WorldWideScience

Sample records for 3d-ddtc pixel detectors

  1. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Darbo, Giovanni; Gemme, Claudia [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); La Rosa, Alessandro; Pernegger, Heinz [CERN-PH, CH-1211 Geneve 23 (Switzerland); Piemonte, Claudio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Povoli, Marco [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Ronchin, Sabina [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Zoboli, Andrea [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Zorzi, Nicola [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy)

    2011-04-21

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  2. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    CERN Document Server

    Betta, G -F Dalla; Darbo, G; Gemme, C; La Rosa, A; Pernegger, H; Piemonte, C; Povoli, M; Ronchin, S; Zoboli, A; Zorzi, N

    2011-01-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are here discussed.

  3. Preliminary results of 3D-DDTC pixel detectors for the ATLAS upgrade

    CERN Document Server

    La Rosa, Alessandro; Dalla Betta, G F; Darbo, G; Gemme, C; Pernegger, H; Piemonte, C; Povoli, M; Ronchin, S; Zoboli, A; Zorzi, N; Bolle, E; Borri, M; Da Via, C; Dong, S; Fazio, S; Grenier, P; Grinstein, S; Gjersdal, H; Hansson, P; Huegging, F; Jackson, P; Kocian, M; Rivero, F; Rohne, O; Sandaker, H; Sjobak, K; Slavicek, T; Tsung, W; Tsybychev, D; Wermes, N; Young, C

    2009-01-01

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200um, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110um to 150um. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am241 gamma-ray sources, charge collection tests with Sr90 beta-source and an overview of preliminary results from the CERN beam test.

  4. Preliminary Results of 3D-DDTC Pixel Detectors for the ATLAS Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, Alessandro; /CERN; Boscardin, M.; /Fond. Bruno Kessler, Povo; Dalla Betta, G.-F.; /Trento U. /INFN, Trento; Darbo, G.; Gemme, C.; /INFN, Genoa; Pernegger, H.; /CERN; Piemonte, C.; /Fond. Bruno Kessler, Povo; Povoli, M.; /Trento U. /INFN, Trento; Ronchin, S.; /Fond. Bruno Kessler, Povo; Zoboli, A.; /Trento U. /INFN, Trento; Zorzi, N.; /Fond. Bruno Kessler, Povo; Bolle, E.; /Oslo U.; Borri, M.; /INFN, Turin /Turin U.; Da Via, C.; /Manchester U.; Dong, S.; /SLAC; Fazio, S.; /Calabria U.; Grenier, P.; /SLAC; Grinstein, S.; /Barcelona, IFAE; Gjersdal, H.; /Oslo U.; Hansson, P.; /SLAC; Huegging, F.; /Bonn U. /SLAC /INFN, Turin /Turin U. /Oslo U. /Bergen U. /Oslo U. /Prague, Tech. U. /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

    2012-04-04

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180 GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200 {mu}m, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110 {mu}m to 150 {mu}m. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am{sup 241} {gamma}-ray sources, charge collection tests with Sr90 {beta}-source and an overview of preliminary results from the CERN beam test.

  5. Characterization of 3D-DDTC detectors on p-type substrates

    CERN Document Server

    Betta, G -F Dalla; Bosisio, Luciano; Darbo, Giovanni; Gabos, Paolo; Gemme, Claudia; Koehler, Michael; La Rosa, Alessandro; Parzefall, Ulrich; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Rachevskaia, Irina; Ronchin, Sabina; Wiik, Liv; Zoboli, Aanrea; Zorzi, Nicola

    2009-01-01

    We report on the electrical and functional characterization of 3D Double-side, Double-Type-Column (3D- DDTC) detectors fabricated on p-type substrates. Results relevant to detectors in the diode, strip and pixel configurations are presented, and demonstrate a clear improvement in the charge collection performance compared to the first prototypes of these detectors.

  6. Initial results from 3D-DDTC detectors on p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A., E-mail: zoboli@disi.unitn.i [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste, and INFN, Sezione di Trieste, Via A. Valerio, 2, I-34127 Trieste (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy)

    2010-01-11

    Owing to their superior radiation hardness compared to planar detectors, 3D detectors are one of the most promising technologies for the LHC upgrade foreseen in 2017. Fondazione Bruno Kessler has developed 3D Double-side Double-Type Column (3D-DDTC) detectors providing a technological simplifications with respect to a standard 3D process while aiming at comparable detector performance. We present selected results from the electrical characterization of 3D-DDTC structures from the second batch made on p-type substrates, supported also by TCAD simulations.

  7. Characterization of proton irradiated 3D-DDTC pixel sensor prototypes fabricated at FBK

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, A., E-mail: alessandro.larosa@cern.ch [CERN, Geneva 23, CH-1211 (Switzerland); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Cobal, M. [Universita degli Studi di Udine and INFN Trieste, Gruppo Collegato di Udine, Via delle Scienze 208, I-33100 Udine (Italy); Dalla Betta, G.-F. [DISI, Universita degli Studi di Trento and INFN Padova, Gruppo Collegato d Trento, Via Sommarive 14, I-38123 Trento (Italy); Da Via, C. [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Darbo, G. [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Gallrapp, C. [CERN, Geneva 23, CH-1211 (Switzerland); Gemme, C. [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Huegging, F.; Janssen, J. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Micelli, A. [Universita degli Studi di Udine and INFN Trieste, Gruppo Collegato di Udine, Via delle Scienze 208, I-33100 Udine (Italy); Pernegger, H. [CERN, Geneva 23, CH-1211 (Switzerland); Povoli, M. [DISI, Universita degli Studi di Trento and INFN Padova, Gruppo Collegato d Trento, Via Sommarive 14, I-38123 Trento (Italy); Wermes, N. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Zorzi, N. [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-07-21

    In this paper we discuss results relevant to 3D Double-Side Double Type Column (3D-DDTC) pixel sensors fabricated at FBK (Trento, Italy) and oriented to the ATLAS upgrade. Some assemblies of these sensors featuring different columnar electrode configurations (2, 3, or 4 columns per pixel) and coupled to the ATLAS FEI3 read-out chip were irradiated up to large proton fluences and tested in laboratory with radioactive sources. In spite of the non-optimized columnar electrode overlap, sensors exhibit reasonably good charge collection properties up to an irradiation fluence of 2 Multiplication-Sign 10{sup 15}n{sub eq}cm{sup -2}, while requiring bias voltages in the order of 100 V. Sensor operation is further investigated by means of TCAD simulations which can effectively explain the basic mechanisms responsible for charge loss after irradiation.

  8. Characterization of proton irradiated 3D-DDTC pixel sensor prototypes fabricated at FBK

    CERN Document Server

    La Rosa, A; Cobal, M; Betta, G -F Dalla; Da Via, C; Darbo, G; Gallrapp, C; Gemme, C; Huegging, F; Janssen, J; Micelli, A; Pernegger, H; Povoli, M; Wermes, N; Zorzi, N

    2012-01-01

    In this paper we discuss results relevant to 3D Double-Side Double Type Column (3D-DDTC) pixel sensors fabricated at FBK (Trento, Italy) and oriented to the ATLAS upgrade. Some assemblies of these sensors featuring different columnar electrode configurations (2, 3, or 4 columns per pixel) and coupled to the ATLAS FEI3 read-out chip were irradiated up to large proton fluences and tested in laboratory with radioactive sources. In spite of the non optimized columnar electrode overlap, sensors exhibit reasonably good charge collection properties up to an irradiation fluence of 2 x 10**15 neq/cm2, while requiring bias voltages in the order of 100 V. Sensor operation is further investigated by means of TCAD simulations which can effectively explain the basic mechanisms responsible for charge loss after irradiation.

  9. Functional characterization of irradiated 3D-DDTC pixel sensor prototypes fabricated at FBK

    CERN Document Server

    La Rosa, A; Cobal, M; Da Viá, C; Betta, G F Dalla; Darbo, G; Gallrapp, C; Gemme, C; Huegging, F; Janssen, J; Micelli, A; Pernegger, H; Povoli, M; Wermes, N; Zorzi, N

    2011-01-01

    In this paper we discuss results relevant to 3D Double-Side Double Type Column (3D-DDTC) pixel sensors fabricated at FBK (Trento, Italy) and oriented to the ATLAS upgrade. Several assemblies of these sensors featuring various columnar electrode configurations (2, 3, or 4 columns per pixel) and coupled to the ATLAS FE-I3 read-out chip were irradiated up to large particle fluences and tested in laboratory with radioactive sources. In spite of the non optimized columnar electrode overlap, sensors exhibit reasonably good charge collection properties up to an irradiation fluence of 2 10**15 neq/cm2 while requiring bias voltages of at most 160V. Sensor operation is further investigated by means of TCAD simulations which can effectively explain the basic mechanisms responsible for charge loss after irradiation.

  10. Performance evaluation of 3D-DDTC detectors on p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.i [Dipartimento Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN Trento, via Sommarive 14, 38123 Povo di Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler (FBK-irst), via Sommarive 18, 38123 Povo di Trento (Italy); Bosisio, Luciano [Dipartimento di Fisica, Universita di Trieste, and INFN Trieste, via A. Valerio 2, 34127 Trieste (Italy); Koehler, Michael; Parzefall, Ulrich [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Ronchin, Sabina [Fondazione Bruno Kessler (FBK-irst), via Sommarive 18, 38123 Povo di Trento (Italy); Wiik, Liv [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Zoboli, Andrea [Dipartimento Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN Trento, via Sommarive 14, 38123 Povo di Trento (Italy); Zorzi, Nicola [Fondazione Bruno Kessler (FBK-irst), via Sommarive 18, 38123 Povo di Trento (Italy)

    2010-12-11

    In this work, we report on the noise and signal properties of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) detectors fabricated at FBK-irst (Trento, Italy). Compared to full 3D detectors, devices made with this approach allow for a simpler fabrication process, but the efficiency and speed of the charge collection process critically depend on the column overlap and should be carefully evaluated. Measurements were performed on detectors in the microstrip configuration coupled to the ATLAS ABCD3T binary read-out. Spatially resolved signal efficiency tests made with a pulsed infrared laser setup and charge collection efficiency tests made with a {beta} source setup are here reported.

  11. Laser and beta source setup characterization of 3D-DDTC detectors fabricated at FBK-irst

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A. [INFN, Sezione di Padova (Gruppo Collegato di Trento), and Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38050 Povo (Trento) (Italy)], E-mail: zoboli@disi.unitn.it; Dalla Betta, G.-F. [INFN, Sezione di Padova (Gruppo Collegato di Trento), and Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38050 Povo (Trento) (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38050 Povo (Trento) (Italy); Bosisio, L. [Dip. di Fisica e INFN, Universita di Trieste, I-34127, Trieste (Italy); Eckert, S.; Kuehn, S.; Parzefall, U. [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38050 Povo (Trento) (Italy)

    2009-06-01

    We report on the functional characterization of the first batch of 3D Double-Sided Double Type Column (3D-DDTC) detectors fabricated at FBK, Trento. This detector concept represents the evolution of the previous 3D-STC detectors towards full 3D detectors, and is expected to achieve a performance which is comparable to standard 3D detectors, but with a simpler fabrication process. Measurements were performed on detectors in the microstrip configuration coupled to the ATLAS ABCD3T binary readout. This paper reports spatially resolved signal efficiency tests made with a pulsed infrared laser setup and charge collection efficiency tests made with a Beta source.

  12. Characterization and modelling of signal dynamics in 3D-DDTC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A., E-mail: zoboli@disi.unitn.i [INFN, Sezione di Padova (Gruppo Collegato di Trento), and Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38050 Povo (Trento) (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38050 Povo (Trento) (Italy); Bosisio, L. [INFN, Sezione di Trieste, e Dipartimento di Fisica, Universita di Trieste, I-34127 Trieste (Italy); Dalla Betta, G.-F.; Gabos, P. [INFN, Sezione di Padova (Gruppo Collegato di Trento), and Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38050 Povo (Trento) (Italy); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38050 Povo (Trento) (Italy)

    2010-05-21

    In the past few years we have developed 3D detector technologies within a collaboration between INFN and FBK-irst aiming at a simplification of the fabrication technology with respect to the original 3D design. These detectors are the object of an increasing interest from the HEP community because of their intrinsic radiation hardness, making them appealing for innermost layers of tracking at the foreseen upgrades of the large hadron collider. In this paper we evaluate the signal shape in response to localized and uniform charge deposition both by solving Ramo's theorem and with the aid of TCAD simulations. Signals observed in 3D diodes, stimulated by lasers at different wavelengths, are compared with simulations results.

  13. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  14. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  15. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  16. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  17. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  18. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  19. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  20. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  1. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  2. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  3. Characterization of 3D-DDTC strip sensors with passing-through columns

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dellInformazione, Universitá di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38123 Povo di Trento (Italy); Betancourt, C. [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dellInformazione, Universitá di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38123 Povo di Trento (Italy); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Lecini, B. [Dipartimento di Ingegneria e Scienza dellInformazione, Universitá di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); Kuehn, S.; Parzefall, U. [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2013-12-01

    We report on the pre-irradiation electrical and functional characterization of newly developed 3D silicon strip detectors fabricated at FBK. Critical layout aspects present in the previous version of the technology were solved, and the new sensors are showing encouraging results both in terms of electrical properties and charge collection efficiency.

  4. Pixelated gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  5. VNR CMS Pixel detector replacement

    CERN Multimedia

    2017-01-01

    Joel Butler, spokesperson of the CMS collaboration explains how a team from many different partner institutes installed a new detector in CMS. This detector is the silicon pixel detector and they’ve been working on it for about five years, to replace one of our existing detectors. This detectors measures particles closer to the beam than any of the other components of this huge detector behind me. It gives us the most precise picture of tracks as they come out of the collisions and expand and travel through the detector. This particular device has twice as many pixels, 120 million, as opposed to about 68 million in the old detector and it can take data faster and pump it out to the analysis more quickly. 00’53’’ Images of the descent, insertion and installation of first piece of the Pixel detector on Tue Feb 28. Images of the descent, insertion and installation of second piece of the Pixel and the two cylinders being joined.

  6. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  7. The ALICE pixel detector upgrade

    Science.gov (United States)

    Reidt, F.

    2016-12-01

    The ALICE experiment at the CERN LHC is designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma, using proton-proton, proton-nucleus and nucleus-nucleus collisions. The ALICE collaboration is preparing a major upgrade of the experimental apparatus to be installed during the second long LHC shutdown in the years 2019-2020. A key element of the ALICE upgrade is the new, ultra-light, high-resolution Inner Tracking System. With respect to the current detector, the new Inner Tracking System will significantly enhance the pointing resolution, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a Monolithic Active Pixel Sensor with a pixel pitch of about 30×30 μm2. A key feature of the new Inner Tracking System, which is optimised for high tracking accuracy at low transverse momenta, is the very low mass of the three innermost layers, which feature a material budget of 0.3% X0 per layer. This contribution presents the design goals and layout of the upgraded ALICE Inner Tracking System, summarises the R&D activities focussing on the technical implementation of the main detector components, and the projected detector performance.

  8. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  9. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  10. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  11. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  12. Physics performance of the ATLAS pixel detector

    Science.gov (United States)

    Tsuno, S.

    2017-01-01

    In preparation for LHC Run-2 the ATLAS detector introduced a new pixel detector, the Insertable B-Layer (IBL). This detector is located between the beampipe and what was the innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level objects such a b-quark jet tagging. This in turn, leads to better physics results. This note summarizes the impact of the IBL detector on physics results, especially focusing on the analyses using b-quark jets throughout 2016 summer physics program.

  13. Development of SOI pixel detector in Cracow

    CERN Document Server

    Bugiel, Szymon; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for time and amplitude measurements. In addition the design of a Successive Approximation Register Analog-to-Digital Converter (SAR ADC) is also presented. A 10-bit SAR ADC is developed for spectroscopic measurements and a lower resolution 6-bit SAR ADC is integrated in the pixel matrix as a column ADC, for tracking applications.

  14. LISe pixel detector for neutron imaging

    Science.gov (United States)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  15. Pixel detectors from fundamentals to applications

    CERN Document Server

    Rossi, Leonardo; Rohe, Tilman; Wermes, Norbert

    2006-01-01

    Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.

  16. Physics performance of the ATLAS Pixel Detector

    CERN Document Server

    Tsuno, Soshi; The ATLAS collaboration

    2016-01-01

    One noticeable upgrade from Run-1 to Run-2 with ATLAS detector in proton-proton collisions at LHC is the introduction of the new pixel detector, IBL, located on the beam pipe as the extra innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level object such a $b$-quark jet tagging, in turn, it leads the better physics results. This note summarizes what is the impact on the IBL detector to the physics results especially focusing on the analyses using the $b$-quark jets throughout 2016 summer physics program.

  17. Operational Experience with the CMS Pixel Detector

    CERN Document Server

    Karancsi, Janos

    2016-01-01

    The CMS pixel detector was repaired successfully, calibrated and commissioned for the second run of Large Hadron Collider during the first long shutdown between 2013 and 2015. The replaced pixel modules were calibrated separately and show the expected behavior of an un-irradiated detector. In 2015, the system performed very well with an even improved spatial resolution compared to 2012. During this time, the operational team faced various challenges including the loss of a sector in one half shell which was only partially recovered. In 2016, the detector is expected to withstand instantaneous luminosities beyond the design limits and will need a combined effort of both online and offline teams in order to provide the high quality data that is required to reach the physics goals of CMS. We present the operational experience gained during the second run of the LHC and show the latest performance results of the CMS pixel detector.

  18. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  19. Towards spark-proof gaseous pixel detectors

    Science.gov (United States)

    Tsigaridas, S.; Beuzekom, M. v.; Chan, H. W.; Graaf, H. v. d.; Hartjes, F.; Heijhoff, K.; Hessey, N. P.; Prodanovic, V.

    2016-11-01

    The micro-pattern gaseous pixel detector, is a promising technology for imaging and particle tracking applications. It is a combination of a gas layer acting as detection medium and a CMOS pixelated readout-chip. As a prevention against discharges we deposit a protection layer on the chip and then integrate on top a micromegas-like amplification structure. With this technology we are able to reconstruct 3D track segments of particles passing through the gas thanks to the functionality of the chip. We have turned a Timepix3 chip into a gaseous pixel detector and tested it at the SPS at Cern. The preliminary results are promising and within the expectations. However, the spark protection layer needs further improvement to make reliable detectors. For this reason, we have created a setup for spark-testing. We present the first results obtained from the lab-measurements along with preliminary results from the testbeam.

  20. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  1. Anode readout for pixellated CZT detectors

    Science.gov (United States)

    Narita, Tomohiko; Grindlay, Jonathan E.; Hong, Jaesub; Niestemski, Francis C.

    2004-02-01

    Determination of the photon interaction depth offers numerous advantages for an astronomical hard X-ray telescope. The interaction depth is typically derived from two signals: anode and cathode, or collecting and non-collecting electrodes. We present some preliminary results from our depth sensing detectors using only the anode pixel signals. By examining several anode pixel signals simultaneously, we find that we can estimate the interaction depth, and get sub-pixel 2-D position resolution. We discuss our findings and the requirements for future ASIC development.

  2. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  3. Proceedings of PIXEL98 -- International pixel detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.; Kwan, S. [eds.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  4. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  5. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  6. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  7. Operational Experience with the ALICE Pixel detector

    CERN Document Server

    Mastroserio, A.

    2017-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the Inner Tracking System of the ALICE experiment and it is the closest detector to the interaction point. As a vertex detector, it has the unique feature of generating a trigger signal that contributes to the L0 trigger of the ALICE experiment. The SPD started collecting data since the very first pp collisions at LHC in 2009 and since then it has taken part in all pp, Pb-Pb and p-Pb data taking campaigns. This contribution will present the main features of the SPD, the detector performance and the operational experience, including calibration and optimization activities from Run 1 to Run 2.

  8. optical links for the atlas pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  9. Optical links for the ATLAS Pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  10. The Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Hans-Günther, E-mail: moser@mpp.mpg.de

    2016-09-21

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55–60) μm in the first layer and between 50 μm×(70–85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the ‘internal gate’ modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X{sub 0}). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO{sub 2} system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  11. The Belle II DEPFET pixel detector

    Science.gov (United States)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  12. The Phase1 CMS Pixel detector upgrade

    CERN Document Server

    Tavolaro, Vittorio Raoul

    2016-01-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of $1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO$_{2}$ cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detect...

  13. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  14. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  15. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  16. Silicon buried channels for pixel detector cooling

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, M., E-mail: boscardi@fbk.eu [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Conci, P.; Crivellari, M.; Ronchin, S. [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Bettarini, S. [Universitá di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Bosi, F. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy)

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF{sub 6} plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  17. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  18. Hit efficiency study of CMS prototype forward pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  19. Near Future Upgrades for the CMS Pixel Detector

    CERN Document Server

    Kumar, Ashish

    2015-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The current pixel detector is designed to operate at a maximum luminosity of $1\\times10^{34}cm^{-2}s^{-1}$. Before 2018 the instantaneous luminosity of the LHC is expected to reach $2\\times10^{34}cm^{-2}s^{-1}$, which will significantly increase the number of interactions per bunch crossing. The performance of the current pixel detector in such high occupancy environment will be degraded due to substantial data-loss and effects of radiation damage of sensors, built up over the operational period. In order to maintain or exceed its current performance, the CMS pixel detector will be replaced by a new lightweight system with additional detection layers, better acceptance and improved readout electronics. The upgraded pixel detector will provide improved track and vertex reconstruction, standalone tracking capabilities, as well as identification of ...

  20. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2083994

    2016-01-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  1. Status of the CMS Phase I pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, S., E-mail: simon.spannagel@desy.de

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  2. Small pixel CZT detector for hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew David, E-mail: Matt.Wilson@stfc.ac.uk [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX (United Kingdom); Cernik, Robert [Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester (United Kingdom); Chen, Henry [Redlen Technologies, Saanichton, British Columbia (Canada); Hansson, Conny [Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester (United Kingdom); Iniewski, Kris [Redlen Technologies, Saanichton, British Columbia (Canada); Jones, Lawrence L.; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX (United Kingdom)

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20x20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20x20 pixels on a 250 {mu}m pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A {sup 241}Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09{+-}0.46 to 1.50{+-}0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20x20 array. A large area 80x80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  3. Small pixel CZT detector for hard X-ray spectroscopy

    Science.gov (United States)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  4. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  5. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  6. Detector apparatus having a hybrid pixel-waveform readout system

    Science.gov (United States)

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  7. Test of CZT Detectors with Different Pixel Pitches and Thicknesses

    CERN Document Server

    Li, Qiang; Jung, Ira; Groza, Michael; Dowkontt, Paul; Bose, Richard; Simburger, Garry; Burger, Arnold; Krawczynski, Henric

    2007-01-01

    The Modified Horizontal Bridgman (MHB) process produces Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity. Various groups,including our own, previously reported on the test of 2x2x0.5 cm3 MHB CZT detectors grown by the company Orbotech and read out with 8x8 pixels. In this contribution, we describe the optimization of the photolithographic process used for contacting the CZT detector with pixel contacts. The optimized process gives a high yield of good pixels down to pixel diameters/pitches of 50 microns. Furthermore, we discuss the performance of 0.5 cm and 0.75 cm thick detectors contacted with 64 and 225 pixel read out with the RENA-3 ASICs from the company NOVA R&D.

  8. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  9. Monolithic CMOS pixel detector for international linear collider vertex detection

    Indian Academy of Sciences (India)

    J E Brau; O Igonkina; N Sinew; D Strom; C Baltay; W Emmet; H Neal; D Rabinowitz

    2007-12-01

    A monolithic CMS pixel detector is under development for an ILC experiment. This chronopixel array provides a time stamp resolution of one bunch crossing, a critical feature for background suppression. The status of this effort is summarized.

  10. Fabrication and Test of Pixelated CZT Detectors with Different Pixel Pitches and Thicknesses

    CERN Document Server

    Li, Q; Dowkontt, P; Martín, J; Beilicke, M; Jung, I; Groza, M; Bürger, A; De Geronimo, G; Krawczynski, H

    2008-01-01

    The main methods grown Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity are Modified Horizontal Bridgman (MHB) and High Pressure Bridgman (HPB) processes, respectively. In this contribution, the readout system based on two 32-channel NCI-ASICs for pixellated CZT detector arrays has been developed and tested. The CZT detectors supplied by Orbotech (MHB) and eV products (HPB) are tested by NCI-ASIC readout system. The CZT detectors have an array of 8x8 or 11x11 pixel anodes fabricated on the anode surface with the area up to 2 cm x2 cm and the thickness of CZT detectors ranges from 0.5 cm to 1 cm. Energy spectra resolution and electron mobility-lifetime products of 8x8 pixels CZT detector with different thicknesses have been investigated.

  11. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  12. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  13. The Phase-1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Klein, Katja

    2017-02-01

    The CMS experiment features a pixel detector with three barrel layers and two discs per side, corresponding to an active silicon area of 1 m2. The detector delivered high-quality data during LHC Run 1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of 1 ·1034cm-2s-1 . It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to 16%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  14. HEXITEC ASIC-a pixellated readout chip for CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)], E-mail: l.l.jones@stfc.ac.uk; Seller, Paul; Wilson, Matthew; Hardie, Alec [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20x20 pixel ASIC has been developed and manufactured on a standard 0.35 {mu}m CMOS process.

  15. HEXITEC ASIC—a pixellated readout chip for CZT detectors

    Science.gov (United States)

    Jones, Lawrence; Seller, Paul; Wilson, Matthew; Hardie, Alec

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20×20 pixel ASIC has been developed and manufactured on a standard 0.35 μm CMOS process.

  16. The Phase-1 Upgrade of the CMS Pixel Detector

    CERN Document Server

    Klein, Katja

    2016-01-01

    The CMS experiment features a pixel detector with three barrel layers and two disks per side, corresponding to an active silicon area of 1\\,m$^2$. The detector delivered high-quality data during LHC Run~1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of $1\\cdot 10^{34}\\,$cm$^{-2}$s$^{-1}$. It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to~16\\,\\%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  17. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  18. First Results of the Pixel Detector Performance in 2015

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The CMS pixel detector consists of 66 million pixels arranged in three cylindric layers in the barrel region and two end-cap disks on each side of the barrel. It is used for seeding in track reconstruction. It is also the most important tool for vertex reconstruction. This report documents the good fraction of the pixel detector at the start of data-taking in 2015, its efficiency at low luminosity and 50 ns bunch-spacing, and the first measurements of the Lorentz-angle. Details are also given on the timing adjustment in the first collisions, and verification of the full depletion voltage.

  19. Pixel-level Analog-To-Digital Converters for Hybrid Pixel Detectors with energy sensitivity

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  20. Design of pixel-level ADCs for energy-sensitive hybrid pixel detectors

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  1. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  2. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  3. Neural network based cluster creation in the ATLAS Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing be- tween pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. How- ever, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambigui- ties in the assignment of pixel detector measurement to tracks and improves the position accuracy with respect to standard techniques by taking into account the 2-dimensional charge distribution.

  4. The phase 1 upgrade \\\\ of the CMS pixel detector

    CERN Document Server

    Verzocchi, Marco

    2016-01-01

    The CMS collaboration is building a replacement for the pixel detector that will be installed in the extended end of year shutdown 2016-2017. This contribution reviews the motivations for the upgrade, the technological choices made, the status of the construction of this new detector and the plans for installation and commissioning.

  5. Fabrication of ATLAS pixel detector prototypes at IRST

    CERN Document Server

    Boscardin, M; Gregori, P; Zen, M; Zori, N

    2001-01-01

    We report on the development of a fabrication technology for n-on-n silicon pixel detectors oriented to the ATLAS experiment at LHC. The main processing issues and some selected results from the electrical characterization of detector prototypes and related test structures are presented and discussed. (5 refs).

  6. Charge induction in semiconductor detectors with pixellated structure

    NARCIS (Netherlands)

    Samedov, Victor V.

    2007-01-01

    Considerable interest is now being attracted to the next generation of compound semiconductor detectors with pixellated structure in application to x-ray and gamma-astronomy, nuclear spectroscopy and nuclear medicine. The spatial resolution of this type of detectors is mainly determined by the proce

  7. Hybrid Pixel Detectors for gamma/X-ray imaging

    Science.gov (United States)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  8. Performance of silicon pixel detectors at small track incidence angles

    CERN Document Server

    Viel, Simon; The ATLAS collaboration

    2015-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN, as well as simulated data.

  9. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  10. The ATLAS tracker Pixel detector for HL-LHC

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current Inner Detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLAS Pixel detector developments as well as the various layout options are reviewed.

  11. Leakage current measurements on pixelated CdZnTe detectors

    NARCIS (Netherlands)

    Dirks, B.P.F.; Blondel, C.; Daly, F.; Gevin, O.; Limousin, O.; Lugiez, F.

    2006-01-01

    In the field of the R&D of a new generation hard X-ray cameras for space applications we focus on the use of pixelated CdTe or CdZnTe semiconductor detectors. They are covered with 64 (0.9×0.9 mm2) or 256 (0.5×0.5 mm2) pixels, surrounded by a guard ring and operate in the energy ranging from several

  12. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  13. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  14. Silicon pixel detector prototyping in SOI CMOS technology

    Science.gov (United States)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  15. Calibration analysis software for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  16. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim Farah, Fahim Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  17. A prototype hybrid pixel detector ASIC for the CLIC experiment

    CERN Document Server

    Valerio, P; Arfaoui, S; Ballabriga, R; Benoit, M; Bonacini, S; Campbell, M; Dannheim, D; De Gaspari, M; Felici, D; Kulis, S; Llopart, X; Nascetti, A; Poikela, T; Wong, W S

    2014-01-01

    A prototype hybrid pixel detector ASIC specifically designed to the requirements of the vertex detector for CLIC is described and first electrical measurements are presented. The chip has been designed using a commercial 65 nm CMOS technology and comprises a matrix of 64x64 square pixels with 25 μm pitch. The main features include simultaneous 4-bit measure- ment of Time-over-Threshold (ToT) and Time-of-Arrival (ToA) with 10 ns accuracy, on-chip data compression and power pulsing capability.

  18. The phase-1 upgrade of the CMS pixel detector

    CERN Document Server

    Weber, Hannsjorg Artur

    2016-01-01

    The pixel detector of the CMS experiment will be upgraded during the extended end of year shutdown during winter 2016/2017. The upgraded detector will operate at full efficiency at an instantaneous luminosity of ${2\\times10^{34}}$\\,cm$^{{-2}}$s$^{{-1}}$ with increased detector acceptance and additional redundancy for the tracking, while at the same time reducing the material budget. The design and technological choices will be reviewed, and the status of the construction of the detector and the performance of its components as measured in system tests are discussed.

  19. Construction of the Phase I Forward Pixel Detector

    Science.gov (United States)

    Neylon, Ashton; Bartek, Rachel

    2017-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The original CMS detector was designed for the nominal instantaneous LHC luminosity of 1 x 1034 cm-2s-1 . The LHC has already started to exceed this luminosity causing the CMS pixel detector to see a dynamic inefficiency caused by data losses due to buffer overflows. For this reason the CMS Collaboration has been building an upgraded pixel detector which is scheduled for installation during an extended year end technical stop during winter 2016/2017. The phase 1 upgrade includes four barrel layers and three forward disks, providing robust tracking and vertexing for LHC luminosities up to 2 x 1034 cm-2s-1 . The upgrade incorporates new readout chips, front-end electronics, DC-DC powering, and dual-phase CO2 cooling to achieve performance exceeding that of the present detector with a lower material budget. This contribution will review the design and technology choices of the Phase I detector and discuss the status of the detector. The challenges and difficulties encountered during the construction will also be presented, as well as the lessons learned for future upgrades. National Science Foundation.

  20. Phase 1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Saha, Anirban

    2017-02-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of 1 × 1034 cm‑2 s‑1. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to 2 × 1034 cm‑2 s‑1, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with higher rate capability and a new cooling system. In this document, we discuss the motivations for the upgrade, the design, and technological choices made, the status of the construction of the new detector and the future plans for the installation and commissioning.

  1. Novel integrated CMOS pixel structures for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  2. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  3. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  4. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  5. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will al...

  6. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  7. ATLAS pixel detector design for the HL-LHC

    Science.gov (United States)

    Smart, B.

    2017-02-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector is called the Inner Tracker (ITk). The ITk will cover an extended η-range: at least to |η|<3.2, and likely up to 0|η|<4.. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into `extended' and `inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will also be discussed.

  8. KPIX a pixel detector imaging chip

    CERN Document Server

    Cadeddu, S; Caria, M

    2002-01-01

    We present a VLSI custom device, named KPIX, developed in a 0.6 mu m CMOS technology. The circuit is dedicated to readout solid-state detectors covering large areas (on the order of square centimetre) and featuring very small currents. KPIX integrates 1024 channels (current amplifiers) and 8 ADCs on a 15.5x4 mm sup 2 area. Both an analogue and digital readout are allowed, with a 10 bit amplitude resolution. Amplifiers are organized in 8 columns of 128 rows. When choosing the digital or the analogue readout, the complete set of channels can be read out in about 30 ms. The specific design of the amplification cells allows to measure very small input current levels, on the order of fractions of pico-ampere. Power consumption has also been kept at the level of 80 mu W per cell and 150 mW (peak value) in total. The specific chip architecture and geometry allow use of many KPIX circuits together in order to serve a large detector sensitive area. The KPIX structure is presented along with some measurements character...

  9. The first bump-bonded pixel detectors on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V.G.; Pan, L.S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W. E-mail: william@physics.utoronto.ca; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 {mu}m was observed, consistent with expectations given the detector pitch.

  10. Performance of the INTPIX6 SOI pixel detector

    Science.gov (United States)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  11. Fabrication and Test of Pixelated CZT Detectors with Different Pixel Pitches and Thicknesses

    OpenAIRE

    Li, Q.; Garson, A.; Dowkontt, P.; Martin, J.; Beilicke, M; Jung, I.; Groza, M.; A. Burger; De Geronimo, G.; Krawczynski, H.; .

    2008-01-01

    The main methods grown Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity are Modified Horizontal Bridgman (MHB) and High Pressure Bridgman (HPB) processes, respectively. In this contribution, the readout system based on two 32-channel NCI-ASICs for pixellated CZT detector arrays has been developed and tested. The CZT detectors supplied by Orbotech (MHB) and eV products (HPB) are tested by NCI-ASIC readout system. The CZT detectors have an array of 8x8 or 11x11 pi...

  12. Phase 1 upgrade of the CMS Pixel Detector

    CERN Document Server

    Saha, Anirban

    2016-01-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of $\\rm 1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to $\\rm 2\\times10^{34} cm^{-2}s^{-1}$, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are the a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with hi...

  13. The ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4 cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and sensors which can stand radiation levels beyond 5$ imes$10$^{15}$ n$_{eq}$/cm$^{2}$ . ATLAS has developed the new FEI4 chip and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation length and allows detector cooling with CO$_{2}$ at -40 $^{circ}$C coolant temperature. Currently the overall integration and installation procedure is being developed and tested ready for installation in 2013. The paper summarizes the current state of development of IBL modules, first preliminary test results of the new chip ...

  14. Overview of the ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and the sensor which can stand radiation levels beyond 5E15 neq/cm2. ATLAS has developed the new FEI4 and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation and allows detector cooling with CO2 at -40C coolant temperature. Currently the overall integration and installation procedure is being developed and test ready for installation in ATLAS in 2013. The presentation summarizes the current state of development of IBL modules, first preliminary test results of the new chip with new sensors, the construction ...

  15. Optical Links for the ATLAS Pixel Detector

    CERN Document Server

    Gregor, Ingrid-Maria

    In der vorliegenden Dissertation wird eine strahlentolerante optische Datenstrecke mit hoher Datenrate für den Einsatz in dem Hochenergiephysikexperiment Atlas am Lhc Beschleuniger entwickelt. Da die Lhc-Experimente extremen Strahlenbelastungen ausgesetzt sind, müssen die Komponenten spezielle Ansprüche hinsichtlich der Strahlentoleranz erfüllen. Die Qualifikation der einzelnen Bauteile wurde im Rahmen dieser Arbeit durchgeführt. Die zu erwartenden Fluenzen im Atlas Inner Detector für Silizium und Gallium Arsenid (GaAs) wurden berechnet. Siliziumbauteile werden einer Fluenz von bis zu 1.1.1015neq /cm2 in 1 MeV äquivalenten Neutronen ausgesetzt sein, wohingegen GaAs Bauteile bis zu 7.8.1015neq /cm2 ausgesetzt sein werden. Die Strahlentoleranz der einzelnen benötigten Komponenten wie z.B. der Laserdioden sowie der jeweiligen Treiberchips wurde untersucht. Sowohl die Photo- als auch die Laserdioden haben sich als strahlentolerant für die Fluenzen an dem vorgesehenen Radius erwiesen. Aus de...

  16. GaAs Medipix2 hybrid pixel detector

    CERN Document Server

    Kostamo, P; Vähänen, S; Tlustos, L; Fröjdh, C; Campbell, M; Zhilyaev, Y; Lipsanen, H

    2008-01-01

    A GaAs Medipix2 hybrid pixel detector based on high purity epitaxial GaAs material was successfully fabricated. The mesa type GaAs sensor with 256×256 pixels and total area of 1.4×1.4 cm2 was made of a 140-μm-thick epitaxial p–i–n structure utilizing reactive ion etching. A final thickness of approximately 110 μm for the all-epitaxial sensor element is achieved by back-thinning procedure. The sensor element is bump bonded to a Medipix2 read-out ASIC. The detector is capable of room temperature spectroscopic operation and it demonstrates the potential of GaAs for high resolution X-ray imaging systems operating at room temperature. This work describes the manufacturing process and electrical properties of the GaAs Medipix2 hybrid detector.

  17. Signal variations in high granularity Si pixel detectors

    CERN Document Server

    Tlustos, L; Heijne, Erik H M; Llopart-Cudie, Xavier

    2004-01-01

    Fixed pattern noise is one of the limiting factors of image quality and degrades the achievable spatial resolution. In the case of silicon sensors non-uniformities due to doping inhomogeneities can be limited by operating the sensor in strong overdepletion. For high granularity photon counting pixel detectors an additional high frequency interpixel signal variation is an important factor for the achievable signal to noise ratio (SNR). It is common practice to apply flatfield corrections to increase the SNR of the detector system. For the case of direct conversion detectors it can be shown that the Poisson limit can be reached for floodfield irradiation. However when used for imaging with spectral X-ray sources flatfield corrections are less effective. This is partly a consequence of charge sharing between adjacent pixels, which gives rise to an effective energy spectrum seen by the readout, which is different from the spectral content of the incident beam. In this paper we present simulations and measurements...

  18. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  19. Pixel detector system development at Diamond Light Source

    Science.gov (United States)

    Marchal, J.; Horswell, I.; Gimenez, E. N.; Tartoni, N.

    2010-10-01

    Hybrid pixel detectors consisting of an array of silicon photodiodes bump-bonded to CMOS read-out chips provide high signal-to-noise ratio and high dynamic range compared to CCD-based detectors and Image Plates. These detector features are important for SAXS experiments where a wide range of intensities are present in the images. For time resolved SAXS experiments, high frame rates are compulsory. The latest CMOS read-out chip developed by the MEDIPIX collaboration provides high frame rate and continuous acquisition mode. A read-out system for an array of MEDIPIX3 sensors is under development at Diamond Light Source. This system will support a full resolution frame rate of 1 kHz at a pixel counter depth of 12-bit and a frame rate of 30 kHz at a counter depth of 1 bit. Details concerning system design and MEDIPIX sensors characterization are presented.

  20. Validation studies of the ATLAS pixel detector control system

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)]. E-mail: schultes@physik.uni-wuppertal.de; Becks, Karl-Heinz [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Flick, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Henss, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Imhaeuser, Martin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kersten, Susanne [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kind, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Lantzsch, Kerstin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Maettig, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Reeves, Kendall [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Weingarten, Jens [University of Bonn, Nussallee 12, 53115 Bonn (Germany)

    2006-09-01

    The ATLAS pixel detector consists of 1744 identical silicon pixel modules arranged in three barrel layers providing coverage for the central region, and three disk layers on either side of the primary interaction point providing coverage of the forward regions. Once deployed into the experiment, the detector will employ optical data transfer, with the requisite powering being provided by a complex system of commercial and custom-made power supplies. However, during normal performance and production tests in the laboratory, only single modules are operated and electrical readout is used. In addition, standard laboratory power supplies are used. In contrast to these normal tests, the data discussed here were obtained from a multi-module assembly which was powered and read out using production items: the optical data path, the final design power supply system using close to final services, and the Detector Control System (DCS)

  1. Line profile modelling for multi-pixel CZT detectors

    Science.gov (United States)

    Chattopadhyay, T.; Vadawale, S. V.; Rao, A. R.; Bhattacharya, D.; Mithun, N. P. S.; Bhalerao, V.

    2016-07-01

    Cadmium Zinc Telluride (CZT) detectors have been the mainstay for hard X-ray astronomy for its high quantum efficiency, fine energy resolution, near room temperature operation, and radiation hardness. In order to fully utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix, which in turn requires precise modelling of the line profiles for the CZT detectors. We have developed a numerical model taking into account the mobility and lifetime of the charge carriers and intrpixel charge sharing for the CZT detectors. This paper describes the details of the modelling along with the experimental measurements of mobility, lifetime and charge sharing fractions for the CZT detector modules of thickness of 5 mm and 2.5 mm pixel size procured from Orbotech Medical Solutions (same modules used in AstroSat-CZTI).

  2. Semiconductor micropattern pixel detectors a review of the beginnings

    CERN Document Server

    Heijne, Erik H M

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with µW power on a pixel area of less than 0.04 mm2, retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at > 10 MHz rates with unambiguous track reconstruction even at particle multiplicities > 10 cm-2. The noise in a channel was ~100 e- r.m.s. and enabled binary operation with random noise 'hits' at a level 30 Mrad, respectively.

  3. Comprehensive measurements of GaAs pixel detectors capacitance

    CERN Document Server

    Caria, M; D'Auria, S; Lai, A; Randaccio, P; Cadeddu, S

    2002-01-01

    We have studied GaAs pixel detectors on semi-insulating wafers with Schottky contacts. We performed comprehensive measurements on the inter-pixel and capacitance to back plane. Being semi-insulating, the behaviour is totally different with respect to other common semiconductors, such as high resistivity silicon. Non-homogeneities are also an issue, due to both the contacts and the crystal bulk. In order to detect them and their influence on capacitance, we undertook systematic measurements with different configurations of the measuring electrodes.

  4. High frame rate measurements of semiconductor pixel detector readout IC

    Science.gov (United States)

    Szczygiel, R.; Grybos, P.; Maj, P.

    2012-07-01

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  5. High frame rate measurements of semiconductor pixel detector readout IC

    Energy Technology Data Exchange (ETDEWEB)

    Szczygiel, R., E-mail: robert.szczygiel@agh.edu.pl [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland); Grybos, P.; Maj, P. [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2012-07-11

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm Multiplication-Sign 4 mm. Its main part is a matrix of 40 Multiplication-Sign 32 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  6. MTF study of planar small pixel pitch quantum IR detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-06-01

    The actual trend in quantum IR detector development is the design of very small pixel pitch large arrays. From previously 30μm pitch, the standard pixel pitch is today 15μm and is expected to decrease to 12μm in the next few years. Furthermore, focal plane arrays (FPA) with pixel pitch as small as small as 10μm has been demonstrated. Such ultra-small pixel pitches are very small compared to the typical length ruling the electrical characteristics of the absorbing materials, namely the minority carrier diffusion length. As an example for low doped N type HgCdTe or InSb material, this diffusion length is of the order of 30 to 50μm, i.e. 3 to 5 times the targeted pixel pitches. This has strong consequences on the modulation transfer function (MTF) for planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain optimal MTF. Therefore, this issue has to be addressed in order to take full benefits of the pixel pitch reduction in terms of image resolution. This paper aims at investigating the MTF evolution of HgCdTe and InSb FPAs decreasing the pixel pitch below 15μm. Both experimental measurements and finite element simulations are used to discuss this issue. Different scenarii will be compared, namely deep mesa etch between pixels, internal drift, surface recombination, thin absorbing layers.

  7. CMS Pixel Detector design for HL-LHC

    CERN Document Server

    Migliore, Ernesto

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5$\\times$10$^{34}$cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation.In order to maintain its physics reach the CMS Collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimations.

  8. Optimisation of ROB mapping for SCT and Pixel detectors

    CERN Document Server

    Wheeler, S

    1999-01-01

    A simple object-oriented program has been written to simulate the SCT and Pixel detectors in order to determine the suitability of various ROB mapping schemes in the context of the Level 2 trigger. Layer and tower mappings have been investigated separately for the SCT barrel and endcap and for the Pixel barrel and endcap. Events containing one RoI were fired at each detector part and the number of ROBs hit determined. As a result, plots of ROB output data rates and ROB hit frequency as a function of ROB ID were obtained. In general it was found that layer mapping schemes might result in unacceptably high data rates and frequencies. This result would have to be confirmed with more detailed modelling. The tower mappings investigated, in general produced acceptable rates.

  9. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  10. CMS Pixel Detector design for HL-LHC

    Science.gov (United States)

    Migliore, E.

    2016-12-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5×1034cm-2s-1 in 2028, to possibly reach an integrated luminosity of 3000 fb-1 by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation. In order to maintain its physics reach the CMS collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimation.

  11. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  12. Descent of the Silicon Pixel Detector (SPD) for ALICE Experiment

    CERN Multimedia

    2007-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the ALICE Inner Tracking System (ITS) at radii of 3.9 cm and 7.6 cm, respectively. It is a fundamental element for the determination of the position of the primary vertex as well as for the measurement of the impact parameter of secondary tracks originating from the weak decays of strange, charm and beauty particles.

  13. Pixel diamond detectors for excimer laser beam diagnostics

    Science.gov (United States)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  14. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  15. Silicon pixel-detector R&D for CLIC

    Science.gov (United States)

    Nürnberg, A.

    2016-11-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.

  16. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    A high resolution (σ∼2μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six monolithic active pixel sensor planes (Mimosa26) with a pixel pitch of 18.4 \\mu m and thinned down to 50 \\mu m. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the European detector infrastructure project AIDA the test beam telescope is being further extended in terms of cooling and powering infrastructure, read-out speed, area of acceptance, and precision. In order to provide a system optimized for the different requirements by the user community a combination of various state-of-the-art pixel technologies is foreseen. Furthermore, new central dead-time-free trigger logic unit (TLU) has been developed to provide LHC-speed response with one-trigger-per-particle operating mode and a synchronous clock for all conn...

  17. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  18. Imaging performance of the hybrid pixel detectors XPAD3-S.

    Science.gov (United States)

    Brunner, F Cassol; Clemens, J C; Hemmer, C; Morel, C

    2009-03-21

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures ( approximately 0.1-400 microGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than approximately 5000 photons has been found, corresponding to exposures above approximately 110 microGy and approximately 50 microGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses ( approximately 3, 30 and 300 microGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of approximately 1, thanks to its high efficiency ( approximately 100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is approximately 0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of

  19. CMS 2017 Pixel detector replacement - A roll and B roll

    CERN Multimedia

    Paola Catapano

    2017-01-01

    On Thursday 2 March 2017 CERN physicists and engineers have carried out a highly complex operation right at the heart of one of the four main experiments of the Large Hadron Collider (LHC): the CMS detector, located 100 m below ground under French territory, at one of the LHC’s collision points. CMS is one of the four main detectors on the 27km LHC accelerator., and one of the two experiments which found the Higgs boson in 2012. The heart of the CMS experiment is the pixel detector, the innermost instrument in the very heart of the CMS apparatus, the very point where new particles, such as the Higgs boson, are produced by the energy of the proton proton collisions of the LHC accelerator. With thousands of silicon sensors, the new Pixel Tracker is now being upgraded to improve the particle-tracking capabilities of CMS. This operation, started on Tuesday Feb 28 when the first components of the new instrument were descended into the experiment’s cavern, is one of the most significant milestones ahead of the ...

  20. The CMS Silicon Pixel detector for HL-LHC

    CERN Document Server

    Steinbrueck, Georg

    2016-01-01

    The LHC is planning an upgrade program which will bring the luminosity to about 5~$\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with the goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges of higher data rates and increased radiation. To maintain its physics potential in this harsh environment, the CMS detector will undergo a major upgrade program known as the Phase II upgrade. The new Phase II pixel detector will require a high bandwidth readout system and highly radiation tolerant sensors and on-detector ASICs. Several technologies for the sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs with acceptance extended from $\\vert\\eta\\vert<2.4$ to $\\vert\\eta\\vert<4$, are presented together with performance estimates.

  1. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    Hynds, Daniel

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X0 per layer for the vertex region and ~1% X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hy- brid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tracking region,...

  2. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  3. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    Science.gov (United States)

    Lehmann, N.; Karagounis, M.; Kersten, S.; Zeitnitz, C.

    2016-11-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  4. The ultralight DEPFET pixel detector of the Belle II experiment

    Science.gov (United States)

    Luetticke, Florian

    2017-02-01

    An upgrade of the existing Japanese flavor factory (KEKB in Tsukuba, Japan) is under construction and foreseen for commissioning by the end of 2017. This new e+e- machine (SuperKEKB) will deliver an instantaneous luminosity 40 times higher than the luminosity world record set by KEKB. To fully exploit the increased number of events and provide high precision measurements of B-meson decay vertices in such a harsh environment, the Belle detector will be upgraded to Belle II, featuring a new silicon vertex detector with two pixel layers close to the interaction point based on the DEPFET (DEpleted P-channel Field Effect Transistor) technology. This technology combines particle detection together with in-pixel amplification by integrating a field effect transistor into a fully depleted silicon bulk. In Belle II, DEPFET sensors thinned down to 75 μm with low power consumption and low intrinsic noise will be used. The first large thin multi-chip production modules have been produced and characterization results on both large modules as well as small test systems will be presented in this contribution.

  5. A DEPFET pixel system for the ILC vertex detector

    CERN Document Server

    Trimpl, M; Kohrs, R; Krüger, H; Lodomez, P; Reuen, L; Sandow, C; Toerne, E; Velthuis, J J; Wermes, N; Andricek, L; Moser, H G; Richter, R H; Lutz, Gerhard; Giesen, F; Fischer, P; Peric, I

    2006-01-01

    We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 pixel matrix and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6keV to 60keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.

  6. Tests of the gated mode for Belle II pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Prinker, Eduard [Max-Planck-Institute for Physics, Munich (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    DEPFET pixel detectors offer intrinsic amplification and very high signal to noise ratio. They form an integral building block for the vertex detector system of the Belle II experiment, which will start data taking in the year 2017 at the SuperKEKB Collider in Japan. A special Test board (Hybrid4) is used, which contains a small version of the DEPFET sensor with a read-out (DCD) and a steering chip (Switcher) attached, both controlled by a field-programmable gate array (FPGA) as the central interface to the computer. In order to keep the luminosity of the collider constant over time, the particle bunch currents have to be topped off by injecting additional bunches at a rate of 50 Hz. The particles in the daughter bunches produce a high rate of background (noisy bunches) for a short period of time, saturating the occupancy of the sensor. Operating the DEPFET sensor in a Gated Mode allows preserving the signals from collisions of normal bunches while protecting the pixels from background signals of the passing noisy bunches. An overview of the Gated Mode and first results is presented.

  7. Diamond Pixel Detectors and 3D Diamond Devices

    Science.gov (United States)

    Venturi, N.

    2016-12-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  8. Optimization of the thermal performances of the Alpine Pixel Detector

    CERN Document Server

    Zhang, Zhan; Di Ciaccio, Lucia

    The ATLAS (A Toroidal LHC ApparatuS) detector is the largest detector of the Large Hadron Collider (LHC). One of the most important goals of ATLAS was to search for the missing piece of the Standard Model, the Higgs boson that had been found in 2012. In order to keep looking for the unknowns, it is planned to upgrade the LHC. The High Luminosity LHC (HL-LHC) is a novel configuration of the accelerator, aiming at increasing the luminosity by a factor five or more above the nominal LHC design. In parallel with the accelerator upgrade also the ATLAS will be upgraded to cope with detector aging and to achieve the same or better performance under increased event rate and radiation dose expected at the HL-LHC. This thesis discusses a novel design for the ATLAS Pixel Detector called the "Alpine" layout for the HL-LHC. To support this design, a local support structure is proposed, optimized and tested with an advanced CO2 evaporative cooling system. A numerical program called “CoBra” simulating the twophase heat ...

  9. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  10. Running experience with the DELPHI pixel detector reflections on design characteristics and system features

    CERN Document Server

    Heuser, J M

    1999-01-01

    The DELPHI experiment at LEP is the first collider experiment with hybrid pixel detectors contributing to its track reconstruction. The pixel detector has been installed in 1996 with the final DELPHI silicon tracker, an assembly of microstrip, ministrip and pixel detectors optimized for the operation at LEP2. It was completed for the physics period in 1997. The pixel detector comprises 1.2 million detector cells of 330*330 mu m/sup 2/. 152 detector modules are arranged in 4 inclined cone-shaped layers which cover polar angles from 10 degrees to 25 degrees . Experience on the system's features has been gained during three years of operation. The article intends to provide information on positive and critical aspects which might be useful for designers of pixel detector systems in forthcoming experiments. (4 refs).

  11. Micropattern gas detectors The CMS MSGC project and gaseous pixel detector applications

    CERN Document Server

    Bellazzini, R; Gariano, G; Latronico, L; Lumb, N; Moggi, A; Reale, S; Spandre, G; Massai, M M; Spezziga, M A; Toropin, A N; Costa, E; Soffitta, P; Pacella, D

    2001-01-01

    We report recent results from the development and testing of two types of micropattern gas detectors-micro-strip gas chambers and GEM- based devices with two types of pixel read-out. Thirty-two micro- strip gas chambers were tested in a high intensity hadron beam as a milestone for CERN's Compact Muon Solenoid (CMS) experiment. The detectors were operated with voltage settings corresponding to 98% hit detection efficiency at CMS for a total high intensity exposure period of 493 h. All of the requirements expected by the milestone- gain stability, number of lost strips, spark rate, etc.-were met, with wide margins. In a separate investigation, we have coupled PCB pixel read-out planes to GEM foils. In one case, 2 mm*2 mm pixels were fanned out to individual discriminators and scalers to provide very fast (2 MHz/pixel) read-out; this system has been used as an imaging device to provide diagnostic information in fusion experiments. The second type of device used smaller pixels (200 mu m squares) and a Flash-ADC ...

  12. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    CERN Document Server

    Buchanan, Emma

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  13. Towards a new generation of pixel detector readout chips

    CERN Document Server

    Campbell, M; Ballabriga, R.; Frojdh, E.; Heijne, E.; Llopart, X.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.

    2016-01-01

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile- ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed.

  14. Pixel Detector Trial Assembly Test in the SR1 building

    CERN Multimedia

    D. Giugni

    2004-01-01

    During the last two months the Pixel group [LBL, Milan and Wuppertal] made a successful integration test on the mechanics of the barrel. The scope of the test was to qualify the integration procedures and the various assembling tools. The test took place in the clean room of the SR1 building at CERN, where the detector has been assembled around a dummy beam pipe made of Stainless Steel. The process is rather complex: the shells come in two parts and they have to be clamped together to get the full shell. This operation is carried out by a dedicated tool which is shown to the right in the picture below. The layer 1 shell is clamped around a "service" pipe that will be used for moving the full layer to the integration tool [ITT] which is visible on the left. View of the tools devoted to the Pixel barrel integration in the SR1 building Also visible in the picture is the global frame that is actually held by the tool. It will engage the layers sliding onto the rails. The first two layers are sequentially...

  15. A generic readout environment for prototype pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Turqueti, Marcos, E-mail: turqueti@fnal.go [Fermi National Accelerator Laboratory, Kirk and Wilson Road, 60510-500 (United States); Rivera, Ryan; Prosser, Alan; Kwan, Simon [Fermi National Accelerator Laboratory, Kirk and Wilson Road, 60510-500 (United States)

    2010-11-01

    Pixel detectors for experimental particle physics research have been implemented with a variety of readout formats and potentially generate massive amounts of data. Examples include the PSI46 device for the Compact Muon Solenoid (CMS) experiment which implements an analog readout, the Fermilab FPIX2.1 device with a digital readout, and the Fermilab Vertically Integrated Pixel device. The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory has developed a data acquisition system flexible and powerful enough to meet the various needs of these devices to support laboratory test bench as well as test beam applications. The system is called CAPTAN (Compact And Programmable daTa Acquisition Node) and is characterized by its flexibility, versatility and scalability by virtue of several key architectural features. These include a vertical bus that permits the user to stack multiple boards, a gigabit Ethernet link that permits high speed communications to the system and a core group of boards that provide specific processing and readout capabilities for the system. System software based on distributed computing techniques supports an expandable network of CAPTANs. In this paper, we describe the system architecture and give an overview of its capabilities.

  16. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    Science.gov (United States)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  17. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    Science.gov (United States)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  18. Readout electronics and test bench for the CMS Phase I pixel detector

    CERN Document Server

    Del Burgo, Riccardo

    2016-01-01

    The present CMS pixel detector will be replaced with an upgraded pixel system during the LHC extended technical stop in winter 2016/2017. The CMS Phase 1 pixel upgrade combines a new pixel readout chip, which minimizes detection inefficiencies, with several other design improvements to maintain the excellent tracking performance of CMS at the higher luminosity conditions foreseen for the coming years. The upgraded detector features new readout electronics which require detailed evaluation. For this purpose a test stand has been setup, including a slice of the CMS pixel DAQ system, all components of the upgraded readout chain together with a number of detector modules. The test stand allows for detailed evaluation and verification of all detector components, and is also crucial to develop tests and procedures to be used during the detector assembly and the commissioning and calibration of the detector. In this talk the system test and its functionalities will be described with a focus on the tests performed fo...

  19. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A; Spiriti, E.; Baudot, J.; Claus, G.; Goffe, M.; Winter, M.

    2016-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  20. Effects of bulk and surface conductivity on the performance of CdZnTe pixel detectors

    DEFF Research Database (Denmark)

    Bolotnikov, A.E.; Chen, C.M.H.; Cook, W.R.;

    2002-01-01

    between the pixel contacts. When the grid is negatively biased, the strong electric field in the gaps between the pixels forces the electrons landing on the surface to move toward the contacts, preventing the charge loss. We have investigated these effects by using CZT pixel detectors indium bump...

  1. Beam test results of the BTeV silicon pixel detector

    CERN Document Server

    Appel, J A

    2001-01-01

    We report the results of the BTeV silicon pixel detector tests carried out in the MTest beam at Fermilab in 1999-2000. The pixel detector spatial resolution has been studied as a function of track inclination, sensor bias, and readout threshold.

  2. Display of cosmic ray event going through the pixel detector taken on October 18th 2008

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    Shown are the XY view (of SCT and pixels and of pixels alone) and an RZ view. The track has a hit in each of the layers in both the upper and the lower hemisphere. In the bottom of L0 there are even two hits due to a module overlap. Apart from the signal hits there is only one other hit in the pixel detector demonstrating the very low noise level in the detector.

  3. Qualification of the modules for the Phase 1 upgrade of the CMS forward pixel detector

    Science.gov (United States)

    Sandoval Gonzalez, Irving; CMS Collaboration

    2017-01-01

    The innermost component of the Compact Muon Solenoid (CMS) detector, the silicon pixel tracker, will be replaced by a new device in early 2017 to cope with the significant increase in instantaneous luminosity expected for the remainder of Run 2 of the Large Hadron Collider. The upgraded detector is composed of two subcomponents: the barrel pixel (BPIX) and the forward pixel (FPIX). In this work, we describe the testing and calibration procedures that the FPIX detector subcomponents underwent as well as the quality assurance criteria used for selecting the best detector modules for the final installation. NSF

  4. Optical Readout in a Multi-Module System Test for the ATLAS Pixel Detector

    CERN Document Server

    Flick, T; Gerlach, P; Kersten, S; Mättig, P; Kirichu, S N; Reeves, K; Richter, J; Schultes, J; Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Kirichu, Simon Nderitu; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. In this paper the system test setup and the operation of the readout chain is described. Also, some results of tests using the final pixel detector readout chain are given.

  5. Qualification of Barrel Pixel Detector Modules for the Phase 1 Upgrade of the CMS Vertex Detector

    CERN Document Server

    Kudella, Simon

    2016-01-01

    To withstand the higher particle rates of LHC Runs 2 and 3, with expected luminosities of up to $2\\times 10^{34}\\,\\mathrm{cm^{-2}s^{-1}}$, the current CMS pixel detector at the LHC will be replaced as part of the CMS Phase I Upgrade during the extended winter shutdown in 2016/17. The new pixel detector features a new geometry with one additional detector layer in the barrel region~(BPIX) and one pair of additional disks in the forward region~(FPIX), new digital readout chips as well as a new CO$_{2}$-based cooling system for both the barrel and forward region. The BPIX detector module production is summarized, with special focus on the different stages of quality assurance. The quality tests as well as the calibrations which all produced modules undergo in a temperature and humidity controlled environment are described. Exemplarily, the KIT/Aachen production line and its subprocesses are presented together with its quality and yields.

  6. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  7. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  8. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, M., E-mail: malte.backhaus@cern.ch

    2016-09-21

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO{sub 2} based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  9. Modeling Inter-Pixel Crosstalk in Teledyne Imaging Sensors H4RG Detectors

    CERN Document Server

    Dudik, R P; Dorland, B N; Veillette, D; Waczynski, A; Lane, B; Loose, M; Kan, E; Waterman, J; Pravdo, S

    2012-01-01

    CMOS-hybrid arrays have recently surfaced as competitive optical detectors for use in ground- and space-based astronomy. One source of error in these detectors that does not appear in more traditional CCD arrays is the inter-pixel capacitance component of crosstalk. In this paper we use a single pixel reset method to model inter-pixel capacitance (IPC). We combine this IPC model with a model for charge diffusion to estimate the total crosstalk on H4RG arrays. Finally, we compare our model results to Fe55 data obtained using an astrometric camera built to test the H4RG-B0 generation detectors.

  10. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  11. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Manolopoulos, S.; Bates, R.; Campbell, M.; Snoeys, W.; Heijne, E.; Pernigotti, E.; Raine, C.; Smith, K. E-mail: k.smith@physics.gla.ac.uk; Watt, J.; O' Shea, V.; Ludwig, J.; Schwarz, C

    1999-09-11

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the {omega}3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  12. The simulation of charge sharing in semiconductor X-ray pixel detectors

    CERN Document Server

    Mathieson, K; O'Shea, V; Passmore, M S; Rahman, M; Smith, K M; Watt, J; Whitehill, C

    2002-01-01

    Two simulation packages were used to model the sharing of charge, due to the scattering and diffusion of carriers, between adjacent pixel elements in semiconductors X-ray detectors. The X-ray interaction and the consequent multiple scattering was modelled with the aid of the Monte Carlo package, MCNP. The resultant deposited charge distribution was then used to create the charge cloud profile in the finite element semiconductor simulation code MEDICI. The analysis of the current pulses induced on pixel electrodes for varying photon energies was performed for a GaAs pixel detector. For a pixel pitch of 25 mu m, the charge lost to a neighbouring pixel was observed to be constant, at 0.6%, through the energies simulated. Ultimately, a fundamental limit on the pixel element size for imaging and spectroscopic devices may be set due to these key physical principles.

  13. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao, E-mail: hao.yang@materials.ox.ac.uk [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); Pennycook, Timothy J.; Nellist, Peter D. [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); EPSRC SuperSTEM Facility, Daresbury Laboratory, WA4 4AD (United Kingdom)

    2015-04-15

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases.

  14. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  15. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2 at the LHC

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130 nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented using collision data.

  16. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2

    CERN Document Server

    Ferrere, Didier; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  17. Optimization of CZT Detectors with Sub-mm Pixel Pitches Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and optimize 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with very small pixel pitches, i.e. 350 micron and 600 micron. The proposed...

  18. Characterization of edgeless pixel detectors coupled to Medipix2 readout chip

    Science.gov (United States)

    Kalliopuska, Juha; Tlustos, Lukas; Eränen, Simo; Virolainen, Tuula

    2011-08-01

    VTT has developed a straightforward and fast process to fabricate four-side buttable (edgeless) microstrip and pixel detectors on 6 in. (150 mm) wafers. The process relies on advanced ion implantation to activate the edges of the detector instead of using polysilicon. The article characterizes 150 μm thick n-on-n edgeless pixel detector prototypes with a dead layer at the edge below 1 μm. Electrical and radiation response characterization of 1.4×1.4 cm2 n-on-n edgeless detectors has been done by coupling them to the Medipix2 readout chips. The distance of the detector's physical edge from the pixels was either 20 or 50 μm. The leakage current of flip-chip bonded edgeless Medipix2 detector assembles were measured to be ˜90 nA/cm2 and no breakdown was observed below 110 V. Radiation response characterization includes X-ray tube and radiation source responses. The characterization results show that the detector's response at the pixels close to the physical edge of the detector depend dramatically on the pixel-to-edge distance.

  19. Digital column readout architectures for hybrid pixel detector readout chips

    CERN Document Server

    Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.

  20. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  1. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J

    1999-01-01

    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  2. Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector

    Science.gov (United States)

    Maneuski, D.; Astromskas, V.; Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Marchal, J.; O'Shea, V.; Stewart, G.; Tartoni, N.; Wilhelm, H.; Wraight, K.; Zain, R. M.

    2012-01-01

    In this work the results on imaging and spectroscopic performances of 14 × 14 × 1 mm CdTe detectors with 55 × 55 μm and 110 × 110 μm pixel pitch bump-bonded to a Timepix chip are presented. The performance of the 110 × 110 μm pixel detector was evaluated at the extreme conditions beam line I15 of the Diamond Light Source. The energy of X-rays was set between 25 and 77 keV. The beam was collimated through the edge slits to 20 μm FWHM incident in the middle of the pixel. The detector was operated in the time-over-threshold mode, allowing direct energy measurement. Energy in the neighbouring pixels was summed for spectra reconstruction. Energy resolution at 77 keV was found to be ΔE/E = 3.9%. Comparative imaging and energy resolution studies were carried out between two pixel size detectors with a fluorescence target X-ray tube and radioactive sources. The 110 × 110 μm pixel detector exhibited systematically better energy resolution in comparison to 55 × 55 μm. An imaging performance of 55 × 55 μm pixellated CdTe detector was assessed using the Modulation Transfer Function (MTF) technique and compared to the larger pixel. A considerable degradation in MTF was observed for bias voltages below -300 V. Significant room for improvement of the detector performance was identified both for imaging and spectroscopy and is discussed.

  3. Operational Performance and Status of the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Jentzsch, J; The ATLAS collaboration

    2014-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experi- ment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individu- ally read out via chips bump-bonded to 1744 n+-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including moni- toring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 · 1033 cm−2s−1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silico...

  4. Direct charge sharing observation in single-photon-counting pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, G. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain)]. E-mail: Giulio.Pellegrini@cnm.es; Maiorino, M. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Blanchot, G. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Chmeissani, M. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Garcia, J. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Lozano, M. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain); Martinez, R. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain); Puigdengoles, C. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Ullan, M. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain)

    2007-04-01

    In photon-counting imaging devices, charge sharing can limit the detector spatial resolution and contrast, as multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, the importance of charge sharing in pixellated CdTe and silicon detectors is studied by exposing imaging devices to different low activity sources. These devices are made of Si and CdTe pixel detector bump-bonded to Medipix2 single-photon-counting chips with a 55 {mu}m pixel pitch. We will show how charge sharing affects the spatial detector resolution depending on incident particle type (alpha, beta and gamma), detector bias voltage and read-out chip threshold. This study will give an insight on the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  5. Direct charge sharing observation in single-photon-counting pixel detector

    Science.gov (United States)

    Pellegrini, G.; Maiorino, M.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Lozano, M.; Martinez, R.; Puigdengoles, C.; Ullan, M.

    2007-04-01

    In photon-counting imaging devices, charge sharing can limit the detector spatial resolution and contrast, as multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, the importance of charge sharing in pixellated CdTe and silicon detectors is studied by exposing imaging devices to different low activity sources. These devices are made of Si and CdTe pixel detector bump-bonded to Medipix2 single-photon-counting chips with a 55 μm pixel pitch. We will show how charge sharing affects the spatial detector resolution depending on incident particle type (alpha, beta and gamma), detector bias voltage and read-out chip threshold. This study will give an insight on the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  6. Operational performance and status of the ATLAS pixel detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 x 10^33 cm-2 s-1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silicon leakage ...

  7. Status and future of the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Rozanov, A; The ATLAS collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 x 10^33 cm-2 s-1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silicon leakage ...

  8. Operational Performance and Status of the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Jentzsch, J; The ATLAS collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 x 10^33 cm-2 s-1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silicon leakage ...

  9. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  10. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Perez Cavalcanti, T; The ATLAS collaboration

    2012-01-01

    The hit signals read out from pixels on planar semi-conductor sensors are grouped into clusters, to reconstruct the location where a charged particle passed through. The resolution of the individual pixel sizes can be improved significantly using the information from the cluster of adjacent pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years giving an excellent performance. However, in dense environments, such as those inside high-energy jets, is likely that the charge deposited by two or more close-by tracks merges into one single cluster. A new pattern recognition algorithm based on neural network methods has been developed for the ATLAS Pixel Detector. This can identify the shared clusters, split them if necessary, and estimate the positions of all particles traversing the cluster. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurements to tracks within jets, and improves the positional accuracy with respect to stand...

  11. ASICs in nanometer and 3D technologies for readout of hybrid pixel detectors

    Science.gov (United States)

    Maj, Piotr; Grybos, Pawel; Kmon, Piotr; Szczygiel, Robert

    2013-07-01

    Hybrid pixel detectors working in a single photon counting mode are very attractive solutions for material science and medical X-ray imaging applications. Readout electronics of these detectors has to match the geometry of pixel detectors with an area of readout channel of 100 μm × 100 μm (or even less) and very small power consumption (a few tens of μW). New solutions of readout ASICs are going into directions of better spatial resolutions, higher data throughput and more advanced functionality. We report on the design and measurement results of two pixel prototype ASICs in nanometer technology and 3D technology which offer fast signal processing, low noise performance and advanced functionality per single readout pixel cell.

  12. Module Production and Qualification for the Phase I Upgrade of the CMS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2086689

    2015-01-01

    After consolidation of the LHC in 2013/14 its centre-of-mass energy will increase to 13TeV and the luminosity will reach $2 \\cdot 10^{34}\\, \\textnormal{cm}^{-2} \\textnormal{s}^{-1}$, which is twice the design luminosity. The latter will result in more simultaneous particle collisions, which would significantly increase the dead time of the current readout chip of the CMS pixel detector. Therefore the entire CMS pixel detector is replaced in 2016/17 and a new digital readout with larger buffers will be used to handle increasing pixel hit rates. An additional fourth barrel-layer provides more space points to improve track reconstruction. Half of the required modules for layer four is being produced at Karlsruhe Institute of Technology (KIT). This poster deals with the smallest discrete subunit of the pixel detector, the module and its assembly process. Moreover first production experience will be shown.

  13. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  14. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  15. The ATLAS Pixel Detector for Run II at the Large Hadron Collider

    CERN Document Server

    Marx, Marilyn; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  16. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    Run-2 of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed as well as a new read-out chip within CMOS 130nm technology and with larger area, smaller pixel size and faster readout capability. The new detector is the first large scale application of of 3D detectors and CMOS 130nm technology. An overview of the lessons learned during the IBL project will be presented, focusing on the challenges and highlighting the issues met during the productio...

  17. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  18. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  19. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Montesi, M C; Russo, P

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 mu m pitch) or to the Medipix2 chip (256x256 pixel, 55 mu m pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-mu m thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 mu m circular holes with 170 mu m pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order ...

  20. Design of analog-to-digital converters for energy sensitive hybrid pixel detectors

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2001-01-01

    An important feature of hybrid semiconductor pixel detectors is the fact that detector and readout electronics are manufactured separately, allowing the use of industrial state-of-the-art CMOS processes to manufacture the readout electronics. As the feature size of these processes decreases, faster

  1. Pixel architectures in a HV-CMOS process for the ATLAS inner detector upgrade

    Science.gov (United States)

    Degerli, Y.; Godiot, S.; Guilloux, F.; Hemperek, T.; Krüger, H.; Lachkar, M.; Liu, J.; Orsini, F.; Pangaud, P.; Rymaszewski, P.; Wang, T.

    2016-12-01

    In this paper, design details and simulation results of new pixel architectures designed in LFoundry 150 nm high voltage CMOS process in the framework of the ATLAS high luminosity inner detector upgrade are presented. These pixels can be connected to the FE-I4 readout chip via bump bonding or glue and some of them can also be tested without a readout chip. Negative high voltage is applied to the high resistivity (> 2 kΩ .cm) substrate in order to deplete the deep n-well charge collection diode, ensuring good charge collection and radiation tolerance. In these pixels, the front-end has been implemented inside the diode using both NMOS and PMOS transistors. The pixel pitch is 50 μm × 250 μm for all pixels. These pixels have been implemented in a demonstrator chip called LFCPIX.

  2. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Y Calderón; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  3. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  4. DEPFET active pixel detectors for a future linear $e^+e^-$ collider

    CERN Document Server

    Alonso, O; Dieguez, A; Dingfelder, J; Hemperek, T; Kishishita, T; Kleinohl, T; Koch, M; Krueger, H; Lemarenko, M; Luetticke, F; Marinas, C; Schnell, M; Wermes, N; Campbell, A; Ferber, T; Kleinwort, C; Niebuhr, C; Soloviev, Y; Steder, M; Volkenborn, R; Yaschenko, S; Fischer, P; Kreidl, C; Peric, I; Knopf, J; Ritzert, M; Curras, E; Lopez-Virto, A; Moya, D; Vila, I; Boronat, M; Esperante, D; Fuster, J; Garcia Garcia, I; Lacasta, C; Oyanguren, A; Ruiz, P; Timon, G; Vos, M; Gessler, T; Kuehn, W; Lange, S; Muenchow, D; Spruck, B; Frey, A; Geisler, C; Schwenker, B; Wilk, F; Barvich, T; Heck, M; Heindl, S; Lutz, O; Mueller, Th; Pulvermacher, C; Simonis, H.J; Weiler, T; Krausser, T; Lipsky, O; Rummel, S; Schieck, J; Schlueter, T; Ackermann, K; Andricek, L; Chekelian, V; Chobanova, V; Dalseno, J; Kiesling, C; Koffmane, C; Gioi, L.Li; Moll, A; Moser, H.G; Mueller, F; Nedelkovska, E; Ninkovic, J; Petrovics, S; Prothmann, K; Richter, R; Ritter, A; Ritter, M; Simon, F; Vanhoefer, P; Wassatsch, A; Dolezal, Z; Drasal, Z; Kodys, P; Kvasnicka, P; Scheirich, J

    2013-01-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $\\mathrm{\\mathbf{\\mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $\\mathbf{e^+ e^-}$ collider.

  5. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2014-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  6. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2015-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  7. Interconnect and bonding techniques for pixelated X-ray and gamma-ray detectors

    Science.gov (United States)

    Schneider, A.; Veale, M. C.; Duarte, D. D.; Bell, S. J.; Wilson, M. D.; Lipp, J. D.; Seller, P.

    2015-02-01

    In the last decade, the Detector Development Group at the Technology Department of the Science and Technology Facilities Council (STFC), U.K., established a variety of fabrication and bonding techniques to build pixelated X-ray and γ-ray detector systems such as the spectroscopic X-ray imaging detector HEXITEC [1]. The fabrication and bonding of such devices comprises a range of processes including material surface preparation, photolithography, stencil printing, flip-chip and wire bonding of detectors to application-specific integrated circuits (ASIC). This paper presents interconnect and bonding techniques used in the fabrication chain for pixelated detectors assembled at STFC. For this purpose, detector dies (~ 20× 20 mm2) of high quality, single crystal semiconductors, such as cadmium zinc telluride (CZT) are cut to the required thickness (up to 5mm). The die surfaces are lapped and polished to a mirror-finish and then individually processed by electroless gold deposition combined with photolithography to form 74× 74 arrays of 200 μ m × 200 μ m pixels with 250 μ m pitch. Owing to a lack of availability of CZT wafers, lithography is commonly carried out on individual detector dies which represents a significant technical challenge as the edge of the pixel array and the surrounding guard band lies close to the physical edge of the crystal. Further, such detector dies are flip-chip bonded to readout ASIC using low-temperature curing silver-loaded epoxy so that the stress between the bonded detector die and the ASIC is minimized. In addition, this reduces crystalline modifications of the detector die that occur at temperature greater than 150\\r{ }C and have adverse effects on the detector performance. To allow smaller pitch detectors to be bonded, STFC has also developed a compression cold-weld indium bump bonding technique utilising bumps formed by a photolithographic lift-off technique.

  8. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Science.gov (United States)

    Kim, Jae Cheon; Kaye, William R.; He, Zhong

    2014-05-01

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 × 20 × 15 mm3 CZT crystal with an 11 × 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  9. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae C.; Kaye, William R.; He, Zhong [University of Michigan, Ann Arbor, MI (United States)

    2014-05-15

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 x 20 x 15 mm{sup 3} CZT crystal with an 11 x 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  10. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00237659

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detect or and of the IBL project as...

  11. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

    CERN Document Server

    Tate, Mark W; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert M; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2015-01-01

    We describe a hybrid pixel array detector (EMPAD - electron microscope pixel array detector) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128 x 128 pixel detector consists of a 500 um thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit (ASIC). The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as loc...

  12. Data acquisition at the front-end of the Mu3e pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Perrevoort, Ann-Kathrin [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: Mu3e-Collaboration

    2016-07-01

    The Mu3e experiment - searching for the lepton-flavour violating decay of the muon into three electrons at an unprecedented sensitivity of one in 10{sup 16} decays - is based on a pixel tracking detector. The sensors are High-Voltage Monolithic Active Pixel Sensors, a technology which allows for very fast and thin detectors, and thus is an ideal fit for Mu3e where the trajectories of low-momentum electrons at high rates are to be measured. The detector will consist of about 275 million pixels and will be operated at up to 10{sup 9} muon stops per second. Therefore, a fast and trigger-less data readout is required. The pixel sensors feature zero-suppressed data output via high-speed serial links. The data is then buffered and sorted by time on a FPGA on the front-end before being processed to the following readout stage. In this talk, the readout of the Mu3e pixel detector at the front-end is introduced. Furthermore, a first firmware implementation of this concept in a beam telescope consisting of the current pixel sensor prototype MuPix7 is presented.

  13. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T. [Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Cornell University, Ithaca, NY 14853 (United States); Cornell University, Ithaca, NY 14853 (United States)

    2016-01-28

    A high-speed pixel array detector for time-resolved X-ray imaging at synchrotrons has been developed. The ability to isolate single synchrotron bunches makes it ideal for time-resolved dynamical studies. A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  14. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, M

    2016-01-01

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for me...

  15. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    During Run-1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This includes the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore a new readout chip and two new sensor technologies (planar and 3D) are used in IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanic...

  16. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    OpenAIRE

    Zain, R.M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pi...

  17. Pre- and post-irradiation performance of FBK 3D silicon pixel detectors for CMS

    Energy Technology Data Exchange (ETDEWEB)

    Krzywda, A., E-mail: akrzywda@purdue.edu [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Alagoz, E.; Bubna, M. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Obertino, M. [Università del Piemonte Orientale, Novara (Italy); INFN, Sezione di Torino, Torino (Italy); Solano, A. [Università di Torino, Torino (Italy); INFN, Sezione di Torino, Torino (Italy); Arndt, K. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Uplegger, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Betta, G.F. Dalla [TIFPA INFN and Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, I-38123 Povo di Trento, TN (Italy); Boscardin, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Trento, Via Sommarive 18, I-38123 Povo di Trento, TN (Italy); Ngadiuba, J. [Università di Milano-Bicocca, Milan (Italy); Rivera, R. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Menasce, D.; Moroni, L.; Terzo, S. [Università di Milano-Bicocca, Milan (Italy); Bortoletto, D. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Prosser, A.; Adreson, J.; Kwan, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Osipenkov, I. [Texas A and M University, Department of Physics, College Station, TX 77843 (United States); Bolla, G. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); and others

    2014-11-01

    In preparation for the tenfold luminosity upgrade of the Large Hadron Collider (the HL-LHC) around 2020, three-dimensional (3D) silicon pixel sensors are being developed as a radiation-hard candidate to replace the planar ones currently being used in the CMS pixel detector. This study examines an early batch of FBK sensors (named ATLAS08) of three 3D pixel geometries: 1E, 2E, and 4E, which respectively contain one, two, and four readout electrodes for each pixel, passing completely through the bulk. We present electrical characteristics and beam test performance results for each detector before and after irradiation. The maximum fluence applied is 3.5×10{sup 15} n {sub eq}/cm{sup 2}.

  18. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-09-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  19. Development of DC-DC converters for the upgrade of the CMS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Sammet, Jan; Wlochal, Michael [RWTH Aachen University (Germany)

    2012-07-01

    Around 2017, the pixel detector of the CMS experiment at LHC will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the available supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing to provide the power at higher voltages and thereby to facilitate the supply of the required currents with the present cable plant. The talk introduces the foreseen powering scheme of the pixel upgrade and summarizes the results of system test measurements with CMS pixel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, measurements of the converter efficiency and performance before, after and during thermal cycling are presented.

  20. Performance of Silicon Pixel Detectors at Small Track Incidence Angles for the ATLAS Inner Tracker Upgrade

    CERN Document Server

    Viel, Simon; The ATLAS collaboration; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian Choate; Wu, Sau Lan; Yang, Hongtao

    2015-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  1. \\title{Low-Cost Bump-Bonding Processes for High Energy Physics Pixel Detectors}

    CERN Document Server

    Caselle, Michele; Colombo, Fabio; Dierlamm, Alexander Hermann; Husemann, Ulrich; Kudella, Simon; Weber, M

    2015-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area at reasonable costs are required. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of the production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin ($15\\,\\rm{\\mu m}$) gold wire is presented. This technique allows producing metal bumps with diameters down to $30\\,\\rm{\\mu m}$ without using photolithography processes, which are typically required to provide suitable under bu...

  2. Imaging detector development for nuclear astrophysics using pixelated CdTe

    Science.gov (United States)

    Álvarez, J. M.; Gálvez, J. L.; Hernanz, M.; Isern, J.; Llopis, M.; Lozano, M.; Pellegrini, G.; Chmeissani, M.

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a γ-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a γ-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11×11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident γ-ray photon. First measurements of a 133Ba and 241Am source are reported here.

  3. Imaging detector development for nuclear astrophysics using pixelated CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, J.M., E-mail: alvarez@ieec.uab.e [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, E-08193 Barcelona (Spain); Galvez, J.L.; Hernanz, M.; Isern, J.; Llopis, M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, E-08193 Barcelona (Spain); Lozano, M.; Pellegrini, G. [Centro Nacional de Microelectronica - IMB-CNM (CSIC), Campus UAB, E-08193 Barcelona (Spain); Chmeissani, M. [Institut de Fisica d' Altes Energies (IFAE), Campus UAB, E-08193 Barcelona (Spain)

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a {gamma}-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a {gamma}-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11x11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident {gamma}-ray photon. First measurements of a {sup 133}Ba and {sup 241}Am source are reported here.

  4. The barrel sector assembly system of the ALICE silicon pixel detector

    CERN Document Server

    Antinori, F; Cinausero, M; Dima, R; Fabris, D; Fioretto, E; Lunardon, M; Moretto, S; Pepato, Adriano; Prete, G; Scarlassara, F; Segato, G F; Soramel, F; Turrisi, R; Vannucci, L; Viesti, G

    2004-01-01

    The Silicon Pixel Detector is the inner part of the ITS tracking system of the ALICE experiment at LHC. The 240 silicon modules, hosting almost 10 million pixel cells with dimension 50 . 425 mu m /sup 2/, have to be assembled on a carbon fiber support with micrometric precision. To reach this result, a dedicated high- precision computer-controlled tooling system has been developed at the INFN Padova. The assembly system and the mounting procedures are presented. (10 refs).

  5. Performance of the Insertable B-Layer for the ATLAS Pixel Detector during Quality Assurance and a Novel Pixel Detector Readout Concept based on PCIe

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268; Pernegger, Heinz

    2016-07-27

    During the first long shutdown of the LHC the Pixel detector has been upgraded with a new 4th innermost layer, the Insertable B-Layer (IBL). The IBL will increase the tracking performance and help with higher than nominal luminosity the LHC will produce. The IBL is made up of 14 staves and in total 20 staves have been produced for the IBL. This thesis presents the results of the final quality tests performed on these staves in an detector-like environment, in order to select the 14 best of the 20 staves for integration onto the detector. The test setup as well as the testing procedure is introduced and typical results of each testing stage are shown and discussed. The overall performance of all staves is presented in regards to: tuning performance, radioactive source measurements, and number of failing pixels. Other measurement, which did not directly impact the selection of staves, but will be important for the operation of the detector or production of a future detector, are included. Based on the experienc...

  6. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  7. The Pixel Detector of the ATLAS experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is the fourth layer of the Run 2 Pixel Detector, and it was installed in May 2014 between the existing Pixel Detector and the new smaller-radius beam pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project...

  8. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey Andre; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed. A new readout chip has been developed within CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performan...

  9. Geneva University: Pixel Detectors – trends and options for the future

    CERN Multimedia

    Geneva University

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 25 April 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE Science III, Auditoire 1S081 30Science III, Auditoire 1S081 30 Pixel Detectors – trends and options for the future Prof. Norbert Wermes - University of Bonn  Pixel detectors have been invented in the early 90s with the advancement of micro technologies. With the advent of the LHC, big vertex detectors have demonstrated that the pixel detector type is holding many of the promises it had made before. Meanwhile new, different or just improved variants of the pixel technology are being studied for their suitability for future experiments or experiment upgrades. The talk will address the various pro's and con's comparing hybrid and monolithic pixel technologies and their su...

  10. Gamma spectroscopic measurements using the PID350 pixelated CdTe radiation detector

    CERN Document Server

    Karafasoulis, K; Seferlis, S; Papadakis, I; Loukas, D; Lambropoulos, C; Potiriadis, C

    2010-01-01

    Spectroscopic measurements are presented using the PID350 pixelated gamma radiation detectors. A high-speed data acquisition system has been developed in order to reduce the data loss during the data reading in case of a high flux of photons. A data analysis framework has been developed in order to improve the resolution of the acquired energy spectra, using specific calibration parameters for each PID350's pixel. Three PID350 detectors have been used to construct a stacked prototype system and spectroscopic measurements have been performed in order to test the ability of the prototype to localize radioactive sources.

  11. Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector.

    Science.gov (United States)

    Fu, Chen; Arguello, Henry; Sadler, Brian M; Arce, Gonzalo R

    2015-11-01

    A compressive spectral and polarization imager based on a pixelized polarizer and colored patterned detector is presented. The proposed imager captures several dispersed compressive projections with spectral and polarization coding. Stokes parameter images at several wavelengths are reconstructed directly from 2D projections. Employing a pixelized polarizer and colored patterned detector enables compressive sensing over spatial, spectral, and polarization domains, reducing the total number of measurements. Compressive sensing codes are specially designed to enhance the peak signal-to-noise ratio in the reconstructed images. Experiments validate the architecture and reconstruction algorithms.

  12. Assembly procedure of the module (half-stave) of the ALICE Silicon Pixel Detector

    CERN Document Server

    Caselle, M; Antinori, F; Burns, M; Campbell, M; Chochula, P; Dinapoli, R; Elia, D; Formenti, F; Fini, R A; Ghidini, B; Kluge, A; Lenti, V; Manzari, V; Meddi, F; Morel, M; Navach, F; Nilsson, P; Pepato, Adriano; Riedler, P; Santoro, R; Stefanini, G; Viesti, G; Wyllie, K

    2004-01-01

    The Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). The detector includes 1200 readout ASICs, each containing 8192 pixel cells, bump-bonded to Si sensor elements. The thickness of the readout chip and the sensor element is 150mum and 200mum, respectively. Low-mass solutions are implemented for the bus and the mechanical support. In this contribution, we describe the basic module (half-stave) of the two SPD layers and we give an overview of its assembly procedure.

  13. A Leakage Current-based Measurement of the Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Gorelov, Igor; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module measurement of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  14. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J.

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  15. Testing and Integration of the Service Cylinders for the CMS Phase 1 pixel detector

    CERN Document Server

    Ngadiuba, Jennifer

    2016-01-01

    The present 3-layer CMS pixel detector will be replaced with a new 4-layer pixel system, referred to as Phase~1 upgrade, during the LHC extended technical stop in winter 2016/2017. The upgraded detector will allow to maintain the excellent tracking performance of CMS at the upcoming higher luminosity conditions at the LHC. The addition of an extra layer, closer to the beam pipe, demands a complete redesign of its services. The barrel pixel detector is attached to four half cylinders which carry the services along the beam pipe, accommodate the cooling lines and house the electronics for detector readout and control. The service cylinders are a complex system in design as well as in production due to the large number of channels and tight space requirements. In this document we present the design of the system and discuss the construction and testing of the service cylinders for the barrel pixel detector. Furthermore, we present results of the testing and calibrations carried out with a set of new digital dete...

  16. 3D silicon pixel detectors for the High-Luminosity LHC

    Science.gov (United States)

    Lange, J.; Carulla Areste, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.; Vázquez Furelos, D.

    2016-11-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50 × 250 μm2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12-15 mW/cm2 at a fluence of about 1016 neq/cm2, measured at -25°C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50 × 50 and 25 × 100 μm2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1-2 V before irradiation.

  17. Pixel detectors for use in retina neurophysiology studies

    CERN Document Server

    Cunningham, W; Chichilnisky, E J; Horn, M; Litke, A M; Mathieson, K; McEwan, F A; Melone, J; O'Shea, V; Rahman, M; Smith, K M

    2003-01-01

    One area of major inter-disciplinary co-operation is between the particle physics and bio-medical communities. The type of large detector arrays and fast electronics developed in laboratories like CERN are becoming used for a wide range of medical and biological experiments. In the present work fabrication technology developed for producing semiconductor radiation detectors has been applied to produce arrays which have been used in neuro-physiological experiments on retinal tissue. We have exploited UVIII, a low molecular weight resist, that has permitted large area electron beam lithography. This allows the resolution to go below that of conventional photolithography and hence the production of densely packed similar to 500 electrode arrays with feature sizes down to below 2 mum. The neural signals from significant areas of the retina may thus be captured.

  18. Medipix3: A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance

    CERN Document Server

    Ballabriga, R; Wong, W; Heijne, E; Campbell, M; Llopart, X

    2011-01-01

    Medipix3 is a 256 x 256 channel hybrid pixel detector readout chip working in a single photon counting mode with a new inter-pixel architecture, which aims to improve the energy resolution in pixelated detectors by mitigating the effects of charge sharing between channels. Charges are summed in all 2 x 2 pixel clusters on the chip and a given hit is allocated locally to the pixel summing circuit with the biggest total charge on an event-by-event basis. Each pixel contains also two 12-bit binary counters with programmable depth and overflow control. The chip is configurable such that either the dimensions of each detector pixel match those of one readout pixel or detector pixels are four times greater in area than the readout pixels. In the latter case, event-by-event summing is still possible between the larger pixels. Each pixel has around 1600 transistors and the analog static power consumption is below 15 mu W in the charge summing mode and 9 mu W in the single pixel mode. The chip has been built in an 8-m...

  19. Design Optimization of Pixel Structure for α-Si based Uncooled Infrared Detector

    Directory of Open Access Journals (Sweden)

    Sudha Gupta

    2013-11-01

    Full Text Available In this paper authors present the design and simulation results achieved for pixel structure of amorphous Si (α-Si based bolometer array. Most uncooled IR detectors in the world are based on VOx material. But this is not a standard material in IC technology and has many inherent disadvantages. The α-Si, an alternative material with high TCR is becoming as popular. However, large TCR values, in this material are achieved only in films of high resistivity. To achieve TCR value more than 2.5%/K, α-Si film resistivity is ~ 80 ohms-cm. This gives rise to very large pixel resistance of the order of 100 Mega ohms depending upon the design of the leg structure. This high pixel resistance causes very large noise and hence lower sensitivity. If leg width or membrane thickness is increased in order to reduce the pixel resistance, then this results in higher thermal conductance which also decreases sensitivity. To overcome this problem, pixel structure is so designed that within a pixel, only part of the electrical conduction is through α-Si and rest is through metal. Simulation using Coventorware software has been done to optimize pixel resistance as well as thermal conductance through legs so that maximum sensitivity could be obtained. Optimization is also carried out in order to reduce sensitivity of pixel resistance to variation in material resistivity.

  20. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    CERN Document Server

    Püllen, L; Boek, J; Kersten, S; Kind, P; Mättig, P; Zeitnitz, C

    2012-01-01

    experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  1. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  2. Test of a fine pitch SOI pixel detector with laser beam

    CERN Document Server

    Liu, Yi; Ju, Xudong; Ouyang, Qun

    2015-01-01

    A fine pitch pixel detector, developed on SOI (Silicon on Insulator) technology, has been tested under the illumination of infrared laser pulses. As an alternative way beside particel beam test, the laser pulses are tuned to very short duration and small transverse profile to simulate tracks of MIPs (Minimum Ionization Particles) in silicon. Hit cluster size and substrate depletion characteristics of this SOI detector are obtained. When focused laser pulses propagate through SOI detector perpendicularly to its surface, the hit cluster is measured, and most of signal charges are collected directly by the seed pixel. The signal amplitude as a function of applied bias voltage has been measured on this SOI detector for the first time, which helps us better understand of depletion characteristics.

  3. An Interdigitated Pixel PIN Detector for Energetic Particle Spectroscopy in Space

    OpenAIRE

    1993-01-01

    We describe a new two-dimensional position-sensitive detector, now under development, for use in space-borne energetic particle spectrometers. The novel feature of this device is the use of interdigitated pixels to provide both dimensions of position information from a single side of the detector, while a measurement of the energy deposition is derived from the opposite side. An advantage of this approach is that significant reductions in the complexity, power, and weight of th...

  4. 3 mega-pixel InSb detector with 10μm pitch

    Science.gov (United States)

    Gershon, G.; Albo, A.; Eylon, M.; Cohen, O.; Calahorra, Z.; Brumer, M.; Nitzani, M.; Avnon, E.; Aghion, Y.; Kogan, I.; Ilan, E.; Shkedy, L.

    2013-06-01

    SCD has developed a new 1920x1536 / 10 μm digital Infrared detector for the MWIR window named Blackbird. The Blackbird detector features a Focal Plane Array (FPA) that incorporates two technological building blocks developed over the past few years. The first one is a 10 μm InSb pixel based on the matured planar technology. The second building block is an innovative 10 μm ReadOut Integrated Circuit (ROIC) pixel. The InSb and the ROIC arrays are connected using Flip-Chip technology by means of indium bumps. The digital ROIC consists a matrix of 1920x1536 pixels and has an analog to digital (A/D) converter per-channel (total of 1920x2 A/Ds). It allows for full frame readout at a high frame rate of up to 120 Hz. Such an on-chip A/D conversion eliminates the need for several A/D converters with fairly high power consumption at the system level. The ROIC power consumption at maximum bandwidth is less than 400 mW. It features a wide range of pixel-level functionality such as several conversion gain options and a 2x2 pixel binning. The ROIC design makes use of the advanced and matured CMOS technology, 0.18 μm, which allows for high functionality and relatively low power consumption. The FPA is mounted on a Cold-Finger by a specially designed ceramic substrate. The whole assembly is housed in a stiffened Dewar that withstands harsh environmental conditions while minimizing the environment heat load contribution to the heat load of the detector. The design enables a 3-megapixel detector with overall low size, weight, and power (SWaP) with respect to comparable large format detectors. In this work we present in detail the characteristic performance of the new Blackbird detector.

  5. TSV last for hybrid pixel detectors: Application to particle physics and imaging experiments

    CERN Document Server

    Henry, D; Berthelot, A; Cuchet, R; Chantre, C; Campbell, M

    Hybrid pixel detectors are now widely used in particle physics experiments and at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly [1]. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the a...

  6. Simulation of active-edge pixelated CdTe radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, D.D., E-mail: diana.duarte@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lipp, J.D.; Schneider, A.; Seller, P.; Veale, M.C.; Wilson, M.D. [STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Baker, M.A.; Sellin, P.J. [Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2016-01-11

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  7. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  8. The Pixel Detector of the ATLAS Experiment for the Run-2 at the Large Hadron Collider

    CERN Document Server

    Guescini, F; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radial distance of 3.3 cm from the beam axis. The realization of the IBL required the development of several new technologies and solutions in order to overcome the challenges introduced by the extreme environment and working conditions, such as the high radiation levels, the high pixel occupancy and the need of an exceptionally low material budget. Two silicon sensor technologies have been adopted for the IBL modules: planar n-in-n and 3D. Both of these are connected via bump bonding to the new generation 130 nm IBM CMOS FE-I4 ...

  9. Design and TCAD simulation of double-sided pixelated low gain avalanche detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: gianfranco.dallabetta@unitn.it [Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Pancheri, Lucio [Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Paternoster, Giovanni [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Piemonte, Claudio [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); TIFPA INFN, Via Sommarive 14, 38123 Trento (Italy); Cartiglia, Nicolo; Cenna, Francesca [INFN Sezione di Torino, Via P. Giuria 2, 10125 Torino (Italy); Bruzzi, Mara [Dipartimento di FIsica e Astronomia, Università di Firenze, and INFN Sezione di Firenze, Via Giovanni Sansone 1, 50019 Sesto Fiorentino (Italy)

    2015-10-01

    We introduce a double-sided variant of low gain avalanche detector, suitable for pixel arrays without dead-area in between the different read-out elements. TCAD simulations were used to validate the device concept and predict its performance. Different design options and selected simulation results are presented, along with the proposed fabrication process.

  10. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    Energy Technology Data Exchange (ETDEWEB)

    Allman, M. S., E-mail: shane.allman@boulder.nist.gov; Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3328 (United States); Marsili, F.; Beyer, A.; Shaw, M. D. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, California 91109 (United States); Kumor, D. [Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907 (United States)

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  11. A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector Array with Integrated Multiplexed Readout

    CERN Document Server

    Allman, M S; Stevens, M; Gerrits, T; Horansky, R D; Lita, A E; Marsili, F; Beyer, A; Shaw, M D; Kumor, D; Mirin, R; Nam, S W

    2015-01-01

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.

  12. Module production for the Phase 1 upgrade of the CMS forward pixel detector

    Science.gov (United States)

    Siado Castaneda, Joaquin

    2017-01-01

    For Run 2 the Large Hadron Collider will run at a much higher instantaneous luminosity, which requires an upgrade of the CMS pixel detector. The detector consists of rectangular silicon sensors, segmented into 100 μm by 150 μm pixels, bonded to readout chips, with one sensor and a 8x2 array of readout chips forming a module. Due to its high granularity and good spatial resolution, about 10 μm for a single hit, the pixel detector is used for track reconstruction, pileup mitigation, and b-quark tagging in many physics analyses. Being the innermost sub-detector of CMS it receives the most radiation damage, and therefore needs to be replaced most often. For the phase 1 upgrade an additional disk in the forward region and increased buffer space in the readout chip will improve the pixel performance by increasing efficiency and reducing fake rates. The University of Nebraska-Lincoln is one of the two sites where modules are being assembled. This talk features the steps of the assembly process as well as challenges encountered and overcome during production of over 500 modules. The CMS Collaboration.

  13. A method for precise charge reconstruction with pixel detectors using binary hit information

    CERN Document Server

    Pohl, David-Leon; Hemperek, Tomasz; Hügging, Fabian; Wermes, Norbert

    2014-01-01

    A method is presented to precisely reconstruct charge spectra with pixel detectors using binary hit information of individual pixels. The method is independent of the charge information provided by the readout circuitry and has a resolution mainly limited by the electronic noise. It relies on the ability to change the detection threshold in small steps while counting hits from a particle source. The errors are addressed and the performance of the method is shown based on measurements with the ATLAS pixel chip FE-I4 bump bonded to a 230 {\\mu}m 3D-silicon sensor. Charge spectra from radioactive sources and from electron beams are presented serving as examples. It is demonstrated that a charge resolution ({\\sigma}<200 e) close to the electronic noise of the ATLAS FE-I4 pixel chip can be achieved.

  14. 18k Channels single photon counting readout circuit for hybrid pixel detector

    Science.gov (United States)

    Maj, P.; Grybos, P.; Szczygiel, R.; Zoladz, M.; Sakumura, T.; Tsuji, Y.

    2013-01-01

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm×20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96×192 pixels with 100 μm×100 μm pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 μW/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 μV/e- and the equivalent noise charge is 168 e- rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  15. 18k Channels single photon counting readout circuit for hybrid pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Maj, P., E-mail: piotr.maj@agh.edu.pl [AGH University of Science and Technology, Department of Measurements and Electronics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Grybos, P.; Szczygiel, R.; Zoladz, M. [AGH University of Science and Technology, Department of Measurements and Electronics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Sakumura, T.; Tsuji, Y. [X-ray Analysis Division, Rigaku Corporation, Matsubara, Akishima, Tokyo 196-8666 (Japan)

    2013-01-01

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm Multiplication-Sign 20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96 Multiplication-Sign 192 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 {mu}W/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 {mu}V/e{sup -} and the equivalent noise charge is 168 e{sup -} rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  16. Operational Experience of the ATLAS SemiConductor Tracker and Pixel Detector

    CERN Document Server

    Robinson, Dave; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  17. X-ray Imaging Using a Hybrid Photon Counting GaAs Pixel Detector

    CERN Document Server

    Schwarz, C; Göppert, R; Heijne, Erik H M; Ludwig, J; Meddeler, G; Mikulec, B; Pernigotti, E; Rogalla, M; Runge, K; Smith, K M; Snoeys, W; Söldner-Rembold, S; Watt, J

    1999-01-01

    The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (...

  18. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    Science.gov (United States)

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive detection system.

  19. Real-time control of the beam attenuation with XPAD hybrid pixel detector

    Science.gov (United States)

    Dawiec, A.; Garreau, Y.; Bisou, J.; Hustache, S.; Kanoute, B.; Picca, F.; Renaud, G.; Coati, A.

    2016-12-01

    In order to fully benefit from a beam produced by modern synchrotron light sources, characterised by a wide and continuous energy spectrum, high brightness and a very high intensity, advancement in detector technology has been made over the last decades. However, one of the main limitations of the state-of-the-art counting hybrid pixel detectors is the maximum count-rate that is very often few orders of magnitudes lower than of the incident, reflected or diffracted beam flux. Therefore, direct beam attenuation is mandatory in order to perform the measurements according to the detector's characteristics. In this work we present a major upgrade of a fast attenuation system developed at Synchrotron SOLEIL, which allows for a dynamical change of the beam attenuation as a function of the photon flux received by XPAD S140 photon counting detector. The system performs a cyclic real-time estimation of the flux received by every pixel during acquisition of an image and searches for clusters of at least two pixels that exceed user defined levels of counts/s. The beam attenuation is immediately and automatically changed in order to guarantee that the detector will always operate in its linear range even during a long continuous scan, by acting on the direct attenuators.

  20. Boundary scan test of Belle II pixel detector electronics

    Energy Technology Data Exchange (ETDEWEB)

    Leitl, Philipp [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the Vertex Detector at the Belle II experiment, DEPFET sensors will be used. These sensors need Application-Specific Integrated Circuits (ASICs) for control, readout and data processing. Because of high demands for a low material budget in the sensitive area, there is only little space left for these ASICs. Using state-of-the-art technologies like Ball Grid Array (BGA) chips, which are flip-chip mounted, the requirement of 14 ASICs on each of the 40 half ladders can be fulfilled. However, this highly integrated on-sensor ASIC solution results in a lack of physical access to the electrical connections, which is a problem for traditional testing methods. To overcome these limitations, the JTAG standard IEEE 1149.1 is used to check if the circuit is in working condition. This method provides electrical access to the boundary scan cells implemented in the ASICs. Therefore it is possible to perform connectivity tests and verify if the production of the circuit was successful.

  1. DEPFET: A silicon pixel detector for future colliders. Fundamentals, characterization and performance

    CERN Document Server

    Marinas Pardo, Carlos Manuel; Vos, Marcel Andre

    2011-01-01

    The future electron-positron colliders, either breaking the energy frontier (like ILC or CLIC) or the luminosity frontier (SuperKEKB), impose unprecedented constraints over the new generation of detectors that will be operated in those facilities. In particular, the vertex detectors must be designed for an efficient flavour tagging and excellent vertex reconstruction. To cope with these requirements, highly pixelated sensors with a fast readout, very low material budget and low power consumption must be developed. Although the combination of these factors is a substantial challenge, the DEPFET Collaboration has developed a new generation of sensors that can be operated in such a harsh environment. The DEpleted P-channel Field Effect Transistor (DEPFET) is a pixel sensor that combines detection and internal amplification at the same time. With such configuration, thin detectors with good signal-to-noise ratio and low power consumption can be produced. In this thesis, the optimization and performance of two gen...

  2. Development of the Pixelated Photon Detector Using Silicon on Insulator Technology for TOF-PET

    CERN Document Server

    Koyama, Akihiro; Takahashi, Hiroyuki; Orita, Tadashi; Arai, Yasuo; Kurachi, Ikuo; Miyoshi, Toshinobu; Nio, Daisuke; Hamasaki, Ryutaro

    2015-01-01

    To measure light emission pattern in scintillator, higher sensitivity and faster response are required to photo detector. Such as single photon avalanche diode (SPAD), conventional pixelated photo detector is operated at Geiger avalanche multiplication. However higher gain of SPAD seems very attractive, photon detection efficiency per unit area is low. This weak point is mainly caused by Geiger avalanche mechanism. To overcome these difficulties, we designed Pixelated Linear Avalanche Integration Detector using Silicon on Insulator technology (SOI-Plaid). To avoid dark count noise and dead time comes from quench circuit, we are planning to use APD in linear multiplication mode. SOI technology enables laminating readout circuit and APD layer, and high-speed and low-noise signal reading regardless smaller gain of linear APD. This study shows design of linear APD by using SOI fabrication process. We designed test element group (TEG) of linear APD and inspected optimal structure of linear APD.

  3. Analysis of Full Charge Reconstruction Algorithms for X-Ray Pixelated Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Baumbaugh, A.; /Fermilab; Carini, G.; /SLAC; Deptuch, G.; /Fermilab; Grybos, P.; /AGH-UST, Cracow; Hoff, J.; /Fermilab; Siddons, P., Maj.; /Brookhaven; Szczygiel, R.; /AGH-UST, Cracow; Trimpl, M.; Yarema, R.; /Fermilab

    2012-05-21

    Existence of the natural diffusive spread of charge carriers on the course of their drift towards collecting electrodes in planar, segmented detectors results in a division of the original cloud of carriers between neighboring channels. This paper presents the analysis of algorithms, implementable with reasonable circuit resources, whose task is to prevent degradation of the detective quantum efficiency in highly granular, digital pixel detectors. The immediate motivation of the work is a photon science application requesting simultaneous timing spectroscopy and 2D position sensitivity. Leading edge discrimination, provided it can be freed from uncertainties associated with the charge sharing, is used for timing the events. Analyzed solutions can naturally be extended to the amplitude spectroscopy with pixel detectors.

  4. Analysis of full charge reconstruction algorithms for x-ray pixelated detectors

    Energy Technology Data Exchange (ETDEWEB)

    Baumbaugh, A.; /Fermilab; Carini, G.; /SLAC; Deptuch, G.; /Fermilab; Grybos, P.; /AGH-UST, Cracow; Hoff, J.; /Fermilab; Siddons, P., Maj.; /Brookhaven; Szczygiel, R.; /AGH-UST, Cracow; Trimpl, M.; Yarema, R.; /Fermilab

    2011-11-01

    Existence of the natural diffusive spread of charge carriers on the course of their drift towards collecting electrodes in planar, segmented detectors results in a division of the original cloud of carriers between neighboring channels. This paper presents the analysis of algorithms, implementable with reasonable circuit resources, whose task is to prevent degradation of the detective quantum efficiency in highly granular, digital pixel detectors. The immediate motivation of the work is a photon science application requesting simultaneous timing spectroscopy and 2D position sensitivity. Leading edge discrimination, provided it can be freed from uncertainties associated with the charge sharing, is used for timing the events. Analyzed solutions can naturally be extended to the amplitude spectroscopy with pixel detectors.

  5. TCAD simulations of High-Voltage-CMOS Pixel structures for the CLIC vertex detector

    CERN Document Server

    Buckland, Matthew Daniel

    2016-01-01

    The requirements for precision physics and the experimental conditions at CLIC result in stringent constraints for the vertex detector. Capacitively coupled active pixel sensors with 25 μm pitch implemented in a commercial 180 nm High-Voltage CMOS (HV-CMOS) process are currently under study as a candidate technology for the CLIC vertex detector. Laboratory calibration measurements and beam tests with prototypes are complemented by detailed TCAD and electronic circuit simulations, aiming for a comprehensive understanding of the signal formation in the HV-CMOS sensors and subsequent readout stages. In this note 2D and 3D TCAD simulation results of the prototype sensor, the Capacitively Coupled Pixel Detector version three (CCPDv3), will be presented. These include the electric field distribution, leakage current, well capacitance, transient response to minimum ionising particles and charge-collection.

  6. Spatial and vertex resolution studies on the ATLAS Pixel Detector based on Combined Testbeam 2004 data

    CERN Document Server

    Reisinger, Ingo; Klingenberg, Reiner

    2006-01-01

    This diploma thesis deals with spatial and vertex resolution studies on the ATLAS Pixel detector based on real data taken during the Combined Testbeam period 2004 (17th May - 15th November). For the Combined Testbeam a barrel segment of the ATLAS Detector was build up and tested under real experimental conditions. Several data sets, being recorded during that time, are reconstructed by the ATLAS control framework called ATHENA. The input information for the reconstruction of the particle tracks through the Pixel Detector are the so-called spacepoints. Their uncertainty affects the resolution of the reconstructed particle tracks and thus, also the accuracy of the vertex reconstruction. Since traversing particles deposite their charge mostly (but not compellingly) within more than one pixel, all pixels corresponding to one hit have to be grouped together to a cluster. To compute the spacepoint from the cluster information two different strategies can be performed. The first one is a digital clustering, w...

  7. Data concentrator with FPGA-based track reconstruction for the Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, Michael; Dingfelder, Jochen; Marinas, Carlos [Physikalisches Institut, Universitaet Bonn (Germany)

    2013-07-01

    The innermost two layers of the Belle II vertex detector at the KEK facility in Tsukuba, Japan, will be covered by high-granularity DEPFET pixel sensors. The large number of pixels leads to a high data rate of around 60 Gbps, which has to be significantly reduced by the Data Acquisition System. For the data reduction the hit information of the surrounding Silicon strip Vertex Detector (SVD) is utilized to define so-called Regions of Interest (ROI). Only hit information of the pixels located inside these ROIs are saved. The ROIs for the Pixel Detector (PXD) are computed by reconstructing track segments from SVD data and back extrapolation to the PXD. A data reduction of up to a factor of 10 is intended to be achieved by this design. All the necessary processing stages, the receiving and multiplexing of the data from the SVD on 48 optical fibers, the track reconstruction and the definition of the ROIs, will be performed by the Data Concentrator. The planned hardware design is based on a distributed set of Advanced Mezzanine Cards (AMC) each equipped with a Field Programmable Gate Array (FPGA) chip and 4 optical transceivers. In this talk, the hardware and the FPGA-based tracking algorithm is introduced with some preliminary simulation results. In addition, the acquisition and pre-processing of the SVD data are discussed. The presentation concludes with an outlook on a distributed tracking design.

  8. Signal and noise of Diamond Pixel Detectors at High Radiation Fluences

    CERN Document Server

    Tsung, Jieh-Wen; Hügging, Fabian; Kagan, Harris; Krüger, Hans; Wermes, Norbert

    2012-01-01

    CVD diamond is an attractive material option for LHC vertex detectors because of its strong radiation-hardness causal to its large band gap and strong lattice. In particular, pixel detectors operating close to the interaction point profit from tiny leakage currents and small pixel capacitances of diamond resulting in low noise figures when compared to silicon. On the other hand, the charge signal from traversing high energy particles is smaller in diamond than in silicon by a factor of about 2.2. Therefore, a quantitative determination of the signal-to-noise ratio (S/N) of diamond in comparison with silicon at fluences in excess of 10$^{15}$ n$_{eq}$ cm$^{-2}$, which are expected for the LHC upgrade, is important. Based on measurements of irradiated diamond sensors and the FE-I4 pixel readout chip design, we determine the signal and the noise of diamond pixel detectors irradiated with high particle fluences. To characterize the effect of the radiation damage on the materials and the signal decrease, the chang...

  9. 3D Particle Track Reconstrution in a Single Layer Cadmium-Telluride Hybrid Active Pixel Detector

    CERN Document Server

    Filipenko, Mykhaylo; Anton, Gisela; Michel, Thilo

    2014-01-01

    In the past 20 years the search for neutrinoless double beta decay has driven many developements in all kind of detector technology. A new branch in this field are highly-pixelated semiconductor detectors - such as the CdTe-Timepix detectors. It compromises a cadmium-telluride sensor of 14 mm x 14 mm x 1 mm size with an ASIC which has 256 x 256 pixel of 55 \\textmu m pixel pitch and can be used to obtain either spectroscopic or timing information in every pixel. In regular operation it can provide a 2D projection of particle trajectories; however, three dimensional trajectories are desirable for neutrinoless double beta decay and other applications. In this paper we present a method to obtain such trajectories. The method was developed and tested with simulations that assume some minor modifications to the Timepix ASIC. Also, we were able to test the method experimentally and in the best case achieved a position resolution of about 90 \\textmu m with electrons of 4.4 GeV.

  10. Testbeam and laboratory test results of irradiated 3D CMS pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bubna, Mayur [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN 47907-1396 (United States); Alagoz, Enver, E-mail: enver.alagoz@cern.ch [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Cervantes, Mayra; Krzywda, Alex; Arndt, Kirk [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Obertino, Margherita; Solano, Ada [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino (Italy); Dalla Betta, Gian-Franco [INFN Padova (Gruppo Collegato di Trento) (Italy); Dipartimento di Ingegneria e Scienzadella Informazione, Universitá di Trento, I-38123 Povo di Trento (Italy); Menace, Dario; Moroni, Luigi [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (Italy); Universitá degli Studi di Milano Bicocca, 20126 Milano (Italy); Uplegger, Lorenzo; Rivera, Ryan [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); Osipenkov, Ilya [Texas A and M University, Department of Physics, College Station, TX 77843-4242 (United States); Andresen, Jeff [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); Bolla, Gino; Bortoletto, Daniela [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Boscardin, Maurizio [Centro per i Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Trento, I-38123 Povo di Trento (Italy); Marie Brom, Jean [Strasbourg IPHC, Institut Pluriedisciplinaire Hubert Curien, F-67037 Strasbourg Cedex (France); Brosius, Richard [State University of New York at Buffalo (SUNY), Department of Physics, Buffalo, NY 14260-1500 (United States); Chramowicz, John [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); and others

    2013-12-21

    The CMS silicon pixel detector is the tracking device closest to the LHC p–p collisions, which precisely reconstructs the charged particle trajectories. The planar technology used in the current innermost layer of the pixel detector will reach the design limit for radiation hardness at the end of Phase I upgrade and will need to be replaced before the Phase II upgrade in 2020. Due to its unprecedented performance in harsh radiation environments, 3D silicon technology is under consideration as a possible replacement of planar technology for the High Luminosity-LHC or HL-LHC. 3D silicon detectors are fabricated by the Deep Reactive-Ion-Etching (DRIE) technique which allows p- and n-type electrodes to be processed through the silicon substrate as opposed to being implanted through the silicon surface. The 3D CMS pixel devices presented in this paper were processed at FBK. They were bump bonded to the current CMS pixel readout chip, tested in the laboratory, and testbeams carried out at FNAL with the proton beam of 120 GeV/c. In this paper we present the laboratory and beam test results for the irradiated 3D CMS pixel devices. -- Highlights: •Pre-irradiation and post-irradiation electrical properties of 3D sensors and 3D diodes from various FBK production batches were measured and analyzed. •I–T measurements of gamma irradiated diodes were analyzed to understand leakage current generation mechanism in 3D diodes. •Laboratory measurements: signal to noise ratio and charge collection efficiency of 3D sensors before and after irradiation. •Testbeam measurements: pre- and post-irradiation pixel cell efficiency and position resolution of 3D sensors.

  11. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371978; Gößling, Claus; Pernegger, Heinz

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ...

  12. High Dynamic Range X-ray Detector Pixel Architectures Utilizing Charge Removal

    CERN Document Server

    Weiss, Joel T; Philipp, Hugh T; Becker, Julian; Chamberlain, Darol; Purohit, Prafull; Tate, Mark W; Gruner, Sol M

    2016-01-01

    Several charge integrating CMOS pixel front-ends utilizing charge removal techniques have been fabricated to extend dynamic range for x-ray diffraction applications at synchrotron sources and x-ray free electron lasers (XFELs). The pixels described herein build on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging. These new pixels boast several orders of magnitude improvement in maximum flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 10$^{8}$ x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to t...

  13. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  14. Comparison of CCD, CMOS and Hybrid Pixel x-ray detectors: detection principle and data quality

    Science.gov (United States)

    Allé, P.; Wenger, E.; Dahaoui, S.; Schaniel, D.; Lecomte, C.

    2016-06-01

    We compare, from a crystallographic point of view, the data quality obtained using laboratory x-ray diffractometers equipped with a Molybdenum micro-source using different detector types: CCD, CMOS and XPAD hybrid pixel. First we give an overview of the working principle of these different detector types with a focus on their principal differences and their impact on the data quality. Then, using the example of an organic crystal, a comparison between the detector systems concerning the raw data statistics, the refinement agreement factors, the deformation electron density maps, and the residual density after multipolar refinement is presented. It is found that the data quality obtained with the XPAD detector is the best, even though the detection efficiency at the Mo energy (17.5 keV) is only 37% due to the Si-sensor layer thickness of 300 μm. Finally, we discuss the latest x-ray detector developments with an emphasis on the sensor material, where replacing Si by another material such as GaAs would yield detection efficiencies close to 100%, up to energies of 40 keV for hybrid pixel detectors.

  15. Energy calibration of the pixels of spectral X-ray detectors.

    Science.gov (United States)

    Panta, Raj Kumar; Walsh, Michael F; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-03-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have developed a technique for calibrating the energy response of individual pixels using X-ray fluorescence generated by metallic targets directly irradiated with polychromatic X-rays, and additionally γ-rays from (241)Am. This technique was used to measure the energy response of individual pixels in CdTe-Medipix3RX by characterizing noise performance, threshold dispersion, gain variation and spectral resolution. The comparison of these two techniques shows the energy difference of 1 keV at 59.5 keV which is less than the spectral resolution of the detector (full-width at half-maximum of 8 keV at 59.5 keV). Both techniques can be used as quality control tools in a pre-clinical multi-energy CT scanner using spectral X-ray detectors.

  16. Development of innovative silicon radiation detectors

    CERN Document Server

    Balbuena, JuanPablo

    Silicon radiation detectors fabricated at the IMB-CNM (CSIC) Clean Room facilities using the most innovative techniques in detector technology are presented in this thesis. TCAD simulation comprises an important part in this work as becomes an essential tool to achieve exhaustive performance information of modelled detectors prior their fabrication and subsequent electrical characterization. Radiation tolerance is also investigated in this work using TCAD simulations through the potential and electric field distributions, leakage current and capacitance characteristics and the response of the detectors to the pass of different particles for charge collection efficiencies. Silicon detectors investigated in this thesis were developed for specific projects but also for applications in experiments which can benefit from their improved characteristics, as described in Chapter 1. Double-sided double type columns 3D (3D-DDTC) detectors have been developed under the NEWATLASPIXEL project in the framework of the CERN ...

  17. Design optimization of Pixel Structure for α-Si based uncooled Infrared detector

    Directory of Open Access Journals (Sweden)

    Sudha Gupta

    2013-12-01

    Full Text Available In this paper authors present the design and simulation results achieved for pixel structure of amorphous Si (α-Si based bolometer array. Most uncooled IR detectors in the world are based on VOx material. But this is not a standard material in IC technology and has many inherent disadvantages. The α-Si, an alternative material with high TCR is becoming as popular. However, large TCR values, in this material are achieved only in films of high resistivity. To achieve TCR value more than 2.5%/K, α-Si film resistivity is ~ 80 ohms-cm. This gives rise to very large pixel resistance of the order of 100 Mega ohms depending upon the design of the leg structure. This high pixel resistance causes very large noise and hence lower sensitivity. If leg width or membrane thickness is increased in order to reduce the pixel resistance, then this results in higher thermal conductance which also decreases sensitivity. To overcome this problem, pixel structure is so designed that within a pixel, only part of the electrical conduction is through α-Si and rest is through metal. Simulation using Coventorware software has been done to optimize pixel resistance as well as thermal conductance through legs so that maximum sensitivity could be obtained. Optimization is also carried out in order to reduce sensitivity of pixel resistance to variation in material resistivity.Defence Science Journal, 2013, 63(6, pp.581-588, DOI:http://dx.doi.org/10.14429/dsj.63.5758

  18. MTF Issues in Small-Pixel-Pitch Planar Quantum IR Detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-08-01

    The current trend in quantum infrared (IR) detector development is the design of very small-pixel-pitch large arrays. From the previous 30 μm pitch, the standard pixel pitch today is 15 μm and is expected to decrease to 12 μm in the next few years. Furthermore, focal-plane arrays (FPAs) with pixel pitch as small as 10 μm have been demonstrated. Such ultrasmall-pixel pitches are very small compared with the typical length ruling the electrical characteristics of the absorbing materials, namely the minority-carrier diffusion length. As an example, for low-doped n-type HgCdTe or InSb material, this diffusion length is on the order of 30 μm to 50 μm, i.e., three to five times the targeted pixel pitches. This has strong consequences for the modulation transfer function (MTF) of planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain an optimal MTF. Therefore, this issue has to be addressed to take full advantage of the pixel pitch reduction in terms of image resolution. The aim of this work is to investigate the evolution of the MTF of HgCdTe and InSb FPAs when decreasing the pixel pitch below 15 μm. Both experimental measurements and finite-element simulations are used to discuss this issue. Different scenarios are compared, namely deep mesa etch between pixels, internal drift, surface recombination, and thin absorbing layers.

  19. Vectors and submicron precision: redundancy and 3D stacking in silicon pixel detectors

    CERN Document Server

    Heijne, E H M; Wong, W; Idarraga, J; Visser, J; Jakubek, J; Leroy, C; Turecek, D; Visschers, J; Pospisil, S; Ballabriga, R; Vykydal, Z; Vermeulen, J; Plackett, R; Heijne, E H M; Llopart, X; Boltje, D; Campbell, M

    2010-01-01

    Measurements are shown of GeV pions and muons in two 300 mu m thick, Si Medipix pixel detector assemblies that are stacked on top of each other, with a 25 mu m thick brass foil in between. In such a radiation imaging semiconductor matrix with a large number of pixels along the particle trail, one can determine local space vectors for the particle trajectory instead of points. This improves pattern recognition and track reconstruction, especially in a crowded environment. Stacking of sensor planes is essential for resolving directional ambiguities. Signal charge sharing can be employed for measuring positions with submicron precision. In the measurements one notices accompanying `delta' electrons that emerge outside the particle trail, far beyond the boundaries of the 55 mu m pixel cells. The frequency of such corrupted position measurements is similar to one per 2.5mm of traversed Si.

  20. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    Science.gov (United States)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  1. Modeling and Analysis of Hybrid Pixel Detector Deficiencies for Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  2. A DC-DC converter based powering scheme for the upgrade of the CMS pixel detector

    Science.gov (United States)

    Feld, L.; Karpinski, W.; Klein, K.; Merz, J.; Sammet, J.; Wlochal, M.

    2011-11-01

    Around 2016, the pixel detector of the CMS experiment will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the currently installed supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing the provision of power at higher voltages, thereby facilitating the supply of the required currents with the present cable plant. This conference report introduces the foreseen powering scheme of the pixel upgrade. For the first time, system tests have been conducted with pixel barrel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, studies of the stability of different powering schemes under various conditions are summarized. In particular the impact of large and fast load variations, which are related to the bunch structure of the LHC beam, has been studied.

  3. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    Science.gov (United States)

    Bergmann, B.; Caicedo, I.; Leroy, C.; Pospisil, S.; Vykydal, Z.

    2016-10-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  4. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experi- ment at the Large Hadron Collider at CERN, providing high-resolution mea- surements of charged particle tracks in the high radiation environment close to the collision region. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. After three years of operation the detector performance is excellent: 96% of the pixels are opera- tional, at 3500 e threshold noise occupancy and efficiency exceed the design specification. The effect of radiation on the silicon sensor is measured and compared with model of radiation damage.

  5. Development of high data readout rate pixel module and detector hybridization at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Sergio Zimmermann et al.

    2001-03-20

    This paper describes the baseline design and a variation of the pixel module to handle the data rate required for the BTeV experiment at Fermilab. The present prototype has shown good electrical performance characteristics. Indium bump bonding is proven to be capable of successful fabrication at 50 micron pitch on real detectors. For solder bumps at 50 micron pitch, much better results have been obtained with the fluxless PADS processed detectors. The results are adequate for our needs and our tests have validated it as a viable technology.

  6. The CT-PPS tracking system with 3D pixel detectors

    Science.gov (United States)

    Ravera, F.

    2016-11-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) detector will be installed in Roman pots (RP) positioned on either side of CMS, at about 210 m from the interaction point. This detector will measure leading protons, allowing detailed studies of diffractive physics and central exclusive production in standard LHC running conditions. An essential component of the CT-PPS apparatus is the tracking system, which consists of two detector stations per arm equipped with six 3D silicon pixel-sensor modules, each read out by six PSI46dig chips. The front-end electronics has been designed to fulfill the mechanical constraints of the RP and to be compatible as much as possible with the readout chain of the CMS pixel detector. The tracking system is currently under construction and will be installed by the end of 2016. In this contribution the final design and the expected performance of the CT-PPS tracking system is presented. A summary of the studies performed, before and after irradiation, on the 3D detectors produced for CT-PPS is given.

  7. dE/dx measurement in the ATLAS Pixel Detector and its use for particle identification

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector provides a measurement of the charge deposited by each track crossing it. This note presents a study of how this information can be used to identify low beta particles. This study uses hits recorded in the 7 TeV proton-proton collisions during the 2010 run period and the corresponding Monte Carlo simulation. The track reconstruction has been done in the standard ATLAS software environment.

  8. Calibration status and plans for the charge integrating JUNGFRAU pixel detector for SwissFEL

    Science.gov (United States)

    Redford, S.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Ekinci, Y.; Fröjdh, E.; Greiffenberg, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Rajeev, R.; Ramilli, M.; Ruder, C.; Schädler, L.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Zhang, J.

    2016-11-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector under development for photon science applications at free electron laser and synchrotron facilities. In particular, JUNGFRAU detectors will equip the Aramis end stations of SwissFEL, an X-ray free electron laser currently under construction at the Paul Scherrer Institut in Villigen, Switzerland. JUNGFRAU has been designed specifically to meet the challenges of photon science at XFELs, including high frame rates, single photon sensitivity in combination with a high dynamic range, vacuum compatibility and tilable modules. This has resulted in a charge integrating detector with three dynamically adjusting gains, a low noise of 55 ENC RMS, readout speeds in excess of 2 kHz, single photon sensitivity down to 2 keV (with a signal to noise ratio of 10) and a dynamic range covering four orders of magnitude at 12 keV. Each JUNGFRAU module consists of eight chips of 256 × 256 pixels, each 75 × 75 μm2 in size. The chips are arranged in 2 × 4 formation and bump-bonded to a single silicon sensor 320 μm thick, resulting in an active area of approximately 4 × 8 cm2 per module. Multi-module vacuum compatible systems comprising up to 16 Mpixels (32 modules) will be used at SwissFEL. The design of SwissFEL and the JUNGFRAU system for the Aramis end station A will be introduced, together with results from early prototypes and a characterisation using the first batch of final JUNGFRAU modules. Plans and first results of the pixel-by-pixel calibration will also be shown. The vacuum compatibility of the JUNGFRAU module is demonstrated for the first time.

  9. Development of pixel detectors for the IBL and HL-LHC ATLAS experiment upgrade

    CERN Document Server

    Baselga Bacardit, Marta

    2016-03-18

    This thesis presents the development of advanced silicon technology detectors fabricated at CNM-Barcelona for High Energy Physics (HEP) experiments. The pixel size of the tracking silicon detectors for the upgrade of the HL-LHC will have to decrease in size in order to enhance the resolution in position for the measurements and they need to have lower occupancy for the electronics. The future experiments at CERN will cope with fuences up to 2 x 10^^16 neq/cm2, and the smaller 3D silicon detectors will have less trapping of the electron-holes generated in the bulk leading to a better performance under high radiation environment. This thesis studies silicon detectors fabricated at CNM-Barcelona applied to HEP experiments with two different kinds of novel technologies: 3D and Low Gain Avalanche Detectors (LGAD). The 3D detectors make it possible to reduce the size of the depleted region inside the detector and to work at lower voltages, whereas the LGAD detectors have an intrinsic gain which increases the collec...

  10. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  11. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  12. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    Science.gov (United States)

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  13. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray flu

  14. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    CERN Document Server

    Watt, J; Campbell, M; Mathieson, K; Mikulec, B; O'Shea, V; Passmore, M S; Schwarz, C; Smith, K M; Whitehill, C

    2001-01-01

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 mu m thick SI-LEC GaAs detector patterned in a 64*64 array of 170 mu m pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO/sub 3/ have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the Omega 3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the Omega 3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and...

  15. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    Energy Technology Data Exchange (ETDEWEB)

    Watt, J. E-mail: j.watt@physics.gla.ac.uk; Bates, R.; Campbell, M.; Mathieson, K.; Mikulec, B.; O' Shea, V.; Passmore, M-S.; Schwarz, C.; Smith, K.M.; Whitehill, C

    2001-03-11

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 {mu}m thick SI-LEC GaAs detector patterned in a 64x64 array of 170 {mu}m pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO{sub 3} have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the {omega}3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the {omega}3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and image processing are given, showing a marked reduction in patient dose and dead time compared with film.

  16. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Hasegawa, S.

    2016-09-01

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature (-20 °C).

  17. The electro-mechanical integration of the NA62 GigaTracker time tagging pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Morel, M; Kluge, A; Rinella, G Aglieri; Ceccucci, A; Daguin, J; Fiorini, M; Kaplon, J; Noy, M; Perktold, L; Petagna, P; Riedler, P [CERN, CH-1211 Geneva 23 (Switzerland); Carassiti, V [INFN Ferrara, Via Saragat 1, 44100 Ferrara (Italy); Jarron, P; Marchetto, F [INFN Torino, Via P. Giurial 1, 10125 Torino (Italy); Mapelli, A; Nuessle, G, E-mail: michel.morel@cern.ch [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2010-12-15

    The NA62 GigaTracker is a low mass time tagging hybrid pixel detector operating in a beam with a particle rate of 750 MHz. It consists of three stations with a sensor size of 60 x 27mm{sup 2} containing 18000 pixels, each 300 x 300{mu}m{sup 2}. The active area is connected to a matrix of 2 x 5 pixel ASICs, which time tag the arrival of the particles with a binning of 100 ps. The detector operates in vacuum at -20 to 0{sup 0}C and the material budget per station must be below 0.5% X{sub 0}. Due to the high radiation environment of 2 x 10{sup 14} 1 MeV neutron equivalent cm{sup -2}/yr{sup -1} it is planned to exchange the detector modules regularly. The low material budget, cooling requirements and the request for easy module access has driven the electro-mechanical integration of the GigaTracker, which is presented in this paper.

  18. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, S., E-mail: satoshi@fnal.gov

    2016-09-21

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature (−20 °C).

  19. A 65 nm CMOS analog processor with zero dead time for future pixel detectors

    Science.gov (United States)

    Gaioni, L.; Braga, D.; Christian, D. C.; Deptuch, G.; Fahim, F.; Nodari, B.; Ratti, L.; Re, V.; Zimmerman, T.

    2017-02-01

    Next generation pixel chips at the High-Luminosity (HL) LHC will be exposed to extremely high levels of radiation and particle rates. In the so-called Phase II upgrade, ATLAS and CMS will need a completely new tracker detector, complying with the very demanding operating conditions and the delivered luminosity (up to 5×1034 cm-2 s-1 in the next decade). This work is concerned with the design of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier featuring a detector leakage compensation circuit, and a compact, single ended comparator that guarantees very good performance in terms of channel-to-channel dispersion of threshold without needing any pixel-level trimming. A flash ADC is exploited for digital conversion immediately after the charge amplifier. A thorough discussion on the design of the charge amplifier and the comparator is provided along with an exhaustive set of simulation results.

  20. Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Ott, J. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Laboratory of Radio Chemistry, University of Helsinki (Finland); Mäkelä, M. [Laboratory of Inorganic Chemistry, University of Helsinki (Finland); Arsenovich, T.; Gädda, A.; Peltola, T. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Tuovinen, E. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); VTT Technical Research Centre of Finland, Microsystem and Nanoelectronics (Finland); Luukka, P.; Tuominen, E. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Niinistö, J.; Ritala, M. [Laboratory of Inorganic Chemistry, University of Helsinki (Finland)

    2016-09-21

    In this report we cover two special applications of Atomic Layer Deposition (ALD) thin films to solve these challenges of the very small size pixel detectors. First, we propose to passivate the p-type pixel detector with ALD grown Al{sub 2}O{sub 3} field insulator with a negative oxide charge instead of using the commonly adopted p-stop or p-spray technologies with SiO{sub 2}, and second, to use plasma-enhanced ALD grown titanium nitride (TiN) bias resistors instead of the punch through biasing structures. Surface passivation properties of Al{sub 2}O{sub 3} field insulator was studied by Photoconductive Decay (PCD) method and our results indicate that after appropriate annealing Al{sub 2}O{sub 3} provides equally low effective surface recombination velocity as thermally oxidized Si/SiO{sub 2} interface. Furthermore, with properly designed annealing steps, the TiN thin film resistors can be tuned to have up to several MΩ resistances with a few µm of physical size required in ultra-fine pitch pixel detectors.

  1. System test and noise performance studies at the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Weingarten, J.

    2007-09-15

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  2. Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors

    Science.gov (United States)

    Härkönen, J.; Ott, J.; Mäkelä, M.; Arsenovich, T.; Gädda, A.; Peltola, T.; Tuovinen, E.; Luukka, P.; Tuominen, E.; Junkes, A.; Niinistö, J.; Ritala, M.

    2016-09-01

    In this report we cover two special applications of Atomic Layer Deposition (ALD) thin films to solve these challenges of the very small size pixel detectors. First, we propose to passivate the p-type pixel detector with ALD grown Al2O3 field insulator with a negative oxide charge instead of using the commonly adopted p-stop or p-spray technologies with SiO2, and second, to use plasma-enhanced ALD grown titanium nitride (TiN) bias resistors instead of the punch through biasing structures. Surface passivation properties of Al2O3 field insulator was studied by Photoconductive Decay (PCD) method and our results indicate that after appropriate annealing Al2O3 provides equally low effective surface recombination velocity as thermally oxidized Si/SiO2 interface. Furthermore, with properly designed annealing steps, the TiN thin film resistors can be tuned to have up to several MΩ resistances with a few μm of physical size required in ultra-fine pitch pixel detectors.

  3. Fully 3D-Integrated Pixel Detectors for X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gabriella, Carini [SLAC National Accelerator Lab., Menlo Park, CA (United States); Enquist, Paul [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grybos, Pawel [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holm, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lipton, Ronald [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maj, Piotr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Patti, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Siddons, David Peter [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Szczygiel, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarema, Raymond [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  4. An investigation of performance characteristics of a pixellated room-temperature semiconductor detector for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, P; Santos, A [Centro de Investigacion Biomedica de Bioningenieria, Biomateriales y Nanomedicina, CEEI-Modulo 3, C/ Maria de Luna, 11, 50018 Zaragoza (United States); Darambara, D G, E-mail: pguerra@ciber-bbn.e [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Fulham Road, London SW3 6JJ (United Kingdom)

    2009-09-07

    The operation of any semiconductor detector depends on the movement of the charge carriers, which are created within the material when radiation passes through, as a result of energy deposition. The carrier movement in the bulk semiconductor induces charges on the metal electrodes, and therefore a current on the electrodes and the external circuit. The induced charge strongly depends on the material transport parameters as well as the geometrical dimensions of a pixellated semiconductor detector. This work focuses on the performance optimization in terms of energy resolution, detection efficiency and intrinsic spatial resolution of a room-temperature semiconductor pixellated detector based on CdTe/CdZnTe. It analyses and inter-relates these performance figures for various dimensions of CdTe and CdZnTe detectors and for an energy range spanning from x-ray (25 keV) to PET (511 keV) imaging. Monte Carlo simulations, which integrate a detailed and accurate noise model, are carried out to investigate several CdTe/CdZnTe configurations and to determine possible design specifications. Under the considered conditions, the simulations demonstrate the superiority of the CdZnTe over the CdTe in terms of energy resolution and sensitivity in the photopeak. Further, according to the results, the spatial resolution is maximized at high energies and the energy resolution at low energies, while a reasonable detection efficiency is achieved at high energies, with a 1 x 1 x 6 mm{sup 3} CdZnTe pixellated detector.

  5. Detection of secondary electrons with pixelated hybrid semiconductor detectors; Sekundaerelektronennachweis mit pixelierten hybriden Halbleiterdetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, Ulrike Sonja

    2011-09-14

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10{sup -5} mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm{sup 2} area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm{sup 2}. To achieve this, a new photocathode was mounted in a shorter distance to the detector. The

  6. Monte Carlo based performance assessment of different animal PET architectures using pixellated CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [INSERM U650, LaTIM, University Hospital Medical School, F-29609 Brest (France)]. E-mail: Visvikis.Dimitris@univ-brest.fr; Lefevre, T. [INSERM U650, LaTIM, University Hospital Medical School, F-29609 Brest (France); Lamare, F. [INSERM U650, LaTIM, University Hospital Medical School, F-29609 Brest (France); Kontaxakis, G. [ETSI Telecomunicacion Universidad Politecnica de Madrid, Ciudad Universitaria, s/n 28040, Madrid (Spain); Santos, A. [ETSI Telecomunicacion Universidad Politecnica de Madrid, Ciudad Universitaria, s/n 28040, Madrid (Spain); Darambara, D. [Department of Physics, School of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom)

    2006-12-20

    The majority of present position emission tomography (PET) animal systems are based on the coupling of high-density scintillators and light detectors. A disadvantage of these detector configurations is the compromise between image resolution, sensitivity and energy resolution. In addition, current combined imaging devices are based on simply placing back-to-back and in axial alignment different apparatus without any significant level of software or hardware integration. The use of semiconductor CdZnTe (CZT) detectors is a promising alternative to scintillators for gamma-ray imaging systems. At the same time CZT detectors have the potential properties necessary for the construction of a truly integrated imaging device (PET/SPECT/CT). The aims of this study was to assess the performance of different small animal PET scanner architectures based on CZT pixellated detectors and compare their performance with that of state of the art existing PET animal scanners. Different scanner architectures were modelled using GATE (Geant4 Application for Tomographic Emission). Particular scanner design characteristics included an overall cylindrical scanner format of 8 and 24 cm in axial and transaxial field of view, respectively, and a temporal coincidence window of 8 ns. Different individual detector modules were investigated, considering pixel pitch down to 0.625 mm and detector thickness from 1 to 5 mm. Modified NEMA NU2-2001 protocols were used in order to simulate performance based on mouse, rat and monkey imaging conditions. These protocols allowed us to directly compare the performance of the proposed geometries with the latest generation of current small animal systems. Results attained demonstrate the potential for higher NECR with CZT based scanners in comparison to scintillator based animal systems.

  7. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Science.gov (United States)

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  8. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    Science.gov (United States)

    Ono, Shun; Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei; Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori

    2017-02-01

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm2 pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  9. A new Data Acquisition System for the CMS Phase 1 Pixel Detector

    CERN Document Server

    Kornmayer, Andreas

    2016-01-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ s...

  10. The CT-PPS tracking system with 3D pixel detectors

    CERN Document Server

    Ravera, Fabio

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) detector will be installed in Roman pots (RP) positioned on either side of CMS, at about 200 m from the interaction point. This detector will measure forward leading protons, allowing detailed studies of diffractive physics and central exclusive production in standard LHC running conditions. An essential component of the CT-PPS apparatus is the tracking system, which consists of two detector stations per arm equipped with six 3D silicon pixel-sensor modules, each read out by six PSI46dig chips. The front-end electronics has been designed to fulfill the mechanical constrains of the RP and to be compatible as much as possible with the readout chain of the CMS pixel detector. The tracking system is currently under construction and will be installed by the end of 2016. In this contribution the final design and the expected performance of the CT-PPS tracking system will be presented. A summary of the studies performed, before and after irradiation, on the 3D det...

  11. Multiplexed Readout for 1000-pixel Arrays of Microwave Kinetic Inductance Detectors

    CERN Document Server

    van Rantwijk, Joris; van Loon, Dennis; Yates, Stephen; Baryshev, Andrey; Baselmans, Jochem

    2015-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are the most attractive radiation detectors for far-infrared and sub-mm astronomy: They combine ultimate sensitivity with the possibility to create very large detector arrays, in excess of 10 000 pixels. This is possible by reading-out the arrays using RF frequency division multiplexing, which allows multiplexing ratios in excess of 1000 pixels per readout line. We describe a novel readout system for large arrays of MKIDs, operating in a 2 GHz band in the 4-8 GHz range. The readout, which is a combination of a digital front- and back-end and an analog up- and down-converter system, can read out up to 4000 detectors simultaneously with 1 kHz datarate. The system achieves a readout noise power spectral density of -98 dBc/Hz while reading 1000 carriers simultaneously, which scales linear with the number of carriers. We demonstrate that 4000 state-of-the-art Aluminium-NbTiN MKIDs can be read out without deteriorating their intrinsic performance.

  12. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    Science.gov (United States)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm‑1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  13. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm(-1)) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  14. A neural network clustering algorithm for the ATLAS silicon pixel detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  15. Charge sharing in common-grid pixelated CdZnTe detectors

    Science.gov (United States)

    Kim, Jae Cheon; Anderson, Stephen E.; Kaye, Willy; Zhang, Feng; Zhu, Yuefeng; Kaye, Sonal Joshi; He, Zhong

    2011-10-01

    The charge sharing effect in pixelated CdZnTe (CZT) detectors with a common anode steering grid has been studied. The impact on energy resolution of weighting potential cross-talk and ballistic deficit due to cathode signal shaping has been investigated. A detailed system modeling package considering charge induction, electronic noise, pulse shaping, and ASIC triggering procedures has been developed to study the characteristics of common-grid CZT detectors coupled to the VAS_UM/TAT4 ASIC. Besides an actual common-grid CZT detector coupled to VAS_UM/TAT4 ASIC, a prototype digital read-out system has been developed to better understand the nature of the charge sharing effect.

  16. Charge sharing in common-grid pixelated CdZnTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Cheon, E-mail: jaecheon@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Anderson, Stephen E.; Kaye, Willy; Zhang Feng; Zhu Yuefeng; Kaye, Sonal Joshi; He Zhong [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2011-10-21

    The charge sharing effect in pixelated CdZnTe (CZT) detectors with a common anode steering grid has been studied. The impact on energy resolution of weighting potential cross-talk and ballistic deficit due to cathode signal shaping has been investigated. A detailed system modeling package considering charge induction, electronic noise, pulse shaping, and ASIC triggering procedures has been developed to study the characteristics of common-grid CZT detectors coupled to the VAS{sub U}M/TAT4 ASIC. Besides an actual common-grid CZT detector coupled to VAS{sub U}M/TAT4 ASIC, a prototype digital read-out system has been developed to better understand the nature of the charge sharing effect.

  17. First neutron spectroscopy measurements with a pixelated diamond detector at JET

    Science.gov (United States)

    Muraro, A.; Giacomelli, L.; Nocente, M.; Rebai, M.; Rigamonti, D.; Belli, F.; Calvani, P.; Figueiredo, J.; Girolami, M.; Gorini, G.; Grosso, G.; Murari, A.; Popovichev, S.; Trucchi, D. M.; Tardocchi, M.

    2016-11-01

    A prototype Single crystal Diamond Detector (SDD) was installed at the Joint European Torus (JET) in 2013 along an oblique line of sight and demonstrated the possibility to carry out neutron spectroscopy measurements with good energy resolution and detector stability in discharges heated by neutral beam injection and radio-frequency waves. Starting from these positive results, within the Vertical Neutron Spectrometer project of the Joint European Torus, we have developed a pixelated instrument consisting of a matrix of 12 independent SDDs, called the Diamond Vertical Neutron Spectrometer (DVNS), which boosts the detection efficiency of a single SDD by an order of magnitude. In this paper we describe the main features of the DVNS, including the detector design, energy resolution, and data acquisition system for on-line processing. Preliminary spectroscopy measurements of 2.5 MeV neutrons from the present deuterium plasma at JET are finally presented.

  18. Imaging properties of small-pixel spectroscopic x-ray detectors based on cadmium telluride sensors.

    Science.gov (United States)

    Koenig, Thomas; Schulze, Julia; Zuber, Marcus; Rink, Kristian; Butzer, Jochen; Hamann, Elias; Cecilia, Angelica; Zwerger, Andreas; Fauler, Alex; Fiederle, Michael; Oelfke, Uwe

    2012-11-07

    Spectroscopic x-ray imaging by means of photon counting detectors has received growing interest during the past years. Critical to the image quality of such devices is their pixel pitch and the sensor material employed. This paper describes the imaging properties of Medipix2 MXR multi-chip assemblies bump bonded to 1 mm thick CdTe sensors. Two systems were investigated with pixel pitches of 110 and 165 μm, which are in the order of the mean free path lengths of the characteristic x-rays produced in their sensors. Peak widths were found to be almost constant across the energy range of 10 to 60 keV, with values of 2.3 and 2.2 keV (FWHM) for the two pixel pitches. The average number of pixels responding to a single incoming photon are about 1.85 and 1.45 at 60 keV, amounting to detective quantum efficiencies of 0.77 and 0.84 at a spatial frequency of zero. Energy selective CT acquisitions are presented, and the two pixel pitches' abilities to discriminate between iodine and gadolinium contrast agents are examined. It is shown that the choice of the pixel pitch translates into a minimum contrast agent concentration for which material discrimination is still possible. We finally investigate saturation effects at high x-ray fluxes and conclude with the finding that higher maximum count rates come at the cost of a reduced energy resolution.

  19. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure

    Science.gov (United States)

    Liu, Langechuan; Lu, Minghui; Cao, Wanqing; Peng, Luke; Chen, Arthur

    2016-03-01

    Indirect conversion flat panel detectors (FPDs) based on amorphous silicon (a-Si) technology are widely used in digital X-ray imaging. In such FPDs a scintillator layer is used for converting X-rays into visible light photons. However, the lateral spread of these photons inside the scintillator layer reduces spatial resolution of the FPD. In this study, FPDs incorporating pixelated scintillators with a barrier rib structure were developed to limit lateral spread of light photons thereby improving spatial resolution. For the pixelated scintillator, a two-dimensional barrier rib structure was first manufactured on a substrate layer, coated with reflective materials, and filled to the rim with the scintillating material of gadolinium oxysulfide (GOS). Several scintillator samples were fabricated, with pitch size varying from 160 to 280 μm and rib height from 200 to 280 μm. The samples were directly coupled to an a-Si flat panel photodiode array with a pitch of 200 μm to convert optical photons to electronic signals. With the pixelated scintillator, the detector modulation transfer function was shown to improve significantly (by 94% at 2 cycle/mm) compared to a detector using an unstructured GOS layer. However, the prototype does show lower sensitivity due to the decrease in scintillator fill factor. The preliminary results demonstrated the feasibility of using the barrier-rib structure to improve the spatial resolution of FPDs. Such an improvement would greatly benefit nondestructive testing applications where the spatial resolution is the most important parameter. Further investigation will focus on improving the detector sensitivity and exploring its medical applications.

  20. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, E., E-mail: emoreno.emb@gmail.com [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Rio Verde, Puebla (Mexico); Moreno Barbosa, F. [Hospital General del Sur Hospital de la Mujer, Puebla (Mexico)

    2014-11-07

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  1. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    CERN Document Server

    INSPIRE-00397348; Cavallaro, E.; Grinstein, S.; López Paz, I.

    2015-01-01

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2-3 mm). This implies the need of slim edges of about 100-200 $\\mu$m width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 $\\mu$m width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 10$^{15}$ n$_{eq}$/cm$^2$ with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al ma...

  2. Prototypes and system test stands for the Phase1 upgrade of the CMS pixel detector

    CERN Document Server

    Hasegawa, Satoshi

    2015-01-01

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/17. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line as the trigger rate increase. This increase is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was conf...

  3. Characterization of a pixelated CdTe Timepix detector operated in ToT mode

    Science.gov (United States)

    Billoud, T.; Leroy, C.; Papadatos, C.; Pichotka, M.; Pospisil, S.; Roux, J. S.

    2017-01-01

    A 1 mm thick CdTe sensor bump-bonded to a Timepix readout chip operating in Time-over-Threshold (ToT) mode has been characterized in view of possible applications in particle and medical physics. The CdTe sensor layer was segmented into 256 × 256 pixels, with a pixel pitch of 55 μm. This CdTe Timepix device, of ohmic contact type, has been exposed to alpha-particles and photons from an 241Am source, photons from a 137Cs source, and protons of different energies (0.8–10 MeV) delivered by the University of Montreal Tandem Accelerator. The device was irradiated on the negatively biased backside electrode. An X-ray per-pixel calibration commonly used for this type of detector was done and its accuracy and resolution were assessed and compared to those of a 300 μm thick silicon Timepix device. The electron mobility-lifetime product (μeτe) of CdTe for protons of low energy has been obtained from the Hecht equation. Possible polarization effects have been also investigated. Finally, information about the homogeneity of the detector was obtained from X-ray irradiation.

  4. Biological Tissue Imaging with a Position and Time Sensitive Pixelated Detector

    CERN Document Server

    Jungmann, Julia H; MacAleese, Luke; Klinkert, Ivo; Visser, Jan; Heeren, Ron M A

    2013-01-01

    We demonstrate the capabilities of a highly parallel, active pixel detector for large-area, mass spectrometric imaging of biological tissue sections. A bare Timepix assembly (512x512 pixels) is combined with chevron microchannel plates on an ion microscope matrix-assisted laser desorption time-of-flight mass spectrometer (MALDI TOF-MS). The detector assembly registers position- and time-resolved images of multiple m/z species in every measurement frame. We prove the applicability of the detection system to bio-molecular mass spectrometry imaging on biologically relevant samples by mass-resolved images from Timepix measurements of a peptide-grid benchmark sample and mouse testis tissue slices. Mass-spectral and localization information of analytes at physiological concentrations are measured in MALDI-TOF-MS imaging experiments. We show a high spatial resolution (pixel size down to 740x740 nm2 on the sample surface) and a spatial resolving power of 6 {\\mu}m with a microscope mode laser field of view of 100-335 ...

  5. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Gabrielli, Alessandro; The ATLAS collaboration; Balbi, Gabriele; Bindi, Marcello; Chen, Shaw-pin; Falchieri, Davide; Flick, Tobias; Hauck, Scott Alan; Hsu, Shih-Chieh; Kretz, Moritz; Kugel, Andreas; Lama, Luca; Travaglini, Riccardo; Wensing, Marius; ATLAS Pixel Collaboration

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data pat...

  6. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Balbi, G; The ATLAS collaboration; Gabrielli, A; Lama, L; Travaglini, R; Backhaus, M; Bindi, M; Chen, S-P; Flick, T; Kretz, M; Kugel, A; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development was three-fold: keeping as much of the PixelROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path im...

  7. Online data reduction with FPGA-based track reconstruction for the Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, Michael; Deschamps, Bruno; Dingfelder, Jochen; Marinas, Carlos [University of Bonn (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    The innermost two layers of the Belle II vertex detector at the KEK facility in Tsukuba, Japan, will be covered by high-granularity DEPFET pixel sensors (PXD). The large number of pixels leads to a maximum data rate of 256 Gbps, which has to be significantly reduced by the Data Acquisition System. For the data reduction the hit information of the surrounding Silicon strip Vertex Detector (SVD) is utilized to define so-called Regions of Interest (ROI). Only hit information of the pixels located inside these ROIs are saved. The ROIs for the PXD are computed by reconstructing track segments from SVD data and extrapolation to the PXD. The goal is to achieve a data reduction of up to a factor of 10 with this ROI selection. All the necessary processing stages, the receiving, decoding and multiplexing of SVD data on 48 optical fibers, the track reconstruction and the definition of the ROIs, will be performed by the presented system. The planned hardware design is based on a distributed set of Advanced Mezzanine Cards (AMC) each equipped with a Field Programmable Gate Array (FPGA) and 4 optical transceivers. In this talk, the hardware and the FPGA-based tracking algorithm is introduced with some recent performance results from simulation and the latest test beam campaigns.

  8. A Triple-GEM Detector with Pixel Readout for High-Rate Beam Tracking in COMPASS

    CERN Document Server

    Nagel, T; Haas, F; Ketzer, B; Konorov, I; Krämer, M; Mann, A; Paul, S

    2008-01-01

    For its physics program with a high-intensity hadron beam of $2 · 10^{7}$ particles/s, the COMPASS experiment at CERN requires tracking of charged particles scattered by very small angles with respect to the incident beam direction. While good resolution in time and space is mandatory, the challenge is imposed by the high beam intensity, requiring radiation-hard detectors which add very little material to the beam path in order to minimise secondary interactions. To this end, a set of triple-GEM detectors with pixel readout in the beam region and 2-D strip readout in the periphery is currently being built. The pixel size has been chosen to be 1×1 mm2, which constitutes a compromise between the spatial resolution achievable and the number of readout channels. Surrounding the pixel area, a 2-D strip readout with a pitch of 400 μm has been realised on the same printed circuit foil. In total an active area of 10 × 10 cm2 is covered using 2048 readout channels. Analogue readout by the APV25 ASIC has been chose...

  9. Evaluation of Irradiated Barrel Detector Modules for the Upgrade of the CMS Pixel Detector

    CERN Document Server

    Sibille, Jennifer Ann

    2013-01-01

    Prototype detector modules comprising sensors and the new readout chips were assembled and irradiated with protons at the CERN PS, and readout chips without sensors have been irradiated with protons at the Karls...

  10. The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00019188; The ATLAS collaboration

    2016-01-01

    Run-2 of the Large Hadron Collider (LHC) will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with the high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130~nm technology. In addition, the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during Run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. Complementing detector improvements, many improvements to Inner Detector track and vertex reconstr...

  11. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    CERN Document Server

    Boek, J; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2013-01-01

    inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University ofWuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  12. A Medipix2-based imaging system for digital mammography with silicon pixel detectors

    CERN Document Server

    Bisogni, M G; Fantacci, M E; Mettivier, G; Montesi, M C; Novelli, M; Quattrocchi, M; Rosso, V; Russo, P; Stefanini, A

    2004-01-01

    In this paper we present the first tests of a digital imaging system based on a silicon pixel detector bump-bonded to an integrated circuit operating in single photon counting mode. The X-rays sensor is a 300 mu m thick silicon, 14 by 14 mm/sup 2/, upon which a matrix of 256 * 256 pixels has been built. The read-out chip, named MEDIPIX2, has been developed at CERN within the MEDIPIX2 Collaboration and it is composed by a matrix of 256 * 256 cells, 55 * 55 mu m/sup 2/. The spatial resolution properties of the system have been assessed by measuring the square wave resolution function (SWRF) and first images of a standard mammographic phantom were acquired using a radiographic tube in the clinical irradiation condition. (5 refs).

  13. LePix-A high resistivity, fully depleted monolithic pixel detector

    CERN Document Server

    Giubilato, P; Mugnier, H; Bisello, D; Marchioro, A; Snoeys, W; Denes, P; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Rivetti, A; Chalmet, P

    2013-01-01

    The LePix project explores monolithic pixel sensors fabricated in a 90 nm CMOS technology built over a lightly doped substrate. This approach keeps the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, and adds the benefit of charge collection by drift from a depleted region several tens of microns deep into the substrate, therefore providing an excellent signal to noise ratio and a radiation tolerance superior to conventional un-depleted MAPS. Such sensors are expected to offer significant cost savings and reduction of power consumption for the same performance, leading to the use of much less material in the detector (less cooling and less copper), addressing one of the main limitations of present day particle tracking systems. The latest evolution of the project uses detectors thinned down to 50 mu m to obtain back illuminated sensors operated in full depletion mode. By back processin...

  14. Energy Calibration of the Pixels of Spectral X-ray Detectors

    CERN Document Server

    Panta, Raj Kumar; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-01-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have deve...

  15. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    Science.gov (United States)

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18)F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8.

  16. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation.

    CERN Document Server

    Heim, Timon; The ATLAS collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 x 10^33 cm-2 s-1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silicon leakage ...

  17. Time-resolved and position-resolved X-ray spectrometry with a pixelated detector

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Peter

    2012-12-07

    The aim of the work presented here was to measure X-ray spectra with a pixelated detector. Due to effects in the sensor the spectrum cannot be measured directly and has to be calculated by a deconvolution of the measured data. In the scope of this work the deconvolution of the measured spectra could be enhanced considerably by - amongst other things - the introduction of the Bayesian deconvolution method. Those improvements opened the possibilities for further measurements. For the measurements the detectors of the Medipix family have been used. They are nowadays used for a wide range of applications and scientific research. Their main advantage is the very high position resolution gained by a pixel pitch of 55 μm and a high number of 65536 pixels. The Timepix detector has, in particular, two special possibilities of measurement: the ToA mode and the ToT mode. In ToA mode the arrival time of an impinging photon is measured and in ToT mode the amount of deposited charge is measured. The most common method of operation is counting the number of impinging photons that release a charge higher than a preset threshold in each pixel. As this released charge is proportional to the energy deposition of the impinging photon, one can perform energy-sensitive measurements. To perform the deconvolution of the measured energy distribution there is a need of an energy response matrix describing the detector response on radiation. For some detectors it is possible to obtain an analytic model of the response functions. Due to the high discrepancy between the impinging spectrum and the measured spectrum in case of detectors of the Medipix family, there is so far no analytic model. Thus, the detector response has to be simulated. As I could improve the precision of the measurement quite extensively, I also intended to tune the simulation with more accurate and appropriate models to gain the same level of accuracy. The results of measurement and simulation have then been compared and

  18. Time-resolved and position-resolved X-ray spectrometry with a pixelated detector

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Peter

    2012-12-07

    The aim of the work presented here was to measure X-ray spectra with a pixelated detector. Due to effects in the sensor the spectrum cannot be measured directly and has to be calculated by a deconvolution of the measured data. In the scope of this work the deconvolution of the measured spectra could be enhanced considerably by - amongst other things - the introduction of the Bayesian deconvolution method. Those improvements opened the possibilities for further measurements. For the measurements the detectors of the Medipix family have been used. They are nowadays used for a wide range of applications and scientific research. Their main advantage is the very high position resolution gained by a pixel pitch of 55 μm and a high number of 65536 pixels. The Timepix detector has, in particular, two special possibilities of measurement: the ToA mode and the ToT mode. In ToA mode the arrival time of an impinging photon is measured and in ToT mode the amount of deposited charge is measured. The most common method of operation is counting the number of impinging photons that release a charge higher than a preset threshold in each pixel. As this released charge is proportional to the energy deposition of the impinging photon, one can perform energy-sensitive measurements. To perform the deconvolution of the measured energy distribution there is a need of an energy response matrix describing the detector response on radiation. For some detectors it is possible to obtain an analytic model of the response functions. Due to the high discrepancy between the impinging spectrum and the measured spectrum in case of detectors of the Medipix family, there is so far no analytic model. Thus, the detector response has to be simulated. As I could improve the precision of the measurement quite extensively, I also intended to tune the simulation with more accurate and appropriate models to gain the same level of accuracy. The results of measurement and simulation have then been compared and

  19. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications

    OpenAIRE

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-01-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to dig...

  20. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, M., E-mail: Massimiliano.Fiorini@cern.ch [CERN, CH-1211 Geneva 23 (Switzerland); Aglieri Rinella, G. [CERN, CH-1211 Geneva 23 (Switzerland); Carassiti, V. [INFN Sezione di Ferrara (Italy); Ceccucci, A. [CERN, CH-1211 Geneva 23 (Switzerland); Cortina Gil, E. [Université Catholique de Louvain, Louvain-la-Neuve (Belgium); Cotta Ramusino, A. [INFN Sezione di Ferrara (Italy); Dellacasa, G.; Garbolino, S.; Jarron, P. [INFN Sezione di Torino (Italy); Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A. [CERN, CH-1211 Geneva 23 (Switzerland); Martin, E. [Université Catholique de Louvain, Louvain-la-Neuve (Belgium); Mazza, G. [INFN Sezione di Torino (Italy); Morel, M.; Noy, M. [CERN, CH-1211 Geneva 23 (Switzerland); Nuessle, G. [Université Catholique de Louvain, Louvain-la-Neuve (Belgium); Perktold, L.; Petagna, P. [CERN, CH-1211 Geneva 23 (Switzerland); and others

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼1GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X{sub 0}. The expected fluence for 100 days of running is 2×10{sup 14} 1 MeV n{sub eq}/cm{sup 2}, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (<0.15%X{sub 0}) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200μm thick silicon sensors.

  1. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Science.gov (United States)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  2. Assembly and test of the gas pixel detector for X-ray polarimetry

    Science.gov (United States)

    Li, H.; Feng, H.; Muleri, F.; Bellazzini, R.; Minuti, M.; Soffitta, P.; Brez, A.; Spandre, G.; Pinchera, M.; Sgró, C.; Baldini, L.; She, R.; Costa, E.

    2015-12-01

    The gas pixel detector (GPD) dedicated for photoelectric X-ray polarimetry is selected as the focal plane detector for the ESA medium-class mission concept X-ray Imaging and Polarimetry Explorer (XIPE). Here we show the design, assembly, and preliminary test results of a small GPD for the purpose of gas mixture optimization needed for the phase A study of XIPE. The detector is assembled in house at Tsinghua University following a design by the INFN-Pisa group. The improved detector design results in a good uniformity for the electric field. Filled with pure dimethyl ether (DME) at 0.8 atm, the measured energy resolution is 18% at 6 keV and inversely scales with the square root of the X-ray energy. The measured modulation factor is well consistent with that from simulation, up to ~0.6 above 6 keV. The residual modulation is found to be 0.30 ± 0.15 % at 6 keV for the whole sensitive area, which can be translated into a systematic error of less than 1% for polarization measurement at a confidence level of 99%. The position resolution of the detector is about 80 μm in FWHM, consistent with previous studies and sufficient for XIPE requirements.

  3. Performance of Multi-Pixel Photon Counters for the T2K near detectors

    CERN Document Server

    Yokoyama, M; Gomi, S; Ieki, K; Nagai, N; Nakaya, T; Nitta, K; Orme, D; Otani, M; Murakami, T; Nakadaira, T; Tanaka, M

    2010-01-01

    We have developed a Multi-Pixel Photon Counter (MPPC) for the neutrino detectors of T2K experiment. About 64,000 MPPCs have been produced and tested in about a year. In order to characterize a large number of MPPCs, we have developed a system that simultaneously measures 64 MPPCs with various bias voltage and temperature. The performance of MPPCs are found to satisfy the requirement of T2K experiment. In this paper, we present the performance of 17,686 MPPCs measured at Kyoto University.

  4. Development of ultra-light pixelated ladders for an ILC vertex detector

    CERN Document Server

    Chon-Sen, N; Claus, G; De Masi, R; Deveaux, M; Dulinski, W; Goffe, M; Goldstein, J; Gregor, I -M; Imhoff, Ch Hu-Guo M; Müntz, C; Nomerotski, A; Santos, C; Schrader, C; Specht, M; Stroth, J; Winter, M

    2010-01-01

    The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided ladders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested.

  5. replacement of the heart of the CMS experiment - the pixel #detector.

    CERN Document Server

    AUTHOR|(CDS)2070299

    2017-01-01

    This week, one of the Large Hadron Collider’s experiments gets a “heart transplant”. --- Physicists and engineers are replacing the heart of the CMS experiment - the pixel #detector. This will improve CMS’s ability to make precise measurements on aspects of the Standard Model, including the properties of the #HiggsBoson. The #LHC and its experiments are currently preparing to wake up this spring, when the accelerator will begin to collide particles once more at close to the speed of light. --- Today at 12:15 CET, join us live on #Facebook and ask us anything: https://www.facebook.com/cern/

  6. replacement of the heart of the CMS experiment - the pixel #detector. Part2

    CERN Document Server

    Brice, Maximilien

    2017-01-01

    This week, one of the Large Hadron Collider’s experiments gets a “heart transplant”. --- Physicists and engineers are replacing the heart of the CMS experiment - the pixel #detector. This will improve CMS’s ability to make precise measurements on aspects of the Standard Model, including the properties of the #HiggsBoson. The #LHC and its experiments are currently preparing to wake up this spring, when the accelerator will begin to collide particles once more at close to the speed of light. --- Today at 12:15 CET, join us live on #Facebook and ask us anything: https://www.facebook.com/cern/

  7. Development of CMOS Pixel Sensors fully adapted to the ILD Vertex Detector Requirements

    CERN Document Server

    Winter, Marc; Besson, Auguste; Claus, Gilles; Dorokhov, Andrei; Goffe, Mathieu; Hu-Guo, Christine; Morel, Frederic; Valin, Isabelle; Voutsinas, Georgios; Zhang, Liang

    2012-01-01

    CMOS Pixel Sensors are making steady progress towards the specifications of the ILD vertex detector. Recent developments are summarised, which show that these devices are close to comply with all major requirements, in particular the read-out speed needed to cope with the beam related background. This achievement is grounded on the double- sided ladder concept, which allows combining signals generated by a single particle in two different sensors, one devoted to spatial resolution and the other to time stamp, both assembled on the same mechanical support. The status of the development is overviewed as well as the plans to finalise it using an advanced CMOS process.

  8. Nanopillar optical antenna nBn detectors for subwavelength infrared pixels

    Science.gov (United States)

    Hung, Chung Hong; Senanayake, Pradeep; Lee, Wook-Jae; Farrell, Alan; Hsieh, Nick; Huffaker, Diana L.

    2015-06-01

    The size, weight and power (SWaP) of state of the art infrared focal plane arrays are limited by the pixel size approaching the diffraction limit. We investigate a novel detector architecture which allows improvements in detectivity by shrinking the absorber volume while maintaining high quantum efficiency and wide field of view (FOV). It has been previously shown that the Nanopillar Optical Antenna (NOA) utilizes 3D plasmonic modes to funnel light into a subwavelength nanopillar absorber. We show detailed electro-optical simulations for the NOA-nBn architecture for overcoming generation recombination current with suitable surface passivation to achieve background limited infrared performance.

  9. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Liang, E-mail: cai7@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign, 216 Talbot Laboratory, 104 S Wrig, Urbana, Urbana, Illinois 61801 (United States); Meng, Ling-Jian [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign, 216 Talbot Laboratory, 104 S Wrig, Urbana, Urbana, Illinois 61801 (United States)

    2013-02-21

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X–Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2–5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper.

  10. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    Science.gov (United States)

    Cai, Liang; Meng, Ling-Jian

    2013-02-01

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X-Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2-5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper.

  11. Characterization of a module with pixelated CdTe detectors for possible PET, PEM and compton camera applications

    Science.gov (United States)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Puigdengoles, C.; Martínez, R.; Cabruja, E.

    2014-05-01

    We present the measurement of the energy resolution and the impact of charge sharing for a pixel CdTe detector. This detector will be used in a novel conceptual design for diagnostic systems in the field of nuclear medicine such as positron emission tomography (PET), positron emission mammography (PEM) and Compton camera. The detector dimensions are 10 mm × 10 mm × 2 mm and with a pixel pitch of 1 mm × 1 mm. The pixel CdTe detector is a Schottky diode and it was tested at a bias of -1000 V. The VATAGP7.1 frontend ASIC was used for the readout of the pixel detector and the corresponding single channel electronic noise was found to be σ < 2 keV for all the pixels. We have achieved an energy resolution, FWHM/Epeak, of 7.1%, 4.5% and 0.98% for 59.5, 122 and 511 keV respectively. The study of the charge sharing shows that 16% of the events deposit part of their energy in the adjacent pixel.

  12. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    Energy Technology Data Exchange (ETDEWEB)

    Apresyan, A. [California Institute of Technology, Pasadena, CA (United States); Los, S. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Pena, C.; Presutti, F. [California Institute of Technology, Pasadena, CA (United States); Ronzhin, A. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Spiropulu, M.; Xie, S. [California Institute of Technology, Pasadena, CA (United States)

    2016-08-21

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. A method for measuring the arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.

  13. Novel Multi-pixel Silicon Photon Detectors and Applications in T2K

    CERN Document Server

    Beznosko, Dmitriy

    2009-01-01

    Nowadays, numerous fields such as High Energy Physics (HEP), medical imaging devices, portable radiation detectors etc., require a robust, miniature, reliable and readily available photon detector that is stable in a variety of environments, such as the presence of strong magnetic fields. The recently available $\\sim$1mm$^{\\textrm{2}}$ active area Multi-pixel Photon Counter (MPPC) sensors, produced by Hamamatsu Photonics, have been found to be reliable and an attractive choice for the HEP applications. The following sensor characteristics have been thoroughly tested by T2K collaboration: gain, dark noise, detection efficiency, reliability. These appear to be stable; in addition, the characteristic spread between numerous devices was assessed. Sensors with larger area are being developed for imaging and direct-to-scintillator coupling purposes.

  14. Study of Charge Diffusion in a Silicon Detector Using an Energy Sensitive Pixel Readout Chip

    CERN Document Server

    Schioppa, E. J.; van Beuzekom, M.; Visser, J.; Koffeman, E.; Heijne, E.; Engel, K. J.; Uher, J.

    2015-01-01

    A 300 μm thick thin p-on-n silicon sensor was connected to an energy sensitive pixel readout ASIC and exposed to a beam of highly energetic charged particles. By exploiting the spectral information and the fine segmentation of the detector, we were able to measure the evolution of the transverse profile of the charge carriers cloud in the sensor as a function of the drift distance from the point of generation. The result does not rely on model assumptions or electric field calculations. The data are also used to validate numerical simulations and to predict the detector spectral response to an X-ray fluorescence spectrum for applications in X-ray imaging.

  15. A highly pixelated CdZnTe detector based on \\textit{Topmetal-${II}^-$} sensor

    CERN Document Server

    Zou, Shuguang; Sun, Xiangming; Huang, Guangming; Pei, Hua; Wang, Zhen; Liu, Jun; Yang, Ping; Wang, Dong

    2016-01-01

    \\textit{Topmetal-${II}^-$} is a low noise CMOS pixel direct charge sensor with a pitch of 83$\\mu m$. CdZnTe is an excellent semiconductor material for radiation detection. The combination of CdZnTe and the sensor makes it possible to build a detector with high spatial resolution. In our experiments, an epoxy adhesive is used as the conductive medium to connect the sensor and CdZnTe. The diffusion coefficient and charge efficiency of electrons are measured at a low bias voltage of -2 Volts, and the image of a single alpha is clear with a reasonable spatial resolution. The detector of such structure has the potential to be applied in X-ray imaging systems with a further improvements of the sensor.

  16. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    Science.gov (United States)

    Apresyan, A.; Los, S.; Pena, C.; Presutti, F.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-08-01

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. A method for measuring the arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.

  17. Development and characterization of high-resolution neutron pixel detectors based on Timepix read-out chips

    Science.gov (United States)

    Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.

    2016-12-01

    Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.

  18. 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection

    CERN Document Server

    Miki, Shigehito; Wang, Zhen; Terai, Hirotaka

    2014-01-01

    We present the characterization of two-dimensionally arranged 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection. NbTiN films deposited on thermally oxidized Si substrates enabled the high-yield production of high-quality SSPD pixels, and all 64 SSPD pixels showed uniform superconducting characteristics. Furthermore, all of the pixels showed single-photon sensitivity, and 60 of the 64 pixels showed a pulse generation probability higher than 90% after photon absorption. As a result of light irradiation from the single-mode optical fiber at different distances between the fiber tip and the active area, the variations of system detection efficiency in each pixel showed reasonable Gaussian distribution to represent the spatial distributions of photon flux intensity.

  19. Construction and Testing of a Pixellated CZT Detector and Shield for a Hard X-ray Astronomy Balloon Flight

    OpenAIRE

    Bloser, P. F.; Narita, T; Jenkins, J. A.; Grindlay, J.E.

    2000-01-01

    We report on the construction and laboratory testing of pixellated CZT detectors mounted in a flip-chip, tiled fashion and read out by an ASIC, as required for proposed hard X-ray astronomy missions. Two 10 mm x 10 mm x 5 mm detectors were fabricated, one out of standard eV Products high-pressure Bridgman CZT and one out of IMARAD horizontal Bridgman CZT. Each was fashioned with a 4 x 4 array of gold pixels on a 2.5 mm pitch with a surrounding guard ring. The detectors were mounted side by si...

  20. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  1. Characterization of Ni/SnPb-TiW/Pt Flip Chip Interconnections in Silicon Pixel Detector Modules

    CERN Document Server

    Karadzhinova, Aneliya; Härkönen, Jaakko; Luukka, Panja-riina; Mäenpää, Teppo; Tuominen, Eija; Haeggstrom, Edward; Kalliopuska, Juha; Vahanen, Sami; Kassamakov, Ivan

    2014-01-01

    In contemporary high energy physics experiments, silicon detectors are essential for recording the trajectory of new particles generated by multiple simultaneous collisions. Modern particle tracking systems may feature 100 million channels, or pixels, which need to be individually connected to read-out chains. Silicon pixel detectors are typically connected to readout chips by flip-chip bonding using solder bumps. High-quality electro-mechanical flip-chip interconnects minimizes the number of dead read-out channels in the particle tracking system. Furthermore, the detector modules must endure handling during installation and withstand heat generation and cooling during operation. Silicon pixel detector modules were constructed by flip-chip bonding 16 readout chips to a single sensor. Eutectic SnPb solder bumps were deposited on the readout chips and the sensor chips were coated with TiW/Pt thin film UBM (under bump metallization). The modules were assembled at Advacam Ltd, Finland. We studied the uniformity o...

  2. Characterization of Depleted Monolithic Active Pixel detectors implemented with a high-resistive CMOS technology

    Science.gov (United States)

    Kishishita, T.; Hemperek, T.; Rymaszewski, P.; Hirono, T.; Krüger, H.; Wermes, N.

    2016-07-01

    We present the recent development of DMAPS (Depleted Monolithic Active Pixel Sensor), implemented with a Toshiba 130 nm CMOS process. Unlike in the case of standard MAPS technologies which are based on an epi-layer, this process provides a high-resistive substrate that enables larger signal and faster charge collection by drift in a 50 - 300 μm thick depleted layer. Since this process also enables the use of deep n-wells to isolate the collection electrodes from the thin active device layer, NMOS and PMOS transistors are available for the readout electronics in each pixel cell. In order to characterize the technology, we implemented a simple three transistor readout with a variety of pixel pitches and input FET sizes. This layout variety gives us a clue on sensor characteristics for future optimization, such as the input detector capacitance or leakage current. In the initial measurement, the radiation spectra were obtained from 55Fe with an energy resolution of 770 eV (FWHM) and 90Sr with the MVP of 4165 e-.

  3. The NA62 Gigatracker: Detector properties and pixel read-out architectures

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, M., E-mail: Massimiliano.Fiorini@cern.c [CERN, CH-1211 Geneva 23 (Switzerland); Carassiti, V. [INFN Sezione di Ferrara, 44100 Ferrara (Italy); Ceccucci, A. [CERN, CH-1211 Geneva 23 (Switzerland); Cortina, E. [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Cotta Ramusino, A. [INFN Sezione di Ferrara, 44100 Ferrara (Italy); Dellacasa, G. [INFN Sezione di Torino, 10125 Torino (Italy); Jarron, P.; Kaplon, J.; Kluge, A. [CERN, CH-1211 Geneva 23 (Switzerland); Marchetto, F. [INFN Sezione di Torino, 10125 Torino (Italy); Martin, E. [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Martoiu, S.; Mazza, G. [INFN Sezione di Torino, 10125 Torino (Italy); Noy, M. [CERN, CH-1211 Geneva 23 (Switzerland); Petrucci, F. [INFN Sezione di Ferrara, 44100 Ferrara (Italy); Riedler, P. [CERN, CH-1211 Geneva 23 (Switzerland); Rivetti, A. [INFN Sezione di Torino, 10125 Torino (Italy); Tiuraniemi, S. [CERN, CH-1211 Geneva 23 (Switzerland)

    2010-12-11

    The beam spectrometer of the NA62 experiment, named Gigatracker, has to perform single track reconstruction with unprecedented time resolution (150 ps rms) in a harsh radiation environment. To meet these requirements, and in order to reduce material budget to a minimum, three hybrid silicon pixel detector stations will be installed in vacuum. An adequate strategy to compensate for the discriminator time-walk must be implemented and R and D investigating two different options is ongoing. Two read-out chip prototypes have been designed in order to compare their performance: one approach is based on the use of a constant-fraction discriminator followed by an on-pixel TDC, while the other one is based on the use of a time-over-threshold circuit followed by a TDC shared by a group of pixels. This paper describes the Gigatracker system, presents the global architectures of both read-out ASICs and reviews the current status of the R and D project.

  4. Radiation tolerance of prototype BTeV pixel detector readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Gabriele Chiodini et al.

    2002-07-12

    High energy and nuclear physics experiments need tracking devices with increasing spatial precision and readout speed in the face of ever-higher track densities and increased radiation environments. The new generation of hybrid pixel detectors (arrays of silicon diodes bump bonded to arrays of front-end electronic cells) is the state of the art technology able to meet these challenges. We report on irradiation studies performed on BTeV pixel readout chip prototypes exposed to a 200 MeV proton beam at Indiana University Cyclotron Facility. Prototype pixel readout chip preFPIX2 has been developed at Fermilab for collider experiments and implemented in standard 0.25 micron CMOS technology following radiation tolerant design rules. The tests confirmed the radiation tolerance of the chip design to proton total dose up to 87 MRad. In addition, non destructive radiation-induced single event upsets have been observed in on-chip static registers and the single bit upset cross section has been extensively measured.

  5. Development of an X-ray imaging system with SOI pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Ryutaro, E-mail: ryunishi@post.kek.jp [School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Arai, Yasuo; Miyoshi, Toshinobu [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK-IPNS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK-IMSS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-09-21

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented. - Highlights: • The X-ray imaging system employing the SOI pixel sensor is currently under development. • The DAQ of the first prototype has the bottleneck in the total throughput. • The new DAQ release solve the bottleneck by parallel processing and FIFO buffer. • The new DAQ release was tested using 33.3 keV and 9.5 keV mono X-rays.

  6. Microchannel cooling in low material budget supports for silicon pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Balestri, G. [INFN Pisa, Largo B. Pontecorvo 3, 56010 Pisa (Italy); Bosi, F., E-mail: filippo.bosi@pi.infn.i [INFN Pisa, Largo B. Pontecorvo 3, 56010 Pisa (Italy); Ceccanti, M.; Mammini, P.; Massa, M.; Petragnani, G.; Ragonesi, A.; Soldani, A. [INFN Pisa, Largo B. Pontecorvo 3, 56010 Pisa (Italy)

    2010-05-21

    Pixel detectors at future colliders will need to match very stringent requirement on position resolution. To ensure the needed mechanical stability and the removal of the power dissipated by the read-out electronic, the support structure and cooling add an important contribution to the total material in the active area, in terms of radiation length. We present the development, the construction and the mechanical-thermal characterization of prototypes of light material support for pixel detectors with microchannel for heat evacuation through forced convection of liquid coolant. The solution we choose shows several advantages: heat exchange is taking place efficiently due to the high ratio surface/volume and so high thermal conductivities can be obtained, minimally affecting the stiffness of the structure; the thermal resistances are reduced because of the contiguity between the fluid and the circuit dissipating power; the uniformity of temperature on the surface covered by of the sensors is also kept under control. Several prototypes implementing different geometries of micro-machined channels have been realized in composites materials (CFRP). FEA studies have been performed to validated the experimental test conducted in the thermo-fluid dynamic test bench we recently assembled in the INFN Pisa laboratory.

  7. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    Science.gov (United States)

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  8. Energy-windowed, pixellated X-ray diffraction using the Pixirad CdTe detector

    Science.gov (United States)

    O'Flynn, D.; Bellazzini, R.; Minuti, M.; Brez, A.; Pinchera, M.; Spandre, G.; Moss, R.; Speller, R. D.

    2017-01-01

    X-ray diffraction (XRD) is a powerful tool for material identification. In order to interpret XRD data, knowledge is required of the scattering angles and energies of X-rays which interact with the sample. By using a pixellated, energy-resolving detector, this knowledge can be gained when using a spectrum of unfiltered X-rays, and without the need to collimate the scattered radiation. Here we present results of XRD measurements taken with the Pixirad detector and a laboratory-based X-ray source. The cadmium telluride sensor allows energy windows to be selected, and the 62 μm pixel pitch enables accurate spatial information to be preserved for XRD measurements, in addition to the ability to take high resolution radiographic images. Diffraction data are presented for a variety of samples to demonstrate the capability of the technique for materials discrimination in laboratory, security and pharmaceutical environments. Distinct diffraction patterns were obtained, from which details on the molecular structures of the items under study were determined.

  9. Development of a low noise integrated readout electronic for pixel detectors in CMOS technology for a Compton camera

    OpenAIRE

    Hausmann, Joachim

    2006-01-01

    Semiconductor detectors are very popular, particularly for their good energy resolution and their easy handling. Combined with a two dimensional spatial resolution such a detector is predestined to realise an active collimation in a Compton camera for medical applications. To measure the deposited energy in each channel (pixel), a self-triggering integrated electronic has been developed, which is directly bonded on top of the detector. The design of the low noise readout ele...

  10. Thermal mock-up studies of the DEPFET pixel vertex detector for Belle II

    CERN Document Server

    Ye, H; Stever, R; Gadow, K; Camien, C

    2016-01-01

    The Belle II experiment currently under construction at the $e^+e^-$-collider SuperKEKB in Japan is designed to explore new physics beyond the standard model with an approximately 50 times larger data sample compared to its predecessor. The vertex detector (VXD), comprising a two layer DEPFET pixel detector (PXD) surrounded by four layers of double sided silicon strip detector (SVD), is indispensable for the accurate determination of the decay point of $B$ or $D$ mesons as well as track reconstruction of low momentum particles. In order to guarantee acceptable operation conditions for the VXD and the surrounding Belle II drift-chamber (CDC) the cooling system must be capable of removing a total heat load from the very confined VXD volume of about 1~kW plus some heat intake arising from the SuperKEKB beam pipe. Evaporative two-phase CO$_2$ cooling in combination with forced air flow has been chosen as technology for the VXD cooling system. To verify and optimize the vertex detector cooling concept, a full-size...

  11. A new design of the gaseous imaging detector: Micro Pixel Chamber

    CERN Document Server

    Ochi, A; Koishi, S; Tanimori, T; Nagae, T; Nakamura, M

    2001-01-01

    The novel gaseous detector 'Micro Pixel Chamber (Micro PIC)' has been developed for X-ray, gamma-ray and charged particle imaging. This detector consists of double sided printing circuit board (PCB). The stable operation of Micro PIC is realized by thick substrate and wide anode strips. One of the most outstanding feature is the process of production and the cost. The base technology of producing Micro PIC is same as producing PCB, then detector with large detection area (more than 10 cmx10 cm) can be made by present technology. Our first tests were performed using a 3 cmx3 cm detection area with a readout of 0.4 mm pitch. The gas gain and stability were measured in these tests. The gas gain of 10 sup 4 was obtained using argon ethane (8:2) gas mixture. Also, there was no discharge between anodes and cathodes in the gain of 10 sup 3 during two days of continuous operation. Although some discharges occurred in the higher gain (approximately 10 sup 4), no critical damage on the detector was found.

  12. Assembly and Test of the Gas Pixel Detector for X-ray Polarimetry

    CERN Document Server

    Li, H; Muleri, F; Bellazzini, R; Minuti, M; Soffitta, P; Brez, A; Spandre, G; Pinchera, M; Sgro, C; Baldini, L; She, R; Costa, E

    2015-01-01

    The gas pixel detector (GPD) dedicated for photoelectric X-ray polarimetry is selected as the focal plane detector for the ESA medium-class mission concept X-ray Imaging and Polarimetry Explorer (XIPE). Here we show the design, assembly, and preliminary test results of a small GPD for the purpose of gas mixture optimization needed for the phase A study of XIPE. The detector is assembled in house at Tsinghua University following a design by the INFN-Pisa group. The improved detector design results in a good uniformity for the electric field. Filled with pure dimethyl ether (DME) at 0.8 atm, the measured energy resolution is 18% at 6 keV and inversely scales with the square root of the X-ray energy. The measured modulation factor is well consistent with that from simulation, up to ~0.6 above 6 keV. The residual modulation is found to be 0.30% +/- 0.15% at 6 keV for the whole sensitive area, which can be translated into a systematic error of less than 1% for polarization measurement at a confidence level of 99%....

  13. Tiled Array of Pixelated CZT Imaging Detectors for ProtoEXIST2 and MIRAX-HXI

    CERN Document Server

    Hong, Jaesub; Grindlay, Jonathan; Rodrigues, Barbara; Ellis, Jon Robert; Baker, Robert; Barthelmy, Scott; Mao, Peter; Miyasaka, Hiromasa; Apple, Jeff

    2013-01-01

    We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6' angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm x 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technolog...

  14. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    Science.gov (United States)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  15. New concept of a submillimetric pixellated Silicon detector for intracerebral application

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, M. [Laboratoire de l' Accelerateur Lineaire (LAL, Universite Paris Sud, CNRS/IN2P3, UMR 8608), Orsay (France); Maerk, J.; Weiss, P. [Centre de Physique des Particules de Marseille (CPPM, Universite Aix-Marseille, CNRS/IN2P3, UMR 6550), Marseille (France); Benoit, D. [Imagerie et Modelisation en Neurobiologie et Cancerologie (IMNC, Universite Paris Sud et Paris Diderot, CNRS/IN2P3, IMNC, Centre Universitaire, batiment 440, 91406 Orsay Cedex, UMR 8165), Orsay (France); Clemens, J.C.; Fougeron, D. [Centre de Physique des Particules de Marseille (CPPM, Universite Aix-Marseille, CNRS/IN2P3, UMR 6550), Marseille (France); Janvier, B. [Imagerie et Modelisation en Neurobiologie et Cancerologie (IMNC, Universite Paris Sud et Paris Diderot, CNRS/IN2P3, IMNC, Centre Universitaire, batiment 440, 91406 Orsay Cedex, UMR 8165), Orsay (France); Jevaud, M.; Karkar, S.; Menouni, M. [Centre de Physique des Particules de Marseille (CPPM, Universite Aix-Marseille, CNRS/IN2P3, UMR 6550), Marseille (France); Pain, F.; Pinot, L. [Imagerie et Modelisation en Neurobiologie et Cancerologie (IMNC, Universite Paris Sud et Paris Diderot, CNRS/IN2P3, IMNC, Centre Universitaire, batiment 440, 91406 Orsay Cedex, UMR 8165), Orsay (France); Morel, C. [Centre de Physique des Particules de Marseille (CPPM, Universite Aix-Marseille, CNRS/IN2P3, UMR 6550), Marseille (France); and others

    2011-12-11

    A new beta{sup +} radiosensitive microprobe implantable in rodent brain dedicated to in vivo and autonomous measurements of local time activity curves of beta radiotracers in a volume of brain tissue of a few mm{sup 3} has been developed recently. This project expands the concept of the previously designed beta microprobe, which has been validated extensively in neurobiological experiments performed on anesthetized animals. Due to its limitations considering recordings on awake and freely moving animals, we have proposed to develop a wireless setup that can be worn by an animal without constraining its movements. To that aim, we have chosen a highly beta sensitive Silicon-based detector to devise a compact pixellated probe. Miniaturized wireless electronics is used to read-out and transfer the measurement data. Initial Monte-Carlo simulations showed that high resistive Silicon pixels are appropriate for this purpose, with their dimensions to be adapted to our specific signals. More precisely, we demonstrated that 200 {mu}m thick pixels with an area of 200 {mu}m Multiplication-Sign 500 {mu}m are optimized in terms of beta{sup +}sensitivity versus relative transparency to the gamma background. Based on this theoretical study, we now present the development of the novel sensor, including the system simulations with technology computer-assisted design (TCAD) to investigate specific configurations of guard rings and their potential to increase the electrical isolation and stabilization of the pixel, as well as the corresponding physical tests to validate the particular geometries of this new sensor.

  16. Evaluation of a photon-counting hybrid pixel detector array with a synchrotron X-ray source

    Science.gov (United States)

    Ponchut, C.; Visschers, J. L.; Fornaini, A.; Graafsma, H.; Maiorino, M.; Mettivier, G.; Calvet, D.

    2002-05-01

    A photon-counting hybrid pixel detector (Medipix-1) has been characterized using a synchrotron X-ray source. The detector consists of a readout ASIC with 64×64 independent photon-counting cells of 170×170 μm 2 pitch, bump-bonded to a 300 μm thick silicon sensor, read out by a PCIbus-based electronics, and a graphical user interface (GUI) software. The intensity and the energy tunability of the X-ray source allow characterization of the detector in the time, space, and energy domains. The system can be read out on external trigger at a frame rate of 100 Hz with 3 ms exposure time per frame. The detector response is tested up to more than 7×10 5 detected events/pixel/s. The point-spread response shows beam reveals no loss in sensitivity between adjacent pixels as could result from charge sharing in the silicon sensor. Photons down to 6 keV can be detected after equalization of the thresholds of individual pixels. The obtained results demonstrate the advantages of photon-counting hybrid pixel detectors and particularly of the Medipix-1 chip for a wide range of X-ray imaging applications, including those using synchrotron X-ray beams.

  17. Spectral response of a silicon detector with 220 {mu}m pixel size bonded to MEDIPIX2

    Energy Technology Data Exchange (ETDEWEB)

    Froejdh, Erik, E-mail: erik.frojdh@miun.se [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Froejdh, Anna; Norlin, Boerje; Froejdh, Christer [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)

    2011-05-15

    Pixellated radiation detectors with single photon processing can be used for spectral X-ray imaging. A problem using such detectors with small pixels is that the spectral information is distorted by charge sharing. In order to get images with good spectral resolution a number of silicon sensors with a pixel size of 220 {mu}m were fabricated and bonded to a MEDIPIX2 readout chip using only a limited number of pixels on the readout chip. The device was then used in an X-ray microscopy setup to obtain good spatial resolution as well. It is shown that spectral imaging can provide good contrast images of embedded structures by selecting an appropriate energy window.

  18. Charge-sharing observations with a CdTe pixel detector irradiated with a{sup 57}Co source

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, M. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain)]. E-mail: maiorino@itas.es; Pellegrini, G. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain); Blanchot, G. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Chmeissani, M. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Garcia, J. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Martinez, R. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain); Lozano, M. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain); Puigdengoles, C. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Ullan, M. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain)

    2006-07-01

    Charge sharing is a limiting factor of detector spatial resolution and contrast in photon counting imaging devices because multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although this topic has been debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, we look at the importance of charge sharing in CdTe pixel detectors by exposing such a device to a low-activity (37 kBq){sup 57}Co source, whose main emission line is at 122 keV.The detectors used are 1 mm thick with a pixel pitch of 55 {mu}m. These detectors are bump-bonded to Medipix2 photon-counting chips. This study gives an insight of the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  19. Charge-sharing observations with a CdTe pixel detector irradiated with a 57Co source

    Science.gov (United States)

    Maiorino, M.; Pellegrini, G.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Martinez, R.; Lozano, M.; Puigdengoles, C.; Ullan, M.

    2006-07-01

    Charge sharing is a limiting factor of detector spatial resolution and contrast in photon counting imaging devices because multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although this topic has been debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, we look at the importance of charge sharing in CdTe pixel detectors by exposing such a device to a low-activity (37 kBq) 57Co source, whose main emission line is at 122 keV.The detectors used are 1 mm thick with a pixel pitch of 55 μm. These detectors are bump-bonded to Medipix2 photon-counting chips. This study gives an insight of the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  20. Beam Test Studies of 3D Pixel Sensors Irradiated Non-Uniformly for the ATLAS Forward Physics Detector

    CERN Document Server

    Grinstein, S; Boscardin, M; Christophersen, M; Da Via, C; Betta, G -F Dalla; Darbo, G; Fadeyev, V; Fleta, C; Gemme, C; Grenier, P; Jimenez, A; Lopez, I; Micelli, A; Nelist, C; Parker, S; Pellegrini, G; Phlips, B; Pohl, D L; Sadrozinski, H F -W; Sicho, P; Tsiskaridze, S

    2013-01-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  1. Serial powering Proof of principle demonstration of a scheme for the operation of a large pixel detector at the LHC

    CERN Document Server

    Ta, D B; Hugging, F; Fischer, P; Grosse-Knetter, J; Runólfsson, O; Wermes, N

    2006-01-01

    Large detectors in high-energy physics experiments are mostly built from many identical individual building blocks, called modules, which possess individual parts of the services. The modules are usually also powered by parallel power lines such that they can be individually operated. The main disadvantage of such a parallel powering scheme is the vast amount of necessary power cables which constitutes also a large amount of material in the path of the particles to be detected. For the LHC experiments already now this is a major problem for the optimal performance of the detectors and it has become evident, that for an upgrade programme alternative powering schemes must be investigated. We prove and demonstrate here for the example of the large scale pixel detector of ATLAS that Serial Powering of pixel modules is a viable alternative. A powering scheme using dedicated voltage regulators and modified flex hybrid circuits has been devised and implemented for ATLAS pixel modules. The modules have been intensive...

  2. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, S., E-mail: sgrinstein@ifae.es [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Baselga, M. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Trento (Italy); Christophersen, M. [U.S. Naval Research Laboratory, Washington (United States); Da Via, C. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Dalla Betta, G.-F. [Universita degli Studi di Trento and INFN, Trento (Italy); Darbo, G. [INFN Sezione di Genova, Genova (Italy); Fadeyev, V. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); Fleta, C. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Gemme, C. [Universita degli Studi di Trento and INFN, Trento (Italy); Grenier, P. [SLAC National Accelerator Laboratory, Menlo Park (United States); Jimenez, A.; Lopez, I.; Micelli, A. [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Nelist, C. [INFN Sezione di Genova, Genova (Italy); Parker, S. [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley (United States); Pellegrini, G. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Phlips, B. [U.S. Naval Research Laboratory, Washington (United States); Pohl, D.-L. [University of Bonn, Bonn (Germany); Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); and others

    2013-12-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  3. Imaging of Ra-223 with a small-pixel CdTe detector

    Science.gov (United States)

    Scuffham, J. W.; Pani, S.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.; Cernik, R. J.

    2015-01-01

    Ra-223 Dichloride (Xofigo™) is a promising new radiopharmaceutical offering survival benefit and palliation of painful bone metastases in patients with hormone-refractory prostate cancer [1]. The response to radionuclide therapy and toxicity are directly linked to the absorbed radiation doses to the tumour and organs at risk respectively. Accurate dosimetry necessitates quantitative imaging of the biodistribution and kinetics of the radiopharmaceutical. Although primarily an alpha-emitter, Ra-223 also has some low-abundance X-ray and gamma emissions, which enable imaging of the biodistribution in the patient. However, the low spectral resolution of conventional gamma camera detectors makes in-vivo imaging of Ra-223 challenging. In this work, we present spectra and image data of anthropomorphic phantoms containing Ra-223 acquired with a small-pixel CdTe detector (HEXITEC) [2] with a pinhole collimator. Comparison is made with similar data acquired using a clinical gamma camera. The results demonstrate the advantages of the solid state detector in terms of scatter rejection and quantitative accuracy of the images. However, optimised collimation is needed in order for the sensitivity to rival current clinical systems. As different dosage levels and administration regimens for this drug are explored in current clinical trials, there is a clear need to develop improved imaging technologies that will enable personalised treatments to be designed for patients.

  4. Radiation-hard ASICs for optical data transmission in the ATLAS pixel detector

    CERN Document Server

    Ziolkowski, M; Buchholz, P; Ciliox, A; Gan, K K; Holder, M; Johnson, M; Kagan, H; Kass, R; Nderitu, S; Rahimi, A; Rush, C J; Smith, S; Ter-Antonian, R; Zoeller, M M

    2004-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the CERN Large Hadron Collider (LHC). The first circuit is a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode to be used for 80 Mbit/s data transmission from the detector. The second circuit is a Bi-Phase Mark, decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode on the detector side. During ten years of operation at the LHC, the ATLAS optical link circuitry will be exposed to a maximum total fluence of 10/sup 15/ 1-MeV-equivalent neutrons per cm/sup 2/. We have successfully implemented both ASICs in a commercial 0.25 mu m CMOS technology using standard layout techniques to enhance the radiation tolerance. Both chips are four- channel devices compatible with common cathode PIN and VCSEL arrays. We present results from final prototype circuits and from irradiation studies of both circuits with 24 GeV protons up to a total dose of 57 Mrad. (3 refs).

  5. Comparison of allocation algorithms for unambiguous registration of hits in presence of charge sharing in pixel detectors

    Science.gov (United States)

    Otfinowski, P.; Maj, P.; Deptuch, G.; Fahim, F.; Hoff, J.

    2017-01-01

    Charge sharing is the fractional collection of the charge cloud generated in a detector by two or more adjacent pixels. It may lead to excessive or inefficient registration of hits comparing to the number of impinging photons depending on how discrimination thresholds are set in typical photon counting pixel detector. The problems are particularly exposed for fine pixel sizes and/or for thick planar detectors. Presence of charge sharing is one of the limiting factors that discourages decreasing sizes of pixels in photon counting mode X-ray radiation imaging systems. Currently, a few different approaches tackling with the charge sharing problem exist (e.g. Medipix3RX, PIXIE, miniVIPIC or PIX45). The general idea is, first, to reconstruct the entire signal from adjacent pixels and, secondly, to allocate the hit to a single pixel. This paper focuses on the latter part of the process, i.e. on a comparison of how different hit allocation algorithms affect the spatial accuracy and false registration vs. missed hit probability. Different hit allocation algorithms were simulated, including standard photon counting (no full signal reconstruction) and the C8P1 algorithm. Also, a novel approach, based on a detection of patterns, with significantly limited analog signal processing, was proposed and characterized.

  6. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407702

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  7. Distortion of the per-pixel signal in the Timepix detector observed in high energy carbon ion beams

    Science.gov (United States)

    Hartmann, B.; Soukup, P.; Granja, C.; Jakubek, J.; Pospíšil, S.; Jäkel, O.; Martišíková, M.

    2014-09-01

    Within the application of the pixelated semiconductor Timepix detector for ion beam therapy purposes, distortion and non-linearity in the spectrometric pixel response to high energy carbon ions were observed. In this contribution, these effects are studied in detail. A distinct correlation between the arrival time of a particle during the exposure time and the respective detector signal was found. The hypothesis to explain these findings by oscillations in the pixel electronics leading to a second rise of the preamplifier output above threshold is discussed. Depending on the particle arrival time, the distortions can result in an artificially increased counter value and consequently an enlarged detector signal in energy mode. The effect appears when the signal per-pixel is above approximately 1 MeV, therefore becomig especially significant for measurements with heavy ions. The results presented in this publication are part of: B. Hartmann, A Novel Approach to Ion Spectroscopy of Therapeutic Ion Beams Using a Pixelated Semiconductor Detector, Ph.D. thesis, University of Heidelberg, Germany (2013).

  8. Perspectives of the Pixel Detector Timepix for Needs of Ion Beam Therapy

    Science.gov (United States)

    Martišíková, M.; Hartmann, B.; Jäkel, O.; Granja, C.; Jakubek, J.

    2012-08-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. In ion beam therapy the finite range of the ion beams in tissue and the increase of ionization density at the end of their path, the Bragg-peak, are exploited. Ions heavier than protons offer in addition increased biological effectiveness and decreased scattering. In this contribution we discuss the potential of a quantum counting and position sensitive semiconductor detector Timepix for its applications in ion beam therapy measurements. It provides high sensitivity and high spatial resolution (pixel pitch 55 μm). The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). An integrated USB-based readout interface together with the Pixelman software enable registering single particles online with 2D-track visualization. The experiments were performed at the Heidelberg Ion Beam Therapy Center (HIT), which is a modern ion beam therapy facility. Patient treatments are performed with proton and carbon ions, which are accelerated by a synchrotron. For dose delivery to the patient an active technique is used: narrow pencil-like beams are scanned over the target volume. The possibility to use the detector for two different applications was investigated: ion spectroscopy and beam delivery monitoring by measurement of secondary charged particles around the patient. During carbon ion therapy, a variety of ion species is created by nuclear fragmentation processes of the primary beam. Since they differ in their biological effectiveness, it is of large interest to measure the ion spectra created under different conditions and to visualize their spatial distribution. The possibility of measurements of ion energy loss in silicon makes Timepix a promising detector for ion-spectroscopic studies in patient-like phantoms. Unpredictable changes in the patient can alter the range of the ion beam in the body

  9. Full-Color Computational Imaging with Single-Pixel Detectors Based on a 2D Discrete Cosine Transform

    CERN Document Server

    Liu, Bao-Lei; Wu, Ling-An

    2016-01-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-color image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily canceled to give excellent image quality. Moreover, the experimental setup is very simple.

  10. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  11. Design and Testing of a Prototype Pixellated CZT Detector and Shield for Hard X-Ray Astronomy

    OpenAIRE

    Bloser, P. F.; Grindlay, J.E.; Narita, T; Jenkins, J. A.

    1999-01-01

    We report on the design and laboratory testing of a prototype imaging CZT detector intended for balloon flight testing in April 2000. The detector tests several key techniques needed for the construction of large-area CZT arrays, as required for proposed hard X-ray astronomy missions. Two 10 mm x 10 mm x 5 mm CZT detectors, each with a 4 x 4 array of 1.9 mm pixels on a 2.5 mm pitch, will be mounted in a ``flip-chip'' fashion on a printed circuit board carrier card; the detectors will be place...

  12. Visualisation of Radioactivity in Real-Time on a Tablet Measured by a Hybrid Pixel Detector

    CERN Document Server

    AUTHOR|(SzGeCERN)749233; Bantel, Michael; Grünhaupt, Ulrich

    This work explores a method to visualise and interact with radioactivity over time and space by means of augmented reality on a screen. A prototype, iPadPix, was built to demonstrate use as an intuitive new tool for educative and training purposes. Measured by a hybrid pixel detector, Timepix, traces of radioactive decays are displayed in real- time on a mobile device. Its detection principle and properties are detailed as well as the calibration of the sensor. An embedded board is used to process and forward the sensor data to a tablet over a wireless network connection. Software was developed to processes and overlay signatures of ionising radiation and particles on a live camera feed. It is described here and published as open source.

  13. A 12-bit multichannel ADC for pixel detectors in particle physics and nuclear imaging

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Modern pixel detectors in nuclear and particle physics experiments and also in nuclear imaging,starve for highly integrated application specified integrated circuit(ASIC),whereas in China the study of ASIC still stays far away from practical application.The lack of ASIC strictly limits the research and development of domestic high energy physics field.A 12-bit multichannel ADC designed for high density readout is introduced as a major candidate for solution.A precise model is discussed and the simulation fully agrees with the model,which indicates a key principle of design.Design is performed according to the given rule,and novel layout techniques are carried out.Measurement results in all aspects are also obtained,showing an excellent real performance,which satisfies the practical requirement.

  14. First tests of a Medipix-1 pixel detector for X-ray dynamic defectoscopy

    CERN Document Server

    Vavrik, D; Visschers, J; Pospísil, S; Ponchut, C; Zemankova, J

    2002-01-01

    Recent theoretical damage material models describe the dynamic development of voids and microcracks in materials under plastic deformation. For these models, experimental verification is needed. We propose direct and non-destructive observation of the propagation of material damage by measuring changes in transmission of X-rays penetrating a stressed material, using a photon-counting X-ray imager. The present contribution aims to demonstrate the applicability of silicon and gallium-arsenide devices for X-ray transmission measurements with a specimen of high-ductile aluminium alloy under study. The first experiments to determine the resolution and the sensitivity of the proposed method with the Medipix-1 pixel detector are presented.

  15. Test beam analysis of ultra-thin hybrid pixel detector assemblies with Timepix readout ASICs

    CERN Document Server

    Alipour Tehrani, Niloufar; Dannheim, Dominik; Firu, Elena; Kulis, Szymon; Redford, Sophie; Sicking, Eva

    2016-01-01

    The requirements for the vertex detector at the proposed Compact Linear Collider imply a very small material budget: less than 0.2% of a radiation length per detection layer including services and mechanical supports. We present here a study using Timepix readout ASICs hybridised to pixel sensors of 50 − 500 μm thickness, including assemblies with 100 μm thick sensors bonded to thinned 100μm thick ASICs. Sensors from three producers (Advacam, Micron Semiconductor Ltd, Canberra) with different edge termination technologies (active edge, slim edge) were bonded to Timepix ASICs. These devices were characterised with the EUDET telescope at the DESY II test beam using 5.6 GeV electrons. Their performance for the detection and tracking of minimum ionising particles was evaluated in terms of charge sharing, detection efficiency, single-point resolution and energy deposition.

  16. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    CERN Document Server

    Rescigno, R; Juliani, D; Spiriti, E; Baudot, J; Abou-Haidar, Z; Agodi, C; Alvarez, M A G; Aumann, T; Battistoni, G; Bocci, A; Böhlen, T T; Boudard, A; Brunetti, A; Carpinelli, M; Cirrone, G A P; Cortes-Giraldo, M A; Cuttone, G; De Napoli, M; Durante, M; Gallardo, M I; Golosio, B; Iarocci, E; Iazzi, F; Ickert, G; Introzzi, R; Krimmer, J; Kurz, N; Labalme, M; Leifels, Y; Le Fevre, A; Leray, S; Marchetto, F; Monaco, V; Morone, M C; Oliva, P; Paoloni, A; Patera, V; Piersanti, L; Pleskac, R; Quesada, J M; Randazzo, N; Romano, F; Rossi, D; Rousseau, M; Sacchi, R; Sala, P; Sarti, A; Scheidenberger, C; Schuy, C; Sciubba, A; Sfienti, C; Simon, H; Sipala, V; Tropea, S; Vanstalle, M; Younis, H

    2014-01-01

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different...

  17. Pixelized M-pi-n CdTe detector coupled to Medipix2 readout chip

    CERN Document Server

    Kalliopuska, J; Penttila, R; Andersson, H; Nenonen, S; Gadda, A; Pohjonen, H; Vanttajac, I; Laaksoc, P; Likonen, J

    2011-01-01

    We have realized a simple method for patterning an M-pi-n CdTe diode with a deeply diffused pn-junction, such as indium anode on CdTe. The method relies on removing the semiconductor material on the anode-side of the diode until the physical junction has been reached. The pixelization of the p-type CdTe diode with an indium anode has been demonstrated by patterning perpendicular trenches with a high precision diamond blade and pulsed laser. Pixelization or microstrip pattering can be done on both sides of the diode, also on the cathode-side to realize double sided detector configuration. The article compares the patterning quality of the diamond blade process, pulsed pico-second and femto-second lasers processes. Leakage currents and inter-strip resistance have been measured and are used as the basis of the comparison. Secondary ion mass spectrometry (SIMS) characterization has been done for a diode to define the pn-junction depth and to see the effect of the thermal loads of the flip-chip bonding process. Th...

  18. Simulation of the depletion voltage evolution of the ATLAS Pixel Detector

    CERN Document Server

    Beyer, Julien-christopher; The ATLAS collaboration

    2017-01-01

    The ATLAS Pixel detector has been operating since 2010 and consists of hybrid pixel modules where the sensitive elements are planar n-in-n sensors. In order to investigate and predict the evolution of the depletion voltage and of the leakage current in the different layers, a fully analytical implementation of the Hamburg model was derived. The parameters of the model, describing the dependence of the depletion voltage (U_depl) on fluence, temperature and time were tuned with a fit to the available measurements of Udepl in the last years of operation. A particular emphasis is put on the B-Layer, where the highest fluence has been accumulated up to now. A precise input of temperature and radiation dose is generated from the on-module temperature monitoring and the luminosity data. The analysis is then also extended to the Insertable B-Layer (IBL), installed at the end of Run-1, where we expect the fastest evolution of the radiation damage with luminosity, due to its closer position to the interaction point. Di...

  19. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    Science.gov (United States)

    Allport, P. P.; Ball, K.; Casse, G.; Chmill, V.; Forshaw, D.; Hadfield, K.; Pritchard, A.; Pool, P.; Tsurin, I.

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their products meet all the stringent technical requirements. A semiconductor company with very widespread experience of producing science grade CCDs (including deep depletion devices) has adapted their CCD process to fabricate for the first time several wafers of pixel and micro-strip radiation hard sensors, suitable for future high energy physics experiments. The results of the pre-irradiation characterization of devices fabricated with different processing parameters and the measurements of charge collection properties after different hadron irradiation doses up to those anticipated for the (larger area) outer pixel layers at the high-luminosity LHC (HL-LHC) are presented and compared with results from more established particle physics suppliers.

  20. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    Energy Technology Data Exchange (ETDEWEB)

    Zemlicka, J; Jakubek, J; Kroupa, M [Institute of Experimental and Applied Physics, Czech Technical University Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Hradil, D [Institute of Inorganic Chemistry, AS CR, v.v.i., ALMA, 50 68 Husinec-Oeez (Czech Republic); Hradilova, J; Mislerova, H, E-mail: jan.zemlicka@utef.cvut.cz [Academy of Fine Arts in Prague, ALMA, U Akademie 4, 170 2, Prague 7 (Czech Republic)

    2011-01-15

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19{sup th} century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field

  1. Evaluation of a photon-counting hybrid pixel detector array with a synchrotron X-ray source

    CERN Document Server

    Ponchut, C; Fornaini, A; Graafsma, H; Maiorino, M; Mettivier, G; Calvet, D

    2002-01-01

    A photon-counting hybrid pixel detector (Medipix-1) has been characterized using a synchrotron X-ray source. The detector consists of a readout ASIC with 64x64 independent photon-counting cells of 170x170 mu m sup 2 pitch, bump-bonded to a 300 mu m thick silicon sensor, read out by a PCIbus-based electronics, and a graphical user interface (GUI) software. The intensity and the energy tunability of the X-ray source allow characterization of the detector in the time, space, and energy domains. The system can be read out on external trigger at a frame rate of 100 Hz with 3 ms exposure time per frame. The detector response is tested up to more than 7x10 sup 5 detected events/pixel/s. The point-spread response shows <2% crosstalk between neighboring pixels. Fine scanning of the detector surface with a 10 mu m beam reveals no loss in sensitivity between adjacent pixels as could result from charge sharing in the silicon sensor. Photons down to 6 keV can be detected after equalization of the thresholds of individu...

  2. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, Timothy J., E-mail: tpennycook@gmail.com [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lupini, Andrew R. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37830 (United States); Yang, Hao [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Murfitt, Matthew F. [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Jones, Lewys [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D. [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-04-15

    We demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. Finally, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe. - Highlights: • Ptychographic high efficiency phase contrast imaging is demonstrated in STEM. • We rely on a hardware aberration corrector to eliminate aberrations. • High efficiency is achieved by collecting all the relevant interference. • Use of a pixelated detector allows comparison of bright field modes post acquisition. • Ptychography provides the clearest images among the STEM bright field modes tested.

  3. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Koybasi, Ozhan; /Purdue U.; Bortoletto, Daniela; /Purdue U.; Hansen, Thor-Erik; /SINTEF, Oslo; Kok, Angela; /SINTEF, Oslo; Hansen, Trond Andreas; /SINTEF, Oslo; Lietaer, Nicolas; /SINTEF, Oslo; Jensen, Geir Uri; /SINTEF, Oslo; Summanwar, Anand; /SINTEF, Oslo; Bolla, Gino; /Purdue U.; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  4. Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications

    Energy Technology Data Exchange (ETDEWEB)

    Sobott, B. A., E-mail: sbryn@physics.unimelb.edu.au [School of Physics, The University of Melbourne, Melbourne, Victoria 3010 (Australia); Broennimann, Ch. [DECTRIS Ltd, 5400 Baden (Switzerland); Schmitt, B. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Trueb, P.; Schneebeli, M. [DECTRIS Ltd, 5400 Baden (Switzerland); Lee, V.; Peake, D. J.; Elbracht-Leong, S.; Schubert, A. [School of Physics, The University of Melbourne, Melbourne, Victoria 3010 (Australia); Kirby, N.; Boland, M. J. [Australian Synchrotron, Clayton (Australia); Chantler, C. T.; Barnea, Z.; Rassool, R. P. [School of Physics, The University of Melbourne, Melbourne, Victoria 3010 (Australia)

    2013-03-01

    Detector response functionals are found to have useful but also limited application to synchrotron studies where bunched fills are becoming common. By matching the detector response function to the source temporal structure, substantial improvements in efficiency, count rate and linearity are possible. The performance of a single-photon-counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead-time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel{sup −1}; the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel{sup −1}; these are further correctable with a transfer function to ∼1.77 MHz pixel{sup −1}. This new approach has wide application both in high-accuracy fundamental experiments and in standard crystallographic X-ray fluorescence and other X-ray measurements. The explicit use of data variance (rather than N{sup 1/2} noise) and direct measures of goodness-of-fit (χ{sub r}{sup 2}) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non-physical values can lead to remarkable agreement for a range of count-rate, pulse-frequency and temporal structure. However, especially when the dead-time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident.

  5. Characterization of silicon 3D pixel detectors for the ATLAS Forward Physics experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Paz, I.; Cavallaro, E.; Lange, J. [Institut de Fisica d' Altes Energies - IFAE, 08193 Bellaterra, Barcelona (Spain); Grinstein, S. [Institut de Fisica d' Altes Energies - IFAE, 08193 Bellaterra, Barcelona (Spain); Catalan Institution for Research and Advanced Studies - ICREA, Barcelona (Spain)

    2015-07-01

    The ATLAS Forward Physics (AFP) project aims to measure protons scattered under a small angle from the pp collisions in ATLAS. In order to perform such measurements, a new silicon tracker, together with a time-of-flight detector for pile-up removal, are planned to be installed at ∼210 m from the interaction point and at 2-3 mm from the LHC proton beam. To cope with such configuration and maximize the physics outcome, the tracker has to fulfil three main requirements: endure highly non-uniform radiation doses, due to the very inhomogeneous beam profile, have slim and efficient edges to improve the acceptance of the tracker, and provide good position resolution. Recent laboratory and beam test characterization results of AFP prototypes will be presented. Slim-edged 3D pixel detectors down to 100-200 μm were studied and later non-uniformly irradiated (with a peak fluence of several 10{sup 15} n{sub eq}/cm{sup 2}) to determine the fulfilment of the AFP requirements. (authors)

  6. A vertically integrated pixel readout device for the Vertex Detector at the International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz; Christian, David; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2008-12-01

    3D-Integrated Circuit technology enables higher densities of electronic circuitry per unit area without the use of nanoscale processes. It is advantageous for mixed mode design with precise analog circuitry because processes with conservative feature sizes typically present lower process dispersions and tolerate higher power supply voltages, resulting in larger separation of a signal from the noise floor. Heterogeneous wafers (different foundries or different process families) may be combined with some 3D integration methods, leading to the optimization of each tier in the 3D stack. Tracking and vertexing in future High-Energy Physics (HEP) experiments involves construction of detectors composed of up to a few billions of channels. Readout electronics must record the position and time of each measurement with the highest achievable precision. This paper reviews a prototype of the first 3D readout chip for HEP, designed for a vertex detector at the International Linear Collider. The prototype features 20 x 20 {micro}m{sup 2} pixels, laid out in an array of 64 x 64 elements and was fabricated in a 3-tier 0.18 {micro}m Fully Depleted SOI CMOS process at MIT-Lincoln Laboratory. The tests showed correct functional operation of the structure. The chip performs a zero-suppressed readout. Successive submissions are planned in a commercial 3D bulk 0.13 {micro}m CMOS process to overcome some of the disadvantages of an FDSOI process.

  7. The magic cube and the pixel ionization chamber: detectors for monitor and dosimetry of radiotherapy beams

    Science.gov (United States)

    Amerio, S.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Sanz Freire, C. J.; Sardo, A.; Trevisiol, E.

    2003-09-01

    Tumor therapy takes advantage of the energy deposition of radiation to concentrate high doses in the target while sparing healthy tissue. Elective pathologies for highly conformal radiotherapies such as photon Intensity Modulated Radiotherapy (IMRT) and radiotherapy with hadrons are head and neck, eye, prostate and in general all tumors that are either deep or located close to critical organs. In the world there are several centers that are using such techniques and a common problem that is being experienced is the verification of treatment plans and monitoring of the beam. We have designed and built two detectors that allow 2D and 3D measurements of dose and fluence of such beams. The detectors allow measurements on big surfaces, up to 25∗25 cm2. The active media are parallel plate, strip and pixel segmented ionization chambers with front-end Very Large Scale Integration (VLSI) readout and PC based data acquistion. The description of dosimeter, chamber and electronics will be given with results from beam tests and therapy plan verification.

  8. The magic cube and the pixel ionization chamber: detectors for monitor and dosimetry of radiotherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Amerio, S.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Sanz Freire, C.J.; Sardo, A.; Trevisiol, E

    2003-09-01

    Tumor therapy takes advantage of the energy deposition of radiation to concentrate high doses in the target while sparing healthy tissue. Elective pathologies for highly conformal radiotherapies such as photon Intensity Modulated Radiotherapy (IMRT) and radiotherapy with hadrons are head and neck, eye, prostate and in general all tumors that are either deep or located close to critical organs. In the world there are several centers that are using such techniques and a common problem that is being experienced is the verification of treatment plans and monitoring of the beam. We have designed and built two detectors that allow 2D and 3D measurements of dose and fluence of such beams. The detectors allow measurements on big surfaces, up to 25*25 cm{sup 2}. The active media are parallel plate, strip and pixel segmented ionization chambers with front-end Very Large Scale Integration (VLSI) readout and PC based data acquistion. The description of dosimeter, chamber and electronics will be given with results from beam tests and therapy plan verification.

  9. Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector

    CERN Document Server

    Stantchev, R I; Hornett, S M; Hobson, P A; Gibson, G M; Padgett, M J; Hendry, E

    2015-01-01

    Terahertz (THz) imaging has the ability to see through otherwise opaque materials. However, due to the long wavelengths of THz radiation ({\\lambda}=300{\\mu}m at 1THz), far-field THz imaging techniques are heavily outperformed by optical imaging in regards to the obtained resolution. In this work we demonstrate near-field THz imaging with a single-pixel detector. We project a time-varying optical mask onto a silicon wafer which is used to spatially modulate a pulse of THz radiation. The far-field transmission corresponding to each mask is recorded by a single element detector and this data is used to reconstruct the image of an object placed on the far side of the silicon wafer. We demonstrate a proof of principal application where we image a printed circuit board on the underside of a 115{\\mu}m thick silicon wafer with ~100{\\mu}m ({\\lambda}/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity provided by the THz probe frequencies, we show that it is possible to detec...

  10. Test of electrical multi-chip module for Belle II pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Felix [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    DEPFET pixel detectors offer excellent signal to noise ratio, resolution and low power consumption with few material. They will be used at Belle II and are a candidate for an ILC vertex detector. The Electrical Multi-Chip Module (EMCM) has been designed to study the back end of line (BEOL) and the metal layer interconnectivity of the DEPFET matrix production for Belle II. The electrical characterization of the EMCM allows studying the signal and control line routings. Having verified the integrity of the electrical network three different types of ASICs are flip-chipped on the EMCM. The electrical characterization of the assembled module allows the analysis and optimization of the ASICs in terms of data integrity. The EMCM serves also as a mechanical test structure to exercise flip-chip and wire bonding. Finally a small DEPFET prototype matrix is mounted on the module which acts as silicon PCB. Consequently, the full study of the complete readout chain can be done. An overview of the EMCM concept and first characterization results with the latest ASIC generation are presented.

  11. Development of CdTe pixel detectors combined with an aluminum Schottky diode sensor and photon-counting ASICs

    Science.gov (United States)

    Toyokawa, H.; Saji, C.; Kawase, M.; Wu, S.; Furukawa, Y.; Kajiwara, K.; Sato, M.; Hirono, T.; Shiro, A.; Shobu, T.; Suenaga, A.; Ikeda, H.

    2017-01-01

    We have been developing CdTe pixel detectors combined with a Schottky diode sensor and photon-counting ASICs. The hybrid pixel detector was designed with a pixel size of 200 μ m by 200 μm and an area of 19 mm by 20 mm or 38.2 mm by 40.2 mm. The photon-counting ASIC, SP8-04F10K, has a preamplifier, a shaper, 3-level window-type discriminators and a 24-bits counter in each pixel. The single-chip detector with 100 by 95 pixels successfully operated with a photon-counting mode selecting X-ray energy with the window comparator and stable operation was realized at 20 degrees C. We have performed a feasibility study for a white X-ray microbeam experiment. Laue diffraction patterns were measured during the scan of the irradiated position in a silicon steel sample. The grain boundaries were identified by using the differentials between adjacent images at each position.

  12. GEM400: A front-end chip based on capacitor-switch array for pixel-based GEM detector

    Science.gov (United States)

    Li, H. S.; Jiang, X. S.; Liu, G.; Wang, N.; Sheng, H. Y.; Zhuang, B. A.; Zhao, J. W.

    2012-03-01

    The upgrade of Beijing Synchrotron Radiation Facility (BSRF) needs two-dimensional position-sensitive detection equipment to improve the experimental performance. Gas Electron Multiplier (GEM) detector, in particular, pixel-based GEM detector has good application prospects in the domain of synchrotron radiation. The read-out of larger scale pixel-based GEM detector is difficult for the high density of the pixels (PAD for collecting electrons). In order to reduce the number of cables, this paper presents a read-out scheme for pixel-based GEM detector, which is based on System-in-Package technology and ASIC technology. We proposed a circuit structure based on capacitor switch array circuit, and design a chip GEM400, which is a 400 channels ASIC. The proposed circuit can achieve good stability and low power dissipation. The chip is implemented in a 0.35μm CMOS process. The basic functional circuitry in ths chip includes analog switch, analog buffer, voltage amplifier, bandgap and control logic block, and the layout of this chip takes 5mm × 5mm area. The simulation results show that the chip can allow the maximum amount of input charge 70pC on the condition of 100pF external integrator capacitor. Besides, the chip has good channel uniformity (INL is better than 0.1%) and lower power dissipation.

  13. Simulation studies and spectroscopic measurements of a position sensitive detector based on pixelated CdTe crystals

    CERN Document Server

    Karafasoulis, K; Seferlis, S; Kaissas, I; Lambropoulos, C; Loukas, D; Potiriadis, C

    2010-01-01

    Simulation studies and spectroscopic measurements are presented regarding the development of a pixel multilayer CdTe detector under development in the context of the COCAE project. The instrument will be used for the localization and identification of radioactive sources and radioactively contaminated spots. For the localization task the Compton effect is exploited. The detector response under different radiation fields as well as the overall efficiency of the detector has been evaluated. Spectroscopic measurements have been performed to evaluate the energy resolution of the detector. The efficiency of the event reconstruction has been studied in a wide range of initial photon energies by exploiting the detector's angular resolution measure distribution. Furthermore, the ability of the COCAE detector to localize radioactive sources has been investigated.

  14. HEPS-BPIX, a single photon counting pixel detector with a high frame rate for the HEPS project

    Science.gov (United States)

    Wei, Wei; Zhang, Jie; Ning, Zhe; Lu, Yunpeng; Fan, Lei; Li, Huaishen; Jiang, Xiaoshan; Lan, Allan K.; Ouyang, Qun; Wang, Zheng; Zhu, Kejun; Chen, Yuanbo; Liu, Peng

    2016-11-01

    China's next generation light source, named the High Energy Photon Source (HEPS), is currently under construction. HEPS-BPIX (HEPS-Beijing PIXel) is a dedicated pixel readout chip that operates in single photon counting mode for X-ray applications in HEPS. Designed using CMOS 0.13 μm technology, the chip contains a matrix of 104×72 pixels. Each pixel measures 150 μm×150 μm and has a counting depth of 20 bits. A bump-bonded prototyping detector module with a 300-μm thick silicon sensor was tested in the beamline of Beijing Synchrotron Radiation Facility. A fast stream of X-ray images was demonstrated, and a frame rate of 1.2 kHz was proven, with a negligible dead time. The test results showed an equivalent noise charge of 115 e- rms after bump bonding and a threshold dispersion of 55 e- rms after calibration.

  15. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners

    OpenAIRE

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-01-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-...

  16. Development of Small-Pixel CZT Detectors for Future High-Resolution Hard X-ray Missions

    Science.gov (United States)

    Beilicke, Matthias

    Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolutions of between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of hard X-ray telescopes will require pixelated hard X- ray detectors with pixels on a grid with a lattice constant of between 120 and 240 um. Additional detector requirements include a low energy threshold of less than 5 keV and an energy resolution of less than 1 keV. The science drivers for a high angular-resolution hard X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, AGN feedback, and the behavior of matter at very high densities. We propose a R&D research program to develop, optimize and study the performance of 100-200 um pixel pitch CdTe and Cadmium Zinc Telluride (CZT) detectors of 1-2 mm thickness. Our program aims at a comparison of the performance achieved with CdTe and CZT detectors, and the optimization of the pixel, steering grid, and guard ring anode patterns. Although these studies will use existing ASICs (Application Specific Integrated Circuits), our program also includes modest funds for the development of an ultra-low noise ASIC with a 2-D grid of readout pads that can be directly bonded to the 100-200 um pixel pitch CdTe and CZT detectors. The team includes the Washington University group (Prof. M. Beilicke and Co-I Prof. H.S.W. Krawczynski et al.), and co-investigator G. De Geronimo at Brookhaven National Laboratory (BNL). The Washington University group has a 10 year track record of innovative CZT detector R&D sponsored by the NASA Astronomy and Physics Research and Analysis (APRA) program. The accomplishments to date include the development of CZT detectors with pixel pitches between 350 um and 2.5 mm for the ProtoExist, EXIST, and X-Calibur hard X-ray missions with some of the best

  17. Design and Testing of a Prototype Pixellated CZT Detector and Shield for Hard X-Ray Astronomy

    CERN Document Server

    Bloser, P F; Narita, T; Jenkins, J A

    1999-01-01

    We report on the design and laboratory testing of a prototype imaging CZT detector intended for balloon flight testing in April 2000. The detector tests several key techniques needed for the construction of large-area CZT arrays, as required for proposed hard X-ray astronomy missions. Two 10 mm x 10 mm x 5 mm CZT detectors, each with a 4 x 4 array of 1.9 mm pixels on a 2.5 mm pitch, will be mounted in a ``flip-chip'' fashion on a printed circuit board carrier card; the detectors will be placed 0.3 mm apart in a tiled configuration such that the pixel pitch is preserved across both crystals. One detector is eV Products high-pressure Bridgman CZT, and the other is IMARAD horizontal Bridgman material. Both detectors are read out by a 32-channel VA-TA ASIC controlled by a PC/104 single-board computer. A passive shield/collimator surrounded by plastic scintillator surrounds the detectors on five sides and provides a ~45 deg field of view. The background spectrum recorded by this instrument will be compared to that...

  18. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  19. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric,I et al.

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq=cm2 , nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  20. Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications.

    Science.gov (United States)

    Sobott, B A; Broennimann, Ch; Schmitt, B; Trueb, P; Schneebeli, M; Lee, V; Peake, D J; Elbracht-Leong, S; Schubert, A; Kirby, N; Boland, M J; Chantler, C T; Barnea, Z; Rassool, R P

    2013-03-01

    The performance of a single-photon-counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead-time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel(-1); the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel(-1); these are further correctable with a transfer function to ∼1.77 MHz pixel(-1). This new approach has wide application both in high-accuracy fundamental experiments and in standard crystallographic X-ray fluorescence and other X-ray measurements. The explicit use of data variance (rather than N(1/2) noise) and direct measures of goodness-of-fit (χ(r)(2)) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non-physical values can lead to remarkable agreement for a range of count-rate, pulse-frequency and temporal structure. However, especially when the dead-time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident.

  1. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    Science.gov (United States)

    Wuestling, Sascha; Fraenkle, F.; Habermehl, F.; Renschler, P.; Steidl, M.

    2010-12-01

    The KATRIN neutrino mass experiment is based on a precise energy measurement (Δ E/ E=5×10 -5) of electrons emerging from tritium beta decay ( Emax=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area (˜80 cm 2), a certain energy resolution (Δ E=600 eV @ 18.6 keV) but also a certain spatial resolution (˜3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm 2) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. [6], this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement [7]. The detector allows for background searches with a sensitivity as low as 1.3×10 -3 cps/cm 2 in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10 5 and the search for ultra low Penning discharge emissions.

  2. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    Energy Technology Data Exchange (ETDEWEB)

    Wuestling, Sascha, E-mail: sascha.wuestling@kit.ed [Forschungszentrum Karlsruhe, Institut fuer Prozessdatenverarbeitung und Elektronik, Postfach 3640, 76021 Karlsruhe (Germany); Fraenkle, F.; Habermehl, F.; Renschler, P. [Universitaet Karlsruhe - TH, Institut fuer Experimentelle Kernphysik, Postfach 6980, 76128 Karlsruhe (Germany); Steidl, M [Forschungszentrum Karlsruhe, Institut fuer Kernphysik, Postfach 3640, 76021 Karlsruhe (Germany)

    2010-12-11

    The KATRIN neutrino mass experiment is based on a precise energy measurement ({Delta}E/E=5x10{sup -5}) of electrons emerging from tritium beta decay (E{sub max}=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area ({approx}80 cm{sup 2}), a certain energy resolution ({Delta}E=600 eV - 18.6 keV) but also a certain spatial resolution ({approx}3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm{sup 2}) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. , this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement . The detector allows for background searches with a sensitivity as low as 1.3x10{sup -3} cps/cm{sup 2} in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10{sup 5} and the search for ultra low Penning discharge emissions.

  3. NOTE: First images of a digital autoradiography system based on a Medipix2 hybrid silicon pixel detector

    Science.gov (United States)

    Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2003-06-01

    We present the first images of beta autoradiography obtained with the high-resolution hybrid pixel detector consisting of the Medipix2 single photon counting read-out chip bump-bonded to a 300 µm thick silicon pixel detector. This room temperature system has 256 × 256 square pixels of 55 µm pitch (total sensitive area of 14 × 14 mm2), with a double threshold discriminator and a 13-bit counter in each pixel. It is read out via a dedicated electronic interface and control software, also developed in the framework of the European Medipix2 Collaboration. Digital beta autoradiograms of 14C microscale standard strips (containing separate bands of increasing specific activity in the range 0.0038-32.9 kBq g-1) indicate system linearity down to a total background noise of 1.8 × 10-3 counts mm-2 s-1. The minimum detectable activity is estimated to be 0.012 Bq for 36 000 s exposure and 0.023 Bq for 10 800 s exposure. The measured minimum detection threshold is less than 1600 electrons (equivalent to about 6 keV Si). This real-time system for beta autoradiography offers lower pixel pitch and higher sensitive area than the previous Medipix1-based system. It has a 14C sensitivity better than that of micro channel plate based systems, which, however, shows higher spatial resolution and sensitive area.

  4. Distortion of the pixel grid in HST WFC3/UVIS and ACS/WFC CCD detectors and its astrometric correction

    Science.gov (United States)

    Kozhurina-Platais, Vera; Mackenty, John; Golimovski, David; Sirianni, Marco; Borncamp, David; Anderson, Jay; Grogin, Norman

    2016-07-01

    The geometric distortion of the CCD detectors used in the Hubble Space TelescopeWide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments is characterized by both large and fine-scale distortions. The large-scale distortion, due to the complexity of the HST optical assembly, can be modeled by a high-order polynomial. The majority of fine-distortion is inherent to the CCD detectors themselves, which manifests itself as fine-scale, correlated systematic offsets in the residuals from the best-fit polynomial solution. Such systematic offsets across the CCD chip introduce astrometric errors at the level of about 0.1 pix (up to 1.5 μm within the 15 μm pixels). These fine-scale and low-amplitude distortions apparently arise from the spatial irregularities in the pixel grid. For the WFC3/UVIS CCD chips, there is a clear pattern of periodic skew in the lithographic-mask stencil imprinted onto the detector. Similar irregularities in the pixel grid of ACS/WFC CCD chips are even more pronounced by the narrow (68×2048 pixel) lithographic-mask stencil. To remove these distortions, a 2-D correction in the form of a look-up table has been developed using HST images of very dense stellar fields. The post-correction of fine-scale astrometric errors can be removed down to the level of 0.01 pix (0.15 μm) or better.

  5. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  6. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    CERN Document Server

    Baselmans, J J A; Yates, S J C; Yurduseven, O; Llombart, N; Karatsu, K; Baryshev, A M; Ferrari, L; Endo, A; Thoen, D J; de Visser, P J; Janssen, R M J; Murugesan, V; Driessen, E F C; Coiffard, G; Martin-Pintado, J; Hargrave, P; Griffin, M

    2016-01-01

    Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low- noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation frequency of 850 GHz. The overall system has an excellent sensitivity, with an average detector sensitivity NEP=2.8 +- 0.8 x 10^-19 W/rt(Hz) measured using a thermal calibration source. The dynamic range wou...

  7. THE IMAGING PROPERTIES OF THE GAS PIXEL DETECTOR AS A FOCAL PLANE POLARIMETER

    Energy Technology Data Exchange (ETDEWEB)

    Fabiani, S.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.; Rubini, A. [INAF-IAPS, via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Bellazzini, R.; Brez, A.; De Ruvo, L.; Minuti, M.; Pinchera, M.; Sgró, C.; Spandre, G. [INFN Sezione di Pisa, Largo B. Pontecorvo, 3, I-56127 Pisa (Italy); Spiga, D.; Tagliaferri, G.; Pareschi, G.; Basso, S.; Citterio, O. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Burwitz, V.; Burkert, W., E-mail: sergio.fabiani@iaps.inaf.it [Max-Planck-Institut für extraterrestrische Physik, Gautinger Str. 45, D-82061 Neuired (Germany); and others

    2014-06-01

    X-rays are particularly suited to probing the physics of extreme objects. However, despite the enormous improvements of X-ray astronomy in imaging, spectroscopy, and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as a candidate instrument to fill the gap created by more than 30 yr without measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time, and the polarization angle of every single photon, it allows us to perform polarimetry of subsets of data singled out from the spectrum, the light curve, or an image of the source. The GPD has an intrinsic, very fine imaging capability, and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray testing facility of the Max-Planck-Institut für extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it with a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like pulsar wind nebulae and supernova remnants as case studies for the XIPE configuration and also discuss possible improvements by coupling the detector with advanced optics that have a finer angular resolution and larger effective areas to study extended objects with more detail.

  8. The Imaging Properties of the Gas Pixel Detector as a Focal Plane Polarimeter

    Science.gov (United States)

    Fabiani, S.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.; Rubini, A.; Bellazzini, R.; Brez, A.; de Ruvo, L.; Minuti, M.; Pinchera, M.; Sgró, C.; Spandre, G.; Spiga, D.; Tagliaferri, G.; Pareschi, G.; Basso, S.; Citterio, O.; Burwitz, V.; Burkert, W.; Menz, B.; Hartner, G.

    2014-06-01

    X-rays are particularly suited to probing the physics of extreme objects. However, despite the enormous improvements of X-ray astronomy in imaging, spectroscopy, and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as a candidate instrument to fill the gap created by more than 30 yr without measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time, and the polarization angle of every single photon, it allows us to perform polarimetry of subsets of data singled out from the spectrum, the light curve, or an image of the source. The GPD has an intrinsic, very fine imaging capability, and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray testing facility of the Max-Planck-Institut für extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it with a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like pulsar wind nebulae and supernova remnants as case studies for the XIPE configuration and also discuss possible improvements by coupling the detector with advanced optics that have a finer angular resolution and larger effective areas to study extended objects with more detail.

  9. The imaging properties of the Gas Pixel Detector as a focal plane polarimeter

    CERN Document Server

    Fabiani, S; Del Monte, E; Muleri, F; Soffitta, P; Rubini, A; Bellazzini, R; Brez, A; de Ruvo, L; Minuti, M; Pinchera, M; Sgrò, C; Spandre, G; Spiga, D; Tagliaferri, G; Pareschi, G; Basso, S; Citterio, O; Burwitz, V; Burkert, W; Menz, B; Hartner, G

    2014-01-01

    X-rays are particularly suited to probe the physics of extreme objects. However, despite the enormous improvements of X-ray Astronomy in imaging, spectroscopy and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as an instrument candidate to fill the gap of more than thirty years of lack of measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time and the polarization angle of every single photon, allows to perform polarimetry of subsets of data singled out from the spectrum, the light curve or the image of source. The GPD has an intrinsic very fine imaging capability and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray test facility of the Max-Planck-Institut f\\"ur extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it to a JET-X optics module wit...

  10. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Rescigno, R., E-mail: regina.rescigno@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Finck, Ch.; Juliani, D. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Spiriti, E. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Roma 3 (Italy); Baudot, J. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Abou-Haidar, Z. [CNA, Sevilla (Spain); Agodi, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Alvarez, M.A.G. [CNA, Sevilla (Spain); Aumann, T. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Battistoni, G. [Istituto Nazionale di Fisica Nucleare - Sezione di Milano (Italy); Bocci, A. [CNA, Sevilla (Spain); Böhlen, T.T. [European Organization for Nuclear Research CERN, Geneva (Switzerland); Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm (Sweden); Boudard, A. [CEA-Saclay, IRFU/SPhN, Gif sur Yvette Cedex (France); Brunetti, A.; Carpinelli, M. [Istituto Nazionale di Fisica Nucleare - Sezione di Cagliari (Italy); Università di Sassari (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Cortes-Giraldo, M.A. [Departamento de Fisica Atomica, Molecular y Nuclear, University of Sevilla, 41080-Sevilla (Spain); Cuttone, G.; De Napoli, M. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Durante, M. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); and others

    2014-12-11

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.

  11. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Science.gov (United States)

    Rescigno, R.; Finck, Ch.; Juliani, D.; Spiriti, E.; Baudot, J.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Krimmer, J.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Tropea, S.; Vanstalle, M.; Younis, H.

    2014-12-01

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.

  12. A Sub-pixel Image Processing Algorithm of a Detector Based on Staring Focal Plane Array

    Institute of Scientific and Technical Information of China (English)

    LI Ya-qiong; JIN Wei-qi; XU Chao; WANG Xia

    2008-01-01

    Optical micro-scanning technology can be used to increase spatial resolution of many optical imaging systems, especially thermal imaging system. One of its key issues is relevant image processing algorithm. A fast reconstruction algo-rithm is proposed for two dimensional 2×2 micro-scanning based on the sub-pixel imaging and reconstruction principle of two-dimensional stating focal plane arrays (FPA). Specifically, three initialization methods are presented and implemented with the simulated data, their performances are compared according to image quality index . Experiment results show that, by the first initialization approach, tirnely over-sampled image can be accurately recovered, although special field diaphragm is needed. In the second initialization, the extrapolation approximation in obtaining reconstruction results is better than either bilinear interpolation or over-sampling reconstruction, without requiting any special process on system. The proposed algorithm has simple structure, low computational cost and can be realized in real-time. A high-resolution image can be obtained by low-resolution detectors. So, the algorithm has potential applications in visible light and infrared imaging area.

  13. Characterization and Performance of Silicon n-in-p Pixel Detectors for the ATLAS Upgrades

    CERN Document Server

    Weigell, Philipp; Gallrapp, Christian; La Rosa, Alessandro; Macchiolo, Anna; Nisius, Richard; Pernegger, Heinz; Richter, Rainer

    2011-01-01

    The existing ATLAS Tracker will be at its functional limit for particle fluences of 10^15 neq/cm^2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. N-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 \\mu m thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current the ATLAS read-out chip FE-I3. The characterisation has been performed with the ATL...

  14. The TDCpix readout ASIC: A 75 ps resolution timing front-end for the NA62 Gigatracker hybrid pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Kluge, A., E-mail: alexander.kluge@cern.ch; Aglieri Rinella, G.; Bonacini, S.; Jarron, P.; Kaplon, J.; Morel, M.; Noy, M.; Perktold, L.; Poltorak, K.

    2013-12-21

    The TDCpix is a novel pixel readout ASIC for the NA62 Gigatracker detector. NA62 is a new experiment being installed at the CERN Super Proton Synchrotron. Its Gigatracker detector shall provide on-beam tracking and time stamping of individual particles with a time resolution of 150 ps rms. It will consist of three tracking stations, each with one hybrid pixel sensor. The peak flow of particles crossing the detector modules reaches 1.27 MHz/mm{sup 2} for a total rate of about 0.75 GHz. Ten TDCpix chips will be bump-bonded to every silicon pixel sensor. Each chip shall perform time stamping of 100 M particle hits per second with a detection efficiency above 99% and a timing accuracy better than 200 ps rms for an overall three-station-setup time resolution of better than 150 ps. The TDCpix chip has been designed in a 130 nm CMOS technology. It will feature 45×40 square pixels of 300×300μm{sup 2} and a complex End of Column peripheral region including an array of TDCs based on DLLs, four high speed serializers, a low-jitter PLL, readout and control circuits. This contribution will describe the complete design of the final TDCpix ASIC. It will discuss design choices, the challenges faced and some of the lessons learned. Furthermore, experimental results from the testing of circuit prototypes will be presented. These demonstrate the achievement of key performance figures such as a time resolution of the processing chain of 75 ps rms with a laser sent to the center of the pixel and the capability of time stamping charged particles with an overall resolution below 200 ps rms. -- Highlights: • Feasibility demonstration of a silicon pixel detector with sub-ns time tagging capability. • Demonstrator detector assembly with a time resolution of 75 ps RMS with laser charge injection; 170 ps RMS with particle beam. • Design of trigger-less TDCpix ASIC with 1800 pixels, 720 TDC channels and 4 3.2 Gbit/s serializers.

  15. Construction and testing of a pixellated CZT detector and shield for a hard x-ray astronomy balloon flight

    Science.gov (United States)

    Bloser, Peter F.; Narita, Tomohiko; Jenkins, Jonathan A.; Grindlay, Jonathan E.

    2000-12-01

    We report on the construction and laboratory testing of pixellated CZT detectors mounted in a flip-chip, tiled fashion and read out by an ASIC, as required for proposed hard X-ray astronomy missions. Two 10 mm X 10 mm X 5 mm detectors were fabricated, one out of standard eV Products high-pressure Bridgman CZT and one out of IMARAD horizontal Bridgman CZT. Each was fashioned with a 4 X 4 array of gold pixels on 2.5 mm pitch with a surrounding guard ring. The detectors were mounted side by side on a carrier card, such that the pixel pitch was preserved, and read out by a 32-channel VA-TA ASIC from IDE AS Corp. controlled by a PC/104 single-board computer. A passive shield/collimator surrounded by plastic scintillator encloses the detectors on five sides and provides an approximately 40 degree field of view. Thus this experiment tests key techniques required for future hard X-ray survey instruments. The experiment was taken to Ft. Sumner, NM in May 2000 in preparation for a scientific balloon flight aboard the joint Harvard-MSFC EXITE2/HERO payload. Although we did not receive a flight opportunity, and are currently scheduled to fly in September 2000, we present our calibration data in the flight configuration together with data analysis techniques and simulations of the expected flight background spectrum.

  16. Construction and Testing of a Pixellated CZT Detector and Shield for a Hard X-ray Astronomy Balloon Flight

    CERN Document Server

    Bloser, P F; Jenkins, J A; Grindlay, J E

    2000-01-01

    We report on the construction and laboratory testing of pixellated CZT detectors mounted in a flip-chip, tiled fashion and read out by an ASIC, as required for proposed hard X-ray astronomy missions. Two 10 mm x 10 mm x 5 mm detectors were fabricated, one out of standard eV Products high-pressure Bridgman CZT and one out of IMARAD horizontal Bridgman CZT. Each was fashioned with a 4 x 4 array of gold pixels on a 2.5 mm pitch with a surrounding guard ring. The detectors were mounted side by side on a carrier card, such that the pixel pitch was preserved, and read out by a 32-channel VA-TA ASIC from IDE AS Corp. controlled by a PC/104 single-board computer. A passive shield/collimator surrounded by plastic scintillator encloses the detectors on five sides and provides a ~40deg field of view. Thus this experiment tests key techniques required for future hard X-ray survey instruments. The experiment was taken to Ft Sumner, NM in May 2000 in preparation for a scientific balloon flight aboard the joint Harvard-MSFC...

  17. Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors

    Science.gov (United States)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-01-01

    Stellar explosions are astrophysical phenomena of great importance and interest. Instruments with high sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators. In order to achieve the needed performance, a hard-X and gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. We present a detector module which consists of a single CdTe crystal of 12.5 × 12.5mm 2 and 2mm thick with a planar cathode and with the anode segmented in an 11x11 pixel array with a pixel pitch of 1 mm attached to the readout chip. Two possible detector module configurations are considered: the so-called Planar Transverse Field (PTF) and the Parallel Planar Field (PPF). The combination of several modules in PTF or PPF configuration will achieve the desired performance of the imaging detector. The sum energy resolution of all pixels of the CdTe module measured at 122 keV and 356 keV is 3.8% and 2% respectively, in the following operating conditions: PPF irradiation, bias voltage -500 V and temperature -10̂ C.

  18. Monte Carlo simulation for pixel detectors: a feasibility study for X radiation applications; Simulacao de Monte Carlo para detectores de pixel: um estudo de viabilidade para aplicacoes com raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Marinho, F., E-mail: marinho@macae.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Macae, RJ (Brazil); Akiba, K. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Fisica

    2014-07-01

    In this paper we analyze the feasibility of a Monte Carlo simulation for the description of pixel semiconductor detectors as a tool for research and development of such devices and their applications for X-rays. We present as a result the technical aspects and main characteristics of a set of algorithms recently developed which allows one to estimate the energy spectrum and cluster classification. (author)

  19. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    CERN Document Server

    INSPIRE-00304438; Gkougkousis, E.; Lounis, A.

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  20. A prototype of a new generation readout ASIC in 65nm CMOS for pixel detectors at HL-LHC

    Science.gov (United States)

    Monteil, E.; Pacher, L.; Paternò, A.; Loddo, F.; Demaria, N.; Gaioni, L.; De Canio, F.; Traversi, G.; Re, V.; Ratti, L.; Rivetti, A.; Da Rocha Rolo, M.; Dellacasa, G.; Mazza, G.; Marzocca, C.; Licciulli, F.; Ciciriello, F.; Marconi, S.; Placidi, P.; Magazzù, G.; Stabile, A.; Mattiazzo, S.; Veri, C.

    2016-12-01

    This paper describes a readout ASIC prototype designed by CHIPIX65 project, part of RD53, for a pixel detector at HL-LHC . A 64 × 64 matrix of 50 × 50 μ m2 pixels is realised. A digital architecture has been developed, with particle efficiency above 99.9% at 3 GHz/cm2 pixel rate, 1 MHz trigger rate with 12.5 μ s latency. Two analog front end designs, one synchronous and one asynchronous, are implemented. Charge is measured with 5-bit precision and the analog dead-time is below 1%. IP-blocks (DAC, ADC, BandGap, SER, sLVS-TX/RX) and very front ends are silicon proven, irradiated to 600-800Mrad.

  1. Classical two-dimensional numerical algorithm for ?-Induced charge carrier advection-diffusion in Medipix-3 silicon pixel detectors

    Science.gov (United States)

    Biamonte, Mason; Idarraga, John

    2013-04-01

    A classical hybrid alternating-direction implicit difference scheme is used to simulate two-dimensional charge carrier advection-diffusion induced by alpha particles incident upon silicon pixel detectors at room temperature in vacuum. A mapping between the results of the simulation and a projection of the cluster size for each incident alpha is constructed. The error between the simulation and the experimental data diminishes with the increase in the applied voltage for the pixels in the central region of the cluster. Simulated peripheral pixel TOT values do not match the data for any value of applied voltage, suggesting possible modifications to the current algorithm from first principles. Coulomb repulsion between charge carriers is built into the algorithm using the Barnes-Hut tree algorithm. The plasma effect arising from the initial presence of holes in the silicon is incorporated into the simulation. The error between the simulation and the data helps identify physics not accounted for in standard literature simulation techniques.

  2. Fabrication of a high-density MCM-D for a pixel detector system using a BCB/Cu technology

    CERN Document Server

    Topper, M; Engelmann, G; Fehlberg, S; Gerlach, P; Wolf, J; Ehrmann, O; Becks, K H; Reichl, H

    1999-01-01

    The MCM-D which is described here is a prototype for a pixel detector system for the planned Large Hadron Collider (LHC) at CERN, Geneva. The project is within the ATLAS experiment. The module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 readout chips, each serving 24*160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and power distribution buses. The extremely high wiring density which is necessary to interconnect the readout chips was achieved using a thin film copper/photo-BCB process above the pixel array. The bumping of the readout chips was done by PbSn electroplating. All dice are then attached by flip-chip assembly to the sensor diodes and the local buses. The focus of this paper is a detailed description of the technologies for the fabrication of this advanced MCM-D. (10 refs).

  3. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth

    CERN Document Server

    Guskov, A; Smolyanskiy, P; Zhemchugov, A

    2015-01-01

    The scientific apparatus "Gamma-400" designed for study of hadron and electromagnetic components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the "Gamma-400" apparatus. Due to high granularity of the sensor (pixel size is 55 $mu$m) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  4. A prototype of pixel readout ASIC in 65 nm CMOS technology for extreme hit rate detectors at HL-LHC

    Science.gov (United States)

    Paternò, A.; Pacher, L.; Monteil, E.; Loddo, F.; Demaria, N.; Gaioni, L.; De Canio, F.; Traversi, G.; Re, V.; Ratti, L.; Rivetti, A.; Da Rocha Rolo, M.; Dellacasa, G.; Mazza, G.; Marzocca, C.; Licciulli, F.; Ciciriello, F.; Marconi, S.; Placidi, P.; Magazzù, G.; Stabile, A.; Mattiazzo, S.; Veri, C.

    2017-02-01

    This paper describes a readout ASIC prototype designed by the CHIPIX65 project, part of RD53, for a pixel detector at HL-LHC . A 64×64 matrix of 50×50μm2 pixels is realised. A digital architecture has been developed, with particle efficiency above 99.5% at 3 GHz/cm2 pixel rate, trigger frequency of 1 MHz and 12.5μsec latency. Two analog front end designs, one synchronous and one asynchronous, are implemented. Charge is measured with 5-bit precision, analog dead-time below 1%. The chip integrates for the first time many of the components developed by the collaboration in the past, including the Digital-to-Analog converters, Bandgap reference, Serializer, sLVS drivers, and analog Front Ends. Irradiation tests on these components proved their reliability up to 600 Mrad.

  5. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector; Entwurf und Implementation eines Expertensystems fuer das Detektorkontrollsystem des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Henss, Tobias

    2008-12-15

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts.

  6. The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment

    Science.gov (United States)

    Fiorini, M.; Carassiti, V.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petrucci, F.; Riedler, P.; Aglieri Rinella, G.; Rivetti, A.; Tiuraniemi, S.

    2011-02-01

    The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly ( delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction technique. The current status of the R&D program is overviewed and results from the prototype read-out chips test are presented.

  7. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Tetsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2016-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges arising from the increased hit rate will have to be solved by designing faster and more complex readout electronics that will also have to withstand unprecedented radiation doses. Developing such integrated circuit requires a significant R and D effort and resources, therefore a joint development project between several institutes (including ours) was started. This collaboration, named RD53, aims to develop a pixel readout chip suitable for ATLAS' and CMS' upgrades using a 65nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology are discussed. Most of the talk is allocated to presenting some of the circuits designed by our group (focusing on developments connected to RD53 collaboration), along with their performance measurement results.

  8. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Testsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany); Havranek, Miroslav [University of Bonn, Bonn (Germany); Institute of Physics of the Academy of Sciences, Prague (Czech Republic)

    2015-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges coming from the higher hit rate will have to be solved by designing faster and more complex circuits, while at the same time keeping in mind very high radiation hardness requirements. Therefore matching the specification set by the high luminosity upgrade requires a large R and D effort. Our group is participating in such a joint development * namely the RD53 collaboration * which goal is to design a new pixel chip using an advanced 65 nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology will be shown together with a comparison with older technologies (130 nm, 250 nm). Most of the talk is allocated to presenting some of the circuits designed by our group, along with their performance measurement results.

  9. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  10. Development of a Time-resolved Neutron Imaging Detector Based on the {\\mu}PIC Micro-Pixel Chamber

    CERN Document Server

    Parker, Joseph D; Hattori, Kaori; Iwaki, Satoru; Kabuki, Shigeto; Kishimoto, Yuji; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nishimura, Hironobu; Oku, Takayuki; Sawano, Tatsuya; Shinohara, Takenao; Suzuki, Jun-ichi; Takada, Atsushi; Tanimori, Toru; Ueno, Kazuki; Ikeno, Masahiro; Tanaka, Manobu; Uchida, Tomohisa

    2013-01-01

    We have developed a prototype time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber ({\\mu}PIC) coupled with a field-programmable-gate-array-based data acquisition system. Our detector system combines 100{\\mu}m-level spatial and sub-{\\mu}s time resolutions with a low gamma sensitivity of less than 10^-12 and high data rates, making it well suited for applications in neutron radiography at high-intensity, pulsed neutron sources. In the present paper, we introduce the detector system and present several test measurements performed at NOBORU (BL10), J-PARC to demonstrate the capabilities of our prototype. We also discuss future improvements to the spatial resolution and rate performance.

  11. Total Ionising Dose effects in the FE-I4 front-end chip of the ATLAS Pixel IBL detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00439451

    2016-01-01

    The ATLAS Pixel Insertable B-Layer (IBL) detector was installed into the ATLAS experiment in 2014 and has been in operation since 2015. During the first year of data taking, an increase of the LV current, produced by the FE-I4 chip, was observed. This increase was traced back to radiation damage in the chip. The dependence of the current from the Total Ionizing Dose (TID) and temperature has been tested with X-ray irradiations. This report presents the measurement results and gives a parameterisation of the leakage current and detector operation guidelines.

  12. a Portable Pixel Detector Operating as AN Active Nuclear Emulsion and its Application for X-Ray and Neutron Tomography

    Science.gov (United States)

    Vykydal, Z.; Jakubek, J.; Holy, T.; Pospisil, S.

    2006-04-01

    This work is devoted to the development of a USB1.1 (Universal Serial Bus) based read out system for the Medipix2 detector to achieve maximum portability of this position sensitive detecting device. All necessary detector support is integrated into one compact system (80 × 50 × 20 mm3) including the detector bias source (up to 100 V). The read out interface can control external I2C REFID="9789812773678_0123FN002"> based devices, so in case of tomography it is easy to synchronize detector shutter with stepper motor control. An additional significant advantage of the USB interface is the support of back side pulse processing. This feature enables to determine the energy additionally to the position of a heavy charged particle hitting the sensor. Due to the small pixel dimensions it is also possible to distinguish the type of single quanta of radiation from the track created in the pixel detector as in case of an active nuclear emulsion.

  13. Qualification measurements of the voltage supply system as well as conceptionation of a state machine for the detector control of the ATLAS pixel detector; Qualifizierungsmessungen des Spannungsversorgungssystems sowie Konzeptionierung einer Zustandsmaschine fuer die Detektorkontrolle des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim

    2007-02-15

    The supply system and the control system of the ATLAS pixel detector represent important building blocks of the pixel detector. Corresponding studies of the supply system, which were performed within a comprehensive test system, the so-called system test, with nearly all final components and the effects on the pixel detector are object of this thesis. A further point of this thesis is the coordination and further development of the detector-control-system software under regardment of the different partial systems. A main topic represents thereby the conceptionation of the required state machine as interface for the users and the connection to the data acquisition system.

  14. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    Science.gov (United States)

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; De Geronimo, G.; Eger, J.; Emerick, A.; Fried, J.; Hossain, A.; Roy, U.; Salwen, C.; Soldner, S.; Vernon, E.; Yang, G.; James, R. B.

    2016-01-01

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm3 pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.

  15. Development of a fast pixel array detector for use in microsecond time-resolved x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barna, S.L.; Gruner, S.M.; Shepherd, J.A. [Princeton Univ., NJ (United States)] [and others

    1995-08-01

    A large-area pixel x-ray detector is being developed to collect eight successive frames of wide dynamic range two-dimensional images at 200kHz rates. Such a detector, in conjunction with a synchrotron radiation x-ray source, will enable time-resolved x-ray studies of proteins and other materials on time scales which have previously been inaccessible. The detector will consist of an array of fully-depleted 150 micron square diodes connected to a CMOS integrated electronics layer with solder bump-bonding. During each framing period, the current resulting from the x-rays stopped in the diodes is integrated in the electronics layer, and then stored in one of eight storage capacitors underneath the pixel. After the last frame, the capacitors are read out at standard data transmission rates. The detector has been designed for a well-depth of at least 10,000 x-rays (at 20keV), and a noise level of one x-ray. Ultimately, the authors intend to construct a detector with over one million pixels (1024 by 1024). They present the results of their development effort and various features of the design. The electronics design is discussed, with special attention to the performance requirements. The choice and design of the detective diodes, as they relate to x-ray stopping power and charge collection, are presented. An analysis of various methods of bump bonding is also presented. Finally, the authors discuss the possible need for a radiation-blocking layer, to be placed between the electronics and the detective layer, and various methods they have pursued in the construction of such a layer.

  16. Preliminary test results of a new high-energy-resolution silicon and CdZnTe pixel detectors for application to x-ray astronomy

    Science.gov (United States)

    Sushkov, V. V.; Hamilton, William J.; Hurley, Kevin; Maeding, Dale G.; Ogelman, Hakki; Paulos, Robert J.; Puetter, Richard C.; Tumer, Tumay O.; Zweerink, Jeffrey

    1999-10-01

    New, high spatial resolution CdZnTe (CZT) and silicon (Si) pixel detectors are highly suitable for x-ray astronomy. These detectors are planned for use in wide field of view, imaging x-ray, and low energy gamma-ray all-sky monitor (AXGAM) in a future space mission. The high stopping power of CZT detectors combined with low-noise front-end readout makes possible an order of magnitude improvement in spatial and energy resolution in x-ray detection. The AXGAM instrument will be built in the form of a fine coded aperture placed over two-dimensional, high spatial resolution and low energy threshold CZT pixel detector array. The preliminary result of CZT and silicon pixel detector test with low-noise readout electronics system are presented. These detectors may also be used with or without modification for medical and industrial imaging.

  17. Pixel sensitivity variations in a CdTe-Medipix2 detector using poly-energetic x-rays

    CERN Document Server

    Aamir, R; Greiffenberg, D; Lansley, S P; Butler, A P H; Zainon, R; Fauler, A; Fiederle, M

    2011-01-01

    We have a 1-mm-thick cadmium telluride (CdTe) sensor bump-bonded to a Medipix2 readout chip. This detector has been characterized using a poly-energetic x-ray beam. Open beam images (i.e. without an attenuating specimen between the x-ray source and the detector) have been acquired at room temperature using the MARS-CT system. Profiles of various rows and columns were analyzed for one hundred, 35-ms exposures taken with a bias voltage of -300 V (operating in electron collection mode). A region of increased sensitivity is observed around the edges of the detector. A reasonably periodic, repeatable variation in pixel sensitivity is observed. Some small regions with very low sensitivity and others with zero signals are also observed. Surrounding these regions are circular rings of pixels with higher counts. At higher flux (higher tube current in the x-ray source) there is evidence of saturation of the detector assembly. In this paper we present our understanding of the origin of these features and demonstrate the...

  18. FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC

    CERN Document Server

    Barbero, M; The ATLAS collaboration

    2010-01-01

    A new ATLAS pixel chip FE-I4 has been developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. The analog pixel section is designed for low power consumption and compatibility to several sensor candidates. It is based on a two-stage architecture with a pre-amp AC-coupled to a second stage of amplification. It features leakage current compensation circuitry, local 4-bit pre-amp feedback tuning and a discriminator locally adjusted through 5 configuration bits. The digital architecture is based on a 4-pixel unit called Pixel Digital Region (PDR) allowing for local storage of hits in 5-deep data buffers at pixel level for the duratio...

  19. Characterization of CdTe sensors with Schottky contacts coupled to charge-integrating pixel array detectors for X-ray science

    Science.gov (United States)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Ruff, J. P. C.; Gruner, S. M.

    2016-12-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we present characterizations of CdTe sensors hybridized with two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128 × 128 pixel array with (150 μm)2 pixels.

  20. The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, M., E-mail: Massimiliano.Fiorini@cern.c [CERN, CH-1211 Geneva 23 (Switzerland); Carassiti, V. [INFN Sezione di Ferrara, 44122 Ferrara (Italy); Ceccucci, A. [CERN, CH-1211 Geneva 23 (Switzerland); Cortina, E. [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Cotta Ramusino, A. [INFN Sezione di Ferrara, 44122 Ferrara (Italy); Dellacasa, G.; Garbolino, S. [INFN Sezione di Torino, 10125 Torino (Italy); Jarron, P.; Kaplon, J.; Kluge, A. [CERN, CH-1211 Geneva 23 (Switzerland); Mapelli, A. [EPFL, CH-1015 Lausanne (Switzerland); CERN, CH-1211 Geneva 23 (Switzerland); Marchetto, F. [INFN Sezione di Torino, 10125 Torino (Italy); Martin, E. [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Martoiu, S.; Mazza, G. [INFN Sezione di Torino, 10125 Torino (Italy); Morel, M.; Noy, M. [CERN, CH-1211 Geneva 23 (Switzerland); Nuessle, G. [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Petrucci, F. [INFN Sezione di Ferrara, 44122 Ferrara (Italy); Riedler, P. [CERN, CH-1211 Geneva 23 (Switzerland)

    2011-02-01

    The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly (<0.5% X{sub 0} per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R and D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13{mu}m CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction technique. The current status of the R and D program is overviewed and results from the prototype read-out chips test are presented.

  1. The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment

    CERN Document Server

    Fiorini, M; Morel, M; Petrucci, F; Marchetto, F; Garbolino, S; Cortina, E; Tiuraniemi, S; Ceccucci, A; Martin, E; Riedler, P; Martoiu, S; Ramusino, A C; Rinella, G A; Mapelli, A; Mazza, G; Noy, M; Jarron, P; Nuessle, G; Dellacasa, G; Kluge, A; Rivetti, A; Kaplon, J

    2011-01-01

    The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly (<0.5\\% X(O) per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R\\&D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13 mu m CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction techniq...

  2. Performance and description of the upgraded readout with the new back-end electronics for the ATLAS Pixel detector

    CERN Document Server

    Yajima, Kazuki; The ATLAS collaboration

    2017-01-01

    LHC increased drastically its performance during the RUN2 data taking, starting from a peak instantaneous luminosity of up to $5\\times10^{33} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$ in 2015 to conclude with the record value of $1.4\\times10^{34} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$ in November 2016. The concurrent increase of the trigger rate and event size forced the ATLAS experiment to exploit its sub-detectors to the maximum, approaching and possibly overcoming the design parameters. The ATLAS Pixel data acquisition system was upgraded to avoid possible bandwidth limitations. Two upgrades of the read-out electronics have been done. The first one during 2015/16 YETS, when the outermost pixel layer (Layer-2) was upgraded and its bandwidth was doubled. This upgrade partly contributed to maintain the data taking efficiency of the Pixel detector at a relatively high level ($\\sim$99%) during the 2016 run. A similar upgrade of the read-out system for the middle layer (Layer-1) is ongoing during 2016/17 EYETS. The details o...

  3. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    Science.gov (United States)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  4. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A.E., E-mail: bolotnik@bnl.gov [Brookhaven National Laboratory, Upton, NY 11793 (United States); Camarda, G.S.; Cui, Y.; De Geronimo, G. [Brookhaven National Laboratory, Upton, NY 11793 (United States); Eger, J.; Emerick, A. [eV Products Inc., Saxonburg, PA 16056 (United States); Fried, J.; Hossain, A.; Roy, U.; Salwen, C. [Brookhaven National Laboratory, Upton, NY 11793 (United States); Soldner, S. [eV Products Inc., Saxonburg, PA 16056 (United States); Vernon, E.; Yang, G.; James, R.B. [Brookhaven National Laboratory, Upton, NY 11793 (United States)

    2016-01-01

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm{sup 3} pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices. - Highlights: • We investigated performances of 3D position sensitive CdZnTe pixelated detectors. • We employed the readout electronics based on H3D ASIC and data processing. • We demonstrated the feasibility of correcting response nonuniformities in CdZnTe pixelated detectors.

  5. iPadPix—A novel educational tool to visualise radioactivity measured by a hybrid pixel detector

    Science.gov (United States)

    Keller, O.; Schmeling, S.; Müller, A.; Benoit, M.

    2016-11-01

    With the ability to attribute signatures of ionising radiation to certain particle types, pixel detectors offer a unique advantage over the traditional use of Geiger-Müller tubes also in educational settings. We demonstrate in this work how a Timepix readout chip combined with a standard 300μm pixelated silicon sensor can be used to visualise radioactivity in real-time and by means of augmented reality. The chip family is the result of technology transfer from High Energy Physics at CERN and facilitated by the Medipix Collaboration. This article summarises the development of a prototype based on an iPad mini and open source software detailed in ref. [1]. Appropriate experimental activities that explore natural radioactivity and everyday objects are given to demonstrate the use of this new tool in educational settings.

  6. iPadPix—A novel educational tool to visualise radioactivity measured by a hybrid pixel detector

    CERN Document Server

    Keller, O; Müller, A; Benoit, M

    2016-01-01

    With the ability to attribute signatures of ionising radiation to certain particle types, pixel detectors offer a unique advantage over the traditional use of Geiger-Müller tubes also in educational settings. We demonstrate in this work how a Timepix readout chip combined with a standard 300 μ m pixelated silicon sensor can be used to visualise radioactivity in real-time and by means of augmented reality. The chip family is the result of technology transfer from High Energy Physics at CERN and facilitated by the Medipix Collaboration. This article summarises the development of a prototype based on an iPad mini and open source software detailed in ref. [1]. Appropriate experimental activities that explore natural radioactivity and everyday objects are given to demonstrate the use of this new tool in educational settings.

  7. Realization and application of a 111 million pixel backside-illuminated detector and camera

    CERN Document Server

    Zacharias, Norbert; Bredthauer, Richard; Boggs, Kasey; Bredthauer, Greg; Lesser, Mike

    2007-01-01

    A full-wafer, 10,580 $\\times$ 10,560 pixel (95 $\\times$ 95 mm) CCD was designed and tested at Semiconductor Technology Associates (STA) with 9 um square pixels and 16 outputs. The chip was successfully fabricated in 2006 at DALSA and some performance results are presented here. This program was funded by the Office of Naval Research through a Small Business Innovation in Research (SBIR) program requested by the U.S. Naval Observatory for its next generation astrometric sky survey programs. Using Leach electronics, low read-noise output of the 111 million pixels requires 16 seconds at 0.9 MHz. Alternative electronics developed at STA allow readout at 20 MHz. Some modifications of the design to include anti-blooming features, a larger number of outputs, and use of p-channel material for space applications are discussed.

  8. Study of the inclusive beauty production at CMS and construction and commissioning of the CMS pixel barrel detector

    Energy Technology Data Exchange (ETDEWEB)

    Caminada, Lea

    2012-07-01

    This thesis describes one of the first measurements made at CERN's Large Hadron Collider, the world's largest and highest-energy particle collider. The method of analysis described in the first part is applied to the first CMS collision data collected after the LHC startup in 2010 and leads to the first experimental result for the inclusive b cross section using semileptonic decays at a center of mass energy of 7 TeV. The second part of the thesis describes the building and testing of the barrel pixel detector; the author herself played an important role in its construction, commissioning and first exploitation.

  9. Intensifying process of polarization effect within pixellated CdZnTe detectors for X-ray imaging

    Institute of Scientific and Technical Information of China (English)

    Xi Wang; Shali Xiao; Miao Li; Liuqiang Zhang; Yulin Cao; Yuxiao Chen

    2011-01-01

    The intensifying process of polarization effect at room temperature in a pixellated Cadmium zinc telluride (CdZnTe) monolithic detector is studied.The process is attributed to the increase in build up space charges in the CdZnTe crystal,which causes an expansion of the space charge region under the irradiated area.The simulations of electric potential distributions indicate that the distorted electric potential due to the high X-ray flux is significantly changed and even deteriorated due to increasing space charges within the irradiated volume.An agreement between the space charge distribution and electric potential is discussed.

  10. Linear analysis of signal and noise characteristics of a nonlinear CMOS active-pixel detector for mammography

    Science.gov (United States)

    Yun, Seungman; Kim, Ho Kyung; Han, Jong Chul; Kam, Soohwa; Youn, Hanbean; Cunningham, Ian A.

    2017-03-01

    The imaging properties of a complementary metal-oxide-semiconductor (CMOS) active-pixel photodiode array coupled to a thin gadolinium-based granular phosphor screen with a fiber-optic faceplate are investigated. It is shown that this system has a nonlinear response at low detector exposure levels (<10 mR), resulting in an over-estimation of the detective quantum efficiency (DQE) by a factor of two in some cases. Errors in performance metrics on this scale make it difficult to compare new technologies with established systems and predict performance benchmarks that can be achieved in practice and help understand performance bottlenecks. It is shown the CMOS response is described by a power-law model that can be used to linearize image data. Linearization removed an unexpected dependence of the DQE on detector exposure level.

  11. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    CERN Document Server

    Olcese, M; Castiglioni, G; Cereseto, R; Cuneo, S; Dameri, M; Gemme, C; Glitza, K W; Lenzen, G; Mora, F; Netchaeva, P; Ockenfels, W; Piano, E; Pizzorno, C; Puppo, R; Rebora, A; Rossi, L; Thadome, J; Vernocchi, F; Vigeolas, E; Vinci, A

    2004-01-01

    The design of an ultra light structure, the so-called "stave", to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high- dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed.

  12. Scintillator counters with multi-pixel avalanche photodiode readout for the ND280 detector of the T2K experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mineev, O. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation)]. E-mail: oleg@inr.ru; Afanasjev, A. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Bondarenko, G.; Golovin, V. [Center of Perspective Technology and Apparatus, 107076 Moscow (Russian Federation); Gushchin, E.; Izmailov, A.; Khabibullin, M.; Khotjantsev, A. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Kudenko, Yu. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Kurimoto, Y. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kutter, T. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001 (United States); Lubsandorzhiev, B. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Mayatski, V. [AO Uniplast, 600016 Vladimir (Russian Federation); Musienko, Yu. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Nakaya, T.; Nobuhara, T. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Shaibonov, B.A.J.; Shaikhiev, A. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Taguchi, M. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Yershov, N. [Institute for Nuclear Research of RAS, INR RAS, 60th October Revolution Pr. 7a, 117312 Moscow (Russian Federation); Yokoyama, M. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2007-07-11

    The Tokai-to-Kamioka (T2K) experiment is a second generation long baseline neutrino oscillation experiment which aims at a sensitive search for {nu}{sub e} appearance. The main design features of the T2K near neutrino detectors located at 280m from the target are presented, and the scintillator counters are described. The counters are readout via WLS fibers embedded into S-shaped grooves in the scintillator from both ends by multi-pixel avalanche photodiodes operating in a limited Geiger mode. Operating principles and results of tests of photosensors with a sensitive area of 1mm{sup 2} are presented. A time resolution of 1.75ns, a spatial resolution of 9.9-12.4cm, and a detection efficiency for minimum ionizing particles of more than 99% were obtained for scintillator detectors in a beam test.

  13. Light prototype support using micro-channel technology as high efficiency system for silicon pixel detector cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bosi, F., E-mail: filippo.bosi@pi.infn.it [INFN Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Balestri, G.; Ceccanti, M.; Mammini, P.; Massa, M.; Petragnani, G.; Ragonesi, A.; Soldani, A. [INFN Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2011-09-11

    The development of micro-scale mechanical systems has been moving rapidly, allowing an opportunity to the semiconductor detectors to have ever more power located on the active region. Miniaturization associated with micro-channel technologies allows the design of micro-system structures that are able to cool silicon pixel detectors with power of the order of some W/cm{sup 2} with thickness less than 0.3% of radiation length. We present the design and thermo-hydraulic test results for low material budget support and cooling obtained through forced liquid convection in micro-channels, developed for the innermost layer (Layer 0) of SuperB silicon vertex tracker.

  14. R&D Paths of Pixel Detectors for Vertex Tracking and Radiation Imaging

    CERN Document Server

    Battaglia, M; Bortoletto, D; Brenner, R; Campbell, M; Collins, P; Dalla Betta, G F; Demarteau, Marcel; Denes, P; Graafsma, H; Gregor, I M; Kluge, A; Manzari, V; Parkes, C; Re, V; Riedler, P; Rizzo, G; Snoeys, W; Wermes, Norbert; Winter, M

    2013-01-01

    This report reviews current trends in the R&D of semiconductor pixellated sensors for vertex tracking and radiation imaging. It identifies requirements of future HEP experiments at colliders, needed technological breakthroughs and highlights the relation to radiation detection and imaging applications in other fields of science.

  15. R and D paths of pixel detectors for vertex tracking and radiation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Marco, E-mail: MBattaglia@lbl.gov [Santa Cruz Institute of Particle Physics, University of California at Santa Cruz, CA 95064 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); CERN, CH-1211 Geneva (Switzerland); Da Viá, Cinzia [University of Manchester, Department of Physics, M13 9PL (United Kingdom); CERN, CH-1211 Geneva (Switzerland); Bortoletto, Daniela [Purdue University, Department of Physics, West Lafayette, IN 47907 (United States); Brenner, Richard [Uppsala Universitet, Department of Physics and Astronomy, S-752 37, Uppsala (Sweden); Campbell, Michael; Collins, Paula [CERN, CH-1211 Geneva (Switzerland); Dalla Betta, Gianfranco [Universitá degli Studi di Trento, Dip. di Ingegneria, I-38123 Povo (Italy); Demarteau, Marcel [Argonne National Laboratory, Argonne, IL 60439 (United States); Denes, Peter [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Graafsma, Heinz; Gregor, Ingrid M. [DESY, D-22607 Hamburg (Germany); Kluge, Alex [CERN, CH-1211 Geneva (Switzerland); Manzari, Vito [INFN, Sezione di Bari, I-70125 Bari (Italy); Parkes, Chris [University of Manchester, Department of Physics, M13 9PL (United Kingdom); Re, Valerio [Universitá degli Studi di Bergamo, Dip. di Ingegneria, I-24044 Dalmine (Italy); Riedler, Petra [CERN, CH-1211 Geneva (Switzerland); Rizzo, Giuliana [Universitá degli Studi di Pisa, Dip. di Fisica and INFN, Sezione di Pisa I-56100 Pisa (Italy); Snoeys, Walter [CERN, CH-1211 Geneva (Switzerland); Wermes, Norbert [Universität Bonn, Physikalisches Institut, D-53115 Bonn (Germany); Winter, Marc [Institut Pluridisciplinaire Hubert Curien, F-67037 Strasbourg (France)

    2013-07-11

    This report reviews current trends in the R and D of semiconductor pixellated sensors for vertex tracking and radiation imaging. It identifies requirements of future HEP experiments at colliders, needed technological breakthroughs and highlights the relation to radiation detection and imaging applications in other fields of science.

  16. Correction of complex nonlinear signal response from a pixel array detector.

    Science.gov (United States)

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-05-01

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.

  17. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann-Smith, J. H., E-mail: jsmith@magnet.fsu.edu; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Cartier, S. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Institute for Biomedical Engineering, University and ETHZ, 8092 Zürich (Switzerland); Medjoubi, K. [Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin–BP 48, 91192 GIF-sur-Yvette Cedex (France)

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  18. Polarisation measurements with a CdTe pixel array detector for Laue hard X-ray focusing telescopes

    CERN Document Server

    Caroli, E; Pisa, A; Stephen, J B; Frontera, F; Castanheira, M T D; Sordo, S; Caroli, Ezio; Silva, Rui M. Curado da; Pisa, Alessandro; Stephen, John B.; Frontera, Filippo; Castanheira, Matilde T. D.; Sordo, Stefano del

    2006-01-01

    Polarimetry is an area of high energy astrophysics which is still relatively unexplored, even though it is recognized that this type of measurement could drastically increase our knowledge of the physics and geometry of high energy sources. For this reason, in the context of the design of a Gamma-Ray Imager based on new hard-X and soft gamma ray focusing optics for the next ESA Cosmic Vision call for proposals (Cosmic Vision 2015-2025), it is important that this capability should be implemented in the principal on-board instrumentation. For the particular case of wide band-pass Laue optics we propose a focal plane based on a thick pixelated CdTe detector operating with high efficiency between 60-600 keV. The high segmentation of this type of detector (1-2 mm pixel size) and the good energy resolution (a few keV FWHM at 500 keV) will allow high sensitivity polarisation measurements (a few % for a 10 mCrab source in 106s) to be performed. We have evaluated the modulation Q factors and minimum detectable polaris...

  19. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors.

    Science.gov (United States)

    Cassol, F; Portal, L; Graber-Bolis, J; Perez-Ponce, H; Dupont, M; Kronland, C; Boursier, Y; Blanc, N; Bompard, F; Boudet, N; Buton, C; Clémens, J C; Dawiec, A; Debarbieux, F; Delpierre, P; Hustache, S; Vigeolas, E; Morel, C

    2015-07-21

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images.

  20. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    Science.gov (United States)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  1. The Design and Implementation in $0.13\\mu m$ CMOS of an Algorithm Permitting Spectroscopic Imaging with High Spatial Resolution for Hybrid Pixel Detectors

    CERN Document Server

    Ballabriga, Rafael; Vilasís-Cardona, Xavier

    2009-01-01

    Advances in pixel detector technology are opening up new possibilities in many fields of science. Modern High Energy Physics (HEP) experiments use pixel detectors in tracking systems where excellent spatial resolution, precise timing and high signal-to-noise ratio are required for accurate and clean track reconstruction. Many groups are working worldwide to adapt the hybrid pixel technology to other fields such as medical X-ray radiography, protein structure analysis or neutron imaging. The Medipix3 chip is a 256x256 channel hybrid pixel detector readout chip working in Single Photon Counting Mode. It has been developed with a new front-end architecture aimed at eliminating the spectral distortion produced by charge diffusion in highly segmented semiconductor detectors. In the new architecture neighbouring pixels communicate with one another. Charges can be summed event-by-event and the incoming quantum can be assigned as a single hit to the pixel with the biggest charge deposit. In the case where incoming X-...

  2. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mendez, V.; Drewery, J.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.

    1994-10-01

    We describe the characteristics of thin (1 {mu}m) and thick (>30 {mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and {gamma} rays. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. Deposition techniques using helium dilution, which produce samples with low stress are described. Pixel arrays for flux exposures can be readout by transistor, single diode or two diode switches. Polysilicon charge sensitive pixel amplifiers for single event detection are described. Various applications in nuclear, particle physics, x-ray medical imaging, neutron crystallography, and radionuclide chromatography are discussed.

  3. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  4. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  5. Development of a pixelated CdTe detector module for a hard-x and gamma-ray imaging spectrometer application

    Science.gov (United States)

    Galvèz, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-07-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of novae and supernovae in X and gamma-rays, with the use of space missions. We have also been involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae and Classical Novae. In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm with a pixel pitch of 1mm x 1mm. Two kinds of CdTe pixel detectors with different contacts have been tested: ohmic and Schottky. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout VATAGP7.1 ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. The study is complemented by the simulation of