WorldWideScience

Sample records for 3d topology optimization

  1. Time domain topology optimization of 3D nanophotonic devices

    Elesin, Yuriy; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard;

    2014-01-01

    We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire...

  2. Combined shape and topology optimization of 3D structures

    Christiansen, Asger Nyman; Bærentzen, Jakob Andreas; Nobel-Jørgensen, Morten

    2015-01-01

    We present a method for automatic generation of 3D models based on shape and topology optimization. The optimization procedure, or model generation process, is initialized by a set of boundary conditions, an objective function, constraints and an initial structure. Using this input, the method...... will automatically deform and change the topology of the initial structure such that the objective function is optimized subject to the specified constraints and boundary conditions. For example, this tool can be used to improve the stiffness of a structure before printing, reduce the amount of material needed...

  3. Topology optimization of 3D Stokes flow problems

    Gersborg-Hansen, Allan

    to different flow problems. However, this research has focused on 2D fluid modelling, which limits the practical impact of the computed designs. The explanation of the limitation is that the finite size domain used in topology optimization problems ensures that the velocity components couples, even for Stokes...... flow [3]. Furthermore, it is questionable if such a coupling can be captured by a 2D model especially in non-trivial geometries as typically seen in topology design. This statement is widely accepted in the fluid mechanics community, i.e. that planar fluid models are useful for academic test problems...... only. The motivation for considering topology optimization in 3D Stokes flow originates from micro fluidic systems. At small scales the Stokes equations are a reasonable mathematical model to use for the fluid behavior. Physically Stokes flow is an exotic inertia free flow, which in practice...

  4. Topology optimization of 3D Stokes flow problems

    Gersborg-Hansen, Allan; Sigmund, Ole; Bendsøe, Martin P.

    The design of MEMS devices have benefitted from the topology optimization tool and complicated layout problems have been solved, see [1] for an overview. This research is aimed at micro fluidic devices known as micro-Total-Analysis-Systems (muTAS) where the main physical phenomena originate from...... examples relevant for optimal micro fluidic mixer design are shown where the design is planar - compliant with micro fabrication techniques - and where the designs are 3D. In addition issues related to the parallel solution of the linear algebra problems are discussed. The implementation uses...... optimization tool for micro fluidic design problems by considering design of energy efficient devices subjected to Stokes flow. Several researchers have elaborated on [2], however, this research has focused on 2D fluid modelling which limits the practical impact of the computed designs. This limitation...

  5. 3D Topology optimization of Stokes flow problems

    Gersborg-Hansen, Allan; Dammann, Bernd

    , the optimizer suggests a design that stretches the hot-cold interface, which is encouraging since "stretching and folding" is known to be key ingredients in efficient mixing. The modelling is performed using a finite element based solver, with analytically derived sensitivities that drives a gradient based...... for the fluid behavior in a micro fluidic device. Such a device has finite size and a large degree of freedom for the design of geometry. Physically Stokes flow is an exotic inertia free flow. This, however, complicates mixing by passive devices. Passive devices, that is, devices without moving parts, are often...... of practical interest since they are easily manufacturable and maintenance free. In order to tackle such a challenging problem a robust method is needed which we approach by this contribution. The finite size of a micro fluidic device calls for 3D modelling of the equations, in particular when the design...

  6. 3D interactive topology optimization on hand-held devices

    Nobel-Jørgensen, Morten; Aage, Niels; Christiansen, Asger Nyman;

    2015-01-01

    This educational paper describes the implementation aspects, user interface design considerations and workflow potential of the recently published TopOpt 3D App. The app solves the standard minimum compliance problem in 3D and allows the user to change design settings interactively at any point i...

  7. Backbone cup – a structure design competition based on topology optimization and 3D printing

    Zhu Ji-Hong

    2016-01-01

    Full Text Available This paper addresses a structure design competition based on topology optimization and 3D Printing, and proposes an experimental approach to efficiently and quickly measure the mechanical performance of the structures designed using topology optimization. Since the topology optimized structure designs are prone to be geometrically complex, it is extremely inconvenient to fabricate these designs with traditional machining. In this study, we not only fabricated the topology optimized structure designs using one kind of 3D Printing technology known as stereolithography (SLA, but also tested the mechanical performance of the produced prototype parts. The finite element method is used to analyze the structure responses, and the consistent results of the numerical simulations and structure experiments prove the validity of this new structure testing approach. This new approach will not only provide a rapid access to topology optimized structure designs verifying, but also cut the turnaround time of structure design significantly.

  8. Topology Optimization Design of 3D Continuum Structure with Reserved Hole Based on Variable Density Method

    Bai Shiye

    2016-05-01

    Full Text Available An objective function defined by minimum compliance of topology optimization for 3D continuum structure was established to search optimal material distribution constrained by the predetermined volume restriction. Based on the improved SIMP (solid isotropic microstructures with penalization model and the new sensitivity filtering technique, basic iteration equations of 3D finite element analysis were deduced and solved by optimization criterion method. All the above procedures were written in MATLAB programming language, and the topology optimization design examples of 3D continuum structure with reserved hole were examined repeatedly by observing various indexes, including compliance, maximum displacement, and density index. The influence of mesh, penalty factors, and filter radius on the topology results was analyzed. Computational results showed that the finer or coarser the mesh number was, the larger the compliance, maximum displacement, and density index would be. When the filtering radius was larger than 1.0, the topology shape no longer appeared as a chessboard problem, thus suggesting that the presented sensitivity filtering method was valid. The penalty factor should be an integer because iteration steps increased greatly when it is a noninteger. The above modified variable density method could provide technical routes for topology optimization design of more complex 3D continuum structures in the future.

  9. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method.

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Nguyen, Tam H; Miller, Michael J; Paulino, Glaucio H

    2016-07-01

    Large craniofacial defects require efficient bone replacements which should not only provide good aesthetics but also possess stable structural function. The proposed work uses a novel multiresolution topology optimization method to achieve the task. Using a compliance minimization objective, patient-specific bone replacement shapes can be designed for different clinical cases that ensure revival of efficient load transfer mechanisms in the mid-face. In this work, four clinical cases are introduced and their respective patient-specific designs are obtained using the proposed method. The optimized designs are then virtually inserted into the defect to visually inspect the viability of the design . Further, once the design is verified by the reconstructive surgeon, prototypes are fabricated using a 3D printer for validation. The robustness of the designs are mechanically tested by subjecting them to a physiological loading condition which mimics the masticatory activity. The full-field strain result through 3D image correlation and the finite element analysis implies that the solution can survive the maximum mastication of 120 lb. Also, the designs have the potential to restore the buttress system and provide the structural integrity. Using the topology optimization framework in designing the bone replacement shapes would deliver surgeons new alternatives for rather complicated mid-face reconstruction.

  10. Topology optimization of 3D compliant actuators by a sequential element rejection and admission method

    Ansola, R; Vegueria, E; Alonso, C.; Querin, OM

    2016-01-01

    This work presents a sequential element rejection and admission (SERA) method for optimum topology design of three dimensional compliant actuators. The proposed procedure has been successfully applied to several topology optimization problems, but most investigations for compliant devices design have been focused on planar systems. This investigation aims to progress on this line, where a generalization of the method for three dimensional topology optimization is explored. The methodology des...

  11. A Fully Developed Flow Thermofluid Model for Topology Optimization of 3D-Printed Air-Cooled Heat Exchangers

    Haertel, Jan Hendrik Klaas; Nellis, Gregory F.

    2017-01-01

    In this work, density-based topology optimization is applied to the design of the air-side surface of dry-cooled power plant condensers. A topology optimization model assuming a steady-state, thermally and fluid dynamically fully developed internal flow is developed and used for this application....

  12. Topology dictionary for 3D video understanding.

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  13. Topology Dictionary for 3D Video Understanding

    2012-01-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...

  14. Factorising the 3D Topologically Twisted Index

    Cabo-Bizet, Alejandro

    2016-01-01

    In this work, path integral representations of the 3D topologically twisted index were studied. First, the index can be "factorised" into a couple of "blocks". The "blocks" being the partition functions of a type A semi-topological twisting of 3D N = 2 SYM placed on $\\mathbb{S}_2\\times (0, \\pi)$ and $\\mathbb{S}_2 \\times (\\pi, 2 \\pi)$ respectively. Second, as the path integral of the aforementioned theory over $\\mathbb{S}_2$ times $\\mathbb{S}_1$ with a point excluded. In this way we recover the sum over fluxes from integration over the real path and without sacrificing positive definiteness of the bosonic part of the localising action. We also reproduce the integration over the complex contour by using the localising term with positive definite bosonic part.

  15. Topology Optimization

    A. Kristensen, Anders Schmidt; Damkilde, Lars

    2007-01-01

    . A way to solve the initial design problem namely finding a form can be solved by so-called topology optimization. The idea is to define a design region and an amount of material. The loads and supports are also fidefined, and the algorithm finds the optimal material distribution. The objective function...... dictates the form, and the designer can choose e.g. maximum stiness, maximum allowable stresses or maximum lowest eigenfrequency. The result of the topology optimization is a relatively coarse map of material layout. This design can be transferred to a CAD system and given the necessary geometrically...... refinements, and then remeshed and reanalysed in other to secure that the design requirements are met correctly. The output of standard topology optimization has seldom well-defined, sharp contours leaving the designer with a tedious interpretation, which often results in less optimal structures. In the paper...

  16. Topology optimization

    Bendsøe, Martin P.; Sigmund, Ole

    2007-01-01

    Taking as a starting point a design case for a compliant mechanism (a force inverter), the fundamental elements of topology optimization are described. The basis for the developments is a FEM format for this design problem and emphasis is given to the parameterization of design as a raster image...

  17. Topology optimization for coated structures

    Clausen, Anders; Andreassen, Erik; Sigmund, Ole

    2015-01-01

    This paper presents new results within the design of three-dimensional (3D) coated structures using topology optimization.The work is an extension of a recently published two-dimensional (2D) method for including coatedstructures into the minimum compliance topology optimization problem. The high...... level of control over key parameters demonstrated for the 2D model can likewise be achieved in 3D. The effectiveness of the approach isdemonstrated with numerical examples, which for the 3D problems have been solved using a parallel topology optimization implementation based on the PETSc toolkit....

  18. Topology Optimized Photonic Wire Splitters

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard;

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  19. Tracking topological entity changes in 3D collaborative modeling systems

    ChengYuan; He Fazhi; HuangZhiyong; Cai Xiantao; and Zhang Dejun

    2012-01-01

    One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a solution for tracking topological entity alterations in 3D collaborative modeling environment. We firstly make a thorough analysis and detailed categorization on the altera- tion properties and causations for each type of topological entity, namely topological face and topological edge. Based on collabora- tive topological entity naming mechanism, a data structure called TEST (Topological Entity Structure Tree) is introduced to track the changing history and current state of each topological entity, to embody the relationship among topological entities. Rules and algo- rithms are presented for identification of topological entities referenced by operations for correct execution and model consistency. The algorithm has been verified within the prototype we have implemented with ACIS.

  20. DESIGN OF 3D TOPOLOGICAL DATA STRUCTURE FOR 3D CADASTRE OBJECTS

    N. A. Zulkifli

    2016-09-01

    Full Text Available This paper describes the design of 3D modelling and topological data structure for cadastre objects based on Land Administration Domain Model (LADM specifications. Tetrahedral Network (TEN is selected as a 3D topological data structure for this project. Data modelling is based on the LADM standard and it is used five classes (i.e. point, boundary face string, boundary face, tetrahedron and spatial unit. This research aims to enhance the current cadastral system by incorporating 3D topology model based on LADM standard.

  1. Design of 3d Topological Data Structure for 3d Cadastre Objects

    Zulkifli, N. A.; Rahman, A. Abdul; Hassan, M. I.

    2016-09-01

    This paper describes the design of 3D modelling and topological data structure for cadastre objects based on Land Administration Domain Model (LADM) specifications. Tetrahedral Network (TEN) is selected as a 3D topological data structure for this project. Data modelling is based on the LADM standard and it is used five classes (i.e. point, boundary face string, boundary face, tetrahedron and spatial unit). This research aims to enhance the current cadastral system by incorporating 3D topology model based on LADM standard.

  2. Method for 3D Airway Topology Extraction

    Roman Grothausmann

    2015-01-01

    Full Text Available In lungs the number of conducting airway generations as well as bifurcation patterns varies across species and shows specific characteristics relating to illnesses or gene variations. A method to characterize the topology of the mouse airway tree using scanning laser optical tomography (SLOT tomograms is presented in this paper. It is used to test discrimination between two types of mice based on detected differences in their conducting airway pattern. Based on segmentations of the airways in these tomograms, the main spanning tree of the volume skeleton is computed. The resulting graph structure is used to distinguish between wild type and surfactant protein (SP-D deficient knock-out mice.

  3. Reconnection experiments with 3D magnetic nulls in different topologies

    Vrublevskis, A.; Egedal, J.; Le, A.

    2012-10-01

    Magnetic reconnection has been predominantly investigated in two dimensions. However, depending on the topology and geometry of the magnetic field, a rich collection of magnetic reconnection scenarios is possible in 3D including reconnection at magnetic nulls. At the Versatile Toroidal Facility (VTF) we have implemented a new magnetic geometry with a pair of 3D null points in the background toroidal field. We form a flux rope along the background field and observe it to rapidly restructure and rewire as the nulls develop. We can adjust the topology of the configuration from one where a field line connects the nulls to one where the nulls are no longer linked. A suit of diagnostics will be deployed and results presented for how the topology affects the dynamics of the flux rope.

  4. Topology optimization for acoustic problems

    Dühring, Maria Bayard

    2006-01-01

    In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 design...

  5. Building blocks for topology change in 3D

    Ionicioiu, R

    1997-01-01

    We investigate topology change in 3D. Using Morse theory and handle decomposition we find the set of elementary cobordisms for 3-manifolds. These are: (i) Ø S^2; (ii) \\Sigma_g \\Sigma_{g+1}; (iii) \\Sigma_{g_1} \\sqcup interpretations, e.g. Big Bang/Big Crunch, wormhole creation/annihilation and Einstein-Rosen bridge creation/annihilation, respectively. This decomposition into building blocks can be used in the path integral approach to quantum gravity in the sum over topologies.

  6. 3D Genus Topology of Luminous Red Galaxies

    Gott, J Richard; Park, Changbom; Kim, Juhan

    2008-01-01

    We measure the 3D genus topology of large scale structure using Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey and find it consistent with the Gaussian random phase initial conditions expected from the simplest scenarios of inflation. This studies 3D topology on the largest scales ever obtained. The topology is sponge-like. We measure topology in two volume-limited samples: a dense shallow sample studied with smoothing length of 21h^{-1}Mpc, and a sparse deep sample studied with a smoothing length of 34h^{-1}Mpc. The amplitude of the genus curve is measured with 4% uncertainty. Small distortions in the genus curve expected from non-linear biasing and gravitational effects are well explained (to about 1-\\sigma accuracy) by N-body simulations using a subhalo-finding technique to locate LRGs. This suggests the formation of LRGs is a clean problem that can be modeled well without any free fitting parameters. This bodes well for using LRGs to measure the characteristic scales such as the baryon oscil...

  7. Interactive Topology Optimization

    Nobel-Jørgensen, Morten

    Interactivity is the continuous interaction between the user and the application to solve a task. Topology optimization is the optimization of structures in order to improve stiffness or other objectives. The goal of the thesis is to explore how topology optimization can be used in applications...... in an interactive and intuitive way. By creating such applications with an intuitive and simple user interface we allow non-engineers like designers and architects to easily experiment with boundary conditions, design domains and other optimization settings. This is in contrast to commercial topology optimization...... software where the users are assumed to be well-educated both in the finite element method and topology optimization. This dissertation describes how various topology optimization methods have been used for creating cross-platform applications with high performance. The user interface design is based...

  8. 3D surface topology guides stem cell adhesion and differentiation.

    Viswanathan, Priyalakshmi; Ondeck, Matthew G; Chirasatitsin, Somyot; Ngamkham, Kamolchanok; Reilly, Gwendolen C; Engler, Adam J; Battaglia, Giuseppe

    2015-06-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilizers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors.

  9. Topological Quantum Information in a 3D Neutral Atom Array

    2015-01-02

    v Prescribed by ANSI Std. Z39.18 12-23-2014 Final 12-01-2008-9-30-2014 ( DARPA ) TOPOLOGICAL QUANTUM INFORMATION IN A 3D NEUTRAL ATOM ARRAY FA9550-09...1-0041 David Weiss Penn State UP76XR0 AFOSR DARPA Approved for public release Work was performed to build core elements of a quantum computer...Hamiltonian within our trapped neutral atoms architecture. quantum computing, ultracold atoms David Weiss 814-861-3578 1 DARPA Final Report Grant

  10. Topology optimized microbioreactors

    Schäpper, Daniel; Lencastre Fernandes, Rita; Eliasson Lantz, Anna

    2011-01-01

    . Topology optimization is then used to change the spatial distribution of cells in the reactor in order to optimize for maximal product flow out of the reactor. This distribution accounts for potentially negative effects of, for example, by-product inhibition. We show that the theoretical improvement...... in productivity is at least fivefold compared with the homogeneous reactor. The improvements obtained by applying topology optimization are largest where either nutrition is scarce or inhibition effects are pronounced....

  11. Automatic Texture Optimization for 3D Urban Reconstruction

    LI Ming

    2017-03-01

    Full Text Available In order to solve the problem of texture optimization in 3D city reconstruction by using multi-lens oblique images, the paper presents a method of seamless texture model reconstruction. At first, it corrects the radiation information of images by camera response functions and image dark channel. Then, according to the corresponding relevance between terrain triangular mesh surface model to image, implements occlusion detection by sparse triangulation method, and establishes the triangles' texture list of visible. Finally, combines with triangles' topology relationship in 3D triangular mesh surface model and means and variances of image, constructs a graph-cuts-based texture optimization algorithm under the framework of MRF(Markov random filed, to solve the discrete label problem of texture optimization selection and clustering, ensures the consistency of the adjacent triangles in texture mapping, achieves the seamless texture reconstruction of city. The experimental results verify the validity and superiority of our proposed method.

  12. An overview of 3D topology for LADM-based objects

    Zulkifli, N.A.; Rahman, A.A.; Van Oosterom, P.J.M.

    2015-01-01

    This paper reviews 3D topology within Land Administration Domain Model (LADM) international standard. It is important to review characteristic of the different 3D topological models and to choose the most suitable model for certain applications. The characteristic of the different 3D topological mod

  13. Topology optimization approaches

    Sigmund, Ole; Maute, Kurt

    2013-01-01

    Topology optimization has undergone a tremendous development since its introduction in the seminal paper by Bendsøe and Kikuchi in 1988. By now, the concept is developing in many different directions, including “density”, “level set”, “topological derivative”, “phase field”, “evolutionary...

  14. Topology Optimization for Additive Manufacturing

    Clausen, Anders

    This PhD thesis deals with the combination of topology optimization and additive man-ufacturing (AM, also known as 3D-printing). In addition to my own works, the thesis contains a broader review and assessment of the literature within the field. The thesis first presents a classification...... of the various AM technologies, a review of relevant manufacturing materials, the properties of these materials in the additively manufactured part, as well as manufacturing constraints with a potential for design optimization. Subsequently, specific topology optimization formulations relevant for the most im...... for scalable manufacturing. In relation to interface problems it is shown how a flexible void area may be included into a standard minimum compliance problem by employing an additional design variable field and a sensitivity filter. Furthermore, it is shown how the design of coated structures may be modeled...

  15. Manufacturing tolerant topology optimization

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization....

  16. Spin-dependent Peltier effect in 3D topological insulators

    Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard

    2013-03-01

    The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.

  17. Topology optimized microbioreactors.

    Schäpper, Daniel; Lencastre Fernandes, Rita; Lantz, Anna Eliasson; Okkels, Fridolin; Bruus, Henrik; Gernaey, Krist V

    2011-04-01

    This article presents the fusion of two hitherto unrelated fields--microbioreactors and topology optimization. The basis for this study is a rectangular microbioreactor with homogeneously distributed immobilized brewers yeast cells (Saccharomyces cerevisiae) that produce a recombinant protein. Topology optimization is then used to change the spatial distribution of cells in the reactor in order to optimize for maximal product flow out of the reactor. This distribution accounts for potentially negative effects of, for example, by-product inhibition. We show that the theoretical improvement in productivity is at least fivefold compared with the homogeneous reactor. The improvements obtained by applying topology optimization are largest where either nutrition is scarce or inhibition effects are pronounced.

  18. Filters in topology optimization

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  19. A symmetry-respecting topologically-ordered surface phase of 3d electron topological insulators

    Metlitski, Max A.; Kane, C. L.; Fisher, Matthew P. A.

    2013-01-01

    A 3d electron topological insulator (ETI) is a phase of matter protected by particle-number conservation and time-reversal symmetry. It was previously believed that the surface of an ETI must be gapless unless one of these symmetries is broken. A well-known symmetry-preserving, gapless surface termination of an ETI supports an odd number of Dirac cones. In this paper we deduce a symmetry-respecting, gapped surface termination of an ETI, which carries an intrinsic 2d topological order, Moore-R...

  20. Extension of RCC Topological Relations for 3d Complex Objects Components Extracted from 3d LIDAR Point Clouds

    Xing, Xu-Feng; Abolfazl Mostafavia, Mir; Wang, Chen

    2016-06-01

    Topological relations are fundamental for qualitative description, querying and analysis of a 3D scene. Although topological relations for 2D objects have been extensively studied and implemented in GIS applications, their direct extension to 3D is very challenging and they cannot be directly applied to represent relations between components of complex 3D objects represented by 3D B-Rep models in R3. Herein we present an extended Region Connection Calculus (RCC) model to express and formalize topological relations between planar regions for creating 3D model represented by Boundary Representation model in R3. We proposed a new dimension extended 9-Intersection model to represent the basic relations among components of a complex object, including disjoint, meet and intersect. The last element in 3*3 matrix records the details of connection through the common parts of two regions and the intersecting line of two planes. Additionally, this model can deal with the case of planar regions with holes. Finally, the geometric information is transformed into a list of strings consisting of topological relations between two planar regions and detailed connection information. The experiments show that the proposed approach helps to identify topological relations of planar segments of point cloud automatically.

  1. Manufacturing tolerant topology optimization

    Ole Sigmund

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded)or too thick (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization approach, under- and over-etching is modelled by image processing-based "erode" and "dilate" operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization.

  2. Topology Optimization with Stress Constraints

    Verbart, A.

    2015-01-01

    This thesis contains contributions to the development of topology optimization techniques capable of handling stress constraints. The research that led to these contributions was motivated by the need for topology optimization techniques more suitable for industrial applications. Currently, topolo

  3. A topological derivative method for topology optimization

    Norato, J.; Bendsøe, Martin P.; Haber, RB;

    2007-01-01

    resource constraint. A smooth and consistent projection of the region bounded by the level set onto the fictitious analysis domain simplifies the response analysis and enhances the convergence of the optimization algorithm. Moreover, the projection supports the reintroduction of solid material in void......We propose a fictitious domain method for topology optimization in which a level set of the topological derivative field for the cost function identifies the boundary of the optimal design. We describe a fixed-point iteration scheme that implements this optimality criterion subject to a volumetric...... regions, a critical requirement for robust topology optimization. We present several numerical examples that demonstrate compliance minimization of fixed-volume, linearly elastic structures....

  4. CC-Modeler: a topology generator for 3-D city models

    Gruen, Armin; Wang, Xinhua

    In this paper, we introduce a semi-automated topology generator for 3-D objects, CC-Modeler (CyberCity Modeler). Given the data as point clouds measured on Analytical Plotters or Digital Stations, we present a new method for fitting planar structures to the measured sets of point clouds. While this topology generator has been originally designed to model buildings, it can also be used for other objects, which may be approximated by polyhedron surfaces. We have used it so far for roads, rivers, parking lots, ships, etc. The CC-Modeler is a generic topology generator. The problem of fitting planar faces to point clouds is treated as a Consistent Labelling problem, which is solved by probabilistic relaxation. Once the faces are defined and the related points are determined, we apply a simultaneous least-squares adjustment in order to fit the faces jointly to the given measurements in an optimal way. We first present the processing flow of the CC-Modeler. Then, the algorithm of structuring the 3-D point data is outlined. Finally, we show the results of several data sets that have been produced with the CC-Modeler.

  5. MBE - growth of capped, strained HgTe, a 3D topological insulator

    Ames, Christopher; Leubner, Philipp; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens [Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2013-07-01

    The discovery of two (2D) and three dimensional (3D) topological insulator (TI) behavior in HgTe - systems opens a large field for studying magneto transport properties of both. We grow HgTe as a 3D topological insulator by molecular beam epitaxy. Unstrained bulk HgTe is a semimetal but opens a gap of roughly 22 meV when grown fully strained on <001> CdTe substrate due to 0.3 % lattice mismatch and shows magnetotransport properties of a 3D TI. Hall measurements show electron mobilities of around 50.000 cm{sup 2}(V s){sup -1}. To increase electron mobilities, various growth optimizations have been carried out. Firstly we grew an HgCdTe buffer layer between the substrate and bulk HgTe. Different buffer thicknesses were analyzed ex-situ by HRXRD, AFM and standard Hall measurements. Secondly, we added a cap-layer of HgCdTe on top of the bulk HgTe. Doing so, we were able to raise the electron mobility of the bulk HgTe up to one order of magnitude. Time-dependent XPS measurements allowed us to hold the suppressed oxidization of the surface responsible for this effect. Through the advanced material quality we have now more prospects for better understanding of the transport properties in strained HgTe.

  6. Topology optimization of viscoelastic rectifiers

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2012-01-01

    An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...

  7. OPTIMAL NETWORK TOPOLOGY DESIGN

    Yuen, J. H.

    1994-01-01

    This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.

  8. Biological insights from topology independent comparison of protein 3D structures.

    Nguyen, Minh N; Madhusudhan, M S

    2011-08-01

    Comparing and classifying the three-dimensional (3D) structures of proteins is of crucial importance to molecular biology, from helping to determine the function of a protein to determining its evolutionary relationships. Traditionally, 3D structures are classified into groups of families that closely resemble the grouping according to their primary sequence. However, significant structural similarities exist at multiple levels between proteins that belong to these different structural families. In this study, we propose a new algorithm, CLICK, to capture such similarities. The method optimally superimposes a pair of protein structures independent of topology. Amino acid residues are represented by the Cartesian coordinates of a representative point (usually the C(α) atom), side chain solvent accessibility, and secondary structure. Structural comparison is effected by matching cliques of points. CLICK was extensively benchmarked for alignment accuracy on four different sets: (i) 9537 pair-wise alignments between two structures with the same topology; (ii) 64 alignments from set (i) that were considered to constitute difficult alignment cases; (iii) 199 pair-wise alignments between proteins with similar structure but different topology; and (iv) 1275 pair-wise alignments of RNA structures. The accuracy of CLICK alignments was measured by the average structure overlap score and compared with other alignment methods, including HOMSTRAD, MUSTANG, Geometric Hashing, SALIGN, DALI, GANGSTA(+), FATCAT, ARTS and SARA. On average, CLICK produces pair-wise alignments that are either comparable or statistically significantly more accurate than all of these other methods. We have used CLICK to uncover relationships between (previously) unrelated proteins. These new biological insights include: (i) detecting hinge regions in proteins where domain or sub-domains show flexibility; (ii) discovering similar small molecule binding sites from proteins of different folds and (iii

  9. A topological framework for interactive queries on 3D models in the Web.

    Figueiredo, Mauro; Rodrigues, José I; Silvestre, Ivo; Veiga-Pires, Cristina

    2014-01-01

    Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications.

  10. Electrified magnetic catalysis in 3D topological insulators

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    The gap equations for the surface quasiparticle propagators in a slab of three-dimensional topological insulator in external electric and magnetic fields perpendicular to the slab surfaces are analyzed and solved. A new type of magnetic catalysis is revealed with the dynamical generation of both Haldane and Dirac gaps. Its characteristic feature manifests itself in the crucial role that the electric field plays in dynamical symmetry breaking and the generation of a Dirac gap in the slab. It is argued that, for a sufficiently large external electric field, the ground state of the system is a phase with a homogeneous surface charge density.

  11. Acoustic design by topology optimization

    Dühring, Maria Bayard; Jensen, Jakob Søndergaard; Sigmund, Ole

    2008-01-01

    To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions...

  12. Topology optimized electrothermal polysilicon microgrippers

    Sardan Sukas, Özlem; Petersen, Dirch Hjorth; Mølhave, Kristian

    2008-01-01

    This paper presents the topology optimized design procedure and fabrication of electrothermal polysilicon microgrippers for nanomanipulation purposes. Performance of the optimized microactuators is compared with a conventional three-beam microactuator design through finite element analysis. The a...

  13. Samarium Hexaboride: The First True 3D Topological Insulator?

    Wolgast, Steven G.

    The recent theoretical prediction of a topologically protected surface state in the mixed-valent insulator SmB6 has motivated a series of charge transport studies, which are presented here. It is first studied using a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. As the material is cooled below 4 K, it exhibits a crossover from thermally activated bulk transport to metallic surface conduction with a fully insulating bulk. The robustness and magnitude of the surface conductivity, as is manifest in the literature of SmB6, is strong evidence for the topological insulator (TI) metallic surface states predicted for this material. This resolves a decades-old puzzle surrounding the low-temperature behavior of SmB6. Next, the magnetotransport properties of the surface are investigated using a Corbino disk geometry, which can directly measure the conductivity of individual surfaces. Both (011) and (001) crystal surfaces show a strong negative magnetoresistance at all magnetic field angles, due primarily to changes in the carrier density. The low mobility value accounts for the failure so far to observe Shubnikov-de Haas oscillations below 95 T. Small variations in the mobility and temperature dependence suggest a suppression of Kondo scattering from native oxide-layer magnetic moments. At low fields, a dynamical field-sweep-rate-dependent hysteretic behavior is observed. It persists at the slowest sweep rates, and cannot be explained by quantum interference corrections; it is likely due to extrinsic effects such as the magnetocaloric effect or glassy ordering of the native oxide moments. Pulsed magnetic field measurements up to 60 T at temperatures throughout the crossover regime clearly distinguish the surface magnetoresistance from the bulk magnetoresistance. The bulk magnetoresistance is due to a reduction in the bulk gap with increasing magnetic field. Finally, small subsurface cracks formed in SmB6 via

  14. Combined Shape and Topology Optimization

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  15. Eigenfrequency optimized 3D continua, with possibility for cavities

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2015-01-01

    Eigenfrequency optimization for 3D continua is formulated and exemplified by the geometry and boundary conditions of a thick plate. Numerical finite element models are based on four node tetrahedra and results from subspace iterations give directly the basis for the continuum redesign. The 3D mod...

  16. Topology Optimization for Convection Problems

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  17. Topology optimized permanent magnet systems

    Bjørk, R; Insinga, A R

    2016-01-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. First, the Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown, albeit with an increase of 3.8 pp. in field inhomogeneity - a value compared to the inhomogeneity in a 16 segmented Halbach cylinder. Following this a topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111% for the chosen dimensions. Finally, a permanent magnet with alternating high and low field regions is considered. Here a $\\Lambda_\\mathrm{cool}$ figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  18. Synthesis, structure and properties of a 3D acentric coordination polymer with noninterpenetrated (10,3)-d topology

    Lun, Huijie; Li, Xuefei; Wang, Xiao; Li, Haiyan; Li, Yamin; Bai, Yan

    2017-01-01

    A new coordination polymer, {[Mn(HPIDC)(H2O)]·2H2O}n (1) (H3PIDC = 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid), has been obtained by hydrothermal method and structurally characterized by X-ray single crystal diffraction, elemental analysis and thermogravimetric analysis (TGA). X-ray single crystal diffraction reveals that compound 1 crystallizing in acentric Pna21 space group, exhibits an ultimate racemic three-dimension framework with rare noninterpenetrated (10,3)-d (or utp) topology due to the alternate array of left- and right-handed helixes. Moreover, compound 1 also features ferroelectric, nonlinear optical (NLO) and antiferromagnetic behaviors.

  19. Topology Optimization of Sub-Wavelength Antennas

    Erentok, Aycan; Sigmund, Ole

    2011-01-01

    We propose a topology optimization strategy for the systematic design of a three-dimensional (3D), conductor-based sub-wavelength antenna. The post-processed finite-element (FE) models of the optimized structure are shown to be self-resonant, efficient and exhibit distorted omnidirectional......, elliptically polarized far-field radiation patterns. The computed approximate Q value for this antenna is QZ(ω0)≈ 7.74 for ω0=2π × 350.8 MHz and it is 1.64 times larger than the theoretical lower bound value....

  20. Time-Space Topology Optimization

    Jensen, Jakob Søndergaard

    2008-01-01

    A method for space-time topology optimization is outlined. The space-time optimization strategy produces structures with optimized material distributions that vary in space and in time. The method is demonstrated for one-dimensional wave propagation in an elastic bar that has a time-dependent Young......’s modulus and is subjected to a transient load. In the example an optimized dynamic structure is demonstrated that compresses a propagating Gauss pulse....

  1. Eigenfrequency optimized 3D continua, with possibility for cavities

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2015-01-01

    Eigenfrequency optimization for 3D continua is formulated and exemplified by the geometry and boundary conditions of a thick plate. Numerical finite element models are based on four node tetrahedra and results from subspace iterations give directly the basis for the continuum redesign. The 3D...... modeling with a large number of elements has the possibility in optimal design to obtain (as found) not only holes but also cavities in the continuum. Sensitivity analysis is presented on the element level with simple physical interpretation of the involved terms. This general result has general value...

  2. Approximate Reanalysis in Topology Optimization

    Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole

    2009-01-01

    In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...

  3. Topological Derivatives in Shape Optimization

    Novotny, Antonio André

    2013-01-01

    The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, sensitivity analysis in fracture mechanics and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intende...

  4. Three-dimensional topology optimized electrically-small conformal antenna

    Erentok, Aycan; Sigmund, Ole

    2008-01-01

    A three-dimensional (3D) conductor-based conformal electrically small antenna is obtained using a topology optimization method. The optimization method distributes a certain amount of conductive material to a designated design domain such that the material layout defines an electrically small...

  5. Optimal Point Spread Function Design for 3D Imaging

    Shechtman, Yoav; Sahl, Steffen J.; Backer, Adam S.; Moerner, W. E.

    2015-01-01

    To extract from an image of a single nanoscale object maximum physical information about its position, we propose and demonstrate a framework for pupil-plane modulation for 3D imaging applications requiring precise localization, including single-particle tracking and super-resolution microscopy. The method is based on maximizing the information content of the system, by formulating and solving the appropriate optimization problem – finding the pupil-plane phase pattern that would yield a PSF with optimal Fisher information properties. We use our method to generate and experimentally demonstrate two example PSFs: one optimized for 3D localization precision over a 3 μm depth of field, and another with an unprecedented 5 μm depth of field, both designed to perform under physically common conditions of high background signals. PMID:25302889

  6. An efficient topology adaptation system for parametric active contour segmentation of 3D images

    Abhau, Jochen; Scherzer, Otmar

    2008-03-01

    Active contour models have already been used succesfully for segmentation of organs from medical images in 3D. In implicit models, the contour is given as the isosurface of a scalar function, and therefore topology adaptations are handled naturally during a contour evolution. Nevertheless, explicit or parametric models are often preferred since user interaction and special geometric constraints are usually easier to incorporate. Although many researchers have studied topology adaptation algorithms in explicit mesh evolutions, no stable algorithm is known for interactive applications. In this paper, we present a topology adaptation system, which consists of two novel ingredients: A spatial hashing technique is used to detect self-colliding triangles of the mesh whose expected running time is linear with respect to the number of mesh vertices. For the topology change procedure, we have developed formulas by homology theory. During a contour evolution, we just have to choose between a few possible mesh retriangulations by local triangle-triangle intersection tests. Our algorithm has several advantages compared to existing ones: Since the new algorithm does not require any global mesh reparametrizations, it is very efficient. Since the topology adaptation system does not require constant sampling density of the mesh vertices nor especially smooth meshes, mesh evolution steps can be performed in a stable way with a rather coarse mesh. We apply our algorithm to 3D ultrasonic data, showing that accurate segmentation is obtained in some seconds.

  7. $(1+3)$D topological superconductors: screening and confinement in presence of external fields

    Gaete, Patricio

    2016-01-01

    Adopting the gauge-invariant and path-dependent variables formalism, we compute the interaction energy for a topological field theory describing $(1+3)$D topological superconductors in presence of external fields. As a result, in the case of a constant electric field- strength expectation value, we show that the interaction energy describes a purely screening phase, encoded in a Yukawa potential. On the other hand, in the case of a constant magnetic field-strength and for a very small Josephson coupling constant, the particle-antiparticle binding potential displays a linear term leading to the confinement of static charge probes along with a screening contribution.

  8. Topology optimization of microfluidic mixers

    Andreasen, Casper Schousboe; Gersborg, Allan Roulund; Sigmund, Ole

    2009-01-01

    This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering...

  9. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    Yong Xia

    2015-01-01

    Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  10. Benchmarking optimization solvers for structural topology optimization

    Rojas Labanda, Susana; Stolpe, Mathias

    2015-01-01

    The purpose of this article is to benchmark different optimization solvers when applied to various finite element based structural topology optimization problems. An extensive and representative library of minimum compliance, minimum volume, and mechanism design problem instances for different...... sizes is developed for this benchmarking. The problems are based on a material interpolation scheme combined with a density filter. Different optimization solvers including Optimality Criteria (OC), the Method of Moving Asymptotes (MMA) and its globally convergent version GCMMA, the interior point...... profiles conclude that general solvers are as efficient and reliable as classical structural topology optimization solvers. Moreover, the use of the exact Hessians in SAND formulations, generally produce designs with better objective function values. However, with the benchmarked implementations solving...

  11. Optimized 3D watermarking for minimal surface distortion.

    Bors, Adrian G; Luo, Ming

    2013-05-01

    This paper proposes a new approach to 3D watermarking by ensuring the optimal preservation of mesh surfaces. A new 3D surface preservation function metric is defined consisting of the distance of a vertex displaced by watermarking to the original surface, to the watermarked object surface as well as the actual vertex displacement. The proposed method is statistical, blind, and robust. Minimal surface distortion according to the proposed function metric is enforced during the statistical watermark embedding stage using Levenberg-Marquardt optimization method. A study of the watermark code crypto-security is provided for the proposed methodology. According to the experimental results, the proposed methodology has high robustness against the common mesh attacks while preserving the original object surface during watermarking.

  12. Parameterization adaption for 3D shape optimization in aerodynamics

    Badr Abou El Majd

    2013-10-01

    Full Text Available When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called “Free-Form Deformation” approach based on 3D tensorial Bézier parameterization. The proposed procedure leads to efficient numerical simulations with highly reduced computational costs.[How to cite this article:  Majd, B.A.. 2014. Parameterization adaption for 3D shape optimization in aerodynamics. International Journal of Science and Engineering, 6(1:61-69. Doi: 10.12777/ijse.6.1.61-69

  13. Eigenfrequency optimized 3D continua, with possibility for cavities

    Pedersen, Pauli; Pedersen, Niels L.

    2015-04-01

    Eigenfrequency optimization for 3D continua is formulated and exemplified by the geometry and boundary conditions of a thick plate. Numerical finite element models are based on four node tetrahedra and results from subspace iterations give directly the basis for the continuum redesign. The 3D modeling with a large number of elements has the possibility in optimal design to obtain (as found) not only holes but also cavities in the continuum. Sensitivity analysis is presented on the element level with simple physical interpretation of the involved terms. This general result has general value for control of eigenfrequencies. It is found that in the combination of partial differentiation with the chain rule of differentiation, a specific notation is needed and a suggestion is presented. The optimization method is based on a derived optimality criterion, and as such the maximization problem change to a problem of determining a design with uniform values of this criterion. Nonlinear stiffness interpolation may be a physical reality. A two parameter interpolation function is incorporated analytical, also in the sensitivity analysis and the optimality criterion, but without focusing on 1-0 optimal solutions. Two cases of boundary conditions, two cases of total amount of material, and cases of linear and nonlinear stiffness interpolation are studied.

  14. Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene.

    Zhang, Xiao-Long; Liu, Lan-Feng; Liu, Wu-Ming

    2013-10-09

    Silicene is an intriguing 2D topological material which is closely analogous to graphene but with stronger spin orbit coupling effect and natural compatibility with current silicon-based electronics industry. Here we demonstrate that silicene decorated with certain 3d transition metals (Vanadium) can sustain a stable quantum anomalous Hall effect using both analytical model and first-principles Wannier interpolation. We also predict the quantum valley Hall effect and electrically tunable topological states could be realized in certain transition metal doped silicene where the energy band inversion occurs. Our findings provide new scheme for the realization of quantum anomalous Hall effect and platform for electrically controllable topological states which are highly desirable for future nanoelectronics and spintronics application.

  15. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.

    2016-12-01

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  16. Topology optimization of flow problems

    Gersborg, Allan Roulund

    2007-01-01

    This thesis investigates how to apply topology optimization using the material distribution technique to steady-state viscous incompressible flow problems. The target design applications are fluid devices that are optimized with respect to minimizing the energy loss, characteristic properties...... transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the thesis gives a proof-of-concept for the application of the method within fluid dynamic problems and it remains of interest for the design of microfluidic devices. Furthermore, the thesis contributes....... Although the study of the FVM is carried out using a simple heat conduction problem, the work illuminates and discusses the technicalities of employing the FVM in connection with topology optimization. Finally, parallelized solution methods are investigated using the high performance computing facility...

  17. Optimization of a fully 3D single scatter simulation algorithm for 3D PET

    Accorsi, Roberto [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital of Philadelphia, 34th and Civic Center Blvd, Philadelphia, PA 19104 (United States); Adam, Lars-Eric [Department of Radiology, University of Pennsylvania School of Medicine, 423 Guardian Dr, Philadelphia, PA 19104 (United States); Werner, Matthew E [Philips Medical Systems, 3619 Market St, Philadelphia, PA 19104 (United States); Karp, Joel S [Department of Radiology, University of Pennsylvania School of Medicine, 423 Guardian Dr, Philadelphia, PA 19104 (United States)

    2004-06-21

    We describe a new implementation of a single scatter simulation (SSS) algorithm for the prediction and correction of scatter in 3D PET. In this implementation, out of field of view (FoV) scatter and activity, side shields and oblique tilts are explicitly modelled. Comparison of SSS predictions with Monte Carlo simulations and experimental data from uniform, line and cold-bar phantoms showed that the code is accurate for uniform as well as asymmetric objects and can model different energy resolution crystals and low level discriminator (LLD) settings. Absolute quantitation studies show that for most applications, the code provides a better scatter estimate than the tail-fitting scatter correction method currently in use at our institution. Several parameters such as the density of scatter points, the number of scatter distribution sampling points and the axial extent of the FoV were optimized to minimize execution time, with particular emphasis on patient studies. Development and optimization were carried out in the case of GSO-based scanners, which enjoy relatively good energy resolution. SSS estimates for scanners with lower energy resolution may result in different agreement, especially because of a higher fraction of multiple scatter events. The algorithm was applied to a brain phantom as well as to clinical whole-body studies. It proved robust in the case of large patients, where the scatter fraction increases. The execution time, inclusive of interpolation, is typically under 5 min for a whole-body study (axial FoV: 81 cm) of a 100 kg patient.

  18. Topology Optimization using a Topology Description Function Approach

    de Ruiter, M.J.

    2005-01-01

    During the last two decades, computational structural optimization methods have emerged, as computational power increased tremendously. Designers now have topological optimization routines at their disposal. These routines are able to generate the entire geometry of structures, provided only with in

  19. Topology Optimized Mode Conversion In a Photonic Crystal Waveguide

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Ding, Yunhong;

    2013-01-01

    We experimentally demonstrate an ultra-compact TE0-TE1 mode converter obtained in a photonic crystal waveguide by utilizing topology optimization and show a ~39 nm bandwidth around 1550 nm with an insertion loss lower than ~3 dB....

  20. On multigrid-CG for efficient topology optimization

    Amir, Oded; Aage, Niels; Lazarov, Boyan Stefanov

    2014-01-01

    This article presents a computational approach that facilitates the efficient solution of 3-D structural topology optimization problems on a standard PC. Computing time associated with solving the nested analysis problem is reduced significantly in comparison to other existing approaches. The cos...

  1. Wave Manipulation by Topology Optimization

    Andkjær, Jacob Anders

    Sound and light propagate as waves and are scattered, reflected and change direction when encountering other media and obstacles. By optimizing the spatial placement and distribution of the media, which the waves encounter, one can obtain useful and interesting effects. This thesis describes how...... topology optimization can be used to design structures for manipulation of the electromagnetic and acoustic waves. The wave problems considered here fall within three classes. The first class concerns the design of cloaks, which when wrapped around an object will render the object undetectable...

  2. 3D TOPOLOGICAL INDOOR BUILDING MODELING INTEGRATED WITH OPEN STREET MAP

    A. Jamali

    2016-09-01

    Full Text Available Considering various fields of applications for building surveying and various demands, geometry representation of a building is the most crucial aspect of a building survey. The interiors of the buildings need to be described along with the relative locations of the rooms, corridors, doors and exits in many kinds of emergency response, such as fire, bombs, smoke, and pollution. Topological representation is a challenging task within the Geography Information Science (GIS environment, as the data structures required to express these relationships are particularly difficult to develop. Even within the Computer Aided Design (CAD community, the structures for expressing the relationships between adjacent building parts are complex and often incomplete. In this paper, an integration of 3D topological indoor building modeling in Dual Half Edge (DHE data structure and outdoor navigation network from Open Street Map (OSM is presented.

  3. How to Extract the Geometry and Topology from Very Large 3D Segmentations

    Andres, Bjoern; Kroeger, Thorben; Hamprecht, Fred A

    2010-01-01

    Segmentation is often an essential intermediate step in image analysis. A volume segmentation characterizes the underlying volume image in terms of geometric information--segments, faces between segments, curves in which several faces meet--as well as a topology on these objects. Existing algorithms encode this information in designated data structures, but require that these data structures fit entirely in Random Access Memory (RAM). Today, 3D images with several billion voxels are acquired, e.g. in structural neurobiology. Since these large volumes can no longer be processed with existing methods, we present a new algorithm which performs geometry and topology extraction with a runtime linear in the number of voxels and log-linear in the number of faces and curves. The parallelizable algorithm proceeds in a block-wise fashion and constructs a consistent representation of the entire volume image on the hard drive, making the structure of very large volume segmentations accessible to image analysis. The paral...

  4. 3D Dynamics of 4D Topological BF Theory With Boundary

    Amoretti, Andrea; Maggiore, Nicola; Magnoli, Nicodemo

    2012-01-01

    We consider the four dimensional abelian topological BF theory with a planar boundary introduced following the Symanzik's method. We find the most general boundary conditions compatible with the fields equations broken by the boundary. The residual gauge invariance is described by means of two Ward identities which generate an algebra of conserved currents. We interpret this algebra as canonical commutation relations of fields, which we use to construct a three dimensional Lagrangian. As a remarkable by-product, the (unique) boundary condition which we found, can be read as a duality relation between 3D dynamical variables.

  5. Surface states in a 3D topological insulator: The role of hexagonal warping and curvature

    Repin, E. V.; Burmistrov, I. S., E-mail: burmi@itp.ac.ru [Moscow Institute of Physics and Technology (Russian Federation)

    2015-09-15

    We explore a combined effect of hexagonal warping and a finite effective mass on both the tunneling density of electronic surface states and the structure of Landau levels of 3D topological insulators. We find the increasing warping to transform the square-root van Hove singularity into a logarithmic one. For moderate warping, an additional logarithmic singularity and a jump in the tunneling density of surface states appear. By combining the perturbation theory and the WKB approximation, we calculate the Landau levels in the presence of hexagonal warping. We predict that due to the degeneracy removal, the evolution of Landau levels in the magnetic field is drastically modified.

  6. Strong interband Faraday rotation in 3D topological insulator Bi2Se3.

    Ohnoutek, L; Hakl, M; Veis, M; Piot, B A; Faugeras, C; Martinez, G; Yakushev, M V; Martin, R W; Drašar, Č; Materna, A; Strzelecka, G; Hruban, A; Potemski, M; Orlita, M

    2016-01-11

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass.

  7. Giant Faraday effect due to Pauli exclusion principle in 3D topological insulators.

    Paudel, Hari P; Leuenberger, Michael N

    2014-02-26

    Experiments using ARPES, which is based on the photoelectric effect, show that the surface states in 3D topological insulators (TI) are helical. Here we consider Weyl interface fermions due to band inversion in narrow-bandgap semiconductors, such as Pb1-xSnxTe. The positive and negative energy solutions can be identified by means of opposite helicity in terms of the spin helicity operator in 3D TI as ĥ(TI) = (1/ |p|_ |) β (σ|_ x p|_ ) · z^, where β is a Dirac matrix and z^ points perpendicular to the interface. Using the 3D Dirac equation and bandstructure calculations we show that the transitions between positive and negative energy solutions, giving rise to electron-hole pairs, obey strict optical selection rules. In order to demonstrate the consequences of these selection rules, we consider the Faraday effect due to the Pauli exclusion principle in a pump-probe setup using a 3D TI double interface of a PbTe/Pb₀.₃₁Sn₀.₆₉Te/PbTe heterostructure. For that we calculate the optical conductivity tensor of this heterostructure, which we use to solve Maxwell's equations. The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle are of the order of mrds.

  8. Efficient reanalysis techniques for robust topology optimization

    Amir, Oded; Sigmund, Ole; Lazarov, Boyan Stefanov;

    2012-01-01

    The article focuses on the reduction of the computational effort involved in robust topology optimization procedures. The performance of structures designed by means of topology optimization may be seriously degraded due to fabrication errors. Robust formulations of the optimization problem were...... efficient robust topology optimization procedures based on reanalysis techniques. The approach is demonstrated on two compliant mechanism design problems where robust design is achieved by employing either a worst case formulation or a stochastic formulation. It is shown that the time spent on finite...... element analysis within robust topology optimization can be reduced significantly, without affecting the outcome of the optimization process....

  9. Improved hybrid optimization algorithm for 3D protein structure prediction.

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  10. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  11. Interfacing 2D and 3D Topological Insulators: Bi(111) Bilayer on Bi2Te3

    Hirahara, Toru; Bihlmayer, Gustav; Sakamoto, Yusuke; Yamada, Manabu; Miyazaki, Hidetoshi; Kimura, Shin-Ichi; Blügel, Stefan; Hasegawa, Shuji

    2012-02-01

    Topological insulators (TI) are insulating materials but have metallic edge states that carry spin currents and are robust against nonmagnetic impurities [1]. While there have been a large number of reports on three-dimensional (3D) TI, only few works have been done in terms of two-dimensional (2D) TI. In the present paper, we report the successful formation of bilayer Bi, which was theoretically predicted to be a 2D TI [2]. We deposited bilayer Bi on a 3D TI Bi2Te3, which the lattice mismatch is very small. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi2Te3. Our results show that the Dirac cone is actually robust against nonmagnetic perturbations and imply a unique situation where the topologically protected one- and two-dimensional edge states are coexisting at the surface [3]. [0pt] [1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).[0pt] [2] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).[0pt] [3] T. Hirahara et al., Phys. Rev. Lett. 107, 166801 (2011).

  12. Simulating 3D $Z_2$ Topological Nodes in Nonsymmorphic Photonic Crystals

    Wang, Hai-Xiao; Hang, Zhi Hong; Chen, Huanyang; Kee, Hae-Young; Jiang, Jian-Hua

    2016-01-01

    We propose an all-dielectric, space-time reversal symmetric photonics-crystal architecture that possess 3D Dirac points and line-nodes with nontrivial $Z_2$ topological charge, which can be realized at infrared and microwave frequencies. The protected degeneracy of bands is achieved via nonsymmorphic symmetries despite the lack of Kramers degeneracy in photonic crystal systems. Two orthogonal screw axes lead to 3D $Z_2$ Dirac points on high symmetry Brillouin zone (BZ) boundary line. On the other hand, twofold $Z_2$ line-nodes appear around the $\\Gamma$-point due to a combination of nonsymmorphic and point-group symmetries. The lowest line-node is deterministic because of degeneracy partner switching between Bloch states with opposite parities. A pair of Fermi arcs associated with $Z_2$ topological charge is emerged below light-line and protected by total internal reflection on certain photonic-crystal-air interfaces. These robust surface states offer an unique opportunity to realize "open cavity" with strong...

  13. Improving Topology Optimization using Games

    Nobel-Jørgensen, Morten; Christiansen, Asger Nyman; Bærentzen, J. Andreas

    free of charge on iOS and Android devices1. The TopOptGame is inspired by puzzle-games (a genre of computer games), which constantly challenges the players and gives rewards when progress is made. This engagement loop will take the player on a journey starting with simple problems with few supports......, this will allow us to analyze the data to measure human performance of topology optimization and more importantly, in which cases people's intuition succeed or fail. The game is currently a working prototype and is scheduled for final release on both iOS and Android before WCSMO-10....

  14. Hierarchical 3D mechanical parts matching based-on adjustable geometry and topology similarity measurements

    马嵩华; 田凌

    2014-01-01

    A hierarchical scheme of feature-based model similarity measurement was proposed, named CSG_D2, in which both geometry similarity and topology similarity were applied. The features of 3D mechanical part were constructed by a series of primitive features with tree structure, as a form of constructive solid geometry (CSG) tree. The D2 shape distributions of these features were extracted for geometry similarity measurement, and the pose vector and non-disappeared proportion of each leaf node were gained for topology similarity measurement. Based on these, the dissimilarity between the query and the candidate was accessed by level-by-level CSG tree comparisons. With the adjustable weights, our scheme satisfies different comparison emphasis on the geometry or topology similarity. The assessment results from CSG_D2 demonstrate more discriminative than those from D2 in the analysis of precision-recall and similarity matrix. Finally, an experimental search engine is applied for mechanical parts reuse by using CSG_D2, which is convenient for the mechanical design process.

  15. An approach to develop 3d Geo-DBMS topological operators by re-using existing 2d operators

    Xu, D.; Zlatanova, S.

    2013-01-01

    Database systems are continuously extending their capabilities to store, process and analyse 3D data. Topological relationships which describe the interaction of objects in space is one of the important spatial issues. However, spatial operators for 3D objects are still insufficient. In this paper w

  16. Simultaneous topology optimization of structures and supports

    Buhl, Thomas

    2002-01-01

    The purpose of this paper is to demonstrate a method for and the benefits of simultaneously designing structure and support distribution using topology optimization. The support conditions are included in the topology optimization by introducing, a new set of design variables that represents...... cost of supports in a design domain. Other examples show that more efficient mechanisms are obtained by introducing the support conditions in the topology optimization problem....

  17. Improving topology optimization intuition through games

    Nobel-Jørgensen, Morten; Malmgren-Hansen, David; Bærentzen, J. Andreas

    2016-01-01

    This paper describes the educational game, TopOpt Game, which invites the player to solve various optimization challenges. The main purpose of gamifying topology optimization is to create a supplemental educational tool which can be used to introduce concepts of topology optimization to newcomers...

  18. Topology optimization for free vibrations using combined approximations

    Bogomolny, Michael

    2010-01-01

    This study shows how the Combined Approximations (CA) can be used for reducing the computational effort in Topology Optimization for free vibrations. The previously developed approach is based on the integration of several concepts and methods, including matrix factorization, series expansion......, and reduced basis. In this paper the CA method is used for repeated eigenvalue analysis. Ad joint sensitivity analysis is developed such that the inaccuracies of the approximation are taken into consideration. Several 2-D and 3-D numerical examples show how optimal topology designs can be achieved...

  19. Reasoning about geological space: Coupling 3D GeoModels and topological queries as an aid to spatial data selection

    Pouliot, Jacynthe; Bédard, Karine; Kirkwood, Donna; Lachance, Bernard

    2008-05-01

    Topological relationships between geological objects are of great interest for mining and petroleum exploration. Indeed, adjacency, inclusion and intersection are common relationships between geological objects such as faults, geological units, fractures, mineralized zones and reservoirs. However, in the context of 3D modeling, actual geometric data models used to store those objects are not designed to manage explicit topological relationships. For example, with Gocad© software, topological analyses are possible but they require a series of successive manipulations and are time consuming. This paper presents the development of a 3D topological query prototype, TQuery, compatible with Gocad© modeling platform. It allows the user to export Gocad© objects to a data storage model that regularizes the topological relationships between objects. The development of TQuery was oriented towards the use of volumetric objects that are composed of tetrahedrons. Exported data are then retrieved and used for 3D topological and spatial queries. One of the advantages of TQuery is that different types of objects can be queried at the same time without restricting the operations to voxel regions. TQuery allows the user to analyze data more quickly and efficiently and does not require a 3D modeling specialist to use it, which is particularly attractive in the context of a decision-making aid. The prototype was tested on a 3D GeoModel of a continental red-bed copper deposit in the Silurian Robitaille Formation (Transfiguration property, Québec, Canada).

  20. Topology optimized mode conversion in a photonic crystal waveguide fabricated in siliconon-insulator material

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Frellsen, Louise Floor;

    2014-01-01

    We have designed and for the first time experimentally verified a topology optimized mode converter with a footprint of ∼6.3 μm × ∼3.6 μm which converts the fundamental even mode to the higher order odd mode of a dispersion engineered photonic crystal waveguide. 2D and 3D topology optimization is...

  1. Enhanced Mobility of Spin-Helical Dirac Fermions in Disordered 3D Topological Insulators

    Dufouleur, Joseph; Veyrat, Louis; Dassonneville, Bastien; Nowka, Christian; Hampel, Silke; Leksin, Pavel; Eichler, Barbara; Schmidt, Oliver G.; Büchner, Bernd; Giraud, Romain

    2016-11-01

    The transport length $l_\\textrm{tr}$ and the mean free path $l_\\textrm{e}$ are experimentally determined for bulk and surface states in a Bi$_2$Se$_3$ nanoribbon by quantum transport and transconductance measurements. We show that the anisotropic scattering of spin-helical Dirac fermions results in a strong enhancement of $l_\\textrm{tr}$, which confirms theoretical predictions \\cite{Culcer2010}. Despite strong disorder ($l_\\textrm{e}\\approx30$~nm), our result further points to the long-range nature of the scattering potential, giving a large ratio $l_\\textrm{tr}/l_\\textrm{e}\\approx8$ that is likely limited by a finite bulk/surface coupling. This suggests that the spin-flip length could reach the micron size in disordered 3D topological insulator nanostructures with a reduced bulk doping, even if due to charge compensation.

  2. Topological Optimization of Rod Mixers

    Finn, Matthew D.; Thiffeault, Jean-Luc

    2006-11-01

    Stirring of fluid with moving rods is necessary in many practical applications to achieve homogeneity. These rods are topological obstacles that force stretching of fluid elements. The resulting stretching and folding is commonly observed as filaments and striations, and is a precursor to mixing. In a space-time diagram, the trajectories of the rods form a braid [1], and the properties of this braid impose a minimal complexity in the flow. We discuss how optimal mixing protocols can be obtained by a judicious choice of braid, and how these protocols can be implemented using simple gearing [2].[12pt] [1] P. L. Boyland, H. Aref, and M. A. Stremler, JFM 403, 277 (2000).[8pt] [2] J.-L. Thiffeault and M. D. Finn, http://arxiv.org/nlin/0603003

  3. Ferromagnetic interactions between transition-metal impurities in topological and 3D Dirac semimetals

    Dietl, Tomasz

    The magnitude of ferromagnetic coupling driven by inter-band (Bloembergen-Rowland - BR) and intra-band (Ruderman-Kittel-Kasuya-Yoshida - RKKY) spin polarization is evaluated within kp theory for topological semimetals Hg1-xMnxTe and Hg1-xMnxSe as well as for 3D Dirac semimetal (Cd1-xMnx)3As2. In these systems Mn2+ ions do not introduce any carriers. Since, however, both conduction and valence bands are built from anion p-type wave functions, hybridization of Mn d levels with neighboring anion p states leads to spin-dependent p - d coupling of both electrons and holes to localized Mn spins, resulting in sizable inter-band spin polarization and, thus in large BR interactions. We demonstrate that this ferromagnetic coupling, together with antiferromagnetic superexchange, elucidate a specific dependence of spin-glass freezing temperature on x, determined experimentally for these systems. Furthermore, by employing a multi-orbital tight-binding method, we find that superexchange becomes ferromagnetic when Mn is replaced by Cr or V. Since Cr should act as an isoelectronic impurity in HgTe, this opens a road for realization of ferromagnetic topological insulators based on (Hg,Cr)Te.

  4. A design approach for integrating thermoelectric devices using topology optimization

    Soprani, Stefano; Haertel, Jan Hendrik Klaas; Lazarov, Boyan Stefanov;

    2016-01-01

    to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems....... The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between...... experimental results and model forecasts was obtained and the system was able to maintain the load at more than 33 K below the oil well temperature. Results of this study support topology optimizationas a powerful design tool for thermal design of thermoelectric systems....

  5. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.

    Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T; Wilczynski, Grzegorz M; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun

    2015-12-17

    Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.

  6. Existence of two MHD reconnection modes in a solar 3D magnetic null point topology

    Pariat, Etienne; Antiochos, Spiro; DeVore, C. Richard; Dalmasse, Kévin

    2012-07-01

    Magnetic topologies with a 3D magnetic null point are common in the solar atmosphere and occur at different spatial scales: such structures can be associated with some solar eruptions, with the so-called pseudo-streamers, and with numerous coronal jets. We have recently developed a series of numerical experiments that model magnetic reconnection in such configurations in order to study and explain the properties of jet-like features. Our model uses our state-of-the-art adaptive-mesh MHD solver ARMS. Energy is injected in the system by line-tied motion of the magnetic field lines in a corona-like configuration. We observe that, in the MHD framework, two reconnection modes eventually appear in the course of the evolution of the system. A very impulsive one, associated with a highly dynamic and fully 3D current sheet, is associated with the energetic generation of a jet. Before and after the generation of the jet, a quasi-steady reconnection mode, more similar to the standard 2D Sweet-Parker model, presents a lower global reconnection rate. We show that the geometry of the magnetic configuration influences the trigger of one or the other mode. We argue that this result carries important implications for the observed link between observational features such as solar jets, solar plumes, and the emission of coronal bright points.

  7. State space Newton's method for topology optimization

    Evgrafov, Anton

    2014-01-01

    We introduce a new algorithm for solving certain classes of topology optimization problems, which enjoys fast local convergence normally achieved by the full space methods while working in a smaller reduced space. The computational complexity of Newton’s direction finding subproblem in the algori...... and another related to solving topology optimization problems for non-Newtonian fluids....

  8. Topology optimization of wave-propagation problems

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....

  9. Topology optimization of two-dimensional waveguides

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  10. Topology optimization of reinforced concrete structures

    Amir, Oded

    Recent advances regarding topology optimization procedures of reinforced concrete structures are presented. We discuss several approaches to the challenging problem of optimizing the distribution of concrete and steel reinforcement. In particular, the consideration of complex nonlinear constitutive...

  11. Generalized Benders’ Decomposition for topology optimization problems

    Munoz Queupumil, Eduardo Javier; Stolpe, Mathias

    2011-01-01

    This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness......–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality....

  12. Improving topology optimization intuition through games

    Nobel-Jørgensen, Morten; Malmgren-Hansen, David; Bærentzen, J. Andreas;

    2016-01-01

    This paper describes the educational game, TopOpt Game, which invites the player to solve various optimization challenges. The main purpose of gamifying topology optimization is to create a supplemental educational tool which can be used to introduce concepts of topology optimization to newcomers...... as well asto train human intuition of topology optimization. The players are challenged to solve the standard minimum compliance problem in 2D by distributing material in a design domain given a number of loads and supports with a material constraint. A statistical analysis of the gameplay data shows...

  13. Topology optimization using an explicit interface representation

    Christiansen, Asger Nyman; Nobel-Jørgensen, Morten; Aage, Niels;

    2014-01-01

    We introduce the Deformable Simplicial Complex method to topology optimization as a way to represent the interface explicitly yet being able to handle topology changes. Topology changes are handled by a series of mesh operations, which also ensures a well-formed mesh. The same mesh is therefore u...... topological derivatives. The presented method is tested on two standard minimum compliance problems which demonstrates that it is both simple to apply, robust and efficient.......We introduce the Deformable Simplicial Complex method to topology optimization as a way to represent the interface explicitly yet being able to handle topology changes. Topology changes are handled by a series of mesh operations, which also ensures a well-formed mesh. The same mesh is therefore...... used for both finite element calculations and shape representation. In addition, the approach unifies shape and topology optimization in a complementary optimization strategy. The shape is optimized on the basis of the gradient-based optimization algorithm MMA whereas holes are introduced using...

  14. Topology Optimization of Thermal Heat Sinks

    Klaas Haertel, Jan Hendrik; Engelbrecht, Kurt; Lazarov, Boyan Stefanov

    2015-01-01

    in COMSOL Multiphysics. The optimization objective is to minimize the heat sink’s temperature for a prescribed pressure drop and fixed heat generation. To conduct the optimization, COMSOL’s Optimization Module with GCMMA as the optimization method is used. The implementation of this topology optimization...... approach in COMSOL Multiphysics is described in this paper and results for optimized two-dimensional heat sinks are presented. Furthermore, parameter studies regarding the effect of the prescribed pressure drop of the system on Reynolds number and realized heat sink temperature are presented and discussed.......In this paper, topology optimization is applied to optimize the cooling performance of thermal heat sinks. The coupled two-dimensional thermofluid model of a heat sink cooled with forced convection and a density-based topology optimization including density filtering and projection are implemented...

  15. Numerical topology optimization of heat sinks

    Van Oevelen, Tijs; Baelmans, Martine

    2014-01-01

    The availability of flexible production techniques challenges their full exploitation during thermo-hydraulic design of micro heat sinks. In this context, a systematic approach capable to take advantage of the practically unlimited design freedom is highly desirable. Therefore, we propose to use topology optimization, a numerical design optimization method well-established in structural mechanics problems. In this paper, the fundamentals of topology optimization, and its application in thermo...

  16. Design of microfluidic bioreactors using topology optimization

    Okkels, Fridolin; Bruus, Henrik

    2007-01-01

    We address the design of optimal reactors for supporting biological cultures using the method of topology optimization. For some years this method have been used to design various optimal microfluidic devices.1-4 We apply this method to distribute optimally biologic cultures within a flow of nutr...

  17. Structural optimization of 3D-printed synthetic spider webs for high strength

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-05-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  18. ARPES Study of the 3D Topological Insulator Bi2Se 3

    Kim, Ahram

    The 3D topological insulator material Bi2Se3 is characterized with angle-resolved photoemission spectroscopy (ARPES) energy-momentum intensity spectra at various temperatures. High quality samples with relatively small band gaps and a low energy Dirac point were used. An ideal resolution was deter- mined to be taken at photon energy of 11eV. Scattering interaction at the surface can come from three main sources: electron-phonon, surface impurity, or electron-electron scattering, between the surface and the bulk conduction bands. Momemtum- and Energy- Distribution Curves (MDC and EDC) fits were modeled with Gaussian convoluted Lorentzian and extremely-correlated Fermi liquid theory, respectively. By comparing the binding energy at different temperatures for regions near the Fermi edge and near the Dirac point, and observing an increase in MDC self-energy near the Fermi edge, we conclude that a source of interaction is through phonon coupling channels. By calculating the coupling constant ? from self-energy at various temperatures, we present a very low value of ? = 0.049 +/- 0.007 which supports our conclusion that phonon coupling must be incorporated into the theory to provide accurate fit models. Data was taken at beam line 5-4 at the Stanford Synchrotron Radiation Lightsource in Menlo Park, with samples prepared by Genda Gu's group at Brookhaven National Laboratory.

  19. On reducing computational effort in topology optimization: how far can we go?

    Amir, Oded; Sigmund, Ole

    2011-01-01

    An approximate approach to solving the nested analysis equations in topology optimization is proposed. The procedure consists of only one matrix factorization for the whole design process and a small number of iterative corrections for each design cycle. The approach is tested on 3D topology opti...

  20. Topology optimization of microwave waveguide filters

    Aage, Niels

    2016-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering.

  1. Topology optimization using the finite volume method

    Computational procedures for topology optimization of continuum problems using a material distribution method are typically based on the application of the finite element method (FEM) (see, e.g. [1]). In the present work we study a computational framework based on the finite volume method (FVM, see...... in this presentation is focused on a prototype model for topology optimization of steady heat diffusion. This allows for a study of the basic ingredients in working with FVM methods when dealing with topology optimization problems. The FVM and FEM based formulations differ both in how one computes the design...... the well known Reuss lower bound. [1] Bendsøe, M.P.; Sigmund, O. 2004: Topology Optimization - Theory, Methods, and Applications. Berlin Heidelberg: Springer Verlag [2] Versteeg, H. K.; W. Malalasekera 1995: An introduction to Computational Fluid Dynamics: the Finite Volume Method. London: Longman...

  2. Linux software for large topology optimization problems

    Recently the commercial finite element tool-box COMSOL has proven to be an excellent platform for development of the topology optimization method, teaching and other multi-physics modeling problems. This is mainly due to COMSOL’s flexibility and symbolic infrastructure which puts focus on the mod......Recently the commercial finite element tool-box COMSOL has proven to be an excellent platform for development of the topology optimization method, teaching and other multi-physics modeling problems. This is mainly due to COMSOL’s flexibility and symbolic infrastructure which puts focus......-like package for large topology optimization problems. One candidate for such software is developed for Linux by Sandia Nat’l Lab in the USA being the Sundance system. Sundance also uses a symbolic representation of the PDE and a scalable numerical solution is achieved by employing the underlying Trilinos...... library. This talk investigates the efficiency of Sundance for large topology optimization problems....

  3. Optimizing Real-Time Performance of 3D Virtual Mining Environment with MultiGen Creator

    WANGWei-chen; JIANGXiao-hong; HANKe-qi; HANWen-ji

    2004-01-01

    System optimization plays a crucial role in developing VR system after 3D modeling, affecting the system's Immersion and Interaction performance enormously. In this article, several key techniques of optimizing a virtual mining system were discussed: optimizing 3D models to keep the polygon number in VR system within target hardware's processing ability;optimizing texture database to save texture memory with perfect visual effect; optimizing database hierarchy structure to accelerate model retrieval; and optimizing LOD hierarchy structure to speed up rendering~

  4. Multiobjective Topology Optimization of Energy Absorbing Materials

    2015-08-01

    125–143 DOI 10.1007/s00158-014-1117-8 RESEARCH PAPER Multiobjective topology optimization of energy absorbing materials Raymond A. Wildman · George A...recent developments. J Multiscale Model 3(4):1–42 Qiao P, Yang M, Bobaru F (2008) Impact mechanics and high-energy absorbing materials: review . J Aerosp...ARL-RP-0533 ● AUG 2015 US Army Research Laboratory Multiobjective Topology Optimization of Energy Absorbing Materials by

  5. Topology Optimization for Architected Materials Design

    Osanov, Mikhail; Guest, James K.

    2016-07-01

    Advanced manufacturing processes provide a tremendous opportunity to fabricate materials with precisely defined architectures. To fully leverage these capabilities, however, materials architectures must be optimally designed according to the target application, base material used, and specifics of the fabrication process. Computational topology optimization offers a systematic, mathematically driven framework for navigating this new design challenge. The design problem is posed and solved formally as an optimization problem with unit cell and upscaling mechanics embedded within this formulation. This article briefly reviews the key requirements to apply topology optimization to materials architecture design and discusses several fundamental findings related to optimization of elastic, thermal, and fluidic properties in periodic materials. Emerging areas related to topology optimization for manufacturability and manufacturing variations, nonlinear mechanics, and multiscale design are also discussed.

  6. Topology optimization for simplified structural fire safety

    Madsen, Søren; Lange, Nis P.; Giuliani, Luisa;

    2016-01-01

    Topology optimization is applied in an idealized structural fire safety model, where the minimum compliance problem is constrained by temperature-controlled structural degradation. The constraint ensures a certain structural stiffness after a prescribed time. As this time period is extended......, resulting optimized topologies tend to become thicker or introduce redundant members that can take over when structural parts near the origin of the fire lose their load carrying capability. Hence, the structural degradation model acts as an erosion operator on the topology and indirectly enforces a minimum...

  7. Topology optimization of mass distribution problems in Stokes flow

    Gersborg-Hansen, Allan; Berggren, Martin; Dammann, Bernd

    We consider topology optimization of mass distribution problems in 2D and 3D Stokes flow with the aim of designing devices that meet target outflow rates. For the purpose of validation, the designs have been post processed using the image processing tools available in FEMLAB. In turn, this has...... enabled an evaluation of the design with a body fitted mesh in a standard analysis software relevant in engineering practice prior to design manufacturing. This work investigates the proper choice of a maximum penalization value during the optimization process that ensures that the target outflow rates...

  8. Topology optimization for nano-photonics

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2011-01-01

    Topology optimization is a computational tool that can be used for the systematic design of photonic crystals, waveguides, resonators, filters and plasmonics. The method was originally developed for mechanical design problems but has within the last six years been applied to a range of photonics...... applications. Topology optimization may be based on finite element and finite difference type modeling methods in both frequency and time domain. The basic idea is that the material density of each element or grid point is a design variable, hence the geometry is parameterized in a pixel-like fashion....... The optimization problem is efficiently solved using mathematical programming-based optimization methods and analytical gradient calculations. The paper reviews the basic procedures behind topology optimization, a large number of applications ranging from photonic crystal design to surface plasmonic devices...

  9. On topology optimization of plates with prestress

    Pedersen, Niels Leergaard

    2001-01-01

    In this work, topology optimization is used to optimize the compliance or eigenvalues of prestressed plates. The prestress is accounted for by including the force equivalent to the prestressing and adding the initial stress stiffness matrix to the original stiffness matrix. The calculation...... of the sensitivities is complicated because of the initial stress stiffness matrix, but the computational cost can be kept low by using the adjoint method. The topology optimization problem is solved using the solid isotropic material with penalization (SIMP) method in combination with method of moving asymptotes (MMA...

  10. Topology optimization design of space rectangular mirror

    Qu, Yanjun; Wang, Wei; Liu, Bei; Li, Xupeng

    2016-10-01

    A conceptual lightweight rectangular mirror is designed based on the theory of topology optimization and the specific structure size is determined through sensitivity analysis and size optimization in this paper. Under the load condition of gravity along the optical axis, compared with the mirrors designed by traditional method using finite element analysis method, the performance of the topology optimization reflectors supported by peripheral six points are superior in lightweight ratio, structure stiffness and the reflective surface accuracy. This suggests that the lightweight method in this paper is effective and has potential value for the design of rectangular reflector.

  11. Topology optimization of inertia driven dosing units

    Andreasen, Casper Schousboe

    2016-01-01

    This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization...

  12. Tailoring group velocity by topology optimization

    Stainko, Roman; Sigmund, Ole

    2007-01-01

    The paper describes a systematic method for the tailoring of dispersion properties of slab-based photonic crystal waveguides. The method is based on the topology optimization method which consists in repeated finite element frequency domain analyses. The goal of the optimization process is to come...

  13. Topology optimization for transient heat transfer problems

    Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov

    The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our...

  14. A topology optimization method for design of negative permeability metamaterials

    Diaz, A. R.; Sigmund, Ole

    2010-01-01

    A methodology based on topology optimization for the design of metamaterials with negative permeability is presented. The formulation is based on the design of a thin layer of copper printed on a dielectric, rectangular plate of fixed dimensions. An effective media theory is used to estimate...... the effective permeability, obtained after solving Maxwell's equations on a representative cell of a periodic arrangement using a full 3D finite element model. The effective permeability depends on the layout of copper, and the subject of the topology optimization problem is to find layouts that result...... in negative (real) permeability at a prescribed frequency. A SIMP-like model is invoked to represent the conductivity of regions of intermediate density. A number of different filtering strategies are invoked to facilitate convergence to binary solutions. Examples of designs for S-band applications...

  15. Topology Optimization of Nanophotonic Devices

    Yang, Lirong

    are appropriate for problems where the power is to be maximized or minimized at a few frequencies, without regards on the detailed profile of the optical pulse or the need of large amount of frequency samplings. The design of slow light couplers connecting ridge waveguides and the photonic crystal waveguides...... lengthscale and flexible pulse delay are addressed to demonstrate time-domain based topology optimization’s potential in designing complicated photonic structures with specifications on the time characteristics of pulses....

  16. Topological Optimization of Artificial Microstructure Strategies

    2015-04-02

    Topographic Optimization Through Artificial Microstructure Strategies During this project as part of DARPA MCMA we aimed to develop and demonstrate...Topographic Optimization Through Artificial Microstructure Strategies Report Title During this project as part of DARPA MCMA we aimed to develop and...Artificial Microstructure Strategies (Yale and Johns Hopkins) During DARPA MCMA we aimed to develop and demonstrate a 3D microstructural

  17. Topology optimization of fluid mechanics problems

    Gersborg-Hansen, Allan

    using the material distribution technique with an underlying partial differential equation describing the fluid motion. The mathematical basis of departure is the incompressible Stokes equation with an extra absorption term which allows for material interpolation between Stokes flow and a model of Darcy......D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains......While topology optimization for solid continuum structures have been studied for about 20 years and for the special case of trusses for many more years, topology optimization of fluid mechanics problems is more recent. Borrvall and Petersson [1] is the seminal reference for topology optimization...

  18. A System for High-Resolution Topology Optimization.

    Wu, Jun; Dick, Christian; Westermann, Rudiger

    2016-03-01

    A key requirement in 3D fabrication is to generate objects with individual exterior shapes and their interior being optimized to application-specific force constraints and low material consumption. Accomplishing this task is challenging on desktop computers, due to the extreme model resolutions that are required to accurately predict the physical shape properties, requiring memory and computational capacities going beyond what is currently available. Moreover, fabrication-specific constraints need to be considered to enable printability. To address these challenges, we present a scalable system for generating 3D objects using topology optimization, which allows to efficiently evolve the topology of high-resolution solids towards printable and light-weight-high-resistance structures. To achieve this, the system is equipped with a high-performance GPU solver which can efficiently handle models comprising several millions of elements. A minimum thickness constraint is built into the optimization process to automatically enforce printability of the resulting shapes. We further shed light on the question how to incorporate geometric shape constraints, such as symmetry and pattern repetition, in the optimization process. We analyze the performance of the system and demonstrate its potential by a variety of different shapes such as interior structures within closed surfaces, exposed support structures, and surface models.

  19. Implementation of Molding Constraints in Topology Optimization

    Marx, S.; Kristensen, Anders Schmidt

    2009-01-01

    In many cases the topology optimization method yield inadmissible solutions in respect to a particular manufacturing process, e.g. injection molding. In the present work it is chosen to focus on the most common injection molding parameters/factors determining the quality of the mold geometry, i.......e. uniform thickness, filling of the die and ejection of the molded item, i.e. extrusion. The mentioned injection mold parameters/factors are introduced in the topology optimization by defining a centerline of the initial domain and then penalize elements in respect to the distance to the defined centerline...

  20. Topology optimization of laminated plates with prestress

    Pedersen, Niels Leergaard

    2002-01-01

    Laminated plates with different prestress in the layers are topology optimized. The objectives are to minimize the deflection due to the prestress or to minimize ordinary compliance. The prestress is accounted for by including the force equivalent to the prestressing and adding the initial stress...... stiffness matrix to the structural stiffness. The calculations of sensitivities are complicated not only by the prestress but also because we are dealing with laminates. The topology optimization problem is solved using a new penalization scheme as an alternative to the SIMP (power law) approach...

  1. Systematic design of microstructures by topology optimization

    Sigmund, Ole

    2003-01-01

    The topology optimization method can be used to determine the material distribution in a design domain such that an objective function is maximized and constraints are fulfilled. The method which is based on Finite Element Analysis may be applied to all kinds of material distribution problems like...... extremal material design, sensor and actuator design and MEMS synthesis. The state-of-the-art in topology optimization will be reviewed and older as well as new applications in phononic and photonic crystals design will be presented....

  2. Topology optimization of nano-photonic systems

    Elesin, Yuriy; Wang, Fengwen; Andkjær, Jacob Anders;

    2012-01-01

    We describe recent developments within nano-photonic systems design based on topology optimization. Applications include linear and non-linear optical waveguides, slow-light waveguides, as well as all-dielectric cloaks that minimize scattering or back-scattering from hard obstacles.......We describe recent developments within nano-photonic systems design based on topology optimization. Applications include linear and non-linear optical waveguides, slow-light waveguides, as well as all-dielectric cloaks that minimize scattering or back-scattering from hard obstacles....

  3. Optimal deterministic shallow cuttings for 3D dominance ranges

    Afshani, Peyman; Tsakalidis, Konstantinos

    2014-01-01

    In the concurrent range reporting (CRR) problem, the input is L disjoint sets S1..., SL of points in Rd with a total of N points. The goal is to preprocess the sets into a structure such that, given a query range r and an arbitrary set Q ⊆ {1,..., L}, we can efficiently report all the points in Si...... model (as well as comparison models such as the real RAM model), answering queries requires Ω(|Q|log(L/|Q|) + logN + K) time in the worst case, where K is the number of output points. In one dimension, we achieve this query time with a linear-space dynamic data structure that requires optimal O(log N...... times of O(|Q|log(N/|Q|) + K) and O(2LL + logN + K). Finally, we give an optimal data structure for three-sided ranges for the case L = O(log N). Copyright © 2014 by the Society for Industrial and Applied Mathematics....

  4. Topology optimized RF MEMS switches

    Philippine, M. A.; Zareie, H.; Sigmund, Ole

    2013-01-01

    optimization for an RF MEM capacitive switch. Extensive experimental data confirms that the switches perform as designed by the optimizations, and that our simulation models are accurate. A subset of measurements are presented here. Broader results have been submitted in full journal format....

  5. Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems.

    Calaminici, Patrizia; Janetzko, Florian; Köster, Andreas M; Mejia-Olvera, Roberto; Zuniga-Gutierrez, Bernardo

    2007-01-28

    Density functional theory optimized basis sets for gradient corrected functionals for 3d transition metal atoms are presented. Double zeta valence polarization and triple zeta valence polarization basis sets are optimized with the PW86 functional. The performance of the newly optimized basis sets is tested in atomic and molecular calculations. Excitation energies of 3d transition metal atoms, as well as electronic configurations, structural parameters, dissociation energies, and harmonic vibrational frequencies of a large number of molecules containing 3d transition metal elements, are presented. The obtained results are compared with available experimental data as well as with other theoretical data from the literature.

  6. Topology Optimization using an Explicit Interface Representation

    Christiansen, Asger Nyman; Nobel-Jørgensen, Morten; Bærentzen, J. Andreas;

    Current methods for topology optimization primarily represent the interface between solid and void implicitly on fixed grids. In contrast, shape optimization methods represent the interface explicitly, but do not allow for any topological changes to the structure. Using an explicit interface...... to handle topology changes. It does so by discretizing the entire design domain into an irregular adaptive triangle mesh and thereby explicitly representing both the structure and the embedding space. In other words, the entire design domain is divided into triangles, where the interface is represented...... the final design. The status of the work is that the method has been developed and is showing promising results. For instance, the cantilever beam problem has been solved to a high precision using a fine discretization by evaluating the objective function approximately 500 times. This took around 100...

  7. 3D conformal planning using low segment multi-criteria IMRT optimization

    Khan, Fazal

    2014-01-01

    Purpose: To evaluate automated multicriteria optimization (MCO)-- designed for intensity modulated radiation therapy (IMRT), but invoked with limited segmentation -- to efficiently produce high quality 3D conformal treatment (3D-CRT) plans. Methods: Ten patients previously planned with 3D-CRT were replanned with a low-segment inverse multicriteria optimized technique. The MCO-3D plans used the same number of beams, beam geometry and machine parameters of the corresponding 3D plans, but were limited to an energy of 6 MV. The MCO-3D plans were optimized using a fluence-based MCO IMRT algorithm and then, after MCO navigation, segmented with a low number of segments. The 3D and MCO-3D plans were compared by evaluating mean doses to individual organs at risk (OARs), mean doses to combined OARs, homogeneity indexes (HI), monitor units (MUs), physician preference, and qualitative assessments of planning time and plan customizability. Results: The MCO-3D plans significantly reduced the OAR mean doses and monitor unit...

  8. 3D modeling and optimization of the ITER ICRH antenna

    Louche, F.; Dumortier, P.; Durodié, F.; Messiaen, A.; Maggiora, R.; Milanesio, D.

    2011-12-01

    The prediction of the coupling properties of the ITER ICRH antenna necessitates the accurate evaluation of the resistance and reactance matrices. The latter are mostly dependent on the geometry of the array and therefore a model as accurate as possible is needed to precisely compute these matrices. Furthermore simulations have so far neglected the poloidal and toroidal profile of the plasma, and it is expected that the loading by individual straps will vary significantly due to varying strap-plasma distance. To take this curvature into account, some modifications of the alignment of the straps with respect to the toroidal direction are proposed. It is shown with CST Microwave Studio® [1] that considering two segments in the toroidal direction, i.e. a "V-shaped" toroidal antenna, is sufficient. A new CATIA model including this segmentation has been drawn and imported into both MWS and TOPICA [2] codes. Simulations show a good agreement of the impedance matrices in vacuum. Various modifications of the geometry are proposed in order to further optimize the coupling. In particular we study the effect of the strap box parameters and the recess of the vertical septa.

  9. STUDY OF TOPOLOGY OPTIMIZATION FOR THERMO-STRUCTURAL COUPLING FIELD

    Zuo Kongtian; Qian Qin; Zhao Yudong; Chen Liping

    2005-01-01

    A number of critical problems of topology optimization concerning the thermostructural coupling field are studied at length. The governing equations and topology optimization model for the thermal-structural coupling field are derived, with an adjoint method for sensitivity analysis of the thermo-structural coupling field proposed. The optimization algorithm for coupling field topology optimization is investigated and a flowchart of coupling field topology optimization presented. The theory and algorithms are implemented and verified by two numerical examples.

  10. Topology Optimization including Inequality Buoyancy Constraints

    Picelli, R.; Van Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; Van Keuen, A.

    2014-01-01

    This paper presents an evolutionary topology optimization method for applications in design of completely submerged buoyant devices with design-dependent fluid pressure loading. This type of structures aid rig installations and pipeline transportation in all water depths in offshore structural engin

  11. Topological and parametric optimization of gear trains

    Swantner, Albert; Campbell, Matthew I.

    2012-11-01

    A method for automating the design of gear trains comprised of simple, compound, bevel and worm is described. The search process combines topological changes, discrete variable choices and continuous variable optimization. By combing best-first search, implicit enumeration, automated optimization invocation and gradient-based optimization, a near guarantee of the optimal solution can be made. While the combination of methods is specific to gear trains, there are aspects of the work that make it amenable to other engineering design problems. In addition, the topological and discrete modifications to the candidate solutions are specific to gear trains, but the graph grammar methodology that is adopted has been tailored to other problems. This article presents details on the rules that generate feasible gear trains, the evaluation routines used in determining the objective functions and constraints, and the interaction among the three search methods. Resulting gear trains are presented for a variety of gear problems.

  12. Maximization of eigenvalues using topology optimization

    Pedersen, Niels Leergaard

    2000-01-01

    Topology optimization is used to optimize the eigenvalues of plates. The results are intended especially for MicroElectroMechanical Systems (MEMS) but call be seen as more general. The problem is not formulated as a case of reinforcement of an existing structure, so there is a problem related...... to localized modes in low density areas. The topology optimization problem is formulated using the SIMP method. Special attention is paid to a numerical method for removing localized eigenmodes in low density areas. The method is applied to numerical examples of maximizing the first eigenfrequency, One example...... is a practical MEMS application; a probe used in an Atomic Force Microscope (AFM). For the AFM probe the optimization is complicated by a constraint on the stiffness and constraints on higher order eigenvalues....

  13. Topology Optimization - broadening the areas of application

    Bendsøe, Martin P.; Lund, Erik; Olhoff, Niels;

    2005-01-01

    This paper deals with recent developments of topology optimization techniques for application in some new types of design problems. The emphasis is on recent work of the Danish research groups at Aalborg University and at the Technical University of Denmark and focus is on the central role......, design in fluids, design in acoustics, and design in photonics. A short outline of other design optimization activities is also given....

  14. Topology Optimization of an Aircraft Wing

    2015-06-11

    constraint is met. Optimizations were performed on a general aviation experi- mental aircraft wing subject to pressure loading simulating maximum...compared to traditional means. Additionally, a fuel tank was integrated into the wing structure as a proof-of-concept for the potential benefits of AM...topology and sizing optimization of the wing integrated with the fuel tank , spars, and skin. This resulted in a total wing mass reduction of 10.8

  15. A multidisciplinary algorithm for the 3-D design optimization of transonic axial compressor blades

    2002-01-01

    Approved for public release; distribution is unlimited A new, multidisciplinary algorithm for the CFD design optimization of turbomachinery blades is presented. It departs from existing techniques in that it uses a simple, previously-developed Bezier geometry representation (BLADE-3D) that can be easily manipulated to achieve true 3-D changes in blade shape. The algorithm incorporates zero and first-order optimization techniques including sensitivity analyses and one-dimensional search met...

  16. Ripple-modulated electronic structure of a 3D topological insulator.

    Okada, Yoshinori; Zhou, Wenwen; Walkup, D; Dhital, Chetan; Wilson, Stephen D; Madhavan, V

    2012-01-01

    Three-dimensional topological insulators host linearly dispersing states with unique properties and a strong potential for applications. An important ingredient in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Direct analogy to the Dirac material graphene suggests that a possible avenue for controlling local properties is via a controlled structural deformation such as the formation of ripples. However, the influence of such ripples on topological insulators is yet to be explored. Here we use scanning tunnelling microscopy to determine the effects of one-dimensional buckling on the electronic properties of Bi(2)Te(3.) By tracking spatial variations of the interference patterns generated by the Dirac electrons we show that buckling imposes a periodic potential, which locally modulates the surface-state dispersion. This suggests that forming one- and two-dimensional ripples is a viable method for creating nanoscale potential landscapes that can be used to control the properties of Dirac electrons in topological insulators.

  17. View Based Methods can achieve Bayes-Optimal 3D Recognition

    Breuel, Thomas M

    2007-01-01

    This paper proves that visual object recognition systems using only 2D Euclidean similarity measurements to compare object views against previously seen views can achieve the same recognition performance as observers having access to all coordinate information and able of using arbitrary 3D models internally. Furthermore, it demonstrates that such systems do not require more training views than Bayes-optimal 3D model-based systems. For building computer vision systems, these results imply that using view-based or appearance-based techniques with carefully constructed combination of evidence mechanisms may not be at a disadvantage relative to 3D model-based systems. For computational approaches to human vision, they show that it is impossible to distinguish view-based and 3D model-based techniques for 3D object recognition solely by comparing the performance achievable by human and 3D model-based systems.}

  18. The Optimizer Topology Characteristics in Seismic Hazards

    Sengor, T.

    2015-12-01

    The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.

  19. NEW HMM ALGORITHM FOR TOPOLOGY OPTIMIZATION

    Zuo Kongtian; Zhao Yudong; Chen Liping; Zhong Yifang; Huang Yuying

    2005-01-01

    A new hybrid MMA-MGCMMA (HMM) algorithm for solving topology optimization problems is presented. This algorithm combines the method of moving asymptotes (MMA) algorithm and the modified globally convergent version of the method of moving asymptotes (MGCMMA) algorithm in the optimization process. This algorithm preserves the advantages of both MMA and MGCMMA. The optimizer is switched from MMA to MGCMMA automatically, depending on the numerical oscillation value existing in the calculation. This algorithm can improve calculation efficiency and accelerate convergence compared with simplex MMA or MGCMMA algorithms, which is proven with an example.

  20. Topology optimization of robust superhydrophobic surfaces

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2013-01-01

    the space between the posts, we search for an optimal post cross-section that minimizes the vertical displacement of the liquid–air interface at the base of the drop when a pressure difference is applied. Topology optimisation proves effective in this framework, showing that posts with a branching cross......-section are optimal, which is consistent with several biologic strategies to achieve superhydrophobicity. Through a filtering technique, we can also control the characteristic length scale of the optimal design, thus obtaining geometries feasible via standard lithography....

  1. Topology Optimization for Urban Traffic Sensor Network

    HU Jianming; SONG Jingyan; ZHANG Mingchen; KANG Xiaojing

    2008-01-01

    This paper presents an optimized topology for urban traffic sensor networks. Small world theory is used to improve the performance of the wireless communication system with a heterogeneous transmission model and an optimal transmission radius. Furthermore, a series of simulations based on the actual road network around the 2nd Ring Road in Beijing demonstrate the practicability of constructing artificial "small worlds". Moreover, the particle swarm optimization method is used to calculate the globally best distribution of the nodes with the large radius. The methods proposed in this paper will be helpful to the sensor nodes deployment of the new urban traffic sensor networks.

  2. Design and fabrication of topologically optimized structures;

    Feringa, Jelle; Søndergaard, Asbjørn

    2012-01-01

    Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard...... & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus...

  3. Topological defect launches 3D mound in the active nematic sheet of neural progenitors

    Kawaguchi, Kyogo; Sano, Masaki

    2016-01-01

    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and macroscopic patterns resulting from cell-to-cell interactions remain largely qualitative, even though they are the simplest features observed in everyday experiments. Here we report that neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system, rapidly glide and stochastically reverse its velocity while locally aligning with neighboring cells, thus showing features of an active nematic system. Within the two-dimensional nematic pattern, we find interspaced topological defects with +1/2 and -1/2 charges. Remarkably, we identified rapid cell accumulation leading to three-dimensional mounds at the +1/2 topological defects. Single-cell level imaging around the defects allowed quantification of the evolving cell density, clarifyin...

  4. Topology Mining for Optimization of Framed Structures

    Hagishita, Takao; Ohsaki, Makoto

    A new heuristic method called Topology Mining (TM) is proposed for topology optimization of framed structures, where the problem is formulated as 0-1 mixed-integer optimization problem. TM uses the apriori algorithm, developed in the field of data mining, to efficiently extract the bar sets that frequently appears among superior solutions, and proceeds so as to preserve the sets. Hence, the process of optimization can be investigated by tracing the frequent bar sets, accordingly, the parameters for optimization can easily be adjusted. It is pointed out that the ground structure method based on nonlinear programming is not effective for finding optimal placement of braces for a given frame under local buckling constraints. We propose an integrated approach to obtain an accurate solution of this problem, where optimal placement of braces is searched by TM, and the sizing optimization is performed by nonlinear programming. Three numerical examples are solved to demonstrate the performance of TM in comparison with another heuristic method called tabu search.

  5. Towards Automatic and Topologically Consistent 3D Regional Geological Modeling from Boundaries and Attitudes

    Jiateng Guo

    2016-02-01

    Full Text Available Three-dimensional (3D geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D geological elements remains difficult and is not necessarily robust. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data. This method could also be used in other fields of study, including mining geology and urban geotechnical investigations.

  6. Topology optimization in structural and continuum mechanics

    Lewiński, Tomasz

    2014-01-01

    The book covers new developments in structural topology optimization. Basic features and limitations of Michell’s truss theory, its extension to a broader class of support conditions, generalizations of truss topology optimization, and Michell continua are reviewed. For elastic bodies, the layout problems in linear elasticity are discussed and the method of relaxation by homogenization is outlined. The classical problem of free material design is shown to be reducible to a locking material problem, even in the multiload case. For structures subjected to dynamic loads, it is explained how they can be designed so that the structural eigenfrequencies of vibration are as far away as possible from a prescribed external excitation frequency (or a band of excitation frequencies) in order to avoid resonance phenomena with high vibration and noise levels. For diffusive and convective transport processes and multiphysics problems, applications of the density method are discussed. In order to take uncertainty in mater...

  7. Efficient Reanalysis Procedures in Structural Topology Optimization

    Amir, Oded

    of the analysis equations. For demonstrative purposes, the discussion is limited to topology optimization problems within the field of structural mechanics. Nevertheless, the results can be relevant for a wide range of problems in structural and topology optimization. The main focus of the thesis...... effort invested in the solution of the nested problem is even more dominant since nonlinear equation systems are to be solved repeatedly. Efficient procedures for nonlinear structural analysis are proposed, based on transferring solutions and factorized tangent stiffnesses from one design cycle...... to the following one. This approach is demonstrated on several design problems involving either geometric or material nonlinearities. The suggested procedures are shown to be effective mainly for problems that do not involve path-dependent solutions....

  8. Computer Based Porosity Design by Multi Phase Topology Optimization

    Burblies, Andreas; Busse, Matthias

    2008-02-01

    A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.

  9. Topology optimization of Channel flow problems

    Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.

    2005-01-01

    ]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...... function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical...... sensitivities. Our target application is optimal layout design of channels in fluid network systems. Using concepts borrowed from topology optimization of compliant mechanisms in solid mechanics, we introduce a method for the synthesis of fluidic components, such as switches, diodes, etc....

  10. OPtimal backlight scanning for 3D crosstalk reduction in LCD TV

    Burini, Nino; Shu, Xiao; Jiao, Liangbao

    2013-01-01

    This work presents a method to determine the optimal backlight scanning signals to minimize crosstalk for time-sequential stereoscopic 3D on LCD TV with active shutter glasses. The solution is obtained through optimization of the variables defined by a model of backlight scanning that considers...

  11. Studying topological structure of 21-cm line fluctuations with 3D Minkowski functionals before reionization

    Yoshiura, Shintaro; Shimabukuro, Hayato; Takahashi, Keitaro; Matsubara, Takahiko

    2017-02-01

    The brightness temperature of the redshifted 21-cm line brings rich information about the intergalactic medium (IGM) from the cosmic dawn and epoch of reionization (EoR). While the power spectrum is a useful tool to investigate the 21-cm signal statistically, the 21-cm brightness temperature field is highly non-Gaussian and the power spectrum is inadequate to characterize the non-Gaussianity. Minkowski functionals (MFs) are promising tools to extract non-Gaussian features of the 21-cm signal and give topological information, such as morphology of ionized bubbles. In this work, we study the 21-cm line signal in detail with MFs. To promote understanding of basic features of the 21-cm signal, we calculate the MFs of not only the hydrogen neutral fraction but also the matter density and spin temperature, which contribute to brightness-temperature fluctuations. We find that the structure of the brightness temperature depends mainly on the ionized fraction and the spin temperature at late and early stages of the EoR, respectively. Further, we investigate the redshift evolution of MFs at 7 topology of ionized bubbles and we consider the possibility of constraining the parameters using future 21-cm signal observations.

  12. Level-Set Topology Optimization with Aeroelastic Constraints

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  13. Effects of 2D and 3D Error Fields on the SAS Divertor Magnetic Topology

    Trevisan, G. L.; Lao, L. L.; Strait, E. J.; Guo, H. Y.; Wu, W.; Evans, T. E.

    2016-10-01

    The successful design of plasma-facing components in fusion experiments is of paramount importance in both the operation of future reactors and in the modification of operating machines. Indeed, the Small Angle Slot (SAS) divertor concept, proposed for application on the DIII-D experiment, combines a small incident angle at the plasma strike point with a progressively opening slot, so as to better control heat flux and erosion in high-performance tokamak plasmas. Uncertainty quantification of the error fields expected around the striking point provides additional useful information in both the design and the modeling phases of the new divertor, in part due to the particular geometric requirement of the striking flux surfaces. The presented work involves both 2D and 3D magnetic error field analysis on the SAS strike point carried out using the EFIT code for 2D equilibrium reconstruction, V3POST for vacuum 3D computations and the OMFIT integrated modeling framework for data analysis. An uncertainty in the magnetic probes' signals is found to propagate non-linearly as an uncertainty in the striking point and angle, which can be quantified through statistical analysis to yield robust estimates. Work supported by contracts DE-FG02-95ER54309 and DE-FC02-04ER54698.

  14. Topology optimized cloak for airborne sound

    Andkjær, Jacob Anders; Sigmund, Ole

    2013-01-01

    Directional acoustic cloaks that conceal an aluminum cylinder for airborne sound waves are presented in this paper. Subwavelength cylindrical aluminum inclusions in air constitute the cloak design to aid practical realizations. The positions and radii of the subwavelength cylinders are determined...... by minimizing scattering from the cloak-structure and cylinder using the gradient-based topology optimization method. In the final optimization step, the radii of the subwavelength cylinders are constrained to three discrete values. A near-perfect narrow-banded and angular cloaking effect is obtained...

  15. Robust topology optimization accounting for geometric imperfections

    Schevenels, M.; Jansen, M.; Lombaert, Geert

    2013-01-01

    performance. As a consequence, the actual structure may be far from optimal. In this paper, a robust approach to topology optimization is presented, taking into account two types of geometric imperfections: variations of (1) the crosssections and (2) the locations of structural elements. The first type...... is modeled by means of a scalar non-Gaussian random field, which is represented as a translation process. The underlying Gaussian field is simulated by means of the EOLE method. The second type of imperfections is modeled as a Gaussian vector-valued random field, which is simulated directly by means...

  16. A novel 3D framework indium phosphite-oxalate based on a pcu-type topology

    Zuo, Mengmeng; Zhou, Mingdong; Hu, Dianwen; Gao, Fan; Dong, Sijie; Huang, Liangliang

    2016-05-01

    A new inorganic-organic hybrid indium phosphite-oxalate, formulated as H[In5(HPO3)6(H2PO3)2(C2O4)2]·(C4N2H11)2·H2O 1 has been hydrothermally synthesized in the presence of piperazine acting as a structure directing agent (SDA). The single crystal X-ray diffraction reveals that compound 1 shows three-dimensional open-framework with intersecting 12-ring channels along the [010] and [001] directions, which is constructed from strictly alternating double 6-ring units (D6Rs), [C2O4]2- groups and [H2PO3]- pseudo-pyramids. It is noted that the classical D6R SBU is firstly reported in main metal phosphite/phosphite-oxalate. By regarding D6R as the 6-connected nodes, the inorganic-organic hybrid framework is based on a pcu-type topology. The as-synthesized product was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis (TGA), ICP-AES and elemental analyses.

  17. Monte Carlo Study of Topological Defects in the 3D Heisenberg Model

    Holm, C; Holm, Christian; Janke, Wolfhard

    1994-01-01

    We use single-cluster Monte Carlo simulations to study the role of topological defects in the three-dimensional classical Heisenberg model on simple cubic lattices of size up to $80^3$. By applying reweighting techniques to time series generated in the vicinity of the approximate infinite volume transition point $K_c$, we obtain clear evidence that the temperature derivative of the average defect density $d\\langle n \\rangle/dT$ behaves qualitatively like the specific heat, i.e., both observables are finite in the infinite volume limit. This is in contrast to results by Lau and Dasgupta [{\\em Phys. Rev.\\/} {\\bf B39} (1989) 7212] who extrapolated a divergent behavior of $d\\langle n \\rangle/dT$ at $K_c$ from simulations on lattices of size up to $16^3$. We obtain weak evidence that $d\\langle n \\rangle/dT$ scales with the same critical exponent as the specific heat.As a byproduct of our simulations, we obtain a very accurate estimate for the ratio $\\alpha/\

  18. Design of Mott and topological phases on buckled 3d-oxide honeycomb lattices

    Pentcheva, Rossitza

    The honeycomb lattice, as realized e.g. in graphene, has rendered a robust platform for innovative science and potential applications. A much richer generalization of this lattice arises in (111)-oriented bilayers of perovskites, adding the complexity of the strongly correlated, multiorbital nature of electrons in transition metal oxides. Based on first principles calculations with an on-site Coulomb repulsion, here we provide trends in the evolution of ground states versus band filling in (111)-oriented (La XO3)2 /(LaAlO3)4 superlattices, with X spanning the entire 3d transition metal series. The competition between local quasi-cubic and global triangular symmetry triggers unanticipated broken symmetry phases, with mechanisms ranging from Jahn-Teller distortion, to charge-, spin-, and orbital-ordering. LaMnO3 and LaCoO3 bilayers, where spin-orbit coupling opens a sizable gap in the Dirac-point Fermi surface, emerge as much desired oxide-based Chern insulators, the latter displaying a gap capable of supporting room-temperature applications Further realizations of the honeycomb lattice and geometry patterns beyond the perovskite structure will be addressed. Research supported by the DFG, SFB/TR80.

  19. Crashworthiness design of transient frame structures using topology optimization

    Pedersen, Claus B. Wittendorf

    2004-01-01

    The aim of this paper is to present topology optimization as a method to obtain conceptual designs for crash-worthiness. The topology optimization formulation uses rigorously computed sensitivities. The large displacements and plasticity of the 2D beam elements are modelled with the co-rotational......-rotational formulation and the plastic zone formulation, respectively. Three examples are presented to show the results of combining topology optimization and crashworthiness optimization. (C) 2003 Elsevier B.V. All rights reserved....

  20. Topology Optimization for Transient Wave Propagation Problems

    Matzen, René

    The study of elastic and optical waves together with intensive material research has revolutionized everyday as well as cutting edge technology in very tangible ways within the last century. Therefore it is important to continue the investigative work towards improving existing as well as innovate...... as for vectorial elastic wave propagation problems using finite element analysis [P2], [P4]. The concept is implemented in a parallel computing code that includes efficient techniques for performing gradient based topology optimization. Using the developed computational framework the thesis considers four...... optimization problems from nano-photonics: First, an optical taper [P1] and a notch filter [P2] - both optimized by energy maximization. The last two cases demonstrate pulse shaping and delay in one [P3] and two [P5] dimensions. Whereas the test problem in [P3] is rather academic, the example considered in [P5...

  1. Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models.

    Costa, Elisabete C; Gaspar, Vítor M; Coutinho, Paula; Correia, Ilídio J

    2014-08-01

    Three-dimensional (3D) cell culture models of solid tumors are currently having a tremendous impact in the in vitro screening of candidate anti-tumoral therapies. These 3D models provide more reliable results than those provided by standard 2D in vitro cell cultures. However, 3D manufacturing techniques need to be further optimized in order to increase the robustness of these models and provide data that can be properly correlated with the in vivo situation. Therefore, in the present study the parameters used for producing multicellular tumor spheroids (MCTS) by liquid overlay technique (LOT) were optimized in order to produce heterogeneous cellular agglomerates comprised of cancer cells and stromal cells, during long periods. Spheroids were produced under highly controlled conditions, namely: (i) agarose coatings; (ii) horizontal stirring, and (iii) a known initial cell number. The simultaneous optimization of these parameters promoted the assembly of 3D characteristic cellular organization similar to that found in the in vivo solid tumors. Such improvements in the LOT technique promoted the assembly of highly reproducible, individual 3D spheroids, with a low cost of production and that can be used for future in vitro drug screening assays.

  2. Binary discrete method of topology optimization

    MEI Yu-lin; WANG Xiao-ming; CHENG Geng-dong

    2007-01-01

    The numerical non-stability of a discrete algorithm of topology optimization can result from the inaccurate evaluation of element sensitivities. Especially, when material is added to elements, the estimation of element sensitivities is very inaccurate,even their signs are also estimated wrong. In order to overcome the problem, a new incremental sensitivity analysis formula is constructed based on the perturbation analysis of the elastic equilibrium increment equation, which can provide us a good estimate of the change of the objective function whether material is removed from or added to elements,meanwhile it can also be considered as the conventional sensitivity formula modified by a non-local element stiffness matrix. As a consequence, a binary discrete method of topology optimization is established, in which each element is assigned either a stiffness value of solid material or a small value indicating no material, and the optimization process can remove material from elements or add material to elements so as to make the objective function decrease. And a main advantage of the method is simple and no need of much mathematics, particularly interesting in engineering application.

  3. FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression.

    Jacob, J Augustin; Kumar, N Senthil

    2015-01-01

    A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation.

  4. Topology optimization for biocatalytic microreactor configurations

    Pereira Rosinha, Ines; Gernaey, Krist; Woodley, John

    2015-01-01

    The aim of this study is to present an innovative strategy for selecting a reactor for a specific process. Instead of adapting the process to a well-known reactor shape, a topology optimization method is used to obtain the best reactor configuration, and is applied to a biocatalyic reaction system....... The results allow evaluating which regions in the microreactorhave more importance for the product formation. In fact, it was possible to simulate the improvement of the outlet product concentration per same amount of enzyme by modifying the spatial distribution of the immobilized enzyme....

  5. Defect energetics and magnetic properties of 3 d-transition-metal-doped topological crystalline insulator SnTe

    Wang, Na; Wang, JianFeng; Si, Chen; Gu, Bing-Lin; Duan, WenHui

    2016-08-01

    The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3 d transition-metal (TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3 d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect (QAHE) in SnTe.

  6. Synthesis, structure and luminescent property of a new 3D porous metal organic framework with rutile topology

    Zhao, Jin; Zhu, Guang-Shan; Zou, Yong-Cun; Fang, Qian-Rong; Xue, Ming; Li, Zhong-Yue; Qiu, Shi-Lun

    2007-12-01

    A new 3D porous metal-organic framework (MOF), Cd(CTC)(HPDA)·(H 2O) ( 1) (CTC = cis, cis-1,3,5-cyclohexanetricarboxylate and PDA = 1,3-propanediamine) has been synthesized by using an organic amine, PDA, as a template. X-ray crystallography reveals that two cadmium centers are coordinated by six different carboxylate groups to construct a dinuclear octahedral secondary building unit (SBU), and these octahedral SBUs are further interconnected by the cyclohexane rings of CTC to generate a 3D network with quadrangular channel dimensions of ca. 10 × 17 Å 2. In this structure, the dinuclear octahedral SBU can be defined as a 6-connected node, and CTC ligating with three SBUs can act as a 3-connected node. So the resulting structure of 1 is a binodal (3,6)-connected net with rutile topology. Additionally, polymer 1 exhibits intense fluorescence at 364 nm with the excitation peak at 240 nm in the solid state at room temperature.

  7. 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization

    Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.

    2017-04-01

    Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.

  8. Advanced Topology Optimization Methods for Conceptual Architectural Design

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    in topological optimization: Interactive control and continuous visualization; embedding flexible voids within the design space; consideration of distinct tension / compression properties; and optimization of dual material systems. In extension, optimization procedures for skeletal structures such as trusses...

  9. Comparison of optimized 3D-SPACE and 3D-TSE sequences at 1.5T MRCP in the diagnosis of choledocholithiasis

    Sudholt, P. [University Hospital Marburg (Germany). Dept. of Diagnostic and Interventional Radiology; Zaehringer, C.; Tyndall, A.; Bongartz, G.; Hohmann, J. [University Hospital Basel (Switzerland). Clinic for Radiology and Nuclear Medicine; Urigo, C. [Ars Medica Clinic, Gravesano-Lugano (Switzerland). Radiology

    2015-06-15

    The aim of the study was to evaluate whether or not MRCP using a 3D-SPACE sequence allows for better image quality and a higher level of diagnostic confidence than a conventional 3D-TSE sequence at 1.5T regarding the diagnosis of choledocholithiasis in a routine clinical setting. 3D-SPACE and 3D-TSE sequences were performed in 42 consecutive patients with suspected choledocholithiasis undergoing MRCP. Evaluation of image quality and diagnostic confidence was done on the pancreaticobiliary tree which was subdivided into 10 segments. They were scored and statistically evaluated separately for visibility and diagnostic certainty by three radiologists with differing levels of experience on a five-point scale of 1 to 5 and -2 to 2, respectively. Student t-test was performed, and the interobserver agreement was also calculated. Image quality for each segment was significantly better for the 3D-SPACE sequence compared to the 3D-TSE sequence (4.48±0.94 vs. 3.98±1.20; 5-point scale p<0.01). Diagnostic confidence for the reporting radiologist was also significantly better for 3D-SPACE than for 3D-TSE (1.68±0.56 vs. 1.46±0.70; 3-point scale; p<0.01). The interobserver agreement was high in both sequences, 0.62-0.83 and 0.64-0.82, respectively. The optimized 3D-SPACE sequence allows for better image quality in 1.5T MRCP examinations and leads to a higher diagnostic confidence for choledocholithiasis compared to the conventional 3D-TSE sequence.

  10. Topology Optimal Design of Material Microstructures Using Strain Energy-based Method

    Zhang Weihong; Wang Fengwen; Dai Gaoming; Sun Shiping

    2007-01-01

    Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing efficiency and simplified programming.Both the dual convex programming method and perimeter constraint scheme are used to optimize the 2D and 3D microstructures. Numerical results indicate that the strain energy-based method has the same effectiveness as that of homogenization method for orthotropic materials.

  11. Mixed methods for viscoelastodynamics and topology optimization

    Giacomo Maurelli

    2014-07-01

    Full Text Available A truly-mixed approach for the analysis of viscoelastic structures and continua is presented. An additive decomposition of the stress state into a viscoelastic part and a purely elastic one is introduced along with an Hellinger-Reissner variational principle wherein the stress represents the main variable of the formulation whereas the kinematic descriptor (that in the case at hand is the velocity field acts as Lagrange multiplier. The resulting problem is a Differential Algebraic Equation (DAE because of the need to introduce static Lagrange multipliers to comply with the Cauchy boundary condition on the stress. The associated eigenvalue problem is known in the literature as constrained eigenvalue problem and poses several difficulties for its solution that are addressed in the paper. The second part of the paper proposes a topology optimization approach for the rationale design of viscoelastic structures and continua. Details concerning density interpolation, compliance problems and eigenvalue-based objectives are given. Worked numerical examples are presented concerning both the dynamic analysis of viscoelastic structures and their topology optimization.

  12. Topology Optimization for Energy Management in Underwater Sensor Networks

    2015-02-01

    1 To appear in International Journal of Control as a regular paper Topology Optimization for Energy Management in Underwater Sensor Networks⋆ Devesh... topology that maximizes the probability of successful search (of a target) over a surveillance region. In a two-stage optimization, a genetic algorithm (GA...Adaptation to energy variations across the network is shown to be manifested as a change in the optimal network topology by using sensing and

  13. Topology Optimization of Metamaterial-Based Electrically Small Antennas

    Erentok, Aycan; Sigmund, Ole

    2007-01-01

    A topology optimized metamaterial-based electrically small antenna configuration that is independent of a specific spherical and/or cylindrical metamaterial shell design is demonstrated. Topology optimization is shown to provide the optimal value and placement of a given ideal metamaterial in space...

  14. On CAD-integrated Structural Topology and Design Optimization

    Olhoff, Niels; Bendsøe, M.P.; Rasmussen, John

    1991-01-01

    Concepts underlying an interactive CAD-based engineering design optimization system are developed, and methods of optimizing the topology, shape and sizing of mechanical components are presented. These methods are integrated in the system, and the method for determining the optimal topology is used...

  15. Topology optimization of two-dimensional elastic wave barriers

    Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.

    2016-01-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...

  16. Phase field model for optimization of multi-material structural topology in two and three dimensions

    Zhou, Shiwei

    The Optimization of Structural Topology (OST) is a breakthrough in product design because it can optimize size, shape and topology synchronously under different physical constraints. It has promising applications in industry ranging from automobile and aerospace engineering to micro electromechanical system. This dissertation first substitutes the nonlinear diffusion method for filter process in the optimization of structural topology. Filtering has been a major technique used in a homogenization-based method for topology optimization of structures. It plays a key role in regularizing the basic problem into a well-behaved setting. But it has a drawback of smoothing effect around the boundary of material domain. A diffusion technique is presented here as a variational approach to the regularization of the topology optimization problem. A nonlinear or anisotropic diffusion process not only leads to a suitable problem regularization but also exhibits strong "edge"-preserving characteristics. Thus, it shows that the use of the nonlinear diffusions brings desirable effects of boundary preservation and even enhancement of lower-dimensional features such as flow-like structures. The proposed diffusion techniques have a close relationship with the diffusion methods and the phase-field methods of the fields of materials and digital image processing. Then this dissertation introduces a gradient flow in the norm of H-1 for the problem of multi-material structural topology optimization in 2/3D with a generalized Cahn-Hilliard (C-H) model with elasticity. Unlike the traditional C-H model applied to spinodal separation which only has bulk energy and interface energy, the generalized model couples the macroscopic elastic energy (mean compliance) into the total free energy. As a result, the grain morphology is not random islands or zigzag web-like objects but regular truss or bar structure. Although disturbed by elastic energy, the C-H system still keeps its two most important

  17. The optimizations of CGH generation algorithms based on multiple GPUs for 3D dynamic holographic display

    Yang, Dan; Liu, Juan; Zhang, Yingxi; Li, Xin; Wang, Yongtian

    2016-10-01

    Holographic display has been considered as a promising display technology. Currently, low-speed generation of holograms with big holographic data is one of crucial bottlenecks for three dimensional (3D) dynamic holographic display. To solve this problem, the acceleration method computation platform is presented based on look-up table point source method. The computer generated holograms (CGHs) acquisition is sped up by offline file loading and inline calculation optimization, where a pure phase CGH with gigabyte data is encoded to record an object with 10 MB sampling data. Both numerical simulation and optical experiment demonstrate that the CGHs with 1920×1080 resolution by the proposed method can be applied to the 3D objects reconstruction with high quality successfully. It is believed that the CGHs with huge data can be generated by the proposed method with high speed for 3D dynamic holographic display in near future.

  18. 3D deformation effect and optimal excavated design of surface mine

    WANG Shu-ren; FENG Ji-li

    2009-01-01

    The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC3D technique. An optimal excavated scheme with a relatively steeper slope angle of 47° instead of 30° was successfully implemented at the west wall in the geological section 73200 of the mine area, where the 3D effect of the nonlinear large deformation of the slope was taken into account. Based on the above research conclusion, put forward the countermeasures of shortening mining length, excavating by different regions, timely foot backfilling to protect the excavated slope, and monitoring and feedback adjustment by studying the nonlinear effect. The results show that these countermeasures are effective in controlling maximum deformation and increasing the stability of the slope.

  19. Aerodynamic optimization of 3D wing based on iSIGHT

    YIN Bo; XU Dian; AN Yi-ran; CHEN Yao-song

    2008-01-01

    A method for combining the CFD software, Fluent, with the iSIGHT design platform is presented to optimize a three-dimensional wing to ameliorate its aerodynamics performance. In the optimization design, two kinds of genetic algorithms, the Neighborhood Cultivation Genetic Algorithm (NCGA) and the Non-dominated Sorting Genetic Algorithm (NSGAII), are employed and the Navier-Stoke (N-S) equations are adopted to derive the aerodynamics functions of the 3D wing. The aerodynamic performance of the optimized wing has been significantly improved, which shows that the approach can be extended and employed in other cases.

  20. Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    Men, Han; Freund, Robert M; Peraire, Jaime; Johnson, Steven G

    2014-01-01

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniq...

  1. On Optimal Multi-Sensor Network Configuration for 3D Registration

    Hadi Aliakbarpour

    2015-11-01

    Full Text Available Multi-sensor networks provide complementary information for various taskslike object detection, movement analysis and tracking. One of the important ingredientsfor efficient multi-sensor network actualization is the optimal configuration of sensors.In this work, we consider the problem of optimal configuration of a network of coupledcamera-inertial sensors for 3D data registration and reconstruction to determine humanmovement analysis. For this purpose, we utilize a genetic algorithm (GA based optimizationwhich involves geometric visibility constraints. Our approach obtains optimal configurationmaximizing visibility in smart sensor networks, and we provide a systematic study usingedge visibility criteria, a GA for optimal placement, and extension from 2D to 3D.Experimental results on both simulated data and real camera-inertial fused data indicate weobtain promising results. The method is scalable and can also be applied to other smartnetwork of sensors. We provide an application in distributed coupled video-inertial sensorbased 3D reconstruction for human movement analysis in real time.

  2. Geometric and topological feature extraction of linear segments from 2D cross-section data of 3D point clouds

    Ramamurthy, Rajesh; Harding, Kevin; Du, Xiaoming; Lucas, Vincent; Liao, Yi; Paul, Ratnadeep; Jia, Tao

    2015-05-01

    Optical measurement techniques are often employed to digitally capture three dimensional shapes of components. The digital data density output from these probes range from a few discrete points to exceeding millions of points in the point cloud. The point cloud taken as a whole represents a discretized measurement of the actual 3D shape of the surface of the component inspected to the measurement resolution of the sensor. Embedded within the measurement are the various features of the part that make up its overall shape. Part designers are often interested in the feature information since those relate directly to part function and to the analytical models used to develop the part design. Furthermore, tolerances are added to these dimensional features, making their extraction a requirement for the manufacturing quality plan of the product. The task of "extracting" these design features from the point cloud is a post processing task. Due to measurement repeatability and cycle time requirements often automated feature extraction from measurement data is required. The presence of non-ideal features such as high frequency optical noise and surface roughness can significantly complicate this feature extraction process. This research describes a robust process for extracting linear and arc segments from general 2D point clouds, to a prescribed tolerance. The feature extraction process generates the topology, specifically the number of linear and arc segments, and the geometry equations of the linear and arc segments automatically from the input 2D point clouds. This general feature extraction methodology has been employed as an integral part of the automated post processing algorithms of 3D data of fine features.

  3. Optimization-based topology identification of complex networks

    Tang Sheng-Xue; Chen Li; He Yi-Gang

    2011-01-01

    In many cases,the topological structures of a complex network are unknown or uncertain,and it is of significance to identify the exact topological structure.An optimization-based method of identifying the topological structure of a complex network is proposed in this paper.Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network.Then,an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem.Compared with the previous adaptive synchronizationbased method,the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks.In some cases where the states of a complex network are only partially observable,the exact topological structure of a network can also be identified by using the proposed method.Finally,numerical simulations are provided to show the effectiveness of the proposed method.

  4. Topology optimization for optical microlithography with partially coherent illumination

    Zhou, Mingdong; Lazarov, Boyan Stefanov; Sigmund, Ole

    2017-01-01

    This article revisits a topology optimization design approach for micro-manufacturing and extends it to optical microlithography with partially coherent illumination. The solution is based on a combination of two technologies, the topology optimization and the proximity error correction in microl......This article revisits a topology optimization design approach for micro-manufacturing and extends it to optical microlithography with partially coherent illumination. The solution is based on a combination of two technologies, the topology optimization and the proximity error correction...... in microlithography/nanolithography. The key steps include (i) modeling the physical inputs of the fabrication process, including the ultraviolet light illumination source and the mask, as the design variables in optimization and (ii) applying physical filtering and heaviside projection for topology optimization...

  5. Topology optimization with flexible void area

    Clausen, Anders; Aage, Niels; Sigmund, Ole

    2014-01-01

    This paper presents a methodology for including fixed-area flexible void domains into the minimum compliance topology optimization problem. As opposed to the standard passive elements approach of rigidly specifying void areas within the design domain, the suggested approach allows these areas...... to be flexibly reshaped and repositioned subject to penalization on their moments of inertia, the positions of their centers of mass, and their shapes. The flexible void areas are introduced through a second, discrete design variable field, using the same discretization as the standard field of continuous...... density variables. The formulation is based on a combined approach: The primary sub-problem is to minimize compliance, subject to a volume constraint, with a secondary sub-problem of minimizing the disturbance from the flexible void areas. The design update is performed iteratively between the two...

  6. Shape and topology optimization of enzymatic microreactors

    Pereira Rosinha, Ines

    in a chemical process do not always yield in the best reaction conditions.This thesis develops an innovative application of topology and shape optimization methods to achemical engineering problem. The main goal is to design a reactor according to the limitations of the reaction system by modifying the reactor......, the enzyme is uniformly distributed inside a reactor, which can mean either at a wall surface or in a packed bed reactor or free in solution. Therefore, these three applications are studied.The aim is to improve the product formation per same amount of enzyme in the reactor. The Evolutionary Structural...... of a structure and results in the deformation of the configuration. Topologyoptimization contributes to the improvement of the layout of the material in a domain. Themechanical performance of a structure is evaluated by an objective function which can be for example maximizing its stiffness.The need...

  7. Source mask optimization using 3D mask and compact resist models

    El-Sewefy, Omar; Chen, Ao; Lafferty, Neal; Meiring, Jason; Chung, Angeline; Foong, Yee Mei; Adam, Kostas; Sturtevant, John

    2016-03-01

    Source Mask Optimization (SMO) has played an important role in technology setup and ground rule definition since the 2x nm technology node. While improvements in SMO algorithms have produced higher quality and more consistent results, the accuracy of the overall solution is critically linked to how faithfully the entire patterning system is modeled, from mask down to substrate. Fortunately, modeling technology has continued to advance to provide greater accuracy in modeling 3D mask effects, 3D resist behavior, and resist phenomena. Specifically, the Domain Decomposition Method (DDM) approximates the 3D mask response as a superposition of edge-responses.1 The DDM can be applied to a sectorized illumination source based on Hybrid-Hopkins Abbe approximation,2 which provides an accurate and fast solution for the modeling of 3D mask effects and has been widely used in OPC modeling. The implementation of DDM in the SMO flow, however, is more challenging because the shape and intensity of the source, unlike the case in OPC modeling, is evolving along the optimization path. As a result, it gets more complicated. It is accepted that inadequate pupil sectorization results in reduced accuracy in any application, however in SMO the required uniformity and density of pupil sampling is higher than typical OPC and modeling cases. In this paper, we describe a novel method to implement DDM in the SMO flow. The source sectorization is defined by following the universal pixel sizes used in SMO. Fast algorithms are developed to enable computation of edge signals from each fine pixel of the source. In this case, each pixel has accurate information to describe its contribution to imaging and the overall objective function. A more continuous angular spectrum from 3D mask scattering is thus captured, leading to accurate modeling of 3D mask effects throughout source optimization. This method is applied on a 2x nm middle-of-line layer test case. The impact of the 3D mask model accuracy on

  8. Analysis, Modeling and Dynamic Optimization of 3D Time-of-Flight Imaging Systems

    Schmidt, Mirko

    2011-01-01

    The present thesis is concerned with the optimization of 3D Time-of-Flight (ToF) imaging systems. These novel cameras determine range images by actively illuminating a scene and measuring the time until the backscattered light is detected. Depth maps are constructed from multiple raw images. Usually two of such raw images are acquired simultaneously using special correlating sensors. This thesis covers four main contributions: A physical sensor model is presented which enables the analysis a...

  9. The Idea and Concept of Metos3D: A Marine Ecosystem Toolkit for Optimization and Simulation in 3D

    Piwonski, Jaroslaw

    2014-01-01

    The simulation and parameter optimization of coupled ocean circulation and ecosystem models in three space dimensions is one of the most challenging tasks in numerical climate research. Here we present a scientific toolkit that aims at supporting researchers by defining clear coupling interfaces, providing state-of-the-art numerical methods for simulation, parallelization and optimization while using only freely available and (to a great extend) platform-independent software. Besides defining a user-friendly coupling interface (API) for marine ecosystem or biogeochemical models, we heavily rely on the Portable, Extensible Toolkit for Scientific computation (PETSc) developed at Argonne Nat. Lab. for a wide variety of parallel linear and non-linear solvers and optimizers. We specifically focus on the usage of matrix-free Newton-Krylov methods for the fast computation of steady periodic solutions, and make use of the Transport Matrix Method (TMM) introduced by Khatiwala et al.

  10. Toward Simultaneous Visual Comfort and Depth Sensation Optimization for Stereoscopic 3-D Experience.

    Shao, Feng; Lin, Weisi; Li, Zhutuan; Jiang, Gangyi; Dai, Qionghai

    2016-10-20

    Visual comfort and depth sensation are two important incongruent counterparts in determining the overall stereoscopic 3-D experience. In this paper, we proposed a novel simultaneous visual comfort and depth sensation optimization approach for stereoscopic images. The main motivation of the proposed optimization approach is to enhance the overall stereoscopic 3-D experience. Toward this end, we propose a two-stage solution to address the optimization problem. In the first layer-independent disparity adjustment process, we iteratively adjust the disparity range of each depth layer to satisfy with visual comfort and depth sensation constraints simultaneously. In the following layer-dependent disparity process, disparity adjustment is implemented based on a defined total energy function built with intra-layer data, inter-layer data and just noticeable depth difference terms. Experimental results on perceptually uncomfortable and comfortable stereoscopic images demonstrate that in comparison with the existing methods, the proposed method can achieve a reasonable performance balance between visual comfort and depth sensation, leading to promising overall stereoscopic 3-D experience.

  11. Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations

    Clausen, Anders; Wang, Fengwen; Jensen, Jakob Søndergaard

    2015-01-01

    Topology optimized architectures are designed and printed with programmable Poisson's ratios ranging from -0.8 to 0.8 over large deformations of 20% or more.......Topology optimized architectures are designed and printed with programmable Poisson's ratios ranging from -0.8 to 0.8 over large deformations of 20% or more....

  12. Andreev reflection through a junction of a 3D topological insulator and an s-wave superconductor

    Chen, Son-Hsien; Sun, Shih-Jye

    2016-12-01

    We examine the retro and specular Andreev reflections (ARs) through a junction consisting of a three-dimensional (3D) Bi2Se3 topological insulator (TI) and an s-wave superconductor (SC) using spatially-resolved nonequilibrium Green function formalism in Nambu space. A 3DTI Bogoliubov-de Gennes Hamiltonian is constructed. The retro (specular) AR is identified by the spatial distribution of charge (spin-y) current. When approaching the interface, unlike the specular AR, the retro AR exhibits a large amount of net charge flow near the top surface of the 3DTI. In the specular AR, a large parallel component of the spin-y flow is developed in the interface, which is not found in the retro AR. Diminished charge currents are found near the onset of the specular AR. The AR mechanism enhances the current-induced spin-y polarization flowing through the junction interface. In the TI phase, larger normal-transmission conductance {{G}\\text{NT}} in the normal-metal junction yields larger AR conductance {{G}\\text{AR}} in the corresponding SC junction. The Zeeman splitting perpendicular to the quintuple layers partially (completely) suppresses the {{G}\\text{AR}} in the finite (infinite thick) TI.

  13. Lightweight design of the rectangular mirror using topology optimization

    Xiang, Meng; Li, Fu

    2014-09-01

    That minimizing the mass of space optical remote sensor at the same time guaranteeing of structural rigidity and surface shape accuracy, became a new critical research topic. This paper achieves detailed design of meniscus rectangular lens body structure by taking the choice of materials, design of supporting structure and lightweight form of mirror into account. And we established lightweight concrete of the mirror under self-weight by the method of topological optimization design. For the optimization, we used a 3-D model of the rectangular mirror and calculated based on that making minimum weight of the mirror as an objective function constrained by the displacement of the mirror surface. Finally finite element analysis method was adopted to get the optimization results analyzed and compared with the traditional triangular lightweight model. Analysis results prove that: the new mirror is superior to the traditional model in surface accuracy and structural rigidity, PV value, RMS value and the lightweight rate. With enough high dynamic-static stiffness and thermal stability, this kind of mirror can meet the demand under the self-weight and the random vibration environment respectively. So this article puts forward a new idea in the lightweight design of rectangular mirror.

  14. Topology optimization for optical projection lithography with manufacturing uncertainties

    Zhou, Mingdong; Lazarov, Boyan Stefanov; Sigmund, Ole

    2014-01-01

    to manufacturing without additional optical proximity correction (OPC). The performance of the optimized device is robust toward the considered process variations. With the proposed unified approach, the design for photolithography is achieved by considering the optimal device performance and manufacturability......This article presents a topology optimization approach for micro-and nano-devices fabricated by optical projection lithography. Incorporating the photolithography process and the manufacturing uncertainties into the topology optimization process results in a binary mask that can be sent directly...

  15. Topology and boundary shape optimization as an integrated design tool

    Bendsoe, Martin Philip; Rodrigues, Helder Carrico

    1990-01-01

    The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.

  16. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction.

    Yang, Jian; Cong, Weijian; Chen, Yang; Fan, Jingfan; Liu, Yue; Wang, Yongtian

    2014-02-21

    The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm.

  17. A Feature-adaptive Subdivision Method for Real-time 3D Reconstruction of Repeated Topology Surfaces

    Lin, Jinhua; Wang, Yanjie; Sun, Honghai

    2017-03-01

    It's well known that rendering for a large number of triangles with GPU hardware tessellation has made great progress. However, due to the fixed nature of GPU pipeline, many off-line methods that perform well can not meet the on-line requirements. In this paper, an optimized Feature-adaptive subdivision method is proposed, which is more suitable for reconstructing surfaces with repeated cusps or creases. An Octree primitive is established in irregular regions where there are the same sharp vertices or creases, this method can find the neighbor geometry information quickly. Because of having the same topology structure between Octree primitive and feature region, the Octree feature points can match the arbitrary vertices in feature region more precisely. In the meanwhile, the patches is re-encoded in the Octree primitive by using the breadth-first strategy, resulting in a meta-table which allows for real-time reconstruction by GPU hardware tessellation unit. There is only one feature region needed to be calculated under Octree primitive, other regions with the same repeated feature generate their own meta-table directly, the reconstruction time is saved greatly for this step. With regard to the meshes having a large number of repeated topology feature, our algorithm improves the subdivision time by 17.575% and increases the average frame drawing time by 0.2373 ms compared to the traditional FAS (Feature-adaptive Subdivision), at the same time the model can be reconstructed in a watertight manner.

  18. Depth optimization for topological quantum circuits

    AlFailakawi, Mohammad; Ahmad, Imtiaz; AlTerkawi, Laila; Hamdan, Suha

    2015-02-01

    Topological quantum computing (TQC) model is one of the most promising models for quantum computation. A circuit implemented under TQC is optimized by reducing its depth due to special construction requirements in such technology. In this work, we propose a hybrid approach that combines a left-edge greedy heuristic with genetic algorithm (GA) to minimize circuit depth through combined line and gate ordering. In our implementation, GA is used to find line ordering, whereas the left edge is used to reduce circuit depth by taking into consideration overlap constraints imposed by line ordering. Moreover, the proposed algorithm can merge gates together realizing circuit with multi-target gates to provide reduced circuit depth. Experimental results on random benchmark circuits show that the proposed algorithm was able to reduce circuit depth by 42 % on average for CNOT circuits, with additional 5 % savings when multi-target optimization is used. Results on RevLib benchmarks revealed a typical enhancement of 21 % and an additional 11 % when multi-target gates are allowed.

  19. Derivation of Hillert-type 3D grain growth rate model with topological considerations and discussion on its grain size parameter

    Guoquan Liu; Haibo Yu; Xiaoyan Song; Xiangge Qin; Chao Wang

    2004-01-01

    A Hillert-type three-dimensional grain growth rate model was derived through the grain topology-size correlation model,combined with a topology-dependent grain growth rate equation in three dimensions. It shows clearly that the Hillert-type 3D grain growth rate model may also be described with topology considerations of microstructure. The size parameter bearing in the model is further discussed both according to the derived model and in another approach with the aid of quantitative relationship between the grain size and the integral mean curvature over grain surface. Both approaches successfully demonstrate that, if the concerned grains can be well approximated by a space-filling convex polyhedra in shape, the grain size parameter bearing in the Hillert-type 3D grain growth model should be a parameter proportional to the mean grain tangent radius.

  20. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-01

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  1. Modelling 3D control of upright stance using an optimal control strategy.

    Qu, Xingda; Nussbaum, Maury A

    2012-01-01

    A 3D balance control model of quiet upright stance is presented, based on an optimal control strategy, and evaluated in terms of its ability to simulate postural sway in both the anterior-posterior and medial-lateral directions. The human body was represented as a two-segment inverted pendulum. Several assumptions were made to linearise body dynamics, for example, that there was no transverse rotation during upright stance. The neural controller was presumed to be an optimal controller that generates ankle control torque and hip control torque according to certain performance criteria. An optimisation procedure was used to determine the values of unspecified model parameters including random disturbance gains and sensory delay times. This model was used to simulate postural sway behaviours characterised by centre-of-pressure (COP)-based measures. Confidence intervals for all normalised COP-based measures contained unity, indicating no significant differences between any of the simulated COP-based measures and corresponding experimental references. In addition, mean normalised errors for the traditional measures were 3D balance control model appears to have the ability to accurately simulate 3D postural sway behaviours.

  2. Optimal Image Stitching for Concrete Bridge Bottom Surfaces Aided by 3d Structure Lines

    Liu, Yahui; Yao, Jian; Liu, Kang; Lu, Xiaohu; Xia, Menghan

    2016-06-01

    Crack detection for bridge bottom surfaces via remote sensing techniques is undergoing a revolution in the last few years. For such applications, a large amount of images, acquired with high-resolution industrial cameras close to the bottom surfaces with some mobile platform, are required to be stitched into a wide-view single composite image. The conventional idea of stitching a panorama with the affine model or the homographic model always suffers a series of serious problems due to poor texture and out-of-focus blurring introduced by depth of field. In this paper, we present a novel method to seamlessly stitch these images aided by 3D structure lines of bridge bottom surfaces, which are extracted from 3D camera data. First, we propose to initially align each image in geometry based on its rough position and orientation acquired with both a laser range finder (LRF) and a high-precision incremental encoder, and these images are divided into several groups with the rough position and orientation data. Secondly, the 3D structure lines of bridge bottom surfaces are extracted from the 3D cloud points acquired with 3D cameras, which impose additional strong constraints on geometrical alignment of structure lines in adjacent images to perform a position and orientation optimization in each group to increase the local consistency. Thirdly, a homographic refinement between groups is applied to increase the global consistency. Finally, we apply a multi-band blending algorithm to generate a large-view single composite image as seamlessly as possible, which greatly eliminates both the luminance differences and the color deviations between images and further conceals image parallax. Experimental results on a set of representative images acquired from real bridge bottom surfaces illustrate the superiority of our proposed approaches.

  3. Flat-top Drop Filter based on a Single Topology Optimized Photonic Crystal Cavity

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Guan, Xiaowei

    2015-01-01

    Outperforming conventional design concepts, a flat-top drop filter has been designed byapplying 3D topology optimization to a single waveguide-coupled L3 photonic crystal cavity.Measurements on the design fabricated in silicon-on-insulator material reveal that the pass-band ofthe drop channel...... is flat within 0.44 dB over a wavelength range of 9.7 nm with an insertion losslower than 0.85 dB....

  4. Blade Parameterization and Aerodynamic Design Optimization for a 3D Transonic Compressor Rotor

    Naixing Chen; Hongwu Zhang; Yanji Xu; Weiguang Huang

    2007-01-01

    The present paper describes an optimization methodology for aerodynamic design of turbomachinery combined with a rapid 3D blade and grid generator (RAPID3DGRID), a N.S. solver, a blade parameterization method (BPM), a gradient-based parameterization-analyzing method (GPAM), a response surface method (RSM) with zooming algorithm and a simple gradient method. By the use of blade parameterization method a transonic compressor rotor can be expressed by a set of polynomials, and then it enables us to transform coordinate-expressed blade data to parameter-expressed and then to reduce the number of parameters. With changing any one of the parameters and by applying grid generator and N.S. solver, we can obtain several groups of samples. Here only ten parameters were considered to search an optimized compressor rotor. As a result of optimization, the adiabatic efficiency was increased by 1.73%.

  5. Robust topology optimization of three-dimensional photonic-crystal band-gap structures.

    Men, H; Lee, K Y K; Freund, R M; Peraire, J; Johnson, S G

    2014-09-22

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for robust topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors.

  6. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  7. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer

    Pieter Huibert Bram De Visser

    2014-02-01

    Full Text Available Reduction of energy use for assimilation lighting is one of the most urgent goals of current greenhouse horticulture in the Netherlands. In recent years numerous lighting systems have been tested in greenhouses, yet their efficiency has been very difficult to measure in practice. This simulation study evaluated a number of lighting strategies using a 3D light model for natural and artificial light in combination with a 3D model of tomato. The modeling platform GroIMP was used for the simulation study. The crop was represented by 3D virtual plants of tomato with fixed architecture. Detailed data on greenhouse architecture and lamp emission patterns of different light sources were incorporated in the model. A number of illumination strategies were modeled with the calibrated model. Results were compared to the standard configuration. Moreover, adaptation of leaf angles was incorporated for testing their effect on light use efficiency. A Farquhar photosynthesis model was used to translate the absorbed light for each leaf into a produced amount of carbohydrates. The carbohydrates produced by the crop per unit emitted light from sun or HPS lamps was the highest for horizontal leaf angles or slightly downward pointing leaves, and was less for more upward leaf orientations. The simulated leaf angles did not affect light absorption from inter-lighting LED modules, but the scenario with LEDs shining slightly upward (20° increased light absorption and light use efficiency relative to default horizontal beaming LEDs. Furthermore, the model showed that leaf orientation more perpendicular to the string of LEDs increased LED light interception.The combination of a ray tracer and a 3D crop model could compute optimal lighting of leaves by quantification of light fluxes and illustration by rendered lighting patterns. Results indicate that illumination efficiency increases when the lamp light is directed at most to leaves that have a high photosynthetic

  8. Posture parameters optimization of a structured light 3D angle measuring system

    Xun DING

    2015-10-01

    Full Text Available To improve the measurement precision of the structured light target angle, this paper studies the relation between the structured light system parameters and measurement accuracy of the angle. Firstly, the main system structure parameters influencing the angle measurement precision are analyzed based on the structured light measurement principle; secondly, simulation research on the laws of how the structured parameters influence the angle measurement precision are conducted, and the optimized range of values of the structured parameters is proposed; finally, the experimental studies show that, the optimized parameters can improve the angle measurement precision effectively, which lays the design foundation for later improvement schemes of the structured light 3D four-wheel alignment instrument.

  9. Multiple Description Coding Based on Optimized Redundancy Removal for 3D Depth Map

    Sen Han

    2016-06-01

    Full Text Available Multiple description (MD coding is a promising alternative for the robust transmission of information over error-prone channels. In 3D image technology, the depth map represents the distance between the camera and objects in the scene. Using the depth map combined with the existing multiview image, it can be efficient to synthesize images of any virtual viewpoint position, which can display more realistic 3D scenes. Differently from the conventional 2D texture image, the depth map contains a lot of spatial redundancy information, which is not necessary for view synthesis, but may result in the waste of compressed bits, especially when using MD coding for robust transmission. In this paper, we focus on the redundancy removal of MD coding based on the DCT (discrete cosine transform domain. In view of the characteristics of DCT coefficients, at the encoder, a Lagrange optimization approach is designed to determine the amounts of high frequency coefficients in the DCT domain to be removed. It is noted considering the low computing complexity that the entropy is adopted to estimate the bit rate in the optimization. Furthermore, at the decoder, adaptive zero-padding is applied to reconstruct the depth map when some information is lost. The experimental results have shown that compared to the corresponding scheme, the proposed method demonstrates better rate central and side distortion performance.

  10. Orthogonal Range Reporting: Query Lower Bounds, Optimal Structures in 3-d, and Higher Dimensional Improvements

    Afshani, Peyman; Arge, Lars Allan; Larsen, Kasper Dalgaard

    2010-01-01

    ⌋--1). This is the first known non-trivial higher dimensional orthogonal range reporting query lower bound and it has two important implications. First, it shows that the query bound increases with dimension. Second, in combination with our upper bounds it shows that the optimal query bound increases from Θ(log n + k......Orthogonal range reporting is the problem of storing a set of n points in d-dimensional space, such that the k points in an axis-orthogonal query box can be reported efficiently. While the 2-d version of the problem was completely characterized in the pointer machine model more than two decades ago......, this is not the case in higher dimensions. In this paper we provide a space optimal pointer machine data structure for 3-d orthogonal range reporting that answers queries in O(log n + k) time. Thus we settle the complexity of the problem in 3-d. We use this result to obtain improved structures in higher dimensions...

  11. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-01-01

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs’ configuration schemes and the proposed cross-track reconstruction method. PMID:27556471

  12. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction.

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-08-22

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs' configuration schemes and the proposed cross-track reconstruction method.

  13. 3D Pattern Synthesis of Time-Modulated Conformal Arrays with a Multiobjective Optimization Approach

    Wentao Li

    2014-01-01

    Full Text Available This paper addresses the synthesis of the three-dimensional (3D radiation patterns of the time-modulated conformal arrays. Due to the nature of periodic time modulation, harmonic radiation patterns are generated at the multiples of the modulation frequency in time-modulated arrays. Thus, the optimization goal of the time-modulated conformal array includes the optimization of the sidelobe level at the operating frequency and the sideband levels (SBLs at the harmonic frequency, and the design can be regarded as a multiobjective problem. The multiobjective particle swarm optimization (MOPSO is applied to optimize the switch-on instants and pulse durations of the time-modulated conformal array. To significantly reduce the optimization variables, the modified Bernstein polynomial is employed in the synthesis process. Furthermore, dual polarized patch antenna is designed as radiator to achieve low cross-polarization level during the beam scanning. A 12 × 13 (156-element conical conformal microstrip array is simulated to demonstrate the proposed synthesis mechanism, and good results reveal the promising ability of the proposed algorithm in solving the synthesis of the time-modulated conformal arrays problem.

  14. Topology optimization of flexible micro-fluidic devices

    Kreissl, Sebastian; Pingen, Georg; Evgrafov, Anton;

    2010-01-01

    A multi-objective topology optimization formulation for the design of dynamically tunable fluidic devices is presented. The flow is manipulated via external and internal mechanical actuation, leading to elastic deformations of flow channels. The design objectives characterize the performance...

  15. Experimental validation of a topology optimized acoustic cavity

    Christiansen, Rasmus Ellebæk; Sigmund, Ole; Fernandez Grande, Efren

    2015-01-01

    This paper presents the experimental validation of an acoustic cavity designed using topology optimization with the goal of minimizing the sound pressure locally for monochromatic excitation. The presented results show good agreement between simulations and measurements. The effect of damping...

  16. Topology optimization of vibration and wave propagation problems

    Jensen, Jakob Søndergaard

    2007-01-01

    The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....

  17. Systematic design of acoustic devices by topology optimization

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range.......We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range....

  18. Structural Topology Optimization : Basic Theory, Methods and Applications

    2013-01-01

    The thesis is written as an introduction to topology optimization, aiming to help knowledge development in design optimization techniques, as well as aiding the adaptation of a sustainable culture with direct application to similar products like the two test cases supplied by the EC SuPLight project. These components are; a Door Connection Joint for a business jet and a Front Lower Control Arm from a McPherson suspension. The thesis has no intention of covering all aspects concerning topology...

  19. Topology Optimization as a Conceptual Tool for Designing New Airframes

    2016-01-01

    During the two last decades, topology optimization has grown to be an accepted and used method to produce conceptual designs. Topology optimization is traditionally carried out on a component level, but in this project, the possibility to apply it to airframe design on a full scale aeroplane model is evaluated. The project features a conceptual flying-wing design on which the study is to be carried out. Inertia Relief is used to constrain the aeroplane instead of traditional single point cons...

  20. An optimal transport approach for seismic tomography: application to 3D full waveform inversion

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.

    2016-11-01

    the L 2 distance, in 2D and 3D contexts.

  1. Maximizing opto‐mechanical interaction using topology optimization

    Gersborg, Allan Roulund; Sigmund, Ole

    2011-01-01

    This paper studies topology optimization of a coupled opto‐mechanical problem with the goal of finding the material layout which maximizes the optical modulation, i.e. the difference between the optical response for the mechanically deformed and undeformed configuration. The optimization is perfo......This paper studies topology optimization of a coupled opto‐mechanical problem with the goal of finding the material layout which maximizes the optical modulation, i.e. the difference between the optical response for the mechanically deformed and undeformed configuration. The optimization...

  2. Compliant topology optimization for planar passive flap micro valve.

    Yoon, Gil Ho

    2014-10-01

    This paper reports the compliant topology optimization for planar passive flap micro valve considering fluid-structure interaction with a monolithic approach. Although flap valve type check valve is easy to manufacture and use for the applications for Bio/Nano/MEMS, its structural optimization has been seldom conducted so far. The size of the Bio/Nano/MEMS devices becomes smaller and the simple straight type micro valve structure is required to be optimized considering fluid speed. To address this optimization problem, the structural topology optimization scheme which designs optimal topologies is applied for a flap type check valve structure. To consider the coupling effects of fluid domain and structural domain, the monolithic finite element approach is employed. In the new analysis approach, solid domain is simulated by introducing the inverse permeability in the Navier-Stokes equation and the fluid stress filter in the linear elasticity equation. Also it is a new idea that fluid domain is simulated by finite elements with a weak Young's modulus in the linear elasticity equation. The mutual couplings between fluid and structure are considered by the introduction of the deformation tensor which is one of the basic concepts of the continuum mechanism. By distributing material properties inside a design domain for compliant flap, optimal flap structures can be constructed with different fluid speeds. By investigating the optimal layouts of several passive flap designs, we prove that the structural topology optimization can provide optimal layouts for Bio, Nano, and MEMS applications.

  3. 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework

    Yang, Xiaofeng; Rossi, Peter J.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    We propose a 3D prostate segmentation method for transrectal ultrasound (TRUS) images, which is based on patch-based feature learning framework. Patient-specific anatomical features are extracted from aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified by the feature selection process to train the kernel support vector machine (KSVM). The well-trained SVM was used to localize the prostate of the new patient. Our segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentations (gold standard). The mean volume Dice overlap coefficient was 89.7%. In this study, we have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentations.

  4. Topology optimization of fluid-structure-interaction problems in poroelasticity

    Andreasen, Casper Schousboe; Sigmund, Ole

    2013-01-01

    This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure with the deform......This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure...... by topology optimization in order to optimize the performance of a shock absorber and test the pressure loading capabilities and optimization of an internally pressurized lid. © 2013 Published by Elsevier B.V....

  5. The Flatness of Bifurcations in 3D Dendritic Trees: An Optimal Design.

    van Pelt, Jaap; Uylings, Harry B M

    2011-01-01

    The geometry of natural branching systems generally reflects functional optimization. A common property is that their bifurcations are planar and that daughter segments do not turn back in the direction of the parent segment. The present study investigates whether this also applies to bifurcations in 3D dendritic arborizations. This question was earlier addressed in a first study of flatness of 3D dendritic bifurcations by Uylings and Smit (1975), who used the apex angle of the right circular cone as flatness measure. The present study was inspired by recent renewed interest in this measure. Because we encountered ourselves shortcomings of this cone angle measure, the search for an optimal measure for flatness of 3D bifurcation was the second aim of our study. Therefore, a number of measures has been developed in order to quantify flatness and orientation properties of spatial bifurcations. All these measures have been expressed mathematically in terms of the three bifurcation angles between the three pairs of segments in the bifurcation. The flatness measures have been applied and evaluated to bifurcations in rat cortical pyramidal cell basal and apical dendritic trees, and to random spatial bifurcations. Dendritic and random bifurcations show significant different flatness measure distributions, supporting the conclusion that dendritic bifurcations are significantly more flat than random bifurcations. Basal dendritic bifurcations also show the property that their parent segments are generally aligned oppositely to the bisector of the angle between their daughter segments, resulting in "symmetrical" configurations. Such geometries may arise when during neuronal development the segments at a newly formed bifurcation are subjected to elastic tensions, which force the bifurcation into an equilibrium planar shape. Apical bifurcations, however, have parent segments oppositely aligned with one of the daughter segments. These geometries arise in the case of side

  6. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC

    Aijun Zhu; Chuanpei Xu; Zhi Li; Jun Wu; Zhenbing Liu

    2015-01-01

    A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo-lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fal into stagnation when it carries out the operation of at-tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE’s strong searching ability. The proposed algorithm can accele-rate the convergence speed of GWO and improve its performance. Twenty-three wel-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration.

  7. Independent continuous mapping for topological optimization of frame structures

    Yunkang Sui; Jiazheng Du; Yingqiao Guo

    2006-01-01

    Based on the Independent Continuous Mapping method (ICM),a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight,element allowable stress and element stiffness,which transform the 0-1 type discrete topological variables into continuous topological variables between 0 and 1.Two methods for the filter functions are adopted to avoid the structural singularity and recover falsely deleted elements: the weak material element method and the tiny section element method.Three criteria (no structural singularity,no violated constraints and no change of structural weight) are introduced to judge iteration convergence.These criteria allow finding an appropriate threshold by adjusting a discount factor in the iteration procedure.To improve the efficiency,the original optimization model is transformed into a dual problem according to the dual theory and solved in its dual space.By using MSC/Nastran as the structural solver and MSC/Patran as the developing platform.A topological optimization software of frame structures is accomplished.Numerical examples show that the ICM method is very efficient for the topological optimization of frame structures.

  8. Topology optimization using the finite volume method

    Gersborg-Hansen, Allan; Bendsøe, Martin P.; Sigmund, Ole

    , e.g. [2]) in order to develop methods for topology design for applications where conservation laws are critical such that element--wise conservation in the discretized models has a high priority. This encompasses problems involving for example mass and heat transport. The work described...

  9. Multiscale topology optimization of solid and fluid structures

    Andreasen, Casper Schousboe

    This thesis considers the application of the topology optimization method to multiscale problems, specifically the fluid-structure interaction problem. By multiple-scale methods the governing equations, the Navier-Cauchy and the incompressible Navier-Stokes equations are expanded and separated......, it is shown that the material microstructure can be optimized with respect to application scale properties. A poroelastic actuator consisting of two saturated porous materials is optimized using this approach. Based on the homogenization of a fixed microstructure topology, material design interpolation...... designs a new explicit parametrization is proposed. It allows for casting/milling type manufacturing and ensures a binary design. The method is successfully applied to micromixer design....

  10. Topology optimization for improving the performance of solar cells

    Gupta, D.K.; Langelaar, M.; Keulen, F. van; Barink, M.

    2014-01-01

    This work introduces the application of Topology Optimization (TO) to design optimal front metallization patterns for solar cells and increase their power output. A challenging aspect of the solar cell electrode design problem is the strong nonlinear relation between the active layer current and the

  11. Efficient topology optimization in MATLAB using 88 lines of code

    Andreassen, Erik; Clausen, Anders; Schevenels, Mattias

    2011-01-01

    The paper presents an efficient 88 line MATLAB code for topology optimization. It has been developed using the 99 line code presented by Sigmund (Struct Multidisc Optim 21(2):120–127, 2001) as a starting point. The original code has been extended by a density filter, and a considerable improvement...

  12. Structural and Topology Optimization of Complex Civil Engineering Structures

    Hald, Frederik; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2013-01-01

    will be optimized using the commercial code Abaqus CAE. The structures are: a bucket foundation for an off-shore submarine structure for a wind turbine, and a pedestrian footbridge over a freeway. The topology optimization method used is the SIMP method, based on minimizing the structures' compliance. Complex load...

  13. Topology optimization for nano-scale heat transfer

    Evgrafov, Anton; Maute, Kurt; Yang, Ronggui

    2009-01-01

    We consider the problem of optimal design of nano-scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean-free path of the heat carriers, phonons...

  14. Transient Topology Optimization of Two-Dimensional Elastic Wave Propagation

    Matzen, René; Jensen, Jakob Søndergaard; Sigmund, Ole

    2008-01-01

    A tapering device coupling two monomodal waveguides is designed with the topology optimization method based on transient wave propagation. The gradient-based optimization technique is applied to predict the material distribution in the tapering area such that the squared output displacement (a...

  15. Improving resource utilization in hierarchy network by optimizing topological structure

    Liu, G. L.; Peng, H. P.; Li, L. X.; Sun, F.; Yang, Y. X.

    2012-02-01

    We study the performance of peer-to-peer (P2P) network built on the top of hierarchy topological structure of local area networks (LAN). We find that the topological structure of the underlying physical network has significant impacts on the resource utilization of the P2P overlay network. The larger size of the physical network is, the lower resource utilization of the overlay network is. Through optimizing the topological structure of physical network, we propose two novel schemes to improve the resource utilization. The experimental results show that in any case the resource utilization of P2P network can always achieve 100% by these two schemes.

  16. Topology, Structure and Functionality: Analysis, Modelling and Experimentation of Dense Granular Deformation in 2D and 3D

    2015-01-05

    1-Mar-2011 - 28-Feb-2014 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Final Rep01i: Topology , Stmcture and Flmctionality: Analysis, W911NF-11-1-0110...MONITOR’S ACRONYM(S) (ES) ARO U.S. Anny Research Office 11 . SPONSOR/MONITOR’S REPORT P.O. Box 12211 NUMBER(S) Research Triangle Park , NC 27709-2211...Robe1i Behringer 19b. TELEPHONE NUMBER 919-660-2550 Standard F01m 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 ABSTRACT Final Report: Topology

  17. TOPOLOGY OPTIMIZATION OF MULTIPLE INPUTS AND MULTIPLE OUTPUTS COMPLIANT MECHANISMS

    ZHANG Xianmin; OUYANG Gaofei; WANG Hua

    2007-01-01

    An optimal topology design method for multiple inputs and multiple outputs compliant micro-manipulation system is presented. Firstly, the topology design problem is posed in terms of a multiple inputs load and several specified output deflections. The compliance and stiffness of the system are expressed by the mutual potential energy and strain energy, respectively, which can be controlled by a multi-criteria objective function. Secondly, based on the optimality criteria method, a model solution algorithm is presented. Finally, a numerical example is presented to show the validity of the presented technique. The optimal topology of a 4 inputs and 4 outputs compliant mechanism is obtained by using the method, and the corresponding micro-positioning stage system is further designed.

  18. Truss topology optimization with simultaneous analysis and design

    Sankaranarayanan, S.; Haftka, Raphael T.; Kapania, Rakesh K.

    1992-01-01

    Strategies for topology optimization of trusses for minimum weight subject to stress and displacement constraints by Simultaneous Analysis and Design (SAND) are considered. The ground structure approach is used. A penalty function formulation of SAND is compared with an augmented Lagrangian formulation. The efficiency of SAND in handling combinations of general constraints is tested. A strategy for obtaining an optimal topology by minimizing the compliance of the truss is compared with a direct weight minimization solution to satisfy stress and displacement constraints. It is shown that for some problems, starting from the ground structure and using SAND is better than starting from a minimum compliance topology design and optimizing only the cross sections for minimum weight under stress and displacement constraints. A member elimination strategy to save CPU time is discussed.

  19. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  20. Formation of Dirac point and the topological surface states inside the strained gap for mixed 3D Hg1-xCdx Te

    Marchewka, Michał

    2016-10-01

    In this paper the results of the numerical calculation obtained for the three-dimensional (3D) strained Hg1-xCdx Te layers for the x-Cd composition from 0.1 to 0.155 and a different mismatch of the lattice constant are presented. For the investigated region of the Cd composition (x value) the negative energy gap (Eg =Γ8 -Γ6) in the Hg1-xCdx Te is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point. The numerical calculation based on the finite difference method applied for the 8×8 kp model with the in-plane tensile strain for (001) growth oriented structure shows that the Dirac cone inside the induced insulating band gap for non zero of the Cd composition and a bigger strain caused by the bigger lattice mismatch (than for the 3D HgTe TI) can be obtained. It was also shown how different x-Cd compounds move the Dirac cone from the valence band into the band gap. The presented results show that 75 nm wide 3D Hg1-xCdx Te structures with x ≈ 0.155 and 1.6% lattice mismatch make the system a true topological insulator with the dispersion of the topological surface states similar to those ones obtained for the strained CdTe/HgTe QW.

  1. Active surface model improvement by energy function optimization for 3D segmentation.

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models.

  2. Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering

    Ouillon, G; Sornette, D; Ouillon, Guy; Ducorbier, Caroline; Sornette, Didier

    2007-01-01

    We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better...

  3. Stress-constrained topology optimization for compliant mechanism design

    de Leon, Daniel M.; Alexandersen, Joe; Jun, Jun S.;

    2015-01-01

    This article presents an application of stress-constrained topology optimization to compliant mechanism design. An output displacement maximization formulation is used, together with the SIMP approach and a projection method to ensure convergence to nearly discrete designs. The maximum stress...... is approximated using a normalized version of the commonly-used p-norm of the effective von Mises stresses. The usual problems associated with topology optimization for compliant mechanism design: one-node and/or intermediate density hinges are alleviated by the stress constraint. However, it is also shown...

  4. Topology optimization problems with design-dependent sets of constraints

    Schou, Marie-Louise Højlund

    Topology optimization is a design tool which is used in numerous fields. It can be used whenever the design is driven by weight and strength considerations. The basic concept of topology optimization is the interpretation of partial differential equation coefficients as effective material...... that a general nonlinear interior-point algorithm applied to the MPEC formulations outperforms a general nonlinear active-set sequential quadratic programming method. Inspired by this, we implement an interior-point algorithm such that we have full control of all aspects of the code. Solving the stress...

  5. Topology optimization of a gas-turbine engine part

    Faskhutdinov, R. N.; Dubrovskaya, A. S.; Dongauzer, K. A.; Maksimov, P. V.; Trufanov, N. A.

    2017-02-01

    One of the key goals of aerospace industry is a reduction of the gas turbine engine weight. The solution of this task consists in the design of gas turbine engine components with reduced weight retaining their functional capabilities. Topology optimization of the part geometry leads to an efficient weight reduction. A complex geometry can be achieved in a single operation with the Selective Laser Melting technology. It should be noted that the complexity of structural features design does not affect the product cost in this case. Let us consider a step-by-step procedure of topology optimization by an example of a gas turbine engine part.

  6. Homogenization and structural topology optimization theory, practice and software

    Hassani, Behrooz

    1999-01-01

    Structural topology optimization is a fast growing field that is finding numerous applications in automotive, aerospace and mechanical design processes. Homogenization is a mathematical theory with applications in several engineering problems that are governed by partial differential equations with rapidly oscillating coefficients Homogenization and Structural Topology Optimization brings the two concepts together and successfully bridges the previously overlooked gap between the mathematical theory and the practical implementation of the homogenization method. The book is presented in a unique self-teaching style that includes numerous illustrative examples, figures and detailed explanations of concepts. The text is divided into three parts which maintains the book's reader-friendly appeal.

  7. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)2(Te,Se)3

    Jeffries, Jason; Butch, N. P.; Vohra, Y. K.; Weir, S. T.

    2014-03-01

    The group V-VI compounds--like Bi2Se3, Sb2Te3, or Bi2Te3--have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and compare that behavior with other binary V-VI compounds under pressure. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  8. Topology Optimization in Damping Structure Based on ESO

    GUO Zhong-ze; CHEN Yu-ze; HOU Qiang

    2008-01-01

    The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the objective function defined as the maximum of modal loss factors of the structure and design constraints function defined as volume fraction ofdamping material. The optimal placement is found. Several examples are presented for verification. The results demonstratethat the method based on ESO is effective in solving the topology optimization of the structure with uncon-strained damping layer and constrained damping layer. This optimization method suits for free and constrained damping structures.

  9. Topology Optimization in Electric Car Body Frame Based on Optistruct

    Ge Dongdong

    2017-01-01

    Full Text Available In order to optimize the structure of the electric car body frame, the static analysis of the car frame were carried on. For the goal of the frame’s weight minimum, OptiStruct software was used to topology optimization design. And the optimal material distribution program of the frame structure was got. Static strength before and after optimization was comprehensive compared through the stress, deformation. The results showed that the weight of frame after optimization was reduced by 18.96%, and the requirements of the strength and stiffness were ensured.

  10. Optimally sparse approximations of 3D functions by compactly supported shearlet frames

    Kutyniok, Gitta; Lim, Wang-Q.; Lemvig, Jakob

    2012-01-01

    We study efficient and reliable methods of capturing and sparsely representing anisotropic structures in 3D data. As a model class for multidimensional data with anisotropic features, we introduce generalized 3D cartoon-like images. This function class will have two smoothness parameters: one par...

  11. Metos3D: the Marine Ecosystem Toolkit for Optimization and Simulation in 3-D - Part 1: Simulation Package v0.3.2

    Piwonski, Jaroslaw; Slawig, Thomas

    2016-10-01

    We designed and implemented a modular software framework for the offline simulation of steady cycles of 3-D marine ecosystem models based on the transport matrix approach. It is intended for parameter optimization and model assessment experiments. We defined a software interface for the coupling of a general class of water column-based biogeochemical models, with six models being part of the package. The framework offers both spin-up/fixed-point iteration and a Jacobian-free Newton method for the computation of steady states. The simulation package has been tested with all six models. The Newton method converged for four models when using standard settings, and for two more complex models after alteration of a solver parameter or the initial guess. Both methods delivered the same steady states (within a reasonable precision) on convergence for all models employed, with the Newton iteration generally operating 6 times faster. The effects on performance of both the biogeochemical and the Newton solver parameters were investigated for one model. A profiling analysis was performed for all models used in this work, demonstrating that the number of tracers had a dominant impact on overall performance. We also implemented a geometry-adapted load balancing procedure which showed close to optimal scalability up to a high number of parallel processors.

  12. MoM-based topology optimization method for planar metallic antenna design

    Liu, Shutian; Wang, Qi; Gao, Renjing

    2016-09-01

    The metallic antenna design problem can be treated as a problem to find the optimal distribution of conductive material in a certain domain. Although this problem is well suited for topology optimization method, the volumetric distribution of conductive material based on 3D finite element method (FEM) has been known to cause numerical bottlenecks such as the skin depth issue, meshed "air regions" and other numerical problems. In this paper a topology optimization method based on the method of moments (MoM) for configuration design of planar metallic antenna was proposed. The candidate structure of the planar metallic antenna was approximately considered as a resistance sheet with position-dependent impedance. In this way, the electromagnetic property of the antenna can be analyzed easily by using the MoM to solve the radiation problem of the resistance sheet in a finite domain. The topology of the antenna was depicted with the distribution of the impedance related to the design parameters or relative densities. The conductive material (metal) was assumed to have zero impedance, whereas the non-conductive material was simulated as a material with a finite but large enough impedance. The interpolation function of the impedance between conductive material and non-conductive material was taken as a tangential function. The design of planar metallic antenna was optimized for maximizing the efficiency at the target frequency. The results illustrated the effectiveness of the method.

  13. Optimal relaxation parameters of DRAMA (dynamic RAMLA) aiming at one-pass image reconstruction for 3D-PET

    Tanaka, Eiichi; Kudo, Hiroyuki

    2010-05-01

    We have reported a block-iterative algorithm named DRAMA for image reconstruction for emission tomography (Tanaka and Kudo 2003 Phys. Med. Biol. 48 1405-22). DRAMA is a modified version of the row-action maximum likelihood algorithm (RAMLA), in which the relaxation parameter is subset dependent and is changed in such a way that the noise propagation from subsets to the reconstructed image is substantially independent of the access order of the subsets. The algorithm provides fast convergence with a reasonable signal-to-noise ratio. The optimal relaxation parameter has been derived assuming a two-dimensional (2D)-PET model, and detailed performance in three-dimensional (3D) reconstruction has not been clear enough. We have developed the new version 'DRAMA-3D', based on the 3D-PET model. The optimal relaxation parameter is a function of the access order of the subsets and the ring difference, and its value is determined by simple formulas from the design parameters of the PET scanner, the operating conditions and the post-smoothing resolution. In this paper, we present the theory of DRAMA-3D, the results of simulation studies on the performance of DRAMA-3D and the comparative studies of the related algorithms. It is shown that DRAMA-3D is robust for various access orders of subsets and is suitable to realize one-pass (single-iteration) reconstruction.

  14. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  15. Design of acousto-optical devices by topology optimization

    Dühring, Maria Bayard

    2009-01-01

    by means of topology optimization is presented. The surface acoustic waves are generated by interdigital transducers in a 2D piezoelectric model, which is coupled to an optical model where the optical mode in the waveguide is found by solving the time-harmonic wave equation for the magnetic field. Only...

  16. Topology optimization of front metallization patterns for solar cells

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2015-01-01

    This paper presents the application of topology optimization (TO) for designing the front electrode patterns for solar cells. Improving the front electrode design is one of the approaches to improve the performance of the solar cells. It serves to produce the voltage distribution for the front surfa

  17. Topology optimization of radio frequency and microwave structures

    Aage, Niels

    This thesis focuses on topology optimization of conductor-based microwave and radio frequency electromagnetic devices. The research is motivated by the ever increasing usage of small hand-held, or autonomous, electric devices, which have lead to a series of new challenges for the design...

  18. Wind load modeling for topology optimization of continuum structures

    Zakhama, R.; Abdalla, M.M.; Gürdal, Z.; Smaoui, H.

    2010-01-01

    Topology optimization of two and three dimensional structures subject to dead and wind loading is considered. The wind loading is introduced into the formulation by using standard expressions for the drag force, and a strategy is devised so that wind pressure is ignored where there is no surface obs

  19. Enhancing the Damping Properties of Viscoelastic Composites by Topology Optimization

    Andreasen, Casper Schousboe; Andreassen, Erik; Sigmund, Ole

    techniques. As an example, by the use of e.g. SLM/SLS - Selective Laser Melting/Sintering, an open metallic microstructure can be printed and in a subsequent process the porespace can be filled with a high loss compliant material. Yi and co-workers [6] applied topology optimization to design the 2D...

  20. Topology Optimization - Improved Checker-Board Filtering With Sharp Contours

    Pedersen, Christian Gejl; Lund, Jeppe Jessen; Damkilde, Lars;

    2006-01-01

    In topology optimization it is mandatory to use a filtering technique in order to prevent checker-boarder solutions. The paper examines a new filtering principle and demonstrates an improved sharpness in the contours. This was not realized in the original proposal of the filter. Furthermore...

  1. Topology optimization of ultra-fast nano-photonic switches

    Elesin, Yuriy; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    2011-01-01

    The aim of this paper is to demonstrate 1D switch designs obtained by topology optimization which show better performance than the designs considered in the literature. Such devices are non-linear and their performance depends on the efficiency of light-matter interaction. Simple optical switches...... and that the obtained switches possess excellent performance....

  2. Topology optimization for transient wave propagation problems in one dimension

    Dahl, Jonas; Jensen, Jakob Søndergaard; Sigmund, Ole

    2008-01-01

    Structures exhibiting band gap properties, i.e., having frequency ranges for which the structure attenuates propagating waves, have applications in damping of acoustic and elastic wave propagation and in optical communication. A topology optimization method for synthesis of such structures, emplo...

  3. Topology optimization for acoustic-structure interaction problems

    Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    We propose a gradient based topology optimization algorithm for acoustic-structure (vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...

  4. Inverse design of dispersion compensating optical fiber using topology optimization

    Riishede, Jesper; Sigmund, Ole

    2008-01-01

    We present a new numerical method for designing dispersion compensating optical fibers. The method is based on the solving of the Helmholtz wave equation with a finite-difference modesolver and uses topology optimization combined with a regularization filter for the design of the refractive index...

  5. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces

    WANG Xi-fen; ZHOU Huai-chun

    2005-01-01

    The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pcfired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the fumacs temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.

  6. Mathematical programming methods for large-scale topology optimization problems

    Rojas Labanda, Susana

    , and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...... structure of the problem. In both solvers, information of the exact Hessian is considered. A robust iterative method is implemented to efficiently solve large-scale linear systems. Both TopSQP and TopIP have successful results in terms of convergence, number of iterations, and objective function values...

  7. Maximizing opto-elastic interaction using topology optimization

    Gersborg, Allan Roulund; Sigmund, Ole

    When a photonic device is subjected to a mechanical load, there are two effects which change the optical response relative to the reference configuration. First, there is the geometrical effect caused by geometrical changes, i.e. the deformation of the reference geometry to the deformed geometry....... properties when the device is subjected to a static mechanical pre-strain. Material distributions consisting of air inclusions in silicon are considered. The optimized material distributions are computed using topology optimization....

  8. Topology optimization for transient response of photonic crystal structures

    Matzen, René; Jensen, Jakob Søndergaard; Sigmund, Ole

    2010-01-01

    An optimization scheme based on topology optimization for transient response of photonic crystal structures is developed. The system response is obtained by a finite-element time-domain analysis employing perfectly matched layers as an absorbing boundary condition. As an example a waveguide...... the stored energy inside the microcavity in the decaying regime of the transient response. Manufacturable designs are achieved by filtering techniques capable of controlling minimum length scales of the design features. © 2010 Optical Society of America....

  9. Isogeometric Analysis for Topology Optimization with a Phase Field Model

    2011-09-01

    been successfully considered. For example, this is the case for applications in fluid dynamics [1], heat conduction [45], vibration [58], multiphysics...Laboratories SAND2006–2649 (2006). [45] A. Gersborg–Hansen, M.P. Bendsøe and O. Sigmund, Topology optimization of heat conduction problems using the...novel stent platform with drug reservoirs, Med. Eng. Phys. 30 (2008), 1177–1185. [111] Y.M. Xie and G.P. Steven, Evolutionary Structural Optimization

  10. Robust topology optimization accounting for spatially varying manufacturing errors

    Schevenels, M.; Lazarov, Boyan Stefanov; Sigmund, Ole

    2011-01-01

    This paper presents a robust approach for the design of macro-, micro-, or nano-structures by means of topology optimization, accounting for spatially varying manufacturing errors. The focus is on structures produced by milling or etching; in this case over- or under-etching may cause parts...... optimization problem is formulated in a probabilistic way: the objective function is defined as a weighted sum of the mean value and the standard deviation of the structural performance. The optimization problem is solved by means of a Monte Carlo method: in each iteration of the optimization scheme, a Monte...

  11. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)2(Se,Te)3

    Jeffries, J. R.; Butch, N. P.; Vohra, Y. K.; Weir, S. T.

    2015-03-01

    The group V-VI compounds—like Bi2Se3, Sb2Te3, or Bi2Te3—have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and crystal structure of a pseudobinary (Bi,Sb)2(Te,Se)3 compound. Similar to some of its sister compounds, the (Bi,Sb)2(Te,Se)3 pseudobinary compound undergoes multiple, pressure-induced phase transformations that result in metallization, the onset of a close-packed crystal structure, and the development of distinct superconducting phases.

  12. Optimal matching of 3D film-measured and planned doses for intensity-modulated radiation therapy quality assurance.

    Shin, Dongho; Yoon, Myonggeun; Park, Sung Yong; Park, Dong Hyun; Lee, Se Byeong; Kim, Dae Yong; Cho, Kwan Ho

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) is one of the most complex applications of radiotherapy that requires patient-specific quality assurance (QA). Here, we describe a novel method of 3-dimensional (3D) dose-verification using 12 acrylic slabs in a 3D phantom (30 x 30 x 12 cm(3)) with extended dose rate (EDR2) films, which is both faster than conventionally used methods, and clinically useful. With custom-written software modules written in Microsoft Excel Visual Basic Application, the measured and planned dose distributions for the axial, coronal, and sagittal planes were superimposed by matching their origins, and the point doses were compared at all matched positions. Then, an optimization algorithm was used to correct the detected setup errors. The results show that this optimization method significantly reduces the average maximum dose difference by 7.73% and the number of points showing dose differences of more than 5% by 8.82% relative to the dose differences without an optimization. Our results indicate that the dose difference was significantly decreased with optimization and this optimization method is statistically reliable and effective. The results of 3D optimization are discussed in terms of various patient-specific QA data obtained from statistical analyses.

  13. Length scale and manufacturability in density-based topology optimization

    Lazarov, Boyan Stefanov; Wang, Fengwen; Sigmund, Ole

    2016-01-01

    Since its original introduction in structural design, density-based topology optimization has been applied to a number of other fields such as microelectromechanical systems, photonics, acoustics and fluid mechanics. The methodology has been well accepted in industrial design processes where it c......, well-defined designs with robust performances. The overview discusses the limitations, the advantages and the associated computational costs. The review is completed with optimized designs for minimum compliance, mechanism design and heat transfer.......Since its original introduction in structural design, density-based topology optimization has been applied to a number of other fields such as microelectromechanical systems, photonics, acoustics and fluid mechanics. The methodology has been well accepted in industrial design processes where it can...

  14. Robust topology optimization accounting for misplacement of material

    Jansen, Miche; Lombaert, Geert; Diehl, Moritz

    2013-01-01

    into account this type of geometric imperfections. A density filter based approach is followed, and translations of material are obtained by adding a small perturbation to the center of the filter kernel. The spatial variation of the geometric imperfections is modeled by means of a vector valued random field......The use of topology optimization for structural design often leads to slender structures. Slender structures are sensitive to geometric imperfections such as the misplacement or misalignment of material. The present paper therefore proposes a robust approach to topology optimization taking....... The random field is conditioned in order to incorporate supports in the design where no misplacement of material occurs. In the robust optimization problem, the objective function is defined as a weighted sum of the mean value and the standard deviation of the performance of the structure under uncertainty...

  15. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles

    Yilmazoglu, O.; Yadav, S.; Cicek, D.; Schneider, J. J.

    2016-09-01

    A design for a unique artificial-hair-cell-type sensor (AHCTS) based entirely on 3D-structured, vertically aligned carbon nanotube (CNT) bundles is introduced. Standard microfabrication techniques were used for the straightforward micro-nano integration of vertically aligned carbon nanotube arrays composed of low-layer multi-walled CNTs (two to six layers). The mechanical properties of the carbon nanotube bundles were intensively characterized with regard to various substrates and CNT morphology, e.g. bundle height. The CNT bundles display excellent flexibility and mechanical stability for lateral bending, showing high tear resistance. The integrated 3D CNT sensor can detect three-dimensional forces using the deflection or compression of a central CNT bundle which changes the contact resistance to the shorter neighboring bundles. The complete sensor system can be fabricated using a single chemical vapor deposition (CVD) process step. Moreover, sophisticated external contacts to the surroundings are not necessary for signal detection. No additional sensors or external bias for signal detection are required. This simplifies the miniaturization and the integration of these nanostructures for future microsystem set-ups. The new nanostructured sensor system exhibits an average sensitivity of 2100 ppm in the linear regime with the relative resistance change per micron (ppm μm-1) of the individual CNT bundle tip deflection. Furthermore, experiments have shown highly sensitive piezoresistive behavior with an electrical resistance decrease of up to ˜11% at 50 μm mechanical deflection. The detection sensitivity is as low as 1 μm of deflection, and thus highly comparable with the tactile hair sensors of insects, having typical thresholds on the order of 30-50 μm. The AHCTS can easily be adapted and applied as a flow, tactile or acceleration sensor as well as a vibration sensor. Potential applications of the latter might come up in artificial cochlear systems. In

  16. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles.

    Yilmazoglu, O; Yadav, S; Cicek, D; Schneider, J J

    2016-09-09

    A design for a unique artificial-hair-cell-type sensor (AHCTS) based entirely on 3D-structured, vertically aligned carbon nanotube (CNT) bundles is introduced. Standard microfabrication techniques were used for the straightforward micro-nano integration of vertically aligned carbon nanotube arrays composed of low-layer multi-walled CNTs (two to six layers). The mechanical properties of the carbon nanotube bundles were intensively characterized with regard to various substrates and CNT morphology, e.g. bundle height. The CNT bundles display excellent flexibility and mechanical stability for lateral bending, showing high tear resistance. The integrated 3D CNT sensor can detect three-dimensional forces using the deflection or compression of a central CNT bundle which changes the contact resistance to the shorter neighboring bundles. The complete sensor system can be fabricated using a single chemical vapor deposition (CVD) process step. Moreover, sophisticated external contacts to the surroundings are not necessary for signal detection. No additional sensors or external bias for signal detection are required. This simplifies the miniaturization and the integration of these nanostructures for future microsystem set-ups. The new nanostructured sensor system exhibits an average sensitivity of 2100 ppm in the linear regime with the relative resistance change per micron (ppm μm(-1)) of the individual CNT bundle tip deflection. Furthermore, experiments have shown highly sensitive piezoresistive behavior with an electrical resistance decrease of up to ∼11% at 50 μm mechanical deflection. The detection sensitivity is as low as 1 μm of deflection, and thus highly comparable with the tactile hair sensors of insects, having typical thresholds on the order of 30-50 μm. The AHCTS can easily be adapted and applied as a flow, tactile or acceleration sensor as well as a vibration sensor. Potential applications of the latter might come up in artificial cochlear systems. In

  17. An efficient approach for reliability-based topology optimization

    Kanakasabai, Pugazhendhi; Dhingra, Anoop K.

    2016-01-01

    This article presents an efficient approach for reliability-based topology optimization (RBTO) in which the computational effort involved in solving the RBTO problem is equivalent to that of solving a deterministic topology optimization (DTO) problem. The methodology presented is built upon the bidirectional evolutionary structural optimization (BESO) method used for solving the deterministic optimization problem. The proposed method is suitable for linear elastic problems with independent and normally distributed loads, subjected to deflection and reliability constraints. The linear relationship between the deflection and stiffness matrices along with the principle of superposition are exploited to handle reliability constraints to develop an efficient algorithm for solving RBTO problems. Four example problems with various random variables and single or multiple applied loads are presented to demonstrate the applicability of the proposed approach in solving RBTO problems. The major contribution of this article comes from the improved efficiency of the proposed algorithm when measured in terms of the computational effort involved in the finite element analysis runs required to compute the optimum solution. For the examples presented with a single applied load, it is shown that the CPU time required in computing the optimum solution for the RBTO problem is 15-30% less than the time required to solve the DTO problems. The improved computational efficiency allows for incorporation of reliability considerations in topology optimization without an increase in the computational time needed to solve the DTO problem.

  18. Perspective Application of Passive Optical Network with Optimized Bus Topology

    P. Lafata

    2012-06-01

    Full Text Available Passive optical networks (PONs represent a promising solution for modern access telecommunication networks.These networks are able to meet the increasing demands on transmission rate for demanding multimedia services,while they can offer typical shared transmission speed of 1.25 or 2.5 Gbps. The major role in deploying opticaldistribution networks ODNs plays the maximum attenuable loss, which is caused mainly by passive optical splitters.This paper proposes an innovative application of passive optical networks with optimized bus topology especially forlocal backbone data networks. Due to using only passive components, it is necessary to optimize certain parameters,especially an overall attenuation balance. Considering the possibility of such optimization, the passive optical networkwith optimized bus topology provides several interesting opportunities for specific applications. This paper will presentselected aspects of passive optical networks and splitters with asymmetric splitting ratio. The essential part is focusedon the practical demonstration of their use to optimize the passive optical network with bus topology, which acts as alocal backbone network for structured cabling systems, and for local data networks in large buildings.

  19. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    Frampton, J P; Hynd, M R; Shain, W [Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12210 (United States); Shuler, M L, E-mail: jf7674@albany.edu [Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14850 (United States)

    2011-02-15

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  20. Optimal design of virtual topology reconfiguration in WDM optical networks

    Fengqing Liu(刘逢清); Qingji Zeng(曾庆济); Xu Zhu(朱栩); Shilin Xiao(肖石林)

    2003-01-01

    Virtual topology of WDM optical networks is often designed for some specific traffic matrix to get thebest network performance. When traffic demand imposed on WDM optical networks changes, the networkperformance may degrade and even become unacceptable. So virtual topology need to be reconfigured.In previous works, virtual topology is reconfigured to achieve the best network performance, in which alarge number of lightpaths need to be set up or torn down. In this paper, we try to get a tradeoff betweenthe network performance and traffic disruption (or implementing cost). The problem of virtual topologyreconfiguration for changing traffic patterns is formulated as an optimization problem and a mixed integerlinear programming (MILP) algorithm is presented. Numerical results show that a large cost reduction ofreconfiguration can be achieved at the expense of network performance.

  1. Topology optimization for the design of folding liquid crystal elastomer actuators.

    Fuchi, Kazuko; Ware, Taylor H; Buskohl, Philip R; Reich, Gregory W; Vaia, Richard A; White, Timothy J; Joo, James J

    2015-10-01

    Aligned liquid crystal elastomers (LCEs) are capable of undergoing large reversible shape change in response to thermal stimuli and may act as actuators for many potential applications such as self-assembly and deployment of micro devices. Recent advances in LCE patterning tools have demonstrated sub-millimetre control of director orientation, enabling the preparation of materials with arbitrarily complex director fields. However, without design tools to connect the 2D director pattern with the activated 3D shape, LCE design relies on intuition and trial and error. Here we present a design methodology to generate reliable folding in monolithic LCEs designed with topology optimization. The distributions of order/disorder and director orientations are optimized so that the remotely actuated deformation closely matches a target deformation for origami folding. The optimal design exhibits a strategy to counteract the mechanical frustration that may lead to an undesirable deformation, such as anti-clastic bending. Multi-hinge networks were developed using insights from the optimal hinge designs and were demonstrated through the fabrication and reversible actuation of a self-folding box. Topology optimization provides an important step towards leveraging the opportunities afforded by LCE patterning into functional designs.

  2. Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis

    Bottasso, C. L.; Campagnolo, F.; Croce, A.;

    2014-01-01

    model fully-populated cross sectional stiffness matrices. Next, a "fine"-level 3D FEM model is used for the refinement of the coarse-level solution. Improved results obtained at the level of the 3D model are utilized at the following coarse-level iteration through a heuristic modification of the design...... level. At first, a "coarse"-level constrained design optimization is performed by using a 1D spatial geometrically exact beam model for aero-servo-elastic multibody analysis and load calculation, integrated with a 2D FEM cross sectional model for stress/strain analysis, and the evaluation of the 1D...

  3. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... web standards. However, these 3D city models consume much more storage compared to two dimensional (2 D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access...

  4. Maximum length scale in density based topology optimization

    Lazarov, Boyan Stefanov; Wang, Fengwen

    2017-01-01

    The focus of this work is on two new techniques for imposing maximum length scale in topology optimization. Restrictions on the maximum length scale provide designers with full control over the optimized structure and open possibilities to tailor the optimized design for broader range...... of manufacturing processes by fulfilling the associated technological constraints. One of the proposed methods is based on combination of several filters and builds on top of the classical density filtering which can be viewed as a low pass filter applied to the design parametrization. The main idea...

  5. Topology optimization problems for reflection and dissipation of elastic waves

    Jensen, Jakob Søndergaard

    2007-01-01

    This paper is devoted to topology optimization problems for elastic wave propagation. The objective of the study is to maximize the reflection or the dissipation in a finite slab of material for pressure and shear waves in a range of frequencies. The optimized designs consist of two or three...... material phases: a host material and scattering and/or absorbing inclusions. The capabilities of the optimization algorithm are demonstrated with two numerical examples in which the reflection and dissipation of ground-borne wave pulses are maximized....

  6. Robust Topology Optimization of Truss with regard to Volume

    Mohr, Daniel P; Matzies, Thomas; Knapek, Christina A

    2011-01-01

    A common problem in the optimization of structures is the handling of uncertainties in the parameters. If the parameters appear in the constraints, the uncertainties can lead to an infinite number of constraints. Usually the constraints have to be approximated by finite expressions to generate a computable problem. Here, using the example of the topology optimization of a truss, a method is proposed to deal with such uncertainties by using robust optimization techniques, leading to an approach without the necessity of any approximation. With adequately chosen load cases, the final expression is equivalent to the multiple load case. Simple numerical examples of typical problems illustrate the application of the method.

  7. Topology optimum design of compliant mechanisms using modified ant colony optimization

    Yoo, Kwang Seon; Han, Seog Young [Hanyang University, Seoul (Korea, Republic of)

    2015-08-15

    A Modified ant colony optimization (MACO) algorithm was suggested for topology optimal design of compliant mechanisms since standard ACO cannot provide an appropriate optimal topology. In order to improve computational efficiency and suitability of standard ACO algorithm in topology optimization for compliant mechanisms, a continuous variable, called the 'Element contribution significance (ECS),'is employed, which serves to replace the positions of ants in the standard ACO algorithm, and assess the importance of each element in the optimization process. MACO algorithm was applied to topology optimizations of both linear and geometrically nonlinear compliant mechanisms using three kinds of objective functions, and optimized topologies were compared each other. From the comparisons, it was concluded that MACO algorithm can effectively be applied to topology optimizations of linear and geometrically nonlinear compliant mechanisms, and the ratio of Mutual potential energy (MPE) to Strain energy (SE) type of objective function is the best for topology optimal design of compliant mechanisms.

  8. Finite Volumes Discretization of Topology Optimization Problems

    Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter

    of the induced parametrization of the design space that allows optimization algorithms to eciently explore it, and the ease of integration with existing computational codes in a variety of application areas, the simplicity and eciency of sensitivity analyses|all stemming from the use of the same grid throughout...... such a mature and versatile technique for discretiz- ing partial dierential equations in the form of conservation laws of varying types. Advantages of FVMs include the simplicity of implementation, their local conservation properties, and the ease of coupling various PDEs in a multi-physics setting. In fact......, FVMs represent a standard method of discretization within engineering communities dealing with computational uid dy- namics, transport, and convection-reaction problems. Among various avours of FVMs, cell based approaches, where all variables are associated only with cell centers, are particularly...

  9. Development and Optimization of Viable Human Platforms through 3D Printing

    Parker, Paul R. [Univ. of Michigan, Ann Arbor, MI (United States); Moya, Monica L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-21

    3D printing technology offers a unique method for creating cell cultures in a manner far more conducive to accurate representation of human tissues and systems. Here we print cellular structures capable of forming vascular networks and exhibiting qualities of natural tissues and human systems. This allows for cheaper and readily available sources for further study of biological and pharmaceutical agents.

  10. Optimal Zone Boundaries for Two-class-based Compact 3D AS/RS

    Y. Yu (Yugang); M.B.M. de Koster (René)

    2007-01-01

    textabstractCompact, multi-deep (3D), Automated Storage and Retrieval Systems (AS/RS) are becoming more common, due to new technologies, lower investment costs, time efficiency and compact size. Decision-making research on these systems is still in its infancy. We study a particular compact system w

  11. Optimal invasive key-hole neurosurgery with a miniaturized 3D chip on the tip: Microendoscopic device

    Charalampaki, Patra; Igressa, Alhadi; Mahvash, Mehran; Pechlivanis, Ioannis; Schick, Bernhard

    2013-01-01

    Objective: The goal of the performed study was to evaluate the possibility of a three-dimensional endoscope to become a combined microscope-endoscope device in one. We analyzed the ergonomy of the device, the implementation into the surgical workflow, the image quality, and the future perspectives such devices could have for the next generation of neurosurgeons. Materials and Methods: Within 6 months, 22 patients (10 male, 12 female, 20-65 age) underwent surgery in neuroaxis using the new 3D-microendoscope (ME). The new 3D-ME has (a) the ability to visualize the surgical field from out- to inside with all advantages offered by a microscope, and in the same moment, (b) its design is like a small diameter endoscope that allows stereoscopic views extracorporal, intracorporal, and panoramic “para-side” of the lesion. Results: In general, transcranial 3D-“microendoscopy” was performed in all patients with high-resolution 3D quality. No severe complications were observed intra- or postoperatively. With the addition of depth perception, the anatomic structures were well seen and observed. Conclusion: The 3D-microendoscopy is a very promising surgical concept associated with new technological developments. The surgeon is able to switch to a modern visualization instrument reaching the most optimal surgical approach without compromising safety, effectiveness, and visual information. PMID:24403954

  12. Topology Optimization of Building Blocks for Photonic Integrated Circuits

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    Photonic integrated circuits are likely candidates as high speed replacements for the standard electrical integrated circuits of today. However, in order to obtain a satisfactorily performance many design prob- lems that up until now have resulted in too high losses must be resolved. In this work...... we demonstrate how the method of topology optimization can be used to design a variety of high performance building blocks for the future circuits....

  13. Topology optimization and fabrication of photonic crystal structures

    Borel, Peter Ingo; Harpøth, Anders; Frandsen, Lars Hagedorn;

    2004-01-01

    Topology optimization is used to design a planar photonic crystal waveguide component resulting in significantly enhanced functionality. Exceptional transmission through a photonic crystal waveguide Z-bend is obtained using this inverse design strategy. The design has been realized in a silicon......-on-insulator based photonic crystal waveguide. A large low loss bandwidth of more than 200 nm for the TE polarization is experimentally confirmed....

  14. NOVEL METHOD SOLVING NUMERICAL INSTABILITIES IN TOPOLOGY OPTIMIZATION

    2002-01-01

    Numerical instabilities are often encountered in FE solution of continuum topology optimization. The essence of the numerical instabilities is given from the inverse partial differential equation (PDE) point of view. On the basis of the strict mathematical theory, a novel method, named as window filter and multi-grid method, which solves the numerical instabilities, is proposed. Convergent analyses and a numerical example are presented.

  15. Interactive topology optimization on hand-held devices

    Aage, Niels; Nobel-Jørgensen, Morten; Andreasen, Casper Schousboe

    2013-01-01

    This paper presents an interactive topology optimization application designed for hand-held devices running iOS or Android. The TopOpt app solves the 2D minimum compliance problem with interactive control of load and support positions as well as volume fraction. Thus, it is possible to change......OS devices from the Apple App Store, at Google Play for the Android platform, and a web-version can be run from www.topopt.dtu.dk....

  16. Fast Micro-Differential Evolution for Topological Active Net Optimization.

    Li, Yuan-Long; Zhan, Zhi-Hui; Gong, Yue-Jiao; Zhang, Jun; Li, Yun; Li, Qing

    2016-06-01

    This paper studies the optimization problem of topological active net (TAN), which is often seen in image segmentation and shape modeling. A TAN is a topological structure containing many nodes, whose positions must be optimized while a predefined topology needs to be maintained. TAN optimization is often time-consuming and even constructing a single solution is hard to do. Such a problem is usually approached by a "best improvement local search" (BILS) algorithm based on deterministic search (DS), which is inefficient because it spends too much efforts in nonpromising probing. In this paper, we propose the use of micro-differential evolution (DE) to replace DS in BILS for improved directional guidance. The resultant algorithm is termed deBILS. Its micro-population efficiently utilizes historical information for potentially promising search directions and hence improves efficiency in probing. Results show that deBILS can probe promising neighborhoods for each node of a TAN. Experimental tests verify that deBILS offers substantially higher search speed and solution quality not only than ordinary BILS, but also the genetic algorithm and scatter search algorithm.

  17. Topology optimization of free vibrations of fiber laser packages

    Hansen, Lars Voxen

    2005-01-01

    The optimization problems described in the present paper are inspired by the problem of fiber laser package design for vibrating environments. The optical frequency of tuned fiber lasers glued to stiff packages is sensitive to acoustic or other mechanical vibrations. The paper presents a method...... for reducing this sensitivity by limiting the glue point movement on the package while using only a limited knowledge of vibrating external forces. By use of topology optimization a density distribution for the package is obtained, where the critical eigenmode of the package only effects a small elongation...

  18. Topology optimized low-contrast all-dielectric optical cloak

    Andkjær, Jacob Anders; Sigmund, Ole

    2011-01-01

    A systematic methodology for designing low-contrast all-dielectric cloaks operating in the optical range is presented. Topology optimization is used to find the layout of standard dielectric material that minimizes the norm of the scattered field in the surroundings of the cloak. Rotational...... symmetries are exploited to optimize for multiple angles based on the solution for a single angle of incidence. For a few discrete angles of incidences (1-4) the cloaking is shown to be nearly perfect in a limited frequency range, and even for a rotational symmetric design, cloak and object appear smaller...

  19. Design of multiphysics actuators using topology optimization - Part II

    Sigmund, Ole

    2001-01-01

    -material structures. The application in mind is the design of thermally and electro thermally driven micro actuators for use in MicroElectroMechanical Systems (MEMS). MEMS are microscopic mechanical systems coupled with electrical circuits. MEMS are fabricated using techniques known from the semi-conductor industry...... of the topology optimization method in this part include design descriptions for two-material structures, constitutive modelling of elements with mixtures of two materials, formulation of optimization problems with multiple constraints and multiple materials and a mesh-independency scheme for two...

  20. Aerostructural Shape and Topology Optimization of Aircraft Wings

    James, Kai

    A series of novel algorithms for performing aerostructural shape and topology optimization are introduced and applied to the design of aircraft wings. An isoparametric level set method is developed for performing topology optimization of wings and other non-rectangular structures that must be modeled using a non-uniform, body-fitted mesh. The shape sensitivities are mapped to computational space using the transformation defined by the Jacobian of the isoparametric finite elements. The mapped sensitivities are then passed to the Hamilton-Jacobi equation, which is solved on a uniform Cartesian grid. The method is derived for several objective functions including mass, compliance, and global von Mises stress. The results are compared with SIMP results for several two-dimensional benchmark problems. The method is also demonstrated on a three-dimensional wingbox structure subject to fixed loading. It is shown that the isoparametric level set method is competitive with the SIMP method in terms of the final objective value as well as computation time. In a separate problem, the SIMP formulation is used to optimize the structural topology of a wingbox as part of a larger MDO framework. Here, topology optimization is combined with aerodynamic shape optimization, using a monolithic MDO architecture that includes aerostructural coupling. The aerodynamic loads are modeled using a three-dimensional panel method, and the structural analysis makes use of linear, isoparametric, hexahedral elements. The aerodynamic shape is parameterized via a set of twist variables representing the jig twist angle at equally spaced locations along the span of the wing. The sensitivities are determined analytically using a coupled adjoint method. The wing is optimized for minimum drag subject to a compliance constraint taken from a 2 g maneuver condition. The results from the MDO algorithm are compared with those of a sequential optimization procedure in order to quantify the benefits of the MDO

  1. Aerothermoelastic Topology Optimization with Flutter and Buckling Metrics (Postprint)

    2013-07-01

    this work, as drawn in Fig. 1), an analytical value of R∗ = 4 · π2 is obtained ( Shigley and Mishke 2001). Alternatively, if TL is set to 0 and TU = 1...of the panel ( Shigley and Mishke 2001). Except for R∗, this latter boundary is of no interest for the current topological design study, but does...tural optimization problems. Struct Optim 8(4):207–227 Shigley J, Mishke C (2001) Mechanical engineering design. McGraw Hill, New York Sigmund O (2001

  2. Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions

    Akgun, Mehmet A.; Haftka, Raphael T.

    2000-01-01

    The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local

  3. Optimal Design of Modern Transformerless PV Inverter Topologies

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    The design optimization of H5, H6, neutral point clamped, active-neutral point clamped, and conergy-NPC transformerless photovoltaic (PV) inverters is presented in this paper. The components reliability in terms of the corresponding malfunctions, affecting the PV inverter maintenance cost during...... the operational lifetime period of the PV installation, is also considered in the optimization process. According to the results of the proposed design method, different optimal values of the PV inverter design variables are derived for each PV inverter topology and installation site. The H5, H6, neutral point...... clamped, active-neutral point clamped and conergy-NPC PV inverters designed using the proposed optimization process feature lower levelized cost of generated electricity and lifetime cost, longer mean time between failures and inject more PV-generated energy into the electric grid than their nonoptimized...

  4. Network synchronization: optimal and pessimal scale-free topologies

    Donetti, Luca [Departamento de Electronica y Tecnologia de Computadores and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hurtado, Pablo I; Munoz, Miguel A [Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teorica y Computacional Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)], E-mail: mamunoz@onsager.ugr.es

    2008-06-06

    By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.

  5. Truss topology optimization with discrete design variables by outer approximation

    Stolpe, Mathias

    2015-01-01

    Several variants of an outer approximation method are proposed to solve truss topology optimization problems with discrete design variables to proven global optimality. The objective is to minimize the volume of the structure while satisfying constraints on the global stiffness of the structure...... for classical outer approximation approaches applied to optimal design problems. A set of two- and three-dimensional benchmark problems are solved and the numerical results suggest that the proposed approaches are competitive with other special-purpose global optimization methods for the considered class...... of problems. Numerical comparisons indicate that the suggested outer approximation algorithms can outperform standard approaches suggested in the literature, especially on difficult problem instances. © 2014 Springer Science+Business Media New York....

  6. Constraint-based Hybrid Cellular Automaton Topology Optimization for Advanced Lightweight Blast Resistant Structure Development

    2011-11-01

    the desired model. 20 5. References 1. Goetz, J. C.; Tan, H.; Renaud, J. E.; Tovar , A. Structural Topology Optimization for Blast Mitigation...Stander, N. A Topology Optimization Tool for LS-DYNA Users: LS- OPT/Topology. The 7th European LS-DYNA Conference, 2009. 10. Tovar , A.; Patel, N

  7. Protein folding optimization based on 3D off-lattice model via an improved artificial bee colony algorithm.

    Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun

    2015-10-01

    Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.

  8. Optimal management of reconfigurable manufacturing system modeling with Petri nets developed three-dimensional - RPD3D

    Teodor, F.; Marinescu, V.; Epureanu, A.

    2016-11-01

    Modeling of reconfigurable manufacturing systems would have done using existing Petri net types, but the complexity and dynamics of the new manufacturing system, mainly data reconfiguration feature, required looking for a more compact representation with many variables that to model as accurately not only the normal operation of the production system but can capture and model and reconfiguration process. Thus, it was necessary to create a new class of Petri nets, called RPD3D (Developed Petri nets with three dimensional) showing the name of both lineage (new class derived from Petri nets developed, created in 2000 by Prof. Dr. Ing Vasile Marinescu in his doctoral thesis) [1], but the most important of the new features defining (transformation from one 2D model into a 3D model).The idea was to introduce the classical model of a Petri third dimension to be able to overlay multiple levels (layers) formed in 2D or 3D Petri nets that interact with each other (receiving or giving commands to enable or disable the various modules together simulating the operation of reconfigurable manufacturing systems). The aim is to present a new type of Petri nets called RPD3D - Developed Petri three-dimensional model used for optimal control and simulation of reconfigurable manufacturing systems manufacture of products such systems.

  9. Optimal decision fusion and its application on 3D face recognition

    Tao, Qian; Rootseler, van Robin; Veldhuis, Raymond; Gehlen, Stefan; Weber, Frank; Bromme, A.; Busch, C.; Huhnlein, D.

    2007-01-01

    Fusion is a popular practice to combine multiple classifiers or multiple modalities in biometrics. In this paper, optimal decision fusion (ODF) by AND rule and OR rule is presented. We show that the decision fusion can be done in an optimal way such that it always gives an improvement in terms of er

  10. 1D Grating structures designed by the time domain topology optimization

    Yang, Lirong; Lavrinenko, Andrei; Sigmund, Ole;

    2008-01-01

    We report on the time domain application of topology optimization to 1D photonic devices. The method is confirmed to converge to the global minimum when optimizing a Bragg grating structure.......We report on the time domain application of topology optimization to 1D photonic devices. The method is confirmed to converge to the global minimum when optimizing a Bragg grating structure....

  11. Design and Optimization of Air-Doped 3-dB Terahertz Fiber Directional Couplers

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.;

    2014-01-01

    We present a thorough practical design optimization of broadband low loss, terahertz (THz) photonic crystal fiber directional couplers in which the two cores are mechanically down- doped with a triangular array of air holes.......We present a thorough practical design optimization of broadband low loss, terahertz (THz) photonic crystal fiber directional couplers in which the two cores are mechanically down- doped with a triangular array of air holes....

  12. The possibility of isolated target 3-D position estimation and optimal receiver position determination in SS-BSAR

    HU Gheng; LONG Teng; ZENG Tao

    2008-01-01

    Starting from the generalized ambiguity function of bistatic SAR (BSAR), it is shown that 3-D point target estimation can be carried out in space-surface bistatic SAR (SS-BSAR). Appropriate analytical equations, based on maximum likelihood estimation (MLE), are derived and confirmed via computer simulation. Furthermore, the performance of the estimate using the Crammer-Rao bound is analyzed for the case in question, thus further revealing the possibility and potential of target 3-D position estimation. Setting the determinant maximum of the information matrix as the criterion, the optimal receiver position and multi-receiver configuration are analytically determined in the SS-BSAR system. Simulation results also validate the correctness of the analytical calculation.

  13. Design of photonic bandgap fibers by topology optimization

    Dühring, Maria Bayard; Sigmund, Ole; Feurer, Thomas

    2010-01-01

    A method based on topology optimization is presented to design the cross section of hollow-core photonic bandgap fibers for minimizing energy loss by material absorption. The optical problem is modeled by the timeharmonic wave equation and solved with the finite element program Comsol Multiphysics....... The optimization is based on continuous material interpolation functions between the refractive indices and is carried out by the method of moving asymptotes. An example illustrates the performance of the method where air and silica are redistributed around the core so that the overlap between the magnetic field...... distribution and the lossy silica material is reduced and the energy flow is increased 375% in the core. Simplified designs inspired from optimized geometry are presented, which will be easier to fabricate. The energy flow is increased up to almost 300% for these cases....

  14. Individualized directional microphone optimization in hearing aids based on reconstructing the 3D geometry of the head and ear from 2D images

    Harder, Stine

    aid. We verify the directional filters optimized from simulated HRTFs based on a listener-specific head model against two set of optimal filters. The first set of optimal filters is calculated from HRTFs measured on a 3D printed version of the head model. The second set of optimal filters...... individuals who deviate from an average of the population could benefit from having individualized filters. We developed a pipeline for 3D printing of full size human heads. The 3D printed head facilitated the second verification step, which revealed a 0:3 dB reduction from optimal to simulated directional...... filters. This indicates that the simulation are more similar to measurements on the 3D printed head than measurements on the human subject. We suggest that the larger difference between simulation and human measurements could arise due to small geometrical errors in the head model or due to differences...

  15. Analysis of trabecular bone architectural changes induced by osteoarthritis in rabbit femur using 3D active shape model and digital topology

    Saha, P. K.; Rajapakse, C. S.; Williams, D. S.; Duong, L.; Coimbra, A.

    2007-03-01

    Osteoarthritis (OA) is the most common chronic joint disease, which causes the cartilage between the bone joints to wear away, leading to pain and stiffness. Currently, progression of OA is monitored by measuring joint space width using x-ray or cartilage volume using MRI. However, OA affects all periarticular tissues, including cartilage and bone. It has been shown previously that in animal models of OA, trabecular bone (TB) architecture is particularly affected. Furthermore, relative changes in architecture are dependent on the depth of the TB region with respect to the bone surface and main direction of load on the bone. The purpose of this study was to develop a new method for accurately evaluating 3D architectural changes induced by OA in TB. Determining the TB test domain that represents the same anatomic region across different animals is crucial for studying disease etiology, progression and response to therapy. It also represents a major technical challenge in analyzing architectural changes. Here, we solve this problem using a new active shape model (ASM)-based approach. A new and effective semi-automatic landmark selection approach has been developed for rabbit distal femur surface that can easily be adopted for many other anatomical regions. It has been observed that, on average, a trained operator can complete the user interaction part of landmark specification process in less than 15 minutes for each bone data set. Digital topological analysis and fuzzy distance transform derived parameters are used for quantifying TB architecture. The method has been applied on micro-CT data of excised rabbit femur joints from anterior cruciate ligament transected (ACLT) (n = 6) and sham (n = 9) operated groups collected at two and two-to-eight week post-surgery, respectively. An ASM of the rabbit right distal femur has been generated from the sham group micro-CT data. The results suggest that, in conjunction with ASM, digital topological parameters are suitable for

  16. Topology optimization of pressure adaptive honeycomb for a morphing flap

    Vos, Roelof; Scheepstra, Jan; Barrett, Ron

    2011-03-01

    The paper begins with a brief historical overview of pressure adaptive materials and structures. By examining avian anatomy, it is seen that pressure-adaptive structures have been used successfully in the Natural world to hold structural positions for extended periods of time and yet allow for dynamic shape changes from one flight state to the next. More modern pneumatic actuators, including FAA certified autopilot servoactuators are frequently used by aircraft around the world. Pneumatic artificial muscles (PAM) show good promise as aircraft actuators, but follow the traditional model of load concentration and distribution commonly found in aircraft. A new system is proposed which leaves distributed loads distributed and manipulates structures through a distributed actuator. By using Pressure Adaptive Honeycomb (PAH), it is shown that large structural deformations in excess of 50% strains can be achieved while maintaining full structural integrity and enabling secondary flight control mechanisms like flaps. The successful implementation of pressure-adaptive honeycomb in the trailing edge of a wing section sparked the motivation for subsequent research into the optimal topology of the pressure adaptive honeycomb within the trailing edge of a morphing flap. As an input for the optimization two known shapes are required: a desired shape in cruise configuration and a desired shape in landing configuration. In addition, the boundary conditions and load cases (including aerodynamic loads and internal pressure loads) should be specified for each condition. Finally, a set of six design variables is specified relating to the honeycomb and upper skin topology of the morphing flap. A finite-element model of the pressure-adaptive honeycomb structure is developed specifically tailored to generate fast but reliable results for a given combination of external loading, input variables, and boundary conditions. Based on two bench tests it is shown that this model correlates well

  17. Knowledge Management for Topological Optimization Integration in Additive Manufacturing

    Nicolas Gardan

    2014-01-01

    Full Text Available Engineering design optimization of mechanical structures is nowadays essential in the mechanical industry (automotive, aeronautics, etc.. To remain competitive in the globalized world, it is necessary to create and design structures that, in addition to complying specific mechanical performance, should be less expensive. Engineers must then design parts or assemblies that are a better compromise between mechanical and functional performance, weight, manufacturing costs, and so forth. In this context Additive Manufacturing (AM process offers the possibility to avoid tools and manufacture directly the part. There are numerous technologies which are using different kind of material. For each of these, there are at least two materials: the production material and the support one. Support material is, in most cases, cleaned and becomes a manufacturing residue. Improving the material volume and the global mass of the product is an essential aim surrounding the integration of simulation in additive manufacturing process. Moreover, the layer-by-layer technology of additive manufacturing allows the design of innovative objects, and the use of topological optimization in this context can create a very interesting combination. The purpose of our paper is to present the knowledge management of an AM trade oriented tool which integrated the topological optimization of parts and internal patterns.

  18. Topology optimized design for silicon-on-insulator mode converter

    Frellsen, Louise Floor; Frandsen, Lars Hagedorn; Ding, Yunhong

    2015-01-01

    The field of photonic integrated circuits (PICs) has attracted interest in recent years as they allow high device density while requiring only low operating power. The possibility of exploiting mode division multiplexing (MDM) in future optical communication networks is being investigated...... as a potential method for supporting the constantly increasing internet traffic demand [1]. Mode converters are important components necessary to support on-chip processing of MDM signals and multiple approaches has been followed in realizing such devices [2], [3]. Topology optimization (TO) [4] is a powerful...

  19. TOPOLOGY DESIGN OPTIMIZATION BASED ON BIOTIC BRANCH NET

    Ding Xiaohong; Li Guojie; Yamazaki Koestu

    2005-01-01

    The biotic branch nets are extreme high-tech product. In order to achieve a certain functional objective, they can adjust their growth direction and growth velocity by according to the varying growth environment. An innovative and effective methodology of topology design optimization based on the growth mechanism of biotic branch nets is suggested, and it is applied to a layout design problem of a conductive cooling channel in a heat transfer system. The effectiveness of the method is validated by the FEM analysis.

  20. Fast algorithm for optimal graph-Laplacian based 3D image segmentation

    Harizanov, S.; Georgiev, I.

    2016-10-01

    In this paper we propose an iterative steepest-descent-type algorithm that is observed to converge towards the exact solution of the ℓ0 discrete optimization problem, related to graph-Laplacian based image segmentation. Such an algorithm allows for significant additional improvements on the segmentation quality once the minimizer of the associated relaxed ℓ1 continuous optimization problem is computed, unlike the standard strategy of simply hard-thresholding the latter. Convergence analysis of the algorithm is not a subject of this work. Instead, various numerical experiments, confirming the practical value of the algorithm, are documented.

  1. Multi-objective optimization of a 3D vaneless diffuser based on fuzzy theory

    Chuang GAO; Chuangang GU; Tong WANG; Xinwei SHU

    2008-01-01

    An optimization model based on fuzzy theory was set up and the corresponding Interactive modified simplex (IMS) method was developed to solve it. Both static pressure recovery and total pressure loss were considered in the model. Computational fluid dynamics (CFD) method was applied to solve the Reynolds-Averaged Navier-Stokes equation (RANS) and to find flow field distribution to get the value of the object function. After receiving the new shroud curve, grid movement and redrawing technology were adopted to avoid grid-line crossing and negative cells. The shroud curve was fitted with B-spline. The optimized results concur with the results reported in references.

  2. Optimization of 3D laser scanning speed by use of combined variable step

    Garcia-Cruz, X. M.; Sergiyenko, O. Yu.; Tyrsa, Vera; Rivas-Lopez, M.; Hernandez-Balbuena, D.; Rodriguez-Quiñonez, J. C.; Basaca-Preciado, L. C.; Mercorelli, P.

    2014-03-01

    The problem of 3D TVS slow functioning caused by constant small scanning step becomes its solution in the presented research. It can be achieved by combined scanning step application for the fast search of n obstacles in unknown surroundings. Such a problem is of keynote importance in automatic robot navigation. To maintain a reasonable speed robots must detect dangerous obstacles as soon as possible, but all known scanners able to measure distances with sufficient accuracy are unable to do it in real time. So, the related technical task of the scanning with variable speed and precise digital mapping only for selected spatial sectors is under consideration. A wide range of simulations in MATLAB 7.12.0 of several variants of hypothetic scenes with variable n obstacles in each scene (including variation of shapes and sizes) and scanning with incremented angle value (0.6° up to 15°) is provided. The aim of such simulation was to detect which angular values of interval still permit getting the maximal information about obstacles without undesired time losses. Three of such local maximums were obtained in simulations and then rectified by application of neuronal network formalism (Levenberg-Marquradt Algorithm). The obtained results in its turn were applied to MET (Micro-Electro-mechanical Transmission) design for practical realization of variable combined step scanning on an experimental prototype of our previously known laser scanner.

  3. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2012-12-01

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative — the QUonG project — whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k€/T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R&D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  4. Optimizing fuel cell parts by using 3D screen printed metals

    Studnitzky, Thomas [Fraunhofer-Institue for Manufacturing and Advanced Materials, Dresden (Germany). Dept. of Powder Metallurgy and Composite Materials; Strauss, Alexander [Centre for Fuel Cell Technology, Duisburg (Germany). Dept. of Microsystems

    2010-07-01

    Miniature fuel cells have the potential to extend the runtime of various portable applications. In this context, sufficient energy densities have to be achieved within a stack in order to build fuel cell systems competitive to established battery technologies. Metallic bipolar plates composed of stainless steels permit the construction of thin and mechanically robust cells. Moreover the utilisation of the presented manufacturing method enables a new freedom in design of Bipolar Plates and their integrated flow field structures for future improvements of cell efficiency. In this study different miniature PEM fuel cells have been designed and tested. Bases for their construction are micro structured plates composed of 316L stainless steel. This design can include very fine walls down to 60 {mu}m as well as undercuts, which is impossible with other manufacturing methods. These designs were adapted by Fraunhofer IFAM for the screen printing process. As a first result a proof of concept has been established for 3D screen printing as a method for the manufacturing of fuel cell bipolar elements. To this end, a modified screen printing process is used to manufacture 3-dimensional parts layer-on-layer by depositing a suitable metallic powder which is mixed with a binder. The resulting green parts might include closed channels and channel wall thicknesses may reach 80 {mu}m or less. The green parts are debindered and sintered in order to obtain purely metallic structures. The manufactured bipolar plates show promising electric behaviour. In the current state of the project, bipolar plates with undercuts and new materials combinations are in the centre of the investigations. (orig.)

  5. ¹³C NMR-distance matrix descriptors: optimal abstract 3D space granularity for predicting estrogen binding.

    Slavov, Svetoslav H; Geesaman, Elizabeth L; Pearce, Bruce A; Schnackenberg, Laura K; Buzatu, Dan A; Wilkes, Jon G; Beger, Richard D

    2012-07-23

    An improved three-dimensional quantitative spectral data-activity relationship (3D-QSDAR) methodology was used to build and validate models relating the activity of 130 estrogen receptor binders to specific structural features. In 3D-QSDAR, each compound is represented by a unique fingerprint constructed from (13)C chemical shift pairs and associated interatomic distances. Grids of different granularity can be used to partition the abstract fingerprint space into congruent "bins" for which the optimal size was previously unexplored. For this purpose, the endocrine disruptor knowledge base data were used to generate 50 3D-QSDAR models with bins ranging in size from 2 ppm × 2 ppm × 0.5 Å to 20 ppm × 20 ppm × 2.5 Å, each of which was validated using 100 training/test set partitions. Best average predictivity in terms of R(2)test was achieved at 10 ppm ×10 ppm × Z Å (Z = 0.5, ..., 2.5 Å). It was hypothesized that this optimum depends on the chemical shifts' estimation error (±4.13 ppm) and the precision of the calculated interatomic distances. The highest ranked bins from partial least-squares weights were found to be associated with structural features known to be essential for binding to the estrogen receptor.

  6. The 3D simulation and optimized management model of groundwater systems based on ecoenvironmental water demand

    2002-01-01

    Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater's economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da'an in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.

  7. Robust Topology Optimization Based on Stochastic Collocation Methods under Loading Uncertainties

    Qinghai Zhao

    2015-01-01

    Full Text Available A robust topology optimization (RTO approach with consideration of loading uncertainties is developed in this paper. The stochastic collocation method combined with full tensor product grid and Smolyak sparse grid transforms the robust formulation into a weighted multiple loading deterministic problem at the collocation points. The proposed approach is amenable to implementation in existing commercial topology optimization software package and thus feasible to practical engineering problems. Numerical examples of two- and three-dimensional topology optimization problems are provided to demonstrate the proposed RTO approach and its applications. The optimal topologies obtained from deterministic and robust topology optimization designs under tensor product grid and sparse grid with different levels are compared with one another to investigate the pros and cons of optimization algorithm on final topologies, and an extensive Monte Carlo simulation is also performed to verify the proposed approach.

  8. A level set method for reliability-based topology optimization of compliant mechanisms

    2008-01-01

    Based on the level set model and the reliability theory, a numerical approach of reliability-based topology optimization for compliant mechanisms with multiple inputs and outputs is presented. A multi-objective topology optimal model of compliant mechanisms considering uncertainties of the loads, material properties, and member geometries is developed. The reliability analysis and topology optimization are integrated in the optimal iterative process. The reliabilities of the compliant mechanisms are evaluated by using the first order reliability method. Meanwhile, the problem of structural topology optimization is solved by the level set method which is flexible in handling complex topological changes and concise in describing the boundary shape of the mechanism. Numerical examples show the importance of considering the stochastic nature of the compliant mechanisms in the topology optimization process.

  9. Posture parameters optimization of a structured light 3D angle measuring system

    2015-01-01

    To improve the measurement precision of the structured light target angle, this paper studies the relation between the structured light system parameters and measurement accuracy of the angle. Firstly, the main system structure parameters influencing the angle measurement precision are analyzed based on the structured light measurement principle; secondly, simulation research on the laws of how the structured parameters influence the angle measurement precision are conducted, and the optimize...

  10. A treatment planning code for inverse planning and 3D optimization in hadrontherapy.

    Bourhaleb, F; Marchetto, F; Attili, A; Pittà, G; Cirio, R; Donetti, M; Giordanengo, S; Givehchi, N; Iliescu, S; Krengli, M; La Rosa, A; Massai, D; Pecka, A; Pardo, J; Peroni, C

    2008-09-01

    The therapeutic use of protons and ions, especially carbon ions, is a new technique and a challenge to conform the dose to the target due to the energy deposition characteristics of hadron beams. An appropriate treatment planning system (TPS) is strictly necessary to take full advantage. We developed a TPS software, ANCOD++, for the evaluation of the optimal conformal dose. ANCOD++ is an analytical code using the voxel-scan technique as an active method to deliver the dose to the patient, and provides treatment plans with both proton and carbon ion beams. The iterative algorithm, coded in C++ and running on Unix/Linux platform, allows the determination of the best fluences of the individual beams to obtain an optimal physical dose distribution, delivering a maximum dose to the target volume and a minimum dose to critical structures. The TPS is supported by Monte Carlo simulations with the package GEANT3 to provide the necessary physical lookup tables and verify the optimized treatment plans. Dose verifications done by means of full Monte Carlo simulations show an overall good agreement with the treatment planning calculations. We stress the fact that the purpose of this work is the verification of the physical dose and a next work will be dedicated to the radiobiological evaluation of the equivalent biological dose.

  11. Topology and sizing optimization of discrete structures using a cooperative coevolutionary genetic algorithm with independent ground structures

    Zhong, Wei; Su, Ruiyi; Gui, Liangjin; Fan, Zijie

    2016-06-01

    This article proposes a method called the cooperative coevolutionary genetic algorithm with independent ground structures (CCGA-IGS) for the simultaneous topology and sizing optimization of discrete structures. An IGS strategy is proposed to enhance the flexibility of the optimization by offering two separate design spaces and to improve the efficiency of the algorithm by reducing the search space. The CCGA is introduced to divide a complex problem into two smaller subspaces: the topological and sizing variables are assigned into two subpopulations which evolve in isolation but collaborate in fitness evaluations. Five different methods were implemented on 2D and 3D numeric examples to test the performance of the algorithms. The results demonstrate that the performance of the algorithms is improved in terms of accuracy and convergence speed with the IGS strategy, and the CCGA converges faster than the traditional GA without loss of accuracy.

  12. Optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling

    Li, Y.; Han, B.; Métivier, L.; Brossier, R.

    2016-09-01

    We investigate an optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling. An anti-lumped mass strategy is incorporated to minimize the numerical dispersion. The optimal finite-difference coefficients and the mass weighting coefficients are obtained by minimizing the misfit between the normalized phase velocities and the unity. An iterative damped least-squares method, the Levenberg-Marquardt algorithm, is utilized for the optimization. Dispersion analysis shows that the optimal fourth-order scheme presents less grid dispersion and anisotropy than the conventional fourth-order scheme with respect to different Poisson's ratios. Moreover, only 3.7 grid-points per minimum shear wavelength are required to keep the error of the group velocities below 1%. The memory cost is then greatly reduced due to a coarser sampling. A parallel iterative method named CARP-CG is used to solve the large ill-conditioned linear system for the frequency-domain modeling. Validations are conducted with respect to both the analytic viscoacoustic and viscoelastic solutions. Compared with the conventional fourth-order scheme, the optimal scheme generates wavefields having smaller error under the same discretization setups. Profiles of the wavefields are presented to confirm better agreement between the optimal results and the analytic solutions.

  13. Topological Optimization of the Evaluation of Finite Element Matrices

    Kirby, Robert C; Scott, L Ridgway; Terrel, Andy R; 10.1137/050635547

    2012-01-01

    We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization.

  14. Geometric constraints for shape and topology optimization in architectural design

    Dapogny, Charles; Faure, Alexis; Michailidis, Georgios; Allaire, Grégoire; Couvelas, Agnes; Estevez, Rafael

    2017-02-01

    This work proposes a shape and topology optimization framework oriented towards conceptual architectural design. A particular emphasis is put on the possibility for the user to interfere on the optimization process by supplying information about his personal taste. More precisely, we formulate three novel constraints on the geometry of shapes; while the first two are mainly related to aesthetics, the third one may also be used to handle several fabrication issues that are of special interest in the device of civil structures. The common mathematical ingredient to all three models is the signed distance function to a domain, and its sensitivity analysis with respect to perturbations of this domain; in the present work, this material is extended to the case where the ambient space is equipped with an anisotropic metric tensor. Numerical examples are discussed in two and three space dimensions.

  15. Designing Meta Material Slabs Exhibiting Negative Refraction Using Topology Optimization

    Christiansen, Rasmus Ellebæk; Sigmund, O.

    2016-01-01

    This paper proposes a topology optimization based approach for designing meta materials exhibiting a desired negative refraction with high transmission at a given angle of incidence and frequency. The approach considers a finite slab of meta material consisting of axis-symmetric designable unit...... cells subjected to an exterior field. The unit cell is designed to achieve the desired properties based on tailoring the response of the meta material slab underthe exterior field. The approach is directly applicable to physical problems modeled by the Helmholtz equation, such as acoustic, elastic...... and electromagnetic wave problems. Acoustic meta materials with unit cell size on the order of half the wave length are considered as examples. Optimized designs are presented and their performance under varying frequency and angle of incidence is investigated....

  16. Topology optimization of an electronics cover plate with respect to eigenfrequencies

    A. Kristensen, Anders Schmidt

    In the present paper it is illustrated how topology optimization with respect to eigenfrequency can be applied effectively in the product development process. The topology optimization code is implemented in ANSYS by a so called UPF. The maximization of eigenfrequency as objective is invoked...... into the existing code. As an example is chosen an electronics cover plate. The resulting design devised by the topology optimization yield a significant higher eigenfrequency than obtained by traditional design methods and experience....

  17. Topology Optimization and Performance Calculation for Control Arms of a Suspension

    2014-01-01

    Control Arm (CA) of a suspension plays an important role in the automotive ride comfort and handling stability. In this paper, the topology optimization model including ball joints and bushing for topology optimization of an aluminium CA is established, where a ball joint is simplified as rigid elements and the elastic properties of a rubber bushing are estimated using Mooney-Rivlin constitutive law. A method for treating with multiple loads in topology optimization of CA is presented. Inerti...

  18. A METHOD FOR TOPOLOGICAL OPTIMIZATION OF STRUCTURES WITH DISCRETE VARIABLES UNDER DYNAMIC STRESS AND DISPLACEMENT CONSTRAINTS

    石连栓; 孙焕纯; 冯恩民

    2001-01-01

    A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution.

  19. Topology optimization of pulse shaping filters using the Hilbert transform envelope extraction

    Lazarov, Boyan Stefanov; Matzen, René; Elesin, Yuriy

    2011-01-01

    Time domain topology optimization is applied to design pulse shaping filters. The objective function depends on the pulse envelope, which is extracted by utilizing the Hilbert transform. The gradients with respect to the topology optimization variables are derived, and the optimization methodology...

  20. Newton-type method for the variational discretization of topology optimization problems

    Evgrafov, Anton

    2013-01-01

    We present a locally quadratically convergent optimization algorithm for solving topology optimization problems. The distinguishing feature of the algorithm is to treat the design as a smooth function of the state and not vice versa as in the traditional nested approach to topology optimization, ...

  1. EPSILON-CONTINUATION APPROACH FOR TRUSS TOPOLOGY OPTIMIZATION

    GUO Xu; CHENG Gengdong

    2004-01-01

    In the present paper, a so-called epsilon-continuation approach is proposed for the solution of singular optimum in truss topology optimization problems. This approach is an improved version of the epsilon-relaxed approach developed by the authors previously. In the proposed approach,we start the optimization process from a relaxation parameter with a relatively large value and obtain a solution by applying the epsilon-relaxed approach. Then we decrease the value of the relaxation parameter by a small amount and choose the optimal solution found from the previous optimization process as the initial design for the next optimization. This continuation process is continued until a small termination value of the relaxation parameter is reached. Convergence analysis of the proposed approach is also presented. Numerical examples show that this approach can alleviate the dependence of the final solution on the initial choice of the design variable and enhance the probability of finding the singular optimum from rather arbitrary initial designs.

  2. Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.

    2017-01-01

    We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.

  3. APPLICATION OF VIRTUAL LAMINATED ELEMENT IN THE TOPOLOGY OPTIMIZATION OF STRUCTURES

    徐兴; 李芳; 凌道盛

    2001-01-01

    This paper presents the topology optimization design of structures composed of plane stress elements. The authors' proposed method of topology optimization by virtual laminated element is based on the Evolutionary Structural Optimization (ESO) method of linear elasticity, but dose not require formation of as many elements as the conventional ESO method. The presented method has the important feature of reforming the stiffness matrix in generating optimum topology. Calculation results showed that this algorithm is simple and effective and can be applied for topology optimization of structures.

  4. Shape optimization of 3D curved slots and its application to the squirrel-cage elastic support design

    2010-01-01

    The squirrel-cage elastic support is one of the most important components of an aero-engine rotor system.A proper structural design will favor the static and dynamic performances of the system.In view of the deficiency of the current shape optimization techniques,a new mapping approach is proposed to define shape design variables based on the parametric equations of 3D curves and surfaces.It is then applied for the slot shape optimization of a squirrel-cage elastic support.To this end,an automatic design procedure that integrates the Genetic Algorithm (GA) is developed to solve the problem.Two typical examples with different shape constraints are considered.Numerical results provide reasonable optimum designs for the improvement of stiffness and strength of the squirrel-cage elastic support.

  5. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    Luquan Ren

    2017-03-01

    Full Text Available Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA. The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  6. 3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving constraint

    Qiu, Wu; Yuan, Jing; Fenster, Aaron

    2016-03-01

    We introduce an efficient and novel convex optimization-based approach to the challenging non-rigid registration of 3D prostate magnetic resonance (MR) and transrectal ultrasound (TRUS) images, which incorporates a new volume preserving constraint to essentially improve the accuracy of targeting suspicious regions during the 3D TRUS guided prostate biopsy. Especially, we propose a fast sequential convex optimization scheme to efficiently minimize the employed highly nonlinear image fidelity function using the robust multi-channel modality independent neighborhood descriptor (MIND) across the two modalities of MR and TRUS. The registration accuracy was evaluated using 10 patient images by calculating the target registration error (TRE) using manually identified corresponding intrinsic fiducials in the whole prostate gland. We also compared the MR and TRUS manually segmented prostate surfaces in the registered images in terms of the Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). Experimental results showed that the proposed method with the introduced volume-preserving prior significantly improves the registration accuracy comparing to the method without the volume-preserving constraint, by yielding an overall mean TRE of 2:0+/-0:7 mm, and an average DSC of 86:5+/-3:5%, MAD of 1:4+/-0:6 mm and MAXD of 6:5+/-3:5 mm.

  7. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

    Lai, Xing-ping; Shan, Peng-fei; Cai, Mei-feng; Ren, Fen-hua; Tan, Wen-hui

    2015-01-01

    High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The physico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally; specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acoustic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field photogrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model results indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring information. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.

  8. Particle sedimentation in curved tubes: A 3D simulation and optimization for treatment of vestibular vertigo

    White, Brian; Squires, Todd M.; Hain, Timothy C.; Stone, Howard A.

    2003-11-01

    Benign paroxysmal positional vertigo (BPPV) is a mechanical disorder of the vestibular system where micron-size crystals abnormally drift into the semicircular canals of the inner ear that sense angular motion of the head. Sedimentation of these crystals causes sensation of motion after true head motion has stopped: vertigo results. The usual clinical treatment is through a series of head maneuvers designed to move the particles into a less sensitive region of the canal system. We present a three-dimensional model to simulate treatment of BPPV by determining the complete hydrodynamic motion of the particles through the course of a therapeutic maneuver while using a realistic representation of the actual geometry. Analyses of clinical maneuvers show the parameter range for which they are effective, and indicate inefficiencies in current practice. In addition, an optimization process determines the most effective head maneuver, which significantly differs from those currently in practice.

  9. Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography.

    Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Shi, Linxi; Vedantham, Srinivasan; Poplack, Steven P; Karellas, Andrew; Pogue, Brian W; Paulsen, Keith D

    2015-12-01

    Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient's breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results.

  10. Dose optimization in gynecological 3D image based interstitial brachytherapy using martinez universal perineal interstitial template (MUPIT -an institutional experience

    Pramod Kumar Sharma

    2014-01-01

    Full Text Available The aim of this study was to evaluate the dose optimization in 3D image based gynecological interstitial brachytherapy using Martinez Universal Perineal Interstitial Template (MUPIT. Axial CT image data set of 20 patients of gynecological cancer who underwent external radiotherapy and high dose rate (HDR interstitial brachytherapy using MUPIT was employed to delineate clinical target volume (CTV and organs at risk (OARs. Geometrical and graphical optimization were done for optimum CTV coverage and sparing of OARs. Coverage Index (CI, dose homogeneity index (DHI, overdose index (OI, dose non-uniformity ratio (DNR, external volume index (EI, conformity index (COIN and dose volume parameters recommended by GEC-ESTRO were evaluated. The mean CTV, bladder and rectum volume were 137 ± 47cc, 106 ± 41cc and 50 ± 25cc, respectively. Mean CI, DHI and DNR were 0.86 ± 0.03, 0.69 ± 0.11 and 0.31 ± 0.09, while the mean OI, EI, and COIN were 0.08 ± 0.03, 0.07 ± 0.05 and 0.79 ± 0.05, respectively. The estimated mean CTV D90 was 76 ± 11Gy and D100 was 63 ± 9Gy. The different dosimetric parameters of bladder D2cc, D1cc and D0.1cc were 76 ± 11Gy, 81 ± 14Gy, and 98 ± 21Gy and of rectum/recto-sigmoid were 80 ± 17Gy, 85 ± 13Gy, and 124 ± 37Gy, respectively. Dose optimization yields superior coverage with optimal values of indices. Emerging data on 3D image based brachytherapy with reporting and clinical correlation of DVH parameters outcome is enterprizing and provides definite assistance in improving the quality of brachytherapy implants. DVH parameter for urethra in gynecological implants needs to be defined further.

  11. SOME RESULTS ON OPTIMAL TOPOLOGY DESIGN OF TRUSS WITH UNILATERAL CONTACT CONSTRAINTS

    Yang Deqing; Liu Zhengxing; Xuan Zhaocheng

    2000-01-01

    The optimal topology design of truss structures concerning stress and frictionless unilateral contact displacement constraints is investigated. The existence of ununique optimal solution under contact gaps is found. This shows that the contact conditions have an effect on structural topology, and different ini tial contact gaps may lead to different structural topologies. To avoid the singular optima in structural topology optimization in multiple loading cases, an ε-relaxed method is adopted to establish the relaxing topology opti mization formulations. The problem is solved by means of a two-level optimization method. In the first sub level, the solution of the frictionless unilateral contact problem is obtained by solving an equivalent quadratic programming. In the second sublevel, topology optimization of truss is carried out by an e-relaxed method. The validity of the method proposed is verified by computational results.

  12. Optimization of vascularization-­inducing hydrogel bioinks for 3D bioprinting

    Lui, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moya, Monica L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-12

    This study seeks to validate the reproducibility of previous bioprinting work at Lawrence Livermore National Laboratory (LLNL) on a new Aerotech motion controller system and to modify an existing bioink, fibrin, by adding varying percent volumes of hyaluronic acid (HA). Endothelial and fibroblast cells bioprinted in fibrin gels using the Aerotech system were confirmed to be more than 77 percent viable after one day, and all bioprinted samples retained sterility after one week of culture. To characterize cell behavior in fibrin with HA addition, static co-­culture gels with varying percent volumes of HA were cultured in vitro for one week. Resulting confocal microscope images showed increased cell network formation in all concentrations of HA compared to the control (no HA), and rheological tests mimicking static gel compositions displayed positive correlations between gelation time, gel stiffness (G’), and hyaluronic acid concentration. Although the current data is insufficient to quantitatively associate HA concentration with the level of cell vascularization, future work will aim to develop a targeted HA concentration in fibrin for maximum cell network formation, to optimize the printing process parameters for this new bioink composition, and to analyze cell viability in bioprinted fibrin-­HA structures.

  13. 3D numerical simulation and structural optimization of the rod baffle heat exchanger

    YAN Liang-wen; PAN Lei; KAN Shu-lin

    2009-01-01

    Because of the complexities of fluid dynamics equations and the structure of heat exchangers, few theoretical solutions have been acquired to specify the shell side characteristics of the rod baffle heat exchanger (RBHE). Based on the platform of PHEONICS version 3.5.1, a three-dimensionai numerical method for predicting the turbulent fluid flow behavior in the shell side of the rod baffle heat exchangers is developed in this paper. With this method, modeling of the tube bundle is carried out based on the porous media concept using volumetric porosities and applicable flow resistance correlations. Turbulence effects are modeled using a standard κ-ε model. It is shown that the simulation results and experimental results are in good agreement in the shell side. The maximum absolute deviation value of pressure drops is less than 5%, and that of the heat transfer coefficients is less than 8%. Furthermore, the numerical model is used to optimize the structure of the RBHE and improves its performance.

  14. On topology optimization of acoustic metamaterial lattices for locally resonant bandgaps of flexural waves

    Hedayatrasa, Saeid; Uddin, Mohammad

    2016-01-01

    Optimized topology of bi-material acoustic metamaterial lattice plates is studied for maximized locally resonant bandgap of flexural guided waves. Optimized layout of the two relatively stiff and compliant material phases in the design domain is explored, free from any restrictions on the topology and shape of the relevant domains. Multiobjective optimization is performed through which maximized effective stiffness or minimized overall mass of the bandgap topology is additionally ensured. Extreme and selected intermediate optimized topologies of Pareto fronts are presented and their bandgap efficiencies and effective stiffness are compared. The bi-material constitution of selected topologies are further altered and modal band structure of resultant multilateral and porous designs are evaluated. Novel, core-shell like, locally resonant bandgaps are introduced. It is shown that how the bandgap efficiency and structural mass and/or stiffness can be optimized through optimized microstructural design of the matrix...

  15. Topological Effects and Performance Optimization in Transportation Continuous Network Design

    Jianjun Wu

    2014-01-01

    Full Text Available Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.

  16. Topology optimization of coated structures and material interface problems

    Clausen, Anders; Aage, Niels; Sigmund, Ole

    2015-01-01

    This paper presents a novel method for including coated structures and prescribed material interface properties into the minimum compliance topology optimization problem. Several elements of the method are applicable to a broader range of interface problems. The approach extends the standard SIMP...... method by including the normalized norm of the spatial gradient of the design field into the material interpolation function, enforcing coating material at interfaces by attributing particular properties. The length scales of the base structure and the coating are separated by introducing a two......-step filtering/projection approach. The modeled coating thickness is derived analytically, and the coating is shown to be accurately controlled and applied in a highly uniform manner over the structure. An alternative interpretation of the model is to perform single-material design for additive manufacturing...

  17. Topology optimization of embedded piezoelectric actuators considering control spillover effects

    Gonçalves, Juliano F.; De Leon, Daniel M.; Perondi, Eduardo A.

    2017-02-01

    This article addresses the problem of active structural vibration control by means of embedded piezoelectric actuators. The topology optimization method using the solid isotropic material with penalization (SIMP) approach is employed in this work to find the optimum design of actuators taken into account the control spillover effects. A coupled finite element model of the structure is derived assuming a two-phase material and this structural model is written into the state-space representation. The proposed optimization formulation aims to determine the distribution of piezoelectric material which maximizes the controllability for a given vibration mode. The undesirable effects of the feedback control on the residual modes are limited by including a spillover constraint term containing the residual controllability Gramian eigenvalues. The optimization of the shape and placement of the conventionally embedded piezoelectric actuators are performed using a Sequential Linear Programming (SLP) algorithm. Numerical examples are presented considering the control of the bending vibration modes for a cantilever and a fixed beam. A Linear-Quadratic Regulator (LQR) is synthesized for each case of controlled structure in order to compare the influence of the additional constraint.

  18. Topology

    Hocking, John G

    1988-01-01

    ""As textbook and reference work, this is a valuable addition to the topological literature."" - Mathematical ReviewsDesigned as a text for a one-year first course in topology, this authoritative volume offers an excellent general treatment of the main ideas of topology. It includes a large number and variety of topics from classical topology as well as newer areas of research activity.There are four set-theoretic chapters, followed by four primarily algebraic chapters. Chapter I covers the fundamentals of topological and metrical spaces, mappings, compactness, product spaces, the Tychonoff t

  19. Topology optimized design of a transverse electric higher order mode converter

    Frellsen, Louise Floor; Ding, Yunhong; Sigmund, Ole

    2016-01-01

    present the possibility of employing topology optimization (TO) to design a device that allows for reversible conversion between the transverse electric fundamental even (TE0) mode and the second higher order odd mode (TE2). Topology optimization is an iterative inverse design process, where repeated...

  20. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    of topology optimization with elastoplastic material modeling. Concrete and steel are both considered as elastoplastic materials, including the appropriate yield criteria and post‐yielding response. The same approach can be applied also for topology optimization of other material compositions where nonlinear...

  1. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

    Xing-ping Lai; Peng-fei Shan; Mei-feng Cai; Fen-hua Ren; Wen-hui Tan

    2015-01-01

    High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The phys-ico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally;specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acous-tic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field pho-togrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model re-sults indicated a clear correlation between the model’s destabilization resulting from slope excavation and the collected monitoring informa-tion. During the model simulation, the overall angle of the slope increased by 1–6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.

  2. Selection of candidate wells and optimization of conformance treatment design in the Barrancas Field using a 3D conformance simulator

    Crosta, Dante; Elitseche, Luis [Repsol YPF (Argentina); Gutierrez, Mauricio; Ansah, Joe; Everett, Don [Halliburton Argentina S.A., Buenos Aires (Argentina)

    2004-07-01

    Minimizing the amount of unwanted water production is an important goal at the Barrancas field. This paper describes a selection process for candidate injection wells that is part of a pilot conformance project aimed at improving vertical injection profiles, reducing water cut in producing wells, and improving ultimate oil recovery from this field. The well selection process is based on a review of limited reservoir information available for this field to determine inter-well communications. The methodology focuses on the best use of available information, such as production and injection history, well intervention files, open hole logs and injectivity surveys. After the candidate wells were selected and potential water injection channels were identified, conformance treatment design and future performance of wells in the selected pilot area were evaluated using a new 3 -D conformance simulator, developed specifically for optimization of the design and placement of unwanted fluid shut-off treatments. Thus, when acceptable history match ing of the pilot area production was obtained, the 3 -D simulator was used to: evaluate the required volume of selected conformance treatment fluid; review expected pressures and rates during placement;. model temperature behavior; evaluate placement techniques, and forecast water cut reduction and incremental oil recovery from the producers in this simulated section of the pilot area. This paper outlines a methodology for selecting candidate wells for conformance treatments. The method involves application of several engineering tools, an integral component of which is a user-friendly conformance simulator. The use of the simulator has minimized data preparation time and allows the running of sensitivity cases quickly to explore different possible scenarios that best represent the reservoir. The proposed methodology provides an efficient means of identifying conformance problems and designing optimized solutions for these individual

  3. Constrained non-linear optimization in 3D reflexion tomography; Problemes d'optimisation non-lineaire avec contraintes en tomographie de reflexion 3D

    Delbos, F.

    2004-11-01

    Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)

  4. Topology

    Kuratowski, Kazimierz

    1966-01-01

    Topology, Volume I deals with topology and covers topics ranging from operations in logic and set theory to Cartesian products, mappings, and orderings. Cardinal and ordinal numbers are also discussed, along with topological, metric, and complete spaces. Great use is made of closure algebra. Comprised of three chapters, this volume begins with a discussion on general topological spaces as well as their specialized aspects, including regular, completely regular, and normal spaces. Fundamental notions such as base, subbase, cover, and continuous mapping, are considered, together with operations

  5. Optimization of Open Boundary Conditions in a 3D Internal Tidal Model with the Adjoint Method around Hawaii

    Anzhou Cao

    2013-01-01

    Full Text Available Based on the theory of inverse problem, the optimization of open boundary conditions (OBCs in a 3D internal tidal model is investigated with the adjoint method. Fourier coefficients of M2 internal tide on four open boundaries, which are regarded as OBCs, are inverted simultaneously. During the optimization, the steepest descent method is used to minimize cost function. The reasonability and feasibility of the model are tested by twin experiments (TEs. In TE1, OBCs on four open boundaries are successfully inverted by using independent point (IP strategy, suggesting that IP strategy is useful in parameter estimation. Results of TE2 indicate that the model is effective even by assimilating inaccurate “observations.” Based on conclusions of TEs, the M2 internal tide around Hawaii is simulated by assimilating T/P data in practical experiment. The simulated cochart shows good agreement with that obtained from the Oregon State University tidal model and T/P observations. Careful inspection shows that the major difference between simulated results and OSU model results is short-scale fluctuations superposed on coamplitude lines, which can be treated as the surface manifestation modulated by the internal tide. The computed surface manifestation along T/P tracks is comparable to the estimation in previous work.

  6. LEVEL SET METHOD FOR TOPOLOGICAL OPTIMIZATION APPLYING TO STRUCTURE,MECHANISM AND MATERIAL DESIGNS

    Mei Yulin; Wang Xiaoming

    2004-01-01

    Based on a level set model,a topology optimization method has been suggested recently.It uses a level set to express the moving structural boundary,which can flexibly handle complex topological changes.By combining vector level set models with gradient projection technology,the level set method for topological optimization is extended to a topological optimization problem with multi-constraints,multi-materials and multi-load cases.Meanwhile,an appropriate nonlinear speed mapping is established in the tangential space of the active constraints for a fast convergence.Then the method is applied to structure designs,mechanism and material designs by a number of benchmark examples.Finally,in order to further improve computational efficiency and overcome the difficulty that the level set method cannot generate new material interfaces during the optimization process,the topological derivative analysis is incorporated into the level set method for topological optimization,and a topological derivative and level set algorithm for topological optimization is proposed.

  7. A new three-dimensional topology optimization method based on moving morphable components (MMCs)

    Zhang, Weisheng; Li, Dong; Yuan, Jie; Song, Junfu; Guo, Xu

    2017-04-01

    In the present paper, a new method for solving three-dimensional topology optimization problem is proposed. This method is constructed under the so-called moving morphable components based solution framework. The novel aspect of the proposed method is that a set of structural components is introduced to describe the topology of a three-dimensional structure and the optimal structural topology is found by optimizing the layout of the components explicitly. The standard finite element method with ersatz material is adopted for structural response analysis and the shape sensitivity analysis only need to be carried out along the structural boundary. Compared to the existing methods, the description of structural topology is totally independent of the finite element/finite difference resolution in the proposed solution framework and therefore the number of design variables can be reduced substantially. Some widely investigated benchmark examples, in the three-dimensional topology optimization designs, are presented to demonstrate the effectiveness of the proposed approach.

  8. SEQUENTIAL CONVEX PROGRAMMING METHODS FOR SOLVING LARGE TOPOLOGY OPTIMIZATION PROBLEMS: IMPLEMENTATION AND COMPUTATIONAL RESULTS

    Qin Ni; Ch. Zillober; K. Schittkowski

    2005-01-01

    In this paper, we describe a method to solve large-scale structural optimization problems by sequential convex programming (SCP). A predictor-corrector interior point method is applied to solve the strictly convex subproblems. The SCP algorithm and the topology optimization approach are introduced. Especially, different strategies to solve certain linear systems of equations are analyzed. Numerical results are presented to show the efficiency of the proposed method for solving topology optimization problems and to compare different variants.

  9. Topology optimization using bi-directional evolutionary structural optimization based on the element-free Galerkin method

    Shobeiri, Vahid

    2016-03-01

    In this article, the bi-directional evolutionary structural optimization (BESO) method based on the element-free Galerkin (EFG) method is presented for topology optimization of continuum structures. The mathematical formulation of the topology optimization is developed considering the nodal strain energy as the design variable and the minimization of compliance as the objective function. The EFG method is used to derive the shape functions using the moving least squares approximation. The essential boundary conditions are enforced by the method of Lagrange multipliers. Several topology optimization problems are presented to show the effectiveness of the proposed method. Many issues related to topology optimization of continuum structures, such as chequerboard patterns and mesh dependency, are studied in the examples.

  10. Spring-joint method for topology optimization of planar passive compliant mechanisms

    Jin, Mohui; Zhang, Xianmin; Zhu, Benliang; Wang, Nianfeng

    2013-11-01

    There is seldom approach developed for the initial topology design of flexure-based compliant mechanisms. The most commonly-used approaches, which start with an existing rigid-body mechanism, do not consider the performances between different topologies. Moreover, they rely heavily on the rigid-body topology, therefore limit the diversity of compliant mechanisms topology. To obtain the optimal initial topology of such mechanisms directly from problem specifications without referencing to the existing mechanism topologies, a spring-joint method is presented for a restricted class of the serial passive flexure-based compliant mechanisms, which are the building blocks of parallel compliant mechanisms. The topology of the compliant mechanisms is represented by a serial spring-joint mechanism(SSJM) that is a traditional rigid-body mechanism with a torsional spring acting on each joint, and is described by position vectors of the spring-joints. A simplified compliance matrix, determined by the position vectors, is used to characterize the tip of the SSJM kinematically, and is optimized to ensure the desired freedoms of the compliant mechanisms during optimization. The topology optimization problem is formulated as finding out the optimal position of the spring-joints in a blank design domain with an objective function derived from the simplified compliance matrix. In design examples, syntheses of the compliant mechanisms with both single freedom and two decoupled freedoms are presented to illustrate the proposed method. The proposed method provides a new way for the initial design of flexure-based compliant mechanisms.

  11. Optimal PMU placement using topology transformation method in power systems.

    Rahman, Nadia H A; Zobaa, Ahmed F

    2016-09-01

    Optimal phasor measurement units (PMUs) placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP). The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.

  12. Improving 3D spatial queries search: newfangled technique of space filling curves in 3D city modeling

    Uznir, U.; Anton, François; Suhaibah, A.;

    2013-01-01

    , retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects....... In this research, we propose an opponent data constellation technique of space-filling curves (space-filling curve) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings...... web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method...

  13. Simulation and experimental validation of powertrain mounting bracket design obtained from multi-objective topology optimization

    Qinghai Zhao

    2015-06-01

    Full Text Available A framework of multi-objective topology optimization for vehicle powertrain mounting bracket design with consideration of multiple static and dynamic loading conditions is developed in this article. Incorporating into the simplified isotropic material with penalization model, compromise programming method is employed to describe the multi-objective and multi-stiffness topology optimization under static loading conditions, whereas mean eigenvalue formulation is proposed to analyze vibration optimization. To yield well-behaved optimal topologies, minimum member size and draw constraint are settled for meeting manufacturing feasibility requirements. The ultimate mounting bracket is reconstructed based on the optimum results. Numerical analyses of the bracket are performed, followed by physical tests. It is proven that topology optimization methodology is promising and effective for vehicle component design.

  14. Mobile 3D television: development of core technological elements and user-centered evaluation methods toward an optimized system

    Gotchev, Atanas; Smolic, Aljoscha; Jumisko-Pyykkö, Satu; Strohmeier, Dominik; Bozdagi Akar, Gozde; Merkle, Philipp; Daskalov, Nikolai

    2009-02-01

    A European consortium of six partners has been developing core technological components of a mobile 3D television system over DVB-H channel. In this overview paper, we present our current results on developing optimal methods for stereo-video content creation, coding and transmission and emphasize their significance for the power-constrained mobile platform, equipped with auto-stereoscopic display. We address the user requirements by applying modern usercentered approaches taking into account different user groups and usage contexts in contrast to the laboratory assessment methods which, though standardized, offer limited applicability to real applications. To this end, we have been aiming at developing a methodological framework for the whole system development process. One of our goals has been to further develop the user-centered approach towards experienced quality of critical system components. In this paper, we classify different research methods and technological solutions analyzing their pros and constraints. Based on this analysis we present the user-centered methodological framework being used throughout the whole development process of the system and aimed at achieving the best performance and quality appealing to the end user.

  15. Highly optimized simulations on single- and multi-GPU systems of the 3D Ising spin glass model

    Lulli, M.; Bernaschi, M.; Parisi, G.

    2015-11-01

    We present a highly optimized implementation of a Monte Carlo (MC) simulator for the three-dimensional Ising spin-glass model with bimodal disorder, i.e., the 3D Edwards-Anderson model running on CUDA enabled GPUs. Multi-GPU systems exchange data by means of the Message Passing Interface (MPI). The chosen MC dynamics is the classic Metropolis one, which is purely dissipative, since the aim was the study of the critical off-equilibrium relaxation of the system. We focused on the following issues: (i) the implementation of efficient memory access patterns for nearest neighbours in a cubic stencil and for lagged-Fibonacci-like pseudo-Random Numbers Generators (PRNGs); (ii) a novel implementation of the asynchronous multispin-coding Metropolis MC step allowing to store one spin per bit and (iii) a multi-GPU version based on a combination of MPI and CUDA streams. Cubic stencils and PRNGs are two subjects of very general interest because of their widespread use in many simulation codes.

  16. Optimal placement of piezoelectric active bars in vibration control by topological optimization

    Guozhong Zhao; Jian Wang; Yuanxian Gu

    2008-01-01

    A continuous variable optimization method and a topological optimization method are proposed for the vibra-tion control of piezoelectric truss structures by means of the optimal placements of active bars. In this optimization model, a zero-one discrete variable is defined in order to solve the optimal placement of piezoelectric active bars. At the same time, the feedback gains are also optimized as conti-nuous design variables. A two-phase procedure is proposed to solve the optimization problem. The sequential linear pro-gramming algorithm is used to solve optimization problem and the sensitivity analysis is carried out for objective and constraint functions to make linear approximations. On the basis of the Newmark time integration of structural tran-sient dynamic responses, a new sensitivity analysis method is developed in this paper for the vibration control problem of piezoelectric truss structures with respect to various kinds of design variables. Numerical examples are given in the paper to demonstrate the effectiveness of the methods.

  17. Filters in topology optimization based on Helmholtz‐type differential equations

    Lazarov, Boyan Stefanov; Sigmund, Ole

    2011-01-01

    The aim of this paper is to apply a Helmholtz‐type partial differential equation as an alternative to standard density filtering in topology optimization problems. Previously, this approach has been successfully applied as a sensitivity filter. The usual filtering techniques in topology...

  18. Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables

    Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang

    2017-03-01

    The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.

  19. Topology

    Manetti, Marco

    2015-01-01

    This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.

  20. Optimized 3-D simulation method for modeling out-of-plane radiation in silicon photonic integrated circuits

    Westerveld, W.J.; Urbach, H.P.; Yousefi, M.

    2011-01-01

    We present an accurate and fast 3-D simulation scheme for out-of-plane grating couplers, based on 2-D rigorous [finite difference time domain (FDTD)] grating simulations, the effective index method, and the RayleighSommerfeld diffraction formula. In comparison with full 3-D FDTD simulations, the rms

  1. Topology Optimization Using Multiscale Finite Element Method for High-Contrast Media

    Lazarov, Boyan Stefanov

    2014-01-01

    . The approach is relatively easy for parallelization, due to the complete independence of the subproblems, and ensures contrast independent convergence of the iterative state problem solvers. Several modifications for reducing the computational cost in connection to topology optimization are discussed...

  2. Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method

    Goo, Seongyeol; Wang, Semyung; Kook, Junghwan

    2017-01-01

    This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...... is limited to low frequency applications due to considerable computational efforts. To this end, we propose a gradient-based topology optimization method that uses the hybrid FE-WBM whereby the entire domain of a problem is partitioned into design and non-design domains. In this respect, the FEM is used...... as a design domain of topology optimization, and the WBM is used as a non-design domain to increase computational efficiency. The adjoint variable method based on the hybrid FE-WBM is also proposed as a means of computing design sensitivities. Numerical examples are presented to demonstrate the effectiveness...

  3. Tailoring Macroscale Response of Mechanical and Heat Transfer Systems by Topology Optimization of Microstructural Details

    Alexandersen, Joe; Lazarov, Boyan Stefanov

    2015-01-01

    -contrast material parameters is proposed to alleviate the high computational cost associated with solving the discrete systems arising during the topology optimization process. Problems within important engineering areas, heat transfer and linear elasticity, are considered for exemplifying the approach...

  4. On the usefulness of non-gradient approaches in topology optimization

    Sigmund, Ole

    2011-01-01

    Topology optimization is a highly developed tool for structural design and is by now being extensively used in mechanical, automotive and aerospace industries throughout the world. Gradient-based topology optimization algorithms may efficiently solve fine-resolution problems with thousands and up...... appearing in the literature. This forum article discusses the practical and scientific relevance of publishing papers that use immense computational resources for solving simple problems for which there already exist efficient solution techniques.......Topology optimization is a highly developed tool for structural design and is by now being extensively used in mechanical, automotive and aerospace industries throughout the world. Gradient-based topology optimization algorithms may efficiently solve fine-resolution problems with thousands and up...

  5. A LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION WITH MULTI-CONSTRAINTS AND MULTI-MATERIALS

    MEI Yulin; WANG Xiaoming

    2004-01-01

    Combining the vector level set model, the shape sensitivity analysis theory with the gradient projection technique, a level set method for topology optimization with multi-constraints and multi-materials is presented in this paper. The method implicitly describes structural material interfaces by the vector level set and achieves the optimal shape and topology through the continuous evolution of the material interfaces in the structure. In order to increase computational efficiency for a fast convergence, an appropriate nonlinear speed mapping is established in the tangential space of the active constraints. Meanwhile, in order to overcome the numerical instability of general topology optimization problems, the regularization with the mean curvature flow is utilized to maintain the interface smoothness during the optimization process. The numerical examples demonstrate that the approach possesses a good flexibility in handling topological changes and gives an interface representation in a high fidelity, compared with other methods based on explicit boundary variations in the literature.

  6. 3D Building Model Fitting Using A New Kinetic Framework

    Brédif, Mathieu; Pierrot-Deseilligny, Marc; Maître, Henri

    2008-01-01

    We describe a new approach to fit the polyhedron describing a 3D building model to the point cloud of a Digital Elevation Model (DEM). We introduce a new kinetic framework that hides to its user the combinatorial complexity of determining or maintaining the polyhedron topology, allowing the design of a simple variational optimization. This new kinetic framework allows the manipulation of a bounded polyhedron with simple faces by specifying the target plane equations of each of its faces. It proceeds by evolving continuously from the polyhedron defined by its initial topology and its initial plane equations to a polyhedron that is as topologically close as possible to the initial polyhedron but with the new plane equations. This kinetic framework handles internally the necessary topological changes that may be required to keep the faces simple and the polyhedron bounded. For each intermediate configurations where the polyhedron looses the simplicity of its faces or its boundedness, the simplest topological mod...

  7. Unoriented 3d TFTs

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  8. 3D Numerical Optimization Modelling of Ivancich landslides (Assisi, Italy) via integration of remote sensing and in situ observations.

    Castaldo, Raffaele; De Novellis, Vincenzo; Lollino, Piernicola; Manunta, Michele; Tizzani, Pietro

    2015-04-01

    The new challenge that the research in slopes instabilities phenomena is going to tackle is the effective integration and joint exploitation of remote sensing measurements with in situ data and observations to study and understand the sub-surface interactions, the triggering causes, and, in general, the long term behaviour of the investigated landslide phenomenon. In this context, a very promising approach is represented by Finite Element (FE) techniques, which allow us to consider the intrinsic complexity of the mass movement phenomena and to effectively benefit from multi source observations and data. In this context, we perform a three dimensional (3D) numerical model of the Ivancich (Assisi, Central Italy) instability phenomenon. In particular, we apply an inverse FE method based on a Genetic Algorithm optimization procedure, benefitting from advanced DInSAR measurements, retrieved through the full resolution Small Baseline Subset (SBAS) technique, and an inclinometric array distribution. To this purpose we consider the SAR images acquired from descending orbit by the COSMO-SkyMed (CSK) X-band radar constellation, from December 2009 to February 2012. Moreover the optimization input dataset is completed by an array of eleven inclinometer measurements, from 1999 to 2006, distributed along the unstable mass. The landslide body is formed of debris material sliding on a arenaceous marl substratum, with a thin shear band detected using borehole and inclinometric data, at depth ranging from 20 to 60 m. Specifically, we consider the active role of this shear band in the control of the landslide evolution process. A large field monitoring dataset of the landslide process, including at-depth piezometric and geological borehole observations, were available. The integration of these datasets allows us to develop a 3D structural geological model of the considered slope. To investigate the dynamic evolution of a landslide, various physical approaches can be considered

  9. Simulation and experimental validation of powertrain mounting bracket design obtained from multi-objective topology optimization

    Qinghai Zhao; Xiaokai Chen; Lu Wang; Jianfeng Zhu; Zheng-Dong Ma; Yi Lin

    2015-01-01

    A framework of multi-objective topology optimization for vehicle powertrain mounting bracket design with consideration of multiple static and dynamic loading conditions is developed in this article. Incorporating into the simplified isotropic material with penalization model, compromise programming method is employed to describe the multi-objective and multi-stiffness topology optimization under static loading conditions, whereas mean eigenvalue formulation is proposed to analyze vibration op...

  10. Topology optimization based on moving deformable components: A new computational framework

    2014-01-01

    In the present work, a new computational framework for structural topology optimization based on the concept of moving deformable components is proposed. Compared with the traditional pixel or node point-based solution framework, the proposed solution paradigm can incorporate more geometry and mechanical information into topology optimization directly and therefore render the solution process more flexible. It also has the great potential to reduce the computational burden associated with top...

  11. An explicit parameterization for casting constraints in gradient driven topology optimization

    Gersborg, Allan Roulund; Andreasen, Casper Schousboe

    2011-01-01

    From a practical point of view it is often desirable to limit the complexity of a topology optimization design such that casting/milling type manufacturing techniques can be applied. In the context of gradient driven topology optimization this work studies how castable designs can be obtained by ...... by use of a Heaviside design parameterization in a specified casting direction. This reduces the number of design variables considerably and the approach is simple to implement....

  12. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  13. The impact of migration topology on the runtime of island models in dynamic optimization

    Lissovoi, Andrei; Witt, Carsten

    2016-01-01

    We introduce a simplified island model with behavior similar to the λ (1+1) islands optimizing the Maze fitness function, and investigate the effects of the migration topology on the ability of the simplified island model to track the optimum of a dynamic fitness function. More specifically, we...... prove that there exist choices of model parameters for which using a unidirectional ring as the migration topology allows the model to track the oscillating optimum through n Mazelike phases with high probability, while using a complete graph as the migration topology results in the island model losing...... track of the optimum with overwhelming probability. Additionally, we prove that if migration occurs only rarely, denser migration topologies may be advantageous. This serves to illustrate that while a less-dense migration topology may be useful when optimizing dynamic functions with oscillating behavior...

  14. Topology optimization: An effective method for designing front metallization patterns of solar cells

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2014-01-01

    Optimal front electrode design is one of the approaches to improve the performance of solar cells. This work introduces the application of topology optimization (TO) to design complex front metallization patterns for solar cells. TO optimizes the distribution of electrode material on the front surfa

  15. A new computer program for topological, visual analysis of 3D particle configurations based on visual representation of radial distribution function peaks as bonds

    Metere, Alfredo; Dzugutov, Mikhail

    2015-01-01

    We present a new program able to perform unique visual analysis on generic particle systems: PASYVAT (PArticle SYstem Visual Analysis Tool). More specifically, it can perform a selection of multiple interparticle distance ranges from a radial distribution function (RDF) plot and display them in 3D as bonds. This software can be used with any data set representing a system of particles in 3D. In this manuscript the reader will find a description of the program and its internal structure, with emphasis on its applicability in the study of certain particle configurations, obtained from classical molecular dynamics simulation in condensed matter physics.

  16. Topology optimization of unsteady flow problems using the lattice Boltzmann method

    Nørgaard, Sebastian Arlund; Sigmund, Ole; Lazarov, Boyan Stefanov

    2016-01-01

    This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems....... The optimization problem is solved with a gradient based method, and the design sensitivities are computed by solving the discrete adjoint problem. For moderate Reynolds number flows, it is demonstrated that topology optimization can successfully account for unsteady effects such as vortex shedding and time......-varying boundary conditions. Such effects are relevant in several engineering applications, i.e. fluid pumps and control valves....

  17. Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization

    Yang, Lirong; Lavrinenko, Andrei; Hvam, Jørn Märcher;

    2009-01-01

    Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems.......Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems....

  18. Dodecanuclear 3d/4f-metal clusters with a 'Star of David' topology: single-molecule magnetism and magnetocaloric properties.

    Alexandropoulos, Dimitris I; Cunha-Silva, Luís; Lorusso, Giulia; Evangelisti, Marco; Tang, Jinkui; Stamatatos, Theocharis C

    2016-01-28

    A family of interwoven molecular inorganic knots, shaped like the 'Star of David', was prepared by the employment of naphthalene-2,3-diol in 3d/4f-metal cluster chemistry; the isoskeletal dodecanuclear compounds exhibit slow relaxation of the magnetization and magnetocaloric properties, depending on the metal ion.

  19. Magnetic properties of bi-, tri- and multicrystals of 3D topological insulator Bi{sub 1−x}–Sb{sub x}(0.06⩽x⩽0.2)

    Muntyanu, F.M. [Institute of Electronic Engineering and Industrial Technologies, Academy of Sciences of Moldova, Chisinau 2028 (Moldova, Republic of); International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Gilewski, A., E-mail: andrzej.gilewski@ml.pan.wroc.pl [International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Nenkov, K. [International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Leibniz-Institut fur Festkorper und Werkstofforschung, Dresden 01171 (Germany); Rogacki, K. [International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Institute of Low Temperatures and Structural Research, Polish Academy of Sciences, Wroclaw 50950 (Poland); Zaleski, A.J. [Institute of Low Temperatures and Structural Research, Polish Academy of Sciences, Wroclaw 50950 (Poland); Fuks, G. [International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53421 (Poland); Leibniz-Institut fur Festkorper und Werkstofforschung, Dresden 01171 (Germany); Chistol, V. [Technical University of Moldova, Chisinau 2004 (Moldova, Republic of)

    2014-03-01

    The magnetic properties of bi-, tri- and multicrystals of 3D topological insulator Bi{sub 1−x}Sb{sub x}(0.06topological defects, ferromagnetic hysteresis loops and magnetic field expulsion have been observed simultaneously.

  20. On Compliance and Buckling Objective Functions in Topology Optimization of Snap-Through Problems

    Lindgaard, Esben; Dahl, Jonas

    2013-01-01

    This paper deals with topology optimization of static geometrically nonlinear structures experiencing snap-through behaviour. Different compliance and buckling criterion functions are studied and applied for topology optimization of a point loaded curved beam problem with the aim of maximizing...... the snap-through buckling load. The response of the optimized structures obtained using the considered objective functions are evaluated and compared. Due to the intrinsic nonlinear nature of the problem, the load level at which the objective function is evaluated has a tremendous effect on the resulting...... optimized design. A well-known issue in buckling topology optimization is artificial buckling modes in low density regions. The typical remedy applied for linear buckling does not have a natural extension to nonlinear problems, and we propose an alternative approach. Some possible negative implications...

  1. Models and Methods for Structural Topology Optimization with Discrete Design Variables

    Stolpe, Mathias

    or stresses, or fundamental frequencies. The design variables are either continuous or discrete and model dimensions, thicknesses, densities, or material properties. Structural topology optimization is a multi-disciplinary research field covering optimal design of load carrying mechanical structures......Structural topology optimization is a multi-disciplinary research field covering optimal design of load carrying mechanical structures such as bridges, airplanes, wind turbines, cars, etc. Topology optimization is a collection of theory, mathematical models, and numerical methods and is often used...... of the structure. The functions defining the feasible set of the problem limit the structural response under loading. The constraint functions often model displacements, strains or stresses, or fundamental frequencies. The design variables are either continuous or discrete and model dimensions, thicknesses...

  2. Spectroscopic imaging of the human liver using 3D CSI. Optimization and application in patients with metastatic uvea melanoma; Spektroskopische Bildgebung der menschlichen Leber mittels 3D-CSI. Etablierung und Anwendung bei Patienten mit metastasiertem Aderhautmelanom

    Beer, M.; Winkelmann, V.; Stenzel, M.; Hahn, D.; Koestler, H. [Universitaetsklinikum Wuerzburg (Germany). Inst. fuer Roentgendiagnostik; Becker, J.C.; Broecker, E.B. [Universitaetsklinikum Wuerzburg (Germany). Klinik fuer Dermatologie, Venerologie und Allergologie; Terheyden, P. [Universitaetsklinikum Wuerzburg (Germany). Klinik fuer Dermatologie, Venerologie und Allergologie; Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Dermatologie, Allergologie und Venerologie

    2009-01-15

    Purpose: {sup 31}P MR spectroscopy (MRS) allows the noninvasive assessment of metabolic alterations in tumors. Due to physical as well as technical limitations, mostly large and single voxels are used. We used a spatially resolved 31P MRS technique to characterize metabolic abnormalities inside and adjacent to liver metastases of patients with uvea melanoma. Materials and Methods: Optimization of 3D chemical shift imaging (3D CSI) was performed in healthy volunteers (n = 19; voxel size 25 ml). Patients (n = 8) with liver metastases were then examined. Cross sectional imaging was available for all patients. Results: Compared to healthy volunteers, the PME/PDE ratios of patients with liver metastasis were significantly higher (0.56 {+-} 0.30 vs. 0.39 {+-} 0.21; p < 0.05). A trend towards increased PME/beta ATP ratios (2.07 {+-} 1.83 vs. 1.02 {+-} 0.45; p = 0.12) and decreased Pi/PME ratios (0.57 {+-} 0.29 vs. 1.06 {+-} 0.58; p = 0.06) was also observed. Patients with metastases {>=} 5 cm showed significantly higher PME/PDE ratios (0.68 {+-} 0.17 vs. 0.45 {+-} 0.03; p < 0.05). Liver parenchyma adjacent to metastases did not show any significant changes compared to non-diseased tissue. Conclusion: 3D CSI allows the simultaneous analysis of metabolic alterations in diseased as well as in healthy human liver. Metastases show significant metabolic alterations. Thus, {sup 31}P MRS opens new possibilities for therapeutic monitoring. (orig.)

  3. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process.

    Kim, Yong Bok; Lee, Hyeongjin; Kim, Geun Hyung

    2016-11-30

    Recently, a three-dimensional (3D) bioprinting process for obtaining a cell-laden structure has been widely applied because of its ability to fabricate biomimetic complex structures embedded with and without cells. To successfully obtain a cell-laden porous block, the cell-delivering vehicle, bioink, is one of the significant factors. Until now, various biocompatible hydrogels (synthetic and natural biopolymers) have been utilized in the cell-printing process, but a bioink satisfying both biocompatibility and print-ability requirements to achieve a porous structure with reasonable mechanical strength has not been issued. Here, we propose a printing strategy with optimal conditions including a safe cross-linking procedure for obtaining a 3D porous cell block composed of a biocompatible collagen-bioink and genipin, a cross-linking agent. To obtain the optimal processing conditions, we modified the 3D printing machine and selected an optimal cross-linking condition (∼1 mM and 1 h) of genipin solution. To show the feasibility of the process, 3D pore-interconnected cell-laden constructs were manufactured using osteoblast-like cells (MG63) and human adipose stem cells (hASCs). Under these processing conditions, a macroscale 3D collagen-based cell block of 21 × 21 × 12 mm(3) and over 95% cell viability was obtained. In vitro biological testing of the cell-laden 3D porous structure showed that the embedded cells were sufficiently viable, and their proliferation was significantly higher; the cells also exhibited increased osteogenic activities compared to the conventional alginate-based bioink (control). The results indicated the fabrication process using the collagen-bioink would be an innovative platform to design highly biocompatible and mechanically stable cell blocks.

  4. Exotic quantum phase transitions of 2+1d Dirac fermions, and connections to 2d and 3d topological insulators

    Slagle, Kevin

    2015-03-01

    Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum phase transitions, each with connections to symmetry protected topological states. 1) The first is a continuous phase transition between the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial phase. Because there is no spontaneous symmetry breaking, this transition cannot be described by the standard Gross-Neveu model. We argue that this phase transition is related to the Z16 classification of the topological superconductor 3He-B phase with interactions. 2) The second is a quantum critical point between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting gapped phase. At the critical point the single particle excitations remain gapped, while spin and charge gaps close. We argue that this transition is described by a bosonic O(4) nonlinear sigma model field theory with a topological Θ-term.

  5. THE SATELLITE STRUCTURE TOPOLOGY OPTIMIZATION BASED ON HOMOGENIZATION METHOD AND ITS SIZE SENSITIVITY ANALYSIS

    ChenChangya; PanJin; WangDeyu

    2005-01-01

    With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.

  6. Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization.

    Jang, In Gwun; Kim, Il Yong

    2008-08-07

    In the field of bone adaptation, it is believed that the morphology of bone is affected by its mechanical loads, and bone has self-optimizing capability; this phenomenon is well known as Wolff's law of the transformation of bone. In this paper, we simulated trabecular bone adaptation in the human proximal femur using topology optimization and quantitatively investigated the validity of Wolff's law. Topology optimization iteratively distributes material in a design domain producing optimal layout or configuration, and it has been widely and successfully used in many engineering fields. We used a two-dimensional micro-FE model with 50 microm pixel resolution to represent the full trabecular architecture in the proximal femur, and performed topology optimization to study the trabecular morphological changes under three loading cases in daily activities. The simulation results were compared to the actual trabecular architecture in previous experimental studies. We discovered that there are strong similarities in trabecular patterns between the computational results and observed data in the literature. The results showed that the strain energy distribution of the trabecular architecture became more uniform during the optimization; from the viewpoint of structural topology optimization, this bone morphology may be considered as an optimal structure. We also showed that the non-orthogonal intersections were constructed to support daily activity loadings in the sense of optimization, as opposed to Wolff's drawing.

  7. Optimized 3D simulation method for modeling of out-of-plane radiation in silicon photonic integrated circuits

    Westerveld, W J; Yousefi, M

    2015-01-01

    We present an accurate and fast 3D simulation scheme for out-of-plane grating couplers, based on two dimensional rigorous (finite difference time domain) grating simulations, the effective index method (EIM), and the Rayleigh-Sommerfeld diffraction formula. In comparison with full 3D FDTD simulations, the rms difference in electric field is below 5% and the difference in power flux is below 3%. A grating coupler for coupling from a silicon-on-insulator photonic integrated circuit to an optical fiber positioned 0.1 mm above the circuit is designed as example.

  8. Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer

    Chan, Mark K.H. [Tuen Mun Hospital, Department of Clinical Oncology, Hong Kong (S.A.R) (China); Werner, Rene [The University Medical Center Hamburg-Eppendorf, Department of Computational Neuroscience, Hamburg (Germany); Ayadi, Miriam [Leon Berard Cancer Center, Department of Radiation Oncology, Lyon (France); Blanck, Oliver [University Clinic of Schleswig-Holstein, Department of Radiation Oncology, Luebeck (Germany); CyberKnife Center Northern Germany, Guestrow (Germany)

    2014-09-20

    To investigate the adequacy of three-dimensional (3D) Monte Carlo (MC) optimization (3DMCO) and the potential of four-dimensional (4D) dose renormalization (4DMC{sub renorm}) and optimization (4DMCO) for CyberKnife (Accuray Inc., Sunnyvale, CA) radiotherapy planning in lung cancer. For 20 lung tumors, 3DMCO and 4DMCO plans were generated with planning target volume (PTV{sub 5} {sub mm}) = gross tumor volume (GTV) plus 5 mm, assuming 3 mm for tracking errors (PTV{sub 3} {sub mm}) and 2 mm for residual organ deformations. Three fractions of 60 Gy were prescribed to ≥ 95 % of the PTV{sub 5} {sub mm}. Each 3DMCO plan was recalculated by 4D MC dose calculation (4DMC{sub recal}) to assess the dosimetric impact of organ deformations. The 4DMC{sub recal} plans were renormalized (4DMC{sub renorm}) to 95 % dose coverage of the PTV{sub 5} {sub mm} for comparisons with the 4DMCO plans. A 3DMCO plan was considered adequate if the 4DMC{sub recal} plan showed ≥ 95 % of the PTV{sub 3} {sub mm} receiving 60 Gy and doses to other organs at risk (OARs) were below the limits. In seven lesions, 3DMCO was inadequate, providing < 95 % dose coverage to the PTV{sub 3} {sub mm}. Comparison of 4DMC{sub recal} and 3DMCO plans showed that organ deformations resulted in lower OAR doses. Renormalizing the 4DMC{sub recal} plans could produce OAR doses higher than the tolerances in some 4DMC{sub renorm} plans. Dose conformity of the 4DMC{sub renorm} plans was inferior to that of the 3DMCO and 4DMCO plans. The 4DMCO plans did not always achieve OAR dose reductions compared to 3DMCO and 4DMC{sub renorm} plans. This study indicates that 3DMCO with 2 mm margins for organ deformations may be inadequate for Cyberknife-based lung stereotactic body radiotherapy (SBRT). Renormalizing the 4DMC{sub recal} plans could produce degraded dose conformity and increased OAR doses; 4DMCO can resolve this problem. (orig.) [German] Untersucht wurde die Angemessenheit einer dreidimensionalen (3-D) Monte

  9. Optimizing Fiber Topologies for WDM Optical Networks Based on Multi-Granularity Optical Switching Technology

    LI Junjie; ZHOU Bingkun; ZHANG Hanyi; LI Yanhe

    2006-01-01

    For the quality of service (QoS) and fairness considerations, the hop counts of various lightpaths in a wavelength division multiplexing (WDM) optical network should be short and compact. The development of multi-granularity optical switching technology has made it possible to construct various fiber topologies over a fixed physical topology. This paper describes a fiber topology design (FTD) problem, which minimizes the maximum number of required fibers in the physical links for a maximum lightpath hop count in the fiber topology. After the formular description for the FTD problem, a method was given to obtain the lower bound on the maximum number of required fibers. For large or moderate scale networks, three heuristic algorithms are given to efficiently solve the FTD problem. This study gives a new way to optimize the resource configuration performance in WDM optical networks at the topology level and proves its effectiveness via both analyses and numerical experiments.

  10. A concept for global optimization of topology design problems

    Stolpe, Mathias; Achtziger, Wolfgang; Kawamoto, Atsushi

    2006-01-01

    on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline...

  11. Weld line optimization on thermoplastic elastomer micro injection moulded components using 3D focus variation optical microscopy

    Hasnaes, F.B.; Elsborg, R.; Tosello, G.;

    2015-01-01

    The presented study investigates weld line depth development across a micro suspension ring. A focus variation microscope was used to obtain 3D images of the weld line area. Suspension rings produced with different micro injection moulding process parameters were examined to identify the correlat...

  12. Element stacking method for topology optimization with material-dependent boundary and loading conditions

    Yoon, Gil Ho; Park, Y.K.; Kim, Y.Y.

    2007-01-01

    A new topology optimization scheme, called the element stacking method, is developed to better handle design optimization involving material-dependent boundary conditions and selection of elements of different types. If these problems are solved by existing standard approaches, complicated finite...... element models or topology optimization reformulation may be necessary. The key idea of the proposed method is to stack multiple elements on the same discretization pixel and select a single or no element. In this method, stacked elements on the same pixel have the same coordinates but may have...

  13. Industrial Application of Topology Optimization for Combined Conductive and Convective Heat Transfer Problems

    Zhou, Mingdong; Alexandersen, Joe; Sigmund, Ole

    2016-01-01

    This paper presents an industrial application of topology optimization for combined conductive and convective heat transfer problems. The solution is based on a synergy of computer aided design and engineering software tools from Dassault Systemes. The considered physical problem of steady......-state heat transfer under convection is simulated using SIMULIA-Abaqus. A corresponding topology optimization feature is provided by SIMULIA-Tosca. By following a standard workflow of design optimization, the proposed solution is able to accommodate practical design scenarios and results in efficient...

  14. An efficient selectivity estimation method for spatial query optimization with topological relationships

    CHUNG Warn-ill; CHOI Jun-ho; BAE Hae-young

    2004-01-01

    Many commercial database systems maintain histograms to summarize the contents of relations and permit the efficient estimation of query result sizes and the access plan cost. In spatial database systems, most spatial query predicates are consisted of topological relationships between spatial objects, and it is very important to estimate the selectivity of those predicates for spatial query optimizer. In this paper, we propose a selectivity estimation scheme for spatial topological predicates based on the multidimensional histogram and the transformation scheme. Proposed scheme applies twopartition strategy on transformed object space to generate spatial histogram and estimates the selectivity of topological predicates based on the topological characteristics of the transformed space. Proposed scheme provides a way for estimating the selectivity without too much memory space usage and additional I/Os in most spatial query optimizers.

  15. Research on Multi-section Topology Optimization of Machine Tool Structures%机床多截面拓扑优化方法研究∗

    王万金; 殷国富; 胡腾; 邓聪颖

    2014-01-01

    针对机床拓扑优化效果不理想的问题,提出机床多截面拓扑优化方法。对拓扑优化中的过滤区域和体积约束进行改进;通过悬臂梁算例验证改进后的拓扑优化方法的有效性,并以THM6380的床身为例,将多截面拓扑优化方法运用于机床结构拓扑优化。通过优化结果对比分析,在保持床身动静态特性基本稳定的情况下,床身重量减小了20.1%,相比采用OptiStruct模块进行三维拓扑优化,缩短了优化时间,且优化效果更为明显,为多截面拓扑优化方法在机床大件结构优化中的运用做了有益的尝试。%Aiming at solving the problems in topology optimization of machine tool structures,multi-section topology optimization approach is proposed in this paper. Firstly, filtering area and volume constraint of to-pology optimization are modified. Then, cantilever beam, a well-known test example in topology optimiza-tion, is employed to validate the modified method. In the case study section, structure of a machine tool bed is optimized by the virtue of the proposed multi-section topology optimization approach. The bed is lightened by 20. 1%. Compared with the 3D topology optimization results obtained from OptiStruct module in Hyper-works sofware, the proposed optimization approach is less-time-consumed and more accurate. It can be con-cluded that the multi-section topology optimization technique is effective to optimize machine tool structures.

  16. Topology Optimization of Distributed Mass Dampers for Low-frequency Vibration Suppression

    Jensen, Jakob Søndergaard; Lazarov, Boyan Stefanov

    2007-01-01

    In this paper the method of topology optimization is used to find optimized parameter distributions for a multiple mass damper system with the purpose of minimizing the low-frequency steady-state response of a carrier structure. An effective density model that describes the steady-state effect...

  17. Pushing the Boundaries: Level-set Methods and Geometrical Nonlinearities in Structural Topology Optimization

    Van Dijk, N.P.

    2012-01-01

    This thesis aims at understanding and improving topology optimization techniques focusing on density-based level-set methods and geometrical nonlinearities. Central in this work are the numerical modeling of the mechanical response of a design and the consistency of the optimization process itself.

  18. A parametric level-set approach for topology optimization of flow domains

    Pingen, Georg; Waidmann, Matthias; Evgrafov, Anton

    2010-01-01

    Traditional methods based on an element-wise parameterization of the material distribution applied to the topology optimization of fluidic systems often suffer from slow convergence of the optimization process, as well as robustness issues at increased Reynolds numbers. The local influence...

  19. On the design of 1-3 piezo-composites using topology optimization

    Sigmund, Ole; Torquato, S.; Aksay, I.A.

    1998-01-01

    We use a topology optimization method to design 1-3 piezocomposites with optimal performance characteristics for hydrophone applications. The performance characteristics we focus on are the hydrostatic charge coefficient d(h)((*)), the hydrophone figure of merit d(h)((*))g(h)((*)), and the electr...

  20. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional......The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  1. An explicit parametrization for casting constraints in gradient driven topology optimization

    Gersborg, Allan Roulund; Andreasen, Casper Schousboe

    From a practical point of view it is often desirable to limit the complexity of a topology design such that casting/milling type manufacturing techniques can be applied. In the context of gradient driven topology optimization this work studies how castable designs can be obtained by use of a Heav...... of a Heaviside design parametrization in a specific casint direction. This reduces the number of design variables considerably and the approach is simple to implement....

  2. Limited Proteolysis Reveals That Amyloids from the 3D Domain-Swapping Cystatin B Have a Non-Native β-Sheet Topology.

    Davis, Peter J; Holmes, David; Waltho, Jonathan P; Staniforth, Rosemary A

    2015-07-31

    3D domain-swapping proteins form multimers by unfolding and then sharing of secondary structure elements, often with native-like interactions. Runaway domain swapping is proposed as a mechanism for folded proteins to form amyloid fibres, with examples including serpins and cystatins. Cystatin C amyloids cause a hereditary form of cerebral amyloid angiopathy whilst cystatin B aggregates are found in cases of Unverricht-Lundborg Syndrome, a progressive form of myoclonic epilepsy. Under conditions that favour fibrillisation, cystatins populate stable 3D domain-swapped dimers both in vitro and in vivo that represent intermediates on route to the formation of fibrils. Previous work on cystatin B amyloid fibrils revealed that the α-helical region of the protein becomes disordered and identified the conservation of a continuous 20-residue elongated β-strand (residues 39-58), the latter being a salient feature of the dimeric 3D domain-swapped structure. Here we apply limited proteolysis to cystatin B amyloid fibrils and show that not only the α-helical N-terminal of the protein (residues 1-35) but also the C-terminal of the protein (residues 80-98) can be removed without disturbing the underlying fibril structure. This observation is incompatible with previous models of cystatin amyloid fibrils where the β-sheet is assumed to retain its native antiparallel arrangement. We conclude that our data favour a more generic, at least partially parallel, arrangement for cystatin β-sheet structure in mature amyloids and propose a model that remains consistent with available data for amyloids from either cystatin B or cystatin C.

  3. Application of the Minkowski functionals in 3D to high-resolution MR images of trabecular bone: prediction of the biomechanical strength by nonlinear topological measures

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Newitt, David; Majumdar, Sharmila; Raeth, Christoph W.

    2004-05-01

    Multi-dimensional convex objects can be characterized with respect to shape, structure, and the connectivity of their components using a set of morphological descriptors known as the Minkowski functionals. In a 3D Euclidian space, these correspond to volume, surface area, mean integral curvature, and the Euler-Poincaré characteristic. We introduce the Minkowski functionals to medical image processing for the morphological analysis of trabecular bone tissue. In the context of osteoporosis-a metabolic disorder leading to a weakening of bone due to deterioration of micro-architecture-the structure of bone increasingly gains attention in the quantification of bone quality. The trabecular architecture of healthy cancellous bone consists of a complex 3D system of inter-connected mineralised elements whereas in osteoporosis the micro-structure is dominated by gaps and disconnections. At present, the standard parameter for diagnosis and assessment of fracture risk in osteoporosis is the bone mineral density (BMD) - a bulk measure of mineralisation irrespective of structural texture characteristics. With the development of modern imaging modalities (high resolution MRI, micro-CT) with spatial resolutions allowing to depict individual trabeculae bone micro-architecture has successfully been analysed using linear, 2- dimensional structural measures adopted from standard histo-morphometry. The preliminary results of our study demonstrate that due to the complex - i.e. the non-linear - network of trabecular bone structures non-linear measures in 3D are superior to linear ones in predicting mechanical properties of trabecular bone from structural information extracted from high resolution MR image data.

  4. 3D Emittances Tailoring Techniques and Optimization with Space Charge for the Future CERN PS Booster Operations with Linac4

    Forte, Vincenzo; Benedetto, Elena; Bracco, Chiara; Cieslak-Kowalska, Magdalena; Di Giovanni, Gian Piero

    2016-01-01

    In the frame of the LIU (LHC Injectors Upgrade) project, the CERN PS Booster is going to be renovated to host a new H⁻ charge-exchange injection from the Linac4. One important feature of the new injection scheme is the possibility to tailor a wide range of 3D emittances for CERN's different users in an intensity span in the order of 5·10⁹ to 1.6·10¹³ protons per PSB ring. This paper gives an overview of 3D multi-turn injection techniques, focusing on the future LHC beams, which aim at reaching high brightness, and on highest intensity beams (ISOLDE), where losses are the main concern. Complete RF capture simulations and transverse injection maps, including space charge effects, are presented and also intended to be used during the commissioning with Linac4.

  5. 3D-characterization method and morphological filtering for the assessment and the design of friction optimized surfaces

    Gröger, S.; Burkhardt, T.; Dietzsch, M.

    2011-08-01

    For a specific manipulation of friction surfaces it is important to measure and calculate geometrical parameters to derive the tribological behavior. The new functional approach presented in this paper is the calculation of the characteristic lateral extension of the real contact surface as well as the representative contact radius by applying morphological filters to a 3D-set of data. All surface characteristics, including form, waviness, roughness as well as defined microstructures, are extracted holistically with a 3D Coordinate Measuring Instrument or a Form Measuring Instrument, but with the smallest available tip radius. The paper presents the benefit of this holistic extraction method and the application of morphological filtering for the description of the contact form (plateau or sphere), the real contact surface, number of contacts, the typical contact radius and the typical lateral extension of the micro contact plateaus.

  6. 3D Spectroscopic Instrumentation

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  7. Topology Optimization of Constrained Layer Damping on Plates Using Method of Moving Asymptote (MMA Approach

    Zheng Ling

    2011-01-01

    Full Text Available Damping treatments have been extensively used as a powerful means to damp out structural resonant vibrations. Usually, damping materials are fully covered on the surface of plates. The drawbacks of this conventional treatment are also obvious due to an added mass and excess material consumption. Therefore, it is not always economical and effective from an optimization design view. In this paper, a topology optimization approach is presented to maximize the modal damping ratio of the plate with constrained layer damping treatment. The governing equation of motion of the plate is derived on the basis of energy approach. A finite element model to describe dynamic performances of the plate is developed and used along with an optimization algorithm in order to determine the optimal topologies of constrained layer damping layout on the plate. The damping of visco-elastic layer is modeled by the complex modulus formula. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, damping material density and volume factor are considered as design variable and constraint respectively. Meantime, the modal damping ratio of the plate is assigned as the objective function in the topology optimization approach. The sensitivity of modal damping ratio to design variable is further derived and Method of Moving Asymptote (MMA is adopted to search the optimized topologies of constrained layer damping layout on the plate. Numerical examples are used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout. This optimal technology can be further extended to vibration attenuation of sandwich cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles as an

  8. On the similarities between micro/nano lithography and topology optimization projection methods

    Jansen, Miche; Lazarov, Boyan Stefanov; Schevenels, Mattias;

    2013-01-01

    The aim of this paper is to incorporate a model for micro/nano lithography production processes in topology optimization. The production process turns out to provide a physical analogy for projection filters in topology optimization. Blueprints supplied by the designers cannot be directly used...... projection filter can be used to account for uncertainties due to lithographic production processes which results in manufacturable blueprint designs and eliminates the need for subsequent corrections....... as inputs to lithographic processes due to the proximity effect which causes rounding of sharp corners and geometric interaction of closely spaced design elements. Therefore, topology optimization is applied as a tool for proximity effect correction. Furthermore, it is demonstrated that the robust...

  9. Modelling of Active Semiconductor Photonic Crystal Waveguides and Robust Designs based on Topology Optimization

    Chen, Yaohui; Wang, Fengwen; Ek, Sara;

    2011-01-01

    In this paper, we present a theoretical analysis of slow-light enhanced light amplification in an active semiconductor photonic crystal line defect waveguide. The impact of enhanced light-matter interactions on propagation effects and local carrier dynamics are investigated in the framework...... of the Lorentz reciprocity theorem. We highlight topology optimization as a systematic and robust design methodology considering manufacturing imperfections in optimizing active photonic crystal device performances, and compare the performance of standard photonic crystal waveguides with optimized structures....

  10. Topology Optimization for Wave Propagation Problems with Experimental Validation

    Christiansen, Rasmus Ellebæk

    from acoustics, however problems for TE or TM polarized electromagnetic waves and shear waves in solids in two dimensions may be treated using the proposed methods with minor modifications. A brief introduction to wave problems and to density-based topology optimizationis included, as is a brief...... designed using the proposed method is provided. A novel approach for designing meta material slabs with selectively tuned negative refractive behavior is outlined. Numerical examples demonstrating the behavior of a slab under different conditions is provided. Results from an experimental studydemonstrating...

  11. From a quasi-static fluid-based evolutionary topology optimization to a generalization of BESO

    Daróczy, László; Jármai, Károly

    2015-05-01

    A new algorithm is proposed for topology optimization based on a fluid dynamics analogy. It possesses characteristics similar to most well-known methods, such as the Evolutionary Structural Optimization (ESO)/Bidirectional Evolutionary Structural Optimization (BESO) method due to Xie and Steven (1993, "A Simple Evolutionary Procedure for Structural Optimisation." Computers and Structures 49 (5): 885-896.), which works with discrete values, and the Solid Isotropic Material with Penalization (SIMP) method due to Bendsøe (1989, "Optimal Shape Design as aMaterial Distribution Problem." Structural Optimization 1 (4): 193-202.) and Zhou and Rozvany (1991, "The COCAlgorithm-Part II: Topological, Geometry and Generalized Shape Optimization." Computer Methods in Applied Mechanics and Engineering 89 (1-3): 309-336.) (using Optimality Criterion (OC) or Method of Moving Asymptotes (MMA)), which works with intermediate values, as it is able to work both with discrete and intermediate densities, but always yields a solution with discrete densities. It can be proven mathematically that the new method is a generalization of the BESO method and using appropriate parameters it will operate exactly as the BESO method. The new method is less sensitive to rounding errors of the matrix solver as compared to the BESO method and is able to give alternative topologies to well-known problems. The article presents the basic idea and the optimization algorithm, and compares the results of three cantilever optimizations to the results of the SIMP and BESO methods.

  12. Optimality criteria-based topology optimization of a bi-material model for acoustic-structural coupled systems

    Shang, Linyuan; Zhao, Guozhong

    2016-06-01

    This article investigates topology optimization of a bi-material model for acoustic-structural coupled systems. The design variables are volume fractions of inclusion material in a bi-material model constructed by the microstructure-based design domain method (MDDM). The design objective is the minimization of sound pressure level (SPL) in an interior acoustic medium. Sensitivities of SPL with respect to topological design variables are derived concretely by the adjoint method. A relaxed form of optimality criteria (OC) is developed for solving the acoustic-structural coupled optimization problem to find the optimum bi-material distribution. Based on OC and the adjoint method, a topology optimization method to deal with large calculations in acoustic-structural coupled problems is proposed. Numerical examples are given to illustrate the applications of topology optimization for a bi-material plate under a low single-frequency excitation and an aerospace structure under a low frequency-band excitation, and to prove the efficiency of the adjoint method and the relaxed form of OC.

  13. Experimental Validation of Topology Optimization for RF MEMS Capacitive Switch Design

    Philippine, Mandy Axelle; Zareie, Hosein; Sigmund, Ole;

    2013-01-01

    In this paper, we present 30 distinct RF MEMS capacitive switch designs that are the product of topology optimizations that control key mechanical properties such as stiffness, response to intrinsic stress gradients, and temperature sensitivity. The designs were evaluated with high-accuracy simul......In this paper, we present 30 distinct RF MEMS capacitive switch designs that are the product of topology optimizations that control key mechanical properties such as stiffness, response to intrinsic stress gradients, and temperature sensitivity. The designs were evaluated with high...

  14. On the Selection of Physical Layer Optimized Network Topologies for the Zigbee Network

    Manpreet

    2016-01-01

    Full Text Available Zigbee standard has been designed for low data rate, low cost and limited power applications for short-range wireless communication. The successful implementation of Zigbee based network depends on the suitable selection of physical (PHY layer and medium access control (MAC layer parameters. In this work the PHY layer parameters have been optimized for star, tree and mesh topologies. The performance investigations have been carried out for different frequency band and data rate and different bandwidth (BW in each of standard topologies. Through extensive simulations, QoS parameters like throughput, network load and delay have been evaluated to achieve optimal performance of physical layer.

  15. Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide

    Pu, Minhao; Yang, Lirong; Frandsen, L. H.;

    2010-01-01

    We demonstrate a topology-optimized coupler for a ring-shaped photonic crystal waveguide to improve the coupling of light located in the slow-light regime. An enhancement of the coupling efficiency of up to 2.5 dB is experimentally demonstrated.......We demonstrate a topology-optimized coupler for a ring-shaped photonic crystal waveguide to improve the coupling of light located in the slow-light regime. An enhancement of the coupling efficiency of up to 2.5 dB is experimentally demonstrated....

  16. Topology-optimized silicon photonic wire mode (de)multiplexer

    Frellsen, Louise Floor; Frandsen, Lars Hagedorn; Ding, Yunhong;

    2015-01-01

    of ~4.4 μm x ~2.8 μm and was fabricated for different design resolutions and design threshold values to verify the robustness of the structure to fabrication tolerances. The multiplexing functionality was confirmed by recording mode profiles using an infrared camera and vertical grating couplers. All...... structures were experimentally found to maintain functionality throughout a 100 nm wavelength range limited by available laser sources and insertion losses were generally lower than 1.3 dB. The cross talk was around -12 dB and the extinction ratio was measured to be better than 8 dB....

  17. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials

    Huang, X.; Xie, Y. M.

    2009-02-01

    There are several well-established techniques for the generation of solid-void optimal topologies such as solid isotropic material with penalization (SIMP) method and evolutionary structural optimization (ESO) and its later version bi-directional ESO (BESO) methods. Utilizing the material interpolation scheme, a new BESO method with a penalization parameter is developed in this paper. A number of examples are presented to demonstrate the capabilities of the proposed method for achieving convergent optimal solutions for structures with one or multiple materials. The results show that the optimal designs from the present BESO method are independent on the degree of penalization. The resulted optimal topologies and values of the objective function compare well with those of SIMP method.

  18. Feasibility of using Hybrid Wavelet Collocation - Brinkman Penalization Method for Shape and Topology Optimization

    Vasilyev, Oleg V.; Gazzola, Mattia; Koumoutsakos, Petros

    2009-11-01

    In this talk we discuss preliminary results for the use of hybrid wavelet collocation - Brinkman penalization approach for shape and topology optimization of fluid flows. Adaptive wavelet collocation method tackles the problem of efficiently resolving a fluid flow on a dynamically adaptive computational grid in complex geometries (where grid resolution varies both in space and time time), while Brinkman volume penalization allows easy variation of flow geometry without using body-fitted meshes by simply changing the shape of the penalization region. The use of Brinkman volume penalization approach allow seamless transition from shape to topology optimization by combining it with level set approach and increasing the size of the optimization space. The approach is demonstrated for shape optimization of a variety of fluid flows by optimizing single cost function (time averaged Drag coefficient) using covariance matrix adaptation (CMA) evolutionary algorithm.

  19. Topology Optimization and Robotic Fabrication of Advanced Timber Space-frame Structures

    Søndergaard, Asbjørn; Amir, Oded; Eversmann, Phillip

    2016-01-01

    This paper presents a novel method for integrated topology optimization and fabrication of advanced timber space-frame structures. The method, developed in research collaboration between ETH Zürich, Aarhus School of Architecture and Israel Institute of Technology, entails the coupling of truss......-based topology optimization with digital procedures for rationalization and robotic assembly of bespoke timber members, through a procedural, cross-application workflow. Through this, a direct chaining of optimization and robotic fabrication is established, in which optimization data is driving subsequent...... processes solving timber joint intersections, robotically controlling member prefabrication, and spatial robotic assembly of the optimized timber structures. The implication of this concept is studied through pilot fabrication and load-testing of a full scale prototype structure....

  20. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator.

    Singh, Rahul; Shukla, K K; Kumar, A; Okram, G S; Singh, D; Ganeshan, V; Lakhani, Archana; Ghosh, A K; Chatterjee, Sandip

    2016-09-21

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  1. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  2. Optimized Volumetric Modulated Arc Therapy Versus 3D-CRT for Early Stage Mediastinal Hodgkin Lymphoma Without Axillary Involvement: A Comparison of Second Cancers and Heart Disease Risk

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it [Department of Oncology, Radiation Oncology, University of Torino, Torino (Italy); Ragona, Riccardo; Piva, Cristina; Scafa, Davide; Fiandra, Christian [Department of Oncology, Radiation Oncology, University of Torino, Torino (Italy); Fusella, Marco; Giglioli, Francesca Romana [Medical Physics, AOU Città della Salute e della Scienza Hospital, Torino (Italy); Lohr, Frank [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Ricardi, Umberto [Department of Oncology, Radiation Oncology, University of Torino, Torino (Italy)

    2015-05-01

    Purpose: The purpose of this study was to evaluate the risks of second cancers and cardiovascular diseases associated with an optimized volumetric modulated arc therapy (VMAT) planning solution in a selected cohort of stage I/II Hodgkin lymphoma (HL) patients treated with either involved-node or involved-site radiation therapy in comparison with 3-dimensional conformal radiation therapy (3D-CRT). Methods and Materials: Thirty-eight patients (13 males and 25 females) were included. Disease extent was mediastinum alone (n=8, 21.1%); mediastinum plus unilateral neck (n=19, 50%); mediastinum plus bilateral neck (n=11, 29.9%). Prescription dose was 30 Gy in 2-Gy fractions. Only 5 patients had mediastinal bulky disease at diagnosis (13.1%). Anteroposterior 3D-CRT was compared with a multiarc optimized VMAT solution. Lung, breast, and thyroid cancer risks were estimated by calculating a lifetime attributable risk (LAR), with a LAR ratio (LAR{sub VMAT}-to-LAR{sub 3D-CRT}) as a comparative measure. Cardiac toxicity risks were estimated by calculating absolute excess risk (AER). Results: The LAR ratio favored 3D-CRT for lung cancer induction risk in mediastinal alone (P=.004) and mediastinal plus unilateral neck (P=.02) presentations. LAR ratio for breast cancer was lower for VMAT in mediastinal plus bilateral neck presentations (P=.02), without differences for other sites. For thyroid cancer, no significant differences were observed, regardless of anatomical presentation. A significantly lower AER of cardiac (P=.038) and valvular diseases (P<.0001) was observed for VMAT regardless of disease extent. Conclusions: In a cohort of patients with favorable characteristics in terms of disease extent at diagnosis (large prevalence of nonbulky presentations without axillary involvement), optimized VMAT reduced heart disease risk with comparable risks of thyroid and breast cancer, with an increase in lung cancer induction probability. The results are however strongly influenced by

  3. Aerodynamic Shape Optimization Using the Discrete Adjoint of the Navier-Stokes Equations: Applications towards Complex 3D Configurations

    Brezillon, J.; Dwight, R.P.

    2009-01-01

    Within the next few years, numerical shape optimization based on high fidelity methods is likely to play a strategic role in future aircraft design. In this context, suitable tools have to be developed for solving aerodynamic shape optimization problems, and the adjoint approach - which allows fast

  4. Inverse design of dielectric materials by topology optimization

    Otomori, M.; Andkjær, Jacob Anders; Sigmund, Ole;

    2012-01-01

    the effective permittivity and a prescribed value. The optimization algorithm uses the adjoint variable method (AVM) for the sensitivity analysis and the finite element method (FEM) for solving the equilibrium and adjoint equations, respectively. A Heaviside projection filter is used to obtain clear optimized...

  5. Acute beneficial hemodynamic effects of a novel 3D-echocardiographic optimization protocol in cardiac resynchronization therapy.

    Carolin Sonne

    Full Text Available BACKGROUND: Post-implantation therapies to optimize cardiac resynchronization therapy (CRT focus on adjustments of the atrio-ventricular (AV delay and ventricular-to-ventricular (VV interval. However, there is little consensus on how to achieve best resynchronization with these parameters. The aim of this study was to examine a novel combination of doppler echocardiography (DE and three-dimensional echocardiography (3DE for individualized optimization of device based AV delays and VV intervals compared to empiric programming. METHODS: 25 recipients of CRT (male: 56%, mean age: 67 years were included in this study. Ejection fraction (EF, the primary outcome parameter, and left ventricular (LV dimensions were evaluated by 3DE before CRT (baseline, after AV delay optimization while pacing the ventricles simultaneously (empiric VV interval programming and after individualized VV interval optimization. For AV delay optimization aortic velocity time integral (AoVTI was examined in eight different AV delays, and the AV delay with the highest AoVTI was programmed. For individualized VV interval optimization 3DE full-volume datasets of the left ventricle were obtained and analyzed to derive a systolic dyssynchrony index (SDI, calculated from the dispersion of time to minimal regional volume for all 16 LV segments. Consecutively, SDI was evaluated in six different VV intervals (including LV or right ventricular preactivation, and the VV interval with the lowest SDI was programmed (individualized optimization. RESULTS: EF increased from baseline 23±7% to 30±8 (p<0.001 after AV delay optimization and to 32±8% (p<0.05 after individualized optimization with an associated decrease of end-systolic volume from a baseline of 138±60 ml to 115±42 ml (p<0.001. Moreover, individualized optimization significantly reduced SDI from a baseline of 14.3±5.5% to 6.1±2.6% (p<0.001. CONCLUSIONS: Compared with empiric programming of biventricular pacemakers

  6. Biomechanical analysis and design of a dynamic spinal fixator using topology optimization: a finite element analysis.

    Lin, Hung-Ming; Liu, Chien-Lin; Pan, Yung-Ning; Huang, Chang-Hung; Shih, Shih-Liang; Wei, Shun-Hwa; Chen, Chen-Sheng

    2014-05-01

    Surgeons often use spinal fixators to manage spinal instability. Dynesys (DY) is a type of dynamic fixator that is designed to restore spinal stability and to provide flexibility. The aim of this study was to design a new spinal fixator using topology optimization [the topology design (TD) system]. Here, we constructed finite element (FE) models of degenerative disc disease, DY, and the TD system. A hybrid-controlled analysis was applied to each of the three FE models. The rod structure of the topology optimization was modelled at a 39 % reduced volume compared with the rigid rod. The TD system was similar to the DY system in terms of stiffness. In contrast, the TD system reduced the cranial adjacent disc stress and facet contact force at the adjacent level. The TD system also reduced pedicle screw stresses in flexion, extension, and lateral bending.

  7. PATH PLANNING OF AN AUTONOMOUS MOBILE MULTI-SENSOR PLATFORM IN A 3D ENVIRONMENT USING NEWTONIAN IMPERIALIST COMPETITIVE OPTIMIZATION METHOD

    A. A. Heidari

    2013-09-01

    Full Text Available This paper addresses an innovative evolutionary computation approach to 3D path planning of autonomous UAVs in real environment. To solve this Np-hard problem, Newtonian imperialist competitive algorithm (NICA was developed and extended for path planning problem. This paper is related to optimal trajectory-designing before UAV missions. NICA planner provides 3D optimal paths for UAV planning in real topography of north Tehran environment. To simulate UAV path planning, a real DTM is used to algorithm. For real-world applications, final generated paths should be smooth and also physical flyable that made the path planning problems complex and more constrained. The planner progressively presents a smooth 3D path from first position to mission target location. The objective function contains distinctive measures of the problem. Our main goal is minimization of the total mission time. For evaluating of NICA efficiency, it is compared with other three well-known methods, i.e. ICA, GA, and PSO. Then path planning of UAV will done. Finally simulations proved the high capabilities of proposed methodology.

  8. LatticeLibrary and BccFccRaycaster: Software for processing and viewing 3D data on optimal sampling lattices

    Elisabeth Schold Linnér

    2016-01-01

    Full Text Available In this paper, we present LatticeLibrary, a C++ library for general processing of 2D and 3D images sampled on arbitrary lattices. The current implementation supports the Cartesian Cubic (CC, Body-Centered Cubic (BCC and Face-Centered Cubic (FCC lattices, and is designed to facilitate addition of other sampling lattices. We also introduce BccFccRaycaster, a plugin for the existing volume renderer Voreen, making it possible to view CC, BCC and FCC data, using different interpolation methods, with the same application. The plugin supports nearest neighbor and trilinear interpolation at interactive frame rates. These tools will enable further studies of the possible advantages of non-Cartesian lattices in a wide range of research areas.

  9. LatticeLibrary and BccFccRaycaster: Software for processing and viewing 3D data on optimal sampling lattices

    Linnér, Elisabeth Schold; Morén, Max; Smed, Karl-Oskar; Nysjö, Johan; Strand, Robin

    In this paper, we present LatticeLibrary, a C++ library for general processing of 2D and 3D images sampled on arbitrary lattices. The current implementation supports the Cartesian Cubic (CC), Body-Centered Cubic (BCC) and Face-Centered Cubic (FCC) lattices, and is designed to facilitate addition of other sampling lattices. We also introduce BccFccRaycaster, a plugin for the existing volume renderer Voreen, making it possible to view CC, BCC and FCC data, using different interpolation methods, with the same application. The plugin supports nearest neighbor and trilinear interpolation at interactive frame rates. These tools will enable further studies of the possible advantages of non-Cartesian lattices in a wide range of research areas.

  10. Topology Optimization for Minimizing the Resonant Response of Plates with Constrained Layer Damping Treatment

    Zhanpeng Fang

    2015-01-01

    Full Text Available A topology optimization method is proposed to minimize the resonant response of plates with constrained layer damping (CLD treatment under specified broadband harmonic excitations. The topology optimization problem is formulated and the square of displacement resonant response in frequency domain at the specified point is considered as the objective function. Two sensitivity analysis methods are investigated and discussed. The derivative of modal damp ratio is not considered in the conventional sensitivity analysis method. An improved sensitivity analysis method considering the derivative of modal damp ratio is developed to improve the computational accuracy of the sensitivity. The evolutionary structural optimization (ESO method is used to search the optimal layout of CLD material on plates. Numerical examples and experimental results show that the optimal layout of CLD treatment on the plate from the proposed topology optimization using the conventional sensitivity analysis or the improved sensitivity analysis can reduce the displacement resonant response. However, the optimization method using the improved sensitivity analysis can produce a higher modal damping ratio than that using the conventional sensitivity analysis and develop a smaller displacement resonant response.

  11. Aerodynamic Shape Optimization Using the Discrete Adjoint of the Navier-Stokes Equations: Applications Toward Complex 3D Configutations

    Brezillon, Joël; Dwight, Richard P.

    2009-01-01

    Within the next few years, numerical shape optimization based on high fidelity methods is likely to play a strategic role in future aircraft design. In this context, suitable tools have to be developed for solving aerodynamic shape optimization problems, and the adjoint approach - which allows fast and accurate evaluations of the gradients with respect to the design parameters - is seen as a promising strategy. After describing the theory of the viscous discrete adjoint method and its impleme...

  12. Aerodynamic Shape Optimization Using the Discrete Adjoint of the Navier-Stokes Equations: Applications towards Complex 3D Configurations

    Brezillon, J.; Dwight, R.P.

    2009-01-01

    Within the next few years, numerical shape optimization based on high fidelity methods is likely to play a strategic role in future aircraft design. In this context, suitable tools have to be developed for solving aerodynamic shape optimization problems, and the adjoint approach - which allows fast and accurate evaluations of the gradients with respect to the design parameters - is seen as a promising strategy. After describing the theory of the viscous discrete adjoint method and its impleme...

  13. DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    Villoutreix Bruno O

    2009-11-01

    Full Text Available Abstract Background Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Results Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. Conclusion DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  14. Topology optimization of reinforced concrete structures considering control of shrinkage and strength failure

    Luo, Yangjun; Wang, Michael Yu; Zhou, Mingdong;

    2015-01-01

    To take into account the shrinkage effect in the early stage of Reinforced Concrete (RC) design, an effective continuum topology optimization method is presented in this paper. Based on the power-law interpolation, shrinkage of concrete is numerically simulated by introducing an additional design...

  15. Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2004-01-01

    Topology optimization is a promising method for systematic design of optical devices. As an example, we demonstrate how the method can be used to design a 90degrees bend in a two-dimensional photonic crystal waveguide with a transmission loss of less than 0.3% in almost the entire frequency range...

  16. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  17. TOPOLOGY OPTIMIZATION OF OPTICAL BAND GAP EFFECTS IN SLAB STRUCTURES MODULATED BY PERIODIC RAYLEIGHWAVES

    This paper is concerned with topology optimization of a coupled optical and mechanical wave propagation problem in photonic crystals. It is motivated by the potential gain in functionality of optical devices where mechanical Rayleigh waves (travelling in the surface of the material) play a leading...

  18. A level-set based topology optimization using the element connectivity parameterization method

    Van Dijk, N.P.; Yoon, G.H.; Van Keulen, F.; Langelaar, M.

    2010-01-01

    This contribution presents a novel and versatile approach to geometrically nonlinear topology optimization by combining the level-set method with the element connectivity parameterization method or ECP. The combined advantages of both methods open up the possibility to treat a wide range of optimiza

  19. Direct gradient projection method with transformation of variables technique for structural topology optimization

    Chang, C.; Borgart, A.; Chen, A.; Hendriks, M.A.N.

    2014-01-01

    This paper proposes an efficient and reliable topology optimization method that can obtain a black and white solution with a low objective function value within a few tens of iterations. First of all, a transformation of variables technique is adopted to eliminate the constraints on the design varia

  20. Design of Electric Vehicle Racing Car Chassis using Topology Optimization Method

    bin Ab Razak Mohd Suffian

    2017-01-01

    Full Text Available The goal of this project is to improve the design of space frame chassis of electric vehicle which meet the rules and regulations of Formula Varsity (FV Malaysia. The chassis was designed using topology optimization method and analyzed for its structural performance using various loading analyses and RULA assessment.

  1. Industrial Application of Topology Optimization for Combined Conductive and Convective Heat Transfer Problems

    Zhou, Mingdong; Alexandersen, Joe; Sigmund, Ole;

    2016-01-01

    This paper presents an industrial application of topology optimization for combined conductive and convective heat transfer problems. The solution is based on a synergy of computer aided design and engineering software tools from Dassault Systemes. The considered physical problem of steady...

  2. Topology optimization of double- and triple-layer grids using a hybrid methodology

    Dehghani, M.; Mashayekhi, M.; Salajegheh, E.

    2016-08-01

    In this article, a hybrid methodology combining evolutionary structural optimization (ESO) and gravitational particle swarm (GPS) methods is proposed for topology optimization of double- and triple-layer grids. In the present methodology, which is called the ESO-GPS method, the size optimization of double- and triple-layer grids is first performed by ESO. Then, the outcomes of the ESO are used to improve the GPS through four modifications. Structural weight is minimized against constraints on the displacements of nodes, internal stresses and element slenderness ratio. The GPS is used to investigate the optimum topology of large-scale skeletal structures with discrete variables whose agents update their respective positions by the particle swarm optimization velocity and the acceleration of the gravitational search algorithm. The numerical results show that the proposed algorithm, the ESO-GPS, performs better than the GPS and the other methods presented in the literature.

  3. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load

    Clausen, Anders; Aage, Niels; Sigmund, Ole

    2016-01-01

    of fully exploiting this design freedom. In this work, we show how the so-called coating approach to topology optimization provides a means for designing infill-based components that possess a strongly improved buckling load and, as a result, improved structural stability. The suggested approach thereby...... addresses an important inadequacy of the standard minimum compliance topology optimization approach, in which buckling is rarely accounted for; rather, a satisfactory buckling load is usually assured through a post-processing step that may lead to sub-optimal components. The present work compares...... material, the buckling load may be more than four times higher than that of solid structures optimized under the same conditions....

  4. Topology optimization: a systematic method to improve the performance of photonic crystal structures

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2004-01-01

    The method of topology optimization has previously been used to design exotic materials, MEMS and thermo-elastic mechanisms, as well as several other devices in mechanics and multi-physics applications [1]. Recently, the method was applied to design photonic and phononic crystals with maximum siz...... band gaps [2,3]. In [3] the optimization of phononic crystal structures was considered also, with examples demonstrating the possibility for designing wave-reflecting and wave-guiding structures with optimized performance.......The method of topology optimization has previously been used to design exotic materials, MEMS and thermo-elastic mechanisms, as well as several other devices in mechanics and multi-physics applications [1]. Recently, the method was applied to design photonic and phononic crystals with maximum size...

  5. Topologic compression for 3D mesh model based on Face Fixer method%基于边扩张算法和熵编码的3D网格模型的拓扑信息压缩

    许敏; 李钢; 吴石虎; 刘宁

    2011-01-01

    Firstly, three categorizes methods of compressing polygon mesh topologic information without triangulations were summarized in the paper. Then, the Face Fixer algorithm based on edge conquering was studied. Finally, several 3D mesh models were compressed after topologic encoding when using the same order adaptive arithmetic coder and range coder. The experiments results showed that range coder is superior to arithmetic coder in compression ratio and velocity with the increasing model size. Thus, for larger model, the adaptive range coder is preferred to compress.%本文总结了三类不经三角剖分直接编码多边形网格模型拓扑信息的单分辨率压缩法,对其中基于边区域扩张的Face Fixer算法进行了研究,并分别应用同阶自适应区间编码法和算术编码法对三角形网格模型和多边形网格模型进行了压缩.实验结果表明:随着模型数据量的增大,区间编码的压缩率和压缩速度反而高于算术编码,因而对于大数据量的网格模型,更适直采用区间编码来压缩.

  6. Optimizing Network Topology to Reduce Aggregate Traffic in Systems of Mobile Robots

    Navaravong, Leenhapat; Pasiliao, Eduardo L; Barnette, Gregory L; Dixon, Warren E

    2011-01-01

    Systems of networked mobile robots, such as unmanned aerial or ground vehicles, will play important roles in future military and commercial applications. The communications for such systems will typically be over wireless links and may require that the robots form an ad hoc network and communicate on a peer-to-peer basis. In this paper, we consider the problem of optimizing the network topology to minimize the total traffic in a network required to support a given set of data flows under constraints on the amount of movement possible at each mobile robot. In this paper, we consider a subclass of this problem in which the initial and final topologies are trees, and the movement restrictions are given in terms of the number of edges in the graph that must be traversed. We develop algorithms to optimize the network topology while maintaining network connectivity during the topology reconfiguration process. Our topology reconfiguration algorithm uses the concept of prefix labelling and routing to move nodes throu...

  7. Topology and shape optimization of induced-charge electro-osmotic micropumps

    Gregersen, M M; Okkels, F; Bruus, H [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Bazant, M Z [Departments of Chemical Engineering and Mathematics, MIT, Cambridge, MA 02139 (United States)], E-mail: Henrik.Bruus@nanotech.dtu.dk

    2009-07-15

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology-optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance.

  8. Multiscale modeling and topology optimization of poroelastic actuators

    Andreasen, Casper Schousboe; Sigmund, Ole

    2012-01-01

    This paper presents a method for design of optimized poroelastic materials which under internal pressurization turn into actuators for application in, for example, linear motors. The actuators are modeled in a two-scale fluid–structure interaction approach. The fluid saturated material microstruc......This paper presents a method for design of optimized poroelastic materials which under internal pressurization turn into actuators for application in, for example, linear motors. The actuators are modeled in a two-scale fluid–structure interaction approach. The fluid saturated material...

  9. Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation

    Wang, Jian; Cheng, Shuang; Li, Wanfei; Zhang, Su; Li, Hongfei; Zheng, Zhaozhao; Li, Fujin; Shi, Liyi; Lin, Hongzhen; Zhang, Yuegang

    2016-07-01

    Lithium/sulfur (Li/S) battery is a promising next-generation energy storage system owing to its high theoretical energy density. However, for practical use there remains some key problems to be solved, such as low active material utilization and rapid capacity fading, especially at high areal sulfur loadings. Here, we report a facile one-pot method to prepare porous three-dimensional nitrogen, sulfur-codoped graphene through hydrothermal reduction of graphene oxide with multi-ion mixture modulation. We show solid evidence that the results of multi-ion mixture modulation can not only improve the surface affinity of the nanocarbons to polysulfides, but also alter their assembling manner and render the resultant 3D network a more favorable pore morphology for accommodating and confining sulfur. It also had an excellent rate performance and cycling stability, showing an initial capacity of 1304 mA h g-1 at 0.05C, 613 mA h g-1 at 5C and maintaining a reversible capacity of 462 mA h g-1 after 1500 cycles at 2C with capacity fading as low as 0.028% per cycle. Moreover, a high areal capacity of 5.1 mA h cm-2 at 0.2C is achieved at an areal sulfur loading of 6.3 mg cm-2, which are the best values reported so far for dual-doped sulfur cathodes.

  10. Optimization design of the coating furnace by 3-d simulation of spouted bed dynamics in the coater

    Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Liu, Bing; Shao, Youlin; Wang, Jing

    2014-05-01

    The 3-d Euler–Euler CFD simulation was adopted to study the particle dynamics in the spouted bed under different operation conditions and different gas inlet structures (traditional single-nozzle inlet, modified single-nozzle inlet, multi-nozzle inlet and swirl flow design inlet). The maximum spouted height is mainly determined by the gas velocity. The simulation results were in good agreement with the experimental results in spouted bed with traditional single-nozzle inlet. The gas velocity increase will also reduce the volume of particle clusters in spouted bed with multi-nozzle inlet. By comparing simulation results, the multi-nozzle inlet and special swirl flow design inlet is better than single nozzle inlet for obtaining a more uniform fluidization state, which can disperse the gas to increase the gas–particle contact efficiency. The specially swirl flow design can reduce the accumulation of solid particles close to the wall further, especially at the bottom of the spouted bed. The experimental study should be given to validate the superiority of this newly swirl flow design inlet before the industrial application in the future.

  11. Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing.

    Imani, Rana; Hojjati Emami, Shahriar; Fakhrzadeh, Hossein; Baheiraei, Nafiseh; Sharifi, Ali M

    2012-04-01

    The ultimate goal of tissue engineering is to design and fabricate functional human tissues that are similar to natural cells and are capable of regeneration. Preparation of cell aggregates is one of the important steps in 3D tissue engineering technology, particularly in organ printing. Two simple methods, hanging drop (HD) and conical tube (CT) were utilized to prepare cell aggregates. The size and viability of the aggregates obtained at different initial cell densities and pre-culture duration were compared. The proliferative ability of the cell aggregates and their ability to spread in culture plates were also investigated. In both methods, the optimum average size of the aggregates was less than 500 microm. CT aggregates were smaller than HD aggregates. 5,000 cells per drop HD aggregates showed a marked ability to attach and spread on the culture surface. The proliferative ability reduced when the initial cell density was increased. Comparing these methods, we found that the HD method having better size controlling ability as well as enhanced ability to maintain higher rates of viability, spreading, and proliferation. In conclusion, smaller HD aggregates might be a suitable choice as building blocks for making bioink particles in bioprinting technique.

  12. On some fundamental properties of structural topology optimization problems

    Stolpe, Mathias

    2009-01-01

    --1. We show, by examples which can be solved by hand calculations, that the optimal solutions in general are not unique and possibly do not have an active volume constraint. These observations have immediate consequences on the theoretical convergence properties of penalization approaches. Furthermore...

  13. On Topology Optimization of Inertia Driven Dosing Units

    Andreasen, Casper Schousboe

    2016-01-01

    are modeled using the steady state incompressible Navier-Stokes equations and the two fluids are considered havingthe same properties. A Brinkman penalization term is added to the governing equations such that a control problem of the flow topologyis obtained. Optimized component geometries for a range...

  14. On some fundamental properties of structural topology optimization problems

    Stolpe, Mathias

    2010-01-01

    convergence properties of penalization approaches based on material interpolation models. Furthermore, we illustrate that the optimal solutions to the considered problems in general are not symmetric even if the design domain, the external loads, and the boundary conditions are symmetric around an axis...

  15. Tailoring Dispersion properties of photonic crystal waveguides by topology optimization

    Stainko, Roman; Sigmund, Ole

    2007-01-01

    based design updates. The goal of the optimization process is to come up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. Two examples concerning reproduction of a specific dispersion...

  16. Topology Optimization of Shape Memory Alloy Actuators using Element Connectivity Parameterization

    Langelaar, Matthijs; Yoon, Gil Ho; Kim, Yoon Young;

    2005-01-01

    This paper presents the first application of topology optimization to the design of shape memory alloy actuators. Shape memory alloys (SMA’s) exhibit strongly nonlinear, temperature-dependent material behavior. The complexity in the constitutive behavior makes the topology design of SMA structures......-independent constitutive model of SMA’s is employed which allows efficient adjoint sensitivity analysis. The effectiveness of the proposed technique is illustrated by several numerical examples.In terms of computation time, the I-ECP method, a newly-developed version of ECP, is much more efficient because the degrees...

  17. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  18. Topology optimization of compliant adaptive wing leading edge with composite materials

    Tong Xinxing

    2014-12-01

    Full Text Available An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error (LSE between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization (SIMP model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle (UAV field.

  19. 3D photoacoustic imaging

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    a 3D photoacoustic imaging system, and (ii) that reconstruction algorithms which favor sparseness can significantly improve imaging performance. These methodologies should provide a means to optimize detector count and geometry for a multitude of 3D photoacoustic imaging applications.

  20. 3D numerical simulation of a lab-on-a-chip--increasing measurement sensitivity of interdigitated capacitors by passivation optimization.

    Jungreuthmayer, Christian; Birnbaumer, Gerald M; Zanghellini, Juergen; Ertl, Peter

    2011-04-07

    Interdigital electrode structures (IDES) play a major role in many technical and analytical applications. In particular, they are a key technology in modern lab-on-a-chip (LOC) devices. As high sensitivity is a key component of any (bio)analytical method, the presented work is aimed at designing a novel dielectric sensing system, which exhibits maximum sensor sensitivity using passivated dielectric microsensors. Although the implementation of high-ε(r) dielectric passivation materials such as tantalum oxide or titanium oxide showed increased sensor sensitivity by a factor of 5, simulations revealed that sensor sensitivity is ultimately determined by the dielectric properties of the analyte. Ideally, dielectric properties of the passivation material need to be adjusted to the dielectric properties of the material under investigation and any deviations (e.g. higher or lower dielectric constants) will result in significant loss of sensitivity. To address these shortcomings we have developed a novel dielectric sensing concept based on a dual-material passivation geometry. The novel design consists of electric flux barriers that are layered between the finger electrodes, as well as electric flux guides which are located above the electrode structures that direct the entire generated electric flux to the object under investigation. Our 3D numerical results clearly show that the novel design offers two main advantages: firstly, the measurement sensitivity is further increased by more than a factor of two in comparison to a homogeneous passivation material sensing strategy. Secondly, maximum sensitivity for a given set of finger geometries can be achieved using a single sensor design regardless of the frequency-dependent dielectric properties of the measured objects. Hence, the novel approach is capable of reducing design and manufacturing costs of lab-on-a-chip devices.