WorldWideScience

Sample records for 3d triangular lattice

  1. RNA folding on the 3D triangular lattice

    Directory of Open Access Journals (Sweden)

    Mayne Martin

    2009-11-01

    Full Text Available Abstract Background Difficult problems in structural bioinformatics are often studied in simple exact models to gain insights and to derive general principles. Protein folding, for example, has long been studied in the lattice model. Recently, researchers have also begun to apply the lattice model to the study of RNA folding. Results We present a novel method for predicting RNA secondary structures with pseudoknots: first simulate the folding dynamics of the RNA sequence on the 3D triangular lattice, next extract and select a set of disjoint base pairs from the best lattice conformation found by the folding simulation. Experiments on sequences from PseudoBase show that our prediction method outperforms the HotKnot algorithm of Ren, Rastegari, Condon and Hoos, a leading method for RNA pseudoknot prediction. Our method for RNA secondary structure prediction can be adapted into an efficient reconstruction method that, given an RNA sequence and an associated secondary structure, finds a conformation of the sequence on the 3D triangular lattice that realizes the base pairs in the secondary structure. We implemented a suite of computer programs for the simulation and visualization of RNA folding on the 3D triangular lattice. These programs come with detailed documentation and are accessible from the companion website of this paper at http://www.cs.usu.edu/~mjiang/rna/DeltaIS/. Conclusion Folding simulation on the 3D triangular lattice is effective method for RNA secondary structure prediction and lattice conformation reconstruction. The visualization software for the lattice conformations of RNA structures is a valuable tool for the study of RNA folding and is a great pedagogic device.

  2. Bethe ansatz solution of triangular trimers on the triangular lattice

    NARCIS (Netherlands)

    Verberkmoes, A.; Nienhuis, B.

    2001-01-01

    Recently, a model consisting of triangular trimers covering the triangular lattice was introduced and its exact free energy given. In this paper we present the complete calculation leading to this exact result. The solution involves a coordinate Bethe ansatz with two kinds of particles. It is simila

  3. Pattern design on 3D triangular garment surfaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper focuses on a pattern design method for a 3D triangular garment surface. Firstly, some definitions of 3D style lines are proposed for designing the boundaries of patterns as drawing straight lines or splines on the triangular surface.Additionally some commonly used style lines are automatically generated to enhance design efficiency. Secondly, after style lines are preprocessed, a searching method is presented for quickly obtaining the boundaries and patches of a pattern on the 3D triangular surface. Finally a new pattern design reuse method is introduced by encoding/decoding the style line information. After style lines are encoded, the pattern design information can be saved in a pattern template and when decoding this template on a new garment surface, it automates the pattern generation for made-to-measure apparel products.

  4. Legendre transformations on the triangular lattice

    CERN Document Server

    Adler, V E

    1998-01-01

    The main purpose of the paper is to demonstrate that condition of invariance with respect to the Legendre transformations allows effectively isolate the class of integrable difference equations on the triangular lattice, which can be considered as discrete analogues of relativistic Toda type lattices. Some of obtained equations are new, up to the author knowledge. As an example, one of them is studied in more details, in particular, its higher continuous symmetries and zero curvature representation are found.

  5. Lattice Radial Quantization: 3D Ising

    CERN Document Server

    Brower, Richard; Neuberger, Herbert

    2012-01-01

    Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using this method, we obtain the preliminary estimate eta=0.034(10).

  6. Hall effect on the triangular lattice

    OpenAIRE

    Leon Suros, Gladys Eliana; Berthod, Christophe; Giamarchi, Thierry; Millis, A.

    2008-01-01

    We investigate the high frequency Hall effect on a two-dimensional triangular lattice with nearest-neighbor hopping and a local Hubbard interaction. The complete temperature and doping dependencies of the high-frequency Hall coefficient $R_H$ are evaluated analytically and numerically for small, intermediate, and strong interactions using various approximation schemes. We find that $R_H$ follows the semiclassical $1/qn^*$ law near T=0, but exhibits a striking $T$-linear behavior with an inter...

  7. Lattice radial quantization: 3D Ising

    Energy Technology Data Exchange (ETDEWEB)

    Brower, R.C., E-mail: brower@bu.edu [Department of Physics, Boston University, Boston, MA 02215 (United States); Fleming, G.T., E-mail: george.fleming@yale.edu [Department of Physics, Yale University, New Haven, CT 06520 (United States); Neuberger, H., E-mail: neuberg@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 (United States)

    2013-04-25

    Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using the integer spacing of the anomalous dimensions of the first two descendants (l=1,2), we obtain an estimate for η=0.034(10). We also observed small deviations from integer spacing for the 3rd descendant, which suggests that a further improvement of our radial lattice action will be required to guarantee conformal symmetry at the Wilson–Fisher fixed point in the continuum limit.

  8. High magnetic field magnetization of a new triangular lattice antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    In CsV(MoO4)2, the magnetic V3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO4)2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V3+ (3d2) ions. Apparently we need higher field to reach 1/3 value or full moment.

  9. Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices

    OpenAIRE

    Akagi, Yutaka; Motome, Yukitoshi

    2012-01-01

    We investigate the ground-state phase diagram of the Kondo lattice model with classical localized spins on triangular-to-kagome lattices by using a variational calculation. We identify the parameter regions where a four-sublattice noncoplanar order is stable with a finite spin scalar chirality while changing the lattice structure from triangular to kagome continuously. Although the noncoplanar spin states appear in a wide range of parameters, the spin configurations on the kagome network beco...

  10. Photonic Crystal Waveguides in Triangular Lattice of Nanopillars

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei

    2004-01-01

    Photonic nanopillars waveguides have been analysed. Dielectric nanopillars are arranged in such way that they from a tringular lattice of 2D photonic crystal. Dispersion of the modes depends on the direction of the triangular lattice, Ã-J or Ã-X, in which nanopillars arrays are extended. Light....... Transmission spectra calculated by FDTD method completely reflect peculiarities of modes dispersion, showing up to 80% transmission for a realistic SOI nanopillar structure....

  11. Triangular and honeycomb lattices of cold atoms in optical cavities

    Science.gov (United States)

    Safaei, Shabnam; Miniatura, Christian; Grémaud, Benoît.

    2015-10-01

    We consider a two-dimensional homogeneous ensemble of cold bosonic atoms loaded inside two optical cavities and pumped by a far-detuned external laser field. We examine the conditions for these atoms to self-organize into triangular and honeycomb lattices as a result of superradiance. By collectively scattering the pump photons, the atoms feed the initially empty cavity modes. As a result, the superposition of the pump and cavity fields creates a space-periodic light-shift external potential and atoms self-organize into the potential wells of this optical lattice. Depending on the phase of the cavity fields with respect to the pump laser, these minima can either form a triangular or a hexagonal lattice. By numerically solving the dynamical equations of the coupled atom-cavity system, we have shown that the two stable atomic structures at long times are the triangular lattice and the honeycomb lattice with equally populated sites. We have also studied how to drive atoms from one lattice structure to another by dynamically changing the phase of the cavity fields with respect to the pump laser.

  12. An integrable 3D lattice model with positive Boltzmann weights

    CERN Document Server

    Mangazeev, Vladimir V; Sergeev, Sergey M

    2013-01-01

    In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 03D lattice model with non-negative Boltzmann weights.

  13. Generation and enumeration of compact conformations on the two-dimensional triangular and three-dimensional fcc lattices

    Science.gov (United States)

    Peto, Myron; Sen, Taner Z.; Jernigan, Robert L.; Kloczkowski, Andrzej

    2007-07-01

    We enumerated all compact conformations within simple geometries on the two-dimensional (2D) triangular and three-dimensional (3D) face centered cubic (fcc) lattice. These compact conformations correspond mathematically to Hamiltonian paths and Hamiltonian circuits and are frequently used as simple models of proteins. The shapes that were studied for the 2D triangular lattice included m ×n parallelograms, regular equilateral triangles, and various hexagons. On the 3D fcc lattice we generated conformations for a limited class of skewed parallelepipeds. Symmetries of the shape were exploited to reduce the number of conformations. We compared surface to volume ratios against protein length for compact conformations on the 3D cubic lattice and for a selected set of real proteins. We also show preliminary work in extending the transfer matrix method, previously developed by us for the 2D square and the 3D cubic lattices, to the 2D triangular lattice. The transfer matrix method offers a superior way of generating all conformations within a given geometry on a lattice by completely avoiding attrition and reducing this highly complicated geometrical problem to a simple algebraic problem of matrix multiplication.

  14. Generation and enumeration of compact conformations on the two-dimensional triangular and three-dimensional fcc lattices.

    Science.gov (United States)

    Peto, Myron; Sen, Taner Z; Jernigan, Robert L; Kloczkowski, Andrzej

    2007-07-28

    We enumerated all compact conformations within simple geometries on the two-dimensional (2D) triangular and three-dimensional (3D) face centered cubic (fcc) lattice. These compact conformations correspond mathematically to Hamiltonian paths and Hamiltonian circuits and are frequently used as simple models of proteins. The shapes that were studied for the 2D triangular lattice included mxn parallelograms, regular equilateral triangles, and various hexagons. On the 3D fcc lattice we generated conformations for a limited class of skewed parallelepipeds. Symmetries of the shape were exploited to reduce the number of conformations. We compared surface to volume ratios against protein length for compact conformations on the 3D cubic lattice and for a selected set of real proteins. We also show preliminary work in extending the transfer matrix method, previously developed by us for the 2D square and the 3D cubic lattices, to the 2D triangular lattice. The transfer matrix method offers a superior way of generating all conformations within a given geometry on a lattice by completely avoiding attrition and reducing this highly complicated geometrical problem to a simple algebraic problem of matrix multiplication.

  15. Many body localization in two dimensional square and triangular lattices

    CERN Document Server

    Gonzalez-Garcia, L; Paredes, R

    2016-01-01

    Ultracold interacting Bose atoms placed in disordered two dimensional optical lattices with square and triangular symmetries are found to be localized above a certain disorder strength amplitude. From a Gross-Pitaevskii mean analysis we determine the localization length as a function of the disorder strength and investigate the energy spectrum in terms of the disorder magnitude. We found that the localization length is observed to decrease faster in triangular geometries than in square ones. In the presence of a harmonic confinement localization is observed at the center of the trap. The analysis of the energy spectrum reveals that discrete energy levels acquire a finite width that is always smaller than the distance among energy levels.

  16. Mott transition and magnetism on the anisotropic triangular lattice

    Science.gov (United States)

    Acheche, S.; Reymbaut, A.; Charlebois, M.; Sénéchal, D.; Tremblay, A.-M. S.

    2016-12-01

    Spin-liquid behavior was recently suggested experimentally in the moderately one-dimensional organic compound κ -H3 (Cat-EDT-TTF)2. This compound can be modeled by the one-band Hubbard model on the anisotropic triangular lattice with t'/t ≃1.5 , where t' is the minority hopping. It thus becomes important to extend previous studies, that were performed in the range 0 ≤t'/t ≤1.2 , to find out whether there is a regime where Mott insulating behavior can be found without long-range magnetic order. To this end, we study the above model in the range 1.2 ≤t'/t ≤2 using cluster dynamical mean-field theory (CDMFT). We argue that it is important to choose a symmetry-preserving cluster rather than a quasi-one-dimensional cluster. We find that, upon increasing t'/t beyond t'/t ≈1.3 , the Mott transition at zero temperature is replaced by a first-order transition separating a metallic state from a collinear magnetic insulating state excluding the possibility to find a quantum spin liquid for the physically relevant value t'/t ≃1.5 . The phase diagram obtained in this study can provide a working basis for moderately one-dimensional compounds on the anisotropic triangular lattice.

  17. Low-cost Triangular Lattice Towers for Small Wind Turbines

    Science.gov (United States)

    Adhikari, Ram Chandra

    This thesis focuses on the study of low-cost steel and bamboo triangular lattice towers for small wind turbines. The core objective is to determine the material properties of bamboo and assess the feasibility of bamboo towers. Using the experimentally determined buckling resistance, elastic modulus, and Poisson's ratio, a 12 m high triangular lattice tower for a 500W wind turbine has been modeled as a tripod to formulate the analytical solutions for the stresses and tower deflections, which enables design of the tower based on buckling strength of tower legs. The tripod formulation combines the imposed loads, the base distance between the legs and tower height, and cross-sectional dimensions of the tower legs. The tripod model was used as a reference for the initial design of the bamboo tower and extended to finite element analysis. A 12 m high steel lattice tower was also designed for the same turbine to serve as a comparison to the bamboo tower. The primary result of this work indicates that bamboo is a valid structural material. The commercial software package ANSYS APDL was used to carry out the tower analysis, evaluate the validity of the tripod model, and extend the analysis for the tower design. For this purpose, a 12 m high steel lattice tower for a 500 W wind turbine was examined. Comparison of finite element analysis and analytical solution has shown that tripod model can be accurately used in the design of lattice towers. The tower designs were based on the loads and safety requirements of international standard for small wind turbine safety, IEC 61400-2. For connecting the bamboo sections in the lattice tower, a steel-bamboo adhesive joint combined with conventional lashing has been proposed. Also, considering the low durability of bamboo, periodic replacement of tower members has been proposed. The result of this study has established that bamboo could be used to construct cost-effective and lightweight lattice towers for wind turbines of 500 Watt

  18. Lattice percolation approach to 3D modeling of tissue aging

    Science.gov (United States)

    Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy

    2016-11-01

    We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.

  19. Bose-Einstein condensation in a frustrated triangular optical lattice

    Science.gov (United States)

    Janzen, Peter; Huang, Wen-Min; Mathey, L.

    2016-12-01

    The recent experimental condensation of ultracold atoms in a triangular optical lattice with a negative effective tunneling parameter paves the way for the study of frustrated systems in a controlled environment. Here, we explore the critical behavior of the chiral phase transition in such a frustrated lattice in three dimensions. We represent the low-energy action of the lattice system as a two-component Bose gas corresponding to the two minima of the dispersion. The contact repulsion between the bosons separates into intra- and intercomponent interactions, referred to as V0 and V12, respectively. We first employ a Huang-Yang-Luttinger approximation of the free energy. For V12/V0=2 , which corresponds to the bare interaction, this approach suggests a first-order phase transition, at which both the U (1 ) symmetry of condensation and the Z2 symmetry of the emergent chiral order are broken simultaneously. Furthermore, we perform a renormalization-group calculation at one-loop order. We demonstrate that the coupling regime 0 1 we show that V0 flows to a negative value, while V12 increases and remains positive. This results in a breakdown of the effective quartic-field theory due to a cubic anisotropy and, again, suggests a discontinuous phase transition.

  20. The Steiner ratio for points on a triangular lattice

    Directory of Open Access Journals (Sweden)

    PO de Wet

    2008-12-01

    Full Text Available The study of spanning trees and Steiner trees arises naturally in applications, such as in the design of integrated circuit boards, communication networks, power networks and pipelines of minimum cost. In such applications the Steiner ratio is an indication of how badly a minimum spanning tree performs compared to a Steiner minimal tree. In this paper a short proof is presented for the Steiner ratio for points on a triangular lattice in the Euclidean plane. A Steiner tree in two dimensions is "lifted" to become a rectilinear tree in three dimensions, where it is altered. The rectilinear tree is then projected back into the plane and the result readily follows. A short note at the end of the paper compares our three-dimensional rectilinear trees to "impossible objects" such as Escher's "Waterfall."

  1. Bilinear-biquadratic anisotropic Heisenberg model on a triangular lattice

    Energy Technology Data Exchange (ETDEWEB)

    Pires, A.S.T., E-mail: antpires@fisica.ufmg.br

    2013-08-15

    Motivated by the fact that the study of disordered phases at zero temperature is of great interest, I study the spin-one quantum antiferromagnet with a next-nearest neighbor interaction on a triangular lattice with bilinear and biquadratic exchange interactions and a single ion anisotropy, using a SU(3) Schwinger boson mean-field theory. I calculate the critical properties, at zero temperature, for values of the single ion anisotropy parameter D above a critical value D{sub C}, where a quantum phase transition takes place from a higher D disordered phase to a lower D ordered phase. - Highlights: • The quantum phase transition of the bilinear-biquadratic anisotropic antiferromagnet is studied. • The effect of competing interaction is analyzed. • The zero temperature phase diagram is obtained.

  2. Dimer site-bond percolation on a triangular lattice

    Science.gov (United States)

    Ramirez, L. S.; De la Cruz Félix, N.; Centres, P. M.; Ramirez-Pastor, A. J.

    2017-02-01

    A generalization of the site-percolation problem, in which pairs of neighbor sites (site dimers) and bonds are independently and randomly occupied on a triangular lattice, has been studied by means of numerical simulations. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S{\\cap}B and S{\\cup}B ) have been considered. In S{\\cap}B (S{\\cup}B ), two points are said to be connected if a sequence of occupied sites and (or) bonds joins them. Numerical data, supplemented by analysis using finite-size scaling theory, were used to determine (i) the complete phase diagram of the system (phase boundary between the percolating and nonpercolating regions), and (ii) the values of the critical exponents (and universality) characterizing the phase transition occurring in the system.

  3. The 3D solitons and vortices in 3D discrete monatomic lattices with cubic and quartic nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2006-01-01

    By virtue of the method of multiple-scale and the quasi-discreteness approach, we have discussed the nonlinear vibration equation of a 3D discrete monatomic lattice with its nearest-neighbours interaction. The 3D simple cubic lattices have the same localized modes as a ID discrete monatomic chain with cubic and quartic nonlinearity. The nonlinear vibration in the 3D simple cubic lattice has 3D distorted solitons and 3D envelop solitons in the direction of kx = ky = kz = k and k =±π/6a0 in the Brillouin zone, as well as has 3D vortices in the direction of kx = ky = kz = k and k =±π/a0 in the Brillouin zone.

  4. Design of Mott and topological phases on buckled 3d-oxide honeycomb lattices

    Science.gov (United States)

    Pentcheva, Rossitza

    The honeycomb lattice, as realized e.g. in graphene, has rendered a robust platform for innovative science and potential applications. A much richer generalization of this lattice arises in (111)-oriented bilayers of perovskites, adding the complexity of the strongly correlated, multiorbital nature of electrons in transition metal oxides. Based on first principles calculations with an on-site Coulomb repulsion, here we provide trends in the evolution of ground states versus band filling in (111)-oriented (La XO3)2 /(LaAlO3)4 superlattices, with X spanning the entire 3d transition metal series. The competition between local quasi-cubic and global triangular symmetry triggers unanticipated broken symmetry phases, with mechanisms ranging from Jahn-Teller distortion, to charge-, spin-, and orbital-ordering. LaMnO3 and LaCoO3 bilayers, where spin-orbit coupling opens a sizable gap in the Dirac-point Fermi surface, emerge as much desired oxide-based Chern insulators, the latter displaying a gap capable of supporting room-temperature applications Further realizations of the honeycomb lattice and geometry patterns beyond the perovskite structure will be addressed. Research supported by the DFG, SFB/TR80.

  5. Three-sublattice skyrmion crystal in the antiferromagnetic triangular lattice

    Science.gov (United States)

    Rosales, H. D.; Cabra, D. C.; Pujol, Pierre

    2015-12-01

    The frustrated classical antiferromagnetic Heisenberg model with Dzyaloshinskii-Moriya (DM) interactions on the triangular lattice is studied under a magnetic field by means of semiclassical calculations and large-scale Monte Carlo simulations. We show that even a small DM interaction induces the formation of an antiferromagnetic skyrmion crystal (AF-SkX) state. Unlike what is observed in ferromagnetic materials, we show that the AF-SkX state consists of three interpenetrating skyrmion crystals (one by sublattice), and most importantly, the AF-SkX state seems to survive in the limit of zero temperature. To characterize the phase diagram we compute the average of the topological order parameter which can be associated with the number of topological charges or skyrmions. As the magnetic field increases this parameter presents a clear jump, indicating a discontinuous transition from a spiral phase into the AF-SkX phase, where multiple Bragg peaks coexist in the spin structure factor. For higher fields, a second (probably continuous) transition occurs into a featureless paramagnetic phase.

  6. Agglomerative percolation on the Bethe lattice and the triangular cactus

    Science.gov (United States)

    Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2013-08-01

    Agglomerative percolation (AP) on the Bethe lattice and the triangular cactus is studied to establish the exact mean-field theory for AP. Using the self-consistent simulation method based on the exact self-consistent equations, the order parameter P∞ and the average cluster size S are measured. From the measured P∞ and S, the critical exponents βk and γk for k = 2 and 3 are evaluated. Here, βk and γk are the critical exponents for P∞ and S when the growth of clusters spontaneously breaks the Zk symmetry of the k-partite graph. The obtained values are β2 = 1.79(3), γ2 = 0.88(1), β3 = 1.35(5) and γ3 = 0.94(2). By comparing these exponents with those for ordinary percolation (β∞ = 1 and γ∞ = 1), we also find β∞ γ3 > γ2. These results quantitatively verify the conjecture that the AP model belongs to a new universality class if the Zk symmetry is broken spontaneously, and the new universality class depends on k.

  7. Phase diagram of the triangular-lattice Potts antiferromagnet

    Science.gov (United States)

    Lykke Jacobsen, Jesper; Salas, Jesús; Scullard, Christian R.

    2017-08-01

    We study the phase diagram of the triangular-lattice Q-state Potts model in the real (Q, v) -plane, where v=e^J-1 is the temperature variable. Our first goal is to provide an obviously missing feature of this diagram: the position of the antiferromagnetic critical curve. This curve turns out to possess a bifurcation point with two branches emerging from it, entailing important consequences for the global phase diagram. We have obtained accurate numerical estimates for the position of this curve by combining the transfer-matrix approach for strip graphs with toroidal boundary conditions and the recent method of critical polynomials. The second goal of this work is to study the corresponding Ap-1 RSOS model on the torus, for integer p=4, 5, \\ldots, 8 . We clarify its relation to the corresponding Potts model, in particular concerning the role of boundary conditions. For certain values of p, we identify several new critical points and regimes for the RSOS model and we initiate the study of the flows between the corresponding field theories.

  8. Tilted resonators in a triangular elastic lattice: chirality, Bloch waves and negative refraction

    CERN Document Server

    Tallarico, Domenico; Movchan, Alexander B; Colquitt, Daniel J

    2016-01-01

    We consider a vibrating triangular mass-truss lattice whose unit cell contains a resonator of a triangular shape. The resonators are connected to the triangular lattice by trusses. Each resonator is tilted, i.e. it is rotated with respect to the triangular lattice's unit cell through an angle $\\vartheta_0$. This geometrical parameter is responsible for the emergence of a resonant mode in the Bloch spectrum for elastic waves and strongly affects the dispersive properties of the lattice. Additionally, the tilting angle $\\vartheta_0$ triggers the opening of a band gap at a Dirac-like point. We provide a physical interpretation of these phenomena and discuss the dynamical implications on elastic Bloch waves. The dispersion properties are used to design a structured interface containing tilted resonators which exhibit negative refraction and focussing, as in a "flat elastic lens".

  9. Differences of Band Gap Characteristics of Square and Triangular Lattice Photonic Crystals in Terahertz Range

    Institute of Scientific and Technical Information of China (English)

    Jie Zha; Zhi-Yong Zhong; Huai-Wu Zhang; Qi-Ye Wen; Yuan-Xun Li

    2009-01-01

    Band gap characteristics of the photonic crystals in terahertz range with square lattice and triangular lattice of GaAs cylinders are comparatively studied by means of plane wave method (PWM). The influence of the radius on the band gap width is analyzed and the critical values where the band gap appears are put forward. The results show that themaximum band gap width of photonic crystal with triangular lattice of GaAs cylinders is much wider than that of photonic crystal with square lattice. The research provides a theoretic basis for the development of terahertz (THz) devices.

  10. Extended particle swarm optimisation method for folding protein on triangular lattice.

    Science.gov (United States)

    Guo, Yuzhen; Wu, Zikai; Wang, Ying; Wang, Yong

    2016-02-01

    In this study, the authors studied the protein structure prediction problem by the two-dimensional hydrophobic-polar model on triangular lattice. Particularly the non-compact conformation was modelled to fold the amino acid sequence into a relatively larger triangular lattice, which is more biologically realistic and significant than the compact conformation. Then protein structure prediction problem was abstracted to match amino acids to lattice points. Mathematically, the problem was formulated as an integer programming and they transformed the biological problem into an optimisation problem. To solve this problem, classical particle swarm optimisation algorithm was extended by the single point adjustment strategy. Compared with square lattice, conformations on triangular lattice are more flexible in several benchmark examples. They further compared the authors' algorithm with hybrid of hill climbing and genetic algorithm. The results showed that their method was more effective in finding solution with lower energy and less running time.

  11. PLASTIC ZONE OF SEMI-INFINITE CRACK INPLANAR KAGOME AND TRIANGULAR LATTICES

    Institute of Scientific and Technical Information of China (English)

    Xinming Qiu; Lianghong He; Yueqiang Qian; Xiong Zhang

    2009-01-01

    The fracture investigations of the planar lattices made of ductile cell walls are cur-rently limited to bending-dominated hexagonal honeycomb. In this paper, the plastic zones of stretching-dominated lattices, including Kagome and triangular lattices, are estimated by ana-lyzing their effective yield loci. The normalized in-plane yield loci of these two lattices are almost identical convex curves enclosed by 4 straight lines, which is almost independent of the relative density but is highly sensitive to the principal stress directions. Therefore, the plastic zones around the crack tip of Kagome and triangular are estimated to be quite different to those of the con-tinuum solid and also hexagonal lattice. The plastic zones predictions by convex yield surfaces of both lattices are validated by FE calculations, although the shear lag region caused by non-local bending effect in the Kagome lattice enlarges the plastic zone in cases of small ratio of Tp/l.

  12. One-dimensional lattices topologically equivalent to two-dimensional lattices within the context of the lattice gas model. II The triangular lattice

    Science.gov (United States)

    Costanza, E. F.; Costanza, G.

    2016-12-01

    Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a triangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.

  13. Control of lattice spacing in a triangular lattice of feeble magnetic particles formed by induced magnetic dipole interactions

    Directory of Open Access Journals (Sweden)

    Noriyuki Hirota, Tsutomu Ando, Ryo Tanaka, Hitoshi Wada and Yoshio Sakka

    2009-01-01

    Full Text Available We studied methods of controlling the spacing between particles in the triangular lattice formed by feeble magnetic particles through induced magnetic dipole interaction. Formation of a triangular lattice is described by the balance between the magnetic force and the interaction of induced magnetic dipoles. The intensity of the magnetic force is proportional to the volume of particles V and the difference in the magnetic susceptibilities between the particles and the surrounding medium Δχ. On the other hand, the intensity of the induced magnetic dipole interaction depends on the square of V and Δχ. Therefore, altering the magnetic susceptibility difference by changing the susceptibility of the surrounding medium, volume of the particles, and intensity and spatial distribution of the applied magnetic field effectively controls the distance between the particles. In this study, these three methods were evaluated through experiment and molecular dynamics simulations. The distance between the particles, i.e. the lattice constant of the triangular lattice, was varied from 1.7 to 4.0 in units of the particle diameter. Formation of self-organized triangular lattice through the induced magnetic dipole interaction is based on magnetism, a physical property that all materials have. Therefore, this phenomenon is applicable to any materials of any size. Consequently, structure formation through induced magnetic dipole interaction is a potential way of fabricating materials with ordered structures.

  14. Heavy dense QCD from a 3d effective lattice theory

    CERN Document Server

    Glesaaen, Jonas; Philipsen, Owe

    2015-01-01

    The cold and dense regime of the QCD phase diagram is to this day inaccessible to first principle lattice calculations owing to the sign problem. Here we present progress of an ongoing effort to probe this particularly difficult regime utilising a dimensionally reduced effective lattice theory with a significantly reduced sign problem. The effective theory is derived by combined character and hopping expansion and is valid for heavy quarks near the continuum. We show an extension of the effective theory to order $u^5\\kappa^8$ in the cold regime. A linked cluster expansion is applied to the effective theory resulting in a consistent mechanism for handling the effective theory fully analytically. The new results are consistent with the ones from simulations confirming the viability of analytic methods. Finally we resum the analytical result which doubles the convergence region of the expansion.

  15. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Directory of Open Access Journals (Sweden)

    Jolly Xavier

    2012-01-01

    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  16. Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields.

    Science.gov (United States)

    Okubo, Tsuyoshi; Chung, Sungki; Kawamura, Hikaru

    2012-01-06

    Ordering of the frustrated classical Heisenberg model on the triangular lattice with an incommensurate spiral structure is studied under magnetic fields by means of a mean-field analysis and a Monte Carlo simulation. Several types of multiple-q states including the Skyrmion-lattice state is observed in addition to the standard single-q state. In contrast to the Dzyaloshinskii-Moriya interaction driven system, the present model allows both Skyrmions and anti-Skyrmions, together with a new thermodynamic phase where Skyrmion and anti-Skyrmion lattices form a domain state.

  17. Second-Order Nonlinearity in Triangular Lattice Perforated Gold Film due to Surface Plasmas Resonance

    Directory of Open Access Journals (Sweden)

    Renlong Zhou

    2014-01-01

    Full Text Available We have studied the excitation second-order nonlinearity through a triangular lattice perforated gold film instead of square lattice in many papers. Under the excitation of surface plasmas resonance effect, the second order nonlinearity exists in the noncentrosymmetric split-ring resonators arrays. Reflection of fundamental frequency wave through a triangular lattice perforated gold film is obtained. We also described the second harmonic conversion efficiencies in the second order nonlinear optical process with the spectra. Moreover, the electric field distributions of fundamental frequency above the gold film region are calculated. The light propagation through the holes results in the enhancement of the second order nonlinearity including second harmonic generation as well as the sum (difference frequency generation.

  18. Fast Tree Search for A Triangular Lattice Model of Protein Folding

    Institute of Scientific and Technical Information of China (English)

    Xiaomei Li; Nengchao Wang

    2004-01-01

    Using a triangular lattice model to study the designability of protein folding, we overcame the parity problem of previous cubic lattice model and enumerated all the sequences and compact structures on a simple two-dimensional triangular lattice model of size 4+5+6+5+4. We used two types of amino acids, hydrophobic and polar, to make up the sequences, and achieved 223+212 different sequences excluding the reverse symmetry sequences. The total string number of distinct compact structures was 219,093, excluding reflection symmetry in the self-avoiding path of length 24 triangular lattice model. Based on this model, we applied a fast search algorithm by constructing a cluster tree. The algorithm decreased the computation by computing the objective energy of non-leaf nodes. The parallel experiments proved that the fast tree search algorithm yielded an exponential speed-up in the model of size 4+5+6+5+4. Designability analysis was performed to understand the search result.

  19. Exact Duality of The Dissipative Hofstadter Model on a Triangular Lattice

    CERN Document Server

    Lee, Taejin

    2016-01-01

    We study the dissipative Hofstadter model on a triangular lattice, making use of the $O(2,2;R)$ T-dual transformation of string theory. The $O(2,2;R)$ dual transformation transcribes the model in a commutative basis into the model in a non-commutative basis. In the zero temperature limit, the model exhibits an exact duality, which identifies equivalent points on the two dimensional parameter space of the model. The exact duality also defines magic circles on the parameter space, where the model can be mapped onto the boundary sine-Gordon on a triangular lattice. The model describes the junction of three quantum wires in a uniform magnetic field background. An explicit expression of the equivalence condition, which identifies the points on the two dimensional parameter space of the model by the exact duality, is obtained. It may help us to understand the structure of the phase diagram of the model.

  20. Low-frequency photonic band structures in graphene-like triangular metallic lattice

    Science.gov (United States)

    Wang, Kang

    2016-11-01

    We study the low frequency photonic band structures in triangular metallic lattice, displaying Dirac points in the frequency spectrum, and constructed upon the lowest order regular polygonal tiles. We show that, in spite of the unfavourable geometrical conditions intrinsic to the structure symmetry, the lowest frequency photonic bands are formed by resonance modes sustained by local structure patterns, with the corresponding electric fields following a triangular distribution at low structure filling rate and a honeycomb distribution at high filling rate. For both cases, the lowest photonic bands, and thus the plasma gap, can be described in the framework of a tight binding model, and analysed in terms of local resonance modes and their mutual correlations. At high filling rate, the Dirac points and their movement following the structure deformation are described in the same framework, in relation with local structure patterns and their variations, as well as the particularity of the metallic lattice that enhances the topological anisotropy.

  1. Thermodynamic studies of spin-1/2 Falicov-Kimball model (FKM) on a triangular lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sant, E-mail: santkumar1210@gmail.com; Maitra, Tulika; Singh, Ishwar [Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand (India); Yadav, Umesh K. [Center for Condensed Matter Theory, Indian Institute of Science Bangalore-560012 (India)

    2016-05-23

    Thermodynamic properties of the spin-dependent Falicov-Kimball model are studied on a triangular lattice for one-fourth filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the thermodynamic properties. Continuous phase transitions are observed at finite temperature. We have observed that critical temperature (Tc) increases with the increase in on-site Coulomb correlation U. The second order nature of the transition is also revealed from the temperature dependence of specific heat.

  2. Thermodynamic studies of spin-1/2 Falicov-Kimball model (FKM) on a triangular lattice

    Science.gov (United States)

    Kumar, Sant; Yadav, Umesh K.; Maitra, Tulika; Singh, Ishwar

    2016-05-01

    Thermodynamic properties of the spin-dependent Falicov-Kimball model are studied on a triangular lattice for one-fourth filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the thermodynamic properties. Continuous phase transitions are observed at finite temperature. We have observed that critical temperature (Tc) increases with the increase in on-site Coulomb correlation U. The second order nature of the transition is also revealed from the temperature dependence of specific heat.

  3. Monte Carlo Study of the Anisotropic Heisenberg Antiferromagnet on the Triangular Lattice

    OpenAIRE

    Stephan, W.; Southern, B. W.

    1999-01-01

    We report a Monte Carlo study of the classical antiferromagnetic Heisenberg model with easy axis anisotropy on the triangular lattice. Both the free energy cost for long wavelength spin waves as well as for the formation of free vortices are obtained from the spin stiffness and vorticity modulus respectively. Evidence for two distinct Kosterlitz-Thouless types of defect-mediated phase transitions at finite temperatures is presented.

  4. Anisotropic Hubbard model on a triangular lattice - spin dynamics in HoMnO3

    Indian Academy of Sciences (India)

    Saptarshi Ghosh; Avinash Singh

    2008-01-01

    The recent neutron scattering data for spin-wave dispersion in HoMnO3 are well-described by an anisotropic Hubbard model on a triangular lattice with a planar (XY) spin anisotropy. Best fit indicates that magnetic excitations in HoMnO3 correspond to the strong-coupling limit / > ∼ 15, with planar exchange energy = 42/ ≃ 2.5 meV and planar anisotropy ≃ 0.35 meV.

  5. Controlling the focusing properties of a triangular-lattice metallic photonic-crystal slab

    Institute of Scientific and Technical Information of China (English)

    Feng Shuai; Wang Yi-Quan; Li Zhi-Yuan; Cheng Bing-Ying; Zhang Dao-Zhong

    2007-01-01

    This paper studies the focusing properties of a two-dimensional photonic crystal (PC) slab consisting of a triangular lattice of metallic cylinders immersed in a dielectric background. Through the analysis of the equifrequency-surface contours and the field patterns of a point source placed in the vicinity of the PC slab, it finds that both the image distance and image quality can be controlled by simply adjusting the refractive index of the background material.

  6. LatticeLibrary and BccFccRaycaster: Software for processing and viewing 3D data on optimal sampling lattices

    Directory of Open Access Journals (Sweden)

    Elisabeth Schold Linnér

    2016-01-01

    Full Text Available In this paper, we present LatticeLibrary, a C++ library for general processing of 2D and 3D images sampled on arbitrary lattices. The current implementation supports the Cartesian Cubic (CC, Body-Centered Cubic (BCC and Face-Centered Cubic (FCC lattices, and is designed to facilitate addition of other sampling lattices. We also introduce BccFccRaycaster, a plugin for the existing volume renderer Voreen, making it possible to view CC, BCC and FCC data, using different interpolation methods, with the same application. The plugin supports nearest neighbor and trilinear interpolation at interactive frame rates. These tools will enable further studies of the possible advantages of non-Cartesian lattices in a wide range of research areas.

  7. LatticeLibrary and BccFccRaycaster: Software for processing and viewing 3D data on optimal sampling lattices

    Science.gov (United States)

    Linnér, Elisabeth Schold; Morén, Max; Smed, Karl-Oskar; Nysjö, Johan; Strand, Robin

    In this paper, we present LatticeLibrary, a C++ library for general processing of 2D and 3D images sampled on arbitrary lattices. The current implementation supports the Cartesian Cubic (CC), Body-Centered Cubic (BCC) and Face-Centered Cubic (FCC) lattices, and is designed to facilitate addition of other sampling lattices. We also introduce BccFccRaycaster, a plugin for the existing volume renderer Voreen, making it possible to view CC, BCC and FCC data, using different interpolation methods, with the same application. The plugin supports nearest neighbor and trilinear interpolation at interactive frame rates. These tools will enable further studies of the possible advantages of non-Cartesian lattices in a wide range of research areas.

  8. Spontaneous formation of kagome network and Dirac half-semimetal on a triangular lattice

    Science.gov (United States)

    Akagi, Yutaka; Motome, Yukitoshi

    2015-04-01

    In spin-charge coupled systems, geometrical frustration of underlying lattice structures can give rise to nontrivial magnetic orders and electronic states. Here we explore such a possibility in the Kondo lattice model with classical localized spins on a triangular lattice by using a variational calculation and simulated annealing. We find that the system exhibits a four-sublattice collinear ferrimagnetic phase at 5/8 filling for a large Hund's-rule coupling. In this state, the system spontaneously differentiates into the up-spin kagome network and the isolated down-spin sites, which we call the kagome network formation. In the kagome network state, the system becomes Dirac half-semimetallic: The electronic structure shows a massless Dirac node at the Fermi level, and the Dirac electrons are almost fully spin polarized due to the large Hund's-rule coupling. We also study the effect of off-site Coulomb repulsion in the kagome network phase where the system is effectively regarded as a 1/3-filling spinless fermion system on the kagome lattice. We find that, at the level of the mean-field approximation, a √{3 }×√{3 } -type charge order occurs in the kagome network state, implying the possibility of fractional charge excitations in this triangular lattice system. Moreover, we demonstrate that the kagome network formation with fully polarized Dirac electrons are controllable by an external magnetic field.

  9. Absolute band gaps of a two-dimensional triangular-lattice dielectric photonic crystal with different shapes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Absolute band gaps of a two-dimensional triangular-lattice photonic crystal are calculated with the finite-difference time-domain method in this paper.Through calculating the photonic band structures of the triangular-lattice photonic crystal consisting of Ge rods immersed in air with different shapes,it is found that a large absolute band gap of 0.098 (2c/a) can be obtained for the structures with hollow triangular Ge rods immersed in air,corresponding to 19.8% of the middle frequency.The influence of the different factors on the width of the absolute band gaps is also discussed.

  10. Trapping ultracold atoms in a sub-micron-period triangular magnetic lattice

    Science.gov (United States)

    Wang, Y.; Tran, T.; Surendran, P.; Herrera, I.; Balcytis, A.; Nissen, D.; Albrecht, M.; Sidorov, A.; Hannaford, P.

    2017-07-01

    We report the trapping of ultracold 87Rb atoms in a 0.7-μ m-period two-dimensional triangular magnetic lattice on an atom chip. The magnetic lattice is created by a lithographically patterned magnetic Co/Pd multilayer film plus bias fields. Rubidium atoms in the |F =1 , mF=-1 > low-field seeking state are trapped at estimated distances down to about 100 nm from the chip surface and with calculated mean trapping frequencies up to about 800 kHz . The measured lifetimes of the atoms trapped in the magnetic lattice are in the range 0.4-1.7 ms , depending on distance from the chip surface. Model calculations suggest the trap lifetimes are currently limited mainly by losses due to one-dimensional thermal evaporation following loading of the atoms from the Z -wire trap into the very tight magnetic lattice traps, rather than by fundamental loss processes such as surface interactions, three-body recombination, or spin flips due to Johnson magnetic noise. The trapping of atoms in a 0.7 -μ m -period magnetic lattice represents a significant step toward using magnetic lattices for quantum tunneling experiments and to simulate condensed matter and many-body phenomena in nontrivial lattice geometries.

  11. Loading mode dependent effective properties of octet-truss lattice structures using 3D-printing

    Science.gov (United States)

    Challapalli, Adithya

    Cellular materials, often called lattice materials, are increasingly receiving attention for their ultralight structures with high specific strength, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. In alignment with emerging additive manufacturing (AM) technology, realization of the structural applications of the lattice materials appears to be becoming faster. Considering the direction dependent material properties of the products with AM, by directionally dependent printing resolution, effective moduli of lattice structures appear to be directionally dependent. In this paper, a constitutive model of a lattice structure, which is an octet-truss with a base material having an orthotropic material property considering AM is developed. In a case study, polyjet based 3D printing material having an orthotropic property with a 9% difference in the principal direction provides difference in the axial and shear moduli in the octet-truss by 2.3 and 4.6%. Experimental validation for the effective properties of a 3D printed octet-truss is done for uniaxial tension and compression test. The theoretical value based on the micro-buckling of truss member are used to estimate the failure strength. Modulus value appears a little overestimate compared with the experiment. Finite element (FE) simulations for uniaxial compression and tension of octettruss lattice materials are conducted. New effective properties for the octet-truss lattice structure are developed considering the observed behavior of the octet-truss structure under macroscopic compression and tension trough simulations.

  12. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-04-01

    High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.

  13. Quantum State Transfer in a Two-dimensional Regular Spin Lattice of Triangular Shape

    CERN Document Server

    Miki, Hiroshi; Vinet, Luc; Zhedanov, Alexei

    2012-01-01

    Quantum state transfer in a triangular domain of a two-dimensional, equally-spaced, spin lat- tice with non-homogeneous nearest-neighbor couplings is analyzed. An exact solution of the one- excitation dynamics is provided in terms of 2-variable Krawtchouk orthogonal polynomials that have been recently defined. The probability amplitude for an excitation to transit from one site to another is given. For some values of the parameters, perfect transfer is shown to take place from the apex of the lattice to the boundary hypotenuse.

  14. The density of states for an antiferromagnetic Ising model on a triangular lattice

    Institute of Scientific and Technical Information of China (English)

    XIA Kai; YAO Xiao-yan; LIU Jun-ming

    2007-01-01

    The Wang-Landau algorithm is an efficient Monte Carlo approach to the density of states of a statistical mechanics system.The estimation of state density would allow the computation of thermodynamic properties of the system over the whole temperature range.We apply this sampling method to study the phase transitions in a triangular Ising model.The entropy of the lattice at zero temperature as well as other thermodynamic properties is computed.The calculated thermodynamic properties are explained in the context of the magnetic phase transition.

  15. Study of magnetic properties of spin-dependent Falicov-Kimball model on a triangular lattice

    Science.gov (United States)

    Kumar, Sant; Yadav, Umesh K.; Maitra, Tulika; Singh, Ishwar

    2013-02-01

    Numerical diagonalization technique and Monte-Carlo simulation algorithm is used to study the ground state properties of spin-dependent Falicov-Kimball model (FKM) on a triangular lattice for 1/3 filling of itinerant (d) and localized (f) electrons. We have found that the ground state configurations are of long range Neel ordered antiferromagnetic, ferromagnetic or mixture of anti-ferromagnetic and ferromagnetic type for different values of exchange correlation (J). The magnetization of d and f-electrons increases with increasing the exchange correlation (J) between d and f-electrons and then decreases with further increasing the value of J.

  16. Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Zhang, Qiang; Wei, Xiaopeng

    2013-09-01

    The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences.

  17. Computationally designed lattices with tuned properties for tissue engineering using 3D printing.

    Science.gov (United States)

    Egan, Paul F; Gonella, Veronica C; Engensperger, Max; Ferguson, Stephen J; Shea, Kristina

    2017-01-01

    Tissue scaffolds provide structural support while facilitating tissue growth, but are challenging to design due to diverse property trade-offs. Here, a computational approach was developed for modeling scaffolds with lattice structures of eight different topologies and assessing properties relevant to bone tissue engineering applications. Evaluated properties include porosity, pore size, surface-volume ratio, elastic modulus, shear modulus, and permeability. Lattice topologies were generated by patterning beam-based unit cells, with design parameters for beam diameter and unit cell length. Finite element simulations were conducted for each topology and quantified how elastic modulus and shear modulus scale with porosity, and how permeability scales with porosity cubed over surface-volume ratio squared. Lattices were compared with controlled properties related to porosity and pore size. Relative comparisons suggest that lattice topology leads to specializations in achievable properties. For instance, Cube topologies tend to have high elastic and low shear moduli while Octet topologies have high shear moduli and surface-volume ratios but low permeability. The developed method was utilized to analyze property trade-offs as beam diameter was altered for a given topology, and used to prototype a 3D printed lattice embedded in an interbody cage for spinal fusion treatments. Findings provide a basis for modeling and understanding relative differences among beam-based lattices designed to facilitate bone tissue growth.

  18. Propagation of an optical vortex in fiber arrays with triangular lattices

    Science.gov (United States)

    Mushref, Muhammad Abdulrahman Abdulghani

    The propagation of optical vortices (OVs) in linear and nonlinear media is an important field of research in science and engineering. The most important goal is to explore the properties of guiding dynamics for potential applications such as sensing, all-optical switching, frequency mixing and modulation. In this dissertation, we present analytical methods and numerical techniques to investigate the propagation of an optical vortex in fiber array waveguides. Analytically, we model wave propagation in a waveguide by coupled mode Equations as a simplified approximation. The beam propagation method (BPM) is also employed to numerically solve the paraxial wave Equation by finite difference (FD) techniques. We will investigate the propagation of fields in a 2D triangular lattice with different core arrangements in the optical waveguide. In order to eliminate wave reflections at the boundaries of the computational area, the transparent boundary condition (TBC) is applied. In our explorations for the propagation properties of an optical vortex in a linear and a non-linear triangular lattice medium, images are numerically generated for the field phase and intensity in addition to the interferogram of the vortex field with a reference plane or Gaussian field. The finite difference beam propagation method (FD-BPM) with transparent boundary condition (TBC) is a robust approach to numerically deal with optical field propagations in waveguides. In a fiber array arranged in triangular lattices, new vortices vary with respect to the propagation distance and the number of cores in the fiber array for both linear and nonlinear regimes. With more cores and longer propagation distances, more vortices are created. However, they do not always survive and may disappear while other new vortices are formed at other points. In a linear triangular lattice, the results demonstrated that the number of vortices may increase or decrease with respect to the number of cores in the array lattice

  19. An improvement of the lattice theory of dislocation for a two-dimensional triangular crystal

    Institute of Scientific and Technical Information of China (English)

    Wang Shao-Feng

    2005-01-01

    The structure of dislocation in a two-dimensional triangular crystal has been studied theoretically on the basis of atomic interaction and lattice statics. The theory presented in this paper is an improvement to that published previously.Within a reasonable interaction approximation, a new dislocation equation is obtained, which remedies a fault existing in the lattice theory of dislocation. A better simplification of non-diagonal terms of the kernel is given. The solution of the new dislocation equation asymptotically becomes the same as that obtained in the elastic theory, and agrees with experimental data. It is found that the solution is formally identical with that proposed phenomenologically by Foreman et al, where the parameter can be chosen freely, but cannot uniquely determined from theory. Indeed, if the parameter in the expression of the solution is selected suitably, the expression can be well applied to describe the fine structure of the dislocation.

  20. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

    Science.gov (United States)

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H. C.; Steffens, P.; Boehm, M.; Hao, Yiqing; Quintero-Castro, D. L.; Harriger, L. W.; Frontzek, M. D.; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    2016-12-01

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

  1. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4

    Science.gov (United States)

    Paddison, Joseph A. M.; Daum, Marcus; Dun, Zhiling; Ehlers, Georg; Liu, Yaohua; Stone, Matthew B.; Zhou, Haidong; Mourigal, Martin

    2016-12-01

    A quantum spin liquid (QSL) is an exotic state of matter in which electrons’ spins are quantum entangled over long distances, but do not show magnetic order in the zero-temperature limit. The observation of QSL states is a central aim of experimental physics, because they host collective excitations that transcend our knowledge of quantum matter; however, examples in real materials are scarce. Here, we report neutron-scattering experiments on YbMgGaO4, a QSL candidate in which Yb3+ ions with effective spin-1/2 occupy a triangular lattice. Our measurements reveal a continuum of magnetic excitations--the essential experimental hallmark of a QSL--at very low temperature (0.06 K). The origin of this peculiar excitation spectrum is a crucial question, because isotropic nearest-neighbour interactions do not yield a QSL ground state on the triangular lattice. Using measurements in the field-polarized state, we identify antiferromagnetic next-nearest-neighbour interactions, spin-space anisotropies, and chemical disorder between the magnetic layers as key ingredients in YbMgGaO4.

  2. Melting of Three-Sublattice Order in Easy-Axis Antiferromagnets on Triangular and Kagome Lattices.

    Science.gov (United States)

    Damle, Kedar

    2015-09-18

    When the constituent spins have an energetic preference to lie along an easy axis, triangular and kagome lattice antiferromagnets often develop long-range order that distinguishes the three sublattices of the underlying triangular Bravais lattice. In zero magnetic field, this three-sublattice order melts either in a two-step manner, i.e., via an intermediate phase with power-law three-sublattice order controlled by a temperature-dependent exponent η(T)∈(1/9,1/4), or via a transition in the three-state Potts universality class. Here, I predict that the uniform susceptibility to a small easy-axis field B diverges as χ(B)∼|B|^{-[(4-18η)/(4-9η)]} in a large part of the intermediate power-law ordered phase [corresponding to η(T)∈(1/9,2/9)], providing an easy-to-measure thermodynamic signature of two-step melting. I also show that these two melting scenarios can be generically connected via an intervening multicritical point and obtain numerical estimates of multicritical exponents.

  3. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate.

    Science.gov (United States)

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H C; Steffens, P; Boehm, M; Hao, Yiqing; Quintero-Castro, D L; Harriger, L W; Frontzek, M D; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    2016-12-05

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinons'). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

  4. A model for doping-dependent magnetic frustration and ordering in a triangular lattice

    Science.gov (United States)

    Sheshadri, K.; Chainani, A.

    2013-10-01

    The family of cobaltates AxCoO2 (A = Na, Li, K), with a crystal structure consisting of a layered triangular lattice of Co ions, exhibits a fascinating range of coupled spin, charge and ion ordering phenomena as a function of electron doping content x. Based on these experimental observations, we investigate an extended Ising (J\\text{-}J') model for suppression of magnetic frustration caused by electron doping in a quasi-2-dimensional nearest-neighbour antiferromagnetic triangular lattice. As determined by geometry and bond-counting, it is found that magnetic frustration can be quantified by a frustration index fub and its magnitude is a non-monotonic function of x. A mean-field calculation is carried out to determine the temperature-dependent magnetization, spin-entropy and heat capacity for the obtained structures with the lowest energy (≡ lowest fub) for each x. The calculations reveal that the magnetic-ordering temperature TC exhibits an anti-correlation with fub as a function of x. In addition, as seen in thermopower experiments, an anomalous spin-entropy is obtained for the high-doping cases when J'>0.7J . The results indicate the importance of doping-dependent magnetic frustration in the layered cobaltates.

  5. Implementation of 3D Lattice Monte Carlo Simulation on a Cluster of Symmetric Multiprocessors

    Institute of Scientific and Technical Information of China (English)

    雷咏梅; 蒋英; 等

    2002-01-01

    This paper presents a new approach to parallelize 3D lattice Monte Carlo algorithms used in the numerical simulation of polymer on ZiQiang 2000-a cluster of symmetric multiprocessors(SMPs).The combined load for cell and energy calculations over the time step is balanced together to form a single spatial decomposition.Basic aspects and strategies of running Monte Carlo calculations on parallel computers are studied.Different steps involved in porting the software on a parallel architecture based on ZiQiang 2000 running under Linux and MPI are described briefly.It is found that parallelization becomes more advantageous when either the lattice is very large or the model contains many cells and chains.

  6. Lattice Boltzmann Method Simulation of 3-D Melting Using Double MRT Model with Interfacial Tracking Method

    CERN Document Server

    Li, Zheng; Zhang, Yuwen

    2016-01-01

    Three-dimensional melting problems are investigated numerically with Lattice Boltzmann method (LBM). Regarding algorithm's accuracy and stability, Multiple-Relaxation-Time (MRT) models are employed to simplify the collision term in LBM. Temperature and velocity fields are solved with double distribution functions, respectively. 3-D melting problems are solved with double MRT models for the first time in this article. The key point for the numerical simulation of a melting problem is the methods to obtain the location of the melting front and this article uses interfacial tracking method. The interfacial tracking method combines advantages of both deforming and fixed grid approaches. The location of the melting front was obtained by calculating the energy balance at the solid-liquid interface. Various 3-D conduction controlled melting problems are solved firstly to verify the numerical method. Liquid fraction tendency and temperature distribution obtained from numerical methods agree with the analytical result...

  7. Variational Monte Carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice

    Science.gov (United States)

    Hu, Wen-Jun; Gong, Shou-Shu; Sheng, D. N.

    2016-08-01

    By using Gutzwiller projected fermionic wave functions and variational Monte Carlo technique, we study the spin-1 /2 Heisenberg model with the first-neighbor (J1), second-neighbor (J2), and additional scalar chiral interaction JχSi.(Sj×Sk) on the triangular lattice. In the nonmagnetic phase of the J1-J2 triangular model with 0.08 ≲J2/J1≲0.16 , recent density-matrix renormalization group (DMRG) studies [Zhu and White, Phys. Rev. B 92, 041105(R) (2015), 10.1103/PhysRevB.92.041105 and Hu, Gong, Zhu, and Sheng, Phys. Rev. B 92, 140403(R) (2015), 10.1103/PhysRevB.92.140403] find a possible gapped spin liquid with the signal of a competition between a chiral and a Z2 spin liquid. Motivated by the DMRG results, we consider the chiral interaction JχSi.(Sj×Sk) as a perturbation for this nonmagnetic phase. We find that with growing Jχ, the gapless U(1) Dirac spin liquid, which has the best variational energy for Jχ=0 , exhibits the energy instability towards a gapped spin liquid with nontrivial magnetic fluxes and nonzero chiral order. We calculate topological Chern number and ground-state degeneracy, both of which identify this flux state as the chiral spin liquid with fractionalized Chern number C =1 /2 and twofold topological degeneracy. Our results indicate a positive direction to stabilize a chiral spin liquid near the nonmagnetic phase of the J1-J2 triangular model.

  8. A quantum fidelity study of the anisotropic next-nearest-neighbour triangular lattice Heisenberg model.

    Science.gov (United States)

    Thesberg, Mischa; Sørensen, Erik S

    2014-10-22

    Ground- and excited-state quantum fidelities in combination with generalized quantum fidelity susceptibilites, obtained from exact diagonalizations, are used to explore the phase diagram of the anisotropic next-nearest-neighbour triangular Heisenberg model. Specifically, the J'-J2 plane of this model, which connects the J1-J2 chain and the anisotropic triangular lattice Heisenberg model, is explored using these quantities. Through the use of a quantum fidelity associated with the first excited-state, in addition to the conventional ground-state fidelity, the BKT-type transition and Majumdar-Ghosh point of the J1-J2 chain (J'=0) are found to extend into the J'-J2 plane and connect with points on the J2=0 axis thereby forming bounded regions in the phase diagram. These bounded regions are then explored through the generalized quantum fidelity susceptibilities χρ, χ₁₂₀°, χD and χCAF which are associated with the spin stiffness, 120° spiral order parameter, dimer order parameter and collinear antiferromagnetic order parameter respectively. These quantities are believed to be extremely sensitive to the underlying phase and are thus well suited for finite-size studies. Analysis of the fidelity susceptibilities suggests that the J', J2≪J phase of the anisotropic triangular model is either a collinear antiferromagnet or possibly a gapless disordered phase that is directly connected to the Luttinger phase of the J1-J2 chain. Furthermore, the outer region is dominated by incommensurate spiral physics as well as dimer order.

  9. Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaowei [Peking University, Center for Applied Physics and Technology, College of Engineering (China); Zhou Jian [Peking University, Department of Materials Science and Engineering (China); Wang Qian, E-mail: qianwang2@pku.edu.cn [Peking University, Center for Applied Physics and Technology, College of Engineering (China); Jena, Puru [Virginia Commonwealth University, Department of Physics (United States)

    2012-08-15

    Two-dimensional (2D) magnetic kagome lattices are constructed using silicon carbide triangular nanoflakes (SiC-TNFs). Two types of structures with alternating Si and C atoms are studied: the first one is constructed using the C-edged SiC-TNFs as the building blocks and C atoms as the linkers of kagome sites (TNF{sub N}-C-TNF{sub N}) while the second one is composed of the Si-edged SiC-TNFs with Si atoms as linkers (TNF{sub N}-Si-TNF{sub N}). Using density functional theory-based calculations, we show that the fully relaxed TNF{sub N}-C-TNF{sub N} retains the morphology of regular kagome lattice and is ferromagnetism. On the other hand, the TNF{sub N}-Si-TNF{sub N} structure is deformed and antiferromagnetic. However, the ground state of TNF{sub N}-Si-TNF{sub N} structure can be transformed from the antiferromagnetic to ferromagnetic state by applying tensile strain. Monte Carlo simulations indicate that the SiC-TNFs-based kagome lattices can be ferromagnetic at room temperature.

  10. Integrable Nonlinear Schrödinger System on a Triangular-Lattice Ribbon

    Science.gov (United States)

    Vakhnenko, Oleksiy O.

    2015-01-01

    An integrable nonlinear Schrödinger system on a triangular-lattice ribbon, whose geometric configuration is similar to that of (1,1) armchair boron nanotube, is studied in detail. The system Hamiltonian formulation is shown to underline an essentially nontrivial Poisson structure associated with four basic field variables appearing as nearly amplitudes of the probability to find the lattice sites being excited and with two concomitant field variables maintaining the finite background. The coupling parameters of the system are allowed to be complex-valued ones thus permitting to model external magnetic fluxes threading the elementary plackets of a lattice in terms of Peierls phases. An alternative version of zero-curvature representation given in terms of 2 × 2 auxiliary spectral and evolution matrices is proved to support the constructive integrability of the system by means of Darboux-Bäcklund dressing method. In the framework of Darboux approach the one-soliton solution is found explicitly and analyzed with special attention to the principal differences between the bare and physical soliton parameters.

  11. Critical behavior of a triangular lattice Ising AF/FM bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Žukovič, M., E-mail: milan.zukovic@upjs.sk; Bobák, A.

    2016-03-06

    We study a bilayer Ising spin system consisting of antiferromagnetic (AF) and ferromagnetic (FM) triangular planes, coupled by ferromagnetic exchange interaction, by standard Monte Carlo and parallel tempering methods. The AF/FM bilayer is found to display the critical behavior completely different from both the single FM and AF constituents as well as the FM/FM and AF/AF bilayers. Namely, by finite-size scaling (FSS) analysis we identify at the same temperature a standard Ising transition from the paramagnetic to FM state in the FM plane that induces a ferrimagnetic state with a finite net magnetic moment in the AF plane. At lower temperatures there is another phase transition, that takes place only in the AF plane, to different ferrimagnetic state with spins on two sublattices pointing parallel and on one sublattice antiparallel to the spins on the FM plane. FSS indicates that the corresponding critical exponents are close to the two-dimensional three-state ferromagnetic Potts model values. - Highlights: • We study critical behavior of a triangular lattice Ising AF/FM bilayer. • Critical properties are studied by Monte Carlo and parallel tempering methods. • Critical exponents are determined from finite-size scaling analysis. • At higher temperature Ising phase transitions in both FM and AF layers are found. • At lower temperature a three-state Potts phase transition in AF layer is found.

  12. GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice

    Science.gov (United States)

    Borovský, Michal; Weigel, Martin; Barash, Lev Yu.; Žukovič, Milan

    2016-02-01

    The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = -1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.

  13. GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice

    Directory of Open Access Journals (Sweden)

    Borovský Michal

    2016-01-01

    Full Text Available The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = −1. The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.

  14. Phase transitions in a spinless, extended Falicov-Kimball model on the triangular lattice

    Science.gov (United States)

    Yadav, Umesh K.; Maitra, T.; Singh, Ishwar

    2013-06-01

    A numerical diagonalization technique with canonical Monte-Carlo simulation algorithm is used to study the phase transitions from low temperature (ordered) phase to high temperature (disordered) phase of spinless Falicov-Kimball model on a triangular lattice with correlated hopping (t'). It is observed that the low temperature ordered phases (i.e. regular, bounded and segregated) persist up to a finite critical temperature (Tc). In addition, we observe that the critical temperature decreases with increasing the correlated hopping in regular and bounded phases whereas it increases in the segregated phase. Single and multi peak patterns seen in the temperature dependence of specific heat (Cv) and charge susceptibility (χ) for different values of parameters like on-site Coulomb correlation strength (U), correlated hopping (t') and filling of localized electrons (nf) are also discussed.

  15. Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods

    Science.gov (United States)

    Diaz-Valencia, B. F.; Calero, J. M.

    2017-02-01

    In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.

  16. Piecewise parabolic negative magnetoresistance of two-dimensional electron gas with triangular antidot lattice

    Energy Technology Data Exchange (ETDEWEB)

    Budantsev, M. V., E-mail: budants@isp.nsc.ru; Lavrov, R. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Pokhabov, D. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2011-02-15

    Extraordinary piecewise parabolic behavior of the magnetoresistance has been experimentally detected in the two-dimensional electron gas with a dense triangular lattice of antidots, where commensurability magnetoresistance oscillations are suppressed. The magnetic field range of 0-0.6 T can be divided into three wide regions, in each of which the magnetoresistance is described by parabolic dependences with high accuracy (comparable to the experimental accuracy) and the transition regions between adjacent regions are much narrower than the regions themselves. In the region corresponding to the weakest magnetic fields, the parabolic behavior becomes almost linear. The observed behavior is reproducible as the electron gas density changes, which results in a change in the resistance by more than an order of magnitude. Possible physical mechanisms responsible for the observed behavior, including so-called 'memory effects,' are discussed.

  17. From Discreteness to Continuity: Dislocation Equation for Two-Dimensional Triangular Lattice

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-Feng

    2007-01-01

    @@ A systematic method from the discreteness to the continuity is presented for the dislocation equation of the triangular lattice. A modification of the Peierls equation has been derived strictly. The modified equation includes the higher order corrections of the discrete effect which are important for the core structure of dislocation. It is observed that the modified equation possesses a universal form which is model-independent except the factors.The factors, which depend on the detail of the model, are related to the derivatives of the kernel at its zero point in the wave-vector space. The results open a way to deal with the complicated models because what one needs to do is to investigate the behaviour near the zero point of the kernel in the wave-vector space instead of calculating the kernel completely.

  18. Hydration-induced spin-glass state in a frustrated Na-Mn-O triangular lattice

    Science.gov (United States)

    Bakaimi, Ioanna; Brescia, Rosaria; Brown, Craig M.; Tsirlin, Alexander A.; Green, Mark A.; Lappas, Alexandros

    2016-05-01

    Birnessite compounds are stable across a wide range of compositions that produces a remarkable diversity in their physical, electrochemical, and functional properties. These are hydrated analogs of the magnetically frustrated, mixed-valent manganese oxide structures, with general formula, N axMn O2 . Here we demonstrate that the direct hydration of layered rock-salt type α-NaMn O2 , with the geometrically frustrated triangular lattice topology, yields the birnessite type oxide, N a0.36Mn O2.0.2 H2O , transforming its magnetic properties. This compound has a much-expanded interlayer spacing compared to its parent α-NaMn O2 compound. We show that while the parent α-NaMn O2 possesses a Néel temperature of 45 K as a result of broken symmetry in the M n3 + sublattice, the hydrated derivative undergoes collective spin freezing at 29 K within the M n3 +/M n4 + sublattice. Scaling-law analysis of the frequency dispersion of the ac susceptibility, as well as the temperature-dependent, low-field dc magnetization confirm a cooperative spin-glass state of strongly interacting spins. This is supported by complementary spectroscopic analysis [high-angle annular dark-field scanning transmission electron miscroscopy (TEM), energy-dispersive x-ray spectroscopy, and electron energy-loss spectroscopy] as well as by a structural investigation (high-resolution TEM, x-ray, and neutron powder diffraction) that yield insights into the chemical and atomic structure modifications. We conclude that the spin-glass state in birnessite is driven by the spin frustration imposed by the underlying triangular lattice topology that is further enhanced by the in-plane bond-disorder generated by the mixed-valent character of manganese in the layers.

  19. Coordinate Bethe ansatz computation for low temperature behavior of a triangular lattice of a spin-1 Heisenberg antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibu, A. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia and Physics Department, Faculty of Science, Nigerian Defence Academy, P.M.B 2109, Kaduna (Nigeria); Rahman, M. M. [Physics Department, Faculty of Science, Nigerian Defence Academy, P.M.B 2109, Kaduna (Nigeria)

    2014-03-05

    We study the low temperature behavior of a triangular lattice quantum spin-1 Heisenberg antiferromagnet with single-site anisotropy by using coordinate Bethe ansatz method. We compute the standard two-particle Hermitian Hamiltonian, and obtain the eigenfunctions and eigenvalue of the system. The obtained results show a number of advantages in comparison with many results.

  20. 3D Lattice Boltzmann Modeling of Nanoparticle Self-Assembly in Evaporating Droplets and Rivulets

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2016-11-01

    In this work, a three-dimensional free-energy-based multiphase lattice Boltzmann method-Lagrangian particle tracking hybrid model is presented to simulate nanoparticle-laden droplets and rivulets undergoing evaporation. The 3D model enables the development of the 3D flow structures in the evaporating droplets, as well as allows us to capture the axial flows in the evaporating rivulets. We first model non-evaporating droplets and rivulets loaded with nanoparticles and the effects of particle-fluid interaction parameters on particle dynamics are characterized. By implementing evaporation, we probe the self-assembly of nanoparticles inside the fluid mass or at the liquid-vapor interface. The 3D microstructure of nanoparticle assemblies is quantified through radial distribution functions and structure factors. In particular, the final deposit of evaporating rivulets with oscillatory axial flows is revealed, resembling the flow field in printed rivulets in experiments. Our findings offer a theoretical framework to explore the dynamics of nanoparticle self-assembly in evaporating fluid mass.

  1. Tricriticality of the Blume-Emery-Griffiths model in thin films of stacked triangular lattices

    Science.gov (United States)

    El Hog, Sahbi; Diep, H. T.

    2016-03-01

    We study in this paper the Blume-Emery-Griffiths model in a thin film of stacked triangular lattices. The model is described by three parameters: bilinear exchange interaction between spins J, quadratic exchange interaction K and single-ion anisotropy D. The spin Si at the lattice site i takes three values (-1, 0, +1). This model can describe the mixing phase of He-4 (Si = +1,-1) and He-3 (Si = 0) at low temperatures. Using Monte Carlo simulations, we show that there exists a critical value of D below (above) which the transition is of second-(first-)order. In general, the temperature dependence of the concentrations of He-3 is different from layer by layer. At a finite temperature in the superfluid phase, the film surface shows a deficit of He-4 with respect to interior layers. However, effects of surface interaction parameters can reverse this situation. Effects of the film thickness on physical properties will be also shown as functions of temperature.

  2. Superglass Phase of Interaction-Blockaded Gases on a Triangular Lattice

    Science.gov (United States)

    Angelone, Adriano; Mezzacapo, Fabio; Pupillo, Guido

    2016-04-01

    We investigate the quantum phases of monodispersed bosonic gases confined to a triangular lattice and interacting via a class of soft-shoulder potentials. The latter correspond to soft-core potentials with an additional hard-core onsite interaction. Using exact quantum Monte Carlo simulations, we show that the low temperature phases for weak and strong interactions following a temperature quench are a homogeneous superfluid and a glass, respectively. The latter is an insulating phase characterized by inhomogeneity in the density distribution and structural disorder. Remarkably, we find that for intermediate interaction strengths a superglass occurs in an extended region of the phase diagram, where glassy behavior coexists with a sizable finite superfluid fraction. This glass phase is obtained in the absence of geometrical frustration or external disorder and is a result of the competition of quantum fluctuations and cluster formation in the corresponding classical ground state. For high enough temperature, the glass and superglass turn into a floating stripe solid and a supersolid, respectively. Given the simplicity and generality of the model, these phases should be directly relevant for state-of-the-art experiments with Rydberg-dressed atoms in optical lattices.

  3. Density-Matrix Renormalization Group Study of Kitaev-Heisenberg Model on a Triangular Lattice

    Science.gov (United States)

    Shinjo, Kazuya; Sota, Shigetoshi; Yunoki, Seiji; Totsuka, Keisuke; Tohyama, Takami

    2016-11-01

    We study the Kitaev-Heisenberg model on a triangular lattice by using the two-dimensional density-matrix renormalization group method. Calculating the ground-state energy and spin structure factors, we obtain a ground-state phase diagram of the Kitaev-Heisenberg model. As suggested by previous studies, we find a 120° antiferromagnetic (AFM) phase, a Z2-vortex crystal phase, a nematic phase, a dual Z2-vortex crystal phase (the dual counterpart of the Z2-vortex crystal phase), a Z6 ferromagnetic phase, and a dual ferromagnetic phase (the dual counterpart of the Z6 ferromagnetic phase). Spin correlations discontinuously change at phase boundaries because of first-order phase transitions. We also study the relation among the von Neumann entanglement entropy, entanglement spectrum, and phase transitions of the model. We find that the Schmidt gap closes at phase boundaries and thus the entanglement entropy clearly changes as well. This is different from the Kitaev-Heisenberg model on a honeycomb lattice, where the Schmidt gap and entanglement entropy are not necessarily a good measure of phase transitions.

  4. Monte Carlo study of the Ising ferromagnet on the site-diluted triangular lattice

    Science.gov (United States)

    Najafi, M. N.

    2016-01-01

    In this paper we consider the Ising model on the triangular percolation lattice and analyze its geometrical interfaces and spin clusters. The (site) percolation lattice is tuned by the occupancy parameter p which is the probability that a site is magnetic. Some statistical observables are studied in terms of temperature (T) and p. We find two separate (second order) transition lines, namely magnetic and percolation transition lines. The finite size analysis shows that the magnetic transition line is a critical one with varying exponents, having its root in the fact that the line is composed of individual critical points, or that a cross-over occurs between two (UV and IR) fixed points. For the percolation transition line however the exponents seem to be identical. Schramm-Loewner evolution (SLE) is employed to address the problem of conformal invariance at the points on the magnetic transition line. We find that at p ≃ 0.9 the model is described by κ ≃ 4 whose corresponding central charge is maximum with respect to the others.

  5. Exact Potts model partition function on strips of the triangular lattice

    Science.gov (United States)

    Chang, Shu-Chiuan; Shrock, Robert

    2000-10-01

    In this paper we present exact calculations of the partition function Z of the q-state Potts model and its generalization to real q, for arbitrary temperature on n-vertex strip graphs, of width Ly=2 and arbitrary length, of the triangular lattice with free, cyclic, and Möbius longitudinal boundary conditions. These partition functions are equivalent to Tutte/Whitney polynomials for these graphs. The free energy is calculated exactly for the infinite-length limit of the graphs, and the thermodynamics is discussed. Considering the full generalization to arbitrary complex q and temperature, we determine the singular locus B in the corresponding C2 space, arising as the accumulation set of partition function zeros as n→∞. In particular, we study the connection with the T=0 limit of the Potts antiferromagnet where B reduces to the accumulation set of chromatic zeros. Comparisons are made with our previous exact calculation of Potts model partition functions for the corresponding strips of the square lattice. Our present calculations yield, as special cases, several quantities of graph-theoretic interest.

  6. Pair supersolid with atom-pair hopping on the state-dependent triangular lattice

    Science.gov (United States)

    Zhang, Wanzhou; Yin, Ruoxi; Wang, Yancheng

    2013-11-01

    We systematically study an extended Bose-Hubbard model with atom hopping and atom-pair hopping in the presence of a three-body constraint on the triangular lattice. By means of large-scale quantum Monte Carlo simulations, the ground-state phase diagram is studied. We find a first-order transition between the atomic superfluid phase and the pair superfluid phase when the ratio of the atomic hopping and the atom-pair hopping is adapted. The first-order transition remains unchanged under various conditions. We then focus on the interplay among the atom-pair hopping, the on-site repulsion, and the nearest-neighbor repulsion. With on-site repulsion present, we observe first-order transitions between the Mott insulators and pair superfluid driven by the pair hopping. With the nearest-neighbor repulsion turning on, three typical solid phases with 2/3, 1, and 4/3 filling emerge at small atom-pair hopping region. A stable pair supersolid phase is found at small on-site repulsion. This is due to the three-body constraint and the pair hopping, which essentially make the model a quasihardcore boson system. Thus the pair supersolid state emerges basing on the order-by-disorder mechanism, by which hardcore bosons avoid classical frustration on the triangular lattice. Without on-site repulsion, the transitions between the pair supersolid and the atom superfluid or pair superfluid are first order, except for the particle-hole symmetric point. With weak on-site repulsion and atom hopping turning on, the transition between the pair supersolid and pair superfluid phase becomes continuous. The transition between solid and pair supersolid is three-dimensional XY university, with dynamical exponent z=1 and correlation exponent ν=0.67155. The thermal melting of pair supersolid belongs to the two-dimensional Ising university. We check both energetic and mechanical balance of pair supersolid phase. Lowering the three-body constraint, no pair supersolid is found due to the absence of

  7. On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity

    CERN Document Server

    Delcamp, Clement; Riello, Aldo

    2016-01-01

    Entanglement entropy is a valuable tool for characterizing the correlation structure of quantum field theories. When applied to gauge theories, subtleties arise which prevent the factorization of the Hilbert space underlying the notion of entanglement entropy. Borrowing techniques from extended topological field theories, we introduce a new definition of entanglement entropy for both Abelian and non--Abelian gauge theories. Being based on the notion of excitations, it provides a completely relational way of defining regions. Therefore, it naturally applies to background independent theories, e.g. gravity, by circumventing the difficulty of specifying the position of the entangling surface. We relate our construction to earlier proposals and argue that it brings these closer to each other. In particular, it yields the non--Abelian analogue of the `magnetic centre choice', as obtained through an extended--Hilbert--space method, but applied to the recently introduced fusion basis for 3D lattice gauge theories. W...

  8. TAILORING OF FLATTENED DISPERSION IN TRIANGULAR-LATTICE PHOTONIC CRYSTAL FIBER

    Directory of Open Access Journals (Sweden)

    Sandhir Kumar Singh

    2011-12-01

    Full Text Available The interest of researchers and engineers in several laboratories, since the1980s, has been attracted by the ability to structure materials on the scale of the optical wavelength, a fraction of micrometers or less, in order to develop new optical medium, known as photonic crystals . Photonic crystals rely on a regular morphological microstructure of air-holes, incorporated into the material, which radically alters its optical properties. In Photonic Crystal Fiber (PCF it is possible to realize flat dispersion over a wide wavelength range that cannot be realized with a conventional single-mode fiber. In PCFs, the dispersion can be controlled and tailored with unprecedented freedom. In fact, due to the high refractive index difference between silica and air, and to the flexibility of changing air-hole sizes and patterns, the waveguide contribution to the dispersion parameter can be significantly changed, thus obtaining unusual position of the zero dispersion wavelength, as well as particular values of the dispersion curve slope. In particular, by manipulating the air- hole radius or the lattice period of the micro structured cladding, it is possible to control the zero-dispersion wavelength, which can be tuned over a very wide range, or the dispersion curves, which can be engineered to be ultra flattened. In this paper the geometric parameters of triangular PCF have been properly changed to optimize the dispersion compensation over a wide wavelength range.

  9. Quantum spin liquid ground states of the Heisenberg-Kitaev model on the triangular lattice

    Science.gov (United States)

    Kos, Pavel; Punk, Matthias

    2017-01-01

    We study quantum disordered ground states of the two-dimensional Heisenberg-Kitaev model on the triangular lattice using a Schwinger boson approach. Our aim is to identify and characterize potential gapped quantum spin liquid phases that are stabilized by anisotropic Kitaev interactions. For antiferromagnetic Heisenberg and Kitaev couplings and sufficiently small spin S , we find three different symmetric Z2 spin liquid phases, separated by two continuous quantum phase transitions. Interestingly, the gap of elementary excitations remains finite throughout the transitions. The first spin liquid phase corresponds to the well-known zero-flux state in the Heisenberg limit, which is stable with respect to small Kitaev couplings and develops 120∘ order in the semiclassical limit at large S . In the opposite Kitaev limit, we find a different spin liquid ground state, which is a quantum disordered version of a magnetically ordered state with antiferromagnetic chains, in accordance with results in the classical limit. Finally, at intermediate couplings, we find a spin liquid state with unusual spin correlations. Upon spinon condensation, this state develops Bragg peaks at incommensurate momenta in close analogy to the magnetically ordered Z2 vortex crystal phase, which has been analyzed in recent theoretical works.

  10. Semiclassical theory of the magnetization process of the triangular lattice Heisenberg model

    Science.gov (United States)

    Coletta, Tommaso; Tóth, Tamás A.; Penc, Karlo; Mila, Frédéric

    2016-08-01

    Motivated by the numerous examples of 1/3 magnetization plateaux in the triangular-lattice Heisenberg antiferromagnet with spins ranging from 1/2 to 5/2, we revisit the semiclassical calculation of the magnetization curve of that model, with the aim of coming up with a simple method that allows one to calculate the full magnetization curve and not just the critical fields of the 1/3 plateau. We show that it is actually possible to calculate the magnetization curve including the first quantum corrections and the appearance of the 1/3 plateau entirely within linear spin-wave theory, with predictions for the critical fields that agree to order 1 /S with those derived a long time ago on the basis of arguments that required going beyond linear spin-wave theory. This calculation relies on the central observation that there is a kink in the semiclassical energy at the field where the classical ground state is the collinear up-up-down structure and that this kink gives rise to a locally linear behavior of the energy with the field when all semiclassical ground states are compared to each other for all fields. The magnetization curves calculated in this way for spin 1/2, 1, and 5/2 are shown to be in good agreement with available experimental data.

  11. Exact duality of the dissipative Hofstadter model on a triangular lattice: T-duality and noncommutative algebra

    Science.gov (United States)

    Lee, Taejin

    2016-09-01

    We study the dissipative Hofstadter model on a triangular lattice, making use of the O(2, 2; R) T-dual transformation of string theory. The O(2, 2; R) dual transformation transcribes the model in a commutative basis into the model in a noncommutative basis. In the zero-temperature limit, the model exhibits an exact duality, which identifies equivalent points on the two-dimensional parameter space of the model. The exact duality also defines magic circles on the parameter space, where the model can be mapped onto the boundary sine-Gordon on a triangular lattice. The model describes the junction of three quantum wires in a uniform magnetic field background. An explicit expression of the equivalence relation, which identifies the points on the two-dimensional parameter space of the model by the exact duality, is obtained. It may help us to understand the structure of the phase diagram of the model.

  12. Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices. II. Numerical analysis.

    Science.gov (United States)

    Ding, Chengxiang; Fu, Zhe; Guo, Wenan; Wu, F Y

    2010-06-01

    In the preceding paper, one of us (F. Y. Wu) considered the Potts model and bond and site percolation on two general classes of two-dimensional lattices, the triangular-type and kagome-type lattices, and obtained closed-form expressions for the critical frontier with applications to various lattice models. For the triangular-type lattices Wu's result is exact, and for the kagome-type lattices Wu's expression is under a homogeneity assumption. The purpose of the present paper is twofold: First, an essential step in Wu's analysis is the derivation of lattice-dependent constants A,B,C for various lattice models, a process which can be tedious. We present here a derivation of these constants for subnet networks using a computer algorithm. Second, by means of a finite-size scaling analysis based on numerical transfer matrix calculations, we deduce critical properties and critical thresholds of various models and assess the accuracy of the homogeneity assumption. Specifically, we analyze the q -state Potts model and the bond percolation on the 3-12 and kagome-type subnet lattices (n×n):(n×n) , n≤4 , for which the exact solution is not known. Our numerical determination of critical properties such as conformal anomaly and magnetic correlation length verifies that the universality principle holds. To calibrate the accuracy of the finite-size procedure, we apply the same numerical analysis to models for which the exact critical frontiers are known. The comparison of numerical and exact results shows that our numerical values are correct within errors of our finite-size analysis, which correspond to 7 or 8 significant digits. This in turn infers that the homogeneity assumption determines critical frontiers with an accuracy of 5 decimal places or higher. Finally, we also obtained the exact percolation thresholds for site percolation on kagome-type subnet lattices (1×1):(n×n) for 1≤n≤6 .

  13. A topological semimetal model with f-wave symmetry in a non-Abelian triangular optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ling; Bai, Zhiming [School of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Hao, Ningning [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Liu, Guocai, E-mail: guocailiu@semi.ac.cn [School of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China)

    2016-08-01

    We demonstrate that an chiral f-wave topological semimetal can be induced in a non-Abelian triangular optical lattice. We show that the f-wave symmetry topological semimetal is characterized by the topological invariant, i.e., the winding number W, with W=3 and is different from the semimetal with W=1 and 2 which have the p-wave and d-wave symmetry, respectively.

  14. Novel local symmetries and chiral-symmetry-broken phases in S = 1/2 triangular-lattice Heisenberg model

    Science.gov (United States)

    Baskaran, G.

    1989-01-01

    Using a nonmean-field approach the triangular-lattice S = 1/2 Heisenberg antiferromagnet with nearest- and next-nearest-neighbor couplings is shown undergo an Ising-type phase transition into a chiral-symmetry-broken phase (Kalmeyer-Laughlin-like state) at small T. Removal of next-nearest-neighbor coupling introduces a local Z2 symmetry, thereby suppressing any finite-T chiral order.

  15. Orbital magnetic field driven metal-insulator transition in spinless extended Falicov-Kimball model on a triangular lattice

    Science.gov (United States)

    Yadav, Umesh K.

    2017-01-01

    Ground state properties of spinless, extended Falicov-Kimball model (FKM) on a finite size triangular lattice with orbital magnetic field normal to the lattice are studied using numerical diagonalization and Monte-Carlo simulation methods. We show that the ground state configurations of localized electrons strongly depend on the magnetic field. Magnetic field induces a metal to insulator transition accompanied by segregated phase to an ordered regular phase except at density nf = 1 / 2 of localized electrons. It is proposed that magnetic field can be used as a new tool to produce segregated phase which was otherwise accessible only either with correlated hopping or with large on-site interactions.

  16. Self-organization of topological defects for a triangular-lattice magnetic dots array subject to a perpendicular magnetic field

    Directory of Open Access Journals (Sweden)

    R.S. Khymyn

    2014-09-01

    Full Text Available The regular array of magnetic particles (magnetic dots of the form of a two-dimensional triangular lattice in the presence of external magnetic field demonstrates complicated magnetic structures. The magnetic symmetry of the ground state for such a system is lower than that for the underlying lattice. Long range dipole-dipole interaction leads to a specific antiferromagnetic order in small fields, whereas a set of linear topological defects appears with the growth of the magnetic field. Self-organization of such defects determines the magnetization process for a system within a wide range of external magnetic fields.

  17. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    Science.gov (United States)

    Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

  18. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks

    Science.gov (United States)

    Liu, Chun; Xu, Qiang; Shi, Bin; Deng, Shang; Zhu, Honghu

    2017-06-01

    Numerical simulations using the 3D discrete element method can yield mechanical and dynamic behaviors similar to rocks and grains. In the model, rock is represented by bonded elements, which are arranged on a tetrahedral lattice. The conversion formulas between inter-element parameters and rock mechanical properties were derived. By using the formulas, inter-element parameters can be determined according to mechanical properties of model, including Young's modulus, Poisson's ratio, tensile strength (Tu), compressive strength (Cu) and coefficient of internal friction. The energy conversion rules of the model are proposed. Based on the methods, a Matlab code ;MatDEM; was developed. Numerical models of quartzite were used to validate the formulas. The tested mechanical properties of a single unit correspond reasonably well with the values of quartzite. Tested Tu and Cu with multiple elements are lower than the values predicted by the formulas. In the simulation of rock failure processes, mechanical energy conversed between different forms and heat is generated, but the mechanical energy plus heat always remains constant. Variations of breaking heat and frictional heat provide clues of the fracturing and slipping behaviors of the Tu and Cu tests. The model may be applied to a wide range of geological structures that involve breakage at multiple scales, heat generation and dynamic processes.

  19. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.

    Science.gov (United States)

    Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.

  20. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    Directory of Open Access Journals (Sweden)

    Aizat Abas

    2016-01-01

    Full Text Available This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI. Three different types of Lattice Boltzmann (LB models are computed, namely, single relaxation time (SRT, multiple relaxation time (MRT, and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV- based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.

  1. Ordered assemblies of triangular-shaped molecules with strongly interacting vertices: phase diagrams for honeycomb and zigzag structures on triangular lattice.

    Science.gov (United States)

    Misiūnas, T; Tornau, E E

    2012-03-01

    The model for ordering of triangular-shaped molecules with strongly interacting vertices is proposed and solved by the Monte Carlo method. The model accounts for three main intermolecular interactions and three states (two main orientations and a vacancy state) of a molecule on triangular lattice, the situation which is encountered in self-assembly of TMA molecules characterized by strongly directional H-bonding. Distinguishing the main "tip-to-tip" interaction, we calculate the phase diagrams for the honeycomb and frustrated honeycomb structures and demonstrate how these structures shrink and vanish with gradual increase of two other ("side-to-side" and "tip-to-side") interactions. We study the effect of frustration on the phase diagram, since the frustrated phase is obtained at the Ising limit of the model. We also demonstrate how the inclusion of longer-range interactions leads to substitution of the frustrated phase by the zigzag structure. Finally, we obtain the phase diagram with two experimentally found TMA structures (honeycomb and zigzag) and discuss the conditions of their existence by comparison with the experimental results.

  2. The spin-1 J1-J3 Heisenberg model on a triangular lattice

    Science.gov (United States)

    Rubin, P.; Sherman, A.

    2017-05-01

    Motivated by the experimental data for NiGa2S4, the spin-1 Heisenberg model on a triangular lattice with the ferromagnetic nearest- and antiferromagnetic third-nearest-neighbor exchange interactions, J1 = -(1 - p)J and J3 = pJ, J > 0, is studied in the range 0 ≤ p ≤ 1. Mori’s projection operator technique and the Lanczos exact diagonalization are used. Mori’s method retains the rotation symmetry of spin components and does not anticipate any magnetic ordering. For zero temperature several phase transitions are observed. At pcr ≈ 0.2 the ground state is transformed from the ferromagnetic spin structure into a disordered state, which in its turn is changed to an antiferromagnetic long-range ordered state with the incommensurate ordering vector Q‧ ≈ (1.16, 0) at p ≈ 0.31. With growing p the ordering vector moves along the X axis to the commensurate point Qc = (2π/3, 0) which is reached at p = 1. The final state with an antiferromagnetic long-range order can be conceived as four interpenetrating sublattices with the 120° spin structure on each of them. The model is able to describe the state with the incommensurate short-range order observed in NiGa2S4. To verify the used approach the ground state energy and corresponding spin-spin correlations are compared with exact-diagonalization results obtained with the SPINPACK code (the Lanczos exact diagonalization). Results of the two methods are in qualitative agreement.

  3. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet

    Science.gov (United States)

    Karube, K.; White, J. S.; Reynolds, N.; Gavilano, J. L.; Oike, H.; Kikkawa, A.; Kagawa, F.; Tokunaga, Y.; Rønnow, H. M.; Tokura, Y.; Taguchi, Y.

    2016-12-01

    Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature Tc, while a helical or conical magnetic state prevails at lower temperatures. Here we describe that for a room-temperature skyrmion material, β-Mn-type Co 8Zn 8Mn 4, a field-cooling via the equilibrium SkX state can suppress the transition to the helical or conical state, instead realizing robust metastable SkX states that survive over a very wide temperature and magnetic-field region. Furthermore, the lattice form of the metastable SkX is found to undergo reversible transitions between a conventional triangular lattice and a novel square lattice upon varying the temperature and magnetic field. These findings exemplify the topological robustness of the once-created skyrmions, and establish metastable skyrmion phases as a fertile ground for technological applications.

  4. Interlayer-interaction dependence of latent heat in the Heisenberg model on a stacked triangular lattice with competing interactions.

    Science.gov (United States)

    Tamura, Ryo; Tanaka, Shu

    2013-11-01

    We study the phase transition behavior of a frustrated Heisenberg model on a stacked triangular lattice by Monte Carlo simulations. The model has three types of interactions: the ferromagnetic nearest-neighbor interaction J(1) and antiferromagnetic third nearest-neighbor interaction J(3) in each triangular layer and the ferromagnetic interlayer interaction J([perpendicular]). Frustration comes from the intralayer interactions J(1) and J(3). We focus on the case that the order parameter space is SO(3)×C(3). We find that the model exhibits a first-order phase transition with breaking of the SO(3) and C(3) symmetries at finite temperature. We also discover that the transition temperature increases but the latent heat decreases as J([perpendicular])/J(1) increases, which is opposite to the behavior observed in typical unfrustrated three-dimensional systems.

  5. Magnetic phases of the quasi-two-dimensional antiferromagnet CuCrO2 on a triangular lattice

    Science.gov (United States)

    Sakhratov, Yu. A.; Svistov, L. E.; Kuhns, P. L.; Zhou, H. D.; Reyes, A. P.

    2016-09-01

    We have carried out Cu,6563 NMR spectra measurements in a magnetic field up to about 45 T on a single crystal of a multiferroic triangular antiferromagnet CuCrO2. The measurements were performed for magnetic fields aligned along the crystal c axis. Field and temperature evolution of the spectral shape demonstrates a number of phase transitions. It was found that the 3D magnetic ordering takes place in the low field range (H ≲15 T). At higher fields magnetic structures form within individual triangular planes whereas the spin directions of the magnetic ions from neighboring planes are not correlated. It is established that the 2D-3D transition is hysteretic in field and temperature. Line-shape analysis reveals several possible magnetic structures existing within individual planes for different phases of CuCrO2. Within certain regions on the magnetic H -T phase diagram of CuCrO2 a 3D magnetic ordering with tensor order parameter is expected.

  6. Coupling-governed metamorphoses of the integrable nonlinear Schrödinger system on a triangular-lattice ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Vakhnenko, Oleksiy O., E-mail: vakhnenko@bitp.kiev.ua

    2016-05-27

    Highlights: • The integrable nonlinear Schrödinger system on a triangular-lattice ribbon is inclined to metamorphoses. • The system under study is capable to incorporate the effect of external linear potential. • The system criticality against the background parameter reduces the number of independent field variables. • At critical point the system Poisson structure becomes degenerate. • The effect of criticality is elucidated by the system one-soliton solution. - Abstract: The variativity of governing coupling parameters in the integrable nonlinear Schrödinger system on a triangular-lattice ribbon is shown to ensure the important qualitative rearrangements in the system dynamics. There are at least the two types of system crucial modifications stipulated by the two types of governing parameters. Thus the longitudinal coupling parameters regulated mainly by the background values of concomitant field variables are responsible for the bifurcation of primary integrable nonlinear system into the integrable nonlinear system of Ablowitz–Ladik type. As a consequence in a critical point the number of independent field variables is reduced by a half and the system Poisson structure turns out to be degenerate. On the other hand the transverse coupling parameters regulated basically by the choice of their a priori arbitrary dependencies on time are capable to incorporate the effect of external linear potential. As a consequence the primary integrable nonlinear system with appropriately adjusted parametrical driving becomes isomorphic to the system modeling the Bloch oscillations of charged nonlinear carriers in an electrically biased ribbon of triangular lattice. The multi-component structure of basic integrable system alongside with the attractive character of system nonlinearities has predetermined the logic of whole consideration.

  7. Phase diagrams of the corner cubic Heisenberg model and its site-diluted version on a triangular lattice: Renormalization-group treatment

    Science.gov (United States)

    Nagai, Kiyoshi

    1985-02-01

    The global phase diagrams of the corner cubic anisotropic discrete-spin Heisenberg (CH) model and its site-diluted version (dCH) on a triangular lattice are investigated through the position-space renormalization-group method of the simple Migdal-Kadanoff type. The two models include many simpler models as their subspaces, and the interrelations among these models are elucidated. The five-dimensional (5D) phase diagram of the dCH model is generated from the 3D one of the CH model by introducing 2D site-dilution operation. The structure of the 5D phase diagram and the effect of site dilution on the CH model are conveniently visualized by introducing the concept of paths in the 3D subspace. The path describes the temperature variation provided that the ratios between the interaction parameters in the original CH model are fixed. The resulting phase diagrams of the dCH model exhibit the typical three-phase coexistence of solid, liquid, and gas, and their qualitative interpretations are summarized.

  8. Spin compensation temperature in the Monte Carlo study of a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on the decorated triangular lattice

    Science.gov (United States)

    Masrour, R.; Jabar, A.

    2016-07-01

    Mixed-spin-1 and spin-3/2 Ising model on the decorated triangular lattice is studied by the use of Monte Carlo simulation. Within this approach, the results for the ground-state of the antiferromagnetic and ferromagnetic of decorated triangular lattice are obtained. The reduced transition temperature of each sublattice are obtained. The reduced temperature of compensation is also obtained. The thermal total ratio of magnetic susceptibilities of sublattices is given. The effect of crystal field and exchange interactions on the magnetization of the system are detailed. The magnetic hysteresis cycles are found for different values of exchanges interactions between the same lattice and the two sublattices different, for different crystal filed and temperatures. In addition, very weak exchange interactions and for a higher temperatures and a higher crystal filed values the decorated triangular lattice has been exhibited the superparamagnetic behavior.

  9. Study of ground state phases for spin-1/2 Falicov-Kimball model on a triangular lattice

    Science.gov (United States)

    Kumar, Sant; Yadav, Umesh K.; Maitra, T.; Singh, Ishwar

    2014-07-01

    The spin-dependent Falicov-Kimball model (FKM) is studied on a triangular lattice using numerical diagonalization technique and Monte-Carlo simulation algorithm. Magnetic properties have been explored for different values of parameters: on-site Coulomb correlation U, exchange interaction J and filling of electrons. We have found that the ground state configurations exhibit long range Neèl order, ferromagnetism or a mixture of both as J is varied. The magnetic moments of itinerant (d) and localized (f) electrons are also studied. For the one-fourth filling case we found no magnetic moment from d- and f-electrons for U less than a critical value.

  10. Strongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li2IrO3

    Science.gov (United States)

    Nishimoto, Satoshi; Katukuri, Vamshi M.; Yushankhai, Viktor; Stoll, Hermann; Rößler, Ulrich K.; Hozoi, Liviu; Rousochatzakis, Ioannis; van den Brink, Jeroen

    2016-01-01

    Iridium oxides with a honeycomb lattice have been identified as platforms for the much anticipated Kitaev topological spin liquid: the spin-orbit entangled states of Ir4+ in principle generate precisely the required type of anisotropic exchange. However, other magnetic couplings can drive the system away from the spin-liquid phase. With this in mind, here we disentangle the different magnetic interactions in Li2IrO3, a honeycomb iridate with two crystallographically inequivalent sets of adjacent Ir sites. Our ab initio many-body calculations show that, while both Heisenberg and Kitaev nearest-neighbour couplings are present, on one set of Ir-Ir bonds the former dominates, resulting in the formation of spin-triplet dimers. The triplet dimers frame a strongly frustrated triangular lattice and by exact cluster diagonalization we show that they remain protected in a wide region of the phase diagram.

  11. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Li Juan; Wang Yifei; Gong Changde, E-mail: yfwang_nju@hotmail.com [Center for Statistical and Theoretical Condensed Matter Physics, and Department of Physics, Zhejiang Normal University, Jinhua 321004 (China)

    2011-04-20

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength {phi}, and a staggered-flux part with strength {Delta}{phi}. Various properties of the Hall conductances and Hofstadter butterflies are studied. When {phi} is fixed, variation of {Delta}{phi} leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero {Delta}{phi}s have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of {Delta}{phi} = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by {Delta}{phi}.

  12. Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca3CoNb2O9

    Science.gov (United States)

    Dai, Jia; Zhou, Ping; Wang, Peng-Shuai; Pang, Fei; Munsie, Tim J.; Luke, Graeme M.; Zhang, Jin-Shan; Yu, Wei-Qiang

    2015-12-01

    We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+ is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW˜ -55 K and the low Neel temperature TN˜ 1.45 K give a frustration factor f = | θCW/TN | ≈ 38, suggesting that Ca3CoNb2O9 resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling (ZFC) and field cooling (FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3CoNb2O9 is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374364 and 11222433), the National Basic Research Program of China (Grant No. 2011CBA00112). Research at McMaster University supported by the Natural Sciences and Engineering Research Council. Work at North China Electric Power University supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  13. On the implementation of fast marching methods for 3D lattices

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    2001-01-01

    This technical report discusses Sethian's Fast Marching Method and its higher accuracy variant. Both methods may be used to compute the arrival times at the points of a discrete lattice of a front which is monotonously expanding. Applications of the method include arrival time computation and the...

  14. Clar Sextet Analysis of Triangular, Rectangular, and Honeycomb Graphene Antidot Lattices

    DEFF Research Database (Denmark)

    Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka

    2011-01-01

    Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer. scale periodic array of holes In the graphene sheet a band gap may form; the size of the gap is controllable by adjusting the parameters Of the lattice. The,hole diameter, hole geometry, lattice geometry, a...

  15. LB3D: A parallel implementation of the Lattice-Boltzmann method for simulation of interacting amphiphilic fluids

    Science.gov (United States)

    Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.

    2017-08-01

    We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools which have enabled research utilising high performance computing resources for nearly two decades, LB3D version 7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of the implementation. The software package is validated against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC) model porous medium for a simple binary mixture is described. Single-core performance and scaling behaviour of the code are reported for simulations on current supercomputer architectures.

  16. Vacancies in a 3D-Kitaev model on hyper-honeycomb lattice

    Science.gov (United States)

    Sreejith, G. J.; Bhattacharjee, Subhro; Moessner, Roderich

    We study the properties of isolated single and pairs of vacancies in an exactly solvable Kitaev model on a three dimensional hyper-honeycomb lattice. We show that each vacancy in the lattice is associated with a low energy spin like degree of freedom, similar to the case of previously studied honeycomb model. We calculate the contribution from these vacancy spin-moments to the low field magnetization response to a z-directed field. Isolated vacancies in the gapped phase act as free spins. In the gapless phase, these spins interact with the surrounding spin-liquid suppressing the low-field magnetization to 1/√{ ln [ 1 /hz ] }. Pair of vacancies have a sublattice-dependent, anisotropic, spin-liquid mediated interaction with each other. In the gapless phase, interaction between vacancies in the same (opposite) sublattice enhances (suppresses) the low-field magnetization, indicating a ferromagnetic (anti-ferromagnetic) nature. We also show that, unlike vacancies in the honeycomb lattice, the vacancies here do not bind a flux at low-energies.

  17. A Chaos-based Image Encryption Scheme Using 3D Skew Tent Map and Coupled Map Lattice

    Directory of Open Access Journals (Sweden)

    Ruisong Ye

    2012-02-01

    Full Text Available This paper proposes a chaos-based image encryption scheme where one 3D skew tent map with three control parameters is utilized to generate chaotic orbits applied to scramble the pixel positions while one coupled map lattice is employed to yield random gray value sequences to change the gray values so as to enhance the security. Experimental results have been carried out with detailed analysis to demonstrate that the proposed image encryption scheme possesses large key space to resist brute-force attack and possesses good statistical properties to frustrate statistical analysis attacks. Experiments are also performed to illustrate the robustness against malicious attacks like cropping, noising, JPEG compression.

  18. Ground state properties of spinless extended Falicov-Kimball model on a triangular lattice with finite magnetic field

    Science.gov (United States)

    Yadav, Umesh K.

    2017-07-01

    Combined effects of correlated electron hopping, electron correlations and orbital magnetic field are studied on ground state properties of spinless Falicov-Kimball model (FKM). Results are obtained for finite size triangular lattice with periodic boundary conditions using numerical diagonalization and Monte-Carlo simulation techniques. It is found that the ground state configurations of electrons strongly depend on correlated electron hopping, onsite Coulomb interaction and orbital magnetic field. Several interesting configurations e.g. regular, segregated, axial and diagonal striped and hexagonal phases are found with change in correlated hopping and magnetic field. Study of density of states reveals that magnetic field induces a metal to insulator transition accompanied by segregated phase to an ordered phase. These results are applicable to the systems of recent interest like GdI2, NaTiO2 and MgV2O4 and can also be seen experimentally in cold atomic set up.

  19. Magnon Breakdown in a Two Dimensional Triangular Lattice Heisenberg Antiferromagnet of Multiferroic LuMnO3

    Science.gov (United States)

    Oh, Joosung; Le, Manh Duc; Jeong, Jaehong; Lee, Jung-hyun; Woo, Hyungje; Song, Wan-Young; Perring, T. G.; Buyers, W. J. L.; Cheong, S.-W.; Park, Je-Geun

    2013-12-01

    The breakdown of magnons, the quasiparticles of magnetic systems, has rarely been seen. By using an inelastic neutron scattering technique, we report the observation of spontaneous magnon decay in multiferroic LuMnO3, a simple two dimensional Heisenberg triangular lattice antiferromagnet, with large spin S=2. The origin of this rare phenomenon lies in the nonvanishing cubic interaction between magnons in the spin Hamiltonian arising from the noncollinear 120° spin structure. We observed all three key features of the nonlinear effects as theoretically predicted: a rotonlike minimum, a flat mode, and a linewidth broadening, in our inelastic neutron scattering measurements of single crystal LuMnO3. Our results show that quasiparticles in a system hitherto thought of as “classical” can indeed break down.

  20. ASE suppression in Er3+ doped dual-core triangular lattice Photonic Crystal Fibers (PCFs) for communication wavelength

    CERN Document Server

    Maji, Partha Sona

    2014-01-01

    In this article, silica based triangular lattice PCF has been investigated towards both narrowband and broadband dispersion compensation for application in the communication wavelength. A dual core structure is obtained by introducing two different air-hole diameters in the cladding of the PCF. Dependence of individual structural parameters towards high negative dispersion (both narrowband and broadband) has been investigated in details with multipole mode based solver. The numerical investigation exhibits narrowband of very large negative dispersion of -37,300 ps/nm/km around the wavelength of 1550 nm. Present investigation also reports broadband dispersion values varying from -800 ps/nm/km to -2600 ps/nm/km over a 200 nm wavelength (1400 nm to 1600 nm) range, and kappa values near 300 nm, which matches well with standard single mode fiber. Using the principle of power transfer from the inner core to the outer core after the coupling wavelength, we have investigated possible design of ASE suppressed amplifie...

  1. Effect of the phase transition to the ferroquadrupolar phase on spin transport in the biquadratic antiferromagnet of the triangular lattice

    Science.gov (United States)

    Lima, L. S.

    2017-04-01

    We use the SU(N) Schwinger boson formalism to study the spin transport in the S=1 biquadratic frustrated Heisenberg antiferromagnetic model in the triangular lattice, considering the next-nearest-neighbors interactions J2. We have obtained a jump in the spin conductivity in the point of cusp of the phase diagram - η vs. - α of the model at T=0, which represents the force of the biquadratic coupling versus the next-nearest-neighbor coupling (K vs. J2). We have obtained also a superfluid behavior for the spin transport in the DC limit for this system similar to ones recently obtained for other two-dimensional frustrated spin systems. We consider all the couplings, first and second couplings as antiferromagnetic.

  2. Magnon breakdown in a two dimensional triangular lattice Heisenberg antiferromagnet of multiferroic LuMnO3.

    Science.gov (United States)

    Oh, Joosung; Le, Manh Duc; Jeong, Jaehong; Lee, Jung-hyun; Woo, Hyungje; Song, Wan-Young; Perring, T G; Buyers, W J L; Cheong, S-W; Park, Je-Geun

    2013-12-20

    The breakdown of magnons, the quasiparticles of magnetic systems, has rarely been seen. By using an inelastic neutron scattering technique, we report the observation of spontaneous magnon decay in multiferroic LuMnO3, a simple two dimensional Heisenberg triangular lattice antiferromagnet, with large spin S=2. The origin of this rare phenomenon lies in the nonvanishing cubic interaction between magnons in the spin Hamiltonian arising from the noncollinear 120° spin structure. We observed all three key features of the nonlinear effects as theoretically predicted: a rotonlike minimum, a flat mode, and a linewidth broadening, in our inelastic neutron scattering measurements of single crystal LuMnO3. Our results show that quasiparticles in a system hitherto thought of as "classical" can indeed break down.

  3. Integer quantum Hall effect in a triangular-lattice: Disorder effect and scaling behavior of the insulator-plateau transition

    Science.gov (United States)

    Yu, H. L.; Jiang, C.; Zhai, Z. Y.

    2017-01-01

    We investigate numerically the integer quantum Hall effect in a three-band triangular-lattice model. The three bands own the Chern number C=2,-1,-1, respectively. The lowest topological flat band carrying Chern number C=2, which leads to the Hall plateau σH = 2 (e2 / h) . This Hall plateau is sensitive to the disorder scattering and is rapidly destroyed by the weak disorder. Further increasing the strength of disorder, the gap of density of states always disappears before the vanishing of the corresponding Hall plateau. The scaling behavior of quantum phase transition between an insulator and a quantum Hall plateau is studied. We find that the insulator-plateau transition becomes sharper with increasing the size of system. Due to the different of edge states, the critical energy Ec1 gradually shifts to the center of Hall plateau while Ec2 is unaffected with increasing the disorder strength.

  4. COMPUTER SIMULATION OF PHASE TRANSITIONS IN THE TWODIMENSIONAL STRUCTURES DESCRIBED THREE-VERTEX ANTIFERROMAGNETIC POTTS MODE ON A TRIANGULAR LATTICE

    Directory of Open Access Journals (Sweden)

    A. B. Babaev

    2015-01-01

    Full Text Available Using Monte-Carlo simulations, we investigated phase transitions and frustrations in the three-state Potts model on a triangular lattice with allowance for antiferromagnetic exchange interactions between nearest- neighbors J1 and next- nearest- neighbors J2. The ratio of the next-nearest- neighbor and nearest- neighbor exchange constants r=J2/J1 is chosen within the 0÷2 range. Based on the analysis of the entropy, specific heat, system state density function, and fourth order Binder cumulants, the phase transitions in the Potts model with interactions J1<0 and J2<0 are shown to be found in value ranges of 0 r<0.2 and 1.0

  5. Three-state Potts model on triangular lattice with nearest-neighbor and next-nearest-neighbor antiferromagnetic interactions

    Science.gov (United States)

    Murtazaev, Akai K.; Babaev, Albert B.; Magomedov, Magomed A.; Kassan-Ogly, Felix A.; Proshkin, Alexey I.

    2016-11-01

    Using Monte Carlo simulations, we investigated phase transitions and frustrations in the three-state Potts model on a triangular lattice with allowance for antiferromagnetic exchange interactions between nearest-neighbors J1 and next-nearest-neighbors J2. The ratio of the next-nearest-neighbor and nearest-neighbor exchange constants r=J2/J1 is chosen within the range of 0≤r≤2. Based on the analysis of the entropy, specific heat, system state density function, and fourth order Binder cumulants, the phase transitions in the Potts model with interactions J1<0 and J2<0 are shown to be found in value ranges of 0≤r<0.2 and 1.25≤r≤2.0. In an intermediate range of 0.2≤r≤1.0 the phase transition fails and the frustrations are revealed.

  6. The Critical Lines of the Yang-Lee Edge Singularities of the Anisotropic Ising Ferromagnets on Square, Triangular and Honeycomb Lattices

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-Zhi

    2001-01-01

    Using the numerical results and some results from the renormalization group theory, we extend our previous approach of determining the Yang-Lee edge singularities of Ising ferromagnets on square, triangular and honeycomb lattices (Phys. Rev. Lett. 78 (1997) 413; Phys. Rev. E56 (1998) 2793; E57 (1998) 5013) and obtain accurate closed-form approximations of the critical lines of anisotropic Ising ferromagnets on these lattices.

  7. 3-D lattice simulation of the electroweak phase transition at small Higgs mass

    CERN Document Server

    Ilgenfritz, E M; Perlt, H; Schiller, A

    1995-01-01

    We study the electroweak phase transition by lattice simulations of an effective 3-dimensional theory, for a Higgs mass of about 35 GeV. In the broken symmetry phase our results on masses and the Higgs condensate are consistent with 2-loop perturbative results. However we find a non-perturbative lowering of the transition temperature, similar to the one previously found at m_H = 80 GeV. For the symmetric phase, bound state masses and the static force are determined and compared with results for pure SU(2) theory.

  8. Coherent addressing of individual neutral atoms in a 3D optical lattice

    CERN Document Server

    Wang, Yang; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-01-01

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a $5\\times 5\\times 5$ array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in non-targeted atoms is smaller than $3\\times 10^{-3}$ in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  9. Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.

    Science.gov (United States)

    Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-07-24

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  10. Design of a Photonic-Crystal Channel-Drop Filter Based on the Two-Dimensional Triangular-Lattice Hole Structure

    Institute of Scientific and Technical Information of China (English)

    Kyu; Hwan; Hwang; G.; Hugh; Song; Chanmook; Lim; Soan; Kim; Kyung-Won; Chun; Mahn; Yong; Park

    2003-01-01

    A channel-drop filter has been designed based on the two-dimensional triangular-lattice hole photonic-crystal structure, which consists of two line defects and two point defects, by a two-dimensional finite-difference time-domain simulation.

  11. Protein folding optimization based on 3D off-lattice model via an improved artificial bee colony algorithm.

    Science.gov (United States)

    Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun

    2015-10-01

    Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.

  12. The cone phase of liquid crystals: Triangular lattice of double-tilt cylinders

    Indian Academy of Sciences (India)

    Yashodhan Hatwalne; N V Madhusudana

    2003-08-01

    We predict the existence of a new defect-lattice phase near the nematic–smectic-C (NC) transition. This tilt-analogue of the blue phase is a lattice of double-tilt cylinders which are disclination lines in the smectic layer normal as well as the c-field. We discuss the structure and stability of the cone phase. We suggest that many ‘nematics’ exhibiting short range layering and tilt order may in fact be in the molten cone phase, which is a line liquid.

  13. Phase transitions in strongly coupled 3d Z(N) lattice gauge theories at finite temperature

    CERN Document Server

    Borisenko, O; Cortese, G; Fiore, R; Gravina, M; Papa, A; Surzhikov, I

    2012-01-01

    We perform an analytical and numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. In the strong coupling limit these models are equivalent to a generalized version of the vector Potts models in two dimensions, where Polyakov loops play the role of Z(N) spins. The effective couplings of these two-dimensional spin models are calculated explicitly. It is argued that the effective spin models have two phase transitions of BKT type. This is confirmed by large-scale Monte Carlo simulations. Using a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the helicity modulus, the average action and the specific heat. A scaling formula for the critical points with N is proposed.

  14. Simulating Growth Kinetics in a Data-Parallel 3D Lattice Photobioreactor

    Directory of Open Access Journals (Sweden)

    A. V. Husselmann

    2013-01-01

    Full Text Available Though there have been many attempts to address growth kinetics in algal photobioreactors, surprisingly little have attempted an agent-based modelling (ABM approach. ABM has been heralded as a method of practical scientific inquiry into systems of a complex nature and has been applied liberally in a range of disciplines including ecology, physics, social science, and microbiology with special emphasis on pathogenic bacterial growth. We bring together agent-based simulation with the Photosynthetic Factory (PSF model, as well as certain key bioreactor characteristics in a visual 3D, parallel computing fashion. Despite being at small scale, the simulation gives excellent visual cues on the dynamics of such a reactor, and we further investigate the model in a variety of ways. Our parallel implementation on graphical processing units of the simulation provides key advantages, which we also briefly discuss. We also provide some performance data, along with particular effort in visualisation, using volumetric and isosurface rendering.

  15. Chiral Spin Liquids in Triangular-Lattice SU (N ) Fermionic Mott Insulators with Artificial Gauge Fields

    Science.gov (United States)

    Nataf, Pierre; Lajkó, Miklós; Wietek, Alexander; Penc, Karlo; Mila, Frédéric; Läuchli, Andreas M.

    2016-10-01

    We show that, in the presence of a π /2 artificial gauge field per plaquette, Mott insulating phases of ultracold fermions with SU (N ) symmetry and one particle per site generically possess an extended chiral phase with intrinsic topological order characterized by an approximate ground space of N low-lying singlets for periodic boundary conditions, and by chiral edge states described by the SU(N ) 1 Wess-Zumino-Novikov-Witten conformal field theory for open boundary conditions. This has been achieved by extensive exact diagonalizations for N between 3 and 9, and by a parton construction based on a set of N Gutzwiller projected fermionic wave functions with flux π /N per triangular plaquette. Experimental implications are briefly discussed.

  16. Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk

    Science.gov (United States)

    Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Mixed-ligand hydroxocopper(II)/pyridazine clusters embedded into 3D framework lattices.

    Science.gov (United States)

    Degtyarenko, Anna S; Handke, Marcel; Krämer, Karl W; Liu, Shi-Xia; Decurtins, Silvio; Rusanov, Eduard B; Thompson, Laurence K; Krautscheid, Harald; Domasevitch, Konstantin V

    2014-06-14

    Rational combination of pyridazine, hydroxo and carboxylate bridging ligands led to the assembly of three types of mixed-ligand polynuclear Cu(II) clusters (A: [Cu2(μ-OH)(μ-pdz)(μ-COO)]; B: [Cu4(μ3-OH)2(μ-pdz)2]; C: [Cu5(μ-OH)2(μ-pdz)4(μ-COO)2(μ-H2O)2]) and their integration into 3D framework structures. Mixed-ligand complexes [Cu2(μ-OH){TMA}(L)(H2O)] (1), [Cu4(μ3-OH)2{ATC}2(L)2(H2O)2]·H2O (2) [Cu4(μ3-OH)2{TDC}3(L)2(H2O)2]·7H2O (3) (L = 1,3-bis(pyridazin-4-yl)adamantane; TMA(3-) = benzene-1,3,5-tricarboxylate, ATC(3-) = adamantane-1,3,5-tricarboxylate, TDC(2-) = 2,5-thiophenedicarboxylate) and [Cu5(μ-OH)2{X}4(L)2(H2O)2]·nH2O (X = benzene-1,3-dicarboxylate, BDC(2-), n = 5 (4) and 5-hydroxybenzene-1,3-dicarboxylate, HO-BDC(2-), n = 6 (5)) are prepared under hydrothermal conditions. Trigonal bridges TMA(3-) and ATC(3-) generate planar Cu(II)/carboxylate subtopologies further pillared into 3D frameworks (1: binodal 3,5-coordinated, doubly interpenetrated tcj-3,5-Ccc2; 2: binodal 3,8-coordinated tfz-d) by bitopic pyridazine ligands. Unprecedented triple bridges in 1 (cluster of type A) support short CuCu separations of 3.0746(6) Å. The framework in 3 is a primitive cubic net (pcu) with multiple bis-pyridazine and TDC(2-) links between the tetranuclear nodes of type . Compounds 4 and 5 adopt uninodal ten-coordinated framework topologies (bct) embedding unprecedented centrosymmetric open-chain pentanuclear clusters of type C with two kinds of multiple bridges, Cu(μ-OH)(μ-pdz)2Cu and Cu(μ-COO)(μ-H2O)Cu (CuCu distances are 3.175 and 3.324 Å, respectively). Magnetic coupling phenomena were detected for every type of cluster by susceptibility measurements of 1, 3 and 4. For binuclear clusters A in 1, the intracluster antiferromagnetic exchange interactions lead to a diamagnetic ground state (J = -17.5 cm(-1); g = 2.1). Strong antiferromagnetic coupling is relevant also for type B, which consequently results in a diamagnetic ground state (J1 = -110 cm(-1

  18. Ordering phenomena in a heterostructure of frustrated and unfrustrated triangular-lattice Ising layers

    Science.gov (United States)

    Žukovič, Milan; Tomita, Yusuke; Kamiya, Y.

    2017-07-01

    We study critical and magnetic properties of a bilayer Ising system consisting of two triangular planes A and B, with the antiferromagnetic (AF) coupling JA and the ferromagnetic (FM) one JB for the respective layers, which are coupled by the interlayer interaction JAB by using Monte Carlo simulations. When JA and JB are of the same order, the unfrustrated FM plane orders first at a high temperature Tc 1˜JB . The spontaneous FM order then exerts influence on the other frustrated AF plane as an effective magnetic field, which subsequently induces a ferrimagnetic order in this plane at low temperatures below Tc 2. When short-range order is developed in the AF plane while the influence of the FM plane is still small, there appears a preemptive Berezinskii-Kosterlitz-Thouless-type pseudocritical crossover regime just above the ferrimagnetic phase transition point, where the short-distance behavior up to a rather large length scale exponentially diverging in ∝JA/T is controlled by a line of Gaussian fixed points at T =0 . In the crossover region, a continuous variation in the effective critical exponent 4/9 ≲ηeff≲1/2 is observed. The phase diagram by changing the ratio JA/JB is also investigated.

  19. Large-N theory of the Sp(N) Heisenberg quantum antiferromagnet on an anisotropic triangular lattice

    Science.gov (United States)

    Chung, Chung-Hou; Marston, Brad

    2000-03-01

    The magnetic properties of the two-dimensional layered organic superconductors κ-(BEDT-TTF)_2X are modeled by a spin-1/2 Heisenberg quantum antiferromagnet on an anisotropic triangular lattice. The phase diagram is ascertained by means of a large-N expansion of the Sp(N) generalization of the physical SU(2) \\cong Sp(1) Heisenberg magnet.(S. Sachdev and N. Reed, Int. J. Mod. Phys. B5), 219 (1991). The phase diagram is presented in the two-dimensional parameter space of J_1/J_2, the ratio of the nearest to next-nearest neighbor Heisenberg exchange, and the ratio nb / N, which sets the strength of the quantum fluctuations. At large nb / N (equivalent to the large-spin limit of the physical SU(2) model) quantum effects are small, the ground states break global Sp(N) spin-rotational symmetry, and exhibit magnetic long-range-order (LRO). At small nb / N, however, quantum fluctuations overwhelm the tendency to order and there is only short-range magnetic order (SRO). The LRO and SRO phases can be further classified into two types depending on the size of the anisotropy: (i) ground states with commensurate, collinear, spin correlations; and (ii) ground states with incommensurate, coplanar, spin correlations. Finite-N corrections due to a Berry's phase term modify the character of the SRO phases, leading in the case of the commensurate state to spin-Peierls order and the confinement of spinons.

  20. Phase transitions in a two-dimensional antiferromagnetic Potts model on a triangular lattice with next-nearest neighbor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Babaev, A. B., E-mail: b-albert78@mail.ru; Magomedov, M. A.; Murtazaev, A. K. [Russian Academy of Sciences, Amirkhanov Institute of Physics, Dagestan Scientific Center (Russian Federation); Kassan-Ogly, F. A.; Proshkin, A. I. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-02-15

    Phase transitions (PTs) and frustrations in two-dimensional structures described by a three-vertex antiferromagnetic Potts model on a triangular lattice are investigated by the Monte Carlo method with regard to nearest and next-nearest neighbors with interaction constants J{sub 1} and J{sub 2}, respectively. PTs in these models are analyzed for the ratio r = J{sub 2}/J{sub 1} of next-nearest to nearest exchange interaction constants in the interval |r| = 0–1.0. On the basis of the analysis of the low-temperature entropy, the density of states function of the system, and the fourth-order Binder cumulants, it is shown that a Potts model with interaction constants J{sub 1} < 0 and J{sub 2} < 0 exhibits a first-order PT in the range of 0 ⩽ r < 0.2, whereas, in the interval 0.2 ⩽ r ⩽ 1.0, frustrations arise in the system. At the same time, for J{sub 1} > 0 and J{sub 2} < 0, frustrations arise in the range 0.5 < |r| < 1.0, while, in the interval 0 ⩽ |r| ⩽ 1/3, the model exhibits a second-order PT.

  1. Variational wave functions for the S =1/2 Heisenberg model on the anisotropic triangular lattice: Spin liquids and spiral orders

    Science.gov (United States)

    Ghorbani, Elaheh; Tocchio, Luca F.; Becca, Federico

    2016-02-01

    By using variational wave functions and quantum Monte Carlo techniques, we investigate the complete phase diagram of the Heisenberg model on the anisotropic triangular lattice, where two out of three bonds have superexchange couplings J and the third one has instead J'. This model interpolates between the square lattice and the isotropic triangular one, for J'/J ≤1 , and between the isotropic triangular lattice and a set of decoupled chains, for J /J'≤1 . We consider all the fully symmetric spin liquids that can be constructed with the fermionic projective-symmetry group classification (Zhou and Wen, arXiv:cond-mat/0210662) and we compare them with the spiral magnetic orders that can be accommodated on finite clusters. Our results show that, for J'/J ≤1 , the phase diagram is dominated by magnetic orderings, even though a spin-liquid state may be possible in a small parameter window, i.e., 0.7 ≲J'/J ≲0.8 . In contrast, for J /J'≤1 , a large spin-liquid region appears close to the limit of decoupled chains, i.e., for J /J'≲0.6 , while magnetically ordered phases with spiral order are stabilized close to the isotropic point.

  2. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    Science.gov (United States)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  3. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations

    Science.gov (United States)

    Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing

    2016-10-01

    This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.

  4. Connecting phase transitions between the 3-d O(4) Heisenberg model and 4-d SU(2) lattice gauge theory

    CERN Document Server

    Grady, Michael

    2011-01-01

    SU(2) lattice gauge theory is extended to a larger coupling space where the coupling parameter for horizontal (spacelike) plaquettes, $\\beta_H$, differs from that for vertical (Euclidean timelike) plaquettes, $\\beta_V$. When $\\beta_H \\rightarrow \\infty$ the system, when in Coulomb Gauge, splits into multiple independent 3-d O(4) Heisenberg models on spacelike hyperlayers. Through consideration of the robustness of the Heisenberg model phase transition to small perturbations, and illustrated by Monte Carlo simulations, it is shown that the ferromagnetic phase transition in this model persists for $\\beta_H < \\infty$. Once it has entered the phase-plane it must continue to another edge due to its symmetry-breaking nature, and therefore must necessarily cross the $\\beta_V = \\beta_H$ line at a finite value. Indeed, a higher-order SU(2) phase transition is found at $\\beta = 3.18 \\pm 0.08$, from a finite-size scaling analysis of the Coulomb gauge magnetization from Monte Carlo simulations, which also yields criti...

  5. Exact diagonalization study of the spin-1 two-dimensional J{sub 1}–J{sub 3} Heisenberg model on a triangular lattice

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, P., E-mail: rubin@fi.tartu.ee; Sherman, A.

    2014-11-07

    The spin-1 Heisenberg model on a triangular lattice with the ferromagnetic nearest-neighbor and antiferromagnetic third-nearest-neighbor exchange interactions, J{sub 1}=−(1−p)J and J{sub 2}=pJ, J>0(0≤p≤1), is studied with the use of the SPINPACK code. This model is applicable for the description of the magnetic properties of NiGa{sub 2}S{sub 4}. The ground, low-lying excited state energies and spin-spin correlation functions have been found for lattices with N=16 and N=20 sites with the periodic boundary conditions. These results are in qualitative agreement with earlier authors' results obtained with Mori's projection operator technique. - Highlights: • The S=1J{sub 1}–J{sub 3} Heisenberg model on a triangular lattice is studied. • The ferromagnetic nearest and AF 3rd-nearest-neighbor couplings are considered. • The exact diagonalization study of finite lattices was done. • The SPINPACK code using Lanczos' method is used for calculations. • The obtained results are in agreement with those obtained by Mori's approach.

  6. Spinon Fermi surface U (1 ) spin liquid in the spin-orbit-coupled triangular-lattice Mott insulator YbMgGaO4

    Science.gov (United States)

    Li, Yao-Dong; Lu, Yuan-Ming; Chen, Gang

    2017-08-01

    Motivated by the recent progress in the spin-orbit-coupled triangular lattice spin liquid candidate YbMgGaO4, we carry out a systematic projective symmetry group analysis and mean-field study of candidate U (1 ) spin-liquid ground states. Due to the spin-orbital entanglement of the Yb moments, the space-group symmetry operation transforms both the position and the orientation of the local moments, and hence it brings different features for the projective realization of the lattice symmetries from the cases with spin-only moments. Among the eight U (1 ) spin liquids that we find with the fermionic parton construction, only one spin-liquid state, which was proposed and analyzed by Yao Shen et al. [Nature (London) 540, 559 (2016), 10.1038/nature20614] and labeled as U1A00 in the present work, stands out and gives a large spinon Fermi surface and provides a consistent explanation for the spectroscopic results in YbMgGaO4. Further connection of this spinon Fermi surface U (1 ) spin liquid with YbMgGaO4 and the future directions are discussed. Finally, our results may apply to other spin-orbit-coupled triangular lattice spin-liquid candidates, and more broadly, our general approach can be well extended to spin-orbit-coupled spin-liquid candidate materials.

  7. SU(N) Schwinger bosons and nematic phases in the bilinear-biquadratic S=1 triangular lattice antiferromagnet with third-nearest neighbor interactions

    Science.gov (United States)

    Pires, A. S. T.

    2017-01-01

    I present in details the SU(N) Schwinger boson formalism, also known as flavor wave theory, that has been used several times in the literature. I use the method to study the ferroquadrupolar phase of a quantum biquadratic Heisenberg model with spin S=1 on the triangular lattice with third-nearest-neighbor interactions. Results for the phase diagram at zero temperature and the static and dynamical quadrupolar structure factors are presented. In principle, the results could be applied to NiGa2S4.

  8. GPU Accelerated Monte Carlo Algorithm of Ising Model on Triangular Lattice%三角晶格Ising模型Monte Carlo模拟的GPU加速算法

    Institute of Scientific and Technical Information of China (English)

    陆星; 蔡静; 张伟

    2012-01-01

    In the statistical model, the efficiency of most Monte Carlo algorithm reduces quickly near the critical point. In the analysis of traditional local algorithms, a GPU-based parallel simulation algorithm on the triangular lattice Ising model, which greatly improves the efficiency of the Monte Carlo simulation, is raised. For the model with the size of 1 024 X 1 024, a speedup of 69 is achieved. Besides, the critical behavior is analyzed, a high-precision critical point (/Jc = 0.274 66( 1) ) and critical exponents (y, = 1.01(2), yh= 1. 875 6(3) ) of triangular lattice Ising model are obtained, which implies the effectiveness of the GPU algorithm.%在分析传统Monte Carlo算法的基础上,针对三角晶格Ising模型提出了一种基于GPU的并行模拟方法,大大提高了算法的效率.对1 024×1 024的模型,实现了69倍的加速比.通过该算法所得数据分析模型的临界行为,获得了高精度的临界点βc=0.27466(1)和临界指数y1=1.01(2),yh=1.875 6(3).

  9. On triangular algebras with noncommutative diagonals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections. Moreover we prove that our triangular algebra is maximal.

  10. On triangular algebras with noncommutative diagonals

    Institute of Scientific and Technical Information of China (English)

    DONG AiJu

    2008-01-01

    We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections.Moreover we prove that our triangular algebra is maximal.

  11. Static and dynamical spin correlations of the S =1/2 random-bond antiferromagnetic Heisenberg model on the triangular and kagome lattices

    Science.gov (United States)

    Shimokawa, Tokuro; Watanabe, Ken; Kawamura, Hikaru

    2015-10-01

    Inspired by the recent theoretical suggestion that the random-bond S =1 /2 antiferromagnetic Heisenberg model on the triangular and the kagome lattices might exhibit a randomness-induced quantum spin liquid (QSL) behavior when the strength of the randomness exceeds a critical value, and that this "random-singlet state" might be relevant to the QSL behaviors experimentally observed in triangular organic salts κ -(ET) 2Cu2(CN) 3 and EtMe3Sb [Pd(dmit)2] 2 and in kagome herbertsmithite ZnCu3(OH) 6Cl2 , we further investigate the nature of the static and the dynamical spin correlations of these models. We compute the static and the dynamical spin structure factors, S (q ) and S (q ,ω ) , by means of an exact diagonalization method. In both triangular and kagome models, the computed S (q ,ω ) in the random-singlet state depends on the wave vector q only weakly, robustly exhibiting gapless behaviors accompanied by the broad distribution extending to higher energy ω . Especially in the strongly random kagome model, S (q ,ω ) hardly depends on q , and exhibits an almost flat distribution for a wide range of ω , together with a ω =0 peak. These features agree semiquantitatively with the recent neutron-scattering data on a single-crystal herbertsmithite. Furthermore, the computed magnetization curve agrees almost quantitatively with the experimental one recently measured on a single-crystal herbertsmithite. These results suggest that the QSL state observed in herbertsmithite might indeed be the randomness-induced QSL state, i.e., the random-singlet state.

  12. Corner free energies and boundary effects for Ising, Potts and fully-packed loop models on the square and triangular lattices

    CERN Document Server

    Vernier, Eric

    2011-01-01

    We obtain long series expansions for the bulk, surface and corner free energies for several two-dimensional statistical models, by combining Enting's finite lattice method (FLM) with exact transfer matrix enumerations. The models encompass all integrable curves of the Q-state Potts model on the square and triangular lattices, including the antiferromagnetic transition curves and the Ising model (Q=2) at temperature T, as well as a fully-packed O(n) type loop model on the square lattice. The expansions are around the trivial fixed points at infinite Q, n or 1/T. By using a carefully chosen expansion parameter, q << 1, all expansions turn out to be of the form \\prod_{k=1}^\\infty (1-q^k)^{\\alpha_k + k \\beta_k}, where the coefficients \\alpha_k and \\beta_k are periodic functions of k. Thanks to this periodicity property we can conjecture the form of the expansions to all orders (except in a few cases where the periodicity is too large). These expressions are then valid for all 0 <= q < 1. We analyse in...

  13. Effect of super-exchange interaction on ground state magnetic properties of spin-dependent Falicov-Kimball model on a triangular lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sant, E-mail: santkumar1210@gmail.com; Maitra, Tulika; Singh, Ishwar [Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand (India); Yadav, Umesh K. [Center for Condensed Matter Theory, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    Ground state magnetic properties are studied by incorporating the super-exchange interaction (J{sub se}) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund’s exchange (J), super-exchange interaction (J{sub se}) and also depends on the number of (d-) electrons (N{sub d}). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N{sub d}). Also the density of d electrons at each site depends on the value of J and J{sub se}.

  14. Effect of super-exchange interaction on ground state magnetic properties of spin-dependent Falicov-Kimball model on a triangular lattice

    Science.gov (United States)

    Kumar, Sant; Yadav, Umesh K.; Maitra, Tulika; Singh, Ishwar

    2015-06-01

    Ground state magnetic properties are studied by incorporating the super-exchange interaction (Jse) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (Jse) and also depends on the number of (d-) electrons (Nd). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (Nd). Also the density of d electrons at each site depends on the value of J and Jse.

  15. The role of intra- and inter-site exchange correlations in the extended Falicov-Kimball model on a triangular lattice

    Science.gov (United States)

    Kumar, Sant; Yadav, Umesh K.; Maitra, T.; Singh, Ishwar

    2016-02-01

    Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant d- and localized f-electrons) and intersite (superexchange) correlation Jse (between localized f-electrons) on a triangular lattice for two different fillings. Numerical diagonalization and Monte-Carlo techniques are used to determine the ground state magnetic properties. Transitions from antiferromagnetic to ferromagnetic and again to re-entrant antiferromagnetic phase is observed in a wide range of parameter space. The magnetic moments of d- and f-electrons are observed to depend strongly on the value of J, Jse and also on the total number of d-electrons (Nd).

  16. Pressure-Tuned Exchange Coupling of a Quantum Spin Liquid in the Molecular Triangular Lattice κ -(ET )2Ag2 (CN )3

    Science.gov (United States)

    Shimizu, Yasuhiro; Hiramatsu, Takaaki; Maesato, Mitsuhiko; Otsuka, Akihiro; Yamochi, Hideki; Ono, Akihiro; Itoh, Masayuki; Yoshida, Makoto; Takigawa, Masashi; Yoshida, Yukihiro; Saito, Gunzi

    2016-09-01

    The effects of pressure on a quantum spin liquid are investigated in an organic Mott insulator κ -(ET )2Ag2 (CN )3 with a spin-1 /2 triangular lattice. The application of negative chemical pressure to κ -(ET )2Cu2 (CN )3 , which is a well-known sister Mott insulator, allows for extensive tuning of antiferromagnetic exchange coupling, with J /kB=175 - 310 K , under hydrostatic pressure. Based on 13C nuclear magnetic resonance measurements under pressure, we uncover universal scaling in the static and dynamic spin susceptibilities down to low temperatures ˜0.1 kBT /J . The persistent fluctuations and residual specific heat coefficient are consistent with the presence of gapless low-lying excitations. Our results thus demonstrate the fundamental finite-temperature properties of a quantum spin liquid in a wide parameter range.

  17. Magnetization process and collective excitations in the S=1/2 triangular-lattice Heisenberg antiferromagnet Ba3CoSb2O9.

    Science.gov (United States)

    Susuki, Takuya; Kurita, Nobuyuki; Tanaka, Takuya; Nojiri, Hiroyuki; Matsuo, Akira; Kindo, Koichi; Tanaka, Hidekazu

    2013-06-28

    We have performed high-field magnetization and electronic spin resonance (ESR) measurements on Ba3CoSb2O9 single crystals, which approximates the two-dimensional (2D) S=1/2 triangular-lattice Heisenberg antiferromagnet. For an applied magnetic field H parallel to the ab plane, the entire magnetization curve including the plateau at one-third of the saturation magnetization (Ms) is in excellent agreement with the results of theoretical calculations except a small step anomaly near (3/5)Ms, indicative of a theoretically undiscovered quantum phase transition. However, for H∥c, the magnetization curve exhibits a cusp near Ms/3 owing to the weak easy-plane anisotropy and the 2D quantum fluctuation. From a detailed analysis of the collective ESR modes observed in the ordered state, combined with the magnetization process, we have determined all the magnetic parameters including the interlayer and anisotropic exchange interactions.

  18. A preliminary study of the OECD/NEA 3D transport problem using the lattice code DRAGON

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Marleau, G.; Hebert, A. [Inst. de genie nucleaire, Ecole Polytechnique de Montreal, Montreal, Quebec (Canada)

    2008-07-01

    In this paper we present a preliminary analysis of the NEA3D-TAB-2007 transport problem proposed by the OECD/NEA expert group on radiative transfer. This computational benchmark was originally proposed by Y. Azmy in 2007 to test the performance of 3D transport methods and codes over a suite of problems defined by large variations in space parameters. Two deterministic methods were applied to generate the numerical solutions: the discrete ordinates method (S{sub N}), and the method of open characteristics of I.R. Suslov (MCCG). We provide comparisons between MCNP reference solutions and MCCG and DRAGON-S{sub N} results in order to reveal the advantages and limitations of both methods. (author)

  19. Spin-frustration in a new spin-1/2 oxyfluoride system (Cu13(VO4)4(OH)10F4) constructed by alternatively distorted kagome-like and triangular lattices.

    Science.gov (United States)

    Yang, Ming; Zhang, Su-Yun; Guo, Wen-Bin; Tang, Ying-Ying; He, Zhang-Zhen

    2015-09-21

    A novel copper compound, Cu13(VO4)4(OH)10F4, featuring two types of two-dimensional extended kagome-like and triangular lattices, exhibits long-range antiferromagnetic ordering at ∼3 K, a strong spin-frustration effect with f = 21 and a spin-flop transition at 5 T.

  20. Competing anisotropies on 3d sub-lattice of YNi{sub 4–x}Co{sub x}B compounds

    Energy Technology Data Exchange (ETDEWEB)

    Caraballo Vivas, R. J.; Rocco, D. L.; Reis, M. S. [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, RJ (Brazil); Costa Soares, T. [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, RJ (Brazil); IF Sudeste MG Campus de Juiz de Fora-Núcleo de Física, 36080-001 Juiz de Fora, MG (Brazil); Caldeira, L. [IF Sudeste MG Campus de Juiz de Fora-Núcleo de Física, 36080-001 Juiz de Fora, MG (Brazil); Coelho, A. A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas-Unicamp, Caixa postal 6165, 13083-859 Campinas, SP (Brazil)

    2014-08-14

    The magnetic anisotropy of 3d sub-lattices has an important rule on the overall magnetic properties of hard magnets. Intermetallics alloys with boron (R-Co/Ni-B, for instance) belong to those hard magnets family and are useful objects to help to understand the magnetic behavior of 3d sub-lattice, specially when the rare earth ions R do not have magnetic nature, like YCo{sub 4}B ferromagnetic material. Interestingly, YNi{sub 4}B is a paramagnetic material and Ni ions do not contribute to the magnetic anisotropy. We focused therefore our attention to YNi{sub 4–x}Co{sub x}B series, with x = 0, 1, 2, 3, and 4. The magnetic anisotropy of these compounds is deeper described using statistical and preferential models of Co occupation among the possible Wyckoff positions into the CeCo{sub 4}B type hexagonal structure. We found that the preferential model is the most suitable to explain the magnetization experimental data.

  1. Monte Carlo simulations on magnetic behavior of a spin-chain system in triangular lattice doped with antiferromagnetic bonds

    Institute of Scientific and Technical Information of China (English)

    YAO Xiao-yan; LI Peng-lei; DONG Shuai; LIU Jun-ming

    2007-01-01

    A three-dimensional Ising-like model doped with anti-ferromagnetic (AFM) bonds is proposed to investigate the magnetic properties of a doped triangular spin-chain system by using a Monte-Carlo simulation. The simulated results indicate that a steplike magnetization behavior is very sensitive to the concentration of AFM bonds. A low concentration of AFM bonds can suppress the stepwise behavior considerably, in accordance with doping experiments on Ca3Co206. The analysis of spin snapshots demonstrates that the AFM bond doping not only breaks the ferromagnetic ordered linear spin chains along the hexagonal c-axis but also has a great influence upon the spin configuration in the ab-plane.

  2. A simulation study of microwave field effects on a 3D orthorhombic lattice of rotating dipoles: short-range potential energy variation

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2016-05-01

    Variation of the short-range potential energy of interaction of nearest dipoles in a three-dimensional (3D) orthorhombic lattice exposed to microwave electric fields is studied by means of the Langevin dynamics simulations. The global increase of the mean potential energy is typical for all the frequencies and intensities at lower temperatures, whereas separate potential energy peaks or peak chains are observed at intermediate temperatures. A simple statistical model proposed to account for the temperature dependence of the field intensity for potential energy peaks suggests the concerted collective rotation of the dipoles. The temperature dependence of the peak frequency is explained using a combination of the one-dimensional Kramers and the resonant activation theories applied to the field-driven collective rotation, with the nearly degenerate angular coordinates of the dipoles being used as a single effective coordinate.

  3. Electronic structure and magnetism in the layered triangular lattice compound CeAuAl4Ge2

    Science.gov (United States)

    Zhang, S.; Aryal, N.; Huang, K.; Chen, K.-W.; Lai, Y.; Graf, D.; Besara, T.; Siegrist, T.; Manousakis, E.; Baumbach, R. E.

    2017-09-01

    Results are reported for the f -electron intermetallic CeAuAl4Ge2 , where the atomic arrangement of the cerium ions creates the conditions for possible geometric frustration. The magnetic susceptibility follows a Curie-Weiss temperature dependence at elevated temperatures, revealing that the cerium ions are trivalent. At lower temperatures the crystal electric field splits the Hund's rule multiplet, resulting in a weak low-temperature magnetic exchange interaction and ordering near TM≈1.4 K . This occurs within a metallic Kondo lattice, where electrical resistivity and heat capacity measurements show that the Kondo-driven electronic correlations are negligible. Quantum oscillations are detected in ac-magnetic susceptibility measurements and uncover small charge carrier effective masses. Electronic structure calculations reveal that inclusion of an on-f -site Coulomb repulsion (Hubbard) U results in antiferromagnetic order and causes the f -electron bands to move away from the Fermi level, resulting in electronic behavior that is dominated by the s ,p , and d bands, which are all characterized by light electron masses. Thus, CeAuAl4Ge2 may provide a starting point for investigating geometric magnetic frustration in a cerium lattice without strong Kondo hybridization, where calculations provide useful guidance.

  4. Spin dynamics and spin freezing in the triangular lattice antiferromagnets FeGa2S4 and NiGa2S4

    Science.gov (United States)

    Zhao, Songrui; Dalmas de Réotier, P.; Yaouanc, A.; MacLaughlin, D. E.; Mackie, J. M.; Bernal, O. O.; Nambu, Y.; Higo, T.; Nakatsuji, S.

    2012-08-01

    Magnetic susceptibility and muon spin relaxation (μSR) experiments have been carried out on the quasi-2D triangular-lattice spin S=2 antiferromagnet FeGa2S4. The μSR data indicate a sharp onset of a frozen or nearly frozen spin state at T*=31(2) K, twice the spin-glass-like freezing temperature Tf=16(1) K. The susceptibility becomes field dependent below T*, but no sharp anomaly is observed in any bulk property. A similar transition is observed in μSR data from the spin-1 isomorph NiGa2S4. In both compounds the dynamic muon spin relaxation rate λd(T) above T* agrees well with a calculation of spin-lattice relaxation by Chubukov, Sachdev, and Senthil in the renormalized classical regime of a 2D frustrated quantum antiferromagnet. There is no firm evidence for other mechanisms. At low temperatures, λd(T) becomes temperature independent in both compounds, indicating persistence of spin dynamics. Scaling of λd(T) between the two compounds is observed from ˜Tf to ˜1.5T*. Although the μSR data by themselves cannot exclude a truly static spin component below T*, together with the susceptibility data they are consistent with a slowly fluctuating “spin gel” regime between Tf and T*. Such a regime and the absence of a divergence in λd(T) at T* are features of two unconventional mechanisms: (1) binding/unbinding of Z2 vortex excitations, and (2) impurity spins in a nonmagnetic spin-nematic ground state. The absence of a sharp anomaly or history dependence at T* in the susceptibility of FeGa2S4, and the weakness of such phenomena in NiGa2S4, strongly suggest transitions to low-temperature phases with unconventional dynamics.

  5. Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach

    Science.gov (United States)

    Paradis, Hedvig; Andersson, Martin; Sundén, Bengt

    2016-08-01

    A 3D model at microscale by the lattice Boltzmann method (LBM) is proposed for part of an anode of a solid oxide fuel cell (SOFC) to analyze the interaction between the transport and reaction processes and structural parameters. The equations of charge, momentum, heat and mass transport are simulated in the model. The modeling geometry is created with randomly placed spheres to resemble the part of the anode structure close to the electrolyte. The electrochemical reaction processes are captured at specific sites where spheres representing Ni and YSZ materials are present with void space. This work focuses on analyzing the effect of structural parameters such as porosity, and percentage of active reaction sites on the ionic current density and concentration of H2 using LBM. It is shown that LBM can be used to simulate an SOFC anode at microscale and evaluate the effect of structural parameters on the transport processes to improve the performance of the SOFC anode. It was found that increasing the porosity from 30 to 50 % decreased the ionic current density due to a reduction in the number of reaction sites. Also the consumption of H2 decreased with increasing porosity. When the percentage of active reaction sites was increased while the porosity was kept constant, the ionic current density increased. However, the H2 concentration was slightly reduced when the percentage of active reaction sites was increased. The gas flow tortuosity decreased with increasing porosity.

  6. Nano-spatial parameters from 3D to 2D lattice dimensionality by organic variant in [ZnCl4]- [R]+ hybrid materials: Structure, architecture-lattice dimensionality, microscopy, optical Eg and PL correlations

    Science.gov (United States)

    Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh

    2016-04-01

    The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.

  7. Parameterization for fitting triangular mesh

    Institute of Scientific and Technical Information of China (English)

    LIN Hongwei; WANG Guojin; LIU Ligang; BAO Hujun

    2006-01-01

    In recent years, with the development of 3D data acquisition equipments, the study on reverse engineering has become more and more important. However, the existing methods for parameterization can hardly ensure that the parametric domain is rectangular, and the parametric curve grid is regular. In order to overcome these limitations, we present a novel method for parameterization of triangular meshes in this paper. The basic idea is twofold: first, because the isotherms in the steady temperature do not intersect with each other, and are distributed uniformly, no singularity (fold-over) exists in the parameterization; second, a 3D harmonic equation is solved by the finite element method to obtain the steady temperature field on a 2D triangular mesh surface with four boundaries. Therefore, our proposed method avoids the embarrassment that it is impossible to solve the 2D quasi-harmonic equation on the 2D triangular mesh without the parametric values at mesh vertices. Furthermore, the isotherms on the temperature field are taken as a set of iso-parametric curves on the triangular mesh surface. The other set of iso-parametric curves can be obtained by connecting the points with the same chord-length on the isotherms sequentially. The obtained parametric curve grid is regular, and distributed uniformly, and can map the triangular mesh surface to the unit square domain with boundaries of mesh surface to boundaries of parametric domain, which ensures that the triangular mesh surface or point cloud can be fitted with the NURBS surface.

  8. Muon-spin rotation measurements of the vortex state in Sr$_2$RuO$_4$: type-1.5 superconductivity, vortex clustering and a crossover from a triangular to a square vortex lattice

    OpenAIRE

    Ray, S. J.; Gibbs, A. S.; Bending, S. J.; Curran, P. J.; Babaev, E.; Baines, C.; Mackenzie, A. P.; Lee, S.L.

    2014-01-01

    The authors acknowledge the financial support of the EPSRC (Grant No. EP/J01060X). All μSR experiments were carried out courtesy of the Paul Scherrer Institute. E. Babaev was supported by the US NSF CAREER Award No. DMR-0955902 and by the Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences, Swedish Research Council. Muon-spin rotation has been used to probe the vortex state in Sr2RuO4. At moderate fields and temperatures a lattice of triangular symmetry is ob...

  9. Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: towards molecular analogues of permanent magnets.

    Science.gov (United States)

    Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici; Camón, Agustín; Repollés, Ana; Luis, Fernando

    2014-02-03

    The insertion of the single-molecule magnet (SMM) [Mn(III)(salen)(H2O)]2(2+) (salen(2-) = N,N'-ethylenebis-(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [Mn(III)(salen)(H2O)]2[Mn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn(III)(salen)(H2O)]2[Zn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (2) and [In(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]⋅(H2O)0.25⋅(CH3OH)0.25⋅(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of Cr(III) affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic Mn(II) Cr(III) network is observed at Tc = 5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3. In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near-reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Soliton assisted control of source to drain electron transport along natural channels - crystallographic axes - in two-dimensional triangular crystal lattices

    Science.gov (United States)

    Chetverikov, A. P.; Ebeling, W.; Velarde, M. G.

    2016-09-01

    We present computational evidence of the possibility of fast, supersonic or subsonic, nearly loss-free ballistic-like transport of electrons bound to lattice solitons (a form of electron surfing on acoustic waves) along crystallographic axes in two-dimensional anharmonic crystal lattices. First we study the structural changes a soliton creates in the lattice and the time lapse of recovery of the lattice. Then we study the behavior of one electron in the polarization field of one and two solitons with crossing pathways with suitably monitored delay. We show how an electron surfing on a lattice soliton may switch to surf on the second soliton and hence changing accordingly the direction of its path. Finally we discuss the possibility to control the way an excess electron proceeds from a source at a border of the lattice to a selected drain at another border by following appropriate straight pathways on crystallographic axes.

  11. Ba8CoNb6O24 : A spin-1/2 triangular-lattice Heisenberg antiferromagnet in the two-dimensional limit

    Science.gov (United States)

    Rawl, R.; Ge, L.; Agrawal, H.; Kamiya, Y.; Dela Cruz, C. R.; Butch, N. P.; Sun, X. F.; Lee, M.; Choi, E. S.; Oitmaa, J.; Batista, C. D.; Mourigal, M.; Zhou, H. D.; Ma, J.

    2017-02-01

    The perovskite Ba8CoNb6O24 comprises equilateral effective spin-1/2 Co2 + triangular layers separated by six nonmagnetic layers. Susceptibility, specific heat, and neutron scattering measurements combined with high-temperature series expansions and spin-wave calculations confirm that Ba8CoNb6O24 is basically a two-dimensional magnet with no detectable spin anisotropy and no long-range magnetic ordering down to 0.06 K. In other words, Ba8CoNb6O24 is very close to be a realization of the paradigmatic spin-1/2 triangular Heisenberg model, which is not expected to exhibit symmetry breaking at finite temperatures according to the Mermin and Wagner theorem.

  12. Design Of 8*8*8 3D LED Lattice Based On AVR Microcontroller%基于AVR单片机的8*8*8三维LED点阵设计

    Institute of Scientific and Technical Information of China (English)

    李行杰; 李克俭; 肖英

    2013-01-01

    In connection with the 8*8*8 3D LED lattice display module control problems, put forward a design scheme of 8*8*8 3D LED lattice based on AVR microcontroller. Introduction to 3D LED lattice display module and the composition of the control system, according to the 3D LED lattice display module carries on the text or pattern according to the functional requirements, choose the drive circuit, classified ATMEGA328P - PU algorithm based on the internal control, and use the ATMEGA328P - PU inside special function, add external extension interface, combined with the upper machine communication, achieve a relatively perfect comprehensive information platform. This light cube provides a good user's visual and entertainment experience, made for further research of 3D display and control to provide certain reference.%  针对8*8*8三维LED点阵显示模块控制问题,提出一种基于AVR单片机的8*8*8三维LED点阵设计方案。介绍三维LED点阵显示模块和控制系统的构成,根据三维LED点阵显示模块进行文字或图案显示的功能需求,合理选择驱动电路,划分ATMEGA328P-PU内部算法进行控制,并利用ATMEGA328P-PU内部特殊功能,添加外部扩展接口,结合上位机通讯,实现一个较为完善的综合信息显示平台。光立方提供了良好的用户视觉与娱乐体验,为进一步研究三维显示器的制作及控制提供一定的参考。

  13. Long-time tails of the velocity autocorrelation function in 2D and 3D lattice gas cellular automata: a test of mode-coupling theory

    NARCIS (Netherlands)

    Hoef, M.A. van der; Frenkel, D.

    1990-01-01

    We report simulations of the velocity autocorrelation function (VACF) of a tagged particle in two- and three-dimensional lattice-gas cellular automata, using a new technique that is about a million times more efficient than the conventional techniques. The simulations clearly show the algebraic t-D/

  14. Mechanotransduction of mesenchymal melanoma cell invasion into 3D collagen lattices: Filopod-mediated extension-relaxation cycles and force anisotropy

    NARCIS (Netherlands)

    Starke, J.; Maaser, K.; Wehrle-Haller, B.; Friedl, P.

    2013-01-01

    Mesenchymal cell migration in interstitial tissue is a cyclic process of coordinated leading edge protrusion, adhesive interaction with extracellular matrix (ECM) ligands, cell contraction followed by retraction and movement of the cell rear. During migration through 3D tissue, the force fields

  15. The disordered magnetic structure in the triangular-lattice XY-antiferromagnet CsMnBr{sub 3} derived from the zero-field spectrum of Br nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xun; Okada, Kunihide; Fujii, Muneaki [Department of Physics, Kumamoto University, Kurokami 2-39-1, Kumamoto 860 (Japan); Kubo, Takeji [Department of Physics, Nara Education University, Takabatake, Nara 613 (Japan); Ajiro, Yoshitami [Department of Applied Physics, Fukui University, Bunkyo 3-9-1, Fukui 910 (Japan)

    1996-05-27

    The Br NMR in the triangular-lattice antiferromagnetic CsMnBr{sub 3} is investigated in the ordered state at low temperatures. Two distinct peaks of the Br NMR spin-echo spectrum were observed at 36.0 {+-} 0.5 MHz and 43.0 {+-} 0.5 MHz accompanied by a broad signal ranging from 34 to 55 MHz in zero field. The peak frequencies are independent of temperature and the ratio of the frequencies is the same as that of the quadrupole moments of {sup 81}Br and {sup 79}Br. This suggests that the quadrupole resonance of Br is perturbed by the distribution of the internal magnetic field. Theoretical results obtained under the assumption that the Mn spins have disordered structure in the c-plane due to the frustration effect agree with the experimental data. (author)

  16. Simultaneous triangularization

    CERN Document Server

    Radjavi, Heydar

    2000-01-01

    A collection of matrices is said to be triangularizable if there is an invertible matrix S such that S1 AS is upper triangular for every A in the collection. This generalization of commutativity is the subject of many classical theorems due to Engel, Kolchin, Kaplansky, McCoy and others. The concept has been extended to collections of bounded linear operators on Banach spaces: such a collection is defined to be triangularizable if there is a maximal chain of subspaces of the Banach space, each of which is invariant under every member of the collection. Most of the classical results have been generalized to compact operators, and there are also recent theorems in the finite-dimensional case. This book is the first comprehensive treatment of triangularizability in both the finite and infinite-dimensional cases. It contains numerous very recent results and new proofs of many of the classical theorems. It provides a thorough background for research in both the linear-algebraic and operator-theoretic aspects of tr...

  17. Implementation of 3D Lattice Monte Carlo Simulation on a Cluster of Symmetric Multiprocessors%基于集群系统的3D格点Monte Carlo算法并行实现

    Institute of Scientific and Technical Information of China (English)

    雷咏梅; 蒋英; 冯捷

    2002-01-01

    This paper presents a new approach to parallelize 3D lattice Monte Carlo algorithms used in the numerical simulation of polymer on ZiQiang 2000-a cluster of symmetric multiprocessors (SMPs). The combined load for cell and energy calculations over the time step is balanced together to form a single spatial decomposition. Basic aspects and strategies of running Monte Carlo calculations on parallel computers are studied. Different steps involved in porting the software on a parallel architecture based on ZiQiang 2000 running under Linux and MPI are described briefly. It is found that parallelization becomes more advantageous when either the lattice is very large or the model contains many cells and chains.

  18. 3D Framework DNA Origami with Layered Crossovers.

    Science.gov (United States)

    Hong, Fan; Jiang, Shuoxing; Wang, Tong; Liu, Yan; Yan, Hao

    2016-10-04

    Designer DNA architectures with nanoscale geometric controls provide a programmable molecular toolbox for engineering complex nanodevices. Scaffolded DNA origami has dramatically improved our ability to design and construct DNA nanostructures with finite size and spatial addressability. Here we report a novel design strategy to engineer multilayered wireframe DNA structures by introducing crossover pairs that connect neighboring layers of DNA double helices. These layered crossovers (LX) allow the scaffold or helper strands to travel through different layers and can control the relative orientation of DNA helices in neighboring layers. Using this design strategy, we successfully constructed four versions of two-layer parallelogram structures with well-defined interlayer angles, a three-layer structure with triangular cavities, and a 9- and 15-layer square lattices. This strategy provides a general route to engineer 3D framework DNA nanostructures with controlled cavities and opportunities to design host-guest networks analogs to those produced with metal organic frameworks.

  19. Triangular Wavelets: An Isotropic Image Representation with Hexagonal Symmetry

    Directory of Open Access Journals (Sweden)

    Kensuke Fujinoki

    2009-01-01

    Full Text Available This paper introduces triangular wavelets, which are two-dimensional nonseparable biorthogonal wavelets defined on the regular triangular lattice. The construction that we propose is a simple nonseparable extension of one-dimensional interpolating wavelets followed by a straightforward generalization. The resulting three oriented high-pass filters are symmetrically arranged on the lattice, while low-pass filters have hexagonal symmetry, thereby allowing an isotropic image processing in the sense that three detail components are distributed uniformly. Applying the triangular filter to images, we explore applications that truly benefit from the triangular wavelets in comparison with the conventional tensor product transforms.

  20. Triangular Wavelets: An Isotropic Image Representation with Hexagonal Symmetry

    Directory of Open Access Journals (Sweden)

    Fujinoki Kensuke

    2009-01-01

    Full Text Available Abstract This paper introduces triangular wavelets, which are two-dimensional nonseparable biorthogonal wavelets defined on the regular triangular lattice. The construction that we propose is a simple nonseparable extension of one-dimensional interpolating wavelets followed by a straightforward generalization. The resulting three oriented high-pass filters are symmetrically arranged on the lattice, while low-pass filters have hexagonal symmetry, thereby allowing an isotropic image processing in the sense that three detail components are distributed uniformly. Applying the triangular filter to images, we explore applications that truly benefit from the triangular wavelets in comparison with the conventional tensor product transforms.

  1. Lattice Boltzmann simulations of 3D crystal growth: Numerical schemes for a phase-field model with anti-trapping current

    CERN Document Server

    Cartalade, Alain; Plapp, Mathis

    2016-01-01

    A lattice-Boltzmann (LB) scheme, based on the Bhatnagar-Gross-Krook (BGK) collision rules is developed for a phase-field model of alloy solidification in order to simulate the growth of dendrites. The solidification of a binary alloy is considered, taking into account diffusive transport of heat and solute, as well as the anisotropy of the solid-liquid interfacial free energy. The anisotropic terms in the phase-field evolution equation, the phenomenological anti-trapping current (introduced in the solute evolution equation to avoid spurious solute trapping), and the variation of the solute diffusion coefficient between phases, make it necessary to modify the equilibrium distribution functions of the LB scheme with respect to the one used in the standard method for the solution of advection-diffusion equations. The effects of grid anisotropy are removed by using the lattices D3Q15 and D3Q19 instead of D3Q7. The method is validated by direct comparison of the simulation results with a numerical code that uses t...

  2. Phase transitions and critical properties of the frustrated Heisenberg model on a layer triangular lattice with next-to-nearest-neighbor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Murtazaev, A. K.; Ramazanov, M. K., E-mail: sheikh77@mail.ru; Badiev, V. K. [Russian Academy of Sciences, Institute of Physics, Dagestan Scientific Center (Russian Federation)

    2012-08-15

    The critical behavior of the three-dimensional antiferromagnetic Heisenberg model with nearest-neighbor (J) and next-to-nearest-neighbor (J{sub 1}) interactions is studied by the replica Monte Carlo method. The first-order phase transition and pseudouniversal critical behavior of this model are established for a small lattice in the interval R = vertical bar J{sub 1}/J vertical bar = 0-0.115. A complete set of the main static magnetic and chiral critical indices is calculated in this interval using the finite-dimensional scaling theory.

  3. Infinite resistive lattices

    NARCIS (Netherlands)

    Atkinson, D; van Steenwijk, F.J.

    The resistance between two arbitrary nodes in an infinite square lattice of:identical resistors is calculated, The method is generalized to infinite triangular and hexagonal lattices in two dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. (C) 1999 American

  4. Spatial quantum search in a triangular network

    CERN Document Server

    Abal, G; Forets, M; Portugal, R

    2010-01-01

    The spatial search problem consists in minimizing the number of steps required to find a given site in a network, under the restriction that only oracle queries or translations to neighboring sites are allowed. We propose a quantum algorithm for the spatial search problem on a triangular lattice with N sites and torus-like boundary conditions. The proposed algortithm is a special case of the general framework for abstract search proposed by Ambainis, Kempe and Rivosh [AKR05] (AKR) and Tulsi [Tulsi08], applied to a triangular network. The AKR-Tulsi formalism was employed to show that the time complexity of the quantum search on the triangular lattice is O(sqrt(N logN)).

  5. Study the two dimensional triangular lattice photonic crystal band gap and coupling characters%二维三角形光子晶体带隙与耦合特性研究

    Institute of Scientific and Technical Information of China (English)

    李未; 陈小玲

    2011-01-01

    利用二维三角晶格介质柱光子晶体TE偏振的禁带与介质柱半径的变化关系,分析了二维光子晶体的带隙分布及斜边耦合特性.结果表明,光子禁带的大小受到构成光子晶体的介电材料的空间排列分布以及介质柱半径大小的影响;束缚在光子晶体中的光波可以在波导和谐振腔中进行传输,达到选择输出光波的目的.%The paper study the relation between two dimensional triangular lattice photonic crystal band gap for TE polarizationand dielectric cylinder radius, and study distribution of two dimensional photonic crystal defect state. Results show, the photonic crystal band gaps were distributed by dielectric material space distribution and medium size of the radius; Tied in the photon crystals of light waves can transmission in waveguides and resonator cavity to select the output of light waves.

  6. Magnetic properties of a doped quasi-triangular lattice material, Cu2(1-x)Zn2x(OH)3NO3/(C7H15COO)

    Science.gov (United States)

    Wu, Jian; Gangopadhyay, Anup K.; Solin, S. A.

    2009-03-01

    Cu2(OH)3NO3,is a geometrically frustrated layered compound in which spin S=1/2 Cu^2+ ions are arranged on a slightly distorted triangular lattice. The magnetic properties of the pure compound and of the compound intercalated with alkanecarboxylate have been extensively studied.[1] However, the effects of intralayer doping remain unexplored. The substitution of non-magnetic ions such as Zn^2+ for Cu^2+ will ultimately drive the ordering temperature toward zero [2] which may provide a candidate system possessing an exotic spin-liquid ground state. We have prepared powder samples of the Cu2(1-x)Zn2x(OH)3NO3 family and systematically investigated them by magnetic susceptibility measurements. The ordering temperature decreases from 11K to 5.6K while the C-W temperature increases from -5.1K to +2.8K as the Zn concentration increases from 0 to 65%. To enhance the 2-dimensional characteristic and reduce the interlayer interaction, we introduce an alkanecarboxylate C7H15COO into the interlayer space. The experimental results we have obtained indicate that this new class of materials have much higher frustration levels |θcw /Tc|˜ 20 and order at a lower temperature than the doped parent compounds.[1] M. A. Girtu et al, Phys Rev B 61,4117(2000).[2] M. Mekata et al, J. Phys. Soc. Japan 56, 4544(1987).

  7. 旋转方形散射体对三角晶格磁振子晶体带结构的优化∗%Spin-wave band gaps created by rotating square ro ds in triangular lattice magnonic crystals

    Institute of Scientific and Technical Information of China (English)

    胡晓颖; 郭晓霞; 胡文弢; 呼和满都拉; 郑晓霞; 荆丽丽

    2015-01-01

    =0.6 we calculated the first normalized gap width ∆Ω/Ωg. when f =0.6 andθ=0◦, the first gap width∆Ω=0.812(µ0ω/g) and the normalized gap width∆Ω/Ωg=0.9187. The results show that from the first normalized gap widths the largest one can be found when f = 0.6 and θ = 5◦, the first gap width∆Ω = 0.937 ( µ0ω/g) and the normalized gap width ∆Ω/Ωg = 0.9591. The results show that the numerical, rotating square rods can make the low frequency band gap widen in the triangular lattice of two-dimensional magnonic crystal.

  8. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  9. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  10. Research on 3D Solid Modeling Technology of Complex Mined-out Area Based on Like-Repulsion Boolean Operation to Triangular Pyramid%基于三棱锥同斥布尔运算的复杂空区实体建模研究

    Institute of Scientific and Technical Information of China (English)

    李发本; 卢才武; 麦尚德

    2012-01-01

    Underground mined-out area is a great threat to the safety of upper opencast mining,so the 3D solid modeling of mined-out area is very important for making production plans and ensuring the safety in production.TIN model was used to create 3D envelope-wire-frame modeling of mined-out area,then,triangular pyramid was used as the basic body to three-dimensional solid model of mined-out area.To counter the phenomenon of convexification occurring in decomposing envelope-wire-frame model,the principle of like repulsion was used in basic body merging to build three-dimensional solid model.Finally,the improved boolean operation was implemented on vs2005 development platform,and combining with the case of Sandaozhuang surface mining,the feasibility of the method was verified.The results showed that the method can effectively realize the modeling of complex mined-out area in mine,providing a technical support for the design of mined-out area treatment.%地下采空区的存在对上部露天开采安全生产构成了巨大威胁,构建空区三维实体模型对制定生产计划和保障生产安全具有重要意义。在利用TIN模型建立空区三维包络线框模型基础之上,采用三棱锥体作为基本体元构建空区三维实体模型。针对建模过程中,包络线框模型分解凸化现象,将同性相斥原理运用到体元合并中,构建空区的三维实体模型。最后,在vs2005开发平台上实现算法并结合三道庄露天矿进行可行性验证。结果表明,该方法能够完成矿山复杂空区实体建模任务,为空区处理设计提供了技术支撑。

  11. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  12. EDGE REMOVAL OF 3D POLYGONAL MODEL USING MAYA API

    Directory of Open Access Journals (Sweden)

    SAMEER ARORA

    2010-09-01

    Full Text Available In various applications of computer graphics, 3D polygonal modeling is used, which consists millions of triangular polygon. In this polygon attributes – vertices, edges and faces’ details are to be stored. In order to control the processing time, storing space, and transfer speed, it is often required to reduce the information ofthese polygonal 3D models. In this paper an effort is made to reduce the number of edges. There are various methods to reduce faces and edges of these 3D models. A C++ dynamic link library as Maya Plugin has been created to remove number of edges of 3D triangular polygon model using the Quadric Error Metrics (QEM in MAYA v2010 x64 API. QEM allows fast and accurate geometric simplification of 3D models.

  13. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  14. Coordination field analysis of rare earth complexes with triangular symmetry

    Institute of Scientific and Technical Information of China (English)

    范英芳; 潘大丰; 杨频

    1997-01-01

    The calculation of the complex matrixes in odd triangular symmetry was accomplished.The configurations of the coordination unit with various triangular symmetries and different ligand numbers were discussed.On the basis of the double-sphere coordination point-charge (DSCPCF) model,the detailed forms of the DSCPCF parameters Bmk and the expressions of the perturbation matrix elements in triangular field (D3,D3h,D3d) were derived.Thereby,the calculation scheme of coordination field perturbation energy of the rare earth complexes with triangular symmetry was constructed After the calculation scheme was programmed,the Stark energies of the crystalline TbAl3(BO3)4 were calculated The results were considerably close to the experimental values

  15. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  16. TEHNOLOGIJE 3D TISKALNIKOV

    OpenAIRE

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  17. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  18. Streaming Surface Reconstruction from Real Time 3D Measurements

    OpenAIRE

    Bodenmüller, Tim

    2009-01-01

    In this thesis, a robust method for fast surface reconstruction from real time 3D point streams is presented. It is designed for the integration in a fast visual feedback system that supports a user while manually 3D scanning objects. The method iteratively generates a dense and homogeneous triangular mesh by inserting sample points from the real time data stream and refining the surface model locally. A spatial data structure ensures a fast access to growing point sets and continuously updat...

  19. S =1/2 triangular-lattice antiferromagnets Ba3CoSb2O9 and CsCuCl3: Role of spin-orbit coupling, crystalline electric field effect, and Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Sera, A.; Kousaka, Y.; Akimitsu, J.; Sera, M.; Kawamata, T.; Koike, Y.; Inoue, K.

    2016-12-01

    We have performed the detailed investigations of the magnetization of the S =1/2 triangular-lattice antiferromagnets Ba3CoSb2O9 and CsCuCl3 with a 120∘ spin structure in the a b plane. In Ba3CoSb2O9 , the magnetic susceptibility (χ ) exhibits a broad maximum above the Néel temperature (TN) as is expected in the low-dimensional antiferromagnet (AFM). In CsCuCl3, χ exhibits a continuous increase down to TN as if it is the three-dimensional AFM. This is induced by the strong ferromagnetic (FM) interaction along the c axis. The magnetic phase diagrams are also very different. Although the transition field from the umbrella to the 2-1-coplanar phase (Hu -c) for H ∥c is almost independent of temperature in Ba3CoSb2O9 , it shows a considerable decrease with increasing temperature in CsCuCl3. The temperature independent Hu -c in Ba3CoSb2O9 originates from the magnetic anisotropy from the van Vleck contribution, which does not depend so much on the temperature. The temperature dependent Hu -c in CsCuCl3 originates from the magnetic anisotropy from the Dzyaloshinskii-Moriya (DM) interaction, which decreases with increasing temperature. For H ∥a b , the clear transition from the Y-coplanar to the up-up-down (u u d ) phase was observed in Ba3CoSb2O9 but not in CsCuCl3. While the reentrant behavior of TN originating from the thermal and quantum spin fluctuations is observed in both compounds, it is pronounced in Ba3CoSb2O9 but small in CsCuCl3. These differences originate from the existence or nonexistence of the DM interaction. The DM interaction in CsCuCl3 suppresses those fluctuations in the a b plane, leading to the less pronounced reentrant behavior of TN and the broad crossover in place of the phase transition. We analyzed the anisotropic magnetization of Ba3CoSb2O9 in the paramagnetic region by the mean field calculation. The spin-orbit (SO) coupling, the uniaxial crystalline electric field, and the isotropic exchange interaction were taken into account. We

  20. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  1. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  2. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  3. Series of Reciprocal Triangular Numbers

    Science.gov (United States)

    Bruckman, Paul; Dence, Joseph B.; Dence, Thomas P.; Young, Justin

    2013-01-01

    Reciprocal triangular numbers have appeared in series since the very first infinite series were summed. Here we attack a number of subseries of the reciprocal triangular numbers by methodically expressing them as integrals.

  4. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  5. AE3D

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  6. 3D scene modeling from multiple range views

    Science.gov (United States)

    Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel

    1995-09-01

    This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.

  7. Synthesized Optimization of Triangular Mesh

    Institute of Scientific and Technical Information of China (English)

    HU Wenqiang; YANG Wenyu

    2006-01-01

    Triangular mesh is often used to describe geometric object as computed model in digital manufacture, thus the mesh model with both uniform triangular shape and excellent geometric shape is expected. But in fact, the optimization of triangular shape often is contrary with that of geometric shape. In this paper, one synthesized optimizing algorithm is presented through subdividing triangles to achieve the trade-off solution between the geometric and triangular shape optimization of mesh model. The result mesh with uniform triangular shape and excellent topology are obtained.

  8. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  9. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  10. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  11. Development of a version of the reactor dynamics code DYN3D applicable for High Temperature Reactors; Entwicklung einer Version des Reaktordynamikcodes DYN3D fuer Hochtemperaturreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Ulrich; Apanasevich, Pavel; Baier, Silvio; Duerigen, Susan; Fridman, Emil; Grahn, Alexander; Kliem, Soeren; Merk, Bruno

    2012-07-15

    Based on the reactor dynamics code DYN3D for the simulation of transient processes in Light Water Reactors, a code version DYN3D-HTR for application to graphitemoderated, gas-cooled block-type high temperature reactors has been developed. This development comprises: - the methodical improvement of the 3D steady-state neutron flux calculation for the hexagonal geometry of the HTR fuel element blocks - the development of methods for the generation of homogenised cross section data taking into account the double heterogeneity of the fuel element block structure - the implementation of a 3D model for heat conduction and heat transport in the graphite matrix. The nodal method for neutron flux calculation based on SP3 transport approximation was extended to hexagonal fuel element geometry, where the hexagons are subdivided into triangles, thus the method had finally to be derived for triangular geometry. In triangular geometry, a subsequent subdivision of the hexagonal elements can be considered, and therefore, the effect of systematic mesh refinement can be studied. The algorithm was verified by comparison with Monte Carlo reference solutions, on the node-wise level, as well as also on the pin-wise level. New procedures were developed for the homogenization of the double-heterogeneous fuel element structures. One the one hand, the so-called Reactivity equivalent Physical Transformation (RPT), the two-step homogenization method based on 2D deterministic lattice calculations, was extended to cells with different temperatures of the materials. On the other hand, the progress in development of Monte Carlo methods for spectral calculations, in particular the development of the code SERPENT, opened a new, fully consistent 3D approach, where all details of the structures on fuel particle, fuel compact and fuel block level can be taken into account within one step. Moreover, a 3D heat conduction and heat transport model was integrated into DYN3D to be able to simulate radial

  12. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  13. Upper Triangular Matrix of Lie Algebra and a New Discrete Integrable Coupling System

    Institute of Scientific and Technical Information of China (English)

    YU Fa-Jun; ZHANG Hong-Qing

    2007-01-01

    The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations.Correspondingly,a feasible way to construct integrable couplings is presented.A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy.It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.

  14. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  15. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  16. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  17. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  18. Spectral element method for band-structure calculations of 3D phononic crystals

    Science.gov (United States)

    Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Huo Liu, Qing

    2016-11-01

    The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss-Lobatto-Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals.

  19. On the peculiar properties of triangular-chain EuCr{sub 3}(BO{sub 3}){sub 4} antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Gondek, Ł., E-mail: lgondek@agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Szytuła, A. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków (Poland); Przewoźnik, J.; Żukrowski, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Prokhorov, A.; Chernush, L.; Zubov, E. [A.A. Galkin Donetsk Physico-Technical Institute, NANU, 83114 Donetsk, R. Luxembourg str. 72 (Ukraine); Dyakonov, V. [A.A. Galkin Donetsk Physico-Technical Institute, NANU, 83114 Donetsk, R. Luxembourg str. 72 (Ukraine); Institute of Physics, PAS, 02-668 Warsaw, Al. Lotników 32/46 (Poland); Duraj, R. [Institute of Physics Technical University of Cracow, Podchorazych 1, 30-084 Krakow (Poland); Tyvanchuk, Yu. [Analytical Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mephodiya 6, 79005 Lviv (Ukraine)

    2014-02-15

    In this paper we report studies on EuCr{sub 3}(BO{sub 3}){sub 4} compound, that is a member of newly discovered family of huntite-related specimens for non-linear optics. For the first time, the uncommon temperature dependence of the EuCr{sub 3}(BO{sub 3}){sub 4} lattice parameters is reported. Additionally, the magnetism of this compound is extremely interesting. Namely, a possible interplay in between potentially magnetic rare-earth ions and 3d metal stacked within quasi-1D chain that can lead to a great variety of magnetic behaviour. Indeed, in our studies we have found 3D-long range ordering with metamagnetic behaviour, while at higher temperature the magnetic chains become uncoupled. - Graphical abstract: Torsion-like vibrations are the key to understand negative thermal expansion along the a-axis. Display Omitted - Highlights: • EuCr{sub 3}(BO{sub 3}){sub 4} is a peculiar triangular-chain antiferromagnet. • Rare earth sublattice is non-magnetic with Eu{sup 3+} configuration. • Cr{sup 3+} magnetic moments show 1-D behaviour along with spin fluctuations. • Torsion vibrations of Cr triangular tubes lead to anomalous expansion of unit cell.

  20. Hash functions and triangular mesh reconstruction*1

    Science.gov (United States)

    Hrádek, Jan; Kuchař, Martin; Skala, Václav

    2003-07-01

    Some applications use data formats (e.g. STL file format), where a set of triangles is used to represent the surface of a 3D object and it is necessary to reconstruct the triangular mesh with adjacency information. It is a lengthy process for large data sets as the time complexity of this process is O( N log N), where N is number of triangles. Triangular mesh reconstruction is a general problem and relevant algorithms can be used in GIS and DTM systems as well as in CAD/CAM systems. Many algorithms rely on space subdivision techniques while hash functions offer a more effective solution to the reconstruction problem. Hash data structures are widely used throughout the field of computer science. The hash table can be used to speed up the process of triangular mesh reconstruction but the speed strongly depends on hash function properties. Nevertheless the design or selection of the hash function for data sets with unknown properties is a serious problem. This paper describes a new hash function, presents the properties obtained for large data sets, and discusses validity of the reconstructed surface. Experimental results proved theoretical considerations and advantages of hash function use for mesh reconstruction.

  1. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  2. When fast atom diffraction turns 3D

    Energy Technology Data Exchange (ETDEWEB)

    Zugarramurdi, Asier; Borisov, Andrei G., E-mail: andrei.borissov@u-psud.fr

    2013-12-15

    Fast atom diffraction at surfaces (FAD) in grazing incidence geometry is characterized by the slow motion in the direction perpendicular to the surface and fast motion parallel to the surface plane along a low index direction. It is established experimentally that for the typical surfaces the FAD reveals the 2D diffraction patterns associated with exchange of the reciprocal lattice vector perpendicular to the direction of fast motion. The reciprocal lattice vector exchange along the direction of fast motion is negligible. The usual approximation made in the description of the experimental data is then to assume that the effective potential leading to the diffraction results from the averaging of the 3D surface potential along the atomic strings forming the axial channel. In this work we use full quantum wave packet propagation calculations to study theoretically the possibility to observe the 3D diffraction in FAD experiments. We show that for the surfaces with large unit cell, such as can be the case for reconstructed or vicinal surfaces, the 3D diffraction can be observed. The reciprocal lattice vector exchange along the direction of fast motion leads to several Laue circles in the diffraction pattern.

  3. 3D and beyond

    Science.gov (United States)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  4. 3D nanopillar optical antenna photodetectors.

    Science.gov (United States)

    Senanayake, Pradeep; Hung, Chung-Hong; Shapiro, Joshua; Scofield, Adam; Lin, Andrew; Williams, Benjamin S; Huffaker, Diana L

    2012-11-05

    We demonstrate 3D surface plasmon photoresponse in nanopillar arrays resulting in enhanced responsivity due to both Localized Surface Plasmon Resonances (LSPRs) and Surface Plasmon Polariton Bloch Waves (SPP-BWs). The LSPRs are excited due to a partial gold shell coating the nanopillar which acts as a 3D Nanopillar Optical Antenna (NOA) in focusing light into the nanopillar. Angular photoresponse measurements show that SPP-BWs can be spectrally coincident with LSPRs to result in a x2 enhancement in responsivity at 1180 nm. Full-wave Finite Difference Time Domain (FDTD) simulations substantiate both the spatial and spectral coupling of the SPP-BW / LSPR for enhanced absorption and the nature of the LSPR. Geometrical control of the 3D NOA and the self-aligned metal hole lattice allows the hybridization of both localized and propagating surface plasmon modes for enhanced absorption. Hybridized plasmonic modes opens up new avenues in optical antenna design in nanoscale photodetectors.

  5. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  6. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  7. Automatic Texture Optimization for 3D Urban Reconstruction

    Directory of Open Access Journals (Sweden)

    LI Ming

    2017-03-01

    Full Text Available In order to solve the problem of texture optimization in 3D city reconstruction by using multi-lens oblique images, the paper presents a method of seamless texture model reconstruction. At first, it corrects the radiation information of images by camera response functions and image dark channel. Then, according to the corresponding relevance between terrain triangular mesh surface model to image, implements occlusion detection by sparse triangulation method, and establishes the triangles' texture list of visible. Finally, combines with triangles' topology relationship in 3D triangular mesh surface model and means and variances of image, constructs a graph-cuts-based texture optimization algorithm under the framework of MRF(Markov random filed, to solve the discrete label problem of texture optimization selection and clustering, ensures the consistency of the adjacent triangles in texture mapping, achieves the seamless texture reconstruction of city. The experimental results verify the validity and superiority of our proposed method.

  8. 3D-kompositointi

    OpenAIRE

    Piirainen, Jere

    2015-01-01

    Opinnäytetyössä käydään läpi yleisimpiä 3D-kompositointiin liittyviä tekniikoita sekä kompositointiin käytettyjä ohjelmia ja liitännäisiä. Työssä esitellään myös kompositoinnin juuret 1800-luvun lopulta aina nykyaikaiseen digitaaliseen kompositointiin asti. Kompositointi on yksinkertaisimmillaan usean kuvan liittämistä saumattomasti yhdeksi uskottavaksi kokonaisuudeksi. Vaikka prosessi vaatii visuaalista silmää, vaatii se myös paljon teknistä osaamista. Tämän lisäksi perusymmärrys kamera...

  9. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  10. 3D string theory and Umbral moonshine

    Science.gov (United States)

    Kachru, Shamit; Paquette, Natalie M.; Volpato, Roberto

    2017-10-01

    The simplest string theory compactifications to 3D with 16 supercharges—the heterotic string on T 7, and type II strings on K3 × T3 —are related by U-duality, and share a moduli space of vacua parametrized by O(8, 24;{{ Z}}) ~\\backslash ~O(8, 24)~ /~ (O(8) × O(24)) . One can think of this as the moduli space of even, self-dual 32-dimensional lattices with signature (8,24). At 24 special points in moduli space, the lattice splits as Γ8, 0 \\oplus Γ0, 24 . Γ0, 24 can be the Leech lattice or any of 23 Niemeier lattices, while Γ8, 0 is the E 8 root lattice. We show that starting from this observation, one can find a precise connection between the Umbral groups and type IIA string theory on K3. This may provide a natural physical starting point for understanding Mathieu and Umbral moonshine. The maximal unbroken subgroups of Umbral groups in 6D (or any other limit) are those obtained by starting at the associated Niemeier point and moving in moduli space while preserving the largest possible subgroup of the Umbral group. To illustrate the action of these symmetries on BPS states, we discuss the computation of certain protected four-derivative terms in the effective field theory, and recover facts about the spectrum and symmetry representations of 1/2-BPS states.

  11. 3D String Theory and Umbral Moonshine

    CERN Document Server

    Kachru, Shamit; Volpato, Roberto

    2016-01-01

    The simplest string theory compactifications to 3D with 16 supercharges -- the heterotic string on $T^7$, and type II strings on $K3 \\times T^3$ -- are related by U-duality, and share a moduli space of vacua parametrized by $O(8,24; \\mathbb{Z}) \\backslash O(8,24) / (O(8) \\times O(24))$. One can think of this as the moduli space of even, self-dual 32-dimensional lattices with signature (8,24). At 24 special points in moduli space, the lattice splits as $\\Gamma^{8,0} \\oplus \\Gamma^{0,24}$. $\\Gamma^{0,24}$ can be the Leech lattice or any of 23 Niemeier lattices, while $\\Gamma^{8,0}$ is the $E_8$ root lattice. We show that starting from this observation, one can find a precise connection between the Umbral groups and type IIA string theory on $K3$. This provides a natural physical starting point for understanding Mathieu and Umbral moonshine. The maximal unbroken subgroups of Umbral groups in 6D (or any other limit) are those obtained by starting at the associated Niemeier point and moving in moduli space while p...

  12. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  13. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  15. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  16. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  17. Triangular bubble spline surfaces.

    Science.gov (United States)

    Kapl, Mario; Byrtus, Marek; Jüttler, Bert

    2011-11-01

    We present a new method for generating a [Formula: see text]-surface from a triangular network of compatible surface strips. The compatible surface strips are given by a network of polynomial curves with an associated implicitly defined surface, which fulfill certain compatibility conditions. Our construction is based on a new concept, called bubble patches, to represent the single surface patches. The compatible surface strips provide a simple [Formula: see text]-condition between two neighboring bubble patches, which are used to construct surface patches, connected with [Formula: see text]-continuity. For [Formula: see text], we describe the obtained [Formula: see text]-condition in detail. It can be generalized to any [Formula: see text]. The construction of a single surface patch is based on Gordon-Coons interpolation for triangles.Our method is a simple local construction scheme, which works uniformly for vertices of arbitrary valency. The resulting surface is a piecewise rational surface, which interpolates the given network of polynomial curves. Several examples of [Formula: see text], [Formula: see text] and [Formula: see text]-surfaces are presented, which have been generated by using our method. The obtained surfaces are visualized with reflection lines to demonstrate the order of smoothness.

  18. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  19. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  20. Radix Representation of Triangular Discrete Grid System

    Science.gov (United States)

    Ben, J.; Li, Y. L.; Wang, R.

    2016-11-01

    Discrete Global Grid Systems (DGGSs) are spatial references that use a hierarchical tessellation of cells to partition and address the entire globe. It provides an organizational structure that permits fast integration between multiple sources of large and variable geospatial data. Although many endeavors have been done to describe certain discrete grid systems, there still lack of a uniform mathematical framework for them. This paper simplifies the planar class I aperture 4 triangular discrete grid system into a hierarchical lattice model which is proved to be a radix system in the complex number plane. Mathematical properties of the radix system reveal the discrete grid system is equivalent to the set of complex numbers with special form. The conclusion provides a potential way to build a uniform mathematical framework of DGGS and can be used to design efficient encoding and spatial operation scheme for DGGS.

  1. Calculated Specific Volumes and Magnetic Moments of the 3d Transition Metal Monoxides

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1980-01-01

    We have performed self-consistent, spin-polarized band structure calculations as a function of the lattice spacing for the 3d metal monoxides in order to obtain the equilibrium lattice constants. The calculated binding from the 3d electrons and the occurrence of antiferromagnetism account...

  2. Holography of 3d-3d correspondence at Large N

    OpenAIRE

    Gang, Dongmin; Kim, Nakwoo; Lee, Sangmin

    2014-01-01

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N = 2 $$ \\mathcal{N}=2 $$ superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS 4 geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the p...

  3. Progress in sorting individual atoms in 3D

    Science.gov (United States)

    Wu, Tsung-Yao; Kumar, Aishwarya; Wang, Yang; Weiss, David

    2016-05-01

    An exactly unity filled optical lattice is a desirable initial state for a neutral atom quantum computer. We have previously proposed an efficient way to compact a partially filled lattice into a perfectly filled one, by combining site-resolved imaging, site-selective qubit rotations and state-selective motion steps. We have previously demonstrated site-resolved imaging and site-selective rotations in our system of cesium atoms in a 40% filled 5x5x5 3D lattice. We have now demonstrated the final element, state-selective motion steps in 3D produced by rotating the polarizations of one of the lattice beams in each pair. We will present our progress in putting all the elements together to reach perfect unity filling. Supported by NSF.

  4. Disorder solutions of lattice spin models

    Science.gov (United States)

    Batchelor, M. T.; van Leeuwen, J. M. J.

    1989-01-01

    It is shown that disorder solutions, which have been obtained by different methods, follow from a simple decimation method. The method is put in general form and new disorder solutions are constructed for the Blume-Emery-Griffiths model on a triangular lattice and for Potts and Ising models on square and fcc lattices.

  5. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  6. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  7. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  8. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  9. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  10. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  11. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  12. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  13. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  14. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  15. Influence of asperities on fluid and thermal flow in a fracture: a coupled Lattice Boltzmann study

    CERN Document Server

    Neuville, Amélie; Toussaint, Renaud

    2013-01-01

    The characteristics of the hydro-thermal flow which occurs when a cold fluid is injected into a hot fractured bedrock depend on the morphology of the fracture. We consider a sharp triangular asperity, invariant in one direction, perturbing an otherwise flat fracture. We investigate its influence on the macroscopic hydraulic transmissivity and heat transfer efficiency, at fixed low Reynolds number. In this study, numerical simulations are done with a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in three dimensions. The results are compared with those obtained under lubrication approximations which rely on many hypotheses and neglect the three-dimensional (3D) effects. The lubrication results are obtained by analytically solving the Stokes equation and a two-dimensional (integrated over the thickness) advection-diffusion equation. We use a lattice Boltzmann method with a double distribution (for mass and energy transport) on hypercubic and cubic ...

  16. Perception of 3D spatial relations for 3D displays

    Science.gov (United States)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  17. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  18. Market study: 3-D eyetracker

    Science.gov (United States)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  19. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  20. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  1. The star-triangle relation and 3d superconformal indices

    CERN Document Server

    Gahramanov, I

    2015-01-01

    Superconformal indices of 3d N=2 supersymmetric field theories are investigated from the Yang-Baxter equation point of view. Solutions of the star-triangle relation, vertex and IRF Yang-Baxter equations are expressed in terms of the q-special functions associated with these 3d indices. For a two-dimensional monopole-spin system on the square lattice a free energy per spin is explicitly determined. Similar to the partition functions, superconformal indices of 3d theories with the chiral symmetry breaking reduce to Dirac delta functions with the support on chemical potentials of the preserved flavor groups.

  2. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    to produce high quality 3-D images. Because of the large matrix transducers with integrated custom electronics, these systems are extremely expensive. The relatively low price of ultrasound scanners is one of the factors for the widespread use of ultrasound imaging. The high price tag on the high quality 3-D......The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...

  3. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  4. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  5. 3D vision system assessment

    Science.gov (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  6. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  7. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  8. A topological framework for interactive queries on 3D models in the Web.

    Science.gov (United States)

    Figueiredo, Mauro; Rodrigues, José I; Silvestre, Ivo; Veiga-Pires, Cristina

    2014-01-01

    Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications.

  9. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  10. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  11. Facial-paralysis diagnostic system based on 3D reconstruction

    Science.gov (United States)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  12. Reconstruction of 3-D digital cores using a hybrid method

    Institute of Scientific and Technical Information of China (English)

    Liu Xuefeng; Sun Jianmeng; Wang Haitao

    2009-01-01

    A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method which combines sedimentation simulation and simulated annealing (SA) method to generate 3-D digital cores based on 2-D images of rocks. The method starts with the sedimentation simulation to build a 3-D digital core, which is the initial configuration for the SA method. We update the initial digital core using the SA method to match the auto-correlation function of the 2-D rock image and eventually build the final 3-D digital core. Compared with the typical SA method, the hybrid method has significantly reduced the computation time. Local porosity theory is applied to quantitatively compare the reconstructed 3-D digital cores with the X-ray micro CT 3-D images. The results indicate that the 3-D digital cores reconstructed by the hybrid method have homogeneity and geometric connectivity similar to those of the X-ray micro CT image. The formation factors and permeabilities of the reconstructed 3-D digital cores are estimated using the finite element method (FEM) and lattice Boltzmann method (LBM), respectively. The simulated results are in good agreement with the experimental measurements. Comparison of the simulation results suggests that the digital cores reconstructed by the hybrid method more closely reflect the true transport properties than the typical SA method alone.

  13. 3D animation of facial plastic surgery based on computer graphics

    Science.gov (United States)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  14. Ultrasound fields from triangular apertures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1996-01-01

    The pulsed field from a triangular aperture mounted in an infinite, rigidbaffle is calculated. The approach of spatial impulse responses,as developed by Tupholme and Stepanishen, is used. By this both the emitted and received pulsed ultrasound field can be found for any transducerexcitation...

  15. Guaranteed-Quality Triangular Meshes

    Science.gov (United States)

    1989-04-01

    Defense Ad, : ed Research P: jects Pgency or the U.S- Gower ment° iI Guaranteed-Quality Triangular Meshes DTIC ELECTE L. Paul Chew* JUL 1419891 TR 89-983 S... Wittchen , M. S. Shephard, K. R. Grice, and M. A. Yerry, Robust, geometrically based, automatic two-dimensional mesh generation, International Journal for

  16. Subjectivity, objectivity, and triangular space.

    Science.gov (United States)

    Britton, Ronald

    2004-01-01

    The author reviews his ideas on subjectivity, objectivity, and the third position in the psychoanalytic encounter, particularly in clinical work with borderline and narcissistic patients. Using the theories of Melanie Klein and Wilfred Bion as a basis, the author describes his concept of triangular space. A case presentation of a particular type of narcissistic patient illustrates the principles discussed.

  17. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  18. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  19. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  20. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  1. RANK ONE OPERATORS AND TRIANGULAR ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    LuFangyan; IuShijie

    1999-01-01

    Abstract, In this paper, a necessary condition for a maximal triangular algebra to be closed is given, A necessary and sufficient condition for a maxima] triangular algebra to he strongly reducible is obtained,

  2. Thermal Hydraulic Performance of Tight Lattice Bundle

    Science.gov (United States)

    Yamamoto, Yasushi; Akiba, Miyuki; Morooka, Shinichi; Shirakawa, Kenetsu; Abe, Nobuaki

    Recently, the reduced moderation spectrum BWR has been studied. The fast neutron spectrum is obtained through triangular tight lattice fuel. However, there are few thermal hydraulic test data and thermal hydraulic correlation applicable to critical power prediction in such a tight lattice bundle. This study aims to enhance the database of the thermal hydraulic performance of the tight lattice bundle whose rod gap is about 1mm. Therefore, thermal hydraulic performance measurement tests of tight lattice bundles for the critical power, the pressure drop and the counter current flow limiting were performed. Moreover, the correlations to evaluate the thermal-hydraulic performance of the tight lattice bundle were developed.

  3. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  4. Accepting the T3D

    Energy Technology Data Exchange (ETDEWEB)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  5. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...... ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges...

  6. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  7. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  8. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  9. 3D measurement system based on computer-generated gratings

    Science.gov (United States)

    Zhu, Yongjian; Pan, Weiqing; Luo, Yanliang

    2010-08-01

    A new kind of 3D measurement system has been developed to achieve the 3D profile of complex object. The principle of measurement system is based on the triangular measurement of digital fringe projection, and the fringes are fully generated from computer. Thus the computer-generated four fringes form the data source of phase-shifting 3D profilometry. The hardware of system includes the computer, video camera, projector, image grabber, and VGA board with two ports (one port links to the screen, another to the projector). The software of system consists of grating projection module, image grabbing module, phase reconstructing module and 3D display module. A software-based synchronizing method between grating projection and image capture is proposed. As for the nonlinear error of captured fringes, a compensating method is introduced based on the pixel-to-pixel gray correction. At the same time, a least square phase unwrapping is used to solve the problem of phase reconstruction by using the combination of Log Modulation Amplitude and Phase Derivative Variance (LMAPDV) as weight. The system adopts an algorithm from Matlab Tool Box for camera calibration. The 3D measurement system has an accuracy of 0.05mm. The execution time of system is 3~5s for one-time measurement.

  10. Finite layer and triangular prism element method to subsidence prediction and stress analysis in underground mining

    Institute of Scientific and Technical Information of China (English)

    LIU Li-min(刘立民); LIU Han-long(刘汉龙); LIAN Chuan-jie(连传杰)

    2003-01-01

    The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.

  11. Lattice radial quantization by cubature

    CERN Document Server

    Neuberger, Herbert

    2014-01-01

    Basic aspects of a program to put field theories quantized in radial coordinates on the lattice are presented. Only scalar fields are discussed. Simple examples are solved to illustrate the strategy when applied to the 3D Ising model.

  12. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  13. Object 3D surface reconstruction approach using portable laser scanner

    Science.gov (United States)

    Xu, Ning; Zhang, Wei; Zhu, Liye; Li, Changqing; Wang, Shifeng

    2017-06-01

    The environment perception plays the key role for a robot system. The 3D surface of the objects can provide essential information for the robot to recognize objects. This paper present an approach to reconstruct objects' 3D surfaces using a portable laser scanner we designed which consists of a single-layer laser scanner, an encoder, a motor, power supply and mechanical components. The captured point cloud data is processed to remove the discrete points, denoise filtering, stitching and registration. Then the triangular mesh generation of point cloud is accomplished by using Gaussian bilateral filtering, ICP real-time registration and greedy triangle projection algorithm. The experiment result shows the feasibility of the device designed and the algorithm proposed.

  14. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    OpenAIRE

    Hiltula, Tytti

    2014-01-01

    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  15. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  16. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  17. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  18. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  19. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  20. Speaking Volumes About 3-D

    Science.gov (United States)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  1. Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet

    DEFF Research Database (Denmark)

    Lefmann, K.; Hedegård, P.

    1994-01-01

    In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long...

  2. A numerically accurate and robust expression for bistatic scattering from a plane triangular facet

    DEFF Research Database (Denmark)

    Wendelboe, Gorm; Jacobsen, Finn; Bell, Judith

    2006-01-01

    This work is related to modeling of synthetic sonar images of naval mines or other objects. Considered here is the computation of high frequency scattering from the surface of a rigid 3D-object numerically represented by plane triangular facets. The far field scattered pressure from each facet...

  3. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  4. Aspects of defects in 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,Seoul 02447 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Romo, Mauricio; Yamazaki, Masahito [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-10-12

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A{sub N−1} on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T{sub N}[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T{sub N}[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  5. Aspects of defects in 3d-3d correspondence

    Science.gov (United States)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-10-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  6. Holography of 3d-3d correspondence at large N

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,26 Kyungheedaero, Dongdaemun-gu, Seoul, 130-701 (Korea, Republic of); Lee, Sangmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Center for Theoretical Physics, Department of Physics and Astronomy, College of Liberal Studies,Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2015-04-20

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N=2 superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS{sub 4} geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the perturbative free energy of a Chern-Simons theory on hyperbolic 3-manifold. The conjecture claims that the tree, one-loop and two-loop terms all share the same N{sup 3} scaling behavior and are proportional to the volume of the 3-manifold, while the three-loop and higher terms are suppressed at large N. Under mild assumptions, we prove the tree and one-loop parts of the conjecture. For the two-loop part, we test the conjecture numerically in a number of examples and find precise agreement. We also confirm the suppression of higher loop terms in a few examples.

  7. On Skew Triangular Matrix Rings

    Institute of Scientific and Technical Information of China (English)

    Wang Wei-liang; Wang Yao; Ren Yan-li

    2016-01-01

    Letαbe a nonzero endomorphism of a ring R, n be a positive integer and Tn(R,α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by Tn(R,α). Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring R[x;α]/(xn), where R[x;α] is the skew polynomial ring.

  8. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  9. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  10. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  11. Triangular Fibrocartilage Complex MR Imaging

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Mostafavi

    2010-05-01

    Full Text Available Interpretation of MR imaging of the wrist may be difficult because of the small size of this joint, its complex anatomy, and its sometimes poorly unders-tood pathologic lesions. A recent study revealed that MR imaging of the wrist influences clinicians' diagnoses and management plans in most patients. "nWhich structures make up the triangular fibrocarti-lage complex (TFCC are not universally agreed upon. In most descriptions, however, the TFCC is composed of the triangular fibrocartilage (TFC, the meniscus homolog, the ulnar collateral ligament, the dorsal and volar radioulnar ligaments and the sheath of the extensor carpi ulnaris tendon. The ulnolunate and ulnotriquetral ligaments may also be considered as part of the TFCC. These structures are a complex unit that function as a stabilizing element in the pivot movement of the radius and ulna and limit the lateral deviation of the carpus. The distal radioulnar joint is primarily stabilized by the TFCC. The TFC functions as a cushion between the ulnar head and carpal bones. Many of the structures that make up the complex are connected by fibrous bands. "nThis presentation summarizes the current diagnostic criteria that can be useful in interpreting abnormalities of the triangular fibrocartilage complex (TFCC of the wrist in this difficult topic in joint MR imaging

  12. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  13. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  14. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  15. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  16. 3D digitization of mosaics

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2012-11-01

    Full Text Available In this paper we present a methodology developed to access to Cultural Heritage information using digital 3d reality-based models as graphic interfaces. The case studies presented belong to the wide repertoire of mosaics of Ravenna. One of the most peculiar characteristics of mosaics that often limits their digital survey is their multi-scale complexity; nevertheless their models could be used in 3d information systems, for digital exhibitions, for reconstruction aims and to document their conservation conditions in order to conduct restoration interventions in digital environments aiming at speeding and performing more reliable evaluations.

  17. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  18. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-04-21

    Tissue engineering is receiving tremendous attention due to the necessity to overcome the limitations related to injured or diseased tissues or organs. It is the perfect combination of cells and biomimetic-engineered materials. With the appropriate biochemical factors, it is possible to develop new effective bio-devices that are capable to improve or replace biological functions. Latest developments in microfabrication methods, employing mostly synthetic biomaterials, allow the production of three-dimensional (3D) scaffolds that are able to direct cell-to-cell interactions and specific cellular functions in order to drive tissue regeneration or cell transplantation. The presented work offers a rapid and efficient method of 3D scaffolds fabrication by using optical lithography and micro-molding techniques. Bioresorbable polymer poly-ε-caprolactone (PCL) was the material used thanks to its high biocompatibility and ability to naturally degrade in tissues. 3D PCL substrates show a particular combination in the designed length scale: cylindrical shaped pillars with 10μm diameter, 10μm height, arranged in a hexagonal lattice with spacing of 20μm were obtained. The sidewalls of the pillars were nanostructured by attributing a 3D architecture to the scaffold. The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro- and nano-patterns on the surface of the supports. In addition, after seeding of cells, SEM and immunofluorescence characterization of the fabricated systems were performed to check adhesion, growth and proliferation. It was observed that cells grow and develop healthy on the bio-polymeric devices by giving rise to well-interconnected networks. 3D PCL nano-patterned pillared scaffold therefore may have considerable potential as effective tool for

  19. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  20. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  1. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  2. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  3. 3D Printing of Metals

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2017-09-01

    Full Text Available The potential benefits that could be derived if the science and technology of 3D printing were to be established have been the crux behind monumental efforts by governments, in most countries, that invest billions of dollars to develop this manufacturing technology.[...

  4. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  5. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  6. 3D fold growth in transpression

    Science.gov (United States)

    Frehner, Marcel

    2016-12-01

    Geological folds in transpression are inherently 3D structures; hence their growth and rotation behavior is studied using 3D numerical finite-element simulations. Upright single-layer buckle folds in Newtonian materials are considered, which grow from an initial point-like perturbation due to a combination of in-plane shortening and shearing (i.e., transpression). The resulting fold growth exhibits three components: (1) fold amplification (vertical), (2) fold elongation (parallel to fold axis), and (3) sequential fold growth (perpendicular to axial plane) of new anti- and synforms adjacent to the initial fold. Generally, the fold growth rates are smaller for shearing-dominated than for shortening-dominated transpression. In spite of the growth rate, the folding behavior is very similar for the different convergence angles. The two lateral directions always exhibit similar growth rates implying that the bulk fold structure occupies an increasing roughly circular area. Fold axes are always parallel to the major horizontal principal strain axis (λ→max, i.e., long axis of the horizontal finite strain ellipse), which is initially also parallel to the major horizontal instantaneous stretching axis (ISA→max). After initiation, the fold axes rotate together with λ→max. Sequential folds appearing later do not initiate parallel to ISA→max, but parallel to λ→max, i.e. parallel to the already existing folds, and also rotate with λ→max. Therefore, fold axes do not correspond to passive material lines and hinge migration takes place as a consequence. The fold axis orientation parallel to λ→max is independent of convergence angle and viscosity ratio. Therefore, a triangular relationship between convergence angle, amount of shortening, and fold axis orientation exists. If two of these values are known, the third can be determined. This relationship is applied to the Zagros fold-and-thrust-belt to estimate the degree of strain partitioning between the Simply

  7. Priprava 3D modelov za 3D tisk

    OpenAIRE

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  8. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  9. Complex crustal structures: their 3D grav/mag modelling and 3D printing

    Science.gov (United States)

    Götze, Hans-Jürgen; Schmidt, Sabine; Menzel, Peter

    2017-04-01

    Our new techniques for modelling and visualization are user-friendly because they are highly interactive, ideally real-time and topology conserving and can be used for both flat and spherical models in 3D. These are important requirements for joint inversion for gravity and magnetic modelling of fields and their derivatives, constrained by seismic and structural input from independent data sources. A borehole tool for magnetic and gravity modelling will also be introduced. We are already close to satisfying the demand of treating several geophysical methods in a single model for subsurface evaluation purposes and aim now for fulfilling most of the constraints: consistency of modelling results and measurements and geological plausibility as well. For 3D modelling, polyhedrons built by triangles are used. All elements of the gravity and magnetic tensors can be included. In the modelling interface, after geometry changes the effect on the model is quickly updated because only the changed triangles have to be recalculated. Because of the triangular model structure, our approach can handle complex structures very well and flexible (e.g. overhangs of salt domes or plumes). For regional models, the use of spherical geometries and calculations is necessary and available. 3D visualization is performed with a 3D-printer (Ultimaker 2) and gives new insights into even rather complicated Earth subsurface structures. Inversion can either be run over the whole model, but typically it is used in smaller parts of the model, helping to solve local problems and/or proving/disproving local hypotheses. The basic principles behind this interactive approach are high performance optimized algorithms (CMA-ES: Covariance-matrix-adoption-evolution-strategy). The efficiency of the algorithm is rather good in terms of stable convergence due to topological model validity. Potential field modelling is always influenced by edge effects. To avoid this, a simple but very robust method has been

  10. Sculptured 3D twister superlattices embedded with tunable vortex spirals.

    Science.gov (United States)

    Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Denz, Cornelia; Joseph, Joby

    2011-09-01

    We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

  11. 3D shaping of electron beams using amplitude masks

    CERN Document Server

    Shiloh, Roy

    2016-01-01

    Shaping the electron wavefunction in three dimensions may prove to be an indispensable tool for research involving atomic-sized particle trapping, manipulation, and synthesis. We utilize computer-generated holograms to sculpt electron wavefunctions in a standard transmission electron microscope in 3D, and demonstrate the formation of electron beams exhibiting high intensity along specific trajectories as well as shaping the beam into a 3D lattice of hot-spots. The concepts presented here are similar to those used in light optics for trapping and tweezing of particles, but at atomic scale resolutions.

  12. Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images

    Science.gov (United States)

    Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko

    2008-03-01

    The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).

  13. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  14. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  15. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  16. Medical 3D thermography system

    OpenAIRE

    GRUBIŠIĆ, IVAN

    2011-01-01

    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  17. Tomographic particle image velocimetry over a triangular prism in unidirectional flows

    Science.gov (United States)

    Sou, In Mei; Calantoni, Joseph

    2011-11-01

    Using tomographic particle image velocimetry (Tomo-PIV), the full three-dimensional-three-component (3D-3C) flow structure and turbulence characteristics over a triangular prism in a recirculating water tunnel were investigated. Here we present preliminary results from a new Tomo-PIV system for subcritical Froude number flows. Large-scale vortex shedding from the tip of the triangular prism is observed. Results of coherent structure organization analyzed by 3D vorticity calculation will be presented. Using the full 3D-3C instantaneous velocity field, turbulent kinetic energy is directly evaluated without any of the assumptions often needed for 2D PIV measurements. Details of the experimental setup including a unique device designed to perform our Tomo-PIV volume calibration will be discussed. We perform an in-depth turbulent kinetic energy budget and explore the feasibility of extending the measurement technique to other complex flows.

  18. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  19. Research on the printability of hydrogels in 3D bioprinting

    OpenAIRE

    Yong He; FeiFei Yang; HaiMing Zhao; Qing Gao; Bing Xia; JianZhong Fu

    2016-01-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films ...

  20. Magnetic phase diagram of the coupled triangular spin tubes for CsCrF4

    Science.gov (United States)

    Seki, Kouichi; Okunishi, Kouichi

    2015-06-01

    Using Monte Carlo simulations, we explore the magnetic phase diagram of triangular spin tubes coupled with a ferromagnetic intertube interaction for CsCrF4. The planar structure of the coupled tubes is topologically equivalent to the kagome-triangular lattice, which induces nontrivial frustration effects in the system. We particularly find that, depending on the intertube coupling, various ordered phases are actually realized, such as incommensurate order, ferromagnetic order, and cuboc order, which is characterized by the noncoplanar spin structure of the 12 sublattices accompanying the spin chirality breaking. We also discuss the relevance of the results to recent experiments on CsCrF4.

  1. A Lattice Spanning-Tree Entropy Function

    OpenAIRE

    Glasser, ML; Lamb, George

    2005-01-01

    The function $$W(aq,b)=\\int\\int_0^{2\\pi}\\ln[1-a\\cos x-b\\cos y-(1-a-b)\\cos(x+y)]dxdy$$ which expresses the spanning-tree entropy for various two dimensional lattices, for example, is evaluated directly in terms of standard functions. It is applied to derive several limiting values of the triangular lattice Green function.

  2. Manipulation and control of a bichromatic lattice

    Science.gov (United States)

    Thomas, Claire; Barter, Thomas; Daiss, Severin; Leung, Zephy; Stamper-Kurn, Dan

    2015-05-01

    Recent experiments with ultracold atoms in optical lattices have had great success emulating the simple models of condensed matter systems. These experiments are typically performed with a single site per unit cell. We realize a lattice with up to four sites per unit cell by overlaying an attractive triangular lattice with a repulsive one at twice the wavelength. The relative displacement of the two lattices determines the particular structure. One available configuration is the kagome lattice, which has a flat energy band. In the flat band all kinetic energy states are degenerate, so we have the opportunity to explore a regime where interactions dominate. This bichromatic lattice requires careful stabilization, but offers an opportunity to manipulate the unit cell and band structure by perturbing the lattices relative to one another. I will discuss recent progress.

  3. Two-Dimensional Lattice Gravity as a Spin System

    CERN Document Server

    Beirl, W; Riedler, J

    1994-01-01

    Quantum gravity is studied in the path integral formulation applying the Regge calculus. Restricting the quadratic link lengths of the originally triangular lattice the path integral can be transformed to the partition function of a spin system with higher couplings on a Kagome lattice. Various measures acting as external field are considered. Extensions to matter fields and higher dimensions are discussed.

  4. A Preliminary Study of 3D Printing on Rock Mechanics

    Science.gov (United States)

    Jiang, Chao; Zhao, Gao-Feng

    2015-05-01

    3D printing is an innovative manufacturing technology that enables the printing of objects through the accumulation of successive layers. This study explores the potential application of this 3D printing technology for rock mechanics. Polylactic acid (PLA) was used as the printing material, and the specimens were constructed with a "3D Touch" printer that employs fused deposition modelling (FDM) technology. Unconfined compressive strength (UCS) tests and direct tensile strength (DTS) tests were performed to determine the Young's modulus ( E) and Poisson's ratio ( υ) for these specimens. The experimental results revealed that the PLA specimens exhibited elastic to brittle behaviour in the DTS tests and exhibited elastic to plastic behaviour in the UCS tests. The influence of structural changes in the mechanical response of the printed specimen was investigated; the results indicated that the mechanical response is highly influenced by the input structures, e.g., granular structure, and lattice structure. Unfortunately, our study has demonstrated that the FDM 3D printing with PLA is unsuitable for the direct simulation of rock. However, the ability for 3D printing on manufactured rock remains appealing for researchers of rock mechanics. Additional studies should focus on the development of an appropriate substitution for the printing material (brittle and stiff) and modification of the printing technology (to print 3D grains with arbitrary shapes).

  5. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  6. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  7. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  8. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  9. Antiferromagnetic Ising model on the swedenborgite lattice

    NARCIS (Netherlands)

    Buhrandt, Stefan; Fritz, Lars

    2014-01-01

    Geometrical frustration in spin systems often results in a large number of degenerate ground states. In this work, we study the antiferromagnetic Ising model on the three-dimensional swedenborgite lattice, which is a specific stacking of kagome and triangular layers. The model contains two exchange

  10. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  11. Structure and magnetic exchange in heterometallic 3d-3d transition metal triethanolamine clusters.

    Science.gov (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2012-01-21

    Synthetic methods are described that have resulted in the formation of seven heterometallic complexes, all of which contain partially deprotonated forms of the ligand triethanolamine (teaH(3)). These compounds are [Mn(III)(4)Co(III)(2)Co(II)(2)O(2)(teaH(2))(2)(teaH)(0.82)(dea)(3.18)(O(2)CMe)(2)(OMe)(2)](BF(4))(2)(O(2)CMe)(2)·3.18MeOH·H(2)O (1), [Mn(II)(2)Mn(III)(2)Co(III)(2)(teaH)(4)(OMe)(2)(acac)(4)](NO(3))(2)·2MeOH (2), [Mn(III)(2)Ni(II)(4)(teaH)(4)(O(2)CMe)(6)]·2MeCN (3), [Mn(III)(2)Co(II)(2)(teaH)(2)(sal)(2)(acac)(2)(MeOH)(2)]·2MeOH (4), [Mn(II)(2)Fe(III)(2)(teaH)(2)(paa)(4)](NO(3))(2)·2MeOH·CH(2)Cl(2) (5), [Mn(II)Mn(III)(2)Co(III)(2)O(teaH)(2)(dea)(Iso)(OMe)(F)(2)(Phen)(2)](BF(4))(NO(3))·3MeOH (6) and [Mn(II)(2)Mn(III)Co(III)(2)(OH)(teaH)(3)(teaH(2))(acac)(3)](NO(3))(2)·3CH(2)Cl(2) (7). All of the compounds contain manganese, combined with 3d transition metal ions such as Fe, Co and Ni. The crystal structures are described and examples of 'rods', tetranuclear 'butterfly' and 'triangular' Mn(3) cluster motifs, flanked in some cases by diamagnetic cobalt(III) centres, are presented. Detailed DC and AC magnetic susceptibility and magnetization studies, combined with spin Hamiltonian analysis, have yielded J values and identified the spin ground states. In most cases, the energies of the low-lying excited states have also been obtained. The features of note include the 'inverse butterfly' spin arrangement in 2, 4 and 5. A S = 5/2 ground state occurs, for the first time, in the Mn(III)(2)Mn(II) triangular moiety within 6, the many other reported [Mn(3)O](6+) examples having S = ½ or 3/2 ground states. Compound 7 provides the first example of a Mn(II)(2)Mn(III) triangle, here within a pentanuclear Mn(3)Co(2) cluster.

  12. Robust Reconstruction and Generalized Dual Hahn Moments Invariants Extraction for 3D Images

    Science.gov (United States)

    Mesbah, Abderrahim; Zouhri, Amal; El Mallahi, Mostafa; Zenkouar, Khalid; Qjidaa, Hassan

    2017-03-01

    In this paper, we introduce a new set of 3D weighed dual Hahn moments which are orthogonal on a non-uniform lattice and their polynomials are numerically stable to scale, consequent, producing a set of weighted orthonormal polynomials. The dual Hahn is the general case of Tchebichef and Krawtchouk, and the orthogonality of dual Hahn moments eliminates the numerical approximations. The computational aspects and symmetry property of 3D weighed dual Hahn moments are discussed in details. To solve their inability to invariability of large 3D images, which cause to overflow issues, a generalized version of these moments noted 3D generalized weighed dual Hahn moment invariants are presented where whose as linear combination of regular geometric moments. For 3D pattern recognition, a generalized expression of 3D weighted dual Hahn moment invariants, under translation, scaling and rotation transformations, have been proposed where a new set of 3D-GWDHMIs have been provided. In experimental studies, the local and global capability of free and noisy 3D image reconstruction of the 3D-WDHMs has been compared with other orthogonal moments such as 3D Tchebichef and 3D Krawtchouk moments using Princeton Shape Benchmark database. On pattern recognition using the 3D-GWDHMIs like 3D object descriptors, the experimental results confirm that the proposed algorithm is more robust than other orthogonal moments for pattern classification of 3D images with and without noise.

  13. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  14. 3D medical thermography device

    Science.gov (United States)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  15. 3D Printed Bionic Ears

    Science.gov (United States)

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  16. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  17. FUZZY ALGEBRA IN TRIANGULAR NORM SYSTEM

    Institute of Scientific and Technical Information of China (English)

    宋晓秋; 潘志

    1994-01-01

    Triangular norm is a powerful tool in the theory research and application development of fuzzy sets. In this paper, using the triangular norm, we introduce some concepts such as fuzzy algebra, fuzzy o algebra and fuzzy monotone class, and discuss the relations among them, obtaining the following main conclusions.

  18. Spectral properties of random triangular matrices

    CERN Document Server

    Basu, Riddhipratim; Ganguly, Shirshendu; Hazra, Rajat Subhra

    2011-01-01

    We provide a relatively elementary proof of the existence of the limiting spectral distribution (LSD) of symmetric triangular patterned matrices and also show their joint convergence. We also derive the expressions for the moments of the LSD of the symmetric triangular Wigner matrix using properties of Catalan words.

  19. Reductions of Lower Triangular Toda Hierarchies

    NARCIS (Netherlands)

    Helminck, G.F.; Mishina, Marina G.; Polenkova, Svetlana V.

    2007-01-01

    Deforming commutative algebras in the lower triangular (ℤ×ℤ)-matrices yields lower triangular Toda hierarchies and their associated nonlinear equations. Like for their counterpart in the ring of pseudodifferential operators, the KP-hierarchy, one also has for these hierarchies a geometric picture:

  20. Cohomology of Weakly Reducible Maximal Triangular Algebras

    Institute of Scientific and Technical Information of China (English)

    董浙; 鲁世杰

    2000-01-01

    In this paper, we introduce the concept of weakly reducible maximal triangular algebras φwhich form a large class of maximal triangular algebras. Let B be a weakly closed algebra containing 5φ, we prove that the cohomology spaces Hn(φ, B) (n≥1) are trivial.

  1. Island Shape-Induced Transition from 2D to 3D Growth for Pt/Pt(111)

    DEFF Research Database (Denmark)

    Jacobsen, Joachim; Jacobsen, Karsten Wedel; Stoltze, Per

    1995-01-01

    We present a kinetic Monte Carlo simulation of the growth of Pt on Pt(111) capable of describing the experimentally observed temperature dependence of the island shapes and the growth mode. We show that the transition from a 2D growth mode at low temperatures to a 3D mode at higher temperatures...... is closely related to the disappearance of kink sites and the appearance of the triangular islands observed in the 3D growth regime....

  2. Constructing parametric triangular patches with boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Hui Liu; Jun Ma; Fuhua Cheng

    2008-01-01

    The problem of constructing a parametric triangular patch to smoothly connect three surface patches is studied. Usually, these surface patches are defined on different parameter spaces. Therefore, it is necessary to define interpolation conditions, with values from the given surface patches, on the boundary of the triangular patch that can ensure smooth transition between different parameter spaces. In this paper we present a new method to define boundary conditions. Boundary conditions defined by the new method have the same parameter space if the three given surface patches can be converted into the same form through affine transformation. Consequently, any of the classic methods for constructing functional triangular patches can be used directly to construct a parametric triangular patch to connect given surface patches with G continuity. The resulting parametric triangular patch preserves precision of the applied classic method.

  3. Hydrothermal synthesis of 3D porous architectures

    Institute of Scientific and Technical Information of China (English)

    XIAO Wanyan; GU Xiaojun; XUE Dongfeng

    2009-01-01

    A novel porous lanthanide-organic coordination polymer, [Nd(H2O)(HnicO)(TP)]·2H2O (1) (H2nicO=2-hydroxynieotinic acid, TP= terephthalate), was prepared under hydrothermai condition and characterized by single-crystal X-ray diffraction, thermogravimetrie analysis and infrared spectroscopy. Compound 1 exhibited a flexible coordination geometry of lanthanide ions, which possessed a three-dimensional (3D) open framework with one-dimensional (1D) channels containing lattice water molecules. This framework structure exhibited a high stability up to 330 ℃ after removing free water molecules. A homometallic supramolecular framework (Zn(HnicO)2(H2O)2 (2)) was obtained due to the competitive reaction between organic ligands, Nd3+ and Zn2+ ions. The results showed that on the basis of the soft-hard/acid-base principle the coordination selection between metal ions and organic ligands played an essential role in the smart construc-tion of lanthanide architectures.

  4. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  5. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  6. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  7. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  8. A new 3D reconstruction method of small solar system bodies

    Science.gov (United States)

    Capanna, C.; Jorda, L.; Lamy, P.; Gesquiere, G.

    2011-10-01

    The 3D reconstruction of small solar system bodies consitutes an essential step toward understanding and interpreting their physical and geological properties. We propose a new reconstruction method by photoclinometry based on the minimization of the chisquare difference between observed and synthetic images by deformation of a 3D triangular mesh. This method has been tested on images of the two asteroids (2867) Steins and (21) Lutetia observed during ESA's ROSETTA mission, and it will be applied to elaborate digital terrain models from images of the asteroid (4) Vesta, the target of NASA's DAWN spacecraft.

  9. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    required for 3D printing, 2 reviews the current applications of 3D printing in patient-specific orthopedic procedures, 3 discusses the potential advantages and limitations of 3D-printed custom orthopedic implants, and 4 suggests the directions for future development. The 3D printing technology has been reported to be beneficial in patient-specific orthopedics, such as in the creation of anatomic models for surgical planning, education and surgical training, patient-specific instruments, and 3D-printed custom implants. Besides being anatomically conformed to a patient’s surgical requirement, 3D-printed implants can be fabricated with scaffold lattices that may facilitate osteointegration and reduce implant stiffness. However, limitations including high cost of the implants, the lead time in manufacturing, and lack of intraoperative flexibility need to be addressed. New biomimetic materials have been investigated for use in 3D printing. To increase utilization of 3D printing technology in orthopedics, an all-in-one computer platform should be developed for easy planning and seamless communications among different care providers. Further studies are needed to investigate the real clinical efficacy of 3D printings in orthopedic applications. Keywords: 3D printing, patient-specific orthopedics, custom implants, patient-specific instrument, image processing

  10. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    Directory of Open Access Journals (Sweden)

    Tsap Leonid V

    2006-01-01

    Full Text Available The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell, and its state. Analysis of chromosome structure is significant in the detection of diseases, identification of chromosomal abnormalities, study of DNA structural conformation, in-depth study of chromosomal surface morphology, observation of in vivo behavior of the chromosomes over time, and in monitoring environmental gene mutations. The methodology incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  11. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-10-04

    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  12. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S; Liao, P; Shin, M C; Tsap, L V

    2004-04-28

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  13. Highly-stretchable 3D-architected Mechanical Metamaterials

    Science.gov (United States)

    Jiang, Yanhui; Wang, Qiming

    2016-09-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  14. Highly-stretchable 3D-architected Mechanical Metamaterials.

    Science.gov (United States)

    Jiang, Yanhui; Wang, Qiming

    2016-09-26

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  15. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  16. Lattice Boltzmann methods for complex micro-flows: applicability and limitations for practical applications

    Science.gov (United States)

    Suga, K.

    2013-06-01

    The extensive evaluation studies of the lattice Boltzmann method for micro-scale flows (μ-flow LBM) by the author's group are summarized. For the two-dimensional test cases, force-driven Poiseuille flows, Couette flows, a combined nanochannel flow, and flows in a nanochannel with a square- or triangular cylinder are discussed. The three-dimensional (3D) test cases are nano-mesh flows and a flow between 3D bumpy walls. The reference data for the complex test flow geometries are from the molecular dynamics simulations of the Lennard-Jones fluid by the author's group. The focused flows are mainly in the slip and a part of the transitional flow regimes at Kn flow LBMs are the lattice Bhatnagar-Gross-Krook and the multiple-relaxation time LBMs with several boundary conditions and discrete velocity models. The effects of the discrete velocity models, the wall boundary conditions, the near-wall correction models of the molecular mean free path and the regularization process are discussed to confirm the applicability and the limitations of the μ-flow LBMs for complex flow geometries.

  17. Lattice Boltzmann methods for complex micro-flows: applicability and limitations for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K, E-mail: suga@me.osakafu-u.ac.jp [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)

    2013-06-15

    The extensive evaluation studies of the lattice Boltzmann method for micro-scale flows ({mu}-flow LBM) by the author's group are summarized. For the two-dimensional test cases, force-driven Poiseuille flows, Couette flows, a combined nanochannel flow, and flows in a nanochannel with a square- or triangular cylinder are discussed. The three-dimensional (3D) test cases are nano-mesh flows and a flow between 3D bumpy walls. The reference data for the complex test flow geometries are from the molecular dynamics simulations of the Lennard-Jones fluid by the author's group. The focused flows are mainly in the slip and a part of the transitional flow regimes at Kn < 1. The evaluated schemes of the {mu}-flow LBMs are the lattice Bhatnagar-Gross-Krook and the multiple-relaxation time LBMs with several boundary conditions and discrete velocity models. The effects of the discrete velocity models, the wall boundary conditions, the near-wall correction models of the molecular mean free path and the regularization process are discussed to confirm the applicability and the limitations of the {mu}-flow LBMs for complex flow geometries. (invited review)

  18. Experimental Realization of a Quantum Pentagonal Lattice

    Science.gov (United States)

    Yamaguchi, Hironori; Okubo, Tsuyoshi; Kittaka, Shunichiro; Sakakibara, Toshiro; Araki, Koji; Iwase, Kenji; Amaya, Naoki; Ono, Toshio; Hosokoshi, Yuko

    2015-01-01

    Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL. PMID:26468930

  19. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  20. Comparison of two-transsacral-screw fixation versus triangular osteosynthesis for transforaminal sacral fractures.

    Science.gov (United States)

    Min, Kyong S; Zamorano, David P; Wahba, George M; Garcia, Ivan; Bhatia, Nitin; Lee, Thay Q

    2014-09-01

    Transforaminal pelvic fractures are high-energy injuries that are translationally and rotationally unstable. This study compared the biomechanical stability of triangular osteosynthesis vs 2-transsacral-screw fixation in the repair of a transforaminal pelvic fracture model. A transforaminal fracture model was created in 10 cadaveric lumbopelvic specimens. Five of the specimens were stabilized with triangular osteosynthesis, which consisted of unilateral L5-to-ilium lumbopelvic fixation and ipsilateral iliosacral screw fixation. The remaining 5 were stabilized with a 2-transsacral-screw fixation technique that consisted of 2 transsacral screws inserted across S1. All specimens were loaded cyclically and then loaded to failure. Translation and rotation were measured using the MicroScribe 3D digitizing system (Revware Inc, Raleigh, North Carolina). The 2-transsacral-screw group showed significantly greater stiffness than the triangular osteosynthesis group (2-transsacral-screw group, 248.7 N/mm [standard deviation, 73.9]; triangular osteosynthesis group, 125.0 N/mm [standard deviation, 66.9]; P=.02); however, ultimate load and rotational stiffness were not statistically significant. Compared with triangular osteosynthesis fixation, the use of 2 transsacral screws provides a comparable biomechanical stability profile in both translation and rotation. This newly revised 2-transsacral-screw construct offers the traumatologist an alternative method of repair for vertical shear fractures that provides biplanar stability. It also offers the advantage of percutaneous placement in either the prone or supine position.

  1. Vrste i tehnike 3D modeliranja

    OpenAIRE

    Bernik, Andrija

    2010-01-01

    Proces stvaranja 3D stvarnih ili imaginarnih objekata naziva se 3D modeliranje. Razvoj računalne tehnologije omogućuje korisniku odabir raznih metoda i tehnika kako bi se postigla optimalna učinkovitost. Odabir je vezan za klasično 3D modeliranje ili 3D skeniranje pomoću specijaliziranih programskih i sklopovskih rješenja. 3D tehnikama modeliranja korisnik može izraditi 3D model na nekoliko načina: koristi poligone, krivulje ili hibrid dviju spomenutih tehnika pod nazivom subdivizijsko modeli...

  2. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  3. Research on the printability of hydrogels in 3D bioprinting

    Science.gov (United States)

    He, Yong; Yang, Feifei; Zhao, Haiming; Gao, Qing; Xia, Bing; Fu, Jianzhong

    2016-07-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.

  4. Guided plasmon modes of triangular and inverted triangular cross section silver nanoridges

    CERN Document Server

    Pan, Zeyu; Soref, Richard; Buchwald, Walter; Sun, Greg

    2012-01-01

    Propagating two-dimensional plasmon modes guided along silver nanoridge waveguides with triangular and inverted triangular cross sections are investigated in this paper. Mode field profiles, dispersion curves, propagation distances, and figure-of-merits of the plasmon ridge modes are calculated for silver nanoridge waveguides with various triangular and inverted triangular waveguide cross sections. It is found that the triangular cross section nanoridge waveguide, if designed properly, can have longer propagation distance and higher figure-of-merit than the flat-top nanoridge waveguide of the same width. When the triangle height of the nanoridge is high, the mode approaches to the small angle wedge mode. An inverted triangular cross section nanoridge mode can be considered as a hybrid mode of two metal wedge plasmon modes. When inverted triangle depth increases, the propagation distance and the figure-of-merit decrease dramatically, suggesting the poorer performance when compared to the flat-top nanoridge pla...

  5. Phase transition in Heisenberg stacked triangular antiferromagnets: end of a controversy.

    Science.gov (United States)

    Ngo, V Thanh; Diep, H T

    2008-09-01

    By using the Wang-Landau flat-histogram Monte Carlo (MC) method for very large lattice sizes never simulated before, we show that the phase transition in the frustrated Heisenberg stacked triangular antiferromagnet is of first order, contrary to results of earlier MC simulations using old-fashioned methods. Our result lends support to the conclusion of a nonperturbative renormalization group performed on an effective Hamiltonian. It puts an end to a 20-year -long controversial issue.

  6. Spin Correlations in the quasi-triangular magnet, Cu2(OH)3NO3

    Science.gov (United States)

    Gardner, Jason S.; Ehlers, Georg; Werner, Fletcher; Solin, S. A.

    2012-02-01

    We have investigated the structural and magnetic properties of the spin S = .5ex1 -.1em/ -.15em.25ex2 antiferromagnetic quasi-triangular lattice materials: Cu2(1-x)Zn2x(OH)3NO3 (0 Europhysics Letters, 93, 67001 (2011).[0pt] [2] J. Wu, A. K. Gangopadhyay, P. Kanjanaboos and S. A. Solin, J. Phys.: Condens. Matter 22, 334211 -- 334222 (2010).

  7. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. Opening the Door on Triangular Numbers

    Science.gov (United States)

    McMartin, Kimberley; McMaster, Heather

    2016-01-01

    As an alternative to looking solely at linear functions, a three-lesson learning progression developed for Year 6 students that incorporates triangular numbers to develop children's algebraic thinking is described and evaluated.

  9. Molecular rectification in triangularly shaped graphene nanoribbons.

    Science.gov (United States)

    Liu, Hongmei; Wang, Hongbo; Zhao, Jianwei; Kiguchi, Manabu

    2013-02-15

    We present a theoretical study of electron transport in tailored zigzag graphene nanoribbons (ZGNRs) with triangular structure using density functional theory together with the nonequilibrium Green's function formalism. We find significant rectification with a favorite electron transfer direction from the vertex to the right edge. The triangular ZGNR connecting to the electrode with one thiol group at each terminal shows an average rectification ratio of 8.4 over the bias range from -1.0 to 1.0 V. This asymmetric electron transport property originates from nearly zero band gap of triangular ZGNR under negative bias, whereas a band gap opens under positive bias. When the molecule is connected to the electrode by multithiol groups, the current is enhanced due to strong interfacial coupling; however, the rectification ratio decreases. The simulation results indicate that the unique electronic states of triangular ZGNR are responsible for rectification, rather than the asymmetric anchoring groups.

  10. Sliding Adjustment for 3D Video Representation

    Directory of Open Access Journals (Sweden)

    Galpin Franck

    2002-01-01

    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  11. An interactive multiview 3D display system

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  12. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  13. 3D ultrasound in fetal spina bifida.

    Science.gov (United States)

    Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B

    2008-12-01

    3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.

  14. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  15. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  16. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  17. 3D printing of microscopic bacterial communities

    National Research Council Canada - National Science Library

    Jodi L. Connell; Eric T. Ritschdorff; Marvin Whiteley; Jason B. Shear

    2013-01-01

    .... Here, we describe a microscopic threedimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating...

  18. 3D Scanning technology for offshore purposes

    DEFF Research Database (Denmark)

    Christoffersen, Morten Thoft

    2005-01-01

    New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities......New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities...

  19. Triangular nanobeam photonic cavities in single crystal diamond

    CERN Document Server

    Bayn, Igal; Salzman, Joseph; Kalish, Rafi

    2011-01-01

    Diamond photonics provides an attractive architecture to explore room temperature cavity quantum electrodynamics and to realize scalable multi-qubit computing. Here we review the present state of diamond photonic technology. The design, fabrication and characterization of a novel triangular cross section nanobeam cavity produced in a single crystal diamond is demonstrated. The present cavity design, based on a triangular cross section allows vertical confinement and better signal collection efficiency than that of slab-based nanocavities, and eliminates the need for a pre-existing membrane. The nanobeam is fabricated by Focused-Ion-Beam (FIB) patterning. The cavity is characterized by a confocal photoluminescence. The modes display quality factors of Q ~220 and are deviated in wavelength by only ~1.7nm from the NV- color center zero phonon line (ZPL). The measured results are found in good agreement with 3D Finite-Difference-Time-Domain (FDTD) calculations. A more advanced cavity design with Q=22,000 is model...

  20. Light transmission through a triangular air gap

    CERN Document Server

    Carvalho, Silvania A

    2013-01-01

    Due to the recent interest in studying propagation of light through triangular air gaps, we calculate, by using the analogy between optics and quantum mechanics and the multiple step technique, the transmissivity through a triangular air gap surrounded by an homogeneous dielectric medium. The new formula is then compared with the formula used in literature. Starting from the qualitative and quantitative differences between these formulas, we propose optical experiments to test our theoretical results.

  1. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos George (The University of New Mexico, Albuquerque, NM); Nordquist, Christopher Daniel; Feldner, Lucas Matthew

    2005-07-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  2. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Feldner, Lucas Matthew

    2005-01-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  3. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  4. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  5. Manufacturing of a 3D complex hyperstable Cesic structure

    Science.gov (United States)

    Kroedel, Matthias; Courteau, Pascal; Poupinet, Anne; Sarri, Giuseppe

    2007-09-01

    Global astrometry requires extremely stable materials for instrument structures, such as optical benches. Cesic®, developed by ECM and Thales Alenia Space for mirrors and high stability structures, offers an excellent compromise in terms of structural strength, stability and very high lightweight capability, with a coefficient of thermal expansion that is virtually zero at cryogenic T°. The High-Stability Optical Bench (HSOB) GAIA study, realized by Thales Alenia Space under ESA contract, aimed to design, develop and test a full-scale representative of the HSOB bench, made entirely of Cesic®. The bench has been equipped with SAGEIS-CSO laser metrology system MOUSE1, a Michelson interferometer composed of integrated optics with nm-resolution. The HSOB bench has been submitted to a homogeneous T° step under vacuum to characterize 3-D expansion behavior of its two arms. The quite negligible interarm differential, measured with a nm-range reproducibility, demonstrates that a complete 3-D structure made of Cesic® has the same CTE homogeneity as do characterization samples, fully in line with the stringent GAIA requirements (1ppm at 120K). This demonstrates that Cesic® properties at cryogenic temperatures are fully appropriate to the manufacturing of complex highly stable optical structures. This successful study confirms ECM's and Thales Alenia Space's ability to design and manufacture monolithic lightweight highly stable optical structures, based on inner-cell triangular design made possible by the unique Cesic® manufacturing process.

  6. Improved Lattice Radial Quantization

    CERN Document Server

    Brower, Richard C; Fleming, George T

    2014-01-01

    Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $\\phi^4$ Lagrangian on $\\mathbb R \\times \\mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture.

  7. Magnetic phase diagrams of classical triangular and kagome antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdikova, M V [Department of Physics, Kharkov National University, 61077 Kharkov (Ukraine); Melchy, P-E; Zhitomirsky, M E, E-mail: mike.zhitomirsky@cea.fr [Service de Physique Statistique, Magnetisme et Supraconductivite, UMR-E9001 CEA-INAC/UJF, 17 rue des Martyrs, 38054 Grenoble (France)

    2011-04-27

    We investigate the effect of geometrical frustration on the H-T phase diagrams of the classical Heisenberg antiferromagnets on triangular and kagome lattices. The phase diagrams for the two models are obtained from large-scale Monte Carlo simulations. For the kagome antiferromagnet, thermal fluctuations are unable to lift degeneracy completely and stabilize translationally disordered multipolar phases. We find a substantial difference in the temperature scales of the order by disorder effect related to different degeneracy of the low- and the high-field classical ground states in the kagome antiferromagnet. In the low-field regime, the Kosterlitz-Thouless transition into a spin-nematic phase is produced by unbinding of half-quantum vortices.

  8. Magnetic phase diagrams of classical triangular and kagome antiferromagnets.

    Science.gov (United States)

    Gvozdikova, M V; Melchy, P-E; Zhitomirsky, M E

    2011-04-27

    We investigate the effect of geometrical frustration on the H-T phase diagrams of the classical Heisenberg antiferromagnets on triangular and kagome lattices. The phase diagrams for the two models are obtained from large-scale Monte Carlo simulations. For the kagome antiferromagnet, thermal fluctuations are unable to lift degeneracy completely and stabilize translationally disordered multipolar phases. We find a substantial difference in the temperature scales of the order by disorder effect related to different degeneracy of the low- and the high-field classical ground states in the kagome antiferromagnet. In the low-field regime, the Kosterlitz-Thouless transition into a spin-nematic phase is produced by unbinding of half-quantum vortices.

  9. 3D Printing and Its Urologic Applications

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  10. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  11. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  12. Imaging a Sustainable Future in 3D

    Science.gov (United States)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  13. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  14. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  15. 3D immersive and interactive learning

    CERN Document Server

    Cai, Yiyu

    2014-01-01

    This book reviews innovative uses of 3D for immersive and interactive learning, covering gifted programs, normal stream and special needs education. Reports on curriculum-based 3D learning in classrooms, and co-curriculum-based 3D student research projects.

  16. MOM3D/EM-ANIMATE - MOM3D WITH ANIMATION CODE

    Science.gov (United States)

    Shaeffer, J. F.

    1994-01-01

    MOM3D (LAR-15074) is a FORTRAN method-of-moments electromagnetic analysis algorithm for open or closed 3-D perfectly conducting or resistive surfaces. Radar cross section with plane wave illumination is the prime analysis emphasis; however, provision is also included for local port excitation for computing antenna gain patterns and input impedances. The Electric Field Integral Equation form of Maxwell's equations is solved using local triangle couple basis and testing functions with a resultant system impedance matrix. The analysis emphasis is not only for routine RCS pattern predictions, but also for phenomenological diagnostics: bistatic imaging, currents, and near scattered/total electric fields. The images, currents, and near fields are output in form suitable for animation. MOM3D computes the full backscatter and bistatic radar cross section polarization scattering matrix (amplitude and phase), body currents and near scattered and total fields for plane wave illumination. MOM3D also incorporates a new bistatic k space imaging algorithm for computing down range and down/cross range diagnostic images using only one matrix inversion. MOM3D has been made memory and cpu time efficient by using symmetric matrices, symmetric geometry, and partitioned fixed and variable geometries suitable for design iteration studies. MOM3D may be run interactively or in batch mode on 486 IBM PCs and compatibles, UNIX workstations or larger computers. A 486 PC with 16 megabytes of memory has the potential to solve a 30 square wavelength (containing 3000 unknowns) symmetric configuration. Geometries are described using a triangular mesh input in the form of a list of spatial vertex points and a triangle join connection list. The EM-ANIMATE (LAR-15075) program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D. The EM-ANIMATE program is windows based and

  17. Wave propagation in fractal-inspired self-similar beam lattices

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Qi Jian [Engineering Science Programme, National University of Singapore, Singapore 117576 (Singapore); Wang, Pai [Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Koh, Soo Jin Adrian [Engineering Science Programme, National University of Singapore, Singapore 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, Singapore 117576 (Singapore); Khoo, Eng Huat [Engineering Science Programme, National University of Singapore, Singapore 117576 (Singapore); A*STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Bertoldi, Katia [Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Kavli Institute, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-11-30

    We combine numerical analysis and experiments to investigate the effect of hierarchy on the propagation of elastic waves in triangular beam lattices. While the response of the triangular lattice is characterized by a locally resonant band gap, both Bragg-type and locally resonant gaps are found for the hierarchical lattice. Therefore, our results demonstrate that structural hierarchy can be exploited to introduce an additional type of band gaps, providing a robust strategy for the design of lattice-based metamaterials with hybrid band gap properties (i.e., possessing band gaps that arises from both Bragg scattering and localized resonance)

  18. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  19. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  20. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    OpenAIRE

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  1. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  2. Magnetism in 3d transition metal doped SnO

    KAUST Repository

    Albar, Arwa

    2016-09-12

    Using first principles calculations, we investigate the structural and electronic properties of 3d transition metal doped SnO. We examine the stability of different doping sites using formation energy calculations. The magnetic behavior of the dopant atoms is found to be complex because of interplay between strong structural relaxation, spin-lattice coupling, and crystal field splitting. The interaction between dopant atoms is analyzed as a function of their separation, showing that clustering typically counteracts spin polarization. An exception is found for V doping, which thus turns out to be a promising candidate for realizing a magnetic p-type oxide.

  3. QCD thermodynamics from 3d adjoint Higgs model

    CERN Document Server

    Karsch, Frithjof; Patkós, András; Petreczky, P; Szép, Z; Szep, Zs.

    1998-01-01

    The screening masses of hot SU(N) gauge theory, defined as poles of the corresponding propagators are studied in 3d adjoint Higgs model, considered as an effective theory of QCD, using coupled gap equations and lattice Monte-Carlo simulations (for N=2). Using so-called lambda gauges non-perturbative evidence for gauge independence of the pole masses within this class of gauges is given. A possible application of the screening masses for the resummation of the free energy is discussed.

  4. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  5. Lattice Bosons

    CERN Document Server

    Chakrabarti, J; Bagchi, B; Chakrabarti, Jayprokas; Basu, Asis; Bagchi, Bijon

    2000-01-01

    Fermions on the lattice have bosonic excitations generated from the underlying periodic background. These, the lattice bosons, arise near the empty band or when the bands are nearly full. They do not depend on the nature of the interactions and exist for any fermion-fermion coupling. We discuss these lattice boson solutions for the Dirac Hamiltonian.

  6. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  7. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  8. A novel modeling method for manufacturing hearing aid using 3D medical images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Gyun [Dept of Radiological Science, Far East University, Eumseong (Korea, Republic of)

    2016-06-15

    This study aimed to suggest a novel method of modeling a hearing aid ear shell based on Digital Imaging and Communication in Medicine (DICOM) in the hearing aid ear shell manufacturing method using a 3D printer. In the experiment, a 3D external auditory meatus was extracted by using the critical values in the DICOM volume images, a nd t he modeling surface structures were compared in standard type STL (STereoLithography) files which could be recognized by a 3D printer. In this 3D modeling method, a conventional ear model was prepared, and the gaps between adjacent isograms produced by a 3D scanner were filled with 3D surface fragments to express the modeling structure. In this study, the same type of triangular surface structures were prepared by using the DICOM images. The result showed that the modeling surface structure based on the DICOM images provide the same environment that the conventional 3D printers may recognize, eventually enabling to print out the hearing aid ear shell shape.

  9. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  10. RT3D tutorials for GMS users

    Energy Technology Data Exchange (ETDEWEB)

    Clement, T.P. [Pacific Northwest National Lab., Richland, WA (United States); Jones, N.L. [Brigham Young Univ., Provo, UT (United States)

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  11. 3D change detection - Approaches and applications

    Science.gov (United States)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  12. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  13. 3D-Barolo: 3D fitting tool for the kinematics of galaxies

    NARCIS (Netherlands)

    Di Teodoro, E. M.; Fraternali, F.

    3D-Barolo (3D-Based Analysis of Rotating Object via Line Observations) or BBarolo is a tool for fitting 3D tilted-ring models to emission-line datacubes. BBarolo works with 3D FITS files, i.e. image arrays with two spatial and one spectral dimensions. BBarolo recovers the true rotation curve and

  14. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and

  15. Stability Criteria of 3D Inviscid Shears

    CERN Document Server

    Li, Y Charles

    2009-01-01

    The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

  16. 3D-tulostus : case Printrbot

    OpenAIRE

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  17. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  18. Reconhecimento de faces 3D com Kinect

    OpenAIRE

    Cardia Neto, João Baptista [UNESP

    2014-01-01

    For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...

  19. Ultrasonic Sensor Based 3D Mapping & Localization

    Directory of Open Access Journals (Sweden)

    Shadman Fahim Ahmad

    2016-04-01

    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  20. Ekologinen 3D-tulostettava asuste

    OpenAIRE

    Paulasaari, Laura

    2014-01-01

    Tämän opinnäytetyön aiheena oli ekologisuus 3D-tulostuksessa ja sen hyödynnettävyys erityisesti asustesuunnittelussa. Työn tarkoituksena oli selvittää, kuinka 3D-tulostusta voi tehdä ekologisemmin ja mitä vaihtoehtoja kuluttajalle tällä hetkellä on. Työ tehtiin Young skills –osuuskunnalle. 3D-tulostuksella on mahdollisuus antaa todella paljon tulevaisuuden tuotantomenetelmille ja se vapauttaa tuotteiden muotoilua täysin uudella tavalla. 3D-tulostuksen avulla voidaan keskittyä enemmän esim...

  1. Topology Dictionary for 3D Video Understanding

    OpenAIRE

    2012-01-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...

  2. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2016-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  3. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  4. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  5. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  6. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  7. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  8. Analogue Divider by Averaging a Triangular Wave

    Science.gov (United States)

    Selvam, Krishnagiri Chinnathambi

    2017-08-01

    A new analogue divider circuit by averaging a triangular wave using operational amplifiers is explained in this paper. The triangle wave averaging analog divider using operational amplifiers is explained here. The reference triangular waveform is shifted from zero voltage level up towards positive power supply voltage level. Its positive portion is obtained by a positive rectifier and its average value is obtained by a low pass filter. The same triangular waveform is shifted from zero voltage level to down towards negative power supply voltage level. Its negative portion is obtained by a negative rectifier and its average value is obtained by another low pass filter. Both the averaged voltages are combined in a summing amplifier and the summed voltage is given to an op-amp as negative input. This op-amp is configured to work in a negative closed environment. The op-amp output is the divider output.

  9. Directing Matter: Toward Atomic-Scale 3D Nanofabrication.

    Science.gov (United States)

    Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S

    2016-06-28

    Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies.

  10. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques.

  11. FastScript3D - A Companion to Java 3D

    Science.gov (United States)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  12. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  13. 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display.

    Science.gov (United States)

    Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen

    2017-07-01

    Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Robust band gap and half-metallicity in graphene with triangular perforations

    Science.gov (United States)

    Gregersen, Søren Schou; Power, Stephen R.; Jauho, Antti-Pekka

    2016-06-01

    Ideal graphene antidot lattices are predicted to show promising band gap behavior (i.e., EG≃500 meV) under carefully specified conditions. However, for the structures studied so far this behavior is critically dependent on superlattice geometry and is not robust against experimentally realistic disorders. Here we study a rectangular array of triangular antidots with zigzag edge geometries and show that their band gap behavior qualitatively differs from the standard behavior which is exhibited, e.g., by rectangular arrays of armchair-edged triangles. In the spin unpolarized case, zigzag-edged antidots give rise to large band gaps compared to armchair-edged antidots, irrespective of the rules which govern the existence of gaps in armchair-edged antidot lattices. In addition the zigzag-edged antidots appear more robust than armchair-edged antidots in the presence of geometrical disorder. The inclusion of spin polarization within a mean-field Hubbard approach gives rise to a large overall magnetic moment at each antidot due to the sublattice imbalance imposed by the triangular geometry. Half-metallic behavior arises from the formation of spin-split dispersive states near the Fermi energy, reducing the band gaps compared to the unpolarized case. This behavior is also found to be robust in the presence of disorder. Our results highlight the possibilities of using triangular perforations in graphene to open electronic band gaps in systems with experimentally realistic levels of disorder, and furthermore, of exploiting the strong spin dependence of the system for spintronic applications.

  15. Fabrication of Orientation-Controlled 3D Tissues Using a Layer-by-Layer Technique and 3D Printed a Thermoresponsive Gel Frame.

    Science.gov (United States)

    Tsukamoto, Yoshinari; Akagi, Takami; Shima, Fumiaki; Akashi, Mitsuru

    2017-06-01

    Herein, we report the fabrication of orientation-controlled tissues similar to heart and nerve tissues using a cell accumulation and three-dimensional (3D) printing technique. We first evaluated the 3D shaping ability of hydroxybutyl chitosan (HBC), a thermoresponsive polymer, by using a robotic dispensing 3D printer. HBC polymer could be laminated to a height of 1124 ± 14 μm. Based on this result, we fabricated 3D gel frames of various shapes, such as square, triangular, rectangular, and circular, for shape control of 3D tissue and then normal human cardiac fibroblasts (NHCFs) coated with extracellular matrix nanofilms were seeded in the frames. Observation of shape-controlled tissues after 1 day of cultivation showed that the orientation of fibroblasts was in one direction when a short-sided, thin, rectangular-shaped frame was used. Next, we tried to fabricate orientation-controlled tissue with a vascular network by coculturing NHCF and normal human cardiac microvascular endothelial cells. As a consequence of cultivation for 4 days, observation of cocultured tissue confirmed aligned cells and blood capillaries in orientation-controlled tissue. Our results clearly demonstrated that it would be possible to control the cell orientation by controlling the shape of the tissues by combining a cell accumulation technique and a 3D printing system. The results of this study suggest promising strategies for the fabrication of oriented 3D tissues in vitro. These tissues, mimicking native organ structures, such as muscle and nerve tissue with a cell alignment structure, would be useful for tissue engineering, regenerative medicine, and pharmaceutical applications.

  16. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  17. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  18. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    . In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality...

  19. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  20. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  1. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  2. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be

  3. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  4. 3D elastic control for mobile devices.

    Science.gov (United States)

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  5. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  6. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  7. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  8. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  9. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  10. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  11. Topology dictionary for 3D video understanding.

    Science.gov (United States)

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  12. Integration of real-time 3D image acquisition and multiview 3D display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  13. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  14. 6D Interpretation of 3D Gravity

    Science.gov (United States)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  15. 6D Interpretation of 3D Gravity

    CERN Document Server

    Herfray, Yannick; Scarinci, Carlos

    2016-01-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any SU(2) invariant closed 3-form in the total space of the principal SU(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  16. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  17. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  18. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  19. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  20. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  1. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  2. Multi-pulse time delay integration method for flexible 3D super-resolution range-gated imaging.

    Science.gov (United States)

    Xinwei, Wang; Youfu, Li; Yan, Zhou

    2015-03-23

    Constructing flexible regular-shaped range-intensity profiles by the convolution of illuminator laser pulse and sensor gate pulse is crucial for 3D super-resolution range-gated imaging. However, ns-scale rectangular-shaped laser pulse with tunable pulse width is difficult to be obtained, especially for pulsed solid-stated lasers. In this paper we propose a multi-pulse time delay integration (MPTDI) method to reshape range-intensity profiles (RIP) free from the above limitation of pulsed lasers. An equivalent laser pulse temporal shaping model is established to evaluate and optimize the MPTDI method. By using MPTDI, the RIP shape and depth of viewing can both be flexibly changed as desired. Here typical triangular and trapezoidal RIPs are established for 3D imaging under triangular and trapezoidal range-intensity correlation algorithms. In addition, a prototype experiment is demonstrated to prove the feasibility of MPTDI.

  3. Basic Employability Skills: A Triangular Design Approach

    Science.gov (United States)

    Rosenberg, Stuart; Heimler, Ronald; Morote, Elsa-Sofia

    2012-01-01

    Purpose: This paper seeks to examine the basic employability skills needed for job performance, the reception of these skills in college, and the need for additional training in these skills after graduation. Design/methodology/approach: The research was based on a triangular design approach, in which the attitudes of three distinct groups--recent…

  4. Magnetic focusing in triangular electron billiards

    DEFF Research Database (Denmark)

    Bøggild, Peter; Kristensen, A.; Lindelof, Poul Erik

    1999-01-01

    The classical ballistic magnetotransport in triangular electron billiards fabricated in a high mobility GaAs heterostructure has been studied at 4.2 K. The sample geometry may be viewed as a double-slit structure with a skewed injection angle. We observe a striking cancellation of the magnetic...

  5. Basic Employability Skills: A Triangular Design Approach

    Science.gov (United States)

    Rosenberg, Stuart; Heimler, Ronald; Morote, Elsa-Sofia

    2012-01-01

    Purpose: This paper seeks to examine the basic employability skills needed for job performance, the reception of these skills in college, and the need for additional training in these skills after graduation. Design/methodology/approach: The research was based on a triangular design approach, in which the attitudes of three distinct groups--recent…

  6. Solitons in nonlinear lattices

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis

    2010-01-01

    This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...

  7. Photonic band structures of two-dimensional photonic crystals with deformed lattices

    Institute of Scientific and Technical Information of China (English)

    Cai Xiang-Hua; Zheng Wan-Hua; Ma Xiao-Tao; Ren Gang; Xia Jian-Bai

    2005-01-01

    Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.

  8. Topological spin models in Rydberg lattices

    CERN Document Server

    Kiffner, Martin; Jaksch, Dieter

    2016-01-01

    We show that resonant dipole-dipole interactions between Rydberg atoms in a triangular lattice can give rise to artificial magnetic fields for spin excitations. We consider the coherent dipole-dipole coupling between $np$ and $ns$ Rydberg states and derive an effective spin-1/2 Hamiltonian for the $np$ excitations. By breaking time-reversal symmetry via external fields we engineer complex hopping amplitudes for transitions between two rectangular sub-lattices. The phase of these hopping amplitudes depends on the direction of the hop. This gives rise to a staggered, artificial magnetic field which induces non-trivial topological effects. We calculate the single-particle band structure and investigate its Chern numbers as a function of the lattice parameters and the detuning between the two sub-lattices. We identify extended parameter regimes where the Chern number of the lowest band is $C=1$ or $C=2$.

  9. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  10. 3D imaging in forensic odontology.

    Science.gov (United States)

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  11. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  12. Development of Focused Ion Beam technique for high speed steel 3D-SEM artefact fabrication

    DEFF Research Database (Denmark)

    Carli, Lorenzo; MacDonald, A. Nicole; De Chiffre, Leonardo

    2009-01-01

    The work describes preliminary manufacture by grinding, followed by machining on a Focused Ion Beam (FIB), of a high speed steel step artefact for 3D-SEM calibration. The FIB is coupled with a SEM in the so called dual beam instrument. The milling capabilities of FIB were checked from a qualitati...... point of view, using the dual beam SEM imaging, and quantitatively using a reference stylus instrument, to establish traceability. A triangular section having a depth of about 10 μm was machined, where the 50 μm curvature radius due to grinding was reduced to about 2 μm by FIB milling...

  13. Polarizablity of 2D and 3D conducting objects using method of moments

    CERN Document Server

    Shahpari, Morteza; Lewis, Andrew

    2014-01-01

    Fundamental antenna limits of the gain-bandwidth product are derived from polarizability calculations. This electrostatic technique has significant value in many antenna evaluations. Polarizability is not available in closed form for most antenna shapes and no commercial electromagnetic packages have this facility. Numerical computation of the polarizability for arbitrary conducting bodies was undertaken using an unstructured triangular mesh over the surface of 2D and 3D objects. Numerical results compare favourably with analytical solutions and can be implemented efficiently for large structures of arbitrary shape.

  14. Superradiance Lattice

    CERN Document Server

    Wang, Da-Wei; Zhu, Shi-Yao; Scully, Marlan O

    2014-01-01

    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in the momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on an electromagnetically induced transparency (EIT) system. For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective electric field. The quantum behaviours of electrons in lattices, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The SL can be extended to two, three and even higher dimensions where no analogous real space lattices exist and new physics are waiting to be explored.

  15. Quasi-hexagonal vortex-pinning lattice using anodized aluminum oxide nanotemplates

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, M.; Michotte, S.

    2009-01-01

    The bottom barrier layer of well-ordered nanoporous alumina membranes reveals a previously unexploited nanostructured template surface consisting of a triangular lattice of hemispherical nanoscale bumps. Quasi-hexagonal vortex-pinning lattice arrays are created in superconducting Nb films deposit...

  16. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  17. Indications of c-axis Charge Transport in Hole Doped Triangular Antiferromagnets

    Institute of Scientific and Technical Information of China (English)

    LIANG Ying; LIU Bin; FENG Shi-Ping

    2004-01-01

    The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the tJ model by considering the incoherent interlayer hopping.It is shown that the c-axis charge transport of the hole doped triangular antiferromagnet is essentially determined by the scattering from the in-plane fluctuation.The c-axis conductivity spectrum shows a lov-energy peak and the unusual high-energy broad band,while the c-axis resistivity is characterized by a crossover from the high temperature metallic-like behavior to the Iow temperature insulating-like behavior,which is qualitatively consistent with those of the hole doped square lattice antiferromagnet.

  18. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  19. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  20. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...