartment and a cable that reflected the structure of the cells. At rest, the electrotonic length of the cable was about two. Uniformly distributed voltage-dependent ionic conductance sites were adequate to describe the data at different membrane potentials. 3. The frequency domain admittance method in conjunction with a step voltage clamp was used to control and measure the oscillatory behavior induced by N-methyl-D-aspartate (NMDA) on lamprey spinal
Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept
DEFF Research Database (Denmark)
Wang, H.W.; Zhou, H.W.; Peng, R.D.; Mishnaevsky, Leon
2011-01-01
of nanoreinforcement on the mechanical properties of nanocomposites are studied in numerical experiments. The higher degree of particle clustering leads to lower Young’s modules of the nanocomposites. The shape of nanoparticles has a strong effect on the elastic properties of the nanocomposites. The...
Pumping simulations using 3D FEM analysis on multi-pumping wells
Shuhei, KOTANI; Takahumi, KITAOKA; Makoto, NAKAMURA; Harushige, KUSUMI; 楠見, 晴重
2011-01-01
In this research, we chiefly conducted on-site measurement and analysis to examine how the pumping wells influence groundwater behavior. We established a 3D model for groundwater and make suggestions for the adequate management of the groundwater by a pumping simulation analysis. As a result, it can be seen from our research that the fluctuation of water level caused by group wells has been reproduced accurately by using our model.
Application of ANSYS 3D FEM in Studies of Surface Deformation Caused by Pipe Jacking
Institute of Scientific and Technical Information of China (English)
LI Fabin; FANG Kun; LI Hechao
2007-01-01
By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface under different frontal resistances. Analysis of the two cases shows that soil pressure reaches its maximum point when the soil is right above machine head, and soil stress will gradually decline when machine head passes over it. It also shows that impact brought by pipe-jacking construction on stress change of the surrounding soil is limited. The thesis suggest that road surface should be consolidated and soil condition be improved before construction to prevent loss and disaster caused by road surface deformation, jacking force can be increased so that jacking efficiency can be enhanced when ground stratum is well filled with soil, but the frontal resistance facing machine head should be equal to surrounding soil pressure in order to avoid rise of ground surface.
Analysis of rolls deflection of Sendzimir mill by 3D FEM
Institute of Scientific and Technical Information of China (English)
YU Hai-liang; LIU Xiang-hua; LEE Gyoo Taek
2007-01-01
The deflection of rolls of Sendzimir mill with double AS-U-Roll was simulated by finite element method(FEM). The influences of rolling pressure, strip width and rolls-assignment on rolls deflection were analyzed. The results show that the work roll deflection increases with the increase of rolling pressure and the reduction of work roll radius, but the rigid displacement of work roll slightly changes; the work roll end might appear negative displacement for the narrow strip width and high rolling pressure that might cause the contact of work rolls. The research results are significant for guiding production and theoretical analysis of the rolls system of Sendzimir mill.
Electrical performance analysis of HTS synchronous motor based on 3D FEM
International Nuclear Information System (INIS)
A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.
Electrical performance analysis of HTS synchronous motor based on 3D FEM
Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Lee, J. D.; Kim, Y. C.; Park, G. S.
2010-11-01
A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.
3D FEM-BEM-coupling method to solve magnetostatic Maxwell equations
Energy Technology Data Exchange (ETDEWEB)
Bruckner, Florian, E-mail: florian.bruckner@tuwien.ac.at [Vienna University of Technology, Inst. Solid State Physics (Austria); Vogler, Christoph [Vienna University of Technology, Inst. Solid State Physics (Austria); Feischl, Michael; Praetorius, Dirk [Vienna University of Technology, Inst. Analysis and Scientific Computing (Austria); Bergmair, Bernhard; Huber, Thomas; Fuger, Markus; Suess, Dieter [Vienna University of Technology, Inst. Solid State Physics (Austria)
2012-05-15
3D magnetostatic Maxwell equations are solved using the direct Johnson-Nedelec FEM-BEM coupling method and a reduced scalar potential approach. The occurring BEM matrices are calculated analytically and approximated by H-matrices using the ACA+ algorithm. In addition a proper preconditioning method is suggested that allows to solve large-scale problems using iterative solvers. - Highlights: Black-Right-Pointing-Pointer Solve magnetostatic Maxwell equations in 3D. Black-Right-Pointing-Pointer Use FEM-BEM coupling to solve to open-boundary problem. Black-Right-Pointing-Pointer No mesh outside the magnetic region needed. Black-Right-Pointing-Pointer Use H-matrix compression to allow large scale simulations. Black-Right-Pointing-Pointer Introduced preconditioner to improve solver convergence.
3D FEM Modeling of Ironless Axial Flux Permanent Magnet Motor/Generators
Santiago, Juan; BERNHOFF Hans
2011-01-01
There are different simulation methods for coreless Axial-Flux Permanent Magnet (AFPM) machines, but no general consent on the most efficient technique. The inherent three-dimensional (3D) geometry of axial-flux machines makes the reduction to a 2D analysis more difficult than for radial-flux machines. This paper discusses a 3D finite element method (FEM) to model coreless machines as compared to analytical and 2D FEM solutions and proposes a method to calculate eddy current losses in the win...
3D FEM Numerical Simulation of Seismic Pile-supported Bridge Structure Reaction in Liquefying Ground
Directory of Open Access Journals (Sweden)
Ling XianZhang, Tang Liang and Xu Pengju
2011-04-01
Full Text Available This study examines the establishment of liquefied ground pile-soil-bridge seismic interaction analysis of three-dimensional finite element analysis method for the simulation of liquefied ground shaking table test of pile-soil seismic interaction analysis, undertake OpenSees finite element based numerical simulation platform, for the shaking table test based on two-phase saturated porous media, Comparative numerical and experimental results, detailed test pile dynamic response of bridge structure and dynamic properties, especially liquefaction pore pressure, liquefaction of pile foundation and the dynamic response of the free field. Finite element method can reasonably predict the site of pore pressure, dynamic response; despite the conventional beam element simulation of pile, pile dynamic response can still accurately simulated.
3D FEM-BEM coupled resolution for acoustic waves propagation in potential flow
BALIN, Nolwenn; SYLVAND, Guillaume; Casenave, Fabien
2012-01-01
International audience In order to reduce the environmental impact of aircrafts, it is necessary to accurately simulate the acoustics waves propagation in complex environment. A classical method used to compute the noise propagation on large distances is the Boundary Element Method. However this method restricts the flow to a uniform one. To improve the level of modeling, we present here a coupling between Finite Element (FEM) and Boundary Element Methods (BEM) to solve the acoustic propag...
Monte Carlo method with complex-valued weights for frequency domain analyses of neutron noise
International Nuclear Information System (INIS)
Highlights: • The transport equation of the neutron noise is solved with the Monte Carlo method. • A new Monte Carlo algorithm where complex-valued weights are treated is developed.• The Monte Carlo algorithm is verified by comparing with analytical solutions. • The results with the Monte Carlo method are compared with the diffusion theory. - Abstract: A Monte Carlo algorithm to solve the transport equation of the neutron noise in the frequency domain has been developed to extend the conventional diffusion theory of the neutron noise to the transport theory. In this paper, the neutron noise is defined as the stationary fluctuation of the neutron flux around its mean value, and is induced by perturbations of the macroscopic cross sections. Since the transport equation of the neutron noise is a complex equation, a Monte Carlo technique for treating complex-valued weights that was recently proposed for neutron leakage-corrected calculations has been introduced to solve the complex equation. To cancel the positive and negative values of complex-valued weights, an algorithm that is similar to the power iteration method has been implemented. The newly-developed Monte Carlo algorithm is benchmarked to analytical solutions in an infinite homogeneous medium. The neutron noise spatial distributions have been obtained both with the newly-developed Monte Carlo method and the conventional diffusion method for an infinitely-long homogeneous cylinder. The results with the Monte Carlo method agree well with those of the diffusion method. However, near the noise source induced by a high frequency perturbation, significant differences are found between the diffusion method and Monte Carlo method. The newly-developed Monte Carlo algorithm is expected to contribute to the improvement of calculation accuracy of the neutron noise
Generalized Frequency Domain State-Space Models for Analyzing Flexible Rotating Spacecraft
Turner, James D.; Elgohary, Tarek A.
2012-06-01
The mathematical model for a flexible spacecraft that is rotating about a single axis rotation is described by coupled rigid and flexible body degrees-of-freedom, where the equations of motion are modeled by integro-partial differential equations. Beam-like structures are often useful for analyzing boom-like flexible appendages. The equations of motion are analyzed by introducing generalized Fourier series that transform the governing equations into a system of ordinary differential equations. Though technically straightforward, two problems arise with this approach: (1) the model is frequency-truncated because a finite number of series terms are retained in the model, and (2) computationally intense matrix-valued transfer function calculations are required for understanding the frequency domain behavior of the system. Both of these problems are resolved by: (1) computing the Laplace transform of the governing integro-partial differential equation of motion; and (2) introducing a generalized state space (consisting of the deformational coordinate and three spatial partial derivatives, as well as single and double spatial integrals of the deformational coordinate). The resulting math model is cast in the form of a linear state-space differential equation that is solved in terms of a matrix exponential and convolution integral. The structural boundary conditions defined by Hamilton's principle are enforced on the closed-form solution for the generalized state space. The generalized state space model is then manipulated to provide analytic scalar transfer function models for original integro-partial differential system dynamics. Symbolic methods are used to obtain closed-form eigen decomposition- based solutions for the matrix exponential/convolution integral algorithm. Numerical results are presented that compare the classical series based approach with the generalized state space approach for computing representative spacecraft transfer function models.
Zhang, Yide; Khan, Aamir A; Vigil, Genevieve D; Howard, Scott S
2016-07-01
Multiphoton microscopy (MPM) combined with fluorescence lifetime imaging microscopy (FLIM) has enabled three-dimensional quantitative molecular microscopy in vivo. The signal-to-noise ratio (SNR), and thus the imaging rate of MPM-FLIM, which is fundamentally limited by the shot noise and fluorescence saturation, has not been quantitatively studied yet. In this paper, we investigate the SNR performance of the frequency-domain (FD) MPM-FLIM with two figures of merit: the photon economy in the limit of shot noise, and the normalized SNR in the limit of saturation. The theoretical results and Monte Carlo simulations find that two-photon FD-FLIM requires 50% fewer photons to achieve the same SNR as conventional one-photon FLIM. We also analytically show that the MPM-FD-FLIM can exploit the DC and higher harmonic components generated by nonlinear optical mixing of the excitation light to improve SNR, reducing the required number of photons by an additional 50%. Finally, the effect of fluorophore saturation on the experimental SNR performance is discussed. PMID:27409702
Directory of Open Access Journals (Sweden)
Shaikh Anowarul Fattah
2012-05-01
Full Text Available Motor neuron diseases are the most common neurological disorders found in the age ranges between 35-70years, which selectively affect the motor neurons. Amyotrophic lateral sclerosis (ALS is a fatal motorneuron disease that assails the nerve cells in the brain. This disease progressively degenerates the motorcells in the brain and spinal cord, which are responsible for controlling the muscles that enable human tomove around, breathe, speak, and swallow. The electromyography (EMG signals are the biomedicalsignals that are used to study the muscle function based on the electrical signal originated from themuscles. As the nervous system controls the muscle activity, the EMG signals can be viewed and analyzedin order to detect the indispensable features of the ALS disease in individuals. In this paper, analyzing thetime and frequency domain behaviour of the EMG signals obtained from several normal persons and theALS patients, some characteristic features, such as autocorrelation, zero crossing rate and Fouriertransform are proposed to identify the ALS disease. For the pupose of classification, K-nearestneighbothood classifier is employed in a leave-one out cross validation technique. In order to show theclassification performance, an EMG database consisted of 7 normal subjects aged 21-37 years and 6 ALSpatients aged 35-67 years is considered and it is found that the proposed method is capable of distinctlyseparating the ALS patients from the normal persons.
Directory of Open Access Journals (Sweden)
Shaikh Anowarul Fattah
2012-04-01
Full Text Available Motor neuron diseases are the most common neurological disorders found in the age ranges between 35-70 years, which selectively affect the motor neurons. Amyotrophic lateral sclerosis (ALS is a fatal motor neuron disease that assails the nerve cells in the brain. This disease progressively degenerates the motor cells in the brain and spinal cord, which are responsible for controlling the muscles that enable human to move around, breathe, speak, and swallow. The electromyography (EMG signals are the biomedical signals that are used to study the muscle function based on the electrical signal originated from the muscles. As the nervous system controls the muscle activity, the EMG signals can be viewed and analyzed in order to detect the indispensable features of the ALS disease in individuals. In this paper, analyzing the time and frequency domain behaviour of the EMG signals obtained from several normal persons and the ALS patients, some characteristic features, such as autocorrelation, zero crossing rate and Fourier transform are proposed to identify the ALS disease. For the pupose of classification, K-nearest neighbothood classifier is employed in a leave-one out cross validation technique. In order to show the classification performance, an EMG database consisted of 7 normal subjects aged 21-37 years and 6 ALS patients aged 35-67 years is considered and it is found that the proposed method is capable of distinctly separating the ALS patients from the normal persons.
Applegate, Matthew B.; Hariri, Lida P.; Beagle, John; Tan, Khay Ming; Chee, Chunmin; Hales, Charles A.; Suter, Melissa J.
2012-02-01
Smoke inhalation injury is a serious threat to victims of fires and explosions, however accurate diagnosis of patients remains problematic. Current evaluation techniques are highly subjective, often involving the integration of clinical findings with bronchoscopic assessment. It is apparent that new quantitative methods for evaluating the airways of patients at risk of inhalation injury are needed. Optical frequency domain imaging (OFDI) is a high resolution optical imaging modality that enables volumetric microscopy of the trachea and upper airways in vivo. We anticipate that OFDI may be a useful tool in accurately assessing the airways of patients at risk of smoke inhalation injury by detecting injury prior to the onset of symptoms, and therefore guiding patient management. To demonstrate the potential of OFDI for evaluating smoke inhalation injury, we conducted a preclinical study in which we imaged the trachea/upper airways of 4 sheep prior to, and up to 60 minutes post exposure to cooled cotton smoke. OFDI enabled the visualization of increased mucus accumulation, mucosal thickening, epithelial disruption and sloughing, and increased submucosal signal intensity attributed to polymorphonuclear infiltrates. These results were consistent with histopathology findings. Bronchoscopic inspection of the upper airways appeared relatively normal with only mild accumulation of mucus visible within the airway lumen. The ability of OFDI to not only accurately detect smoke inhalation injury, but to quantitatively assess and monitor the progression or healing of the injury over time may provide new insights into the management of patients such as guiding clinical decisions regarding the need for intubation and ventilator support.
Klose, C. D.; Kim, H. K.; Netz, U.; Blaschke, S.; Zwaka, P. A.; Mueller, G. A.; Beuthan, J.; Hielscher, A. H.
2009-02-01
Novel methods that can help in the diagnosis and monitoring of joint disease are essential for efficient use of novel arthritis therapies that are currently emerging. Building on previous studies that involved continuous wave imaging systems we present here first clinical data obtained with a new frequency-domain imaging system. Three-dimensional tomographic data sets of absorption and scattering coefficients were generated for 107 fingers. The data were analyzed using ANOVA, MANOVA, Discriminant Analysis DA, and a machine-learning algorithm that is based on self-organizing mapping (SOM) for clustering data in 2-dimensional parameter spaces. Overall we found that the SOM algorithm outperforms the more traditional analysis methods in terms of correctly classifying finger joints. Using SOM, healthy and affected joints can now be separated with a sensitivity of 0.97 and specificity of 0.91. Furthermore, preliminary results suggest that if a combination of multiple image properties is used, statistical significant differences can be found between RA-affected finger joints that show different clinical features (e.g. effusion, synovitis or erosion).
Mode selection and boundary conditions using MAFIA in frequency-domain
Energy Technology Data Exchange (ETDEWEB)
Jin, Y.
1988-09-01
The field solvers of the 3D code MAFIA in the frequency domain are R3 and E3: the former generates an eigenvalue equation, and the latter solves this equation for eigenfrequencies and eigenvectors (fields). They are usually expensive to use. In order to save memory space and CPU time, one may employ a part of a structure in calculations if there are certain symmetries that are embedded in the geometry. In this case, one must run R3 and E3 several times with different boundary conditions if one wants to get a complete set of modes of the whole structure. However, sometimes only some modes are of interest to the authors (e.g., TM{sub 01}) and they may then specify the appropriate boundary conditions for a part of a structure to obtain these modes. There are two types of boundary conditions that one may choose from in R3: either a zero tangential E-field, denoted by integer 1, or a zero tangential H-field, denoted by integer 2. This note will use a circularly cylindrical cavity as an example to discuss the relation between mode selection and boundary conditions when using a part of the cavity.
Frequency-domain reduced order models for gravitational waves from aligned-spin compact binaries
International Nuclear Information System (INIS)
Black-hole binary coalescences are one of the most promising sources for the first detection of gravitational waves. Fast and accurate theoretical models of the gravitational radiation emitted from these coalescences are highly important for the detection and extraction of physical parameters. Spinning effective-one-body models for binaries with aligned-spins have been shown to be highly faithful, but are slow to generate and thus have not yet been used for parameter estimation (PE) studies. I provide a frequency-domain singular value decomposition-based surrogate reduced order model that is thousands of times faster for typical system masses and has a faithfulness mismatch of better than ∼0.1% with the original SEOBNRv1 model for advanced LIGO detectors. This model enables PE studies up to signal-to-noise ratios (SNRs) of 20 and even up to 50 for total masses below 50 M⊙. This paper discusses various choices for approximations and interpolation over the parameter space that can be made for reduced order models of spinning compact binaries, provides a detailed discussion of errors arising in the construction and assesses the fidelity of such models. (paper)
Frequency and Spatial Domains Adaptive-based Enhancement Technique for Thermal Infrared Images
Directory of Open Access Journals (Sweden)
Debasis Chaudhuri
2014-09-01
Full Text Available Low contrast and noisy image limits the amount of information conveyed to the user. With the proliferation of digital imagery and computer interface between man-and-machine, it is now viable to consider digital enhancement in the image before presenting it to the user, thus increasing the information throughput. With better contrast, target detection and discrimination can be improved. The paper presents a sequence of filtering operations in frequency and spatial domains to improve the quality of the thermal infrared (IR images. Basically, two filters – homomorphic filter followed by adaptive Gaussian filter are applied to improve the quality of the thermal IR images. We have systematically evaluated the algorithm on a variety of images and carefully compared it with the techniques presented in the literature. We performed an evaluation of three filter banks such as homomorphic, Gaussian 5×5 and the proposed method, and we have seen that the proposed method yields optimal PSNR for all the thermal images. The results demonstrate that the proposed algorithm is efficient for enhancement of thermal IR images.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.451-457, DOI:http://dx.doi.org/10.14429/dsj.64.6873
Fusion of infrared and visible images based on saliency scale-space in frequency domain
Chen, Yanfei; Sang, Nong; Dan, Zhiping
2015-12-01
A fusion algorithm of infrared and visible images based on saliency scale-space in the frequency domain was proposed. Focus of human attention is directed towards the salient targets which interpret the most important information in the image. For the given registered infrared and visible images, firstly, visual features are extracted to obtain the input hypercomplex matrix. Secondly, the Hypercomplex Fourier Transform (HFT) is used to obtain the salient regions of the infrared and visible images respectively, the convolution of the input hypercomplex matrix amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale which is equivalent to an image saliency detector are done. The saliency maps are obtained by reconstructing the 2D signal using the original phase and the amplitude spectrum, filtered at a scale selected by minimizing saliency map entropy. Thirdly, the salient regions are fused with the adoptive weighting fusion rules, and the nonsalient regions are fused with the rule based on region energy (RE) and region sharpness (RS), then the fused image is obtained. Experimental results show that the presented algorithm can hold high spectrum information of the visual image, and effectively get the thermal targets information at different scales of the infrared image.
International Nuclear Information System (INIS)
An experimental setup for multicolor frequency-domain diffuse optical tomography (FD DOT) was created to visualize neoplasia of breast tissue and to estimate its size. The breast is gently pressed between two glass plates and scanned in the transilluminative configuration by a single source and detector pair. Illumination at three wavelengths (684 nm, 794 nm, and 850 nm) which correspond to different parts of the absorption spectrum in a therapeutic transparency window provides information about concentration of the main absorbers (oxygenated hemoglobin, deoxygenated hemoglobin, and fat/water). Source amplitude modulation at 140 MHz increases spatial resolution and provides separate reconstruction of scattering and absorption coefficients. Moreover, it gives information about breast thickness, which is important for reconstruction. The sensitivity of the system enables one to detect the light propagated through tissue having thickness up to 8 cm. Studies on model media and preliminary in vivo experiments with normal breast and breast carcinoma were performed. An increase of scattering coefficient and total hemoglobin concentration is observed in the tumor area. This corroborates validity of the FD DOT method for breast cancer diagnosis
Frequency domain measurements on turbid media with strong absorption using the PN approximation.
Baltes, Christof; Faris, Gregory W
2009-06-01
We have applied the frequency-domain technique to measurement of the optical properties of turbid media with strong absorption in the infinite medium limit. Absorption coefficients up to 2.3 cm(-1) for a modified scattering coefficient of 4.3 cm(-1) are studied, which corresponds to a reduced scattering albedo of 0.65. Low phase noise and good phase stability are required for these low albedo conditions. As the degree of absorption increases, the phase changes are reduced while amplitude changes increase. For this reason, correction of amplitude-phase cross talk is essential to achieve accurate measurements with strong absorption. Careful control of stray reflections is required to properly measure amplitude-phase cross talk. Because the diffusion approximation becomes less accurate, measurements are compared to calculations performed in the PN approximation, which is essentially an exact solution for the infinite medium limit. Agreement between theory and experiment is only obtained when correction for amplitude-phase cross talk is performed. These measurements can provide a good method for testing amplitude-phase cross talk. PMID:19488110
Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity
Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.
2013-06-01
Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.
Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser.
Leonhardt, Rainer; Biedermann, Benjamin R; Wieser, Wolfgang; Huber, Robert
2009-09-14
We report on the highly efficient non-linear optical frequency conversion of the wavelength swept output from a Fourier Domain Mode Locked (FDML) laser. Different concepts for power scaling of FDML lasers by post-amplification with active fibers are presented. A two-stage post-amplification of an FDML laser with an amplification factor of 300 up to a peak power of 1.5 W is used to supply sufficient power levels for non-linear conversion. Using a single-mode dispersion shifted fiber (DSF), we convert this amplified output that covers the region between 1541 nm and 1545 nm to a wavelength range from 1572 nm to 1663 nm via modulation instability (MI). For this four wave mixing process we observe an efficiency of approximately 40%. The anti-Stokes signal between 1435 nm and 1516 nm was observed with lower conversion efficiency. In addition to shifting the wavelength, the effect of MI also enables a substantial increase in the wavelength sweep rate of the FDML laser by a factor of approximately 50 to 0.55 nm/ns. PMID:19770897
Study of frequency domain full waveform inversion based on Huber norm and L-BFGS algorithm
Institute of Scientific and Technical Information of China (English)
GUO Kun
2014-01-01
Full waveform inversion( FWI)is a high resolution inversion method,which can reveal detailed in-formation of the structure and lithology under comPlex geological background. It is limited by many kinds of noi-ses when the method aPPlied to the real seismic data. Based on Huber function criterion,the objective function combinates the anti-noise of L1 norm and the stability of L2 norm in theory,the authors derive the gradient for-mula of the Huber function by using L-BFGS algorithm for FWI. The new method is Proved by synthetic seismic data with the Gaussian noise and the imPulse noise. Numerical test results show that L-BFGS algorithm is aP-Plied to the frequency domain FWI with the convergence sPeed and high calculation accuracy,and can effec-tively reduce comPuter memory usage;and the Huber function is more robust and stable than L2 norm even with the noises.
Indian Academy of Sciences (India)
Kallol Khan; Badri Prasad Patel; Yogendra Nath
2010-12-01
The forced vibration analysis of bimodulus material laminated structures is a challenging problem due to non-smooth nonlinear nature of governing equations. The most commonly used direct time integration schemes show numerical instability and do not predict steady state response except for limited number of cases without considering in-plane inertia. This is due to the sudden change of restoring force from positive/negative half cycle to negative/positive half cycle exciting higher modes/harmonics at every instant of a cycle change leading to numerical instability in the time marching scheme. In the present work, Galerkin time domain approach is successfully used for the forced vibration analysis of bimodular cylindrical panels. The effect of bimodularity ratio on the frequency response of cylindrical panels for few typical geometrical and lamination parameters is studied for the ﬁrst time. It is found that the positive half cycle amplitude is greater than the negative half cycle amplitude for $E_{2t}/E_{2c} < 1$ and is smaller for $E_{2t}/E_{2c} > 1$. Further, the percentage difference of positive and negative half cycle amplitudes decreases with the increase in $E_{2t}/E_{2c}$. The stresses under dynamic loading are different for positive and negative half of a vibration cycle.
Frequency Domain Structural Synthesis Applied to Quasi-Static Crack Growth Modeling
Directory of Open Access Journals (Sweden)
Young W. Kwon
2009-01-01
Full Text Available Quasi-static crack growth in a composite beam was modeled using the structural synthesis technique along with a finite element model. The considered crack was an interface crack in the shear mode (i.e. mode II, which occurs frequently in the scarf joint of composite structures. The analysis model was a composite beam with an edge crack at the midplane of the beam subjected to a three-point bending load. In the finite element model, beam finite elements with translational degrees of freedom only were used to model the crack conveniently. Then, frequency domain structural synthesis (substructure coupling was applied to reduce the computational time associated with a repeated finite element calculation with crack growth. The quasi-static interface crack growth in a composite beam was predicted using the developed computational technique, and its result was compared to experimental data. The computational and experimental results agree well. In addition, the substructure-based synthesis technique showed the significantly improved computational efficiency when compared to the conventional full analysis.
Dynamic analysis of smart composite beams by using the frequency domain spectral element method
Energy Technology Data Exchange (ETDEWEB)
Park, Il Wook; Lee, Usik [Inha Univ., Incheon (Korea, Republic of)
2012-08-15
To excite or measure the dynamic responses of a laminated composite structure for the active controls of vibrations or noises, wafertype piezoelectric transducers are often bonded on the surface of the composite structure to form a multi layer smart composite structure. Thus, for such smart composite structures, it is very important to develop and use a very reliable mathematical and/or computational model for predicting accurate dynamic characteristics. In this paper, the axial-bending coupled equations of motion and boundary conditions are derived for two layer smart composite beams by using the Hamilton's principle with Lagrange multipliers. The spectral element model is then formulated in the frequency domain by using the variation approach. Through some numerical examples, the extremely high accuracy of the present spectral element model is verified by comparing with the solutions by the conventional finite element model provided in this paper. The effects of the lay up of composite laminates and surface bonded wafer type piezoelectric (PZT) layer on the dynamics and wave characteristics of smart composite beams are investigated. The effective constraint forces at the interface between the base beam and PZT layer are also investigated via Lagrange multipliers.
A HYBRID TECHNIQUE FOR FREQUENCY DOMAIN IDENTIFICATION OF SERVO SYSTEM WITH FRICTION FORCE
Directory of Open Access Journals (Sweden)
SHAIK.RAFI KIRAN,
2011-03-01
Full Text Available The system identification process in servo system with frictional force seems to be a complex task becauseof its non-linear nature. For such non-linear systems, a good choice is system identification in frequencydomain. However, most of the techniques are manual and are inappropriate for determination of systemparameters. This makes system identification ineffective for servo systems with frictional force. Toovercome this issue, a hybrid technique is proposed in this paper. The proposed technique exploits neuralnetwork and genetic algorithm to determine the system parameters of servo systems with friction. In theproposed technique, the target parameters are determined from the transfer function derived for thesystem. Subsequently, the system parameters are identified by a process formed by blending the neuralnetwork and genetic algorithm techniques. Prior to performing the identification procedure, backpropagation training is given to the neural network using a pre-examined dataset. Then with thecombined operation of neural network and genetic algorithm, the system parameters that are closer tothe target parameters for the servo system with frictional force are determined. The technique isimplemented and compared with the existing frequency domain identification technique. From thecomparative results, it is evident that the proposed technique outperforms the existing technique.
Haverkort, Maurits W.
2016-05-01
Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.
Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2016-10-01
A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer. PMID:26822943
Iris Recognition System with Frequency Domain Features optimized with PCA and SVM Classifier
Directory of Open Access Journals (Sweden)
K N Pushpalatha
2012-09-01
Full Text Available Applications such as immigration control, aviation security, bank and other financial transactions, access to defence organization requires a more reliable and authentic identification system. Iris is now considered to be one of the most time invariable biometric features of a person for recognition. Several iris recognition techniques were proposed with considerable focus on improving the false acceptance rate and minimizing false rejection rate. Most of the proposed techniques are tested with Mat lab and not keeping the detection and recognition time in mind. In this work we propose a novel iris recognition system with iris localization to segment and recognize color iris with highest speed and accuracy. Custom software for iris image processing is developed in C#.Net (.Net 3.5. Frequency domain magnitude and phase features are used for image feature representation. Support vector machines with winner takes it all configuration are used for classification. Tests shows 97% accuracy with average time of 31 milliseconds seconds for classifying each test image.
Bender, Amy N; de Haan, Tijmen; Dobbs, Matt A; Gilbert, Adam J; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M; Smith, Ken; Wilson, Andrew
2014-01-01
Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This ...
International Nuclear Information System (INIS)
Optical tomography is an inverse method of probing semi-transparent media with the help of light sources. The reconstruction of the optical properties usually employs finite volumes or continuous finite elements formulations of light transport as a forward model for the predictions. In a previous study, we have introduced a generalization of the inversion approach with finite elements formulations by using an integral form of the objective function. The novelty is that the surfaces of the detectors are taken into account in the reconstruction and compatibility is obtained for all finite element formulations. This present paper illustrates this new approach by developing a Discontinuous Galerkin formulation as a forward model for an optical tomography application in the frequency domain framework. Numerical tests are performed to gauge the accuracy of the method in recovering optical properties distribution with a gradient-based algorithm where the adjoint method is used to fastly compute the objective function gradient. It is seen that the reconstruction is accurate and can be affected by noise on the measurements as expected. Filtering of the gradient at each iteration of the reconstruction is used to cope with the ill-posed nature of the inverse problem and to improves the quality and accuracy of the reconstruction.
Zhou, Kenneth J.; Pu, Yang; Chen, Jun
2014-03-01
It is well-known that light transport can be well described using Maxwell's electromagnetic theory. In biological tissue, the scattering particles cause the interaction of scattered waves from neighboring particles. Since such interaction cannot be ignored, multiple scattering occurs. The theoretical solution of multiple scattering is complicated. A suitable description is that the wavelike behavior of light is ignored and the transport of an individual photon is considered to be absorbed or scattered. This is known as the Radiative Transfer Equation (RTE) theory. Analytical solutions to the RTE that explicitly describes photon migration can be obtained by introducing some proper approximations. One of the most popular models used in the field of tissue optics is the Diffusion Approximation (DA). In this study, we report on the results of our initial study of optical properties of ex vivo normal and cancerous prostate tissues and how tissue parameters affect the near infrared light transporting in the two types of tissues. The time-resolved transport of light is simulated as an impulse isotropic point source of energy within a homogeneous unbounded medium with different absorption and scattering properties of cancerous and normal prostate tissues. Light source is also modulated sinusoidally to yield a varied fluence rate in frequency domain at a distant observation point within the cancerous and normal prostate tissues. Due to difference of the absorption and scattering coefficients between cancerous and normal tissues, the expansion of light pulse, intensity, phase are found to be different.
Energy Technology Data Exchange (ETDEWEB)
Viana, Rodrigo S.S.; Tardelli, Tiago C.; Yoriyaz, Helio, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Jackowski, Marcel P., E-mail: mjack@ime.usp.b [University of Sao Paulo (USP), SP (Brazil). Dept. of Computer Science
2011-07-01
In recent years, a new technique for in vivo spectrographic imaging of stable isotopes was presented as Neutron Stimulated Emission Computed Tomography (NSECT). In this technique, a fast neutrons beam stimulates stable nuclei in a sample, which emit characteristic gamma radiation. The photon energy is unique and is used to identify the emitting nuclei. The emitted gamma energy spectra can be used for reconstruction of the target tissue image and for determination of the tissue elemental composition. Due to the stochastic nature of photon emission process by irradiated tissue, one of the most suitable algorithms for tomographic reconstruction is the Expectation-Maximization (E-M) algorithm, once on its formulation are considered simultaneously the probabilities of photons emission and detection. However, a disadvantage of this algorithm is the introduction of noise in the reconstructed image as the number of iterations increases. This increase can be caused either by features of the algorithm itself or by the low sampling rate of projections used for tomographic reconstruction. In this work, a linear filter in the frequency domain was used in order to improve the quality of the reconstructed images. (author)
Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging
Kujala, Naresh Gandhi
Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The
DEFF Research Database (Denmark)
Shyroki, Dzmitry; Lavrinenko, Andrei
2007-01-01
A complex-coordinate method known under the guise of the perfectly matched layer (PML) method for treating unbounded domains in computational electrodynamics is related to similar techniques in fluid dynamics and classical quantum theory. It may also find use in electronic-structure finite......-difference simulations. Straightforward transfer of the PML formulation to other fields does not seem feasible, however, since it is a unique feature of electrodynamics - the natural invariance - that allows analytic trick of complex coordinate scaling to be represented as pure modification of local material parameters...
DEFF Research Database (Denmark)
Nelson, Paul C.; Ewert, Stephan; Carney, Laurel H.; Dau, Torsten
2007-01-01
In general, the temporal structure of stimuli must be considered to account for certain observations made in detection and masking experiments in the audio-frequency domain. Two such phenomena are (1) a heightened sensitivity to amplitude increments with a temporal fringe compared to gated level ...
DEFF Research Database (Denmark)
Nelson, Paul C.; Ewert, Stephan; Carney, Laurel H.; Dau, Torsten
In the audio-frequency domain, the envelope apparently plays an important role in detection of intensity increments and in comodulation masking release (CMR). The current study addressed the question whether the second-order envelope ("venelope") contributes similarly for comparable experiments i...
DEFF Research Database (Denmark)
Escolano-Carrasco, José; Jacobsen, Finn; López, J.J.
2008-01-01
The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to include such boundary conditions in an FDTD model. Although solutions...
Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi
2016-05-01
A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.
Bucciarelli, M.; D. Pastina; Cristallini, D.; M. Sedehi; Lombardo, P.
2016-01-01
A Multichannel Synthetic Aperture Radar (M-SAR) exploiting an antenna nulling based Electronic Counter-Counter Measures (ECCM) technique shall be able to cancel the effects of noise-like interferences over the collected SAR data. Since SAR systems often work with wide bandwidths to provide high resolution images, ECCM technique must account for the presence of wideband interference signal. In this paper we consider a wideband antenna nulling technique based on space-frequency adaptive nulling...
A finite-difference frequency-domain code for electromagnetic induction tomography
International Nuclear Information System (INIS)
We are developing a new 3D code for application to electromagnetic induction tomography and applications to environmental imaging problems. We have used the finite-difference frequency- domain formulation of Beilenhoff et al. (1992) and the anisotropic PML (perfectly matched layer) approach (Berenger, 1994) to specify boundary conditions following Wu et al. (1997). PML deals with the fact that the computations must be done in a finite domain even though the real problem is effectively of infinite extent. The resulting formulas for the forward solver reduce to a problem of the form Ax = y, where A is a non-Hermitian matrix with real values off the diagonal and complex values along its diagonal. The matrix A may be either symmetric or nonsymmetric depending on details of the boundary conditions chosen (i.e., the particular PML used in the application). The basic equation must be solved for the vector x (which represents field quantities such as electric and magnetic fields) with the vector y determined by the boundary conditions and transmitter location. Of the many forward solvers that could be used for this system, relatively few have been thoroughly tested for the type of matrix encountered in our problem. Our studies of the stability characteristics of the Bi-CG algorithm raised questions about its reliability and uniform accuracy for this application. We have found the stability characteristics of Bi-CGSTAB [an alternative developed by van der Vorst (1992) for such problems] to be entirely adequate for our application, whereas the standard Bi-CG was quite inadequate. We have also done extensive validation of our code using semi-analytical results as well as other codes. The new code is written in Fortran and is designed to be easily parallelized, but we have not yet tested this feature of the code. An adjoint method is being developed for solving the inverse problem for conductivity imaging (for mapping underground plumes), and this approach, when ready, will
Renormalized scattering series for frequency domain waveform modelling of strong velocity contrasts
Jakobsen, M.; Wu, R. S.
2016-04-01
An improved description of scattering and inverse scattering processes in reflection seismology may be obtained on the basis of a scattering series solution to the Helmoltz equation, which allows one to separately model primary and multiple reflections. However, the popular scattering series of Born is of limited seismic modelling value, since it is only garantied to converge if the global contrast is relatively small. For frequency domain waveform modelling of realistic contrasts, some kind of renormalization may be reguired. The concept of renormalization is normally associated with quantum field theory, where it is absolutely essential for the treatment of infinities in connection with observable quantities. However, the renormalization program is also highly relevant for classical systems, especially when there are interaction effects that acts across different length scales. In the scattering series of De Wolf, a renormalization of the Green functions is achieved by a split of the scattering potential operator into fore- and back-scattering parts; which leads to an effective reorganization and partially re-summation of the different terms in the Born series, so that their order better reflects the physics of reflection seismology. It has been demonstrated that the leading (single return) term in the De Wolf series (DWS) gives much more accurate results than the corresponding Born approximation, especially for models with high contrasts that lead to a large accumulation of phase changes in the forward direction. However, the higher-order terms in the DWS that are associated with internal multiples have not been studied numerically before. In this paper, we report from a systematic numerical investigation of the convergence properties of the DWS which is based on two new operator representations of the DWS. The first operator representation is relatively similar to the original scattering potential formulation, but more global and explicit in nature. The second
Renormalized scattering series for frequency-domain waveform modelling of strong velocity contrasts
Jakobsen, M.; Wu, R. S.
2016-08-01
An improved description of scattering and inverse scattering processes in reflection seismology may be obtained on the basis of a scattering series solution to the Helmoltz equation, which allows one to separately model primary and multiple reflections. However, the popular scattering series of Born is of limited seismic modelling value, since it is only guaranteed to converge if the global contrast is relatively small. For frequency-domain waveform modelling of realistic contrasts, some kind of renormalization may be required. The concept of renormalization is normally associated with quantum field theory, where it is absolutely essential for the treatment of infinities in connection with observable quantities. However, the renormalization program is also highly relevant for classical systems, especially when there are interaction effects that act across different length scales. In the scattering series of De Wolf, a renormalization of the Green's functions is achieved by a split of the scattering potential operator into fore- and backscattering parts; which leads to an effective reorganization and partially re-summation of the different terms in the Born series, so that their order better reflects the physics of reflection seismology. It has been demonstrated that the leading (single return) term in the De Wolf series (DWS) gives much more accurate results than the corresponding Born approximation, especially for models with high contrasts that lead to a large accumulation of phase changes in the forward direction. However, the higher order terms in the DWS that are associated with internal multiples have not been studied numerically before. In this paper, we report from a systematic numerical investigation of the convergence properties of the DWS which is based on two new operator representations of the DWS. The first operator representation is relatively similar to the original scattering potential formulation, but more global and explicit in nature. The second
Institute of Scientific and Technical Information of China (English)
Z.J.YANG; A.J.DEEKS
2008-01-01
A frequency-domain approach based on the semi-analytical scaled boundary finite element method(SBFEM) was developed to calculate dynamic stress intensity factors(DSIFs) at bimaterial interface cracks subjected to transient loading.Be-cause the stress solutions of the SBFEM in the frequency domain are analytical in the radial direction,and the complex stress singularity at the bimaterial interface crack tip is explicitly represented in the stress solutions,the mixed-mode DSIFs were calculated directly by definition.The complex frequency-response functions of DSIFs were then used by the fast Fourier transform(FFT) and the inverse FFT to calculate time histories of DSIFs.A benchmark example was modelled.Good re-sults were obtained by modelling the example with a small number of degrees of freedom due to the semi-analytical nature of the SBFEM.
Institute of Scientific and Technical Information of China (English)
Z.J.YANG; A.J.DEEKS
2008-01-01
A frequency-domain approach based on the semi-analytical scaled boundary finite element method (SBFEM) was developed to calculate dynamic stress intensity factors (DSIFs) at bimaterial interface cracks subjected to transient loading. Be-cause the stress solutions of the SBFEM in the frequency domain are analytical in the radial direction, and the complex stress singularity at the bimaterial interface crack tip is explicitly represented in the stress solutions, the mixed-mode DSIFs were calculated directly by definition. The complex frequency-response functions of DSIFs were then used by the fast Fourier transform (FFT) and the inverse FFT to calculate time histories of DSIFs. A benchmark example was modelled. Good re-sults were obtained by modelling the example with a small number of degrees of freedom due to the semi-analytical nature of the SBFEM.
Hattori, Kaori; Barron, Darcy; Dobbs, Matt; de Haan, Tijmen; Harrington, Nicholas; Hasegawa, Masaya; Hazumi, Masashi; Holzapfel, William L; Keating, Brian; Lee, Adrian T; Morii, Hideki; Myers, Michael J; Smecher, Graeme; Suzuki, Aritoki; Tomaru, Takayuki
2013-01-01
The POLARBEAR-2 CosmicMicrowave Background (CMB) experiment aims to observe B-mode polarization with high sensitivity to explore gravitational lensing of CMB and inflationary gravitational waves. POLARBEAR-2 is an upgraded experiment based on POLARBEAR-1, which had first light in January 2012. For POLARBEAR-2, we will build a receiver that has 7,588 Transition Edge Sensor (TES) bolometers coupled to two-band (95 and 150 GHz) polarization-sensitive antennas. For the large array's readout, we employ digital frequency-domain multiplexing and multiplex 32 bolometers through a single superconducting quantum interference device (SQUID). An 8-bolometer frequency-domain multiplexing readout has been deployed on POLARBEAR-1 experiment. Extending that architecture to 32 bolometers requires an increase in the bandwidth of the SQUID electronics to 3 MHz. To achieve this increase in bandwidth, we use Digital Active Nulling (DAN) on the digital frequency multiplexing platform. In this paper, we present requirements and imp...
Frequency-domain L2-stability conditions for time-varying linear and nonlinear MIMO systems
Institute of Scientific and Technical Information of China (English)
Zhihong HUANG; Y. V. VENKATESH; Cheng XIANG; Tong Heng LEE
2014-01-01
The paper deals with the L2-stability analysis of multi-input-multi-output (MIMO) systems, governed by integral equations, with a matrix of periodic/aperiodic time-varying gains and a vector of monotone, non-monotone and quasi-monotone nonlin-earities. For nonlinear MIMO systems that are described by differential equations, most of the literature on stability is based on an application of quadratic forms as Lyapunov-function candidates. In contrast, a non-Lyapunov framework is employed here to derive new and more general L2-stability conditions in the frequency domain. These conditions have the following features:i) They are expressed in terms of the positive definiteness of the real part of matrices involving the transfer function of the linear time-invariant block and a matrix multiplier function that incorporates the minimax properties of the time-varying linear/nonlinear block. ii) For certain cases of the periodic time-varying gain, they contain, depending on the multiplier function chosen, no restrictions on the normalized rate of variation of the time-varying gain, but, for other periodic/aperiodic time-varying gains, they do. Overall, even when specialized to periodic-coefficient linear and nonlinear MIMO systems, the stability conditions are distinct from and less restrictive than recent results in the literature. No comparable results exist in the literature for aperiodic time-varying gains. Furthermore, some new stability results concerning the dwell-time problem and time-varying gain switching in linear and nonlinear MIMO systems with periodic/aperiodic matrix gains are also presented. Examples are given to illustrate a few of the stability theorems.
Spatial Frequency Domain Imaging: Applications in Preclinical Models of Alzheimer's Disease
Lin, Alexander Justin
A clinical challenge in Alzheimer's disease (AD) is diagnosing and treating patients earlier, before symptoms of cognitive dysfunction occur. A good screening test would be sensitive to the AD brain pathology, safe, and cost-effective. Diffuse optical imaging, which measures how non-ionizing light is absorbed and scattered in tissue, may fulfill these three parameters. We imaged the brains of transgenic AD mouse models in vivo with a quantitative, camera-based, diffuse optical imaging technology called spatial frequency domain imaging (SFDI) to characterize near-infrared (650-970nm) optical biomarkers of AD. Compared to age-matched control mice, we found a decrease in light absorption --- due to lower oxygenated and total hemoglobin concentrations in the brain --- correlating to decreased blood vessel volume and density in histology. Light scattering also increased in AD mice, correlating to brain structural changes caused by neuron loss and activation of inflammatory cells. Furthermore, inhaled gas challenges revealed brain vascular function was diminished. To investigate how AD affects the small changes in blood perfusion caused by increased brain activity, we built a new SFDI system from a commercial light-emitting diode microprojector and off-the-shelf optical components and cameras to measure optical properties in the visible range (460-632nm). Our measurements showed a reduced amplitude and duration of blood vessel dilation to increased brain activity in the AD mice. Altogether, this work increased our understanding of AD pathogenesis, explored optical biomarkers of AD, and improved technology access to other research labs. These results and technologies can further be used to facilitate longitudinal drug therapy trials in mice and provide a roadmap to diffuse optical spectroscopy studies in humans.
GUM2DFT—a software tool for uncertainty evaluation of transient signals in the frequency domain
Eichstädt, S.; Wilkens, V.
2016-05-01
The Fourier transform and its counterpart for discrete time signals, the discrete Fourier transform (DFT), are common tools in measurement science and application. Although almost every scientific software package offers ready-to-use implementations of the DFT, the propagation of uncertainties in line with the guide to the expression of uncertainty in measurement (GUM) is typically neglected. This is of particular importance in dynamic metrology, when input estimation is carried out by deconvolution in the frequency domain. To this end, we present the new open-source software tool GUM2DFT, which utilizes closed formulas for the efficient propagation of uncertainties for the application of the DFT, inverse DFT and input estimation in the frequency domain. It handles different frequency domain representations, accounts for autocorrelation and takes advantage of the symmetry inherent in the DFT result for real-valued time domain signals. All tools are presented in terms of examples which form part of the software package. GUM2DFT will foster GUM-compliant evaluation of uncertainty in a DFT-based analysis and enable metrologists to include uncertainty evaluations in their routine work.
GUM2DFT—a software tool for uncertainty evaluation of transient signals in the frequency domain
International Nuclear Information System (INIS)
The Fourier transform and its counterpart for discrete time signals, the discrete Fourier transform (DFT), are common tools in measurement science and application. Although almost every scientific software package offers ready-to-use implementations of the DFT, the propagation of uncertainties in line with the guide to the expression of uncertainty in measurement (GUM) is typically neglected. This is of particular importance in dynamic metrology, when input estimation is carried out by deconvolution in the frequency domain. To this end, we present the new open-source software tool GUM2DFT, which utilizes closed formulas for the efficient propagation of uncertainties for the application of the DFT, inverse DFT and input estimation in the frequency domain. It handles different frequency domain representations, accounts for autocorrelation and takes advantage of the symmetry inherent in the DFT result for real-valued time domain signals. All tools are presented in terms of examples which form part of the software package. GUM2DFT will foster GUM-compliant evaluation of uncertainty in a DFT-based analysis and enable metrologists to include uncertainty evaluations in their routine work. (paper)
Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Fei
2016-04-01
A time-domain filtered-x Newton narrowband algorithm (the Fx-Newton algorithm) is proposed to address three major problems in active isolation of machinery vibration: multiple narrowband components, MIMO coupling, and amplitude and frequency fluctuations. In this algorithm, narrowband components are extracted by narrowband-pass filters (NBPF) and independently controlled by multi-controllers, and fast convergence of the control algorithm is achieved by inverse secondary-path filtering of the extracted sinusoidal reference signal and its orthogonal component using L×L numbers of 2nd-order filters in the time domain. Controller adapting and control signal generation are also implemented in the time domain, to ensure good real-time performance. The phase shift caused by narrowband filter is compensated online to improve the robustness of control system to frequency fluctuations. A double-reference Fx-Newton algorithm is also proposed to control double sinusoids in the same frequency band, under the precondition of acquiring two independent reference signals. Experiments are conducted with an MIMO single-deck vibration isolation system on which a 200 kW ship diesel generator is mounted, and the algorithms are tested under the vibration alternately excited by the diesel generator and inertial shakers. The results of control over sinusoidal vibration excited by inertial shakers suggest that the Fx-Newton algorithm with NBPF have much faster convergence rate and better attenuation effect than the Fx-LMS algorithm. For swept, frequency-jumping, double, double frequency-swept and double frequency-jumping sinusoidal vibration, and multiple high-level harmonics in broadband vibration excited by the diesel generator, the proposed algorithms also demonstrate large vibration suppression at fast convergence rate, and good robustness to vibration with frequency fluctuations.
Husa, Sascha; Khan, Sebastian; Hannam, Mark; Pürrer, Michael; Ohme, Frank; Forteza, Xisco Jiménez; Bohé, Alejandro
2016-02-01
In this paper we discuss the anatomy of frequency-domain gravitational-wave signals from nonprecessing black-hole coalescences with the goal of constructing accurate phenomenological waveform models. We first present new numerical-relativity simulations for mass ratios up to 18, including spins. From a comparison of different post-Newtonian approximants with numerical-relativity data we select the uncalibrated SEOBNRv2 model as the most appropriate for the purpose of constructing hybrid post-Newtonian/numerical-relativity waveforms, and we discuss how we prepare time-domain and frequency-domain hybrid data sets. We then use our data together with results in the literature to calibrate simple explicit expressions for the final spin and radiated energy. Equipped with our prediction for the final state we then develop a simple and accurate merger-ringdown model based on modified Lorentzians in the gravitational-wave amplitude and phase, and we discuss a simple method to represent the low frequency signal augmenting the TaylorF2 post-Newtonian approximant with terms corresponding to higher orders in the post-Newtonian expansion. We finally discuss different options for modelling the small intermediate frequency regime between inspiral and merger ringdown. A complete phenomenological model based on the present work is presented in a companion paper [S. Khan et al., following paper, Phys. Rev. D 93 044007 (2016)].
Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media
Cerussi, Albert Edward
1999-09-01
In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of
Energy Technology Data Exchange (ETDEWEB)
Tian, Yuan; Han, Yiping, E-mail: yphan@xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China); Ai, Xia [National Key Laboratory of Science and Technology on Test physics and Numerical Mathematical, Beijing 100076 (China); Liu, Xiuxiang [Science and Technology on Space Physics Laboratory, Beijing 100076 (China)
2014-12-15
In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.
Thalmann, Etienne; Regamey, Yves-Julien; Karimi, Alireza
2016-01-01
The linear motion of the Corner Cube Mechanism developed for the infrared sounder of the third generations of Meteosat weather satellites requires a high level of accuracy. The system is subject to external micro-vibration perturbations from surrounding instruments, which cannot be rejected with the current PID controllers with notch filters. A data-driven H-infinity robust controller design method is proposed to improve the control performance. The method uses only frequency-domain data and...
International Nuclear Information System (INIS)
A frequency-domain criterion for the elimination of limit cycles in a class of digital filters utilizing single saturation nonlinearity is presented. The criterion is derived by exploiting the structural properties of the system under consideration in a greater detail. A novel feature of the criterion is that it takes the form of a matrix inequality, despite the fact that there is single nonlinearity in the system. An example showing the effectiveness of the criterion is given
Hamada Esmaiel; Danchi Jiang
2014-01-01
Time-reversed orthogonal frequency division multiplexing (TR-OFDM) has recently received attention as a promising spectral efficient scheme for single-input multiple-output communications over time-dispersive fading channels. For TR-OFDM, passive time reversal processing is used as a simple means for channel time dispersion reduction. In particular, pseudorandom noise (PN)-sequence padding time-domain synchronisation OFDM (TDS-OFDM) transmission scheme has been reported as an appealing altern...
Kemp, J.; Bilbao, Stefan
2010-01-01
If a theoretical expression is known for the radiation impedance then it may be projected to predict the input impedance and input impulse response in an acoustic waveguide. Radiation impedance may be derived from integration of Green's functions and so are based on continuous expressions in the frequency domain. In this study the finite difference technique will be used to simulate the reflections of a band limited impulse as it travels down a horn and partially radiates and reflects from th...
Jun, Changsu; Villiger, Martin; Oh, Wang-Yuhl; Bouma, Brett E.
2014-01-01
Innovations in laser engineering have yielded several novel configurations for high repetition rate, broad sweep range, and long coherence length wavelength swept lasers. Although these lasers have enabled high performance frequency-domain optical coherence tomography, they are typically complicated and costly and many require access to proprietary materials or devices. Here, we demonstrate a simplified ring resonator configuration that is straightforward to construct from readily available m...
Indian Academy of Sciences (India)
Qian Lin; Xiaofeng Wu; Yun Chen
2015-12-01
This paper studies the global synchronization of non-autonomous, time-delay, chaotic power systems via linear state-error feedback control. The frequency domain criterion and the LMI criterion are proposed and applied to design the coupling matrix. Some algebraic criteria via a single-variable linear coupling are derived and formulated in simple algebraic inequalities. The effectiveness of the new criteria is illustrated with numerical examples.
Saager, RB; Balu, M; Crosignani, V; Sharif, A; Durkin, AJ; Kelly, KM; Tromberg, BJ
2015-01-01
© 2015 The Authors. The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volu...
Operto, S.; VIRIEUX, J; Ribodetti, Alessandra; Anderson, J E
2009-01-01
A 2D finite-difference, frequency-domain method was developed for modeling viscoacoustic seismic waves in transversely isotropic media with a tilted symmetry axis. The medium is parameterized by the P-wave velocity on the symmetry axis, the density, the attenuation factor, Thomsen's anisotropic parameters delta and epsilon, and the tilt angle. The finite-difference discretization relies on a parsimonious mixed-grid approach that designs accurate yet spatially compact stencils. The system of l...
The effect of missing RR-interval data on heart rate variability analysis in the frequency domain
International Nuclear Information System (INIS)
In this study, optimal methods for re-sampling and spectral estimation in frequency-domain heart rate variability (HRV) analysis were investigated through a simulation using artificial RR-interval data. Nearest-neighbour, linear, cubic spline and piecewise cubic Hermite interpolation methods were considered for re-sampling and representative non-parametric, parametric, and uneven approaches were used for spectral estimation. Based on this result, the effects of missing RR-interval data on frequency-domain HRV analysis were observed through the simulation of missing data using real RR-interval tachograms. For this simulation, data including the simulated artefact section (0–100 s) were used; these data were selected randomly from the real RR data obtained from the MIT-BIH normal sinus rhythm RR-interval database. In all, 7182 tachograms of 5 min durations were used for this analysis. The analysis for certain missing data durations is performed by 100 Monte Carlo runs. TF, VLF, LF and HF were estimated as the frequency-domain parameters in each run, and the normalized errors between the data with and without the missing data duration for these parameters were calculated. Rules obtained from the results of these simulations were evaluated with real missing RR-interval data derived from a capacitive-coupled ECG during sleep
Numerical Study on Global Motion of Truss Spar in Frequency and Time Domains for the Liwan 3-1 Area
Institute of Scientific and Technical Information of China (English)
LI Lu; LI Binbin; OU Jinping
2011-01-01
Using frequency and time domain analysis, the authors analyzed the hydrodynamics and motion behavior of a Truss Spar platform at a water depth of 1500 m in the Liwan 3-1 area of the South China Sea. Firstly, the seakeeping ability is acquired in the frequency domain by calculating the hull's hydrodynamics and comparing with a semi-submersible platform. The random wave analysis for 100-year, 10-year and 1-year return periods in Liwan 3-1 distinctly shows lower heave but larger surge and pitch responses of the Truss Spar than those of a semi-submersible. Secondly, 3-hour motions of the Truss Spar are predicted and compared in the time domain under 100-year return period conditions in Liwan 3-1 and the Gulf of Mexico. Thirdly, the hull/mooring line coupled and uncoupled models are compared. Finally, the responses of the Truss Spar under 10-year and 1-year return period conditions are assessed. The results reveal that the mooring line damping reflected by the coupled model distinctly decreases the low frequency motior The maximum heave response for 100-year return period waves is 1.23m and below 0. 1m for the case of 1-year return period.
Time-frequency Domain Analogues of Phase Space Sub-Planck Structures
Praxmeyer, Ludmila; Wasylczyk, Piotr; Radzewicz, Czeslaw; Wodkiewicz, Krzysztof
2006-01-01
We present experimental data of the frequency resolved optical gating (FROG) measurements of light pulses revealing interference features corresponding to sub-Planck structures in phase space. For superpositions of pulses a small, sub-Fourier shift in the carrier frequency leads to a state orthogonal to the initial one, although in the representation of standard time-frequency distributions these states seem to have a nonvanishing overlap.
Time-domain analysis of frequency dependent inertial wave forces on cylinders
DEFF Research Database (Denmark)
Krenk, Steen
2013-01-01
Mono-pile structures are attractive for small well-head platforms and foundation of offshore wind turbines at moderate water depth. Their diameter of several meters makes them prone to simultaneous occurrence of frequency-dependent inertial forces and non-linear drag. The present paper presents a...... reduction of the resonant part of the response for natural structural frequencies above the dominating wave frequency....
Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.
Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B
2015-11-01
Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131
International Nuclear Information System (INIS)
The feasibility of an ultrasonic nondestructive evaluation method for the properties of a single-fiber interphase is investigated theoretically. The nondestructive characterization method of the interphase suggested in this study is to utilize the frequency-domain characteristics of stresses in the scattered waves. It has been observed that the peaks and valleys in the frequency response of ultrasonic scattered waves are affected in their locations and magnitudes significantly by the interphase properties. To assess the feasibility of solving the inverse problem, a neural network model is constructed based on the theoretically computed database containing the interphase properties and the corresponding frequency response characteristics. It is shown that the neural network constructed in this study is capable of estimating the intenhase properties with good accuracy in most cases. This implies that the method suggested in this study is feasible and is worth attempting in an experimental study in the future.
Directory of Open Access Journals (Sweden)
Reza Ahmadi
2014-12-01
Full Text Available To date, a number of numerical methods, including the popular Finite-Difference Time Domain (FDTD technique, have been proposed to simulate Ground-Penetrating Radar (GPR responses. Despite having a number of advantages, the finite-difference method also has pitfalls such as being very time consuming in simulating the most common case of media with high dielectric permittivity, causing the forward modelling process to be very long lasting, even with modern high-speed computers. In the present study the well-known hyperbolic pattern response of horizontal cylinders, usually found in GPR B-Scan images, is used as a basic model to examine the possibility of reducing the forward modelling execution time. In general, the simulated GPR traces of common reflected objects are time shifted, as with the Normal Moveout (NMO traces encountered in seismic reflection responses. This suggests the application of Fourier transform to the GPR traces, employing the time-shifting property of the transformation to interpolate the traces between the adjusted traces in the frequency domain (FD. Therefore, in the present study two post-processing algorithms have been adopted to increase the speed of forward modelling while maintaining the required precision. The first approach is based on linear interpolation in the Fourier domain, resulting in increasing lateral trace-to-trace interval of appropriate sampling frequency of the signal, preventing any aliasing. In the second approach, a super-resolution algorithm based on 2D-wavelet transform is developed to increase both vertical and horizontal resolution of the GPR B-Scan images through preserving scale and shape of hidden hyperbola features. Through comparing outputs from both methods with the corresponding actual high-resolution forward response, it is shown that both approaches can perform satisfactorily, although the wavelet-based approach outperforms the frequency-domain approach noticeably, both in amplitude and
Thiele, Robert H; Colquhoun, Douglas A; Tucker-Schwartz, Jason M; Gillies, George T; Durieux, Marcel E
2012-10-01
Commonly used arterial respiratory variation metrics are based on mathematical analysis of arterial waveforms in the time domain. Because the shape of the arterial waveform is dependent on the site at which it is measured, we hypothesized that analysis of the arterial waveform in the frequency domain might provide a relatively site-independent means of measuring arterial respiratory variation. Radial and femoral arterial blood pressures were measured in nineteen patients undergoing liver transplantation. Systolic pressure variation (SPV), pulse pressure variation (PPV), area under the curve variation (AUCV), and mean arterial pressure variation (MAPV) at radial and femoral sites were calculated off-line. Two metrics, "Spectral Peak Ratio" (SPeR) and "Spectral Power Ratio" (SPoR) based on ratios of the spectral peak and spectral area (power) at the respiratory and cardiac frequencies, were calculated at both radial and femoral sites. Variance among radial-femoral differences was compared and correlation coefficients describing the relationship between respiratory variation at the radial and femoral sites were developed. The variance in radial-femoral differences were significantly different (p SPV, PPV, AUCV, MAPV, SPeR, and SPoR, respectively. Assuming a PPV treatment threshold of 12 % (or equivalent), differences in treatment decisions based on radial or femoral estimates would arise in 12, 14, 5.4, 5.7, 4.8, and 5.5 % of minutes for SPV, PPV, AUCV, MAPV, spectral peak ratio, and spectral power ratio, respectively. As compared to frequency domain-based estimates of respiratory variation, SPV and PPV are relatively dependent on the anatomic site at which they are measured. Spectral peak and power ratios are relatively site-independent means of measuring respiratory variation, and may offer a useful alternative to time domain-based techniques. PMID:22903732
Choi, Yun Seok
2012-01-01
The instantaneous traveltime based inversion was developed to solve the phase wrapping problem, thus generating long-wavelength structures even for a high single-frequency. However, it required aggressive damping to insure proper convergence. A reason for that is the potential for unstable division in the calculation of the instantaneous traveltime for low damping factors. Thus, we propose an inversion algorithm using the amplitude of the derivative wavefield to avoid the unstable division process. Since the amplitude of the derivative wavefield contains the unwrapped-phase information, its inversion has the potential to provide robust inversion results. On the other hand, the damping term rapidly diminishes the amplitude of the derivative wavefield at far source-receiver offsets. As an alternative, we suggest using the logarithmic amplitude of the derivative wavefield. The gradient of this inversion algorithm is obtained by the back-propagation approach, based on the adjoint-state technique. Numerical examples show that the logarithmic-amplitude approach yields better convergent results than the instantaneous traveltime inversion, whereas the pure-amplitude approach does not show much convergence.
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Directory of Open Access Journals (Sweden)
Guo Shuixia
2010-06-01
Full Text Available Abstract Background Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE, Bayesian networks, information theory and Granger Causality. Results Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins. For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. Conclusions The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.
Implementation of virtual reality demonstrations with time-frequency-domain audio engine
Paasonen, Juhani
2015-01-01
Directional audio coding (DirAC) is a system originally developed for analyzing recordings of spatial audio and synthesizing them with arbitrary loudspeaker setups or headphones. It is based on knowledge of human hearing, psychoacoustics. In analysis, the input is divided to frequency bands. For each frequency band, the direction of arrival and the diffuseness of sound are estimated. In synthesis, the result is divided to diffuse and non-diffuse stream. The diffuse stream is non-directional, ...
Jing, X. J.; Z.Q. Lang
2008-01-01
The effects of cubic nonlinear damping on the system output spectrum are theoretically studied through a dimensionless mass-spring-damping system model subject to a harmonic input, based on the Volterra series approximation. It is for the first time shown theoretically that the cubic nonlinear damping has little effect on the system output spectrum at high or low frequencies but drives the system output spectrum to be an alternative series at the natural frequency 1 such that the system ou...
Data-Aided Frequency-Domain 2×2 MIMO Equalizer for 112 Gbit/s PDM-QPSK Coherent Transmission Systems
DEFF Research Database (Denmark)
Pittalà, Fabio; Hauske, Fabian N.; Ye, Yabin;
2012-01-01
Benefits of a low-complexity adaptive 32-tap 2×2 MIMO frequency-domain filter update by data-aided channel estimation over a time-domain filter with DD-LMS are shown. Superior stability and convergence speed is demonstrated with identical impairment tolerance.......Benefits of a low-complexity adaptive 32-tap 2×2 MIMO frequency-domain filter update by data-aided channel estimation over a time-domain filter with DD-LMS are shown. Superior stability and convergence speed is demonstrated with identical impairment tolerance....
Lee, Intae; Jang, Gil-Jin
2012-12-01
A novel method is proposed to improve the performance of independent vector analysis (IVA) for blind signal separation of acoustic mixtures. IVA is a frequency-domain approach that successfully resolves the well-known permutation problem by applying a spherical dependency model to all pairs of frequency bins. The dependency model of IVA is equivalent to a single clique in an undirected graph; a clique in graph theory is defined as a subset of vertices in which any pair of vertices is connected by an undirected edge. Therefore, IVA imposes the same amount of statistical dependency on every pair of frequency bins, which may not match the characteristics of real-world signals. The proposed method allows variable amounts of statistical dependencies according to the correlation coefficients observed in real acoustic signals and, hence, enables more accurate modeling of statistical dependencies. A number of cliques constitutes the new dependency graph so that neighboring frequency bins are assigned to the same clique, while distant bins are assigned to different cliques. The permutation ambiguity is resolved by overlapped frequency bins between neighboring cliques. For speech signals, we observed especially strong correlations across neighboring frequency bins and a decrease in these correlations with an increase in the distance between bins. The clique sizes are either fixed, or determined by the reciprocal of the mel-frequency scale to impose a wider dependency on low-frequency components. Experimental results showed improved performances over conventional IVA. The signal-to-interference ratio improved from 15.5 to 18.8 dB on average for seven different source locations. When we varied the clique sizes according to the observed correlations, the stability of the proposed method increased with a large number of cliques.
Directory of Open Access Journals (Sweden)
K. Selvaraj
2014-05-01
Full Text Available The activity and the ability of brain to maintain the state of calmness in individuals practicing meditation has been a subject of research from long time. The aim of the study here is to prove that the meditation aids in retaining the state of calmness of brain. A MATLAB based multifaceted framework is developed for analyzing the dataset of brain EEG of people practicing meditation. The proposed method performs the processing of 32 electrode EEG data and denoises the signal in time series. The plotting of data followed by PSD analysis and FFT transform of the signal to analyze the data in frequency domain for examining each frequency band. The comparison is done using the L2 norm. The ICWT is later found to analyze the data and calculate for Modulus and angle of the EEG signal. The statistical analysis in time and frequency domain is use to study the effect of meditation on focused attention and retaining of same in meditating and non-meditating brains.
Energy Technology Data Exchange (ETDEWEB)
Hattori, Kaori, E-mail: khattori@berkeley.edu [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Arnold, Kam; Barron, Darcy [University of California, San Diego, La Jolla, CA (United States); Dobbs, Matt; Haan, Tijmen de [McGill University, Montreal, Quebec (Canada); Harrington, Nicholas [University of California, Berkeley, Physics, Berkeley, CA (United States); Hasegawa, Masaya; Hazumi, Masashi [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Holzapfel, William L. [University of California, Berkeley, Physics, Berkeley, CA (United States); Keating, Brian [University of California, San Diego, La Jolla, CA (United States); Lee, Adrian T. [University of California, Berkeley, Physics, Berkeley, CA (United States); Morii, Hideki [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Myers, Michael J. [University of California, Berkeley, Physics, Berkeley, CA (United States); Smecher, Graeme [Three-Speed Logic, Inc., Vancouver (Canada); Suzuki, Aritoki [University of California, Berkeley, Physics, Berkeley, CA (United States); Tomaru, Takayuki [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)
2013-12-21
The POLARBEAR-2 Cosmic Microwave Background (CMB) experiment aims to observe B-mode polarization with high sensitivity to explore gravitational lensing of CMB and inflationary gravitational waves. POLARBEAR-2 is an upgraded experiment based on POLARBEAR-1, which had first light in January 2012. For POLARBEAR-2, we will build a receiver that has 7588 Transition Edge Sensor (TES) bolometers coupled to two-band (95 and 150 GHz) polarization-sensitive antennas. For the large array's readout, we employ digital frequency-domain multiplexing and multiplex 32 bolometers through a single superconducting quantum interference device (SQUID). An 8-bolometer frequency-domain multiplexing readout has been deployed with the POLARBEAR-1 experiment. Extending that architecture to 32 bolometers requires an increase in the bandwidth of the SQUID electronics to 3 MHz. To achieve this increase in bandwidth, we use Digital Active Nulling (DAN) on the digital frequency multiplexing platform. In this paper, we present requirements and improvements on parasitic inductance and resistance of cryogenic wiring and capacitors used for modulating bolometers. These components are problematic above 1 MHz. We also show that our system is able to bias a bolometer in its superconducting transition at 3 MHz.
Institute of Scientific and Technical Information of China (English)
ZHANG Fan; YANG Jian-min; LI Run-pei; CHEN Gang
2008-01-01
For the floating structures in deepwater, the coupling effects of the mooring lines and risers on the motion responses of the structures become increasingly significant. Viscous damping, inertial mass, current loading and restoring, etc. from these slender structures should be carefully handled to accurately predict the motion responses and line tensions. For the spar platforms, coupling the mooring system and riser with the vessel motion typically results in a reduction in extreme motion responses. This article presents numerical simulations and model tests on a new cell-truss spar platform in the State Key Laboratory of Ocean Engineering in Shanghai Jiaotong University. Results from three calculation methods, including frequency-domain analysis, time-domain semi-coupled and fully-coupled analyses, were compared with the experimental data to find the applicability of different approaches. Proposals for the improvement of numerical calculations and experimental technique were tabled as well.
Spatial and frequency domain ring source models for the single muscle fiber action potential
DEFF Research Database (Denmark)
Henneberg, Kaj-åge; R., Plonsey
1994-01-01
In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... examples including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....
International Nuclear Information System (INIS)
We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 μM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured
Parameterised controller synthesis for SISO-LTI uncertain plants using frequency domain information
Parastvand, Hossein; Khosrowjerdi, Mohammad-Javad
2016-01-01
This paper extends the results of a new model-free approach which has been applied to guarantee nominal stability and performance. In this paper, using a particular controller structure, the robust stability (RS) and robust performance (RP) criteria for single input single output linear time invariant (SISO-LTI) plants with multiplicative uncertainty are transformed to affine functions in terms of controller parameters. It is shown that solving the feasibility problem of these new criteria will lead to controllers that guarantee the RS and performance. There is no need for a plant mathematical model. The required data for controller synthesis are just the frequency responses corresponding to limited samples of the uncertain plant. Also, there is no need for exact data at each frequency for the whole set of frequency responses. The approach is also applicable for designing both low- and high-order controllers. The effectiveness of the proposed technique is illustrated by simulation results.
Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan
2016-03-01
In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.
Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators
International Nuclear Information System (INIS)
A time-domain theory of frequency-locking gyrotron oscillators with low-Q resonators has been developed. The presented theory is based on the description of wave propagation by a parabolic equation taking into account the external signal by modification of boundary conditions. We show that the developed model can be effectively used for simulations of both single- and multi-mode operation regimes in gyrotrons driven by an external signal. For the case of low-Q resonators typical for powerful gyrotrons, the external signal can influence the axial field profile inside the interaction space significantly and, correspondingly, the value of the electron orbital efficiency
Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas
2015-03-01
This paper demonstrates the co-registration of ultrasound (US) and frequency domain photoacoustic radar (FD-PAR) images with significant image improvement from applying image normalization, filtering and amplification techniques. Achieving PA imaging functionality on a commercial Ultrasound instrument could accelerate clinical acceptance and use. Experimental results presented demonstrate live animal testing and show enhancements in signal-to-noise ratio (SNR), contrast and spatial resolution. The co-registered image produced from the US and phase PA images, provides more information than both images independently.
Jo, Ju-Yeon; Tanimura, Yoshitaka
2016-01-01
Frequency-domain two-dimensional Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium-nonequilibrium hybrid MD simulation algorithm. We elucidate mechanisms governing the 2D signal pro?les involving anharmonic mode-mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal pro?les and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently.
Zhang, Fanghua; Hao, Qun; Hu, Yao; Zhu, Qiudong
2012-11-01
This paper introduces a time-and-frequency-domain (TFD) anti-noise phase-shifting interferometry, and designs an experimental system to test the anti-vibration ability of this method. In the system, a plane mirror is measured under the external vibrations simulated by the standard mirror propelled by PZT. During the measurement, each of the key parameters is assigned different values. By analyzing the testing results, the law of the parameters' influence on system anti-vibration capability can be obtained. According to the law, the optimization parameters can be determined so that the system has the maximum anti- vibration capability.
Czech Academy of Sciences Publication Activity Database
Trnka, Jan; Pavloušek, P.; Nedomová, Š.; Buchar, J.
2016-01-01
Roč. 47, č. 1 (2016), s. 24-33. ISSN 0022-4901 Institutional support: RVO:61388998 Keywords : berry´s response * dominant frequency * elastic modulus * grape berries Subject RIV: BO - Biophysics Impact factor: 1.367, year: 2014 http://onlinelibrary.wiley.com
Frequency Domain Packet Scheduling Under Fractional Load for the UTRAN LTE Downlink
DEFF Research Database (Denmark)
Pokhariyal, Akhilesh; Monghal, Guillaume Damien; Pedersen, Klaus I.;
2007-01-01
FL based on transmission using a subset of the time-frequency resources, in an un-coordinated manner throughout the cellular network. On the basis of detailed system-level simulations we find that FDPS under FL can provide a performance trade-off between improvement in coverage and the loss in cell...
Sauvé, Alexandre
2016-01-01
Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for {\
DEFF Research Database (Denmark)
Brincker, Rune; Andersen, P.; Cantieni, R.
2001-01-01
A series of 15 progressive damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case with a relatively large number of sensors. Changes in frequencies, damping ratios and MAC values were determined. An...
Wilhelm, B.; Vogel, H.; Crouzet, C.; Etienne, D.; Anselmetti, F. S.
2016-02-01
Mediterranean climatic influences was explored by studying a lake sequence (Lake Foréant) of the Western European Alps. High-resolution sedimentological and geochemical analysis revealed 171 event layers, 168 of which result from past flood events over the last millennium. The layer thickness was used as a proxy of intensity of past floods. Because the Foréant palaeoflood record is in agreement with the documented variability of historical floods resulting from local and mesoscale, summer-to-autumn convective events, it is assumed to highlight changes in flood frequency and intensity related to such events typical of both Atlantic (local events) and Mediterranean (mesoscale events) climatic influences. Comparing the Foréant record with other Atlantic-influenced and Mediterranean-influenced regional flood records highlights a common feature in all flood patterns that is a higher flood frequency during the cold period of the Little Ice Age (LIA, AD 1300-1900). In contrast, high-intensity flood events are apparent during both the cold LIA and the warm Medieval Climate Anomaly (MCA, AD 950-1250). However, there is a tendency towards higher frequencies of high-intensity flood events during the warm MCA. The MCA extremes could mean that under the global warming scenario, we might see an increase in intensity (not in frequency). However, the flood frequency and intensity in the course of the 20th century warming trend did not change significantly. Uncertainties in future evolution of flood intensity lie in the interpretation of the lack of 20th century extremes (transition or stable?) and the different climate forcing factors between the two periods (greenhouse gases vs. solar and/or volcanic eruptions).
Wilhelm, B.; Vogel, H.; Crouzet, C.; Etienne, D.; Anselmetti, F. S.
2015-10-01
The long-term response of the flood activity to both Atlantic and Mediterranean climatic influences was explored by studying a lake sequence (Lake Foréant) of the Western European Alps. High-resolution sedimentological and geochemical analysis revealed 171 turbidites, 168 of which result from past flood events over the last millennium. The deposit thickness was used as a proxy of intensity of past floods. Because the Foréant palaeoflood record is in agreement with the documented variability of historical floods resulting from local and mesoscale convective events, it is assumed to highlight changes in flood frequency and intensity related to such events typical of both climatic influences. Comparing the Foréant record with other Atlantic-influenced and Mediterranean-influenced regional flood records highlights a common feature in all flood patterns that is a higher flood frequency during the cold period of the Little Ice Age (LIA). In contrast, high-intensity flood events are apparent during both, the cold LIA and the warm Medieval Climate Anomaly (MCA). However, there is a tendency towards higher frequencies of these events during the warm MCA. The MCA extremes could mean that under the global warming scenario, we might see an increase in intensity (not in frequency). However, the flood frequency and intensity in course of 20th century warming trend did not change significantly. Uncertainties lie in the interpretation of the lack of 20th century extremes (transition or stable?) and the different climate forcing factors (greenhouse gases vs. solar/volcanic eruptions).
Directory of Open Access Journals (Sweden)
Natalie Baddour
2015-12-01
Full Text Available This paper considers the effect of an impedance mismatch between the absorber and its surroundings on the aborber reconstructions from the photoacoustic signal profile, in particular when a non-delta input pulse is used. A transfer function approach is taken, demonstrating in the case of impedance mismatch how the total response can be modeled using the sum of the mismatch-free response and its time-delayed, time-reversed replicas, which may or may not overlap. It is shown how this approach can be exploited to accommodate the effects of non-delta pulses and/or pulse-equivalent waveforms such as linear-frequency-modulated (LFM chirps, and impedance mismatches in any inversion algorithms, even in the presence of large reflection coefficients. As a consequence, for simple-absorber reconstruction algorithms that assume impulses or ‘short enough’ pulses, the compressive portion of the measured response may be used in reconstruction formulas that do not model the impedance mismatch, regardless of the size of the mismatch. For longer-duration input waveforms, it is demonstrated how existing reconstruction methods can be successfully adapted to include the effect of the impedance mismatch. Simulations are used to illustrate these ideas. The gained physical insight into how components of the generated pressure wave carry absorber information is then exploited for signal inversion and absorber reconstruction in the frequency domain when multi-frequency modulation chirps are used for photoacoustic radar pressure measurements. The foundational theoretical developments ultimately address impendance mismatch issues germane to the major photoacoustic frequency-domain imaging modality to-date, which is the photoacoustic radar.
Directory of Open Access Journals (Sweden)
Tomi Roinila
2014-07-01
Full Text Available Silicon nanowire-based field-effect transistors (SiNW FETs have demonstrated the ability of ultrasensitive detection of a wide range of biological and chemical targets. The detection is based on the variation of the conductance of a nanowire channel, which is caused by the target substance. This is seen in the voltage–current behavior between the drain and source. Some current, known as leakage current, flows between the gate and drain, and affects the current between the drain and source. Studies have shown that leakage current is frequency dependent. Measurements of such frequency characteristics can provide valuable tools in validating the functionality of the used transistor. The measurements can also be an advantage in developing new detection technologies utilizing SiNW FETs. The frequency-domain responses can be measured by using a commercial sine-sweep-based network analyzer. However, because the analyzer takes a long time, it effectively prevents the development of most practical applications. Another problem with the method is that in order to produce sinusoids the signal generator has to cope with a large number of signal levels. This may become challenging in developing low-cost applications. This paper presents fast, cost-effective frequency-domain methods with which to obtain the responses within seconds. The inverse-repeat binary sequence (IRS is applied and the admittance spectroscopy between the drain and source is computed through Fourier methods. The methods is verified by experimental measurements from an n-type SiNW FET.
Frequency Domain Blind Source Separation for Robot Audition Using a Parameterized Sparsity Criterion
Abed-Meraim, Karim; Grenier, Y.; Maazaoui, Mounira
2011-01-01
In this paper, we introduce a modified lp norm blind source separation criterion based on the source sparsity in the timefrequency domain. We study the effect of making the sparsity constraint harder through the optimization process, making the parameter p of the lp norm vary from 1 to nearly 0 according to a sigmoid function. The sigmoid introduces a smooth lp norm variation which avoids the divergence of the algorithm. We compared this algorithm to the regular l1 norm minimization and an IC...
Method for measuring settling phenomena by means of frequency domain instrumentation
D'Apuzzo, M.; D'Arco, M.; Liccardo, A.; Vadursi, M.
2016-05-01
The paper deals with the analysis of settling phenomena that characterize the step response of digital to analog converters, amplifiers, and several other devices. Settling is described by means of a minimal second order model that is suitable to account for the distortion terms recognized in the signal spectrum. An alternative method for dynamic performance assessment of systems characterized by poor settling performance is then proposed. Thanks to the use of high bandwidth spectrum analyzers, the proposed method overtakes the limits characterizing the measurement approaches based on the use of time-domain instruments in the presence of modern ultra-wideband systems.
Zhang, Jianbo; Ge, Hao; Li, Zhe; Ding, Zhanming
2015-01-01
This study develops a method to internally preheat lithium-ion batteries at low temperatures with sinusoidal alternating current (AC). A heat generation rate model in frequency domain is developed based on the equivalent electrical circuit. Using this model as the source term, a lumped energy conservation model is adopted to predict the temperature rise. These models are validated against the experimental results of preheating an 18650 cell at different thermal insulation conditions. The effects of current amplitude and frequency on the heating rate are illustrated with a series of simulated contours of heating time. These contours indicate that the heating rate increases with higher amplitude, lower frequency and better thermal insulation. The cell subjected to an alternating current with an amplitude of 7 A (2.25 C) and a frequency of 1 Hz, under a calibrated heat transfer coefficient of 15.9 W m-2 K-1, can be heated from -20 °C to 5 °C within 15 min and the temperature distribution remains essentially uniform. No capacity loss is found after repeated AC preheating tests, indicating this method incurs little damage to the battery health. These models are computationally-efficient and can be used in real time to control the preheating devices in electric vehicles.
低频脉冲信号的频域恒虚警检测%Constant false alarm rate detection in frequency domain for low-frequency pulse
Institute of Scientific and Technical Information of China (English)
梁增; 马启明; 杜栓平
2016-01-01
To improve the ability of detecting a weak sonar impulse signal form low-frequency background noise, a new detection method with constant false alarm rate (CFAR) in frequency domain is proposed. In this method, the peaks in the frequency domain are taken as the potential pulse signal due to the poor stability and large fluctuation of low-frequency background noise. Then, the detection decision is made through comparing the energy of those peaks and the energy of the background noise. The way of how to get statistic of test, background noise estimation and CFAR threshold is also given. Results of computer simulation and real data processing have confirmed the satisfactory performance of the proposed method in detecting weak sonar pulse signal like CW and CW-LFM, which contain narrow-band components.%为提高低频背景噪声中弱声呐脉冲信号的检测能力,给出了一种频域恒虚警检测方法.该方法针对低频背景噪声平稳性较差、起伏较大的特点,将频域中峰值点或极值点认为是疑似脉冲信号,通过对疑似点能量与历史背景进行比对的方式完成脉冲信号的检测判决,并且给出了相应的检验统计量获取方法、背景噪声估计方法和恒虚警检测门限的计算方法.仿真分析和实际数据处理结果表明,频域恒虚警检测方法对单频脉冲、单频-线性调频组合脉冲等包含窄带成分的弱声呐脉冲信号有非常好的检测性能.
Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media
Phillips, C R; Gallmann, L; Keller, U
2015-01-01
Advances in the amplification and manipulation of ultrashort laser pulses has led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine all of these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device. Moreover, our approach simultaneously offers solutions to the performance-limiting issues in the conventionally-used techniques, and supports scaling in power and bandwidth of the laser source. The approach is based on two-dimensional patterning of quasi-phase-matching gratings combined with optical parametric interactions involving spatially dispersed laser pulses...
HIGH RESOLUTION IMAGE PROJECTION IN FREQUENCY DOMAIN FOR CONTINUOUS IMAGE SEQUENCE
Directory of Open Access Journals (Sweden)
M. Nagaraju Naik
2010-09-01
Full Text Available Unlike most other information technologies, which have enjoyed an exponential growth for the past several decades, display resolution has largely stagnated. Low display resolution has in turn limited the resolution of digital images. Scaling is a non-trivial process that involves a trade-off between efficiency, smoothness and sharpness. As the size of an image is increased, so the pixels, which comprise the image, become increasingly visible, making the image to appear soft. Super scalar representation of image sequence is limited due to image information present in low dimensional image sequence. To project a image frame sequence into high-resolution static or fractional scalingvalue, a scaling approach is developed based on energy spectral interpolation and frequency spectral interpolation techniques. To realize the frequency spectral resolution Cubic-B-Spline method is used.
Frequency-domain birefringence measurement of biological binding to magnetic nanoparticles
Ku, Benjamin Y.; Chan, Mei-Lin; Ma, Zhiya; Horsley, David A.
2008-01-01
Optical detection of the frequency-dependent magnetic relaxation signal is used to monitor the binding of biological molecules to magnetic nanoparticles in a ferrofluid. Biological binding reactions cause changes in the magnetic relaxation signal due to an increase in the average hydrodynamic diameter of the nanoparticles. To allow the relaxation signal to be detected in dilute ferrofluids, measurements are made using a balanced photodetector, resulting in a 25 μV/√Hz noise floor, within 50% ...
Soman, Anand K.; Vaidyanathan, P.P.
1995-01-01
The problem of designing orthonormal (paraunitary) filter banks has been addressed in the past. Several structures have been reported for implementing such systems. One of the structures reported imposes a pairwise mirror-image symmetry constraint on the frequency responses of the analysis (and synthesis) filters around π/2. This structure requires fewer multipliers, and the design time is correspondingly less than most other structures. The filters designed also have much better attenuation....
The analysis of frequency domain characteristics of emotional images in eye-tracking experiment
Fan, Boqiang; Ma, Huimin; Wang, Xiang
2015-07-01
Although recently eye-tracking method has been introduced into behavioral experiments based on dot-probe paradigm, some characteristics in eye-tracking data do not draw as much attention as traditional characteristics like reaction time. It is also necessary to associate eye-tracking data to characteristics of images shown in experiments. In this research, new variables, such as fixation length, times of fixation and times of eye movement, in eye-tracking data were extracted from a behavioral experiment based on dot probe paradigm. They were analyzed and compared to traditional reaction time. After the analysis of positive and negative scenery images, parameters such as hue frequency spectrum PAR (Peak to Average Ratio) were extracted and showed difference between negative and positive images. These parameters of emotional images could discriminate scenery images according to their emotions in an SVM classifier well. Besides, it was found that images' hue frequency spectrum PAR is obviously relevant to eye-tracking statistics. When the dot was on the negative side, negative images' hue frequency spectrum PAR and horizontal eye-jumps confirmed to hyperbolic distribution, while that of positive images was linear with horizontal eye-jumps. The result could help to explain the mechanism of human's attention and boost the study in computer vision.
Hallacoglu, Bertan; Matulewicz, Richard S.; Paltiel, Harriet J.; Padua, Horacio; Gargollo, Patricio; Cannon, Glenn; Alomari, Ahmad; Sassaroli, Angelo; Fantini, Sergio
2009-09-01
We present a quantitative near-IR spectroscopy study of the absolute values of oxygen saturation of hemoglobin before and after surgically induced testicular torsion in adult rabbits. Unilateral testicular torsions (0, 540, or 720 deg) on experimental testes and contralateral sham surgery on control testes are performed in four adult rabbits. A specially designed optical probe for measurements at multiple source-detector distances and a commercial frequency-domain tissue spectrometer are used to measure absolute values of testicular hemoglobin saturation. Our results show: (1) a consistent baseline absolute tissue hemoglobin saturation value of 78+/-5%, (2) a comparable tissue hemoglobin saturation of 77+/-6% after sham surgery, and (3) a significantly lower tissue hemoglobin saturation of 36+/-2% after 540- and 720-deg testicular torsion surgery. Our findings demonstrate the feasibility of performing frequency-domain, multidistance near-IR spectroscopy for absolute testicular oximetry in the assessment of testicular torsion. We conclude that near-IR spectroscopy has potential to serve as a clinical diagnostic and monitoring tool for the assessment of absolute testicular hemoglobin desaturation caused by torsion, with the possibility of serving as a complement to conventional color and spectral Doppler ultrasonography.
Li, Y.; Han, B.; Métivier, L.; Brossier, R.
2016-09-01
We investigate an optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling. An anti-lumped mass strategy is incorporated to minimize the numerical dispersion. The optimal finite-difference coefficients and the mass weighting coefficients are obtained by minimizing the misfit between the normalized phase velocities and the unity. An iterative damped least-squares method, the Levenberg-Marquardt algorithm, is utilized for the optimization. Dispersion analysis shows that the optimal fourth-order scheme presents less grid dispersion and anisotropy than the conventional fourth-order scheme with respect to different Poisson's ratios. Moreover, only 3.7 grid-points per minimum shear wavelength are required to keep the error of the group velocities below 1%. The memory cost is then greatly reduced due to a coarser sampling. A parallel iterative method named CARP-CG is used to solve the large ill-conditioned linear system for the frequency-domain modeling. Validations are conducted with respect to both the analytic viscoacoustic and viscoelastic solutions. Compared with the conventional fourth-order scheme, the optimal scheme generates wavefields having smaller error under the same discretization setups. Profiles of the wavefields are presented to confirm better agreement between the optimal results and the analytic solutions.
Price, Stanton R.; Anderson, Derek T.; Stone, Kevin; Keller, James M.
2014-05-01
It is well-known that a pattern recognition system is only as good as the features it is built upon. In the fields of image processing and computer vision, we have numerous spatial domain and spatial-frequency domain features to extract characteristics of imagery according to its color, shape and texture. However, these approaches extract information across a local neighborhood, or region of interest, which for target detection contains both object(s) of interest and background (surrounding context). A goal of this research is to filter out as much task irrelevant information as possible, e.g., tire tracks, surface texture, etc., to allow a system to place more emphasis on image features in spatial regions that likely belong to the object(s) of interest. Herein, we outline a procedure coined soft feature extraction to refine the focus of spatial domain features. This idea is demonstrated in the context of an explosive hazards detection system using forward looking infrared imagery. We also investigate different ways to spatially contextualize and calculate mathematical features from shearlet filtered candidate image chips. Furthermore, we investigate localization strategies in relation to different ways of grouping image features to reduce the false alarm rate. Performance is explored in the context of receiver operating characteristic curves on data from a U.S. Army test site that contains multiple target and clutter types, burial depths, and times of day.
Performance of Spatial Division Multiplexing MIMO with Frequency Domain Packet Scheduling
DEFF Research Database (Denmark)
Wei, Na; Pokhariyal, Akhilesh; Sørensen, Troels Bundgaard;
2008-01-01
performance bounds of SDM-FDPS. To facilitate the analysis, a unified SINR concept is utilized to make a fair comparison of MIMO schemes with different number of spatial streams. The effect of packet scheduling is included in the post-scheduling SINR distribution using an analytical model. Based on that, the......, the more practical simulation results are compared against the theoretical performance bounds. A performance loss is seen in the simulations due to realistic coding/modulation, impact of frequency selectivity, signalling constraints, imperfect channel quality indicator (CQI), etc...
DEFF Research Database (Denmark)
Brincker, Rune; Andersen, Palle; Zhang, Lingmi
2007-01-01
As a part of a research project co-founded by the European Community, a series of 15 damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case. A dense array of instruments allowed the identification o...... objective is to show the application of the FDD method as an efficient way to perform health monitoring of civil engineering structures. The modal properties, frequencies, damping ratios and mode shapes for the different damage cases were compared with those for the undamaged bridge....
Brincker, Rune; Andersen, P; Zhang, L.
2002-01-01
As a part of a research project co-founded by the European Community, a series of 15 damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case. A dense array of instruments allowed the identification of a modal model with a total of 408 degrees of freedom. Six modes were identified in the frequency range from 0 to 16.7 Hz. The objective of this paper is to demonstrate the effectiveness of the Frequ...
He, F; Sarrigiannis, P G; Billings, S A; Wei, H; Rowe, J; Romanowski, C; Hoggard, N; Hadjivassilliou, M; Rao, D G; Grünewald, R; Khan, A; Yianni, J
2016-06-01
There is increasing evidence to suggest that essential tremor has a central origin. Different structures appear to be part of the central tremorogenic network, including the motor cortex, the thalamus and the cerebellum. Some studies using electroencephalogram (EEG) and magnetoencephalography (MEG) show linear association in the tremor frequency between the motor cortex and the contralateral tremor electromyography (EMG). Additionally, high thalamomuscular coherence is found with the use of thalamic local field potential (LFP) recordings and tremulous EMG in patients undergoing surgery for deep brain stimulation (DBS). Despite a well-established reciprocal anatomical connection between the thalamus and cortex, the functional association between the two structures during "tremor-on" periods remains elusive. Thalamic (Vim) LFPs, ipsilateral scalp EEG from the sensorimotor cortex and contralateral tremor arm EMG recordings were obtained from two patients with essential tremor who had undergone successful surgery for DBS. Coherence analysis shows a strong linear association between thalamic LFPs and contralateral tremor EMG, but the relationship between the EEG and the thalamus is much less clear. These measurements were then analyzed by constructing a novel parametric nonlinear autoregressive with exogenous input (NARX) model. This new approach uncovered two distinct and not overlapping frequency "channels" of communication between Vim thalamus and the ipsilateral motor cortex, defining robustly "tremor-on" versus "tremor-off" states. The associated estimated nonlinear time lags also showed non-overlapping values between the two states, with longer corticothalamic lags (exceeding 50ms) in the tremor active state, suggesting involvement of an indirect multisynaptic loop. The results reveal the importance of the nonlinear interactions between cortical and subcortical areas in the central motor network of essential tremor. This work is important because it demonstrates
Analysis on the Time and Frequency Domains of the Acceleration in Front Crawl Stroke
Gil, Joaquín Madera; Moreno, Luis-Millán González; Mahiques, Juan Benavent; Muñoz, Víctor Tella
2012-01-01
The swimming involves accelerations and decelerations in the swimmer’s body. Thus, the main objective of this study is to make a temporal and frequency analysis of the acceleration in front crawl swimming, regarding the gender and the performance. The sample was composed by 31 male swimmers (15 of high-level and 16 of low-level) and 20 female swimmers (11 of high-level and 9 of low-level). The acceleration was registered from the third complete cycle during eight seconds in a 25 meters maximu...
Time-domain representation of frequency dependent inertial forces on offshore structures
DEFF Research Database (Denmark)
Krenk, Steen
to the 'phase lag' obtained for the response of discrete mechanical systems. Two options are explored: introducing a corresponding phase lag in the components of the wave kinematics, or compensating the phase lag by combining a stable complex frequency with its complex conjugate. In the latter case...... the time history of the inertial force is determined by processing the stable part of the transformation by a forward time integration, followed by an integration in the negative time-direction to obtain the final inertial force time history. The differential equations of the local inertial force at a...
International Nuclear Information System (INIS)
It is shown that some common machine structural failures can be identified on-line by monitoring in some chosen characteristic frequency response functions. The response signatures are shown to be insensitive to variations in machine loading and, by suitable location of vibration monitoring points, can be used to accurately locate and identify the cause of failure. The method is used to identify faults such as shaft misalignment and bearing failures on a high speed motor-pump assembly and to detect and predict fatigue failures in shafts subjected to torsional loads. (author)
Jiang, Puqing; Huang, Bin; Koh, Yee Kan
2016-07-01
Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.
Frequency domain and wavelet analysis of the laser-induced plasma shock waves
Energy Technology Data Exchange (ETDEWEB)
Burger, Miloš, E-mail: milosb@ff.bg.ac.rs; Nikolić, Zoran
2015-08-01
In addition to optical emission, another trace of interest that laser-induced plasma provides is a form of acoustic feedback. The acoustic emission (AE) signals were obtained using both microphone and piezo transducers. This kind of optoacoustic signals have some distinct features resembling the short, burst-like sounds, that may differ significantly depending mainly on the sample exposed and irradiance applied. Experiments were performed on atmospheric pressure by irradiating various metallic samples. The recorded waveforms were examined and numerically processed. Single-shot acoustical spectra have shown significant potential of providing valuable supplementary information regarding plasma propagation dynamics. Moreover, the general approach suggests the possibility of making the whole measurement system cost-effective and portable. - Highlights: • We report acoustical waveform, and acoustical spectroscopy measurements and analysis in a laser-induced plasma of a different metals in air. • Both piezo and microphone transducer were used. • The acoustical spectra of the emission were obtained when the sample (and plasma) were enclosed in experimental chamber. • The acquired acoustical spectra are time-integrated and the frequency peaks were sharp and relatively isolated. • Finally, both time and frequency resolved wavelet spectrogram present a novel method of observing laser-induced plasma behavior.
Frequency-domain analysis of computer-controlled optical surfacing processes
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Mid-high spatial frequency errors are often induced on optical surfaces polished by computer-controlled optical surfacing (CCOS) processes. In order to efficiently remove these errors, which would degrade the performances of optical systems, the ability of a CCOS process to correct the errors have been investigated based on the convolution integral model in view of the availability of material removal. To quantify the ability, some conceptions, such as figure correcting ability and material removal availability (MRA), have been proposed. The research result reveals that the MRA of the CCOS process to correct a single spatial frequency error is determined by its tool removal function (TRF), and it equals the normalized amplitude spectrum of the Fourier transform of its TRF. Finally, three sine surfaces were etched using ion beam figuring (IBF), which is a typical CCOS process. The experimental results have verified the theoretical analysis. The employed method and the conclusions of this work provide a useful mathematical basis to analyze and optimize CCOS processes.
Thermal characterization of light-emitting diodes in the frequency domain
Energy Technology Data Exchange (ETDEWEB)
Vitta, Pranciskus; Zukauskas, Arturas [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio ave. 9-III, 10222 Vilnius (Lithuania)
2009-06-15
We report on a method for measurement of thermal relaxation time constants within light-emitting diodes (LEDs) using harmonic modulation of the driving current. The method is based on the phase shift of the forward voltage waveform in respect to that of the modulated current. The phase shift is due to the sensitivity of the forward voltage to junction temperature, which responds to the modulation of the heat generation depending on the thermal relaxation rate. The frequency dependence of the phase shift was shown to exhibit characteristic dips at angular frequencies equal to inverse thermal time constants. Such an approach for thermal characterization was demonstrated for common GaP, AlGaAs, AlInGaP, and InGaN LEDs. In particular, low-power p-n and double-heterostructure LEDs as well as high-power truncated-inverted-pyramid and flip-chip LEDs were investigated. The measured thermal time constants ({proportional_to}0.1-100 ms) were tentatively assigned to heat flows within the multilayer structure of the LEDs and collated with the numerical estimates based on thermal resistance and heat capacitance of the LED components. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.
Phillips, C R; Mayer, B W; Gallmann, L; Keller, U
2016-07-11
Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed. PMID:27410862
Correcting for systematic biases in GCM simulations in the frequency domain
Nguyen, Ha; Mehrotra, Rajeshwar; Sharma, Ashish
2016-07-01
Bias correction is considered as a critical post-processing step to remove systematic errors and improve the quality of General Circulation Model (GCM) simulations before their use in climate change impact assessment applications. A majority of the bias correction approaches correct for biases either at a single time scale or at multiple pre-specified time scales. An inappropriate or insufficient selection of time scales may lead to improper or sub-optimal bias corrected outputs, especially when persistence attributes across a range of scales are of interest. In this paper, we present a new bias correction approach that works in the frequency space and is independent of specific time scales. The approach is named as frequency-based bias correction (FBC). The usefulness of the approach is demonstrated by applying it to the monthly rainfall simulations of MIROC5 GCM over Australia and comparing the results with two other approaches, namely, empirical quantile mapping and recursive nesting bias correction, in cross validation. The comparison is based on the reproduction of various observed distribution and persistence attributes. Cross-validation results indicate that the proposed approach shows similar performance in terms of reproducing the first- and second-order moments of observed precipitation time series, however, outperforms with regard to persistence attributes. The approach shows high potential for use in downscaling and other climate change impact assessment studies, especially for the planning and design of hydrologic systems that are sensitive to the characterisation of persistence in the hydrologic time series.
International Nuclear Information System (INIS)
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in
Energy Technology Data Exchange (ETDEWEB)
Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)
2015-12-15
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in
DEFF Research Database (Denmark)
Celestinos, Adrian; Nielsen, Sofus Birkedal
2008-01-01
Small- and medium-size rectangular rooms have a strong influence on the low-frequency performance of loudspeakers. A simulation program based on the finite-difference time-domain (FDTD) method is introduced to analyze the sound field produced by loudspeakers in rectangular rooms at low frequencies...
International Nuclear Information System (INIS)
Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably
Frequency-domain birefringence measurement of biological binding to magnetic nanoparticles.
Ku, Benjamin Y; Chan, Mei-Lin; Ma, Zhiya; Horsley, David A
2008-01-01
Optical detection of the frequency-dependent magnetic relaxation signal is used to monitor the binding of biological molecules to magnetic nanoparticles in a ferrofluid. Biological binding reactions cause changes in the magnetic relaxation signal due to an increase in the average hydrodynamic diameter of the nanoparticles. To allow the relaxation signal to be detected in dilute ferrofluids, measurements are made using a balanced photodetector, resulting in a 25 μV/√Hz noise floor, within 50% of the theoretical limit imposed by photon shot noise. Measurements of a ferrofluid composed of magnetite nanoparticles coated with anti-IgG antibodies show that the average hydrodynamic diameter increases from 115.2 to 125.4 nm after reaction with IgG. PMID:20463913
Frequency-domain birefringence measurement of biological binding to magnetic nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Ku, Benjamin Y.; Chan, M.-L.; Ma Zhiya [Department of Mechanical and Aeronautical Engineering, University of California, Bainer Hall, 1 Shields Ave., Davis, CA 95616 (United States); Horsley, David A. [Department of Mechanical and Aeronautical Engineering, University of California, Bainer Hall, 1 Shields Ave., Davis, CA 95616 (United States)], E-mail: dahorsley@ucdavis.edu
2008-09-15
Optical detection of the frequency-dependent magnetic relaxation signal is used to monitor the binding of biological molecules to magnetic nanoparticles in a ferrofluid. Biological binding reactions cause changes in the magnetic relaxation signal due to an increase in the average hydrodynamic diameter of the nanoparticles. To allow the relaxation signal to be detected in dilute ferrofluids, measurements are made using a balanced photodetector, resulting in a 25 {mu}V/{radical}Hz noise floor, within 50% of the theoretical limit imposed by photon shot noise. Measurements of a ferrofluid composed of magnetite nanoparticles coated with anti-IgG antibodies show that the average hydrodynamic diameter increases from 115.2 to 125.4 nm after reaction with IgG.
Directory of Open Access Journals (Sweden)
Konold Timm
2011-07-01
Full Text Available Abstract Background Heart rate variability (HRV analysis is a method to assess the function of the autonomic nervous system. Brainstem nuclei that influence HRV are affected by vacuolar changes and accumulation of disease-associated prion protein (PrPd in bovine spongiform encephalopathy (BSE resulting in clinical signs suggestive of an increased parasympathetic tone. It was hypothesised that BSE in cattle causes changes in the autonomic nervous system; this was tested by comparing HRV indices derived from 1048 electrocardiograms, which were recorded from 51 naturally or experimentally infected cattle with BSE confirmed by postmortem tests, 321 clinical suspect cases or cattle inoculated with potentially infectious tissue without disease confirmation and 78 BSE-free control cattle. Findings Statistically significant differences were found for low or high frequency power, their normalised values and ratio when the last recording prior to cull or repeated recordings were compared but only between male and female cattle of the three groups and not between groups of the same gender, even though BSE cases of each gender appeared to be more nervous during the recording. The same findings were made for heart rate, deviation from the mean RR interval and vasovagal tonus index when repeated recordings were compared. BSE cases with severe vacuolar changes in the parasympathetic nucleus of the vagus nerve had a significantly lower low:high frequency power ratio but not a lower heart rate than BSE cases with mild vacuolation, whereas severity of vacuolar changes in the solitary tract nucleus or intensity of PrPd accumulation in both nuclei did not appear to have any affect on either index. Abnormalities in the electrocardiogram were detected in 3% of the recordings irrespective of the BSE status; sinus arrhythmia was present in 93% of the remaining recordings. Conclusions HRV analysis was not useful to distinguish BSE-positive from BSE-negative cattle
Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit.
Gruart, A; Schreurs, B G; del Toro, E D; Delgado-García, J M
2000-02-01
Eyelid position and the electromyographic activity of the orbicularis oculi muscle were recorded unilaterally in rabbits during reflex and conditioned blinks. Air-puff-evoked blinks consisted of a fast downward phase followed sometimes by successive downward sags. The reopening phase had a much longer duration and slower peak velocity. Onset latency, maximum amplitude, peak velocity, and rise time of reflex blinks depended on the intensity and duration of the air puff-evoking stimulus. A flashlight focused on the eye also evoked reflex blinks, but not flashes of light, or tones. Both delayed and trace classical conditioning paradigms were used. For delayed conditioning, animals were presented with a 350-ms, 90-dB, 600-Hz tone, as conditioned stimulus (CS). For trace conditioning, animals were presented with a 10-ms, 1-k/cm(2) air puff, as CS. The unconditioned stimulus (US) consisted of a 100-ms, 3-k/cm(2) air puff. The stimulus interval between CS and US onsets was 250 ms. Conditioned responses (CRs) to tones were composed of downward sags that increased in number through the successive conditioning sessions. The onset latency of the CR decreased across conditioning at the same time as its maximum amplitude and its peak velocity increased, but the time-to-peak of the CR remained unaltered. The topography of CRs evoked by short, weak air puffs as the CS showed three different components: the alpha response to the CS, the CR, and the reflex response to the US. Through conditioning, CRs showed a decrease in onset latency, and an increase in maximum amplitude and peak velocity. The time-to-peak of the CR remained unchanged. A power spectrum analysis of reflex and conditioned blink acceleration profiles showed a significant approximately 8-Hz oscillation within a broadband of frequencies between 4 and 15 Hz. Nose and mandible movements presented power spectrum profiles different from those characterizing reflex and conditioned blinks. It is concluded that eyelid reflex
Directory of Open Access Journals (Sweden)
Hunt Anthony C
2002-03-01
Full Text Available Abstract Background T wave alternans (TA is a repolarisation phenomenon manifesting as a microvolt beat to beat change in the amplitude of the T wave and ST segment. TA has been shown to be a predictor of arrhythmic risk in unselected myocardial infarction populations. TA has not been used to differentiate risk within the ischaemic cardiomyopathy population. Methods The subjects investigated comprised, Group 1: 7 stable patients with remote (>20 months extensive myocardial scarring and no arrhythmic events (NYHA 3 and 4. Group2: 9 post infarction patients with malignant arrhythmia and implantable defibrillator. During breath holding, 20 continuous QRST complexes from each patients X, Y and Z leads were digitally recorded. Time domain, resultant absolute difference vectors (ATA, were calculated for alternate resultant T wave sequences. Group differences between the magnitude and temporal distribution of mean ATAs and their spectral and cross-spectral analysis were compared. Results Group 1 v Group 2 mean ATAs were 10.7 (7.17 v 11.7 (8.48 respectively, not significant. Each group had a homogenous temporal distribution of ATAs. Both group's largest mean ATA frequency components were between 0 to 25 Hz, the largest ATA component being at the DC frequency. Cross spectral analysis showed no significant differences in group ATA frequency content. Conclusion The frequency content and microvolt magnitude of T wave alternans was not significantly different in these two groups. The specificity of T wave alternans for differentiating arrhythmic risk in post infarction scarring and heart failure needs investigation.
International Nuclear Information System (INIS)
We present a numerical approach to the solution of elastic phonon-interface and phonon-nanostructure scattering problems based on a frequency-domain decomposition of the atomistic equations of motion and the use of perfectly matched layer (PML) boundaries. Unlike molecular dynamic wavepacket analysis, the current approach provides the ability to simulate scattering from individual phonon modes, including wavevectors in highly dispersive regimes. Like the atomistic Green's function method, the technique reduces scattering problems to a system of linear algebraic equations via a sparse, tightly banded matrix regardless of dimensionality. However, the use of PML boundaries enables rapid absorption of scattered wave energies at the boundaries and provides a simple and inexpensive interpretation of the scattered phonon energy flux calculated from the energy dissipation rate in the PML. The accuracy of the method is demonstrated on connected monoatomic chains, for which an analytic solution is known. The parameters defining the PML are found to affect the performance and guidelines for selecting optimal parameters are given. The method is used to study the energy transmission coefficient for connected diatomic chains over all available wavevectors for both optical and longitudinal phonons; it is found that when there is discontinuity between sublattices, even connected chains of equivalent acoustic impedance have near-zero transmission coefficient for short wavelengths. The phonon scattering cross section of an embedded nanocylinder is calculated in 2D for a wide range of frequencies to demonstrate the extension of the method to high dimensions. The calculations match continuum theory for long-wavelength phonons and large cylinder radii, but otherwise show complex physics associated with discreteness of the lattice. Examples include Mie oscillations which terminate when incident phonon frequencies exceed the maximum available frequency in the embedded nanocylinder
EEG biometric identification: a thorough exploration of the time-frequency domain
DelPozo-Banos, Marcos; Travieso, Carlos M.; Weidemann, Christoph T.; Alonso, Jesús B.
2015-10-01
Objective. Although interest in using electroencephalogram (EEG) activity for subject identification has grown in recent years, the state of the art still lacks a comprehensive exploration of the discriminant information within it. This work aims to fill this gap, and in particular, it focuses on the time-frequency representation of the EEG. Approach. We executed qualitative and quantitative analyses of six publicly available data sets following a sequential experimentation approach. This approach was divided in three blocks analysing the configuration of the power spectrum density, the representation of the data and the properties of the discriminant information. A total of ten experiments were applied. Main results. Results show that EEG information below 40 Hz is unique enough to discriminate across subjects (a maximum of 100 subjects were evaluated here), regardless of the recorded cognitive task or the sensor location. Moreover, the discriminative power of rhythms follows a W-like shape between 1 and 40 Hz, with the central peak located at the posterior rhythm (around 10 Hz). This information is maximized with segments of around 2 s, and it proved to be moderately constant across montages and time. Significance. Therefore, we characterize how EEG activity differs across individuals and detail the optimal conditions to detect subject-specific information. This work helps to clarify the results of previous studies and to solve some unanswered questions. Ultimately, it will serve as guide for the design of future biometric systems.
International Nuclear Information System (INIS)
Computer molecular dynamics (CMD) is now recognized as a very powerful technique for examining the microscopic details of a wide variety of chemical and physical phenomena, including the shock-induced fast decomposition processes that characterize the shock-initiation of energetic materials. The purpose of the present paper is to describe some results obtained by new methods of post processing of CMD data. First we present a pictorial history of a canonical system which is bonded with identical potentials and has identical atomic masses. We then present Fourier transforms of the energy components of different units judiciously chosen to show the ''frequency fingerprint'' of the shock impact and passage through specific units of the system, including, e.g., the behavior of spalled fragments. To complement these studies, we also display the behavior of our canonical system when defect (point or line) are present. In these studies we monitor the motion of diatoms above and below a line defect consisting of heavy masses. The Fourier transform techniques provide optimum compromise histories which present neither too much nor too little detail
Kim, J.; Mandelis, A.; Matvienko, A.; Abrams, S.; Amaechi, B. T.
2012-11-01
The ability of frequency-domain photothermal radiometry (PTR) and modulated luminescence (LUM) to detect secondary caries is presented. Signal behavior upon sequential demineralization and remineralization of a spot (diameter ~1 mm) on a vertical wall of sectioned tooth samples was investigated experimentally. From these studies, it was found that PTR-LUM signals change, showing a certain pattern upon progressive demineralization and remineralization. PTR amplitudes slightly decreased upon progressive demineralization and slightly increased upon subsequent remineralization. The PTR phase increased during both demineralization and remineralization. LUM amplitudes exhibit a decreasing trend at excitation/probe distances larger than 200 μm away from the edge for both demineralization and remineralization; however, at locations close to the edge (up to ~200 μm), LUM signals slightly decrease upon demineralization and slightly increase during subsequent remineralization.
Yahav, Gilad; Fixler, Dror; Gershanov, Sivan; Goldenberg-Cohen, Nitza
2016-03-01
Brain tumors are the second leading cause of cancer-related deaths in children, after leukemia. Patients with cancer in the central nervous system have a very low recovery rate. Today known imaging and cytology techniques are not always sensitive enough for an early detection of both tumor and its metastatic spread, moreover the detection is generally limited, reviewer dependent and takes a relatively long time. Medulloblastoma (MB) is the most common malignant brain tumor in children. The aim of our talk is to present the frequency domain fluorescence lifetime imaging microscopy system as a possible method for an early detection of MB and its metastatic spread in the cerebrospinal fluids within the pediatric population.
Wang, Zhaoyong; Pan, Zhengqing; Fang, Zujie; Ye, Qing; Lu, Bin; Cai, Haiwen; Qu, Ronghui
2015-11-15
A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with a temporally sequenced multi-frequency (TSMF) source is proposed. This technique can improve the system detection bandwidth without the sensing range decreasing. Up to 0.5 MHz detection bandwidth over 9.6 km is experimentally demonstrated as an example. To the best of our knowledge, this is the first time that such a high detection bandwidth over such a long sensing range is reported in Φ-OTDR-based distributed vibration sensing. The technical issues of TSMF Φ-OTDR are discussed in this Letter. This technique will help Φ-OTDR find new important foreground in long-haul distributed broadband-detection applications, such as structural-health monitoring and partial-discharge online monitoring of high voltage power cables. PMID:26565832
Directory of Open Access Journals (Sweden)
EMRE YILDIRIM
2014-05-01
Full Text Available Monthly data for the period between January 2008 and December 2012 were examined in this study which investigated the relationship between consumer confidence index (CCI and online credit card using (CCU. The variables were found to have an integrated structure after testing of the collected data with Hatemi-J cointegration test (2008 which enables two-structural break. It has been observed that the results are inconsistent when the relationship between these two variables examined with Toda Yamamoto (1995 and Hacker Hatemi-J (2006 causality tests. Therefore, frequency domain causality test has been used and the conclusion reached that a one-way and temporary relationship from consumer confidence index to online credit card using. It’s seen that the existence of this relationship supports the studies in the literature.
DEFF Research Database (Denmark)
Gil-Cacho, Jose M.; van Waterschoot, Toon; Moonen, Marc;
2014-01-01
In this paper, we propose a new framework to tackle the double-talk (DT) problem in acoustic echo cancellation (AEC). It is based on a frequency-domain adaptive filter (FDAF) implementation of the so-called prediction error method adaptive filtering using row operations (PEM-AFROW) leading to the...... FDAF-PEM-AFROW algorithm. We show that FDAF-PEM-AFROW is by construction related to the best linear unbiased estimate (BLUE) of the echo path. We depart from this framework to show an improvement in performance with respect to other adaptive filters minimizing the BLUE criterion, namely the PEM......-AFROW and the FDAF-NLMS with near-end signal normalization. One of the contributions is to propose the instantaneous pseudo-correlation (IPC) measure between the near-end signal and the loudspeaker signal. The IPC measure serves as an indication of the effect of a DT situation occurring during adaptation...
Yüksel, Kivilcim; Pala, Deniz
2016-06-01
This work presents a novel approach in interrogating Polarization Dependent Loss (PDL) of cascaded identical FBGs using Optical Frequency Domain Reflectometer (OFDR). The fundamentals of both polarisation properties of uniform FBGs and polarisation-sensitive OFDR are explained and the benefits of this novel approach in measuring transversal load are discussed. The numerical programs computing the spectral evolution of PDL of the FBGs in the array as a function of grating parameters (grating length and birefringence) are presented. Our simulation results show an excellent agreement with the previously reported simulation (and experimental) results in the literature obtained on a single FBG by using classical state-of-the-art measurement techniques. As an envisaged application, the proposed system shows the feasibility of measuring the residual stresses during manufacturing process of composite materials which is not straightforward by amplitude spectrum measurements and/or considering only the axial strains.
Khan, Sebastian; Husa, Sascha; Hannam, Mark; Ohme, Frank; Pürrer, Michael; Forteza, Xisco Jiménez; Bohé, Alejandro
2016-02-01
We present a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of nonprecessing (aligned-spin) black-hole binaries. The model is calibrated to 19 hybrid effective-one-body-numerical-relativity waveforms up to mass ratios of 1 ∶18 and black-hole spins of |a /m |˜0.85 (0.98 for equal-mass systems). The inspiral part of the model consists of an extension of frequency-domain post-Newtonian expressions, using higher-order terms fit to the hybrids. The merger ringdown is based on a phenomenological ansatz that has been significantly improved over previous models. The model exhibits mismatches of typically less than 1% against all 19 calibration hybrids and an additional 29 verification hybrids, which provide strong evidence that, over the calibration region, the model is sufficiently accurate for all relevant gravitational-wave astronomy applications with the Advanced LIGO and Virgo detectors. Beyond the calibration region the model produces physically reasonable results, although we recommend caution in assuming that any merger-ringdown waveform model is accurate outside its calibration region. As an example, we note that an alternative nonprecessing model, SEOBNRv2 (calibrated up to spins of only 0.5 for unequal-mass systems), exhibits mismatch errors of up to 10% for high spins outside its calibration region. We conclude that waveform models would benefit most from a larger number of numerical-relativity simulations of high-aligned-spin unequal-mass binaries.
Directory of Open Access Journals (Sweden)
Tristan Perez
2008-01-01
Full Text Available The dynamics describing the motion response of a marine structure in waves can be represented within a linear framework by the Cummins Equation. This equation contains a convolution term that represents the component of the radiation forces associated with fluid memory effects. Several methods have been proposed in the literature for the identification of parametric models to approximate and replace this convolution term. This replacement can facilitate the model implementation in simulators and the analysis of motion control designs. Some of the reported identification methods consider the problem in the time domain while other methods consider the problem in the frequency domain. This paper compares the application of these identification methods. The comparison is based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified. To illustrate the main points arising from the comparison, a particular example based on the coupled vertical motion of a modern containership vessel is presented.
Foote, David; Lin, Yingda; Hill, Wendell T., III
2015-05-01
In a recent set of coherent control experiments, an anomalous sinusoidal variation of the ionization yield was observed in Xe when ionized by a pairs of phase-locked, many-cycle 800 nm pulses. Compared with the signal of a single transform limited pulse, both enhancement and suppression was possible, which depended on the temporal separation and relative phase of the pulses. In the time domain, the control can be viewed as a temporal Young's double slit experiment - two coherent electron wavepackets interfering. In the frequency domain, the photoelectron spectrum is given by the modulus squared of the Fourier transform of the field, which is a few-cycle squared sinusodial function. In analogy to a few-cycle pulse where the carrier phase dictates the ejection direction of rescattered electrons, enhancement (suppression) occurs when the effective carrier waveform is cos[w-w0]2 (sin[w-w0]2). The contrast decreased with increasing pulse separation and decreasing multiphoton order. Detailed results and a model simulation will be presented.
Evaluation of a frequency-domain ultrasonic imaging attenuation compensation technique.
Rouyer, Julien; Varray, Francois; Pozo, Edmundo; Basset, Olivier; Cachard, Christian; Lavarello, Roberto
2015-08-01
Ultrasound attenuation is typically compensated for in clinical scanners by using time gain compensation (TGC). However, TGC operates in a frequency-independent fashion and therefore the spatial resolution of the echographic images degrades as the examination depth increases. In the current study, the capability of a multi-band attenuation compensation (MBAC) TGC technique to recover both magnitude and spatial resolution in lossy media was evaluated. Simulations were performed using a 5-MHz transducer for imaging point targets embedded in a medium with attenuation coefficient slope (ACS) of 0.5 dB/(cm.MHz). For performance assessment, the magnitude and spatial resolution of the reflected point spread functions (PSFs) were compared to the ones obtained from point targets embedded in a lossless medium. The results showed a complete recovery of the spectral content when using MBAC for all depths when compared to the lossless case. Both the magnitude and spatial resolution of the compensated PSFs were in agreement with the lossless result (i.e., less than 1 dB and 3 % difference in PSF magnitude and spatial resolution, respectively). The MBAC was then applied to in vivo liver imaging using a scanner equipped with a 5-MHz linear array. Attenuation compensation was performed using ACSs reported in the literature for skin, fat and muscle, and experimentally estimated ACS using the spectral log difference technique for the liver. The lateral and axial extent of the autocorrelation function was estimated in the liver tissue. The experimental MBAC image exhibited only 6 % and 11 % variation in speckle magnitude and lateral autocorrelation length for depths between 2.5 and 4 cm. These results suggest that MBAC technique may enhance speckle uniformity in homogeneous tissue regions. PMID:26736570
Optical frequency domain imaging with a rapidly swept laser in the 1300nm bio-imaging window
Meleppat, Ratheesh Kumar; Vadakke Matham, Murukeshan; Seah, Leong Keey
2015-07-01
Optical frequency domain imaging system (OFDI) in the 1300nm biological imaging window is demonstrated by using a high speed frequency swept laser source. The output of the laser with central wave length of 1320nm is continuously tuned over a bandwidth of 100nm with a repetition rate of 16 KHz. The laser source has an instantaneous coherence length of 6mm and delivers an average power of 12mW. Axial resolution ~ 6μm in the biological tissue and peak sensitivity of 110dB are achieved. The experimentally determined values of the imaging parameters such as the axial resolution, sensitivity and depth range are found to be in good agreement with the theoretically estimated values. The developed system is capable of generating the images of size 512x1024 at a rate of 20 frames per second. High resolution and high contrast images of the finger nail and anterior chamber of a pig's eye acquired using the developed OFDI system are presented, which demonstrate the feasibility of the system for in-vivo biomedical imaging applications.
Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.
2016-01-01
Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.
International Nuclear Information System (INIS)
This paper aims to reexamine the causal relationship between energy consumption and economic growth for 20 OECD countries. To that end, we employ a Granger causality test in the frequency domain which allows us to distinguish short (temporary) and long-run (permanent) causality. The empirical results could be summarized as following. First, in terms of causality running from GDP to energy consumption, there is a temporary relationship for Australia, Austria, Canada, Italy, Japan, Mexico, the Netherlands, Portugal, the UK, the USA, and a permanent relationship for Austria, Belgium, Denmark, Germany, Italy, Japan, the Netherlands, Norway, and the USA. Second, in terms of causality running from energy consumption to GDP, there is a temporary relationship for Austria, Denmark, Italy, the Netherlands, Norway and Portugal, and a permanent relationship for Belgium, Finland, Greece, Italy, Japan, and Portugal. The main implication of our finding is that the energy policies should take into consideration not only the causality direction between economic growth and energy consumption but also whether it is temporal or permanent and furthermore authorities must design policy actions accordingly. - Highlights: • This study reexamines the causal relationship between energy consumption and economic growth. • We employ frequency causality analysis to determine temporary and permanent causality. • The results provide evidence of both temporary and permanent causality relationships for countries examined. • Energy policies should consider whether the causality is temporal or permanent
Directory of Open Access Journals (Sweden)
Madhukumar A. S.
2004-01-01
Full Text Available Multiple-access interference and interfinger interference limit the capacity of conventional single-carrier DS-CDMA systems. Even though multicarrier CDMA posses the advantages of conventional CDMA and OFDM, it suffers from two major implementation difficulties such as peak-to-average power ratio and high sensitivity to frequency offset and RF phase noise. A novel approach based on single-carrier cyclic prefix-assisted CDMA has been proposed to overcome the disadvantages of single-carrier CDMA and multicarrier modulation. The usefulness of the proposed approach for high-speed packet access with simplified channel estimation procedures are investigated in this paper. The paper also proposes a data-dependent pilot structure for the downlink transmission of the proposed system for enhancing pilot-assisted channel estimation in frequency domain. The performance of the proposed pilot structure is compared against the data-independent common pilot structure. The proposed system is extensively simulated for different channel parameters with different channel estimation and equalization methods and the results are compared against conventional multicarrier CDMA systems with identical system specifications.
Reklaitis, I.; Kudžma, R.; Miasojedovas, S.; Vitta, P.; Žukauskas, A.; Tomašiūnas, R.; Pietzonka, I.; Strassburg, M.
2016-05-01
An extended study of charge-carrier localization and delocalization in blue and green InGaN light-emitting diode (LED) test structures has been performed. Using the frequency-domain lifetime measurement (FDLM) technique based on direct harmonic modulation of photoluminescence excitation in the frequency range from 1 Hz to 100 MHz, carrier lifetimes were estimated at scales spanning from milliseconds to nanoseconds. The time resolution was determined using fast Fourier transform analysis. A system comprising a radiative and several nonradiative recombination channels was used to describe the complex photoluminescence decay. Due to the broad timescale, even stretched exponential decays from 2 ns to 4 ns up to 1.5 μs (stretching parameter 0.5 to 0.6) were revealed. A higher degree of carrier delocalization was observed for the blue compared with the green light-emitting structure, providing qualitative insight into disorder, which is tentatively assigned to spatial fluctuations of the indium concentration in the quantum wells. A nanosecond nonradiative recombination channel for the green light-emitting structure was found to be unsaturated throughout the entire photoexcitation power density range and was interpreted as being related to the higher defect density and lower internal quantum efficiency of the sample. To expand the study of lifetimes to much higher photoexcitation power density, time-resolved photoluminescence kinetics were measured.
Dovlo, Edem; Lashkari, Bahman; Mandelis, Andreas
2016-03-01
Frequency-domain photoacoustic radar (FD-PAR) imaging of absorbers in turbid media and their comparison and/or validation as well as co-registration with their corresponding ultrasound (US) images are demonstrated in this paper. Also presented are the FD-PAR tomography and the effects of reducing the number of scan lines (or angles) on image quality, resolution, and contrast. The FD-PAR modality uses intensity-modulated (coded) continuous wave laser sources driven by frequency-swept (chirp) waveforms. The spatial cross-correlation function between the PA response and the reference signal used for laser source modulation produces the reconstructed image. Live animal testing is demonstrated, and images of comparable signal-to-noise ratio, contrast, and spatial resolution were obtained. Various image improvement techniques to further reduce absorber spread and artifacts in the images such as normalization, filtering, and amplification were also investigated. The co-registered image produced from the combined US and PA images provides more information than both images independently. The significance of this work lies in the fact that achieving PA imaging functionality on a commercial ultrasound instrument could accelerate its clinical acceptance and use. This work is aimed at functional PA imaging of small animals in vivo.
Gillies, P; Marshall, I; Asplund, M; Winkler, P; Higinbotham, J
2006-08-01
Quantification of MRS spectra is a challenging problem when a large baseline is present along with a low signal to noise ratio. This work investigates a robust fitting technique that yields accurate peak areas under these conditions. Using simulated long echo time (1)H MRS spectra with low signal to noise ratio and a large baseline component, both the accuracy and reliability of the fit in the frequency domain were greatly improved by reducing the number of fitted parameters and making full use of all the known information concerning the Voigt lineshape. Using an appropriate first order approximation to a popular approximation of the Voigt lineshape, a significant improvement in the estimate of the area of a known spectral peak was obtained with a corresponding reduction in the residual. Furthermore, this improved parameter choice resulted in a large reduction in the number of iterations of the least-squares fitting routine. On the other hand, making use of the known centre frequency differences of the component resonances gave negligible improvement. A wavelet filter was used to remove the baseline component. In addition to performing a Monte Carlo study, these fitting techniques were also applied to a set of 10 spectra acquired from healthy human volunteers. Again, the same reduced parameter model gave the lowest value for chi(2) in each case. PMID:16927392
Reklaitis, I.; Kudžma, R.; Miasojedovas, S.; Vitta, P.; Žukauskas, A.; Tomašiūnas, R.; Pietzonka, I.; Strassburg, M.
2016-07-01
An extended study of charge-carrier localization and delocalization in blue and green InGaN light-emitting diode (LED) test structures has been performed. Using the frequency-domain lifetime measurement (FDLM) technique based on direct harmonic modulation of photoluminescence excitation in the frequency range from 1 Hz to 100 MHz, carrier lifetimes were estimated at scales spanning from milliseconds to nanoseconds. The time resolution was determined using fast Fourier transform analysis. A system comprising a radiative and several nonradiative recombination channels was used to describe the complex photoluminescence decay. Due to the broad timescale, even stretched exponential decays from 2 ns to 4 ns up to 1.5 μs (stretching parameter 0.5 to 0.6) were revealed. A higher degree of carrier delocalization was observed for the blue compared with the green light-emitting structure, providing qualitative insight into disorder, which is tentatively assigned to spatial fluctuations of the indium concentration in the quantum wells. A nanosecond nonradiative recombination channel for the green light-emitting structure was found to be unsaturated throughout the entire photoexcitation power density range and was interpreted as being related to the higher defect density and lower internal quantum efficiency of the sample. To expand the study of lifetimes to much higher photoexcitation power density, time-resolved photoluminescence kinetics were measured.
Shkrob, I A; Crowell, R A; Pommeret, S; Shkrob, Ilya A.; Oulianov, Dmitri A.; Crowell, Robert A.; Pommeret, Stanislas
2004-01-01
Single-shot ultrafast absorbance spectroscopy based on the frequency encoding of the kinetics is analyzed theoretically and implemented experimentally. The kinetics are sampled in the frequency domain using linearly chirped, amplified 33 fs FWHM pulses derived from a Ti:sapphire laser. A variable length grating pair compressor is used to achieve the time resolution of 500-1000 channels per a 2-to-160 ps window with sensitivity > 5x10-4. In terms of the acquisition time, FDSS has an advantage over the pump-probe spectroscopy in a situation when the "noise" is dominated by amplitude variations of the signal, due to the pump and flow instabilities. The possibilities of FDSS are illustrated with the kinetics obtained in multiphoton ionization of water and aqueous iodide and one-photon excitation of polycrystalline ZnSe and thin-film amorphous Si:H. Unlike other "single-shot" techniques, FDSS can be implemented for fluid samples flowing in a high-speed jet and for thin solid samples that exhibit interference fring...
Norman, S E; Eager, R A; Waran, N K; Jeffery, L; Schroter, R C; Marlin, D J
2005-01-17
Analysis of heart rate variability (HRV) is a non-invasive technique useful for investigating autonomic function in both humans and animals. It has been used for research into both behaviour and physiology. Commercial systems for human HRV analysis are expensive and may not have sufficient flexibility for appropriate analysis in animals. Some heart rate monitors have the facility to provide inter-beat interval (IBI), but verification following collection is not possible as only IBIs are recorded, and not the raw electrocardiogram (ECG) signal. Computer-based data acquisition and analysis systems such as Po-Ne-Mah and Biopac offer greater flexibility and control but have limited portability. Many laboratories and veterinary surgeons have access to ECG machines but do not have equipment to record ECG signals for further analysis. The aim of the present study was to determine whether suitable HRV data could be obtained from ECG signals recorded onto a MiniDisc (MD) and subsequently digitised and analysed using a commercial data acquisition and analysis package. ECG signals were obtained from six Thoroughbred horses by telemetry. A split BNC connecter was used to allow simultaneous digitisation of analogue output from the ECG receiver unit by a computerised data acquisition system (Po-Ne-Mah) and MiniDisc player (MZ-N710, Sony). Following recording, data were played back from the MiniDisc into the same input channel of the data acquisition system as previously used to record the direct ECG. All data were digitised at a sampling rate of 500 Hz. IBI data were analysed in both time and frequency domains and comparisons between direct recorded and MiniDisc data were made using Bland-Altman analysis. Despite some changes in ECG morphology due to loss of low frequency content (primarily below 5 Hz) following MiniDisc recording, there was minimal difference in IBI or time or frequency domain analysis between the two recording methods. The MiniDisc offers a cost
Dillon, Michael E; Woods, H Arthur; Wang, George; Fey, Samuel B; Vasseur, David A; Telemeco, Rory S; Marshall, Katie; Pincebourde, Sylvain
2016-07-01
Over the last few decades, biologists have made substantial progress in understanding relationships between changing climates and organism performance. Much of this work has focused on temperature because it is the best kept of climatic records, in many locations it is predicted to keep rising into the future, and it has profound effects on the physiology, performance, and ecology of organisms, especially ectothermic organisms which make up the vast majority of life on Earth. Nevertheless, much of the existing literature on temperature-organism interactions relies on mean temperatures. In reality, most organisms do not directly experience mean temperatures; rather, they experience variation in temperature over many time scales, from seconds to years. We propose to shift the focus more directly on patterns of temperature variation, rather than on means per se, and present a framework both for analyzing temporal patterns of temperature variation and for incorporating those patterns into predictions about organismal biology. In particular, we advocate using the Fourier transform to decompose temperature time series into their component sinusoids, thus allowing transformations between the time and frequency domains. This approach provides (1) standardized ways of visualizing the contributions that different frequencies make to total temporal variation; (2) the ability to assess how patterns of temperature variation have changed over the past half century and may change into the future; and (3) clear approaches to manipulating temporal time series to ask "what if" questions about the potential effects of future climates. We first summarize global patterns of change in temperature variation over the past 40 years; we find meaningful changes in variation at the half day to yearly times scales. We then demonstrate the utility of the Fourier framework by exploring how power added to different frequencies alters the overall incidence of long-term waves of high and low
International Nuclear Information System (INIS)
We consider the process of generation of difference frequency in GaAs crystal with a periodic domain structure during propagation of a few-cycle laser pulse in the crystal in the regime when chromatic dispersion is expressed weakly. Method of lines is used to obtain numerical solution to the system of coupled nonlinear differential equations in partial derivatives describing the evolution of the electric field of a few-cycle laser pulse in GaAs crystal both with periodic and aperiodic domain structure. It is shown that application of GaAs crystal with a domain structure allows to control the instantaneous frequency of the broadband pulse radiation at difference frequency
International Nuclear Information System (INIS)
In [Singh V. Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. IEEE Trans Circ Syst 1990;37(6):814-8], a frequency-domain criterion for the suppression of limit cycles in fixed-point state-space digital filters using saturation overflow arithmetic was presented. The passivity property owing to the presence of multiple saturation nonlinearities was exploited therein. In the present paper, a new notion of passivity, namely, that involving the state variables is considered, thereby arriving at an entirely new frequency-domain criterion for the suppression of limit cycles in such filters
Good, Jacob T.; Holland, Daniel B.; Finneran, Ian A.; Carroll, P. Brandon; Kelley, Matthew J.; Blake, Geoffrey A.
2015-10-01
We present the design and capabilities of a high-resolution, decade-spanning ASynchronous OPtical Sampling (ASOPS)-based TeraHertz Time-Domain Spectroscopy (THz-TDS) instrument. Our system employs dual mode-locked femtosecond Ti:Sapphire oscillators with repetition rates offset locked at 100 Hz via a Phase-Locked Loop (PLL) operating at the 60th harmonic of the ˜80 MHz oscillator repetition rates. The respective time delays of the individual laser pulses are scanned across a 12.5 ns window in a laboratory scan time of 10 ms, supporting a time delay resolution as fine as 15.6 fs. The repetition rate of the pump oscillator is synchronized to a Rb frequency standard via a PLL operating at the 12th harmonic of the oscillator repetition rate, achieving milliHertz (mHz) stability. We characterize the timing jitter of the system using an air-spaced etalon, an optical cross correlator, and the phase noise spectrum of the PLL. Spectroscopic applications of ASOPS-THz-TDS are demonstrated by measuring water vapor absorption lines from 0.55 to 3.35 THz and acetonitrile absorption lines from 0.13 to 1.39 THz in a short pathlength gas cell. With 70 min of data acquisition, a 50 dB signal-to-noise ratio is achieved. The achieved root-mean-square deviation is 14.6 MHz, with a mean deviation of 11.6 MHz, for the measured water line center frequencies as compared to the JPL molecular spectroscopy database. Further, with the same instrument and data acquisition hardware, we use the ability to control the repetition rate of the pump oscillator to enable THz frequency comb spectroscopy (THz-FCS). Here, a frequency comb with a tooth width of 5 MHz is generated and used to fully resolve the pure rotational spectrum of acetonitrile with Doppler-limited precision. The oscillator repetition rate stability achieved by our PLL lock circuits enables sub-MHz tooth width generation, if desired. This instrument provides unprecedented decade-spanning, tunable resolution, from 80 MHz down to sub
Good, Jacob T; Holland, Daniel B; Finneran, Ian A; Carroll, P Brandon; Kelley, Matthew J; Blake, Geoffrey A
2015-10-01
We present the design and capabilities of a high-resolution, decade-spanning ASynchronous OPtical Sampling (ASOPS)-based TeraHertz Time-Domain Spectroscopy (THz-TDS) instrument. Our system employs dual mode-locked femtosecond Ti:Sapphire oscillators with repetition rates offset locked at 100 Hz via a Phase-Locked Loop (PLL) operating at the 60th harmonic of the ∼80 MHz oscillator repetition rates. The respective time delays of the individual laser pulses are scanned across a 12.5 ns window in a laboratory scan time of 10 ms, supporting a time delay resolution as fine as 15.6 fs. The repetition rate of the pump oscillator is synchronized to a Rb frequency standard via a PLL operating at the 12th harmonic of the oscillator repetition rate, achieving milliHertz (mHz) stability. We characterize the timing jitter of the system using an air-spaced etalon, an optical cross correlator, and the phase noise spectrum of the PLL. Spectroscopic applications of ASOPS-THz-TDS are demonstrated by measuring water vapor absorption lines from 0.55 to 3.35 THz and acetonitrile absorption lines from 0.13 to 1.39 THz in a short pathlength gas cell. With 70 min of data acquisition, a 50 dB signal-to-noise ratio is achieved. The achieved root-mean-square deviation is 14.6 MHz, with a mean deviation of 11.6 MHz, for the measured water line center frequencies as compared to the JPL molecular spectroscopy database. Further, with the same instrument and data acquisition hardware, we use the ability to control the repetition rate of the pump oscillator to enable THz frequency comb spectroscopy (THz-FCS). Here, a frequency comb with a tooth width of 5 MHz is generated and used to fully resolve the pure rotational spectrum of acetonitrile with Doppler-limited precision. The oscillator repetition rate stability achieved by our PLL lock circuits enables sub-MHz tooth width generation, if desired. This instrument provides unprecedented decade-spanning, tunable resolution, from 80 MHz down to sub
Krinsley, James S; Bruns, David E; Boyd, James C
2015-03-01
The role of blood glucose (BG) measurement frequency on the domains of glycemic control is not well defined. This Monte Carlo mathematical simulation of glycemic control in a cohort of critically ill patients modeled sets of 100 patients with simulated BG-measuring devices having 5 levels of measurement imprecision, using 2 published insulin infusion protocols, for 200 hours, with 3 different BG-measurement intervals-15 minutes (Q15'), 1 hour (Q1h), and 2 hours (Q2h)-resulting in 1,100,000 BG measurements for 3000 simulated patients. The model varied insulin sensitivity, initial BG value and rate of gluconeogenesis. The primary outcomes included rates of hyperglycemia (BG > 180 mg/dL), hypoglycemia (BG glucose variability (within-patient coefficient of variation [CV] > 20%), and time in range (BG ranges 80-150 mg/dL and 80-180 mg/dL). Percentages of hyperglycemia, hypoglycemia at both thresholds, and patients with elevated glucose variability as well as time outside glycemic targets were substantially higher in simulations with measurement interval Q2h compared to those with measurement interval Q1h and moderately higher in simulations with Q1h than in those with Q15'. Higher measurement frequency mitigated the deleterious effect of high measurement imprecision, defined as CV ≥ 15%. This Monte Carlo simulation suggests that glycemic control in critically ill patients is more optimal with a BG measurement interval no longer than 1h, with further benefit obtained with use of measurement interval of 15'. These findings have important implications for the development of glycemic control standards. PMID:25568143
Directory of Open Access Journals (Sweden)
Salim Bahçeci
2010-01-01
Full Text Available In impulse radio ultra-wideband (IR-UWB systems where the channel lengths are on the order of a few hundred taps, conventional use of frequency-domain (FD processing for channel estimation and equalization may not be feasible because the need to add a cyclic prefix (CP to each block causes a significant reduction in the spectral efficiency. On the other hand, using no or short CP causes the interblock interference (IBI and thus degradation in the receiver performance. Therefore, in order to utilize FD receiver processing UWB systems without a significant loss in the spectral efficiency and the performance, IBI cancellation mechanisms are needed in both the channel estimation and equalization operations. For this reason, in this paper, we consider the joint FD channel estimation and equalization for IR-UWB systems with short cyclic prefix (CP and propose a novel iterative receiver employing soft IBI estimation and cancellation within both its FD channel estimator and FD equalizer components. We show by simulation results that the proposed FD receiver attains performances close to that of the full CP case in both line-of-sight (LOS and non-line-of-sight (NLOS UWB channels after only a few iterations.
International Nuclear Information System (INIS)
This paper describes a comparison among some wavelet filters and other most traditional filters in the frequency domain like Median, Wiener and Butter worth to reduce Poisson noise in Computed Tomography (CT) scans. Five slices of CT containing the posterior fossa from an anthropomorphic phantom and from patients were selected. As their original projections contain noise from the acquisition process, some simulated noise-free lesions were added on the images. After that, the whole images were artificially contaminated with Poisson noise over the sinogram-space. The configurations using wavelets drawn from four wavelet families, using various decomposition levels, and different thresholds, were tested in order to determine de-noising performance as well as the rest of the traditional filters. The quality of the resulting images was evaluated by using Contrast to Noise Ratio (CNR), HVS absolute norm (H1), and Structural Similarity Index (SSIM) as quantitative metrics. We have observed that Wavelet filtering is an alternative to be considered for Poisson noise reduction in image processing of posterior fossa images for head CT with similar behavior to Butter worth and better than Median or Wiener filters for the developed experiment. (Author)
Minsley, B.J.
2011-01-01
A meaningful interpretation of geophysical measurements requires an assessment of the space of models that are consistent with the data, rather than just a single, 'best' model which does not convey information about parameter uncertainty. For this purpose, a trans-dimensional Bayesian Markov chain Monte Carlo (MCMC) algorithm is developed for assessing frequency-domain electromagnetic (FDEM) data acquired from airborne or ground-based systems. By sampling the distribution of models that are consistent with measured data and any prior knowledge, valuable inferences can be made about parameter values such as the likely depth to an interface, the distribution of possible resistivity values as a function of depth and non-unique relationships between parameters. The trans-dimensional aspect of the algorithm allows the number of layers to be a free parameter that is controlled by the data, where models with fewer layers are inherently favoured, which provides a natural measure of parsimony and a significant degree of flexibility in parametrization. The MCMC algorithm is used with synthetic examples to illustrate how the distribution of acceptable models is affected by the choice of prior information, the system geometry and configuration and the uncertainty in the measured system elevation. An airborne FDEM data set that was acquired for the purpose of hydrogeological characterization is also studied. The results compare favourably with traditional least-squares analysis, borehole resistivity and lithology logs from the site, and also provide new information about parameter uncertainty necessary for model assessment. ?? 2011. Geophysical Journal International ?? 2011 RAS.
Directory of Open Access Journals (Sweden)
Yong-Sheng Yao
2016-06-01
Full Text Available This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade’s soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1 the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2 the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3 the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade’s temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors.
Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging
Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund
2009-07-01
In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.
Maris, Michael B.; Mayevsky, Avraham; Sevick, Eva M.; Chance, Britton
1991-05-01
Previously, we have shown that time-resolved spectroscopy can monitor changes in the distribution of photon migration pathlengths which are reflective of the changes in the tissue absorption due primarily to oxygenated or deoxygenated hemoglobin. In this study, we have monitored mean photon migration pathlengths in the frequency domain in the rodent brain insulted by hypoxia, ischemia and spreading depression (SD) using phase modulated spectroscopy (PMS). This technique consisted of monitoring light which emerged from the exposed rodent skull at 8 mm form an incident light source of 754 nm and 816 nm whose intensity was modulated at 220 MHz. The changes in phase-shift, (theta), of the emergent light with respect to the incident light are reflective of the photon pathlengths and hemoglobin absorbance. A multiprobe assembly holding PMS source fiber, nicotinamide dinucleotide (NADH) fluorometric probe, electrocortigraph (ECoG) electrodes, and doppler blood flow probe was placed on the rodent brain to simultaneously monitor brain metabolism, electrical cortical activity (ECoG) and blood flow. The PMS detector fiber was placed 8 mm posterior to the multiprobe assembly. Correlations between changes in intracellular deoxygenation (NADH) and hemoglobin deoxygenation as measured by PMS changes at 754 nm and 816 nm during hypoxia, and ischemia were found. The depolarization phase of spreading depression resulted in a similar increase at both 754 nm and 816 nm. We attribute this result to vasoconstriction and/or the decrease of extracellular space due to water shift in the rodent brain.
Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong
2016-01-01
This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade’s soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade’s temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors. PMID:27294935
Mieloszyk, M.; Opoka, S.; Ostachowicz, W.
2015-07-01
This paper presents an application of Fibre Bragg Grating (FBG) sensors for Structural Health Monitoring (SHM) of offshore wind energy support structure model. The analysed structure is a tripod equipped with 16 FBG sensors. From a wide variety of Operational Modal Analysis (OMA) methods Frequency Domain Decomposition (FDD) technique is used in this paper under assumption that the input loading is similar to a white noise excitation. The FDD method can be applied using different sets of sensors, i.e. the one which contains all FBG sensors and the other set of sensors localised only on a particular tripod's leg. The cases considered during investigation were as follows: damaged and undamaged scenarios, different support conditions. The damage was simulated as an dismantled flange on an upper brace in one of the tripod legs. First the model was fixed to an antishaker table and investigated in the air under impulse excitations. Next the tripod was submerged into water basin in order to check the quality of the measurement set-up in different environmental condition. In this case the model was excited by regular waves.
Saager, Rolf B.; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J.; Kelly, Kristen M.; Tromberg, Bruce J.
2015-06-01
The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between ˜5% (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ˜30-65 μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R2=0.8895). SFDS melanin distribution thickness is correlated to MPM values (R2=0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types.
Directory of Open Access Journals (Sweden)
Alan Anwer Abdulla
2010-11-01
Full Text Available Usage of image has been increasing and used in many applications. Image compression plays vital role in saving storage space and saving time while sending images over network. One important point of delivering digital image is time. In this paper we concentrated on the speed of packet sending with reasonable quality. The aim of this paper is to reduce image size with reasonable quality. By getting advantage from image transformation in both scope spatial domain and frequency domain. Splitting the image into 4 blocks in the case of spatial domain and applying Standard Haar wavelet transformation in the case of frequency domain was the main factor for approaching the aim of this paper which was reduce image size and increase speed of delivering digital image. After huge tests in the case of frequency domain in all subbands(LL,HL,LH,HH we made a decision for which subband contains high information and which subband contains poor information. Depending of these factors we could send less than one- eighth of the size of the original image to the destination and getting the reconstructed image with the acceptable quality as a result of this paper.
McMorris, Nicolas
The condition evaluation of in-situ concrete with non-destructive testing is difficult at best. The concrete deterioration processes of alkali-silica reaction (ASR), delayed ettringite formation (DEF) and freeze-thaw cycles all produce distributed damage in the form of micro-cracking which results in loss of strength or stiffness. Presently, a suitable field applicable method for determining the degree of microcracking does not exist. The impact echo test is potentially the best candidate if improvements can be made in the signal processing techniques which are crucial for accurately interpreting the data retrieved from concrete with distributed damage. In this research, two batches of concrete specimens were prepared in accordance with standard procedures. A portion of each batch was subjected to either the Modified Duggan cycle or to Freeze Thaw cycles, both proven methods of inducing DEF and micro-cracking respectively. Curing techniques and materials were also chosen to accelerate distributed damage in the concrete specimens. In addition to the impact echo, a number of secondary tests were employed to monitor the progress of distributed damage in the concrete specimens. Previous research efforts utilizing the impact echo method have attempted to characterize damage in terms of P-wave attenuation or pulse velocity. This involves signal processing in the time domain. These are inherently linear dynamics methods whereas the development of micro-cracks in concrete, an inhomogeneous material, gives rise to non-linear dynamics. Non-linear approaches to signal processing in the frequency domain are proposed herein. One involves calculating the deviation of the peak of the response spectrum from the shape of an ideal Lorentzian function model. The other calculates the second order non-linear harmonic coefficient. The results showed that the potassium content, the curing methods and the Duggan and Freeze Thaw cycles had the desired effect of inducing distributed damage
Margenov, Svetozar; Kosturski, Nikola
2009-04-01
In this study, the topics of grid generation and FEM applications are studied together following their natural synergy. We consider the following three tetrahedral grid generators: NETGEN, TetGen, and Gmsh. After that, the performance of the MIC(0) preconditioned conjugate gradient (PCG) solver is analyzed for both conforming and non-conforming linear FEM problems. If positive off-diagonal entries appear in the corresponding matrix, a diagonal compensation is applied to get an auxiliary M-matrix allowing a stable MIC(0) factorization. The presented numerical experiments for elliptic and parabolic problems well illustrate the similar PCG convergence rate of the MIC(0) preconditioner for both, structured and unstructured grids.
Computation of eddy currents in a solid rotor induction machine with 2-D and 3-D FEM
Silwal, Bishal
2012-01-01
Although a two-dimensional numerical analysis of an electrical machine provides an approximately accurate solution of the electromagnetic field in the machine, a three-dimensional study is needed to understand the actual phenomena. But due to the large problem size and the complex geometries, the three dimensional model requires a huge amount of degrees of freedoms (DoFs) to be solved, which is not possible with a limited computing resources. Therefore, a coupled 2D-3D model can be the best a...
DEFF Research Database (Denmark)
Bottasso, C. L.; Campagnolo, F.; Croce, A.;
2014-01-01
constraints. In addition, a buckling analysis is performed at the fine description level, which in turn affects the nonstructural blade mass. The updated constraint bounds and mass make their effects felt at the next coarse-level constrained design optimization, thereby closing the loop between the coarse and......The present work describes a method for the structural optimization of wind turbine rotor blades for given prescribed aerodynamic shape. The proposed approach operates at various description levels producing cost-minimizing solutions that satisfy desired design constraints at the finest modeling...... fine description levels. The multilevel optimization procedure is implemented in a computer program and it is demonstrated on the design of a multi-MW horizontal axis wind turbine rotor blade. © 2013 Springer Science+Business Media Dordrecht....
The 3D-FEM modeling of the LAES unit 1 reactor building for extreme external effects
International Nuclear Information System (INIS)
In order to study the extreme external effects, three dimensional model was applied to study the effects of aircraft crash and gas explosion on the reactor building of Leningrad-1 NPP which is modelled by finite element method. The crash loads taken into account were from Cessna civil airplane crash with impact velocity of 360 km/h and maximum impact force of 7 MN and the Phantom military airplane crash with impact velocity of 215 km/h and maximum impact force of 110 MN. The gas explosion load was assumed to affect the reactor building from one side parallel to one of the global coordinate axes of the model. The conclusion drawn from the obtained results is as follows: the intersections stiffen the structure considerably. In lower part, where many intersections exist, displacements were significantly smaller. Thus, the lower parts can resist the investigated loads such as high speed military aircraft crash loads much better than the upper part
A fast and efficient algorithm to compute BPX- and overlapping preconditioner for adaptive 3D-FEM
Eibner, Tino
2008-01-01
In this paper we consider the well-known BPX-preconditioner in conjunction with adaptive FEM. We present an algorithm which enables us to compute the preconditioner with optimal complexity by a total of only O(DoF) additional memory. Furthermore, we show how to combine the BPX-preconditioner with an overlapping Additive-Schwarz-preconditioner to obtain a preconditioner for finite element spaces with arbitrary polynomial degree distributions. Numerical examples illustr...
Directory of Open Access Journals (Sweden)
Yongqiang Yang
2015-01-01
Full Text Available The understanding of the target radar cross section (RCS is significant for target identification and for radar designing and optimization. In this paper, a numerical algorithm for calculating target RCS is presented which is based on Legendre wavelet model-based parameter estimation (LW-MBPE. The Padé rational function fitting model applied for MBPE in the frequency domain is enhanced to include spatial dependence on the numerator and denominator coefficients. This allows the function to interpolate target RCS in both the frequency and spatial domains simultaneously. The combination of Legendre wavelets guarantees the convergence of the algorithm. The method is convergent by increasing the sampling frequency and spatial points. Numerical results are provided to demonstrate the validity and applicability of the new technique.
Liu, Changsheng; Lin, Jun; Zhou, Fengdao; Hu, Ruihua; Sun, Caitang
2013-12-01
The frequency-domain controlled-source electromagnetic method (FDCSEM) has played an important role in the terrestrial and oceanic exploration. However, the measuring manners and the detecting abilities in two kinds of environment are much different. This paper analyses the electromagnetic theories of the FDCSEM exploration on land and in ocean, simulates the electromagnetic responses in the two cases based on a united physical and mathematical model, and studies the physical mechanism leading to these differences. In this study, the relationship between the propagation paths and the detecting ability is illuminated and the way to improve the detecting ability of FDCSEM is brought forward. In terrestrial exploration, FDCSEM widely adopts the measuring manner of controlled-source audio-frequency magnetotelluric method (CSAMT), which records the electromagnetic fields in the far zone in the broadside direction of an electric dipole source. This manner utilizes the airwave (i.e. the Earth surface wave) and takes the stratum wave as interference. It is sensitive to the conductive target but insensitive to the resistive one. In oceanic exploration, FDCSEM usually adopts the measuring manner of marine controlled-source electromagnetic method (MCSEM), which records the electromagnetic fields, commonly the horizontal electric fields, in the in-line direction of the electric dipole source. This manner utilizes the stratum wave (i.e. the seafloor wave and the guided wave in resistive targets) and takes the airwave as interference. It is sensitive to the resistive target but relatively insensitive to the conductive one. The numerical simulation shows that both the airwave and the stratum wave contribute to the FDCSEM exploration. United utilization of them will enhance the anomalies of targets and congregate the advantages of CSAMT and MCSEM theories. At different azimuth and different offset, the contribution of the airwave and the stratum wave to electromagnetic anomaly is
Mestas Valero, R. M.; Báez Bernal, D.; García Pomar, M. I.; Paz González, A.
2009-04-01
Frequency domain reflectometry (FDR) is becoming increasingly used for indirect water content determination in soils. In Galica, located in NW Spain, the humid region of this country, annual precipitation exceeds evapotranspiration. However, the yearly distribution of rainfall is irregular, so that supplementary irrigation during the dry warm summer is required often. This study aims to evaluate soil water use by grasslands and soil water regime patterns during the warm season from soil moisture measured at successive depths using FDR. The study sity is located at the experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo, latitude 43°14' N and longitude 08°15' W. Soil moisture was monitored at six experimental plots from July to October 2008 two times per week using a portable FDR sensor. Measurements were made from 10 to 160 cm depth at 10 cm intervals. Moreover one of the plots was equipped with a continuous recording FDR-EnviroSCAN probe. Crop potential evapotranspiration (ETc) was estimated according to the of FAO version of the Penman-Monteith equation and the meteorological information required to apply this method was provided by a station located in the place experimental field. Cumulative rainfall along the study period was 195 mm, which is above the long-term mean and cumulative potential evapotranspiration was 264.7 mm. Using the water balance method the total value of actual evapotranspiration was estimated at 205.2 mm. Analysis of soil moisture content profiles allowed a description of soil water regime and main soil water withdrawal patterns under grassland. In general, grassland roots extracted most soil water from the 0-40 cm depth. In contrast, moisture content at the bottom of the profile was close to saturation, even the driest weeks of the study period. Continuous monitoring of soil water content allowed a more detailed characterization of dry and wet periods during the study season. The study data set may be useful
Directory of Open Access Journals (Sweden)
Azeddine Wahbi
2014-09-01
Full Text Available This study presents a new algorithm for cancelling the acoustic echo, which is a major problem for hands-free communications. The proposed adaptive Acoustic Echo Canceller algorithm is designed and developed using a digital signal processing technique in frequency domain. The main scope of this study is to implement this module, benefiting the advantage of circular convolution properties and Fast Fourier Transform (FFT with high computation speed in frequency domain rather than adaptive algorithms Normalized Least Mean Square (NLMS and Recursive Least Square (RLS in time domain with high complexity, also the simplicity of the implementation using SIMULINK programming. The results obtained at the simulation level prove the module behavior for cancellation of echo for hands free communications using adaptive algorithm frequency domain. Nevertheless, our algorithm shows more performances in terms of convergence and complexity. Our algorithm has been verified using the ERLE criteria to measure the attenuation of the echo signal at the output of an AEC; at this level we obtained the best values according to IUT-T recommendation G.168.
Institute of Scientific and Technical Information of China (English)
张能欢; 于水源
2014-01-01
数字水印技术是数字媒体版权保护和管理的主要方法。在广播电视领域，视频水印需处理的数据量大，对嵌入算法的时间复杂度限制较大，同时对视频质量要求也较高。数字水印技术主要分为空域和变换域两种。空域算法时间复杂度低，但鲁棒性不好；而变换域算法鲁棒性较好，但时间复杂度高。因此，在广播电视视频水印中，需要鲁棒性好且时间复杂度低的水印嵌入算法。这样，用空域的方法实现数字视频的变换域水印，就成为一个首选的方法。但是，目前我们尚不知道该方法的性能。本文基于DCT变换的频域水印算法，首先介绍了频域水印的空域实现的原理，然后，基于两个典型的频域水印算法，通过800幅图片的实验，测试了该算法的空域实现的时间复杂度和PSNR。实验结果表明，频域视频水印的空域实现，具有很好的性能。%Digital watermarking technology is the main method of digital media copyright protec-tion and management .In the field of broadcasting and television ,the data of video watermarking need to process is great ,the great data limits the time complexity of the watermarking algorithm ,and watermark-ing algorithm needs a higher requirement of video quality .Digital watermarking technology is mainly di-vided into spatial domain and frequency domain .Spatial domain watermark ’ s time complexity is low ,but the robustness is poor;frequency domain watermark ’ s robustness is better , but the time complexity is higher.Thus,it needs a good robustness and low time complexity watermarking in the field of broadcast and television .So,implementing frequency domain watermark in spatial domin becomes a preferred meth-od.However,at present,we do not know the performance of the method .In this article,first,we introduced the principle of implementing the frequency watermark based on DCT in spatial domain ,and then,based on
International Nuclear Information System (INIS)
This work is part of a study to the applicability of ultrasonic technique in the frequency domain for non-destructive characterization of ceramic pellets fuel, which is of great interest because of concern about the safety and efficacy in the nuclear industry. In this work it was analysed if there were changes in frequency spectrum, generated by the traveling of an ultrasonic pulse through ceramic pellets of aluminum oxide (Al2O3). Using the ultrasonic technique in the frequency domain, together with micro-structural analysis of pellets by scanning electron microscope, it was possible to associate the characteristics of the material inspected with its respective frequency spectrum. The characterization was performed on 40 pellets alumina sintered in the temperatures of 1150, 1400, 1480, 1540 and 1580 deg C with porosities, as measured by the Archimedes method, ranging from 5.09% to 37.3%. The results show that the ultrasonic technique is effective in determining the micro-structure of ceramic alumina pellets and can be applied in the characterization of other porous materials in a production line, where the format of the frequency spectrum generated by the structure of the material may determine if the pellets belong the required specifications. (author)
Energy Technology Data Exchange (ETDEWEB)
Sadet, A.; Fernandes, L.; Kateb, F., E-mail: fatiha.kateb@parisdescartes.fr, E-mail: balzan.riccardo@parisdescartes.fr; Balzan, R., E-mail: fatiha.kateb@parisdescartes.fr, E-mail: balzan.riccardo@parisdescartes.fr; Vasos, P. R. [Laboratoire de Chimie et Biochimie Toxicologiques et Pharmacologiques UMR-8601, Université Paris Descartes - CNRS, PRES Paris Sorbonne Cité, 75006 Paris (France)
2014-08-07
Long-lived coherences (LLC’s) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening.
K. Fukushima; Emori, T; Shimizu, W; Kurita, T; Aihara, N; Kosakai, Y; Isobe, F.; Shimomura, K.; Kawashima, Y.; Ohe, T
1997-01-01
Objective—To analyse heart rate variability in patients with atrial fibrillation after the Maze procedure, to investigate whether the procedure damages the cardiac autonomic fibres supplying the sinus node. Design and patients—Time and frequency domain analyses of RR variability were performed using 24 hour Holter monitoring one month after surgery in 12 patients with atrial fibrillation who underwent the Maze procedure (Maze group) and in seven patients who underwent cardiac surgery without ...
Yongqiang Yang; Yunpeng Ma; Lifeng Wang
2015-01-01
The understanding of the target radar cross section (RCS) is significant for target identification and for radar designing and optimization. In this paper, a numerical algorithm for calculating target RCS is presented which is based on Legendre wavelet model-based parameter estimation (LW-MBPE). The Padé rational function fitting model applied for MBPE in the frequency domain is enhanced to include spatial dependence on the numerator and denominator coefficients. This allows the function to i...
Gorce, Jean-Marie; Jaffrès-Runser, Katia; De La Roche, Guillaume
2005-01-01
This report presents the theoretical background and new developments of the multi-resolution frequency domain ParFlow (MR-FDPF) approach for the calculus or radio propagation in Indoor environments for centimetric waves. This method has been developed to face the need of a best understanding of Indoor propagation and to help the WiFi network planning task. Indeed, the development of a wireless design tool is based firstly on a radio propagation engine to predict accurately the radio coverage ...
Husa, Sascha; Hannam, Mark; Pürrer, Michael; Ohme, Frank; Forteza, Xisco Jiménez; Bohé, Alejandro
2015-01-01
In this paper we discuss the anatomy of frequency-domain gravitational-wave signals from non-precessing black-hole coalescences with the goal of constructing accurate phenomenological waveform models. We first present new numerical-relativity simulations for mass ratios up to 18 including spins. From a comparison of different post-Newtonian approximants with numerical-relativity data we select the uncalibrated SEOBNRv2 model as the most appropriate for the purpose of constructing hybrid post-Newtonian/numerical-relativity waveforms, and we discuss how we prepare time-domain and frequency-domain hybrid data sets. We then use our data together with results in the literature to calibrate simple explicit expressions for the final spin and radiated energy. Equipped with our prediction for the final state we then develop a simple and accurate merger-ringdown-model based on modified Lorentzians in the gravitational wave amplitude and phase, and we discuss a simple method to represent the low frequency signal augment...
Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.
1995-01-01
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.
International Nuclear Information System (INIS)
Purpose: A key challenge for image guided coronary interventions is accurate and absolutely robust image registration bringing together preinterventional information extracted from a three-dimensional (3D) patient scan and live interventional image information. In this paper, the authors present a novel scheme for 3D to two-dimensional (2D) rigid registration of coronary arteries extracted from preoperative image scan (3D) and a single segmented intraoperative x-ray angio frame in frequency and spatial domains for real-time angiography interventions by C-arm fluoroscopy.Methods: Most existing rigid registration approaches require a close initialization due to the abundance of local minima and high complexity of search algorithms. The authors' method eliminates this requirement by transforming the projections into translation-invariant Fourier domain for estimating the 3D pose. For 3D rotation recovery, template Digitally Reconstructed Radiographs (DRR) as candidate poses of 3D vessels of segmented computed tomography angiography are produced by rotating the camera (image intensifier) around the DICOM angle values with a specific range as in C-arm setup. The authors have compared the 3D poses of template DRRs with the segmented x-ray after equalizing the scales in three domains, namely, Fourier magnitude, Fourier phase, and Fourier polar. The best rotation pose candidate was chosen by one of the highest similarity measures returned by the methods in these domains. It has been noted in literature that frequency domain methods are robust against noise and occlusion which was also validated by the authors' results. 3D translation of the volume was then recovered by distance-map based BFGS optimization well suited to convex structure of the authors' objective function without local minima due to distance maps. A novel automatic x-ray vessel segmentation was also performed in this study.Results: Final results were evaluated in 2D projection space for patient data; and
Energy Technology Data Exchange (ETDEWEB)
Aksoy, Timur; Unal, Gozde [Sabanci University, Tuzla, Istanbul 34956 (Turkey); Demirci, Stefanie; Navab, Nassir [Computer Aided Medical Procedures (CAMP), Technical University of Munich, Garching, 85748 (Germany); Degertekin, Muzaffer [Yeditepe University Hospital, Istanbul 34752 (Turkey)
2013-10-15
Purpose: A key challenge for image guided coronary interventions is accurate and absolutely robust image registration bringing together preinterventional information extracted from a three-dimensional (3D) patient scan and live interventional image information. In this paper, the authors present a novel scheme for 3D to two-dimensional (2D) rigid registration of coronary arteries extracted from preoperative image scan (3D) and a single segmented intraoperative x-ray angio frame in frequency and spatial domains for real-time angiography interventions by C-arm fluoroscopy.Methods: Most existing rigid registration approaches require a close initialization due to the abundance of local minima and high complexity of search algorithms. The authors' method eliminates this requirement by transforming the projections into translation-invariant Fourier domain for estimating the 3D pose. For 3D rotation recovery, template Digitally Reconstructed Radiographs (DRR) as candidate poses of 3D vessels of segmented computed tomography angiography are produced by rotating the camera (image intensifier) around the DICOM angle values with a specific range as in C-arm setup. The authors have compared the 3D poses of template DRRs with the segmented x-ray after equalizing the scales in three domains, namely, Fourier magnitude, Fourier phase, and Fourier polar. The best rotation pose candidate was chosen by one of the highest similarity measures returned by the methods in these domains. It has been noted in literature that frequency domain methods are robust against noise and occlusion which was also validated by the authors' results. 3D translation of the volume was then recovered by distance-map based BFGS optimization well suited to convex structure of the authors' objective function without local minima due to distance maps. A novel automatic x-ray vessel segmentation was also performed in this study.Results: Final results were evaluated in 2D projection space for
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, R L [Grupo de Ceramicas Ferroeletricas, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP, CEP 13565-670 (Brazil); Leyet, Y [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, CP 90500 (Cuba); Guerrero, F [Grupo de Ceramicas Ferroeletricas, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP, CEP 13565-670 (Brazil); Guerra, J de Los S [Grupo de Ceramicas Ferroeletricas, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP, CEP 13565-670 (Brazil); Venet, M [Grupo de Ceramicas Ferroeletricas, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP, CEP 13565-670 (Brazil); Eiras, J A [Grupo de Ceramicas Ferroeletricas, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP, CEP 13565-670 (Brazil)
2007-04-04
The relaxation dynamics of the conductive process present in PbNb{sub 2}O{sub 6} piezoelectric ceramics was investigated. A relaxation function in the time domain, {phi}(t), was found from the frequency dependence of the dielectric modulus (imaginary component, M'') by using a relaxation function in the frequency domain, F*({omega}). The best relaxation function, F*({omega}), was found to be a Cole-Cole distribution function, in which relaxation characteristic parameters, such as {alpha} and {tau}{sub CC}, are involved. On the other hand, the relaxation function, {phi}(t), obtained by the time domain method, was found to be a Kohlrausch-Williams-Watts (KWW) function type. The thermal evolution of the characteristics parameters of the KWW function ({beta} and {tau}*) was analysed. The values of the activation energy (E{sub a}), obtained in the whole investigated temperature interval, suggest the existence of a relaxation mechanism (a conductive process), which may be interpreted by an ion hopping between neighbouring sites within the crystalline lattice. The results are corroborated with the formalism of the AC conductivity.
Energy Technology Data Exchange (ETDEWEB)
Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F., E-mail: ferenc.simon@univie.ac.at [Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), P.O. Box 91, H-1521 Budapest (Hungary); Murányi, F. [Foundation for Research on Information Technologies in Society (IT’IS), Zeughausstrasse 43, 8004 Zurich (Switzerland)
2015-09-15
We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.
International Nuclear Information System (INIS)
We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation
Fominov, Ya. V.; Volkov, A. F.; Efetov, K. B.
2007-03-01
We consider a SFS Josephson junction made of two superconductors S and a multidomain ferromagnet F with an in-plane magnetization. We assume that the neighboring domains of the ferromagnet are separated by Néel domain walls. An odd-frequency triplet long-range component of superconducting correlations arises in the domain walls and spreads into the domains over a long distance of the order ξT=D/2πT , where D is the diffusion coefficient (dirty limit is implied). We calculate the contribution of this component to the Josephson current in the situation when conventional short-range components exponentially decay over the thickness of the F layer and can be neglected. In the limit when the thickness of the F layer is much smaller than the penetration length of the long-range component, we find that the junction is in the π state. We also analyze a correction to the density of states due to the long-range triplet component.
Peterson, David; Kummerer, Theresa; Coumou, David; Shannon, Steven
2014-10-01
In this work, microsecond time resolved electron density measurements in pulsed RF discharges are shown using an automated hairpin resonance probe using relatively low cost electronics, on par with normal Langmuir probe boxcar mode operation. A low cost signal generator is used to produce the applied microwave frequency and the reflected waveform is filtered to remove the RF component. The signal is then heterodyned with a simple frequency mixer to produce a dc signal read by an oscilloscope to determine the electron density. The applied microwave frequency is automatically shifted in small increments in a frequency boxcar routine through a Labview™program to determine the resonant frequency. A simple dc sheath correction is then easily applied since the probe is fully floating, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in a capacitively coupled, parallel plate configuration in a 13.56 MHz, 50--200 W RF discharge pulsed at 500 Hz, 200 W, 50% duty cycle. The gas input ranged from 50--100 mTorr pure Ar or with 5--10% O/He mixtures.